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ABSTRACT

Game dynamics, which describe how agents’ strategies evolve over time based on
past interactions, can exhibit a variety of undesirable behaviours including con-
vergence to suboptimal equilibria, cycling, and chaos. While central planners can
employ incentives to mitigate such behaviors and steer game dynamics towards
desirable outcomes, the effectiveness of such interventions critically relies on ac-
curately predicting agents’ responses to these incentives—a task made particu-
larly challenging when the underlying dynamics are unknown and observations
are limited. To address this challenge, this work introduces the Side Information
Assisted Regression with Model Predictive Control (SIAR-MPC) framework. We
extend the recently introduced SIAR method to incorporate the effect of control,
enabling it to utilize side-information constraints inherent to game-theoretic ap-
plications to model agents’ responses to incentives from scarce data. MPC then
leverages this model to implement adaptive incentive adjustments. Our experi-
ments demonstrate the efficiency of SIAR-MPC in guiding systems towards so-
cially optimal equilibria, stabilizing chaotic and cycling behaviors. Comparative
analyses in data-scarce settings show SIAR-MPC’s superior performance com-
pared to pairing MPC with state-of-the-art alternatives like Sparse Identification of
Nonlinear Dynamics (SINDy) and Physics Informed Neural Networks (PINNs).

1 INTRODUCTION

Game theory provides a mathematical framework for studying strategic interactions among self-
interested decision-making agents, i.e., players. The Nash equilibrium (NE) is the central solution
concept in game theory, describing a state where no player has an incentive to deviate (Nash, 1950).
Over time, research has shifted from simply assuming that an NE exists and players will eventu-
ally play it, to understanding how equilibrium is reached (Smale, 1976; Papadimitriou & Piliouras,
2019). This shift has led to a focus on learning in games, exploring how strategies evolve over time
based on past outcomes, adopting a dynamical systems perspective (Fudenberg & Levine, 1998;
Sandholm, 2010). It has been shown that game dynamics do not necessarily converge to NE but in-
stead can display a variety of undesirable behaviors, including cycling, chaos, Poincaré recurrence,
or convergence to suboptimal equilibria (Hart & Mas-Colell, 2003; Sato et al., 2002; Mertikopoulos
et al., 2018; Milionis et al., 2023). Motivated by these challenges, our primary objective in this work
is to determine:

Can we steer game dynamics towards desirable outcomes?

To address this problem, we adopt the perspective of a central planner who seeks to influence player
behaviour by designing incentives. Our goal is to achieve this with minimal effort, ensuring that
the incentives are both cost-effective and efficient. More importantly, we operate in a setting with
unknown game dynamics and limited observational data, reflecting real-world scenarios where in-
formation is often incomplete or uncertain. To tackle these challenges, we introduce a new com-
putational framework called Side Information Assisted Regression with Model Predictive Control
(SIAR-MPC), designed to steer game dynamics by integrating cutting-edge techniques for real-time
system identification and control. In the system identification step, we predict agents’ reactions to
incentives, which is especially challenging for settings where observational data is limited, difficult
to obtain, or costly. To address this problem, we extend the recently introduced SIAR method
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(Sakos et al., 2023), which was originally developed to identify agents’ learning dynamics from a
short burst of a system trajectory. To compensate for the absence of data, SIAR searches for poly-
nomial regressors that approximate the dynamics, satisfying side-information constraints native to
game theoretical applications. To adapt it to our needs, we broaden the scope of SIAR to incorpo-
rate the influence of control parameters and enable it to model the controlled dynamics, resulting in
SIAR with control (SIARc).
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Figure 1: Replicator dynamics trajectories in the matching pennies game with and without control.
Starting from three initial conditions, (left) without control the system cycles around the equilibrium;
(right) with control, trajectories are guided towards the specified equilibrium (indicated by ⋆.)

Once agent responses to incentives are modeled with SIARc, we use MPC in the subsequent control
step to develop a dynamic incentive scheme that steers the system towards desirable outcomes (see
Fig. 1 for an example illustrating the impact of control). MPC is a control technique that leverages
a mathematical model of the system to predict future behavior and calculate optimal control inputs
that minimize a given objective function (Camacho & Bordons, 2007). A key advantage of MPC
is its ability to handle input constraints, which is particularly relevant in our context since there are
practical limits to the incentives that can be offered to agents. However, the effectiveness of MPC de-
pends on having an accurate system model, highlighting the importance of the system identification
step for its successful application.

Our key contributions are:

• Framework for steering game dynamics: We introduce the SIAR-MPC framework for
steering game dynamics towards desirable outcomes when the underlying agent behaviours
are unknown and observational data are scarce.

• Demonstration of performance across diverse game types: We demonstrate the effec-
tiveness of our framework across a diverse range of game types, from zero-sum games like
Matching Pennies and Rock-Paper-Scissors to coordination games such as Stag Hunt. Our
experimental results show that SIAR-MPC can successfully steer system dynamics towards
socially optimal equilibria and stabilize chaotic and cycling learning dynamics.

• Superior performance in data-scarce settings: We benchmark SIAR-MPC against an
unconstrained regression method, Sparse Identification of Nonlinear Dynamics with con-
trol (SINDYc), as well as Physics-Informed Neural Network (PINN) coupled with MPC.
Our results demonstrate that SIAR-MPC consistently achieves superior convergence and
reduced control costs in data-scarce settings.

2 RELATED WORK

Control of Game Dynamics: Recently, incentive-based control has been applied extensively in
multi-player environments (see, e.g., Riehl et al. (2018) and references therein). In addition, optimal
control solutions have been given for specific evolutionary games and dynamics (Paarporn et al.,
2018; Gong et al., 2022; Martins et al., 2023). However, in the aforementioned works the player
behavior is known, and to the best of our knowledge a setup where the game dynamics are not a
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priori known to the controller has only been explored in the recent works of Zhang et al. (2024)
and Huang et al. (2024). Zhang et al. (2024) study the problem of steering no-regret agents in
normal- and extensive-form games, under both full and bandit feedback. However, in their setup the
agents are adversarial and not bound to fixed dynamics, making their setup incompatible with system
identification. On the other hand, Huang et al. (2024) study this problem in the richer environment
of Markov games under the additional assumption that the players’ dynamics belong to some known
finite class. This assumption allows the controller to utilize simulators of the class of dynamics to
optimize for controls that identify the exact update rule with high probability. In contrast, SIAR-
MPC does not rely on this assumption and instead takes advantage of the approximation guarantees
of polynomial regression to acquire an accurate representation of an unknown system.

System Identification: In the last decades, the overall success of data-driven approaches in the sci-
entific communities has inspired the development of Deep Learning (DL) architectures focused on
the discovery of dynamical systems, e.g., Neural ODEs (Lu et al., 2018). More recently, increasing
demand for more interpretable ”black-box” models led to the development of various specialized ar-
chitectures including Physics Informed Neural Networks (PINNs) (Raissi et al., 2019), Kolmogorov-
Arnold Network ODEs (KAN-ODEs) (Koenig et al., 2024), Learning Across Dynamical Systems
(LEADS) (Yin et al., 2021), and Deep Projection Networks (DPNets) (Kostic et al., 2024). Among
the aforementioned data-driven technologies, we single out PINNs, and PINN-based architectures
(Geneva & Zabaras, 2020; Ren et al., 2022; Lu et al., 2021), due to their ability to incorporate side
information, e.g., physical laws, in their training process. This allows PINNs to also be used in
data-scarce environments provided that the amount of side information available is adequate.

Two recent non-DL system identification frameworks that account for data scarcity are Sparse Iden-
tification of Nonlinear Dynamics (SINDy) (Brunton et al., 2016) and the work of Ahmadi & Khadir
(2023), which rely respectively on Sparse-Polynomial Regression and Sum-of-Squares Optimiza-
tion. SINDy is a sparsity-promoting method initially developed for the discovery of ODEs which
has been extended through different approaches (Rudy et al., 2017; Mangan et al., 2016; Quade
et al., 2018; Chu & Hayashibe, 2020) and applied extensively. An important extension of SINDy is
SINDy with control (SINDYc) which incorporates the effects of control inputs (Kaiser et al., 2018).
However, SINDy-based frameworks only allow for the incorporation of linear constraints with the
notable exception of SINDy-SI (Machado & Jones, 2024), which allows for the integration of poly-
nomial nonnegativity constraints based on the novel framework of Ahmadi & Khadir (2023). Even
so, SINDy-SI is not tailored for the discovery of game dynamics. On the other hand, the recently in-
troduced Side Information Assisted Regression (SIAR) (Sakos et al., 2023) method extends the work
of Ahmadi & Khadir (2023) to games, incorporating various well-studied game-theoretic properties
as polynomial nonnegativity constraints on the dynamics. At a technical level, both SINDy-SI and
SIAR solve a hierarchy of semidefinite problems. In this work, we follow this approach and develop
the SIAR-MPC framework with a focus on the identification and control of game dynamics through
semidefinite programming in a data-scarce environment.

3 PRELIMINARIES

In this work, we model a multi-agent system as a time-evolving normal-form game of n players.
Each player i is equipped with a finite set of strategies Ai of size mi, and a time-varying reward
function ui : A× Ω → R, where A ≡

∏n
i=1 Ai is the game’s strategy space, of the form

ui(a, ω(t)) = ui(a, 0) + ωi,a(t), for t ∈ R+, a ∈ A. (1)

The value ωi,a(t) denotes the control signal from the policy maker towards player i regarding the
strategy profile a := (a1, . . . , an) at time t, where ai ∈ Ai. We refer to the ensemble ωi(t) :=(
ωi,a(t)

)
a∈A as the control signal of i at time t, and to ω(t) :=

(
ωi(t), . . . , ωn(t)

)
as the system’s

control signal at t. Typically, we restrict the control signals ωi(t) in some semialgebraic sets Ωi.
We are going to refer to the product Ω ≡

∏n
i=1 Ωi as the game’s control space. The value ui(a) :=

ui(a, 0) describes the reward of player i at strategy profile a in the absence of any control by the
policy maker. The utilities ui(·), i = 1, . . . , n will be considered common knowledge throughout
this work.

In addition to the above, each player i is allowed access to a set of mixed strategies Xi ≡ ∆(Ai),
which is the (mi− 1)-simplex that corresponds to the set of distributions over the pure strategies Ai
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of i. The players’ reward function naturally extends to the space of mixed strategy profiles X ≡∏n
i=1 Xi with ui

(
x, ω

)
= E[ui(a, ω)] for all x ∈ X and ω ∈ Ω, where the expectation is taken with

respect to the distributions x1, . . . , xn over the player’s pure strategies.

Finally, we assume that the evolution of the above game is dictated by some controlled learning
dynamics of the form

ẋ(t) = f(x(t), ω(t)) for t ∈ R+,

x(0) ∈ X ,
(2)

where the update policies fi : X × Ωi → Rmi , i = 1, . . . , n and the ensemble thereof, given by
f(x, ω) :=

(
f1(x, ω1), . . . , fn(x, ωn)

)
, are considered unknown, and are going to be discovered

in the identification step of the framework described below. Notice that the above assumption also
implies that, at each time t, the control signal ωi(t) of player i is observed by that player, while the
strategy profile x(t) is observed by all the players.

Throughout this work, given some strategy profile x, we adopt the common game-theoretic short-
hand (xi, x−i) to distinguish between the strategy of player i and the strategies of the other players.
Furthermore, if xi corresponds to a pure strategy ai of i, we write (ai, x−i) to point to that fact.

4 THE SIAR-MPC FRAMEWORK

In this section, we describe the SIAR-MPC framework for the real-time identification and control of
game dynamics. As outlined in the introduction, SIAR-MPC involves two steps. First, the system
identification step aims to approximate the controlled dynamics in (2) using only a limited number of
samples. Second, once the agents’ reactions to payoffs are modeled, the control step employs MPC
to steer the system towards a desirable outcome by optimizing specific objectives. The following
subsections details these two steps.

4.1 THE SYSTEM IDENTIFICATION STEP

To model the controlled dynamics in (2) we extend the SIAR framework introduced in Sakos et al.
(2023), which was in turn motivated by recent results in data-scarce system identification (Ahmadi
& Khadir, 2023). SIAR relies on polynomial regression to approximate agents’ learning dynamics
of the form ẋ(t) = f

(
x(t)

)
based on a small number of potentially noisy observations x(tk), ẋ(tk)

(typically, K = 5 samples) taken along a short burst of a single system trajectory. To ensure
the accuracy of the derived system model, SIAR searches for polynomial regressors that satisfy
side-information constraints native to game-theoretic applications, which serve as a regularization
mechanism.

For our control-oriented scenario, we extend the SIAR method to account for the influence of the
control signal ω(t). We refer to this extended method as SIAR with control (SIARc). The aim
of SIARc is to model the controlled dynamics in (2) for each agent i through a polynomial vector
field pi(x, ω). To do so, during the data collection phase, we assemble a dataset x(tk), ω(tk), ẋ(tk),
where x(tk) represents a snapshot of the system state, ω(tk) is a randomly (typically, normally dis-
tributed) generated input reflecting various possible incentives given to players (cf. equation 1), and
ẋ(tk) is the velocity at time tk, which is obtained either through direct measurement (if possible)
or estimated from the state variables. The process of training the SIARc model essentially involves
solving an optimization problem to find a polynomial vector field that minimizes the mean square er-
ror relative to this dataset. However, straightforward regression often yields suboptimal models due
to the limited available samples. To overcome this challenge, we search over regressors that satisfy
additional side-information constraints, encapsulating essential game-theoretic application features
and refining the search for applicable models. Formally, a generic SIARc instance is given by

min
p1,...,pn

K∑
k=1

n∑
i=1

∥∥pi(x(tk), ω(tk))− ẋi(tk)
∥∥2

s.t. pi are polynomial vector fields in x and ω

pi satisfy side-information constraints.

(3)

In this work, we utilize two specific types of side-information constraints (though a broader array
is available; see, e.g., Sakos et al. (2023)). The first side-information constraint we use ensures that
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the state space X of the system, i.e., the product of the simplices Xi ≡ ∆(Ai), i = 1, . . . , n, is
robust forward invariant with respect to the controlled dynamics in (2). This implies that, for any
initialization x(0) ∈ X , we have that x(t) ∈ X for all subsequent times t > 0, and for any control
signal ω(t) ∈ Ω. To search over regressors that satisfy robust forward invariance (RFI), we rely
on a specific characterization of the property that dictates a set remains robustly forward invariant
under system (2) only if f(x, ω) lies in the tangent cone of X at x for every control ω ∈ Ω. Using
the characterization of the tangent cone at each simplex Xi (Nagumo, 1942), enforcing RFI is then
reduced to verifying that, for all x ∈ X and ω ∈ Ω:∑

ai∈Ai

piai
(x, ω) = 0,

piai
(x, ω) ≥ 0, whenever xiai

= 0.

(RFI)

The second type of side-information constraint we use is based on a fundamental assumption about
agent behavior that arises from their strategic nature. The agents as strategic entities are expected
to behave rationally, preferring actions that enhance their immediate benefits—a property known as
positive correlation (PC) (Sandholm, 2010). Specifically, agents are inclined to choose actions that
are likely to increase their expected utility, assuming other agents’ behaviors remain unchanged, i.e.,
for all x ∈ X and ω ∈ Ω

⟨∇xi
ui(x, ω), pi(x, ω)⟩ > 0, whenever p(x, ω) ̸= 0. (PC)

To enforce these side-information constraints computationally in our polynomial regression prob-
lem, we utilize sum-of-squares (SOS) optimization (Parrilo, 2000; Prestel & Delzell, 2001; Lasserre,
2001; Parrilo, 2003; Lasserre, 2006; Laurent, 2008). Both RFI and PC are represented as polyno-
mial inequality or nonnegative constraints over the semialgebraic sets X and Ω (in PC’s case, we
need to relax the inequality (Sakos et al., 2023)). Using the SOS approach, instead of search-
ing over polynomials p(x) that are nonnegative over a semialgebraic set S ≡

{
x
∣∣ gj(x) ≥

0, hℓ(x) = 0, j ∈ [m], ℓ ∈ [r]
}

, we search over polynomials p(x) that can be expressed as
p(x) = σ0(x) +

∑m
j=1 σj(x)gj(x) +

∑r
ℓ=1 qℓ(x)hℓ(x) where qℓ are polynomials and σj are sum-

of-squares polynomials. Such polynomials p are guaranteed to be nonnegative over S, a condition
that is also necessary under mild assumptions on the set S (Laurent, 2008, Theorem 3.20). Fur-
thermore, for any given degree d, we can look for SOS certificates of degree d through semidefinite
programming, creating a hierarchy of semidefinite problems.

4.2 THE CONTROL STEP

After estimating the controlled dynamics which describes how players’ strategies (x) respond to the
incentives (ω), our next goal is to steer the system towards desirable outcomes. To achieve this, we
employ MPC, which formulates an optimization problem to identify the optimal sequence of control
actions over a defined horizon, subject to constraints on control inputs. In our context, these control
constraints represent practical limits on the incentives that can be offered to agents. The essence of
MPC lies in its ability to leverage a mathematical model of the system to predict future behavior
over a specified prediction horizon T . Each prediction is based on the current state measurement
x(t) and a sequence of future control signals ωt := {ω0|t, . . . , ωN−1|t} ⊂ Ω, which is calculated
by solving a constrained optimization problem. Here, N is the number of control steps within the
control horizon T := N · ∆t that determines the time period over which the control sequence is
optimized. Typically, the objective function of the MPC is given by

J(ωt) =

N∑
n=0

∥xn|t − x∗∥2 + α

N−1∑
n=0

∥ωn|t∥2, (4)

where xn|t, n = 1, . . . , N correspond to values of the forecasted trajectory, and x∗ is a desirable tar-
get system state. The first term of J(ωt) penalizes deviations of the predicted states xn|t from the tar-
get value x∗, while the latter term accounts for the control effort at weight α. In addition to the above,
large control signal variations can also be penalized by adding the term

∑N
n=1∥ωn|t − ωn−1|t∥2 at

some desired weight. The optimal control sequence is obtained by solving the constrained optimiza-
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tion problem
min
ωt

J(ωt)

s.t. ωn|t ∈ Ω, 0 ≤ n ≤ N

xn+1|t = xn|t +∆t · p(xn|t, ωn|t), 1 ≤ n ≤ N

x0|t = x(t).

(5)

The first control signal ω0|t is then applied to the system and the optimization is repeated at time
t+∆t once the new state measurement x(t+∆t) is obtained.

It is important to emphasize two key features of MPC: First, by optimizing control actions over a
finite horizon, it can predict and maintain the system within predefined operational limits to avoid
critical conditions. Second, by applying only the first control action at each time step, then shifting
the horizon, and re-solving the optimization with the most up-to-date measurements, MPC can adapt
to unexpected disturbances and generate a new sequence of control inputs accordingly.

5 EXPERIMENTS

In this section, we demonstrate the applicability and the performance improvements of the
SIAR-MPC framework compared to combining MPC with solutions obtained from SINDYc and
PINN, across various normal-form games of independent interest. The implementation of SINDYc
follows the methodology described in Kaiser et al. (2018). For solving the sparse regression prob-
lem, we employ a sequential least squares procedure, as detailed in the supplementary information
of Brunton et al. (2016). For PINN, the method is straightforward: side-information constraints are
integrated into the neural network during its training as terms in the loss function that penalize viola-
tions of the desired constraints. In our examples, we enforce RFI and PC as such constraints. Given
the limited number of training samples—in most cases, 5 samples—we are restricted to a simple
neural network architecture consisting of two hidden layers of size 5. This limitation in the neural
network’s expressivity is counterbalanced by the simplicity of the ground-truth update policies f
(which, in most cases, are polynomial). As activation functions we use the tanh function. Finally,
the side-information constraints are enforced using 2, 500 collocation points. Further details on the
construction of the loss function and the generation of collocation points can be found in Appendix
B.

We begin our demonstration with a well-known coordination game: the stag hunt. As coordina-
tion games correspond to non-cooperative setups where convergence to a socially optimal equi-
librium is desirable, the stag hunt game is a natural candidate for comparing the performance of
different system identification methods, combined with MPC, in guiding agents towards the game’s
optimal outcome. Next, moving away from the ideal landscape of coordination games, and into
the more challenging regime of two-player zero-sum games, we demonstrate the performance of
the SIAR-MPC framework in achieving two primary objectives: steering possibly non-polynomial
learning dynamics with non-vanishing regret towards a Nash equilibrium of the game; and steering
a provably chaotic system. In addition to the detailed analyses presented in this section, we conduct
simulations across a large and diverse set of settings to gain a statistically significant understanding
of each methods’ performance. The results of these simulations can be found in Appendix A.

5.1 STAG HUNT GAME

The stag hunt game is a two-player two-action coordination game that models a strategic interaction
in which both players benefit by coordinating their actions towards a specific superior outcome (the
hunt of a stag). However, if that outcome is not possible, each player prefers to take advantage of
the lack of coordination and come out on top of their opponent by choosing the alternative (hunt a
rabbit by themselves) rather than coordinating to an inferior outcome (hunt a rabbit together). In
this example, in the absence of control the players default to a stag hunt game given by the players’
reward functions u(·) := u(·, 0)

u1(a) = u2(a) = Aa1,a2
, where A =

(
4 1
3 3

)
. (6)

For expositional purposes, we restrict the game’s evolution to a subset of symmetric two-player two-
action games given by the control signals ω1,a1,a2(t) = ω2,a2,a1(t) ∈ [0, 2] for all t. Furthermore,

6
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for tractability purposes, we fix ω1,2,2(t) := 0. We assume that the agents’ behavior is dictated by
the replicator dynamics given, for player i and action ai of i, by the polynomial update policies

fi,ai
(x, ω) = xi,ai

(ui(ai, x−i, ω)− ui(x, ω)) (7)

for all x ∈ X and ω ∈ Ω.

We are going to search for f using the SIARc framework. Specifically, for each i and ai, we are
going to search for polynomial pi,ai

: X × Ω → R such that pi,ai

(
x(t), ω(t)

)
≈ fi,ai

(
x(t), ω(t)

)
for all t ∈ R+. As side-information constraints, we are going to impose the RFI and PC properties
as given in the previous sections. Then, by substituting (6) to (PC) we have the following SIARc
problem

min
p

K∑
k=1

∥∥p(x(tk), ω(tk))− ẋ(tk)
∥∥2

s.t. pi,1(x, ω) + pi,2(x, ω) = 0, ∀i
pi,1
(
(0, 1), x−i, ω

)
≥ 0, ∀i

pi,2
(
(1, 0), x−i, ω

)
≥ 0, ∀i

vi,1(x, ω)pi,1(x, ω) + vi,2(x, ω)pi,2 ≥ 0, ∀i,

(8)

where x ∈ X , ω ∈ Ω, and vi,ai
: X × Ω → R are given by

v1,1(x, ω) = (4 + ω1,1)x2,1 + (1 + ω1,2)x2,2 (9a)
v1,2(x, ω) = (3 + ω2,1)x2,1 + 3x2,2 (9b)
v2,1(x, ω) = (4 + ω1,1)x1,1 + (1 + ω1,2)x1,2 (9c)
v2,2(x, ω) = (3 + ω2,1)x1,1 + 3x1,2. (9d)

Since the update policies fi,ai
in (7) correspond to the replicator dynamics, the solution to the

above optimization problem can be recovered by a 7-degree SOS relaxation (Sakos et al., 2023).
Fig. 2 (right) shows the performance of the SIAR-MPC using this solution as a model for the MPC
method. In the top panel of the figure, we have the trajectory x(t) initialized at x0 = (0.4, 0.3)
corresponding to the control signal ω(t) depicted in the bottom panel. The plot is divided into three
sections, corresponding to the system identification phase, an evaluation period, and a control phase.
In the first section, we set the control signals to normally distributed noise with mean zero (bounded
in Ω) and a sample of K = 4 datapoints from the resulting trajectory. In doing so, we achieve two
things. On the one hand, the noise supplies variety between the data samples, which improves the
efficiency of the system identification methods. On the other hand, we make sure to maintain a low
aggregated control cost during the system identification phase. At the end of this phase, we solve
the optimization problem in (8) and acquire a model of the system’s update policies. In the second
section of the plot, we compare the ground-truth dynamics with the model’s predicted trajectory (in
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Figure 2: Performance comparison of the SINDY-MPC (left), PINN-MPC (center), and
SIAR-MPC (right) solutions in steering the replicator dynamics for the stag hunt game. A dataset of
4 samples is used to train the system identification methods. Only the SIAR-MPC solution succeeds
in steering the system to the superior Nash equilibrium in x∗

1,1 = x∗
2,1 = 1.
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dashed red lines); here, the control signal is chosen randomly. Finally, in the steering phase, we
steer the ground truth using the output of the MPC as the control signal: the objective is to steer the
system to the superior Nash equilibrium of the stag hunt game at x∗

1,1 = x∗
2,1 = 1, which is achieved

by the SIAR-MPC framework at t ≈ 8. In comparison, the SINDY-MPC and PINN-MPC solutions
(Fig. 2 (left) and Fig. 2 (center), respectively) fail to complete the steering objective.

5.2 ZERO-SUM GAMES & CHAOS

The stag hunt game arguably provides an ideal landscape for the steering of game dynamics to a
Nash equilibrium. This is because of the existence of a socially optimal Nash equilibrium (the hunt
of a stag) that has a positive-measure basin of attraction. The class of zero-sum games, on the other
hand, does not possess such merit, since in a zero-sum game, by definition, the player rewards sum
up to zero independently of the strategies chosen by the players. To make matters worse, well-known
game dynamics, e.g., the replicator dynamics, are known to exhibit undesirable behavior in zero-sum
games such as Poincaré recurrence (Akin & Losert, 1984), or even chaos (Sato et al., 2002). Even
if we amuse ourselves by instead pondering the more relaxed notion of time-average convergence,
positive results in that area revolve around the notion of no-regret dynamics (Sorin, 2024), and the
steering of learning dynamics of non-vanishing regret is, to the best of our knowledge, unexplored.
In that regard, in the next couple of examples we demonstrate the performance of SIAR-MPC in
steering the log-barrier dynamics—well-known learning dynamics of non-vanishing regret—in the
matching pennies game and in the steering of chaotic replicator dynamics in an ϵ-perturbed rock-
paper-scissors (ϵ-RPS) game. In both cases, we demonstrate the SIAR-MPC framework is able to
steer the system towards the desired Nash equilibrium of the game.

Matching Pennies Game The matching pennies game is a two-player, two-action zero-sum game
where one player benefits by the existence of coordination among the two, while the other player
benefits by the lack thereof. Formally, a matching pennies game is encoded in the uncontrolled
players’ reward functions in (1) by

u1(a) = −u2(a) = Aa1,a2 , where A =

(
1 −1

−1 1

)
. (10)

For similar reasons as in the previous example, we are going to restrict the game’s evolution to a
subset of two-player two-action zero-sum games given by ω1,a(t) = ω2,a(t) ∈ [0, 1] for all t, and
set ω1,2,2(t) := 0. The log-barrier dynamics of the above time-varying game are, for player i and
action ai of i, given by the rational update policies

fi,ai

(
x, ω

)
= x2

i,ai

(
ui,ai −

x2
i,1ui,1 + x2

i,2ui,2

x2
i,1 + x2

i,2

)
(11)

for all t ∈ R+ and x ∈ X , where the shorthand ui,xj
:= ui(xj , x−i, ω) is used for compactness.

Observe that, as is the case for the updated policies of the replicator dynamics in (7), fi depends on
ω(t) through ui. In Fig. 3, we show that SIAR-MPC solution is able to steer a trajectory x(t) of the

Figure 3: Performance comparison of the SINDY-MPC (left), PINN-MPC (center), and
SIAR-MPC (right) solutions in steering the log-barrier dynamics for the matching pennies game.
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above system initialized at x(0) = (0.2, 0.6) to the unique mixed Nash equilibrium x∗
1,1 = x∗

2,1 =
1/2 of the matching pennies game with only K = 6 training samples.

ϵ-RPS Game In our last example, we use the SIAR-MPC method to steer the replicator dynam-
ics in an ϵ-perturbed rock-paper-scissors game (ϵ-RPS), a two-player, three-action zero-sum game
where the replicator dynamics exhibit chaotic behavior (Sato et al., 2002; Hu et al., 2019). In a
nutshell, this means that any two initialization of the system—even the ones that are infinitesimally
close to each other—may lead to completely different trajectories. In other words, the accurate esti-
mation of the agents’ update policies is futile due to the finite precision of any numerical method. A
ϵ-RPS game may be encoded in the players’ reward functions by replacing the payoff matrix in (10)
with

A =

(
ϵ −1 1
1 ϵ −1

−1 1 ϵ

)
. (12)

Due to the larger dimensionality of this game, compared to ones in the previous examples, we are
going to consider time-evolving games in the subset of two-player three-action zero-sum games
given by ω1,a(t) = ω2,a(t) ∈ [−1, 1] for all t, and only four non-zero signals, namely, ω1,1,2(t),
ω1,1,3(t), ω1,2,1(t), and ω1,3,1(t). In Fig. 4, we show the successful steering to the chaotic replicator
dynamics for the 0.25-RPS game, given as in equation 7, towards the unique mixed Nash equilibrium
of the game x∗

1 = x∗
2 = (1/3, 1/3, 1/3) based on a dataset of K = 11 samples.
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Figure 4: Performance comparison of the PINN-MPC, and SIAR-MPC solutions in steering the
replicator dynamics for a 0.25-RPS game.

6 CONCLUSIONS

In this work, we introduced SIAR-MPC, a new computational framework that extends SIAR for sys-
tem identification of controlled game dynamics and integrates it with MPC for dynamic incentive
adjustments, aiming to steer game dynamics towards desirable outcomes with limited data availabil-
ity. Our results demonstrated that SIAR-MPC effectively steers systems towards optimal equilibria,
stabilizes chaotic and cycling dynamics. Comparative analysis showed that SIAR-MPC outperforms
alternative methods in data-scarce settings.

Future research can explore several potential directions. First, we intend to address a broader ques-
tion: Given the inherent limitations of game dynamics, where convergence to NE is not always
guaranteed, what are the necessary and sufficient conditions for achieving global stability in con-
trolled game dynamics? Second, we aim to extend our framework to encompass games beyond the
normal form, thereby expanding its applicability to a wider range of strategic interactions. Finally,
we plan to investigate the scalability of our approach by exploring the uncoupling assumption, which
could potentially enable its application to larger systems involving numerous agents.
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A ADDITONAL EXPERIMENTAL RESULTS

To supplement the detailed analyses presented in Section 5, we conducted simulations across a wide
range of diverse settings to obtain a statistically significant understanding of each methods’ perfor-
mance. For each setting, we generated 100 random initial conditions, and applied the SIAR-MPC,
PINN-MPC and SINDY-MPC frameworks. The first three columns in the tables below present dif-
ferent metrics used to assess the performance of each framework, focusing on tracking accuracy,
steady-state error and cost efficiency. Additionally, we generated 100 trajectories using SIARc,
PINN and SINDYc to evaluate how accurately these models can replicate the true system dynamics.

A.1 STAG HUNT GAME

We generated 100 initial conditions using Latin hypercube sampling and then applied SIAR-MPC,
PINN-MPC and SINDY-MPC to the stag hunt game described in Section 5.1.

Method MSE (Ref.) Steady-State Error Cost MSE (True)
x1,1 x2,1 x1,1 x2,1 x1,1 x2,1

SIARc 3.41 ×10−2 3.54 ×10−2 2.26 ×10−4 1.60 ×10−4 5.02 ×101 1.21 ×10−12 3.32 ×10−9

PINN 5.65 ×10−1 5.59 ×10−1 6.55 ×10−1 6.55 ×10−1 1.09 ×103 7.37 ×10−3 7.89 ×10−3

SINDYc 6.67 ×10−1 6.67 ×10−1 7.80 ×10−1 7.80 ×10−1 1.27 ×103 1.05 ×103 6.50 ×102

Table 1: Results for the stag hunt game across 100 initial conditions. The first three metrics compare
the performance of the SIAR-MPC, PINN-MPC and SINDY-MPC frameworks: MSE(Ref.) shows
the mean squared error between the estimated and the reference trajectories; Steady-State Error
measures the deviation of the final state from the reference state; Cost represents the accumulated
cost of steering the system to the reference state. The last metric, MSE(True), evaluates the accuracy
of the SIARc, PINN, and SINDYc models in predicting the true system dynamics by reflecting the
average squared error between the estimated ẋ and the true ẋ. All results are averaged across the
initial conditions. The results clearly demonstrate that SIAR-MPC and SIARc consistently achieve
lower error values and control cost compared to the other methods.

A.2 MATCHING PENNIES GAME

We generated 100 initial conditions using Latin hypercube sampling. We then applied SIAR-MPC,
PINN-MPC and SINDY-MPC to the matching pennies game described in Section 5.2. However,
as the latter two methods are data-driven techniques, for fairness we did the comparison based on a
larger training dataset of K = 50 samples.

Method MSE (Ref.) Steady-State Error Cost MSE (True)
x1,1 x2,1 x1,1 x2,1 x1,1 x2,1

SIARc 5.13 ×10−2 6.30 ×10−2 9.90 ×10−2 1.00 ×10−1 2.26 ×102 6.25 ×10−4 1.32 ×10−3

PINN 7.56 ×10−2 7.83 ×10−2 2.13 ×10−1 1.88 ×10−1 2.69 ×102 6.50 ×10−3 6.26 ×10−3

SINDYc 9.62 ×10−2 1.05 ×10−1 2.71 ×10−1 2.90 ×10−1 3.00 ×109 7.97 ×102 2.31 ×105

Table 2: Results for the matching pennies game across 100 initial conditions. We compare the
performance of the SIARc, PINN and SINDYc models across the metrics described in Table 1.
The results clearly demonstrate that SIARc consistently achieve lower error values and control cost
compared to the other methods.

A.3 ϵ-RPS GAME

We generated 100 initial conditions by uniformly sampling from the 3-dimensional simplex and then
applied SIAR-MPC, PINN-MPC and SINDY-MPC to the ϵ-RPS game described in Section 5.2.
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Method MSE (Ref.) Steady-State Error Cost
x1,1 x1,2 x2,1 x2,2 x1,1 x1,2 x2,1 x2,2

SIARc 9.73 ×10−3 1.09 ×10−2 1.01 ×10−2 7.90 ×10−3 3.03 ×10−3 2.14 ×10−3 3.14 ×10−3 4.92 ×10−3 2.68 ×101

PINN 3.50 ×10−2 3.65 ×10−2 1.71 ×10−2 2.89 ×10−2 1.06 ×10−1 1.44 ×10−1 5.98 ×10−2 7.45 ×10−2 1.03 ×102

SINDYc 7.14 ×10−2 5.29 ×10−2 5.54 ×10−2 5.11 ×10−2 2.39 ×10−1 2.10 ×10−1 1.92 ×10−1 2.06 ×10−1 7.04 ×1034

Table 3: Results for the ϵ-RPS game for 100 initial conditions. We compare the performance of the
SIARc, PINN and SINDYc models across the metrics MSE (Ref.), Steady-State Error, and Cost as
described in Table 1. The results clearly demonstrate that SIARc consistently achieve lower error
values and control cost compared to the other methods.

Method MSE (True)
x1,1 x1,2 x2,1 x2,2

SIARc 1.18 ×10−7 2.48 ×10−7 1.02 ×10−9 3.08 ×10−10

PINN 1.31 ×10−2 1.25 ×10−2 9.05 ×10−3 1.25 ×10−2

SINDYc 7.48 ×107 2.92 ×104 1.42 ×108 1.95 ×106

Table 4: Results for the ϵ-RPS game for 100 initial conditions. We compare the performance of
the SIARc, PINN and SINDYc models in terms of MSE (True) as described in Table 1. The results
clearly demonstrate that SIARc consistently achieve lower error values compared to the other meth-
ods.

A.4 STATE AVOIDANCE CONSTRAINTS

In this section, we revisit the example of a matching pennies game to illustrate a key feature of MPC:
its ability to incorporate state constraints (Camacho & Bordons, 2007). In our case, the purpose of
these state constraints is to keep the system trajectory away from specific, undesirable areas of the
state space. Consider a scenario where the policymaker aims to steer the system towards the mixed
Nash equilibrium at x∗

1,1 = x∗
2,1 = 1/2, while simultaneously ensuring that the system trajectory

avoids a ball of radius 0.4 centered at [(0, 1), (1, 0)]. This constraint can be incorporated into the
MPC problem and as illustrated in Fig. 5, SIAR-MPC can steer the system to the desired equilibrium
while also avoiding the restricted area of the state space (shaded in blue).

Figure 5: Vector field of the steering direction of the SIAR-MPC when the additional state avoidance
constraint is (left), and is not (right) imposed. The restricted area is shaded in blue. The green line
corresponds to a controlled trajectory of the replicator dynamics for the matching pennies game.
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B DETAILS OF PINN

Consider a two-player two-action game. Given that each player has two actions, the state space can
be reduced to (x1, x2) ∈ [0, 1]× [0, 1], where x1 and x2 represent the first state of each player1. We
train a neural network to approximate the dynamics f1 and f2 such that

ẋi = fi(x1, x2, ω) ≈ pi(x1, x2, ω) = ˙̂xi, i = 1, 2,

where ω ∈ Ω. The neural network takes x1, x2, ω as inputs and outputs an approximation ˙̂xi

of ẋi. The training dataset is generated as described in Section 4.1 and is represented as D :=
{(x1,i, x2,i, ωi, ẋ1,i, ẋ2,i)}ND

i=1.

B.1 PHYSICS INFORMATION AND COLLOCATION DATASET GENERATION

To incorporate the physical knowledge into the PINN training, we consider two sets of side infor-
mation constraints: Robust Forward Invariance (RFI) and Positive Correlation (PC).

Robust Forward Invariance

For the reduced state space, the RFI constraint can be written as:

p1(0, x2, ω) ≥ 0, ∀x2 ∈ [0, 1], ω ∈ Ω

p1(1, x2, ω) ≤ 0, ∀x2 ∈ [0, 1], ω ∈ Ω

p2(x1, 0, ω) ≥ 0, ∀x1 ∈ [0, 1], ω ∈ Ω

p2(x1, 1, ω) ≤ 0, ∀x1 ∈ [0, 1], ω ∈ Ω

To enforce this side information constraint during training, we generate a set of NRFI
C collocation

points. Specifically, we create the following sets:

CRFI
1 := {(x1,i, x2,i, ωi)}

NRFI
C1

i=1 with x1,i = 0, x2,i ∼ U [0, 1] and ωi ∼ UΩ

CRFI
2 := {(x1,i, x2,i, ωi)}

NRFI
C2

i=1 with x1,i = 1, x2,i ∼ U [0, 1] and ωi ∼ UΩ

CRFI
3 := {(x1,i, x2,i, ωi)}

NRFI
C3

i=1 with x2,i = 0, x1,i ∼ U [0, 1] and ωi ∼ UΩ

CRFI
4 := {(x1,i, x2,i, ωi)}

NRFI
C4

i=1 with x2,i = 1, x1,i ∼ U [0, 1] and ωi ∼ UΩ

where x ∼ US denotes that x is sampled uniformly from set S. The combined set of collocation
points for RFI is then CRFI = CRFI

1 ∪ CRFI
2 ∪ CRFI

3 ∪ CRFI
4 .

Positive Correlation

For the reduced state space, the PC constraints can be written as:

⟨∇x1
u1(x1, x2, ω), p1(x1, x2, ω)⟩ ≥ 0,∀x1, x2 ∈ [0, 1], ω ∈ Ω

⟨∇x2u2(x1, x2, , ω), p2(x1, x2, , ω)⟩ ≥ 0,∀x1, x2 ∈ [0, 1], ω ∈ Ω

To enforce this side information constraint during training, we generate a set of NPC
C collocation

points. Specifically, we create the following set:

CPC := {(x1,i, x2,i, ωi)}
NPC

C
i=1 with x1,i, x2,i ∼ U [0, 1] and ωi ∼ UΩ.

B.2 PINN LOSS FUNCTION

The loss function for PINN integrates three components: a loss function for the supervised learning
over dataset D and two physics-informed loss functions over the collocation points CRFI and CPC to
enforce side information constraints RFI and PC.

1Note that the second state of each player is simply 1−xi for i = 1, 2, and thus, the corresponding dynamics
are given by −fi for each i = 1, 2.
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Supervised Loss

The supervised loss is the standard squared error loss to ensure neural netwrok predictions align
closely with the training data and is given as:

ℓ0 =
∑

(x1,x2,ω,ẋ1,ẋ2)∈D

(p1(x1, x2, ω)− ẋ1)
2 + (p2(x1, x2, ω)− ẋ2)

2

Physics Loss

The physics loss for RFI is defined as:

ℓRFI =
∑

(x1,x2,ω)∈CRFI
1

max(0,−p1(x1, x2, ω)) +
∑

(x1,x2,ω)∈CRFI
2

max(0, p1(x1, x2, ω))

+
∑

(x1,x2,ω)∈CRFI
3

max(0,−p2(x1, x2, ω)) +
∑

(x1,x2,ω)∈CRFI
4

max(0, p2(x1, x2, ω)).

Similarly, the physics loss for the PC constraint is defined as:

ℓPC =
∑

(x1,x2,ω)∈CPC

max
(
0,−∇x1

u1(x1, x2, ω) · p1(x1, x2, ω)
)

+
∑

(x1,x2,ω)∈CPC

max
(
0,−∇x2

u2(x1, x2, ω) · p2(x1, x2, ω)
)
.

Then, the loss function for PINN with a weighted summation is given as:

ℓ = λ0ℓ
0 + λRFIℓ

RFI + λPCℓ
PC.
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