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Abstract

When solving clinical Natural Language Pro-
cessing (NLP) downstream tasks, it is well-
established that incorporating clinical-specific
knowledge enhances model performances.
However, there are scenarios where access to
data or domain-specific models is not feasible.
Despite various paradigms for adapting clini-
cal NLP-based models, such as fine-tuning al-
ready pre-trained language models, pre-training
and fine-tuning models, or in-context learn-
ing, the advantages of each alternative regard-
ing data availability still need to be explored.
We determined the impact of data availabil-
ity and paradigm selection in the performance
of models on solving multiple clinical NLP
tasks in Spanish by simulating multiple clin-
ical data availability settings and testing var-
ious NLP modelling paradigms. Overall, the
best-performing modelling strategy was pre-
training a masked language model (LM) with
environment-specific unannotated text starting
from an off-the-shelf clinical checkpoint and
then fine-tuning the LM for the downstream
task. The increase in performance from the
continuation of pre-training of an off-the-shelf
LM is marginal, considering the high amount
of resources needed for the pre-training; there-
fore, we recommend the fine-tuning of an off-
the-shelf clinical-specific LM if the model and
task-specific data are available. We recommend
a few-shot learning technique using a large LM
if no data is available.

1 Introduction

Natural language processing (NLP) has gained
tremendous importance in recent years with the
advent of Transformer-based pre-trained language
models (PLM) (Qiu et al., 2020) and large language
models (LLM) (Zhao et al., 2023). These LMs have
become the new paradigm for NLP-based machine
learning modelling because of their modularity and
ease of transferring learning. One can fine-tune

a PLM to solve any NLP task using off-the-shelf,
already pre-trained LMs (Dodge et al., 2020).

It is known that using closer-to-the-domain LMs
for fine-tuning downstream models improves the
performance of the fine-tuned model (Gu et al.,
2021; Zheng et al., 2022; Carrino et al., 2021). One
of the most widespread paradigms for NLP-based
modelling is the usage of a PLM for representing
documents and then using a couple of layers to
adapt the PLM output to solve the specific task;
this framework is called the fine-tuning of PLMs.
There are multiple options to optimize a model
using this framework. The first option is to use
a PLM and then fine-tune it to the downstream
task or to pre-train an LM and then fine-tune it
to the downstream task by employing unlabeled
and task-labeled data. The second option is useful
when no pre-trained models are available or one
wants a closer-to-the-domain PLM. This second
method involves initial pre-training of an LM uti-
lizing unlabeled data specific to the target domain,
followed by fine-tuning the LM’s architecture with
task-labeled data, mirroring the process outlined
in the first option. The downside of the second
option is that data is needed for both the PLM pre-
training and the architecture’s fine-tuning. These
paradigms are described in detail in the following
sections, and an overview is shown in Figure 1.

The paradigm described above requires at least
some task-labeled data, but there are some set-
tings where no data is available. A new paradigm
for NLP-based modelling has arisen, where an
instruction-tuned causal LLM is prompted in nat-
ural language to act as an NLP-based model with
few or zero examples given (Liu et al., 2023), ex-
ploiting its in-context learning ability. This frame-
work is also an option to consider when building
NLP-based models.

Data can be restricted in clinical environments
for multiple reasons, such as privacy-related issues
or the lack of interoperability. These restrictions



Figure 1: Overview of the compatibilities between
available data, settings and NLP paradigms that will be
described in the paper.

Data Settings Paradigms
+| Continue
Unlabelled text o| Complete data| 7| pre-training,
data 7| availability | fine-tune and
predict
Task-specific Incompleta L > Fine-t
labelled text data > ge l:ir.let
data »| availability |- andpredie
No data _: Prompt and
availability : predict
Ll

lead to some specific settings, where in one, there
is abundant data availability to apply the entire set
of NLP modelling paradigms, another where the
access to data is incomplete; thus, not all paradigms
can be used to develop models, and in the last one
no data is available; therefore a specific paradigm
should be used. These settings will be carefully
described in the following sections and are sum-
marized along with their paradigm compatibility in
Figure 1.

Problem A situation arises when there is an
asymmetry in data availability or no data is avail-
able. In some cases, there is only task-labeled data,
only domain-specific unlabeled data, or no data is
available at all. Even though multiple paradigms
exist for NLP modelling in clinical environments,
the compatibility between data availability and the
NLP modelling paradigm regarding gains in perfor-
mance still needs to be explored.

Solution We performed an experimental analysis
to measure the performance of solving clinical NLP
tasks in Spanish with multiple data availability and
NLP modelling paradigm combinations and em-
pirically constructed recommendations for clinical
NLP modelling regarding data availability.

1.1 Background

The last paradigm for deep-learning-based NLP
was the usage of recurrent neural networks (RNN),
which preserved the sequence nature of language in
the representation of meaning (Chung et al., 2014;
Hochreiter and Schmidhuber, 1997). One draw-
back of recurrent RNNss is their limited paralleliz-

ability, resulting in prolonged training times. Fur-
thermore, as the sequence lengths grow, there is a
tendency for information gathered at distant time
steps to vanish due to inherent memory limitations.
Nowadays, the Transformer completely ditches the
recurrence of the architecture but also preserves
word order by learning dependences without re-
gard to their distance in the sentences (Vaswani
et al., 2017). With its attention mechanism, this ar-
chitecture reaches state-of-the-art in multiple NLP
tasks such as text classification (Yang et al., 2019),
sentiment analysis (Yang et al., 2019), dependency
parsing (Mrini et al., 2020), machine translation
(Edunov et al., 2018), and named entity recognition
(Wang et al., 2021).

1.1.1 Pretrained language models

PLMs are LMs that were trained using self-
supervised techniques over large corpora of unan-
notated text to transfer learning from the knowl-
edge gathered in the pre-training to downstream
task-specific models (Wang et al., 2022b). Early
methods for PLMs consisted of static word em-
beddings, which were distributed word representa-
tions learned using algorithms such as Word2Vec
(Mikolov et al., 2013) or GloVe (Pennington et al.,
2014), and these embeddings were standard ini-
tialization parameters for deep learning architec-
tures to solve NLP tasks. There has been a shift
towards dynamic or context-aware word embed-
dings, which solves the problem of static word
embeddings that do not consider word polysemy.
These context-aware word embeddings were ini-
tially composed using RNNs (Dai and Le, 2015)
such as in ELMo (Peters et al., 2018), but currently,
they are based on the Transformer architecture
and use web-scale unannotated text to be trained.
The de facto standard for pre-trained Transformer-
based context-aware models is BERT (Devlin et al.,
2019) and BERT-alike models such as RoOBERTa
(He et al., 2021) and DeBERTa (He et al., 2021).
This language model learns bidirectional contexts
conditioning on both left and right contexts in
deep stacked layers. Using BERT as a base ar-
chitecture, domain-specific models have arisen,
such as roberta-base-bne (Fandifio et al., 2022),
a RoBERTa-based PLM for the Spanish language,
PubMedBERT (Gu et al., 2021), a PLM for the
biomedical domain and LEGAL-BERT (Chalkidis
et al., 2020), a PLM for the legal domain, among
others.



1.1.2 Large language models

LLMs are PLMs with a significantly larger model
size scale (Zhao et al., 2023); for example, the
PLM BERT has a model size of 0.3 x 10° parame-
ters and the LLM GPT-3 (Brown et al., 2020), has
175x10” parameters. It has been found that scaling
PLMs improves the performance of the models on
downstream tasks (Kaplan et al., 2020); although
this is true, some other surprising and more im-
portant behaviours in solving a series of complex
tasks appear at LLM scales and were called emer-
gent abilities. Emergent abilities are aptitudes not
present in small models but arise in LLMs (Wei
et al., 2022) and include in-context learning, where
a model can generate expected outputs to natural
language instructions without additional training,
instruction following, where a model fine-tuned
using natural language instructions performs well
on unseen tasks that are also described in the form
of instructions and step-by-step reasoning, where a
model can solve complex problems by instructing
the model involving intermediate reasoning steps
for deriving the final answer. GPT-3, a closed-
source privative LLM, formally introduced the con-
cept of in-context learning, and from there, subse-
quent models have appeared, such as open-source
models Galactica (Taylor et al., 2022), a 120 x 10°
parameters model and LLaMA (Touvron et al.,
2023a), a 65 x 107 parameters model. It is worth
noting a significant milestone in LLMs called Chat-
GPT, a closed-source privative assistant-style LLM
that exhibited a superior capacity to communicate
with humans and has been in widespread usage by
laypeople.

1.1.3 Pre-train, fine-tune and predict
paradigm of PLMs

The primary adaptation method for adjusting PLM
to downstream tasks is fine-tuning, where a task-
specific layer is concatenated to the output of
the PLM (Qiu et al., 2020). This method was
proposed in the Universal Language Model Fine-
Tuning (ULMFiT) framework as a transfer learn-
ing technique for domain-specific NLP, achieving
state-of-the-art performances in multiple NLP tasks
(Howard and Ruder, 2018). Even though the fine-
tuning paradigm has been well described for adapt-
ing PLMs, LLMs have significantly higher com-
putational complexity due to their unprecedented
scale. For this reason, some special techniques
have been developed, such as Parameter-Efficient
Fine-Tuning (PEFT), where a small set of param-

eters are trained to enable a model to perform the
new task (Ding et al., 2023), showing improve-
ments over in-context learning (Liu et al., 2022).

1.1.4 Pre-train, prompt and predict paradigm
of LLMs

The principal approach for interfacing with LLMs
is through prompting, instructions in natural lan-
guage issued to LLMs to adapt them to new sce-
narios with few or no labelled data (Zhao et al.,
2023) by exploiting the emergent ability of in-
context learning. This new NLP paradigm created a
new field of prompt engineering, where prompting
templates are created to achieve the most effec-
tive performance on downstream tasks (Liu et al.,
2023). There is mixed evidence comparing fine-
tuning vs in-context learning, whereas in some
tasks such as in biomedical information extraction
(Jimenez Gutierrez et al., 2022) or out-of-domain
generalization (Mosbach et al., 2023) fine-tuning
outperforms in-context learning, in other tasks such
as code intelligence (Wang et al., 2022a), in-context
learning outperforms fine-tuning.

1.1.5 Clinical NLP

For clinical NLP, domain-specific models have
been explored in the literature, and their positive
impact on downstream clinical NLP tasks has been
proven (Kalyan and Sangeetha, 2020; Lewis et al.,
2020) even in Spanish (Carrino et al., 2022). There
are public pre-trained Spanish language models for
the clinical domain, including masked LMs, such
as the one we are going to describe in the next sec-
tion and small causal character-level LMs, such as
Clinical-Flair (Rojas et al., 2022), though, in the
large LM category; there are very few, and only for
the English language, such as BioMedLLM (Bolton
et al., 2023) and MEDITRON (Chen et al., 2023).

Even though most of the clinical NLP research
has focused on the pre-train, fine-tune, and predict
paradigm, some works have explored the prompt
and predict paradigm through few-shot models
(Sivarajkumar and Wang, 2022), validating that
one can extract clinical information from doc-
uments through prompting (Sivarajkumar et al.,
2023; Agrawal et al., 2022).

2 Data & methods

We intentionally limited data access to evaluate
its impact on the performance of multiple clinical
NLP modelling paradigms and foundation models.



Each restricted setting was based on a real-world
simulated clinical environment.

2.1 Simulated settings

To mimic clinical settings regarding data availabil-
ity, we simulated multiple settings with varying
levels of data availability. We divided the data into
two categories: task-specific labelled data, which
can be used to fine-tune models and setting-specific
unlabelled data, which can be used to continue the
pre-training of the foundation models. The overall
environment we are located in is a Chilean public
health institution analyzing waiting list data, where
the explanation of why the patient is waiting is in
the form of free text, and from that dataset, multi-
ple tasks need to be solved. Multiple reasons can
restrict data availability; for example, data avail-
ability for model training can be restricted due to
legal and privacy reasons or because the task trying
to be solved still does not have sufficient examples
due to its recent appearance.

Unannotated data The unlabelled data we used
to continue the pre-training of the foundation mod-
els was the complete set of reasons for referral con-
tained in the Chilean waiting list and is comprised
of 13365476 documents, totalling 65 891 568 to-
kens with a vocabulary size of 513 315 types.

2.1.1 Complete data availability

In this data availability setting, unlabelled unstruc-
tured free-text data to continue the pre-training and
task-specific labelled data are also available to fine-
tune foundation models. This setting can be seen
at a large healthcare provider or at a country-level
public health institution such as a ministry of health,
where data policies are well established, and pa-
tients must consent that their data can be used to
tune machine learning models.

2.1.2 Incomplete data availability

In this data availability setting, only task-specific la-
belled data is available to fine-tune foundation mod-
els. The lack of unlabelled unstructured free-text
data to continue the pre-training may be attributed
to the fact that the provided is only acquiring data
for the specific task and does not have access to
close-to-the-environment unlabelled text data or ac-
cording to data policies, the provider cannot merge
patient data from a different source, other than the
source of the task data. This setting can be seen at
a medium-sized healthcare provider where the data
warehousing methods are not implemented or the

provider only has access to specific and segmented
data sources due to the lack of interoperability.

2.1.3 No data availability

In this data availability setting, there is no unla-
belled unstructured free-text data to continue the
pre-training nor task-specific labelled data to fine-
tune foundation models. The absence of data can
be attributed to the lack of access to the electronic
health record (EHR) database or policies that forbid
patient data usage to tune machine learning models.
This setting can be seen in a healthcare provider
using an external EHR service that forbids access
to the underlying database, or the provider wants
to solve a new task where data is not yet available.

2.2 Clinical NLP tasks

To measure the impact of data availability on the
performance of clinical NLP modelling, we used
multiple clinical NLP tasks, where each is under
the same environment of the analysis of unstruc-
tured waiting list data.

2.2.1 Referral prioritization

Different methods exist to prioritize patient selec-
tion to process the waiting list more fairly, and
we modelled the patient prioritization through the
classification of each referral regarding its state ac-
cording to the Chilean Explicit Health Guarantees
law (GES in Spanish), which states that specific
health problems must be guaranteed to be resolved
within a particular time frame. This task requires
a binary classification modelling technique. The
dataset (citation redacted for anonimity) contains
1701 582 examples in the training subset, 485 649
in the test subset and 242 746 in the validation sub-
set.

2.2.2 Referral speciality classification

Each referral contained on the waiting list corre-
sponds to a specific medical speciality. This task
involves the prediction of the corresponding medi-
cal speciality given the free-text description of the
reason for referral contained on the waiting list
record. This task requires a multilabel modelling
technique with a label space size of 48 classes. The
dataset contains 3 401 173 examples in the training
subset, 971 764 in the test subset and 485 882 in
the validation subset.

2.2.3 Clinical named entity recognition

Clinical named entity recognition is a subtype of
named entity recognition in which entities of clin-



ical interest are extracted from unstructured free-
text sources. This dataset (citation redacted for
anonimity) is annotated with eleven different clin-
ical entity classes and was modelled as a token
classification problem, where each of the tokens
of the referrals is classified into one of the eleven
clinical entity classes. The dataset contains 7987
documents in the training subset, 987 in the test
subset and 887 in the validation subset.

2.3 Foundation models

We used multiple foundation models as a basis to
solve the clinical NLP tasks. The attributes used
to select the foundation models were the language,
domain and modelling technique.

2.3.1 XLM-RoBERTa

A multilingual version of XLM-RoBERTa masked
language model, pre-trained using a self-supervised
technique on a corpus of 2.5TB of filtered Com-
monCrawl raw text data containing one hundred
languages (Conneau et al., 2019). This model is
the broadest of all of our selected foundation LMs.
This model should be viewed as a baseline where
no model is available for the language or the do-
main.

2.3.2 Spanish RoOBERTa

A Spanish language version of ROBERTa masked
language model, pre-trained on a corpus of 570GB
of clean and deduplicated text, compiled from the
web crawlings performed by the National Library
of Spain (Biblioteca Nacional de Espafia) from
2009 to 2019 (Fandifio et al., 2022). This model
is only compatible with the language in which the
clinical NLP tasks are and is a type of model (re-
garding language) that should be used when no
domain-specific model is available.

2.3.3 Spanish biomedical and clinical
RoBERTa

A Spanish language biomedical and clinical version
of RoBERTa masked language model, pre-trained
on a corpus of several biomedical corpora in Span-
ish, collected from publicly available corpora and
crawlers, and a real-world clinical corpus. The en-
tire corpus was comprised of more than 1B tokens
(Carrino et al., 2021). This model is the closest to
the domain model we used to solve the tasks, com-
patible with both language and domain; this should
be the best-suited model to solve a domain-specific
task.

2.3.4 Llama?2

Llama 2 is a causal auto-regressive language model
that uses an optimized transformer architecture
trained on a corpus of publicly available online data
comprised of two trillion tokens (Touvron et al.,
2023b). This model is the largest we tested but
is not domain-adapted in any way, and this is the
model we used for in-context learning prediction.

2.4 Modelling paradigms

We utilized various NLP modelling paradigms to
tackle each clinical NLP task, experimenting with
multiple paradigms for some foundational mod-
els based on their compatibility. Also, we note
the compatibility of each paradigm with each data
availability setting.

2.4.1 Continue pre-training, fine-tune and
predict

This modelling paradigm is the most data-intensive,
where we start with an already pre-trained LM
checkpoint and continue the pre-training for five
epochs with the closer-to-the-environment unan-
notated data described in 2.1. Then, with the now
environment-adapted LM, we perform a fine-tuning
for five epochs to solve each clinical NLP task. We
continued the pre-training of all the masked LMs
(XLM-RoBERTa, Spanish RoBERTa and Spanish
biomedical and clinical RoOBERTa) with no modifi-
cation to the original vocabulary and using model-
default hyperparameters. This paradigm is com-
patible only with the Complete data availability
setting.

2.4.2 Fine-tune and predict

In this paradigm, we started with each of the
off-the-shelf masked foundation models (XLM-
RoBERTa, Spanish RoBERTa and Spanish biomed-
ical and clinical RoBERTa) and performed fine-
tuning for each of the clinical NLP tasks. We fine-
tuned each task using the default model hyperpa-
rameters and trained for five epochs. This paradigm
is compatible with both Complete data availability
and Incomplete data availability settings.

2.4.3 Prompt and predict

In this paradigm, we exploited LLMs’ in-context
learning emergent ability through zero-shot and
few-shot techniques. We prompted the LLM
(Llama 2) to solve each task and parsed its an-
swer accordingly. For the few-shot technique, we
randomly sampled five examples of the training



Model Prioritization Specialty CNER
xIlm-roberta
Off-the-shelf 88.85 % 51.71 % 11.09 %

Environment-pre-trained 89.03 % (+0.18)

52.36 % (+0.65)

13.85 % (+2.76)

roberta-bne
Off-the-shelf
Environment-pre-trained

88.58 %
88.80 % (+0.22)

52.50 %
51.65 % (-0.85)

22.59 %
23.29 % (+0.70)

roberta-biomedical-clinical
Off-the-shelf
Environment-pre-trained

88.80 %
88.85 % (+0.05)

53.79 %
53.85 % (+0.06)

34.46 %
37.25 % (+2.79)

Llama 2
Zero-shot 6.49 %
Few-shot 56.70 % (+50.21)

3141 %
31.91 % (+0.50)

531 %
15.44 % (+10.13)

Table 1: Results (macro F} score) for each clinical NLP task and each fine-tuned model with and without environment

continuation of pre-training.

subset of each clinical NLP task. This task is com-
patible with Complete data availability, Incomplete
data availability and No data availability settings.
The prompt templates used to solve each task are
available in the appendix A.

2.5 Increasing training data size and its
impact on model performance

To better understand the direct impact of the num-
ber of training examples, we performed a test in
which we truncated the training subset in increas-
ing steps and measured the performance of the
fine-tuned model on the complete test subset. We
applied this experiment to all settings and masked
LMs.

3 Results

The results for each modelling paradigm solving
each clinical NLP task are presented in Table 1.

The Referral prioritization task was where the
model performed the best due to its straightforward
binary nature. The models could identify the pri-
oritized health problems mentioned in the training
subset and generalize the knowledge correctly in
the test subset. On the other hand, the Clinical
named entity recognition task was the most com-
plex of the three tasks, and the models struggled
the most to solve it. The performance of the models
was directly related to the intrinsic complexity of
the clinical NLP task.

Regarding the foundation language model used
to solve the clinical NLP tasks, the Spanish biomed-
ical and clinical RoOBERTa model was the best per-
formant; this model is the closest to the domain

of the clinical NLP tasks and therefore was able
to transfer learning from its pre-training on a large
clinical corpus. The worst-performing model was
XLM-RoBERTa, which is less close to the domain
foundation model; therefore, its ability to use prior
knowledge to model the tasks was lacking. The
closeness to the domain between the foundation
model and the task is correlated with model per-
formance on downstream tasks. Before, we only
compared models that solved the tasks using the
same paradigm, and overall, the worst performant
model was Llama 2; however, this model was used
by exploiting a different paradigm.

Environment adaptation using unlabelled un-
structured free-text data improved model perfor-
mance. However, the improvements are marginal,
considering the computational resources used to
continue the pre-training of the foundation models.

The Continue pre-training, fine-tune and predict
paradigm achieved the best result in solving all
the clinical NLP tasks. However, we do not rec-
ommend using it as a paradigm for clinical NLP
modelling, given its high resource usage for train-
ing and its overall low gain in performance. On
the other hand, the Prompt and predict paradigm
was the worst performant paradigm of all three, but
it is worth noting that in some specific cases, its
performance was better than the other paradigms.
Also, the access to few-shot examples drastically
improves in-context learning performance. We rec-
ommend using this paradigm in settings with mini-
mal access to training data.

The experiment’s results on the impact of train-
ing data volume on the performance of downstream



Figure 2: Performance (macro F score) by training
subset for each clinical NLP task and each fine-tuned
model with and without environment continuation of
pre-training
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tasks are presented in Figure 2.

All the models display a performance saturation
even before attaining complete training data. This
phenomenon is best noticed in the Referral priori-
tization clinical NLP task, where minimal access

to training data can result in almost peak perfor-
mance. This behaviour further indicates that the
task has a relatively low complexity. The Referral
speciality classification task exhibits a more nu-
anced performance saturation phenomenon than
other tasks. The correlation between training data
availability and performance is nearly linear, in-
dicating that access to training data is crucial for
specific complex tasks.

4 Conclusion

Our study investigated the impact of data avail-
ability on the performance of clinical NLP mod-
elling in simulated settings with varying levels of
access to task-specific labelled data and unanno-
tated environment-specific text. We explored dif-
ferent paradigms, including Continue pre-training,
fine-tune and predict, Fine-tune and predict, as well
as Prompt and predict with few-shot learning.

Our findings indicate that choosing foundation
models, especially those closer to the target domain
impacts model performance. The Spanish biomed-
ical and clinical RoBERTa model, tailored to the
clinical domain, outperformed other models in our
experiments. While continuing pre-training with
environment-specific data improved model perfor-
mance, the gains were marginal compared to the
computational resources required. The fine-tuning
paradigm without additional pre-training proved
practical, particularly in settings with limited ac-
cess to unlabelled data.

In-context learning, using the prompt and predict
paradigm, demonstrated its viability, especially in
scenarios where there is no labelled data available.
The creation of few-shot examples significantly
improved performance, highlighting the potential
of this approach in data-scarce environments.

Our study also revealed a saturation point in
performance concerning the amount of training
data available. In some instances, minimal data
access can still lead to relatively high performance,
particularly for less complex tasks.

The choice of foundation models, the utilization
of available data, and the selection of appropriate
modelling paradigms are crucial considerations in
clinical NLP tasks. While pre-training and fine-
tuning with domain-specific data remain effective,
in-context learning with few-shot examples offers
a viable solution in settings where labelled data is
unavailable.



5 Recommendations

Based on our comprehensive analysis, we provide
recommendations for practitioners engaged in clin-
ical NLP modelling:

Model selection When selecting foundation mod-
els, prioritize those that align closely with the
target domain. Our results emphasize the sig-
nificance of domain specificity in achieving
optimal performance.

Data utilization In settings with ample access
to task-specific labelled data and unanno-
tated domain-specific text, the Continue pre-
training, fine-tune and predict paradigm may
be considered. However, given the resource-
intensive nature of this approach, practition-
ers may opt for the Fine-tune and predict
paradigm, especially when computational re-
sources are constrained.

If no data is available In scenarios with no ac-
cess to labelled data, the Prompt and predict
paradigm, particularly with few-shot learning,
emerges as a practical and effective solution.
This approach allows models to leverage gen-
eral knowledge and adapt to new tasks with
minimal labelled examples.

Consideration of task complexity Recognize
the inherent complexity of the clinical NLP
task at hand. Tasks with lower complexity
may achieve near-optimal performance
even with minimal access to training data,
highlighting the importance of task-specific
considerations.

Continuous investigation Clinical NLP is dy-
namic, and advancements in pre-trained foun-
dation LMs and novel paradigms are frequent.
Continuously exploring emerging techniques
and adapting to the evolving landscape is es-
sential for staying at the forefront of effective
healthcare information extraction.

By incorporating these recommendations, prac-
titioners can make informed decisions based on
the specific characteristics and constraints of their
clinical NLP projects, ultimately enhancing the ef-
ficiency and efficacy of their models in real-world
healthcare applications.

6 Limitations

We attempted to use settings that can be easily
understood in real-world scenarios, but we may
have unintentional biases based on our experiences
in local environments. Our choice of foundation
Language Models (LMs) for each category (mul-
tilingual, language-specific, and domain-specific)
may require a different categorization in order to
provide representative examples of LMs.

7 Ethics statement

We obtained all the data we used through a trans-
parency law that requires public health providers to
make the data available to the public. This means
that anyone can access the same data that we used,
provided they follow the same process that we did.
The data we used is public, and we have cited the
source papers where each dataset was officially
released to the public.
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A Prompt templates used for in-context
learning

We describe the prompt templates we used to solve
each clinical NLP task using in-context learning.

A.1 Referral prioritization

System prompt template En Chile, las
garantias explicitas de salud establecen
prioridad para un conjunto de problemas
de salud. Debes responder en espafol sélo
la palabra "Verdadero” si la enfermedad
que te entregue pertenece a uno de los
80 problemas de salud y so6lo la palabra
"Falso” si la enfermedad no pertenece
al conjunto de problemas. Los problemas
de salud son: "Accidente Cerebrovascular
Isquémico en personas de 15 afios y mas”,
"Alivio del dolor y cuidados paliativos

por cancer avanzado ", "Analgesia
del Parto”, "Artritis Reumatoidea”,
"Artritis idiopatica juvenil”, "Asma

Bronquial moderada y grave en personas
menores de 15 anos”, "Asma bronquial en

11

personas de 15 afos y mas”, "Cardiopatias
congénitas operables en menores de 15
afos”, "Colecistectomia preventiva del
cancer de vesicula en personas de 35 a 49
anos"”, "Consumo Perjudicial o Dependencia
de riesgo bajo a moderado de alcohol
y drogas en personas menores de 20
anos"”, "Cancer Cervicouterino”, "Cancer
Colorectal en personas de 15 afios y mas”,
"Cancer Vesical en personas de 15 afios
y mas", "Cancer de Ovario Epitelial”,
"Cancer de mama en personas de 15 afios
y mas", "Cancer de prostata en personas
de 15 afios y mas"”, "Cancer de testiculo
en personas de 15 anos y mas", "Cancer
en personas menores de 15 afios”, "Cancer
gastrico”, "Depresion en personas de 15
afios y mas"”, "Desprendimiento de retina
regmatégeno no traumdtico”, "Diabetes
Mellitus Tipo 1", "Diabetes Mellitus
Tipo 2", "Displasia  broncopulmonar
del prematuro”, "Displasia luxante
de caderas”, "Disrafias espinales”,
"Endoprotesis  total de cadera en
personas de 65 afios y mas con artrosis de
cadera con limitacién funcional severa”,
"Enfermedad Pulmonar Obstructiva
Créonica de Tratamiento Ambulatorio”,
"Enfermedad Renal Crénica Etapa 4 y 5",
"Enfermedad de Parkinson”, "Epilepsia
no refractaria en personas de 15 afos
y mas"”, "Epilepsia no refractaria en
personas desde 1 afo y menores de 15 aios”,
"Esclerosis multiple remitente recurrente
", "Esquizofrenia”, "Estrabismo en
personas menores de 9 afos”, "Fibrosis
Quistica”, "Fisura labiopalatina”, "Gran
Quemado”, "Hemofilia"”, "Hemorragia
Subaracnoidea secundaria a Ruptura de
Aneurismas Cerebrales”, "Hepatitis C",
"Hepatitis croénica por Virus Hepatitis
B”, "Hipertension arterial primaria o
esencial en personas de 15 afios y mas”,
"Hipoacusia Bilateral en personas de 65
afios y mas que requieren uso de audifono”,
"Hipoacusia neurosensorial bilateral del
prematuro”, "Hipotiroidismo en personas
de 15 afios y mas”, "Infarto agudo del
miocardio”, "Infeccidn respiratoria
aguda (IRA) de manejo ambulatorio en
personas menores de 5 afos”, "Leucemia
en personas de 15 afios y mas”, "Linfomas
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en personas de 15 afos y mas”, "Lupus
Eritematoso Sistémico”, "Neumonia
adquirida en 1la comunidad de manejo
ambulatorio en personas de 65 afos
y mas”, "Osteosarcoma en personas
de 15 afios y mas”, "Politraumatizado
Grave"”, "Prevencidén de Parto Prematuro”,
"Prevencién secundaria enfermedad renal
crénica terminal”, "Retinopatia del
prematuro”, "Retinopatia diabética”,
"Salud Oral 1Integral del adulto de
60 afos”, "Salud oral integral de la
embarazada”, "Salud  oral integral
para nifos y nifas de 6 anos”,
"Sindrome de Dificultad Respiratoria
en el recién nacido”, "Sindrome de la
inmunodeficiencia adquirida VIH/SIDA",
"Trastorno Bipolar en personas de 15
anos y mas", "Trastornos de generacidn

del impulso y conduccidén en personas
de 15 afos y mas, que requieren
Marcapaso”, "Tratamiento Médico en

personas de 55 afios y mas con Artrosis
de Cadera y/o Rodilla, leve o moderada”,
"Tratamiento Quirurgico de Hernia del
Nicleo Pulposo Lumbar”, "Tratamiento
Quirdrgico de lesiones crénicas de 1la
valvula adrtica en personas de 15 afos
y mas”, "Tratamiento Quirdrgico de
lesiones croénicas de las valvulas mitral
y tricuspide en personas de 15 afos
y mas”, "Tratamiento de Erradicacion
del Helicobacter Pylori”, "Tratamiento
de Hipoacusia moderada en personas
menores de 4 anos”, "Tratamiento de 1la
hiperplasia benigna de la préstata en
personas sintomaticas”, "Tratamiento
quirdrgico de cataratas”, "Tratamiento
quirdrgico de escoliosis en personas
menores de 25 anos”, "Trauma Ocular
Grave", "Traumatismo Craneo Encefalico
moderado o grave”, "Tumores Primarios
del Sistema Nervioso Central en personas
de 15 afos o mas”, "Urgencia Odontoldgica
Ambulatoria”, "Vicios de refraccién en
personas de 65 afios y mas” y "Ortesis
(o ayudas técnicas) para personas de 65
afios y mas”

User prompt template ¢("<x>" pertenece a
la lista de 80 problemas de salud
priorizados por las garantias explicitas

de salud?.

A.2 Referral speciality classification

System prompt template Eres un asistente
serio que so6lo da respuestas precisas
y concisas que recibira diagnodsticos en
Espafiol y deberas sdélo responder con el
nombre de la especialidad en Espafol a
la cual debe enviarse el diagndstico.
Las especialidades disponibles son:
TRASTORNOS TEMPOROMANDIBULARES Y DOLOR
OROFACIAL, REHABILITACION: PROTESIS
FIJA, NUTRICION, GENETICA, ODONTOLOGIA
INDIFERENCIADO, CIRUGIA TORAX,
CIRUGIA INFANTIL, MEDICINA FAMILIAR,
NEUROLOGIA, ONCOLOGIA, OBSTETRICIA,
CIRUGIA ADULTO, DERMATOLOGIA,
GERIATRIA, OTORRINOLARINGOLOGIA,
BRONCOPULMONAR, MEDICINA INTERNA,
PERIODONCIA, CARDIOLOGIA, OFTALMOLOGIA,
REHABILITACION: PROTESIS REMOVIBLE,
ENDOCRINOLOGIA, PEDIATRIA, REUMATOLOGIA,

CIRUGIA PLASTICA, ORTODONCIA, CIRUGIA
DE MAMAS, CIRUGIA PROCTOLOGICA,
GASTROENTEROLOGIA, HEMATOLOGIA,
UROLOGIA, ANESTESIOLOGIA, ENFERMEDADES
DE  TRANSMISION  SEXUAL, OPERATORIA,
NEONATOLOGIA, NEUROCIRUGIA, CIRUGIA

VASCULAR PERIFERICA, GINECOLOGIA, CIRUGIA
BUCAL, CIRUGIA MAXILO FACIAL, CIRUGIA
ABDOMINAL, CARDIOCIRUGIA, PSIQUIATRIA,
INFECTOLOGIA, TRAUMATOLOGIA, ENDODONCIA,
MEDICINA FISICA Y REHABILITACION,
NEFROLOGIA.

User prompt template (A qué especialidad
debo enviar el diagnoéstico "<x>"?.

A.3 Clinical named entity recognition

System prompt template Eres reconocedor
de entidades nombradas que solo debe
detectar las entidades en la siguiente
lista: "disease”: "alteracion o
desviacion del estado fisiologico en una
0 varias partes del cuerpo, por causas
en general conocidas, manifestada por
sintomas y signos caracteristicos, y cuya
evolucion es mas o menos previsible”,
- medication: "Medicamentos o drogas
empleadas en el tratamiento y o prevencion
de enfermedades”, - abbreviation:
"Abreviatura”, - body_part: "Organo o



una parte anatdémica de una persona”, -
family_member: "Miembro de la familia”, -
laboratory_or_test_result: "Resultado de
laboratorio o test”, - clinical_finding:
"Observaciones, juicios o evaluaciones
que se hacen sobre 1los pacientes”,

diagnostic_procedure: "Examenes que
permiten determinar la condicién del
individuo ", - laboratory_procedure:

"Examenes que se realizan en diversas
muestras de pacientes que permiten
diagnosticar enfermedades mediante 1la
deteccion de biomarcadores 'y otros

parametros”, - therapeutic_procedure:
"Actividad o tratamiento que es empleado
para prevenir, reparar, eliminar o

curar la enfermedad del individuo”,
Debes responder con el mismo texto
de entrada, pero con las entidades
nombradas anotadas con etiquetas en
la misma linea (<nombre_entidad>lorem

ipsum</nombre_entidad>), donde cada
etiqueta corresponde a un nombre de
entidad, por ejemplo: <entidad>Sed

ut perspiciatis</entidad> unde omnis
iste natus error sit voluptatem
<entidad>accusantium</entidad>.

Las Unicas etiquetas disponibles
son: medication, abbreviation,
body_part, family_member,
laboratory_or_test_result,
clinical_finding, diagnostic_procedure,
laboratory_procedure,
therapeutic_procedure, no puedes agregar
mas etiquetas de las incluidas en esa
lista. IMPORTANTE: NO DEBES CAMBIAR
EL TEXTO DE ENTRADA, SOLO AGREGAR LAS
ETIQUETAS.
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