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Abstract

When solving clinical Natural Language Pro-001
cessing (NLP) downstream tasks, it is well-002
established that incorporating clinical-specific003
knowledge enhances model performances.004
However, there are scenarios where access to005
data or domain-specific models is not feasible.006
Despite various paradigms for adapting clini-007
cal NLP-based models, such as fine-tuning al-008
ready pre-trained language models, pre-training009
and fine-tuning models, or in-context learn-010
ing, the advantages of each alternative regard-011
ing data availability still need to be explored.012
We determined the impact of data availabil-013
ity and paradigm selection in the performance014
of models on solving multiple clinical NLP015
tasks in Spanish by simulating multiple clin-016
ical data availability settings and testing var-017
ious NLP modelling paradigms. Overall, the018
best-performing modelling strategy was pre-019
training a masked language model (LM) with020
environment-specific unannotated text starting021
from an off-the-shelf clinical checkpoint and022
then fine-tuning the LM for the downstream023
task. The increase in performance from the024
continuation of pre-training of an off-the-shelf025
LM is marginal, considering the high amount026
of resources needed for the pre-training; there-027
fore, we recommend the fine-tuning of an off-028
the-shelf clinical-specific LM if the model and029
task-specific data are available. We recommend030
a few-shot learning technique using a large LM031
if no data is available.032

1 Introduction033

Natural language processing (NLP) has gained034

tremendous importance in recent years with the035

advent of Transformer-based pre-trained language036

models (PLM) (Qiu et al., 2020) and large language037

models (LLM) (Zhao et al., 2023). These LMs have038

become the new paradigm for NLP-based machine039

learning modelling because of their modularity and040

ease of transferring learning. One can fine-tune041

a PLM to solve any NLP task using off-the-shelf, 042

already pre-trained LMs (Dodge et al., 2020). 043

It is known that using closer-to-the-domain LMs 044

for fine-tuning downstream models improves the 045

performance of the fine-tuned model (Gu et al., 046

2021; Zheng et al., 2022; Carrino et al., 2021). One 047

of the most widespread paradigms for NLP-based 048

modelling is the usage of a PLM for representing 049

documents and then using a couple of layers to 050

adapt the PLM output to solve the specific task; 051

this framework is called the fine-tuning of PLMs. 052

There are multiple options to optimize a model 053

using this framework. The first option is to use 054

a PLM and then fine-tune it to the downstream 055

task or to pre-train an LM and then fine-tune it 056

to the downstream task by employing unlabeled 057

and task-labeled data. The second option is useful 058

when no pre-trained models are available or one 059

wants a closer-to-the-domain PLM. This second 060

method involves initial pre-training of an LM uti- 061

lizing unlabeled data specific to the target domain, 062

followed by fine-tuning the LM’s architecture with 063

task-labeled data, mirroring the process outlined 064

in the first option. The downside of the second 065

option is that data is needed for both the PLM pre- 066

training and the architecture’s fine-tuning. These 067

paradigms are described in detail in the following 068

sections, and an overview is shown in Figure 1. 069

The paradigm described above requires at least 070

some task-labeled data, but there are some set- 071

tings where no data is available. A new paradigm 072

for NLP-based modelling has arisen, where an 073

instruction-tuned causal LLM is prompted in nat- 074

ural language to act as an NLP-based model with 075

few or zero examples given (Liu et al., 2023), ex- 076

ploiting its in-context learning ability. This frame- 077

work is also an option to consider when building 078

NLP-based models. 079

Data can be restricted in clinical environments 080

for multiple reasons, such as privacy-related issues 081

or the lack of interoperability. These restrictions 082
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Figure 1: Overview of the compatibilities between
available data, settings and NLP paradigms that will be
described in the paper.
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lead to some specific settings, where in one, there083

is abundant data availability to apply the entire set084

of NLP modelling paradigms, another where the085

access to data is incomplete; thus, not all paradigms086

can be used to develop models, and in the last one087

no data is available; therefore a specific paradigm088

should be used. These settings will be carefully089

described in the following sections and are sum-090

marized along with their paradigm compatibility in091

Figure 1.092

Problem A situation arises when there is an093

asymmetry in data availability or no data is avail-094

able. In some cases, there is only task-labeled data,095

only domain-specific unlabeled data, or no data is096

available at all. Even though multiple paradigms097

exist for NLP modelling in clinical environments,098

the compatibility between data availability and the099

NLP modelling paradigm regarding gains in perfor-100

mance still needs to be explored.101

Solution We performed an experimental analysis102

to measure the performance of solving clinical NLP103

tasks in Spanish with multiple data availability and104

NLP modelling paradigm combinations and em-105

pirically constructed recommendations for clinical106

NLP modelling regarding data availability.107

1.1 Background108

The last paradigm for deep-learning-based NLP109

was the usage of recurrent neural networks (RNN),110

which preserved the sequence nature of language in111

the representation of meaning (Chung et al., 2014;112

Hochreiter and Schmidhuber, 1997). One draw-113

back of recurrent RNNs is their limited paralleliz-114

ability, resulting in prolonged training times. Fur- 115

thermore, as the sequence lengths grow, there is a 116

tendency for information gathered at distant time 117

steps to vanish due to inherent memory limitations. 118

Nowadays, the Transformer completely ditches the 119

recurrence of the architecture but also preserves 120

word order by learning dependences without re- 121

gard to their distance in the sentences (Vaswani 122

et al., 2017). With its attention mechanism, this ar- 123

chitecture reaches state-of-the-art in multiple NLP 124

tasks such as text classification (Yang et al., 2019), 125

sentiment analysis (Yang et al., 2019), dependency 126

parsing (Mrini et al., 2020), machine translation 127

(Edunov et al., 2018), and named entity recognition 128

(Wang et al., 2021). 129

1.1.1 Pretrained language models 130

PLMs are LMs that were trained using self- 131

supervised techniques over large corpora of unan- 132

notated text to transfer learning from the knowl- 133

edge gathered in the pre-training to downstream 134

task-specific models (Wang et al., 2022b). Early 135

methods for PLMs consisted of static word em- 136

beddings, which were distributed word representa- 137

tions learned using algorithms such as Word2Vec 138

(Mikolov et al., 2013) or GloVe (Pennington et al., 139

2014), and these embeddings were standard ini- 140

tialization parameters for deep learning architec- 141

tures to solve NLP tasks. There has been a shift 142

towards dynamic or context-aware word embed- 143

dings, which solves the problem of static word 144

embeddings that do not consider word polysemy. 145

These context-aware word embeddings were ini- 146

tially composed using RNNs (Dai and Le, 2015) 147

such as in ELMo (Peters et al., 2018), but currently, 148

they are based on the Transformer architecture 149

and use web-scale unannotated text to be trained. 150

The de facto standard for pre-trained Transformer- 151

based context-aware models is BERT (Devlin et al., 152

2019) and BERT-alike models such as RoBERTa 153

(He et al., 2021) and DeBERTa (He et al., 2021). 154

This language model learns bidirectional contexts 155

conditioning on both left and right contexts in 156

deep stacked layers. Using BERT as a base ar- 157

chitecture, domain-specific models have arisen, 158

such as roberta-base-bne (Fandiño et al., 2022), 159

a RoBERTa-based PLM for the Spanish language, 160

PubMedBERT (Gu et al., 2021), a PLM for the 161

biomedical domain and LEGAL-BERT (Chalkidis 162

et al., 2020), a PLM for the legal domain, among 163

others. 164
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1.1.2 Large language models165

LLMs are PLMs with a significantly larger model166

size scale (Zhao et al., 2023); for example, the167

PLM BERT has a model size of 0.3× 109 parame-168

ters and the LLM GPT-3 (Brown et al., 2020), has169

175×109 parameters. It has been found that scaling170

PLMs improves the performance of the models on171

downstream tasks (Kaplan et al., 2020); although172

this is true, some other surprising and more im-173

portant behaviours in solving a series of complex174

tasks appear at LLM scales and were called emer-175

gent abilities. Emergent abilities are aptitudes not176

present in small models but arise in LLMs (Wei177

et al., 2022) and include in-context learning, where178

a model can generate expected outputs to natural179

language instructions without additional training,180

instruction following, where a model fine-tuned181

using natural language instructions performs well182

on unseen tasks that are also described in the form183

of instructions and step-by-step reasoning, where a184

model can solve complex problems by instructing185

the model involving intermediate reasoning steps186

for deriving the final answer. GPT-3, a closed-187

source privative LLM, formally introduced the con-188

cept of in-context learning, and from there, subse-189

quent models have appeared, such as open-source190

models Galactica (Taylor et al., 2022), a 120× 109191

parameters model and LLaMA (Touvron et al.,192

2023a), a 65× 109 parameters model. It is worth193

noting a significant milestone in LLMs called Chat-194

GPT, a closed-source privative assistant-style LLM195

that exhibited a superior capacity to communicate196

with humans and has been in widespread usage by197

laypeople.198

1.1.3 Pre-train, fine-tune and predict199

paradigm of PLMs200

The primary adaptation method for adjusting PLM201

to downstream tasks is fine-tuning, where a task-202

specific layer is concatenated to the output of203

the PLM (Qiu et al., 2020). This method was204

proposed in the Universal Language Model Fine-205

Tuning (ULMFiT) framework as a transfer learn-206

ing technique for domain-specific NLP, achieving207

state-of-the-art performances in multiple NLP tasks208

(Howard and Ruder, 2018). Even though the fine-209

tuning paradigm has been well described for adapt-210

ing PLMs, LLMs have significantly higher com-211

putational complexity due to their unprecedented212

scale. For this reason, some special techniques213

have been developed, such as Parameter-Efficient214

Fine-Tuning (PEFT), where a small set of param-215

eters are trained to enable a model to perform the 216

new task (Ding et al., 2023), showing improve- 217

ments over in-context learning (Liu et al., 2022). 218

1.1.4 Pre-train, prompt and predict paradigm 219

of LLMs 220

The principal approach for interfacing with LLMs 221

is through prompting, instructions in natural lan- 222

guage issued to LLMs to adapt them to new sce- 223

narios with few or no labelled data (Zhao et al., 224

2023) by exploiting the emergent ability of in- 225

context learning. This new NLP paradigm created a 226

new field of prompt engineering, where prompting 227

templates are created to achieve the most effec- 228

tive performance on downstream tasks (Liu et al., 229

2023). There is mixed evidence comparing fine- 230

tuning vs in-context learning, whereas in some 231

tasks such as in biomedical information extraction 232

(Jimenez Gutierrez et al., 2022) or out-of-domain 233

generalization (Mosbach et al., 2023) fine-tuning 234

outperforms in-context learning, in other tasks such 235

as code intelligence (Wang et al., 2022a), in-context 236

learning outperforms fine-tuning. 237

1.1.5 Clinical NLP 238

For clinical NLP, domain-specific models have 239

been explored in the literature, and their positive 240

impact on downstream clinical NLP tasks has been 241

proven (Kalyan and Sangeetha, 2020; Lewis et al., 242

2020) even in Spanish (Carrino et al., 2022). There 243

are public pre-trained Spanish language models for 244

the clinical domain, including masked LMs, such 245

as the one we are going to describe in the next sec- 246

tion and small causal character-level LMs, such as 247

Clinical-Flair (Rojas et al., 2022), though, in the 248

large LM category; there are very few, and only for 249

the English language, such as BioMedLM (Bolton 250

et al., 2023) and MEDITRON (Chen et al., 2023). 251

Even though most of the clinical NLP research 252

has focused on the pre-train, fine-tune, and predict 253

paradigm, some works have explored the prompt 254

and predict paradigm through few-shot models 255

(Sivarajkumar and Wang, 2022), validating that 256

one can extract clinical information from doc- 257

uments through prompting (Sivarajkumar et al., 258

2023; Agrawal et al., 2022). 259

2 Data & methods 260

We intentionally limited data access to evaluate 261

its impact on the performance of multiple clinical 262

NLP modelling paradigms and foundation models. 263
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Each restricted setting was based on a real-world264

simulated clinical environment.265

2.1 Simulated settings266

To mimic clinical settings regarding data availabil-267

ity, we simulated multiple settings with varying268

levels of data availability. We divided the data into269

two categories: task-specific labelled data, which270

can be used to fine-tune models and setting-specific271

unlabelled data, which can be used to continue the272

pre-training of the foundation models. The overall273

environment we are located in is a Chilean public274

health institution analyzing waiting list data, where275

the explanation of why the patient is waiting is in276

the form of free text, and from that dataset, multi-277

ple tasks need to be solved. Multiple reasons can278

restrict data availability; for example, data avail-279

ability for model training can be restricted due to280

legal and privacy reasons or because the task trying281

to be solved still does not have sufficient examples282

due to its recent appearance.283

Unannotated data The unlabelled data we used284

to continue the pre-training of the foundation mod-285

els was the complete set of reasons for referral con-286

tained in the Chilean waiting list and is comprised287

of 13 365 476 documents, totalling 65 891 568 to-288

kens with a vocabulary size of 513 315 types.289

2.1.1 Complete data availability290

In this data availability setting, unlabelled unstruc-291

tured free-text data to continue the pre-training and292

task-specific labelled data are also available to fine-293

tune foundation models. This setting can be seen294

at a large healthcare provider or at a country-level295

public health institution such as a ministry of health,296

where data policies are well established, and pa-297

tients must consent that their data can be used to298

tune machine learning models.299

2.1.2 Incomplete data availability300

In this data availability setting, only task-specific la-301

belled data is available to fine-tune foundation mod-302

els. The lack of unlabelled unstructured free-text303

data to continue the pre-training may be attributed304

to the fact that the provided is only acquiring data305

for the specific task and does not have access to306

close-to-the-environment unlabelled text data or ac-307

cording to data policies, the provider cannot merge308

patient data from a different source, other than the309

source of the task data. This setting can be seen at310

a medium-sized healthcare provider where the data311

warehousing methods are not implemented or the312

provider only has access to specific and segmented 313

data sources due to the lack of interoperability. 314

2.1.3 No data availability 315

In this data availability setting, there is no unla- 316

belled unstructured free-text data to continue the 317

pre-training nor task-specific labelled data to fine- 318

tune foundation models. The absence of data can 319

be attributed to the lack of access to the electronic 320

health record (EHR) database or policies that forbid 321

patient data usage to tune machine learning models. 322

This setting can be seen in a healthcare provider 323

using an external EHR service that forbids access 324

to the underlying database, or the provider wants 325

to solve a new task where data is not yet available. 326

2.2 Clinical NLP tasks 327

To measure the impact of data availability on the 328

performance of clinical NLP modelling, we used 329

multiple clinical NLP tasks, where each is under 330

the same environment of the analysis of unstruc- 331

tured waiting list data. 332

2.2.1 Referral prioritization 333

Different methods exist to prioritize patient selec- 334

tion to process the waiting list more fairly, and 335

we modelled the patient prioritization through the 336

classification of each referral regarding its state ac- 337

cording to the Chilean Explicit Health Guarantees 338

law (GES in Spanish), which states that specific 339

health problems must be guaranteed to be resolved 340

within a particular time frame. This task requires 341

a binary classification modelling technique. The 342

dataset (citation redacted for anonimity) contains 343

1 701 582 examples in the training subset, 485 649 344

in the test subset and 242 746 in the validation sub- 345

set. 346

2.2.2 Referral speciality classification 347

Each referral contained on the waiting list corre- 348

sponds to a specific medical speciality. This task 349

involves the prediction of the corresponding medi- 350

cal speciality given the free-text description of the 351

reason for referral contained on the waiting list 352

record. This task requires a multilabel modelling 353

technique with a label space size of 48 classes. The 354

dataset contains 3 401 173 examples in the training 355

subset, 971 764 in the test subset and 485 882 in 356

the validation subset. 357

2.2.3 Clinical named entity recognition 358

Clinical named entity recognition is a subtype of 359

named entity recognition in which entities of clin- 360
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ical interest are extracted from unstructured free-361

text sources. This dataset (citation redacted for362

anonimity) is annotated with eleven different clin-363

ical entity classes and was modelled as a token364

classification problem, where each of the tokens365

of the referrals is classified into one of the eleven366

clinical entity classes. The dataset contains 7987367

documents in the training subset, 987 in the test368

subset and 887 in the validation subset.369

2.3 Foundation models370

We used multiple foundation models as a basis to371

solve the clinical NLP tasks. The attributes used372

to select the foundation models were the language,373

domain and modelling technique.374

2.3.1 XLM-RoBERTa375

A multilingual version of XLM-RoBERTa masked376

language model, pre-trained using a self-supervised377

technique on a corpus of 2.5TB of filtered Com-378

monCrawl raw text data containing one hundred379

languages (Conneau et al., 2019). This model is380

the broadest of all of our selected foundation LMs.381

This model should be viewed as a baseline where382

no model is available for the language or the do-383

main.384

2.3.2 Spanish RoBERTa385

A Spanish language version of RoBERTa masked386

language model, pre-trained on a corpus of 570GB387

of clean and deduplicated text, compiled from the388

web crawlings performed by the National Library389

of Spain (Biblioteca Nacional de España) from390

2009 to 2019 (Fandiño et al., 2022). This model391

is only compatible with the language in which the392

clinical NLP tasks are and is a type of model (re-393

garding language) that should be used when no394

domain-specific model is available.395

2.3.3 Spanish biomedical and clinical396

RoBERTa397

A Spanish language biomedical and clinical version398

of RoBERTa masked language model, pre-trained399

on a corpus of several biomedical corpora in Span-400

ish, collected from publicly available corpora and401

crawlers, and a real-world clinical corpus. The en-402

tire corpus was comprised of more than 1B tokens403

(Carrino et al., 2021). This model is the closest to404

the domain model we used to solve the tasks, com-405

patible with both language and domain; this should406

be the best-suited model to solve a domain-specific407

task.408

2.3.4 Llama 2 409

Llama 2 is a causal auto-regressive language model 410

that uses an optimized transformer architecture 411

trained on a corpus of publicly available online data 412

comprised of two trillion tokens (Touvron et al., 413

2023b). This model is the largest we tested but 414

is not domain-adapted in any way, and this is the 415

model we used for in-context learning prediction. 416

2.4 Modelling paradigms 417

We utilized various NLP modelling paradigms to 418

tackle each clinical NLP task, experimenting with 419

multiple paradigms for some foundational mod- 420

els based on their compatibility. Also, we note 421

the compatibility of each paradigm with each data 422

availability setting. 423

2.4.1 Continue pre-training, fine-tune and 424

predict 425

This modelling paradigm is the most data-intensive, 426

where we start with an already pre-trained LM 427

checkpoint and continue the pre-training for five 428

epochs with the closer-to-the-environment unan- 429

notated data described in 2.1. Then, with the now 430

environment-adapted LM, we perform a fine-tuning 431

for five epochs to solve each clinical NLP task. We 432

continued the pre-training of all the masked LMs 433

(XLM-RoBERTa, Spanish RoBERTa and Spanish 434

biomedical and clinical RoBERTa) with no modifi- 435

cation to the original vocabulary and using model- 436

default hyperparameters. This paradigm is com- 437

patible only with the Complete data availability 438

setting. 439

2.4.2 Fine-tune and predict 440

In this paradigm, we started with each of the 441

off-the-shelf masked foundation models (XLM- 442

RoBERTa, Spanish RoBERTa and Spanish biomed- 443

ical and clinical RoBERTa) and performed fine- 444

tuning for each of the clinical NLP tasks. We fine- 445

tuned each task using the default model hyperpa- 446

rameters and trained for five epochs. This paradigm 447

is compatible with both Complete data availability 448

and Incomplete data availability settings. 449

2.4.3 Prompt and predict 450

In this paradigm, we exploited LLMs’ in-context 451

learning emergent ability through zero-shot and 452

few-shot techniques. We prompted the LLM 453

(Llama 2) to solve each task and parsed its an- 454

swer accordingly. For the few-shot technique, we 455

randomly sampled five examples of the training 456

5



Model Prioritization Specialty CNER
xlm-roberta

Off-the-shelf 88.85 % 51.71 % 11.09 %
Environment-pre-trained 89.03 % (+0.18) 52.36 % (+0.65) 13.85 % (+2.76)

roberta-bne
Off-the-shelf 88.58 % 52.50 % 22.59 %
Environment-pre-trained 88.80 % (+0.22) 51.65 % (-0.85) 23.29 % (+0.70)

roberta-biomedical-clinical
Off-the-shelf 88.80 % 53.79 % 34.46 %
Environment-pre-trained 88.85 % (+0.05) 53.85 % (+0.06) 37.25 % (+2.79)

Llama 2
Zero-shot 6.49 % 31.41 % 5.31 %
Few-shot 56.70 % (+50.21) 31.91 % (+0.50) 15.44 % (+10.13)

Table 1: Results (macro F1 score) for each clinical NLP task and each fine-tuned model with and without environment
continuation of pre-training.

subset of each clinical NLP task. This task is com-457

patible with Complete data availability, Incomplete458

data availability and No data availability settings.459

The prompt templates used to solve each task are460

available in the appendix A.461

2.5 Increasing training data size and its462

impact on model performance463

To better understand the direct impact of the num-464

ber of training examples, we performed a test in465

which we truncated the training subset in increas-466

ing steps and measured the performance of the467

fine-tuned model on the complete test subset. We468

applied this experiment to all settings and masked469

LMs.470

3 Results471

The results for each modelling paradigm solving472

each clinical NLP task are presented in Table 1.473

The Referral prioritization task was where the474

model performed the best due to its straightforward475

binary nature. The models could identify the pri-476

oritized health problems mentioned in the training477

subset and generalize the knowledge correctly in478

the test subset. On the other hand, the Clinical479

named entity recognition task was the most com-480

plex of the three tasks, and the models struggled481

the most to solve it. The performance of the models482

was directly related to the intrinsic complexity of483

the clinical NLP task.484

Regarding the foundation language model used485

to solve the clinical NLP tasks, the Spanish biomed-486

ical and clinical RoBERTa model was the best per-487

formant; this model is the closest to the domain488

of the clinical NLP tasks and therefore was able 489

to transfer learning from its pre-training on a large 490

clinical corpus. The worst-performing model was 491

XLM-RoBERTa, which is less close to the domain 492

foundation model; therefore, its ability to use prior 493

knowledge to model the tasks was lacking. The 494

closeness to the domain between the foundation 495

model and the task is correlated with model per- 496

formance on downstream tasks. Before, we only 497

compared models that solved the tasks using the 498

same paradigm, and overall, the worst performant 499

model was Llama 2; however, this model was used 500

by exploiting a different paradigm. 501

Environment adaptation using unlabelled un- 502

structured free-text data improved model perfor- 503

mance. However, the improvements are marginal, 504

considering the computational resources used to 505

continue the pre-training of the foundation models. 506

The Continue pre-training, fine-tune and predict 507

paradigm achieved the best result in solving all 508

the clinical NLP tasks. However, we do not rec- 509

ommend using it as a paradigm for clinical NLP 510

modelling, given its high resource usage for train- 511

ing and its overall low gain in performance. On 512

the other hand, the Prompt and predict paradigm 513

was the worst performant paradigm of all three, but 514

it is worth noting that in some specific cases, its 515

performance was better than the other paradigms. 516

Also, the access to few-shot examples drastically 517

improves in-context learning performance. We rec- 518

ommend using this paradigm in settings with mini- 519

mal access to training data. 520

The experiment’s results on the impact of train- 521

ing data volume on the performance of downstream 522
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Figure 2: Performance (macro F1 score) by training
subset for each clinical NLP task and each fine-tuned
model with and without environment continuation of
pre-training
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tasks are presented in Figure 2.523

All the models display a performance saturation524

even before attaining complete training data. This525

phenomenon is best noticed in the Referral priori-526

tization clinical NLP task, where minimal access527

to training data can result in almost peak perfor- 528

mance. This behaviour further indicates that the 529

task has a relatively low complexity. The Referral 530

speciality classification task exhibits a more nu- 531

anced performance saturation phenomenon than 532

other tasks. The correlation between training data 533

availability and performance is nearly linear, in- 534

dicating that access to training data is crucial for 535

specific complex tasks. 536

4 Conclusion 537

Our study investigated the impact of data avail- 538

ability on the performance of clinical NLP mod- 539

elling in simulated settings with varying levels of 540

access to task-specific labelled data and unanno- 541

tated environment-specific text. We explored dif- 542

ferent paradigms, including Continue pre-training, 543

fine-tune and predict, Fine-tune and predict, as well 544

as Prompt and predict with few-shot learning. 545

Our findings indicate that choosing foundation 546

models, especially those closer to the target domain 547

impacts model performance. The Spanish biomed- 548

ical and clinical RoBERTa model, tailored to the 549

clinical domain, outperformed other models in our 550

experiments. While continuing pre-training with 551

environment-specific data improved model perfor- 552

mance, the gains were marginal compared to the 553

computational resources required. The fine-tuning 554

paradigm without additional pre-training proved 555

practical, particularly in settings with limited ac- 556

cess to unlabelled data. 557

In-context learning, using the prompt and predict 558

paradigm, demonstrated its viability, especially in 559

scenarios where there is no labelled data available. 560

The creation of few-shot examples significantly 561

improved performance, highlighting the potential 562

of this approach in data-scarce environments. 563

Our study also revealed a saturation point in 564

performance concerning the amount of training 565

data available. In some instances, minimal data 566

access can still lead to relatively high performance, 567

particularly for less complex tasks. 568

The choice of foundation models, the utilization 569

of available data, and the selection of appropriate 570

modelling paradigms are crucial considerations in 571

clinical NLP tasks. While pre-training and fine- 572

tuning with domain-specific data remain effective, 573

in-context learning with few-shot examples offers 574

a viable solution in settings where labelled data is 575

unavailable. 576
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5 Recommendations577

Based on our comprehensive analysis, we provide578

recommendations for practitioners engaged in clin-579

ical NLP modelling:580

Model selection When selecting foundation mod-581

els, prioritize those that align closely with the582

target domain. Our results emphasize the sig-583

nificance of domain specificity in achieving584

optimal performance.585

Data utilization In settings with ample access586

to task-specific labelled data and unanno-587

tated domain-specific text, the Continue pre-588

training, fine-tune and predict paradigm may589

be considered. However, given the resource-590

intensive nature of this approach, practition-591

ers may opt for the Fine-tune and predict592

paradigm, especially when computational re-593

sources are constrained.594

If no data is available In scenarios with no ac-595

cess to labelled data, the Prompt and predict596

paradigm, particularly with few-shot learning,597

emerges as a practical and effective solution.598

This approach allows models to leverage gen-599

eral knowledge and adapt to new tasks with600

minimal labelled examples.601

Consideration of task complexity Recognize602

the inherent complexity of the clinical NLP603

task at hand. Tasks with lower complexity604

may achieve near-optimal performance605

even with minimal access to training data,606

highlighting the importance of task-specific607

considerations.608

Continuous investigation Clinical NLP is dy-609

namic, and advancements in pre-trained foun-610

dation LMs and novel paradigms are frequent.611

Continuously exploring emerging techniques612

and adapting to the evolving landscape is es-613

sential for staying at the forefront of effective614

healthcare information extraction.615

By incorporating these recommendations, prac-616

titioners can make informed decisions based on617

the specific characteristics and constraints of their618

clinical NLP projects, ultimately enhancing the ef-619

ficiency and efficacy of their models in real-world620

healthcare applications.621

6 Limitations 622

We attempted to use settings that can be easily 623

understood in real-world scenarios, but we may 624

have unintentional biases based on our experiences 625

in local environments. Our choice of foundation 626

Language Models (LMs) for each category (mul- 627

tilingual, language-specific, and domain-specific) 628

may require a different categorization in order to 629

provide representative examples of LMs. 630

7 Ethics statement 631

We obtained all the data we used through a trans- 632

parency law that requires public health providers to 633

make the data available to the public. This means 634

that anyone can access the same data that we used, 635

provided they follow the same process that we did. 636

The data we used is public, and we have cited the 637

source papers where each dataset was officially 638

released to the public. 639
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A Prompt templates used for in-context931

learning932

We describe the prompt templates we used to solve933

each clinical NLP task using in-context learning.934

A.1 Referral prioritization935

System prompt template En Chile, las936

garantías explícitas de salud establecen937

prioridad para un conjunto de problemas938

de salud. Debes responder en español sólo939

la palabra "Verdadero" si la enfermedad940

que te entregue pertenece a uno de los941

80 problemas de salud y sólo la palabra942

"Falso" si la enfermedad no pertenece943

al conjunto de problemas. Los problemas944

de salud son: "Accidente Cerebrovascular945

Isquémico en personas de 15 años y más",946

"Alivio del dolor y cuidados paliativos947

por cáncer avanzado ", "Analgesia948

del Parto", "Artritis Reumatoídea",949

"Artritis idiopática juvenil", "Asma950

Bronquial moderada y grave en personas951

menores de 15 años", "Asma bronquial en952

personas de 15 años y más", "Cardiopatías 953

congénitas operables en menores de 15 954

años", "Colecistectomía preventiva del 955

cáncer de vesícula en personas de 35 a 49 956

años", "Consumo Perjudicial o Dependencia 957

de riesgo bajo a moderado de alcohol 958

y drogas en personas menores de 20 959

años", "Cáncer Cervicouterino", "Cáncer 960

Colorectal en personas de 15 años y más", 961

"Cáncer Vesical en personas de 15 años 962

y más", "Cáncer de Ovario Epitelial", 963

"Cáncer de mama en personas de 15 años 964

y más", "Cáncer de próstata en personas 965

de 15 años y más", "Cáncer de testículo 966

en personas de 15 años y más", "Cáncer 967

en personas menores de 15 años", "Cáncer 968

gástrico", "Depresión en personas de 15 969

años y más", "Desprendimiento de retina 970

regmatógeno no traumático", "Diabetes 971

Mellitus Tipo 1", "Diabetes Mellitus 972

Tipo 2", "Displasia broncopulmonar 973

del prematuro", "Displasia luxante 974

de caderas", "Disrafias espinales", 975

"Endoprótesis total de cadera en 976

personas de 65 años y más con artrosis de 977

cadera con limitación funcional severa", 978

"Enfermedad Pulmonar Obstructiva 979

Crónica de Tratamiento Ambulatorio", 980

"Enfermedad Renal Crónica Etapa 4 y 5", 981

"Enfermedad de Parkinson", "Epilepsia 982

no refractaria en personas de 15 años 983

y más", "Epilepsia no refractaria en 984

personas desde 1 año y menores de 15 años", 985

"Esclerosis múltiple remitente recurrente 986

", "Esquizofrenia", "Estrabismo en 987

personas menores de 9 años", "Fibrosis 988

Quística", "Fisura labiopalatina", "Gran 989

Quemado", "Hemofilia", "Hemorragia 990

Subaracnoidea secundaria a Ruptura de 991

Aneurismas Cerebrales", "Hepatitis C", 992

"Hepatitis crónica por Virus Hepatitis 993

B", "Hipertensión arterial primaria o 994

esencial en personas de 15 años y más", 995

"Hipoacusia Bilateral en personas de 65 996

años y más que requieren uso de audífono", 997

"Hipoacusia neurosensorial bilateral del 998

prematuro", "Hipotiroidismo en personas 999

de 15 años y más", "Infarto agudo del 1000

miocardio", "Infección respiratoria 1001

aguda (IRA) de manejo ambulatorio en 1002

personas menores de 5 años", "Leucemia 1003

en personas de 15 años y más", "Linfomas 1004
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en personas de 15 años y más", "Lupus1005

Eritematoso Sistémico", "Neumonía1006

adquirida en la comunidad de manejo1007

ambulatorio en personas de 65 años1008

y más", "Osteosarcoma en personas1009

de 15 años y más", "Politraumatizado1010

Grave", "Prevención de Parto Prematuro",1011

"Prevención secundaria enfermedad renal1012

crónica terminal", "Retinopatía del1013

prematuro", "Retinopatía diabética",1014

"Salud Oral Integral del adulto de1015

60 años", "Salud oral integral de la1016

embarazada", "Salud oral integral1017

para niños y niñas de 6 años",1018

"Síndrome de Dificultad Respiratoria1019

en el recién nacido", "Síndrome de la1020

inmunodeficiencia adquirida VIH/SIDA",1021

"Trastorno Bipolar en personas de 151022

años y más", "Trastornos de generación1023

del impulso y conducción en personas1024

de 15 años y más, que requieren1025

Marcapaso", "Tratamiento Médico en1026

personas de 55 años y más con Artrosis1027

de Cadera y/o Rodilla, leve o moderada",1028

"Tratamiento Quirúrgico de Hernia del1029

Núcleo Pulposo Lumbar", "Tratamiento1030

Quirúrgico de lesiones crónicas de la1031

válvula aórtica en personas de 15 años1032

y más", "Tratamiento Quirúrgico de1033

lesiones crónicas de las válvulas mitral1034

y tricúspide en personas de 15 años1035

y más", "Tratamiento de Erradicación1036

del Helicobacter Pylori", "Tratamiento1037

de Hipoacusia moderada en personas1038

menores de 4 años", "Tratamiento de la1039

hiperplasia benigna de la próstata en1040

personas sintomáticas", "Tratamiento1041

quirúrgico de cataratas", "Tratamiento1042

quirúrgico de escoliosis en personas1043

menores de 25 años", "Trauma Ocular1044

Grave", "Traumatismo Cráneo Encefálico1045

moderado o grave", "Tumores Primarios1046

del Sistema Nervioso Central en personas1047

de 15 años o más", "Urgencia Odontológica1048

Ambulatoria", "Vicios de refracción en1049

personas de 65 años y más" y "Órtesis1050

(o ayudas técnicas) para personas de 651051

años y más"1052

User prompt template ¿"<x>" pertenece a1053

la lista de 80 problemas de salud1054

priorizados por las garantías explícitas1055

de salud?. 1056

A.2 Referral speciality classification 1057

System prompt template Eres un asistente 1058

serio que sólo da respuestas precisas 1059

y concisas que recibirá diagnósticos en 1060

Español y deberás sólo responder con el 1061

nombre de la especialidad en Español a 1062

la cual debe enviarse el diagnóstico. 1063

Las especialidades disponibles son: 1064

TRASTORNOS TEMPOROMANDIBULARES Y DOLOR 1065

OROFACIAL, REHABILITACION: PROTESIS 1066

FIJA, NUTRICION, GENETICA, ODONTOLOGIA 1067

INDIFERENCIADO, CIRUGIA TORAX, 1068

CIRUGIA INFANTIL, MEDICINA FAMILIAR, 1069

NEUROLOGIA, ONCOLOGIA, OBSTETRICIA, 1070

CIRUGIA ADULTO, DERMATOLOGIA, 1071

GERIATRIA, OTORRINOLARINGOLOGIA, 1072

BRONCOPULMONAR, MEDICINA INTERNA, 1073

PERIODONCIA, CARDIOLOGIA, OFTALMOLOGIA, 1074

REHABILITACION: PROTESIS REMOVIBLE, 1075

ENDOCRINOLOGIA, PEDIATRIA, REUMATOLOGIA, 1076

CIRUGIA PLASTICA, ORTODONCIA, CIRUGIA 1077

DE MAMAS, CIRUGIA PROCTOLOGICA, 1078

GASTROENTEROLOGIA, HEMATOLOGIA, 1079

UROLOGIA, ANESTESIOLOGIA, ENFERMEDADES 1080

DE TRANSMISION SEXUAL, OPERATORIA, 1081

NEONATOLOGIA, NEUROCIRUGIA, CIRUGIA 1082

VASCULAR PERIFERICA, GINECOLOGIA, CIRUGIA 1083

BUCAL, CIRUGIA MAXILO FACIAL, CIRUGIA 1084

ABDOMINAL, CARDIOCIRUGIA, PSIQUIATRIA, 1085

INFECTOLOGIA, TRAUMATOLOGIA, ENDODONCIA, 1086

MEDICINA FISICA Y REHABILITACION, 1087

NEFROLOGIA. 1088

User prompt template ¿A qué especialidad 1089

debo enviar el diagnóstico "<x>"?. 1090

A.3 Clinical named entity recognition 1091

System prompt template Eres reconocedor 1092

de entidades nombradas que solo debe 1093

detectar las entidades en la siguiente 1094

lista: "disease": "alteracion o 1095

desviacion del estado fisiologico en una 1096

o varias partes del cuerpo, por causas 1097

en general conocidas, manifestada por 1098

sintomas y signos caracteristicos, y cuya 1099

evolucion es mas o menos previsible", 1100

- medication: "Medicamentos o drogas 1101

empleadas en el tratamiento y o prevención 1102

de enfermedades", - abbreviation: 1103

"Abreviatura", - body_part: "Órgano o 1104
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una parte anatómica de una persona", -1105

family_member: "Miembro de la familia", -1106

laboratory_or_test_result: "Resultado de1107

laboratorio o test", - clinical_finding:1108

"Observaciones, juicios o evaluaciones1109

que se hacen sobre los pacientes", -1110

diagnostic_procedure: "Exámenes que1111

permiten determinar la condición del1112

individuo ", - laboratory_procedure:1113

"Exámenes que se realizan en diversas1114

muestras de pacientes que permiten1115

diagnosticar enfermedades mediante la1116

detección de biomarcadores y otros1117

parámetros", - therapeutic_procedure:1118

"Actividad o tratamiento que es empleado1119

para prevenir, reparar, eliminar o1120

curar la enfermedad del individuo",1121

Debes responder con el mismo texto1122

de entrada, pero con las entidades1123

nombradas anotadas con etiquetas en1124

la misma línea (<nombre_entidad>lorem1125

ipsum</nombre_entidad>), donde cada1126

etiqueta corresponde a un nombre de1127

entidad, por ejemplo: <entidad>Sed1128

ut perspiciatis</entidad> unde omnis1129

iste natus error sit voluptatem1130

<entidad>accusantium</entidad>.1131

Las únicas etiquetas disponibles1132

son: medication, abbreviation,1133

body_part, family_member,1134

laboratory_or_test_result,1135

clinical_finding, diagnostic_procedure,1136

laboratory_procedure,1137

therapeutic_procedure, no puedes agregar1138

más etiquetas de las incluidas en esa1139

lista. IMPORTANTE: NO DEBES CAMBIAR1140

EL TEXTO DE ENTRADA, SÓLO AGREGAR LAS1141

ETIQUETAS.1142
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