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Abstract

Inverse Reinforcement Learning (IRL) learns a reward function to explain expert
demonstrations. Modern IRL methods often use the adversarial (minimax) formu-
lation that alternates between reward and policy optimization, which often lead
to unstable training. Recent non-adversarial IRL approaches improve stability by
jointly learning reward and policy via energy-based formulations but lack formal
guarantees. This work bridges this gap. We first present a unified view showing
canonical non-adversarial methods explicitly or implicitly maximize the likelihood
of expert behavior, which is equivalent to minimizing the expected return gap.
This insight leads to our main contribution: Trust Region Reward Optimization
(TRRO), a framework that guarantees monotonic improvement in this likelihood
via a Minorization-Maximization process. We instantiate TRRO into Proximal
Inverse Reward Optimization (PIRO), a practical and stable IRL algorithm. Theo-
retically, TRRO provides the IRL counterpart to the stability guarantees of Trust
Region Policy Optimization (TRPO) in forward RL. Empirically, PIRO matches or
surpasses state-of-the-art baselines in reward recovery, policy imitation with high
sample efficiency on MuJoCo and Gym-Robotics benchmarks and a real-world
animal behavior modeling task. !

1 Introduction

Learning optimal policies from fixed reward functions is reinforcement learning (RL); learning
rewards from fixed expert policies is inverse reinforcement learning (IRL) [28]. Modern IRL methods
[12, 40, 33] often take a minimax game formulation and a bi-level optimization procedure, where
a reward function (min player) is adversarially optimized to differentiate between a best-response
policy (max player, an RL subroutine) and the expert policy via their expected return gap (a.k.a. the
imitation gap [39]). Due to the advantages of interpretability, robustness to dynamics shifts [1], and
out-of-distribution generalization [6], these methods have been effectively applied in autonomous
driving [21], robotics [7], and reward modeling in language models [38]. However, despite its
theoretical grounding and practical appeal, adversarial training introduces optimization instability due
to brittle approximations and high sensitivity to hyperparameters, hindering reliable reward recovery.

*Title used at submission and review: PIRO: Toward Stable Reward Learning for Inverse RL via Monotonic
Policy Divergence Reduction.

"Main contributors. Yang Chen developed the theorems, completed the proofs, wrote the paper, and
implemented the initial version of the algorithm. Menglin Zou led the experimental evaluation. Jiaqi Zhang and
Junyi Yang validated the algorithm using toy models. Yitan Zhang conducted the experiments on robotics and
animal behavior modeling tasks. The remaining authors contributed through critical discussions and feedback.

Corresponding author.

'The implementation is available at https://github.com/PolynomialTime/PIRO.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).


https://github.com/PolynomialTime/PIRO

Policy Optimization

PIRO

L fical -
PPO PLacHiity

i “dualism\”
etical

e onic. - TRRO
TRPO Reward Optimization
imitation performance sample efficiency
PIRO

learning stability
(the first formal guarantee)

Figure 1: Theoretical (top) and practical (bottom)
contributions. Top: PPO - rooted in TRPO’s theory
of monotonic policy improvement — has been (one
of) the most successful RL algorithm(s). This work
is motivated by a dualism: the mathematical beauty
of TRPO should not exist in isolation, but in conju-
gation with its inverse problem space. We identify
and formalize this inverse counterpart, completing the
“right half” of this “symmetric picture”. We believe
this contribution advances RL theory and opens new
avenues for designing robust IRL algorithms. See
Sec. 4 for theoretical justifications. Bottom: PIRO,
our practical algorithm, achieves a three-way balance
among learning stability, imitation performance, and
sample efficiency. To our knowledge, PIRO is the first
IRL method that achieves state-of-the-art performance
in imitation performance and learning stability with
high sample efficiency. See Sec. 5 for the practical
algorithm design and Sec. 7 for experiments.
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Figure 2: Comparing Adversarial IRL, Non-
adversarial IRL and our Trust Region Reward
Optimization (TRRO). (a) Adversarial IRL meth-
ods frame reward learning as a game against a (nearly)
best-response policy, often resulting in unstable train-
ing dynamics due to the inherent minimax structure.
(b) Non-adversarial IRL methods bypass this game
setup by coupling reward and policy via energy-based
formulations and jointly update them by minimiz-
ing the expected return gap (a.k.a. the imitation
gap). However, lacking principled control over re-
ward update makes them sensitive to optimization
errors. (¢) TRRO reformulates non-adversarial IRL as
a majorization-minimization (MM) process that identi-
fies a trusted reward update in each step. This ensures
a monotonic reduction in imitation gap and providing,
to our knowledge, the first formal stability guarantee
in IRL. (Note: This is a theoretical comparison assum-
ing exact policy computation.)

Recent non-adversarial IRL approaches [32, 15, 30, 50, 51, 44] revive a line of early apprenticeship
learning methods [27, 31]; they bypass the nested adversarial training by coupling the reward and
policy via an energy-based model [17], jointly updating them to optimize some measure of fit to
expert behavior. While improving empirical stability, they still lack principled control over reward
updates. As a result, a provably stable IRL mechanism, one that ensures consistent progress toward
expert imitation, remains elusive. This work aims to address this gap.

By leveraging the fact that the expected return gap between two policies equals the expected advantage
value of one under the other [35, 25, 50], we develop a unified view of canonical non-adversarial IRL
methods. We show that they all, explicitly or implicitly, optimize the likelihood of expert behavior,
which is equivalent to minimizing the imitation gap (Sec. 3). This leads to our key insight: /RL
stability can be achieved by provably increasing the likelihood of expert demonstrations at every
update step. We realize this insight in a principled non-adversarial IRL framework and a practical
algorithm that together offer a stable alternative to existing approaches.

Concretely, our contributions are summarized as follows, which are illustrated in Fig. 1:

e We propose Trust Region Reward Optimization (TRRO), a principled non-adversarial IRL
framework that, to our knowledge, for the first time provides a formal guarantee on stability. As
depicted in Fig. 2, it provides principled control on reward update via a Minorization-Maximization
(MM) process, which iteratively optimizes a surrogate objective function to identify a trusted reward
update that ensures a monotonic improvement in the likelihood of expert behavior (equivalent to
reducing the imitation gap). (Sec. 4)

e We develop Proximal Inverse Reward Optimization (PIRO), a practical IRL algorithm that
approximates the theoretical guarantee of TRRO through adaptive step sizes in place of the theory-
informed small updates. PIRO achieves a balance among learning stability, imitation performance
and sample efficiency. It can be easily implemented on top of Soft Actor-Critic [17] by adding a few
stochastic gradient steps for the controlled reward update. (Sec. 5)

e We empirically demonstrate the strong performance of PIRO. Across MuJoCo and Gym Robotics
tasks, PIRO offers substantially improved stability and high sample efficiency, while matches or
exceeds state-of-the-art IRL. methods in reward recovery and policy imitation. (Sec. 7)



TRRO/PIRO mirrors the success of Trust Region Policy Optimization (TRPO) [35] and its successor
Proximal Policy Optimization (PPO) [36]. TRPO guarantees monotonic policy improvement in
expected return with respect to a fixed reward function, while TRRO ensures monotonic reduction in
the expected return gap with respect to the expert behavior. In this sense, TRRO/PIRO serves as the
inverse RL counterpart to TRPO/PPO in forward RL.

2 Preliminaries

Consider a Markov decision process (MDP) defined by (S, A, r,n, P,7), where S and A are the
state and action spaces, 7)(+) is the initial state distribution, P : S x A x § — [0, 1] is the transition
function, 7 : § x A — R is the reward function, and «y € (0, 1) is the discount factor. A stochastic
policy 7 : § x A — [0,1] defines a probabilistic action selection at each state. We denote the
occupancy measure of 7 as p™ (s, a) = >~ 7' Pr(s; = s,a, = alsg ~ n, 7, P). Note that we will

. . . 1
omit the normalizing constant — for p” (s, a).

2.1 Maximum Entropy RL

MaxEnt RL characterizes the optimal behavior as a policy 7* that maximizes the policy entropy-
augmented rewards:

J(m,7) = Epe [r(s, )] + H(m), H(r) = Eye [ log(r(als))]- (MaxEnt-RL)

Here, H () is the discounted causal entropy [53] of a policy 7. In MaxEnt RL, an optimal policy 7*
follows an energy-based model.

m*(als) = exp(QF (s,a) — V[ (s)), (M
where ij* is the optimal soft Q-function and VT”* is the optimal soft value function satisfying:

Vrﬂ* (S) = IOg ZaE.A eXp(Q:* (Sv a))v Q:* (S’ a) = T(S, a) =+ VES/NP("S,a) [‘/rﬂ-* (S/)]. (2)

Eq. (2) is the so-called Soft Bellman Equation. Given a reward function r € R € RS*4 and a
policy 7 € II C [0, 1]5%, the soft Q-value can be computed by iteratively applying the soft Bellman
operator BT : RS*A — RS*A defined as:

(BIQ)(s,a) =1(s,a) + YEsy~p(js,a)[V()], V(S) = Eann(s[@(s,a) —logm(als)].  (3)
The operator B[ is contractive [18] and defines the soft Q-function Q)7 as a unique fixed point
solution, i.e. QF = BFQ)r. An improved policy can be derived from Q7 through

7' (als) o exp(Qf (a, s)), 4)

which guarantees Q7 (als) > Q7 (als) for all (s,a) € S x A. Starting from an arbitray policy
w, repeated application of Eq. (3) and Eq. (4) gives the so-called soft policy iteration [18], which
converges to the optimal policy 7* that maximizes J(m, ) in (MaxEnt-RL).

2.2 Maximum Entropy IRL

Suppose we do not know the reward function but have a set of demonstrations Dg = {(so, a9, - ..)}
sampled from an expert policy mr. MaxEnt IRL aims to recover the reward function that explains
demonstrations by minimizing the expected return gap (a.k.a. imitation gap [39]) through solving the
following optimization problem:

minmax J (g, r) — J(m,7) = Eyre [r(s,a)] = (Epr [r(s, a)] + H(m)). (MaxEnt-IRL)
In practice, E, = [r(s,a)] is emprically estimated on expert demonstrations Dg. The minimax
formulation of (MaxEnt-IRL) suggests an adversarial solution structure: * an outter loop optimizes
the reward function by differentiating expert and learned policies through maximizing the imitation
gap (Line 4, Alg. 1) and an inner loop trains an optimal policy via a MaxEnt RL process (Line 3,
Alg. 1). MaxEnt IRL has been well studied theoretically [53, 4] and has been practically applied
[45, 13]. However, its nested structure can introduce significant training instability and computational
burden, especially when state-action spaces are high-dimensional or continuous.

We hereafter omit the constant expert policy entropy H(7g) in J (7w, 7).
3See Sec. 6 for the discussion on adversarial IRL methods.



Algorithm 1 Adversarial IRL Algorithm 2 Non-Adversarial IRL

1: Provided: Expert demonstration D, Reward 1: Provided: Expert demonstration Dg, Reward
parameter 0. parameter 8, Policy 7o.
2: foriinl,..., N do 2: foriinl,..., N do
/I A full RL process /1 One round of soft policy iteration.
3:  m; ¢ MaxEntRL(7e, ,). 3: mi(als) o< exp(Qry ', (s, ).
4: 0; < argmaxg J(T{'E,T'g) - J(ﬂ'i,?"g). 4: 0, 0, +Oéive(J(ﬂ'E,’l“9)—J(ﬂ'i,?"g)).
5: end for 5: end for

2.3 Maximum Likelihood IRL

ML-IRL bypasses the nested loop in MaxEnt IRL by jointly updating the reward and policy via the
energy-based model (Eq. (1)), thereby improving stability. Let mg denote the optimal policy induced
by a #-parameterized reward function ¢ with & € R%. ML-IRL aims to maximize the likelihood of
expert behavior under mg (equivalent to minimizing the KL divergence Dk, (7g(als)||me(als)) =
E,~z[log mp(als) — log mg(als)]):

maxg £(0) = E =& [log me(als)]. (ML-IRL)

An important property of £(8) is that it can be equivalently expressed as the imitation gap. *

Proposition 1 (Lemma 1 in [50]). The log-likelihood objective £(0) in (ML-IRL) has the following
equivalent form that implies the expression of its gradient:

U(0) =Eprro(s,a)] — Esyun[Vi5? (s0)] = J(7E,10) — J (76, 70), (5a)
Vol(0) =E, = [Vere(s,a)] — E, = [Vare(s,a)l. (6a)

Indeed, Proposition 1 is not so surprising, as it reflects a standard identity in RL theory: the expected
return gap between two policies equals the expected advantage value (Q(s,a) — V(s)) of one
policy under the occupancy measure of the other [23, 35, 25]; in MaxEnt RL, the advantage value
corresponds to log 7 (see Eq. (1)). However, its implication for MF-IRL is noteworthy: it effectively
bypasses the inner RL loop typically required in MaxEnt IRL. As a result, the nested-loop optimization
is reduced to a single-loop structure: alternating between one round of soft policy iteration for policy
improvement (Line 3, Alg. 2) and one gradient step for reward update (Line 4, Alg. 2).

To further mitigates instability, [50] employ a decaying gradient step size o; = {5 for reward
updates, where NN is the total number of iterations and o € (0, 1) is a constant. Under the assumption
of exact policy computation for 7;, [50, Theorem 2] show that with Alg. 2, £(0) converges at rate
O(N~1) + O(N~7), and converges to the optimal value under linear reward functions. However,
this setup still lacks a formal stability guarantee, as gradient-based reward updates with heuristic
step sizes cannot ensure improvement in ¢(@) at each step. Our key contribution fills this gap: a
novel non-adversarial IRL framework that, under the similar assumption of exact policy computation,
guarantees monotonic improvement in £(0) through a carefully designed non-gradient reward update

mechanism (Sec. 4).

3 A Unified View of Non-Adversarial IRL: IR, ER and Beyond

In this section, we show an interesting yet natural fact that a range of canonical non-adversarial IRL
methods — both implicit reward (IR) methods that learn soft Q-functions (e.g., Soft Q Imitation
Learning (SQIL) [32], Inverse Q Learning (IQ-Learn) [15]) and explicit reward (ER) methods that
directly learn reward functions (e.g., f-IRL [30] and ML-IRL) — can be unified under the objective of
maximizing the likelihood of expert behavior. As discussed further in Sec. 6, this unified view extends
to a broader class of non-adversarial IRL methods that go beyond the settings of these canonical
methods. This allows for unifying non-adversarial IRL methods under a general optimization
procedure (Alg. 2), highlighting the generality of maximizing the likelihood as a principled objective
and situates our framework (next section) within a broader methodological landscape.

“We provide the proof of Proposition | in Appendix A.l using the notations in this paper.



For IR, we already know that the objectives of SQIL and IQ-Learn are regularized versions of °
lo(w) = Eyrp[rq, (s, a)] — Esony [V (s0)], (5b)

where V*(s) = log >, 4 exp(Qu (s, a)). Eq. (5b) can be derived by transforming £(0) (Eq. (52))
via replacing r¢ with rq,, (s,a) = Qu(s,a) — YEg . p(.|s,a)[V*(s)] — the implicit reward defined
as the differences of w-parameterized soft Q-values via the soft Bellman equation (Eq. (2)).

For ER, we show that the objective of a basic form of f-IRL — assuming state-only rewards and
minimizing the KL divergence between expert and learner state marginals — is equivalent to £(6),
up to a constant. That is (proof of Eq. (6b) in Appendix B),

ro(s) = VoDxkr(p™(s)[[p™(s)) oxx =Vel(0), (6b)
where p”(s) = p” (s, a)/w(als) denotes the state marginal of the occupancy measure.

Pros and cons of IR/ER methods are well-documented [33]. IR offers higher computational efficiency,
as Eq. (5b) depends solely on estimating the soft Q-function, which encodes both reward and policy.
However, this coupling of reward and environment dynamics can lead to inaccuracies under dynamics
shift, thereby limiting the reward transferability to new dynamics. In contrast, ER methods learn
reward functions directly and avoid this entanglement, offering better robustness to dynamics shift.
In light of this, our framework will adopt the ER formulation.

4 Trust Region Reward Optimization

In this section, we introduce Trust Region Reward Optimization (TRRO), a theoretical IRL framework
that enforces stability by producing a guaranteed increase on the likelihood of expert behavior. To
our knowledge, it provides the first formal theoretical stability guarantee for IRL.

To proceed, let 6,14 denote the current reward parameter and assume we have the corresponding
optimal policy 7,1q. As argued in Sec. 2.3, gradient-based reward updates cannot rigorously ensure an
improvement in ¢(6). We thus consider a non-gradient-based approach. Our key idea is to restrict the
search for 0, within a region centered around 6,q such that all 8 in that region admit an increase
on £(0). To do so, we introduce the following local approximation to £(8):

lo,4(0) == Epru[ro(s,a)] — B, [V (s0)] = J(7E,70) — J(ToldsT6)- (5¢)

Proposition 2. Suppose r¢ is differentiable. The surrogate function Ly, (0) in Eq. (5¢) matches the
original objective £(0) in Eq. (5a) to first order, i.e., for any value 0oq:

29,4 (0o1a) = {(Bo1a) and  Volo,,(0)lo-6,, = Vol(0)lo=6,, -  (60)
EEPWE ['peold (573)]_E50~n [V;;le((li (s0)] EIEpTrE [Vgrg(s,a)]fﬂ‘:pwold [Veore(s,a)] ‘ezeold
Proof. See annotated equivalence relationships above. [

Proposition 2 implies that a sufficiently small step 8,14 — Onew, Which increases (g, (0), will
also increases £(6). However, it still does not provide guidance on the suitable step size for this
update. Our theorem below addresses this by deriving an explicit lower bound on £(8,,c.,) in terms of
g, (Onew ) and the difference between rg,_,, and g

old new °

Theorem 3. Let cg,, (Onew) = Maxsa|re,.(s,a) — ro,,(s,a)]. Assume |A| < oo and
Iro,.. (s,a)] < R,Vs € S,a € A. Then, the following inequality holds:
U(Onew) > Lo,y (Onew) — Ceg, 1y (Onew), Where the constant
24, G IAIR + (v = 7* +2)|Allog | A] @
(1—79)? (1=9)* '

C:

Proof. In Appendix A.2. O

3See [32, Sec. 3.3] for SQIL and [15, Sec. 4] for IQ-Learn.



Figure 3: Illustration of the mechanism of Trust
Region Reward Optimization (TRRO). The reward
optimization follows a Minorization-Maximization
process, iteratively optimizing a surrogate func-
tion that minorizes the original likelihood objective,
thereby guaranteeing monotonic improvement in the
likelihood of expert demonstrations (assuming exact
policy optimization).

Since €g_,,(0o1a) = 0, by continuity, there exists a O,y in the neighborhood of 6,14 such that
0(Onew) > Lo,y (Onew) — Cep,,y (Onew ). This implies that maximizing the lower bound in Theorem 3
guarantees an increase (or at least no decrease) on £(6), which leads to the following procedure that
alternates between policy and reward update:

T—>Told
—

m = argmax, J(m,re,,,) 0, = argmaxgly,,(0) — Ceg,,(0). (TRRO)

BOo1aOrew
This implies the following theoretical guarantee on stability.

Corollary 4. Assume exact policy optimization. Staring from an arbitrary reward parameter 6y,
(TRRO) will yield a sequence of reward functions rg,,7e,,7e,, -..Such that the corresponding
likelihood of expert demonstrations monotonically increases: (£(0y) < £(01) < £(03) < ....

As illustated in Fig. 3, TRRO is a type of Minorization-Maximization (MM) algorithms [20], where
lg,,,(0) — Ceq,,, (0) is a surrogate that minorizes £(6) and matches it at @ = 6,)q. © Maximizing the
surrogate ensures progress on the original objective. In light of this, TRRO plays a role in inverse RL
analogous to Trust Region Policy Optimization (TRPO) [35] in forward RL: while TRPO’s theoretical
framework uses the MM algorithm to ensure monotonic policy improvement in expcted return with
respect to a fixed reward function, our TRRO ensures monotonic expected return gap (equivalent to
the likelihood) reduction with respect to the given the expert behavior.

S Proximal Inverse Reward Optimization Algorithm

In this section, we develop a practical algorithm, Proximal Inverse Reward Optimization (PIRO). It
approximates the theoretical guarantee of TRRO, enabling adpatively larger reward update steps,
efficient policy optimization and accommodating continuous state-action spaces. It operates under
realistic constraint of finite expert demonstrations D = {(so, ao, - . .)}-

Adaptive reward update. The original scale factor C'is often too large, leading to excessively small
reward updates. / To mitigate this, we introduce an customizable coefficient ;1 > 0 to relax the
scale. Another issue is that eg,,, (@) is indifferentiable due to its definition as the maximum norm. To
address this, we replace g, (0) with the differentiable L? norm of reward differences and calculate
it on the state-action space for the tabular cases or, more generally, estimate it on a subset Dg C Dg
and a set of rollouts Dg sampled from 4 for continuous control:

1/2
€014 (0) = (Z(S a)eDpUDs (Teuld (S, a) —Te (S, a))2> . ®)

Note that through ég_,, (@), we also implicitly penalize the magnitude of the reward function (the
L? norm ||rg(s, a)||2), similar to the reward sparsity regularization in SQIL [32], which discourages
assigning high rewards to state-action pairs absent in demonstrations.

The above approximations yield the following objective for each reward update step:
Orew = argmaxg Lo, (0) = Lo, (0) — 1€, (0) ©)

We minimize Lg_,, (@) using gradient descent by estimating

old (

Vole..(0) =Ep_[Vere(s,a)] — Eps[Vere(s,a)] — uVeée,,(0). (10)

SIf 4g,,,(0) — Ceo,,, () reaches a local maximum at 8,14, a wider search range is needed — a known
limitation of MM algorithms. This, however, is out of the scope of this paper.
"See Appendix D.2 for an experiment for the performance comparison between theoretical and adaptive C.



We adaptively adjust the coefficient p as follows:
If ég,,,(0) > e x , then pu < p x y; Ifé€q,,(0) < € /z, then p + u/y, (11)

where €€ > 0, z,y > 1 are predefined hyperparameters. The updated p is used for the next reward
update step. Sensitivity tests for x, y, €*€ are in Sec. 7.6.

Practical policy optimization. In practice, we cannot expect exact policy optimization. For efficiency,
similar to the setting in ML-IRL [50, 51], we calculate m,q by performing several rounds of soft
policy iterations through Soft Actor-Critic [18] under rg_,, and mo1q.

Final practical algorithm. Finally, we obtain the following practical iterative procedure for PIRO:

7 + k SAC rounds with rg_,,, Told eﬂ?ﬁwom 0w < n grad. steps with Vg Lg_,,(0). (PIRO)

o1d ¢ Onew

Note that (PIRO) degrades into
Alg. 2 (the general procedure of non-
adversarial IRL) if k = n = 1 and 1: Input: Expert demostratiops Dg; Initialized reward parameter
1 = 0. This indicates that, in theory, 0,14, policy mo1q; Targets €%, coefficient 11 and scalars x, y >
PIRO improves stability at the cost of 1; Loop control parameters 1, k, 1 > 0.

Algorithm 3 Proximal Inverse Reward Optimization (PIRO)

more frequent updates. However, our 2: fori = 1tom do

.. . i 3:  mola ¢ k rounds of SAC based on rg_,, and moiq.
empirical evaluation in the next sec- 40 g% 7\ T e o
tion (Tab. 1 and Fig. 4) reveals that 5: Sample a batch D C Dr
this added computational effort does ¢, Rollout 7,14 to sample a set of transitions Dsg.
POt compromise time efficiency, as the 7: Estimate Vg Lo, (6) on Dg and Dg. > Eq. (10)
improved stabll}ty leads to faster con- g. Update @ to increase Le_,, (8) via Vo Lg,,, (6).
vergence, effectively offsetting the ad- 9. end for
ditional update overhead. 10:  Adjust p and Set 0514 < 6. > Eq. (11)

11: end for

To summarize, we show the training

. 12: Output: d d poli old-
procedure of PIRO in Alg. 3. UIPHL: TEWArd Tooiq ANK POTICY Told

6 Related Work

Adversarial IRL. Predominant IRL methods follow an adversarial learning paradigm (see GAIL [19]
and discriminator-actor-critic (DAC) [24]), with AIRL variants [10—12] and extensions [48, 47, 8, 9]
as key representatives. As argued in [33], this also includes methods that do not explicitly adopt
a min-max game formulation but implicitly learn from its adversarial dynamics, such as classic
approaches like Apprenticeship Learning [1, 2] and Max-Ent IRL [52, 53]. Recent work [39] unifies
these adversarial methods through the concept of Moment Matching (a.k.a. Integral Probability
Metric) [26], offering a broader perspective on their underlying principles. Building on this, recent
methods further improve adversarial IRL by providing sample-efficient policy update mechnisms
such as FILTER [40] (resets the learner to expert states) and HyPE [33] (a hybrid-RL based IRL
algorithm that trains on a mixture of online and expert data to curtail unnecessary exploration in policy
updates). In contrast to all these methods, our approach is non-adversarial and features principled
stable reward learning.

Non-adversarial IRL. We expand the discussion on non-adversarial IRL methods in the introduction
and Sec. 3. Coherent Soft Imitation Learning (CSIL) [44] simplifies the idea of non-adversarial IRL
with a two-stage procedure: it first extracts a reward function from a max-likelihood policy with a
reference policy and then trains a policy based on this reward. BC-IRL [41] minimizes the mean
squared loss rather than maximizing the likelihood, but with no guarantee on stability. Least-squares
inverse Q-learning (LSIQ) [3] penalizes the reward function magnititude and give its theoretical
support; PIRO does so implicitly in its practical implementation of reward update constraints. To
handle distributional shift due to limited state-action coverage, some methods adopt the model-based
paradigm and conservative updates — either on the policy (Offline ML-IRL [51]) or on the reward
function (CLARE [49]). In contrast, our PIRO is model-free and leverages online rollouts. Another
recent method, SFM [22], minimizes the imitation gap by matching expert Successor Features (i.e.,
predictions of future state occupancies under a policy). A technically related method is P2IL [43],
which applies the proximal point method to stabilize soft Q-function learning under linear MDP
assumptions. Our method addresses general MDPs with explicit rewards.



Table 1: Averaged Rewards (five independent runs) on five MuJoCo and four Gym Robotics tasks.

Task Expert Adyv. IRL (Online) Adyv. (Offline) Non-Adv. Online Non-Adv. Offline PIRO | Gain
BC GAlL MM AIRL FILTER HyPE DAC 1Q ML-IRL f-IRL| CSIL P“IL

Ant-v4 5926.211631.5 996.9(-304.0 991.4 -376.3 2800.5 923.8 3589.8 53825 980.4| 420.7 976.6] 5967.2 |+584.7

8 Humanoid-v4 5501.0| 418.1 508.4| 367.2 2814 291.7 717.5 76.3 18475 55734 4704 - —| 5954.9 |+381.5

2| Walker2d-v4 5524.5| 384.4 4158.1| 704 728 71.7 1478.7 -3.0 3023.0 47947 243.8| 686.1 1054.0 | 5643.7 | +849.0

§ Hopper-v4 3632.8|1034.4 35357 578 135 37.3 2593.7 3321.6 34245 33164 361.7 6.7 25.8| 3362.0 |-173.7

Halfcheetah-v4 12266.1| 221.2 1298.8| 20.3 2251.4 0.3 6473.4 9645.0 38255 118732 -0.7]|-107.2 -0.1]12587.4|+714.2

7| AntMaze-UMazeDense-v4 356 8.8 52 5.1 4.5 6.1 119 - 39 42 3.6 - 34| 257 | +138

g AntMaze-MediumDense-v4 26.9 1.1 13 34 2.6 1.9 3.0 - 34 0.9 1.1 - 29| 94 +6.0

2| AntMaze-LargeDense-v4 11.5 1.1 0.9 1.7 34 0.6 15 - 0.8 0.3 0.9 - 02| 88 +5.4

& | AdroitHandePen-Human-v1 1062.5| 44.1 -8.7(-344.3 -593.9 -685.4 -866.7 - <7519 -251.2 -65.3 - -61.2| 254.0 |+209.9
runtime per iteration - - 3-14s| 8-79s  5-8  9-41s 11-70s 135-142s 7-57s 93-166s 16-85s[68-90s  20-111s|96-178s| —

Note: DAC, CSIL and P2IL are not evaluated on certain tasks due to compatibility issues cause by version conflicts. Specifically, the current
implementations of DAC and P2IL are incompatible with the current Gymnasium Robotics suite, while P2IL and CSIL are incompatible with
the Humanoid version used in testing other algorithms.

Stable Inverse Optimal Control. A line of work in inverse optimal control uses trust-region or
Lyapunov-based methods [37, 5, 42] to ensure stability but requires knowledge of system dynamics
and second-order optimization, limiting scalability. PIRO, in contrast, is model-free and relies only
on first-order optimization, making it more practical for real-world applications.

7 Experiments

We focus on the following key performance indicators in the empirical evaluation: (1) reward recovery
and policy imitation, (2) learning stability, (3) sample efficiency. We also test PIRO’s capability of
reward transfer to new environment dynamics and learning state-only rewards We evaluate alogrithms
on five MuJoCo locomotion and four Gym-Robotics tasks (see Tab. 1). To examine PIRO’s capability
of real-world problem solving, we additionally provide a real-world case study on an animal behavior
modeling task in Appendix E, where PIRO shows superior performance compared to baselines.

Experimental Setup. For MuJoCo tasks, we use the same demonstrations as f-IRL [30] and ML-IRL
[50], keeping original hyperparameters except for standardized batch sizes and training steps to ensure
fair comparison under identical computational budgets. Robotic tasks use expert trajectories from
Minari Offline RL datasets [46]. We use a single expert trajectory per task in order to examine their
imitation capability; the only exception is AdroitHandPen, where we use 10 expert trajectories instead
of one to ensure convergence. Full implementation details, including hyperparameters, network
architectures and trajectory lengths, are in Appendix C.

7.1 Reward Recovery and Policy Imitation

The reward performance is shown in Tab. 1. PIRO consistently outperforms or matches all baselines
across nearly all tasks. The performance gains are especially pronounced in harder domains such as
Humanoid, AntMaze, and AdroitHand, where PIRO shows substantial improvements over the best
baseline. On average, PIRO demonstrates strong reward recovery and policy imitation. Although
PIRO incurs a moderately higher computation time per iteration, this reflects its principled stable
reward optimization mechanism: the increased runtime stems from controlled updates that ensure
stable policy improvement (justified in the next experiment).

7.2 Learning Stability

We investigate learning stability by analyzing the learning curves across all experimental tasks,
which are shown in Fig. 4. PIRO consistently outperforms ML-IRL and demonstrates significantly
higher stability compared to other baselines throughout the learning process (except slightly weaker
performance on AntMaze-MediumDense-v4). In challenging AntMaze environments, while PIRO
exhibits fluctuation, it remains the only method capable of successfully imitating expert behavior,
likely due to the complex environment dynamics that cause the failures of other algorithms.

7.3 Sample Efficiency

We assess sample efficiency by analyzing the convergence speed with respect to the environment steps,
which can be observed in Fig. 4. PIRO consistently delivers competitive or faster convergence speed.
Although in certain environments our method exhibits lower sample efficiency than some baselines
(e.g., DAC on HalfCheetah-v4), PIRO ultimately achieves higher final rewards after convergence
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Figure 4: Reward curves of algorithms on MuJoCo locomotion tasks and Gym Robotics tasks.

and approaches expert-level performancem, while most baselines are far from expert performance
after convergence. Moreover, in these environments PIRO demonstrates more stable improvements
throughout training.

7.4 Learning State-only Rewards Grid world Leamed reward Ground truth
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solely state-dependent mitigates ambiguity from 3. 0.02
reward shaping [29], that is, a class of reward 1 = 001
transformations that yield the same optimal poli- 55 54 56 pr— Ty ®o

cies, making it impossible for an IRL algorithm

to identify the true reward without prior knowl- Figure 5: Experiments on reward recovery in tasks
edge of the environment. This also improves with state-only rewards. Left: The task isa 7 x 7
generalization across MDPs with different dy- grid world, where the agent starts from a random initial
namics. Thanks to explicit reward learning, position (blue. ercles) with thg objective of reachmg
PIRO naturally supports state-only rewards by the target position (red star) via the shortest possible

directly parameterizing rg(s), without the ad- path. Right: The ground truth reward at each position is
yp g7e(S) defined as the negative Euclidean distance to the terminal

ditional modifications required by implicit re- e Middle: The reward recovered by PIRO and the

ward methods [15]: Empill‘ically, we demon-  ground-truth reward function is highly consistent with
strate PIRO’s effectiveness in recovering state- the ground truth reward. Cumulative rewards: —9.24

only ground-truth rewards in Fig. 5. (expert) vs. —8.48 (PIRO).

7.5 Reward Transfer

To assess the transferability of the learned reward function, we evaluate whether a reward learned
under the original environment dynamics can induce an effective policy when the dynamics change.
LunarLander provides a testbed for this as we can alter its dynamics by “adding winds” in the
simulated physical conditions. As shown in Fig. 6, the resulting policy performs well under the
modified dynamics, demonstrating that PIRO recovers robust reward functions capable of generalizing
across environmental changes.

7.6 Sensitivity Tests

To assess the robustness of PIRO with respect to hyperparameters controlling reward update magni-
tude, we conduct sensitivity tests on three key parameters: €28t and its associated scaling factors
and y, which govern the adaptive adjustment of the regularization coefficient p in Eq. (11). Specifi-



Figure 6: Results for reward transfer to new environments with altered dynamics. Left panels: Policy
behavior learned by PIRO in the original LunarLander environment. PIRO succeeds in most cases. Right panels:
Policy behavior under PIRO’s learned reward function in LunarLander with altered dynamics (stochastic wind
added). The policy is robust in general, despite some failure cases, e.g., row 3.

cally, we vary one parameter at a time while keeping all others fixed. Results are reported in Fig. 7,
which suggest that the algorithm is not highly sensitive to the hyperparameters z, y; both can be set
within the range (1, 2) without significant impact. We also observe that setting the target value
within the range (0.1, 1) generally does not significantly affect the reward performance.
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Figure 7: Sensitivity test for the parameter and its scaling factors z, y.

8 Conclusion

We propose Proximal Inverse Reward Optimization (PIRO), a novel non-adversarial, practical IRL
algorithm that stabilizes reward learning by approximating Trust Region Reward Optimization
(TRRO) — a novel theoretical framework guaranteeing monotonic improvement in the likelihood of
expert behavior. Experiments MuJoCo and Gym Robotics benchmarks show that PIRO achieves
stable training, accurate and robust reward recovery, high sample efficiency, and good reward transfer
capability. This work provides a theoretical foundation for stabilizing IRL, and we hope it provides a
new perspective for designing more robust IRL algorithms.

Limitations. Despite its advantages, PIRO has limitations. First, while it stabilizes reward learning,
the overall training stability also depends on a stable policy optimizer, especially in high-dimensional
and complex-dynamics settings. Second, the dependency on on-policy sampling may reduce sample
efficiency in environment interactions, potentially limiting scalability to sample-expensive tasks.

Future work. First, improving the efficiency of policy optimization by incorporating resets to expert
states [40, 33] may substantially reduce computational cost. Second, exploring alternative policy
alignment measures beyond likelihood (e.g., statistical divergences other than KL) may open new
paradigms for stable IRL. Finally, on the application side, extending PIRO to real-world scenarios —
such as learning reward models and policies for aligning large language models with human feedback
— offers a promising path to improving agent performance in practice.
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to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We submit the code in the supplemental material with a readme file that
indicates the detailed instructions for running the code.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We briefly introduce the experimental settings in Sec. 7 in the main paper
and provide detailed settings (network architecture, hyperparameters, data collection, and
pre-processing and training procedures) in Appendices C and E.1. The code is submitted as
supplementary material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We conduct multiple independent runs for each experiment (with different
seeds) and report the mean value of standard deviations in figures and tables.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide this information in Appendix C.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consider-
ation due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper presents a novel inverse reinforcement learning algorithm that
advances the research in machine learning, which we feel has no negative societal impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example, by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original paper for the real-world meerkat behavior dataset and give
a URL in Sec. E.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

¢ The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code is submitted as supplemental material with a readme field for detailed
instructions to run the code.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

20



Appendices

A Proofs

A.1 Proof of Proposition 1

Let us first show that £(0) = E, =z [log mg(als)] = Ey=x [1e(s, a)] —Esynn[V2° (S0)] = J(TE, 70) —
J(ma,79) (Eq. (52)). Let d’r( ) denote the state distribution under a policy 7. Note that df = 1,
where 7] is the fixed initial state distribution.

0(8) = E,~xz[log me(als)]
=K, [Qr°(s,a) — V.7 (s)]
= ]Ep"E [7"0 (Sv a) + 7E5’~P( |s,a) [Vﬂe( /)] - ijl'e (S)]

= ]EI)”E [TG(S’ a Z Y IEswd Ela~mg(-s) [V e( ) VES’NPHS,a) [Vrge (S)H
t=0

=E, z[re(s,a)] (Z'y By ool Z’yt“]ESNd = [V (s )])

= ]EP"E [TG (Sv a)} - ]Es~d7rE [Vﬂe( )]
= ]Ep"E [’I"g (S, a)} sfvn[vﬂe( )]

= J(re,70) — J(To,70)-
Note that in Eq. (12), we omit the constant policy entropy H(7g) in J(7g,rg).

12)

We next show
Veﬁ(e) =E pTE [Vg?‘g(s a)} pTe [V@T@(S a)]
in Eq. (6a). Let us begin with investigating the gradient of 7o (st,at):

VOQ:: (staat)
W Voro(si,ar) +7 > Plseials, ar) VeV (si1)

St+1

exp(Qre (siy1,a .
Q VQT’Q(Sf, af —+ vy Z P Sf+1 |Sf, ay Z Z eXI?)”EC(? t+(1st+tl+1)))> VGQT; (St+1, at+1) (13)
a’ T6e bl

= Vore(si,ar) +v Z P(st+1]st; ar) Z 7o (ar+1[8t+1)VoQrg (St41, arv1)

St+1 at+1

St41 At41

Equality (a) uses the soft Bellman equation, while Equality () follows the energy-based formulation
of the policy. Notably, both VeQ7¢(st,a;) and VgV,7¢(s;) exhibit recursive forms, where the
gradient Vgrg(s;,a;) accumulates as an expectation alongside the expansion of Q7¢ and V7.
Continuing this recursive expansion, we derive:

VoQrl (si,a) = ESM ~ P( st a1), lZ’YlthTe(Sl,az)] . (14)

=t
ajy1 ~ mo(-|si+1)

VoV (s) =B o s, | 227" Voro(se ag)l ' (15)
seq1 ~ P(else, ae) ~ =t
Then, we have

[ oo
VoV3%(s0) = Ea, « no(-lsy), thvere(st, at)] - (16)

Str1 ~ dy ) L6=0
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Finally, according to Eq. (12), we have
Vol(0) = Epmr[Vore(s, a)] — Es,uy [V V5’ (so)]

= EPWE [Vg?“g(s, a)] — ]ESO"’nvat’\’ﬂ'e("St)7st+1fvd:fl [ E ,ytVQ’]"g(St, at)‘| (17)
£=0
=E, = [Vereg(s,a)] — E = [Voreg(s,a)].

A.2 Proof of Theorem 3

We begin by presenting some useful lemmas that tell us how much the policy discrepancy (Lemma 5),
state margin discrepancy (Lemma 6), log policy discrepancy (Lemma 7), @) and V functions
(Lemma 8), log policy (Lemma 9), and the expected entropy discrepancy (Lemma 10) grows based
on the reward difference. In all these lemmas, we use the following notations:

* r1(s,a) and (s, a) are two reward functions,

* 71(+|s) and 72 (-|s) are optimal policies under r1 and ry under the MaxEnt RL framework,
respectively.

* €= MaX(a) |71(8,a) — 72(s, a)| denotes the reward difference.
e |ri(s,a)| < R,V,ie€{1,2},s€ S,ac A
Lemma 5. The total variation distance between 1 (+|s) and w2 (+|8) is upper-bounded as follows:
|Ale

1 1
Dry(m(-s),m([s)) = 5llm(ls) —m2(ls)l = ggm(ab) —m(als)| < —qy (¥

Proof. We start by analyzing the sensitivity of the policy to changes in soft Q-function. The difference
in 71 (a|s) and 72 (a|s) arises from the difference in their respective soft Q-functions, Q)1 (s, a) and
QQ2(s, a). Expanding the policies gives:
ex s,a ex s, a
r(als) — maals) = OB ep@sa) )
Za’ eXp (Ql(s7 a )) Za’ €Xp (Q2 (57 a ))

This softmax-like function is é—Lipschitz continuous [14] with « being the temperature in the
energy-based model (w.l.0.g., we assume o = 1 in this paper). This means small changes in () lead
to proportionally small changes in the softmax output. This allows us to approximate the policy
difference for small deviations in ). Thus, the policy difference can be bounded as:

|m1(als) — ma(als)| < |Q1(s,a) — Qa(s,a)]| . (20)

Summing over actions, the (doubled) total variation distance becomes:

i (ls) = m2Cls)le = D Im(als) —ma(als)| < D 1Qu((s,a)) — Qa((s,a)]. ()

acA acA
We bound |Q1(s,a) — Q2(s,a)| by:
nslgx |Q1(s,a) — Q2(s, a)]
<e+t ’YT(Islg>§Es/~P(~\(s,a)) [Vi(s') — Va(s')]

< e+ ymax |log Y exp(Qi(s,a')) —log > exp (Qa(s',a")) 22
(a)
< e+ymax|Qi(s,a) — Qa(s,a)|,
(s,a)
where inequality (a) uses the fact that for any two sets of values {z;} and {y;},
log Z exp(z;) — log Z exp(y;)| < max|z; — yil. (23)
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Rearranging Eq. (22) and performing some algebra yields:

I(nfﬂ)dQl(S ,a) — Qa(s,a)| < =5

€

Finally, according to Eq. (21) summing over action space introduces scaling:

72 (ls) — maCls)lln < |4 Qu (s 8) — Qafs,a)| < AL

1—'y'

(24)

O

Lemma 6. Ler d;* (s) and d;?(s) denote the state marginal distributions at time t under each policy,

starting from the same initial distribution 1. Then, for any t > 0,
1
Dry(di*,di?) = S |ldi* — di? lu < tDyV* (71, m2),

where

1—
is the worst-case total variation distance between o and w1 over all states.

ax €
D5t (my,me) = msaxDTV(m(~|s),7r2(-|s)) = 77 (Lemma 5)

Proof. We proceed by induction on .
Base case (t = 0): Att =0, dj> = dj* = n (the initial distribution), so
ldg* — dg* [l =0,
which satisfies the bound.
Inductive step: Suppose that at time ¢,
Drv(dyt,df?) < tDRE(my, m2).
We now show that the same holds at time ¢ + 1.

The state marginals evolve according to
(s Z dy (s Z s)P(s'[s, a).

Thus,
dr?

Taking the L' norm and using the triangle inequality,

ld53, —ditilli < ) lldE (s)ma(ls) — df* (s)mi(C[s)l]; -

Now expand the difference inside:

di*(s)mz(als) — di* (s)mi(als) = (di*(s) — d;" (s))m2(als) + di” (s) (m2(als) — mi(als)) .

Using triangle inequality again:

[di* (s)ma(:ls) — di* (s)mi(:Is)lly < [di*(s) — di* (s)] + di* ()l m2(:|s) — mi(:[s)]]1-

Thus,

Iz — t+1\|1<Z\d’T"‘ —di' (s |+Zd"1 )ma(-ls) = mi(-[s)]lr-

The first term of the right-hand side is simply
i = di* |y = 2Dy (di*, di*),

23

T31(s)=dit (s ZZ d;* (s)m(als) — di’* (s)mi(als)) P(s']s, a).

(25)

(26)

27)

(28)

(29)

(30)

€19}

(32)

(33)

(34)



and the second term is at most
2Dmax(ﬂ'2,7{'1) (35)

since d;* is a distribution and || (+|s) — w1 (-|s)|1 < 2DF* (e, m1) for all s.

Therefore,

Drv(pits, dith) = ||dfil ditillhv < Drv(di', di?) + Dy (mo, m). (36)

Applying the inductive hypothesis:

DTv(d?17dﬂ2) < tDde(ﬂ'l, 7T2), (37)

we conclude
Drv(diiy, dity) < (64 1) Dy (m, m2). (38)
Thus, the claim holds for ¢ + 1, completing the induction. [

Lemma 7. Under MaxEnt RL, let w1(als) and m2(als) be two policies defined over a finite action
set A, induced by reward functions r1(s,a) and ra(s,a) respectively. Assume that for all s, a,
the rewards are uniformly bounded by a constant R > 0, i.e., |r;(s,a)] < R, fori = 1,2. Let
€ = aXg a |r1(s,a) — ra(s, a)|. Then, the log-policy difference is bounded as:

2e

Hog m1(-|s) —log ma(:[s)lloc < 7= (39)

Proof. We start from the softmax policy expression:
log m;(als) = Qi(s,a) — log Z exp(Q;(s,a’)), i=1,2. (40)

a’'eA
So the difference is:
log 71 (als) — log ma(als) = Q1(s,a) — Qa(s,a)—

(41)

[log > exp(Qi(s,a’)) —log Y exp(Qa(s, a’))] :

Following from the Lipschitz continuity of the log > exp(-) function with Lipschitz constant 1 under
L°°-norm, we have

log Z exp(Q1(s,a)) — log Z exp(Q2(s, a))

€
< Q1 — Q20 = ﬁ (Lemma 5).

(42)
Combining everything:
|log 1 (als) — log m(als)|
< |Q1(S, a) - Q2(S7 a)' + logZexp(Ql(& a)) — log ZGXP(QQ(Sv a))
a a 43)
S 2||Q1 - QQHOO
- 2e
i
O
Lemma 8. Under MaxEnt RL, we have
R+ ~logl|A
QI < it 08 IA (44)
R +logl|A
Voo < %" (45)
-
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Proof.
V(s) <log Y exp(Q(s,a)) < [|Qlloc + log |Al.

Since Q(s,a) = r(s,a) + vEgp[V(s')], we have

1Qlls < R +7(IQllso + log | A).
Rearranging, we obtain Eq. (44) and hence Eq. (45).
Lemma 9. Under MaxEnt RL, we have

2R+ (14 v)log | A

log 7|0 <
lHog e < =0

Proof. This directly follows Lemma 8 because

[logm(als)| = [Q(s,a) = V(s)| < [Q(s,a)| + [V (s)[-

Lemma 10. The discounted entropy difference is bounded by

> A 1ogm(at|st)] ’

t=0

E.,

> 4'log m(atst)} ~En,

t=0

2| Ale 2R+ (14 ~)log|A])|Ale (2R + (1 4 ~)log|A|)|A|ve

T (1-9)2 (1—7)3 (I—m)4

Proof. We express the expected discounted sum as

S o 1ogw<at|st>] =3 Eanar [Zw<a|s> logw<a|s>] .
t=0 t=0

Ex

a

Now consider the difference:

Z ~t (Eswx;’z [Z ma(als) log o (a|s)] —Eggm [Z m1(als) logm (as)] >
t=0 a a

=> 7| Eeuap lZ(Wz(aIS) log ms(als) — m (als) log 71'1(a|s))]

t=0 a

(first term)

+ (ESNdZ“Z - ESNdZ"l) |:Z m1(als) log m (a|s):|

(second term)

‘We bound each term:

o The first term is bounded by

(first term) < E, gz [ ma(ls) — 71 ([s)]1 - | log malloc+
| log ma(als) — log m (als)]l1]

< |Ale 2R + (1 + v)log |A] N 2| Ale

(Lemmas 5, 9, 7)

T 1l—y 1—7~ 1—7v
< 2R+ (1 +~)log|Al)|Ale N 2|A\e.
- (1—9)? 1—vy
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e The second term is bounded by

(second term) < ||df* — d;?||1 - | Alll log 71| co

te 2R+ (1 +v)log | A .
< T |A| T (Lemmas 6, 9) (52)
(2R + (1 + ) log|A[)|Ae .
=T

Summing over ¢ and applying >, 7' = ﬁ and >, 't = ({T—57z completes the proof. [
We next prove Theorem 3.

Proof. Substracting £(6,ey, ) from g, (Orew ) gives

6901(1 (enew) - é(enew) = Ep”E Vﬂ-encw (S) - V;“T;i(ﬂd (S) + Q:QBOM (S? a) - Qﬂ—sncw (S7 a)

TOnew ew new TOnew

<0 because mg,,,,, is optimal to rg, ., (53)

< Banpre Vit (8) = Vilet (5)]

new

To bound g, (Onew) — £(Onew), it is suffices to bound Vyg o™ (s) — VZZgg (s). To do so, let us first
investigate the definition of V79 (s) with g optimal to r:

V’rﬂ (S) = E‘ﬂ'

St (r(se,ar) — log m(ase)) ‘SO _ s] 7
t=0

which indicates that the value function V,7¢ (s) can be split into two terms:

1. Reward term: E., [>,° v'ro(s, a;)].

2. Entropy term: —E,, [> 72 7" log mg(as|s;)].

Iy Te .
Thus, we can decompose Vi 2™ (s) — Vig 2 (s) into two terms:

‘/Tgi!;iw (S) - Vi;iiij (S) = Arewa.rd(s) + Aenlropy(s)7 (54)
where
Areward(s) = ]E'“'Qnew lz ")/t’l’gnew (Sta at) So =8| — Eﬂ'gold [Z ’Vtrenew (St7 at) S0 = S] 5 (55)
t=0 t=0

Af:ntropy(s) = Eﬂ.eold [Z 7t 10g TO514 (at |St) So =S8

t=0

So = S} ~ Bro,., lz 7' log 7e,., (ar|st)
t=0
(56)

We first bound the term A eyara(s):
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Areward (S)

= Zyt<2df"“°w ngnew (als)ro,.. (s, ) Zdwe‘”d $) D o, (als)ra,., (s,a))
Z Z d Bnew ) <Z (T&'gnew (a|s) — TOo14 (a|s)) TOnew (57 a))

t=0 s a

sz@mwa)me 0,00 (5:2)

< Z ol Z d; = (s) - 2RDrv (7o, (-[8), Te,4 (+]8)) + Z A R||d} e — dp % ||, (Lemma 6)
t=0

_|_

(triangle inequality)

S Z /y 2RDmaX Bnews T old) + QtRDde( Onewr TMOo1a ))

< Z’y t+1 RDmax( new’ﬂ-oold))
= Brcw
35 () M)
t=0 -
R|Ale 00w > >
—'HT()<ZW+Zf>
v t=0 t=0
_ R|A|€901d( neW) ( Y + 1 >
1—~ (I=7)72 1-9
R|‘A|69 1d (onew)
= = old} AP/ (57)
(1—7)?
The bound of the term Acpyopy (s) directly follows Lemma 10:
2|A| (2R + (1 +7)log |A])|A|
<
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Finally, combining Eq. (57) and Eq. (58), we complete the proof by
éeold (OneW) - g(enew)
< Eooprn [Vigrio (5) = Vgl (s)
< Areward(s) + Aentropy(s) (Eq. (58)+Eq. (57)) (59)
_ (24 (5 =NRIA| + (v —7* + 2)| Al log | A]
- (a5 A=) O (O
O

B A Unified View of Non-adversarial IRL
Let Covx) (51(X), k2(x)) = By [1(%) - k2(X)] = Epx)[51(X)] - Ep(x) [52(x)] denote the co-

variance of two functions %1 (X), k2(x) under the distribution p(x). We first show an equivalent
expression of £(8).
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Lemma 11. The likelihood objective has the following equivalent expression:
((0) = Eyrrro(s,a)] — Epme[ro(s, a)]

=E, o {pm(s’a)re(s,a)] —E e {/;E(S’a)} xEpmo[re (s, a)]

=1
= Cov = p(s ) Vere(s,a)
= pTe (s,a) p”e(s,a)’ CACACS .

We next show that the KL.-based f-IRL [30] essentially maximizes the likelihood of expert demon-
strations (minimize the imitation gap). Recall from the main text that f-IRL assumes a state-only
reward function, rg(s), and seeks to match the expert’s state marginal distribution by minimizing an

f-divergence objective:

Ly(8) = D (p™=(s)[p™ (s)), (61)
where p™ (s) denotes the state marginal of the occupancy measure such that p™ (s, a) = p™(s)w(als).
It has been shown in [30, Appendix A2] that if Dy is taken as the KL divergence, then VgL () can
be reduced to the following analytical form:

VoLjs(0)=E e (r) [ESNT {'ZFE (S)] ESNT[TB(S)]:| -

e

(62)

TE

ETNp"e (1) |:ESNT |:f,;ﬂ—9 (S) :|:| X ]Evap"é’ () [ESNT[TO (S)H )
where p™ (7) denotes the trajectory distribution under the reward r¢ and Es.,[-] denotes the expecta-
tion w.r.t. states over the cumulative state visitation frequency determined by a given trajectory. To
show that KL-based f-IRL essentially maximizes £(6), it suffices to show that Eq. (62) is propotional
to Eq. (60). To proceed, we first notice that B, o (r) [Es~r[]] = (1 — 7)Eg.pmo(s)[-] as both
represent the state marginal of the occupancy measure. Given this equivalence relationship, we can
reduce the second term in the right-hand side of Eq. (62) to the following term:

E
p (s
Errpro(r) [E [W((s) ” X Errogo(7) [Esnr[ra (5)]
E
PP (s (63)
= (L =7)Esnpmos) [p”e((s))} X Espros) [0 (s)]
= (]- - V)Eswp"ﬂ (s) [T@(S)] :
We next investigate the first term in the right-hand side of Eq. (62):
P (s)
E,,~ Esvr | —=7=| Es~r
o) Bar | S| Benrlrats]
=FE._ . — Cov (pWE (s) Vng(S)) +E {pE(S) Vere(s)]
A "\pme(s)’ T Lo (s) (64)
TE
B P E (s) pE(s)
=Erpmo(r) [—COVT ( o (s) ,Vg’l“g(s))] + Erpmo (1) {ESNT |:p7T9 ) Vore(s)

" (s)

= — COVFWG(S) (pp‘”e<s)’ VQTQ(S)> + (1 — ’}/)EpfrE (s) [VeT@(S)].
Combining Eq. (63) and Eq. (64), we have

VoL;(6) = — Covyros) (”p(()) vere<s>) (1= E e ) [Vora()] — (1 — 7)Eampro s [ro (5)]

B T E

= — Covro(s) (ppm(g), vm(s)) + (1= 7)Cov o s) (’)(S), Vere(s)>

pTe(s)
= — ’yCOpre (s) (ppﬂ'e ((SS)) 5 Vng(S)) .

(65)
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Therefore, if the reward is state-only, i.e., r¢(s), we have VoL ¢(6) oc —Vgl(0). This completes the

proof for Eq. (6b) in the main text.

C Detailed Experimental Setup

C.1 Experimental Setup for PIRO

Training procedure is given in Alg. 3. Network architecture and hyperparameter setup for each task

are listed in Tab. 2 and Tab. 3.

Table 2: Network architecture and hyperparameter setup for MuJoCo tasks.

Hopper  Walker2D Ant Humanoid  Cheetah
Expert demo. (s-a pairs) 1000 1000 1000 1000 1000
Reward network (hidden layers) 128,128 128,128 128,128 128,128 128,128
Batch size (s-a pairs) 256 256 256 256 256
Reward learning rate le-4 le-4 le-4 le-4 le-4
SAC epochs per iteration 5 5 5 5 5
Entropy coefficient o 0.2 0.2 0.2 0.2 0.2
Threshold g**r&e* 0.5 0.5 0.5 0.5 0.5
Scaling factor x. for € 1.5 1.5 1.5 1.5 1.5
Scaling factor y. for € 1.5 1.5 1.5 1.5 1.5
SAC rounds per iteration (k) 1 1 1 1 1

Reward gradient steps per iteration (n) 1 1 1 1 1

Table 3: Network architecture and hyperparameter setup for AntMaze and Adroit tasks.

AntMaze-U AntMaze-M  AntMaze-L. HandPen

Expert demo. (s-a pairs)

700 1000 1000 2000
Reward network (hidden layers) 128, 128 128, 128 128, 128 256, 256
Batch size (s-a pairs) 256 256 256 256
Reward learning rate le-4 le-4 le-4 3e-5
SAC epochs per iteration 5 5 5 5
Entropy coefficient v 0.2 0.2 0.2 0.2
Threshold &"*&¢* 0.5 0.5 0.5 0.5
Scaling factor z. for € 1.5 1.5 1.5 1.5
Scaling factor y. for € 1.5 1.5 1.5 1.5
SAC rounds per iteration (k) 1 1 1 1
Reward gradient steps per iteration (n) 1 1 1 1

C.2 Pre-trained Expert Policy Model and Expert Demonstrations

The sources of pre-trained policy models or offline trajectory datasets for experts are provided in
Tab. 4. In MuJoCo tasks, we use these high-quality pre-trained policy models to sample expert
demonstrations. In Robotic tasks, we directly use the expert trajectories from the Minari Offline

Reinforcement Learning datasets [46].

Table 4: The sources

of expert policies or demonstrations.

Task Source

MuJoCo Tasks Same as expert policies used in f-IRL [30] and ML-IRL [50]

UMazeDense https://minari.farama.org/datasets/D4RL/antmaze/umaze-v1/
MediumDense  https://minari.farama.org/datasets/D4RL/antmaze/medium-play-v1/
LargeDense https://minari.farama.org/datasets/D4RL/antmaze/large-play-vl/
AdroitHandPen https://minari.farama.org/datasets/D4RL/pen/human-v2/
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D Additional Experimental Results

D.1 Hardware Information

Hardware specifications are provided in Tab. 5.

Table 5: Hardware configuration used in experiments.

Hardware Specifications

CPU AMD EPYC 7713 64-Core Processor @ 2 GHz
GPU NVIDIA A100-SXM4-80GB @ 1215 MHz
Memory 2 TB

D.2 Comparison Between Theoretical and Adaptive C' on CartPole

To further validate our theoretical analysis, we conduct an additional experiment on CartPole,
where | A| =2, R =1, and v = 0.9. According to Eq. (7), we have that the exact theoretical value
C =~ 111,373.55.

We compare this theoretical C' against the adaptive C' method (bounded in [0.001, 10]). As shown
in Figure 8, the adaptive method substantially reduces KL divergence throughout training (mean
226.3 vs. 648.9) while also achieving significantly higher final rewards, both undiscounted (313.6
vs. 19.1) and discounted (10.0 vs. 7.1). When using theoretical C, the reward performance does
improve within the acceptable training range, but the progress is neither as fast nor as stable as with
the adaptive C.

These results highlight the practical benefit of adaptively adjusting C' during training, despite the
theoretical guarantees provided by the closed-form expression. In particular, adaptive C' allows stable
and sample-efficient learning while avoiding the instability caused by the overly large theoretical
constant.

(A) KL Divergence Over Training (B) Undiscounted Reward
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Figure 8: Comparison between theoretical and adaptive C on CartPole.

E A Real-World Case Study: Meerkat Behavior Modeling

E.1 Dataset Details

As a real-world case study, we apply PIRO to an animal behavior modeling task using a dataset of
twenty 12-minute annotated videos capturing the spatial-temporal actions of a meerkat mob in a zoo
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Camera view of the entrance and forag- Camera view of the mound and backside
ing area of the enclosure

Figure 9: Example images of the camera views.

habitat [34]. To obtain the meerkat behavior, Rogers et al. [34] used two GoPro Max cameras set
on the back wall of the meerkat enclosure, focusing on two hubs of activity (Fig. 9). The current
zone, coordinates, and behavior of every visible meerkat are labeled for every timestep. Fig. 10
illustrates the full set of behaviors. In addition, each meerkat is identified by a unique identifier during
a sequence, keeping track of the same individuals. The heatmap of meerkat’s activity is shown in Fig.
11 and the region division for each camera is shown in Fig. 12.

Allogrooming.

- W %

Interact with object.

Low sitting/standing.

Playfighting. Raised guarding. Sunbathing.

Figure 10: Fifteen types of the meerkat behaviors.

i

Entrance & foraging area Mound & backside Entrance & foraging area Mound & backside

Figure 11: The frequency of meerkat activity in vari- Figure 12: Different colors are labelled for each area
ous regions corresponds to the heatmap from the cam- to visually illustrate the division of meerkat activity
era perspective. The areas where meerkats are fre- zones.

quently active are highlighted.
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E.2 Experimental Results for Policy Divergence Reduction

The dataset includes 25 discrete actions (15 behaviors + 10 actions the represent moving between
zones in the habitat) and state representations based on zones (10 total) and social context (counts
of close and distant neighbors). The goal is to learn a behavior model that predicts the actions of
an individual meerkat, assuming a shared policy across individuals [16]. We extract independent
demonstration trajectories of 30 consecutive transitions per individual.

Since ground-truth rewards are unavailable in this real-world setting, we evaluate policy imitation
using frequencies of transition across habitat zones. Visualizations of the expert’s frequencies, PIRO’s
outputs and baseline results are provided in Fig. 13.

PIRO consistently outperforms baselines in learning stability, as reflected in its lowest error rate.
AIRL and IQ-Learn also demonstrate low errors, but these errors remain noticeably higher compared
to PIRO. This highlights PIRO’s capability to reproduce meerkat trajectories with high similarity.
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Figure 13: Regional visitation frequency map generated by analyzing real meerkat trajectories alongside
those produced by algorithms. PIRO achieves the lowest weighted mean error.
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