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ABSTRACT

Molecular editing aims to modify a given molecule to optimize desired chemical
properties while preserving structural similarity. However, current approaches typi-
cally rely on string-based or continuous representations, which fail to adequately
capture the discrete, graph-structured nature of molecules, resulting in limited
structural fidelity and poor controllability. In this paper, we propose MolEditRL, a
molecular editing framework that explicitly integrates structural constraints with
precise property optimization. Specifically, MolEditRL consists of two stages:
(1) a discrete graph diffusion model pretrained to reconstruct target molecules
conditioned on source structures and natural language instructions; (2) an editing-
aware reinforcement learning fine-tuning stage that further enhances property
alignment and structural preservation by explicitly optimizing editing decisions
under graph constraints. For comprehensive evaluation, we construct MolEdit-
Instruct, the largest and most property-rich molecular editing dataset, comprising
3 million diverse examples spanning single- and multi-property tasks across 10
chemical attributes. Experimental results demonstrate that MolEditRL significantly
outperforms state-of-the-art methods in both property optimization accuracy and
structural fidelity, achieving a 74% improvement in editing success rate while using
98% fewer parameters.

1 INTRODUCTION

essential for drug discovery [Ma et al.| (2024).
Unlike de novo molecular generation that cre-
ates molecules from scratch Wang et al.| (2022),
molecular editing Hui et al.| (2022)) focuses on
precisely modifying existing molecules to opti-
mize targeted properties while preserving known
structure-activity relationships [Hansch| (1969).
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et al.| (2018); Shi et al.|(2020) optimize molecular properties in continuous spaces, yet often struggle
with fine-grained control due to latent compression. (3) Sequence-to-sequence methodgHe et al.
(2021)); |[Loeftler et al.|(2024)); [Wu et al.| (2024) frame editing as SMILES translation, enabling scalable
learning but lacking structural precision, as small token changes can produce unpredictable or invalid
edits Kusner et al.|(2017); Krenn et al.| (2020).
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Recently, language models have expanded the landscape of molecular editing by integrating natural
language understanding with chemical representations, enabling models to leverage semantic instruc-
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tions for molecular modifications: (1) Graph-embedding approach [Liu et al.| (2023) encodes both
molecules and textual instructions into a shared latent space via contrastive learning. (2) SMILES-
based models |Ye et al.[(2025); |[Le & Chawla (2024); Dey et al.[|(2025b) use retrieval-augmented
generation or adopt instruction tuning to enhance editing relevance. (3) SELFIES-based method [Fang
et al.| (2024)) incorporates chemical feedback to reduce syntax errors and improve property alignment
during generation. Despite their promise, these language-based methods often struggle to preserve
scaffolds or perform precise, localized modifications, due to the non-uniqueness of textual molecular
representations. Structurally similar molecules may appear textually distant, leading to inconsistent
and unreliable edits Noutahi et al.| (2024); |Aras-Pous et al.| (2019)).

There are several critical challenges in molecular editing for ensuring structural preservation and
editing precision: First, molecular editing must explicitly align with the discrete, graph-structured
nature of molecules. String-based representations fail to explicitly encode topological constraints,
often limiting the model’s ability to preserve scaffolds and perform localized modifications. Second,
existing methods trained solely on fixed datasets lack mechanisms for actively exploring novel
editing strategies, restricting generalization and adaptability to complex or underexplored regions
of chemical space. Third, performing discrete edits directly on molecular graphs while preserving
structural fidelity and aligning with natural language instructions is technically challenging due to the
non-differentiable, high-dimensional nature of graph representations.

In this paper, we propose MolEditRL, a structure-aware molecular editing framework that combines
discrete graph diffusion with reinforcement learning. MolEditRL first employs discrete diffusion
to reconstruct target molecules conditioned simultaneously on source molecular structures and
natural language instructions, effectively capturing both structural and semantic relationships. To
further enhance the precision of property optimization and alignment with instructions, we introduce
editing-aware reinforcement learning guided by explicit property rewards, while incorporating
constraints to preserve structural integrity. To enable comprehensive evaluation, we introduce
MolEdit-Instruct, a large-scale molecular editing dataset containing 3 million editing examples
spanning 10 diverse chemical properties, including biological activities, physicochemical attributes,
and synthetic accessibility. Compared to existing datasets Ye et al.| (2025); [Dey et al.| (2025b)),
MolEdit-Instruct provides broader property coverage and more realistic single- and multi-property
editing scenarios. We release MolEdit-Instruct publicly on Hugging Face to facilitate future research.

Experimental results demonstrate that MolEditRL significantly outperforms state-of-the-art methods
in both editing accuracy and distributional fidelity (measured by Fréchet ChemNet Distance, FCD).
Remarkably, MolEditRL achieves a 74% improvement in editing success rate over leading baselines
while requiring 98% fewer parameters (Figure[I)). Our contributions are summarized as follows: (1)
We propose MolEditRL, a molecular editing framework explicitly designed to maintain structural
integrity during editing. (2) We introduce a two-stage training strategy that combines discrete
diffusion pretraining with reinforcement learning fine-tuning, achieving precise property optimization
with structural constraints. (3) MolEditRL achieves SOTA editing performance with substantially
fewer parameters and the lowest distributional distance (FCD) compared to existing methods.

2 RELATED WORKS

Molecular Editing. Molecular editing aims to modify a given molecule to enhance specific
chemical properties while preserving its structural similarity. Formally, given a source molecule
G and a textual instruction S’ describing desired modifications, the goal is to generate an edited
molecule G that satisfies both the semantic intent of S and structural similarity constraints. This
formulation enables flexible, user-centric molecular design where optimization objectives can be
expressed intuitively. Existing molecular editing approaches typically fall into three main paradigms:
(1) Rule-based Graph Editing. These methods directly manipulate molecular graphs using predefined
or data-driven transformation rules, such as fragment replacements or bond editing templates, inspired
by Matched Molecular Pairs (MMP) Dalke et al.|(2018)); |Chen et al.|(2021)); [Fu et al.|(2021)). While
offering high chemical interpretability and precise local modifications, their generalizability is limited
by the coverage and flexibility of manually or heuristically derived rules. (2) Latent Generative Graph
Editing. Approaches such as JT-VAE Jin et al.|(2018)) and GraphAF Shi et al [(2020)) encode molecules
into continuous latent spaces and decode edited structures by sampling. Hierarchical decoding
techniques like HierG2G |Jin et al.|(2020) enhance structural preservation by generating molecules
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in a coarse-to-fine manner. However, these methods frequently face issues such as information
loss due to latent compression, resulting in limited accuracy and insufficient control over edits. (3)
Sequence-based Generation. These approaches treat molecular editing as a sequence translation task,
converting source SMILES strings into target SMILES using Transformer-based architectures [He
et al.|(2021)); Loetfler et al.| (2024); [Wu et al.|(2024). These models suffer from syntactic instability
and representation ambiguity: structurally similar molecules can have significantly different SMILES
representations, and small token-level edits may lead to unpredictable or chemically invalid outputs,
limiting their precision and structural controllability. (4) Language-based models. MOLGEN [Fang
et al.| (2024) addresses SMILES fragility by adopting the SELFIES representation. Methods such as
ChatDrug|Liu et al.| (2024a), DrugAssist|Ye et al.|(2025), and Re2DF [Le & Chawla|(2024)) utilize
retrieval-augmented generation or instruction tuning to enhance editing relevance. Additionally,
embedding-based methods leveraging diffusion | Xiong et al.|(2024) or contrastive learning |Liu et al.
(2023) have been proposed. Nonetheless, these approaches continue to rely on textual or continuous
representations that lack explicit alignment with discrete molecular graph structures, compromising
structural fidelity and editing accuracy.

Reinforcement Learning in Molecular Generation. Reinforcement learning (RL) provides a
flexible framework for molecular optimization by formulating molecule generation as a Markov
Decision Process (MDP), in which agents sequentially modify molecular structures to maximize
rewards associated with desired chemical properties [Sridharan et al.| (2024). SMILES-based RL
methods such as ReLeaSE |Popova et al.| (2018) and REINVENT |Olivecrona et al.| (2017) guide
generative models using property predictors and prior policies. Graph-based RL methods, including
MOolGAN De Cao & Kipf| (2018)), GCPN |You et al.| (2018)), and MoIDQN [Zhou et al.| (2019),
facilitate goal-directed graph construction through adversarial training, policy gradients, or Q-learning.
Recently, sequence-level discrete flow—based models such as InVirtuoGen [Kaech et al.[(2025)), which
operate on fragmented SMILES, have introduced refinement-driven fragment-level generation with
the objective of optimizing molecular leads by iteratively improving given fragments. Although
effective in exploring chemical space, these RL-based frameworks typically focus on de novo
molecule generation and lack explicit mechanisms to enforce structural constraints derived from
source molecules, limiting their applicability to structurally constrained molecular editing tasks.

3 METHOD

We present MolEditRL, a structure-preserving molecular editing framework trained in two stages.
First, molecules and instructions are encoded into unified graph-text representations. Then, a structure-
aware editing network is trained via (1) discrete diffusion pretraining to reconstruct target molecules
from noisy graphs and instructions, and (2) reinforcement learning fine-tuning to optimize property
alignment while preserving structural fidelity.

3.1 MOLECULAR TOKENIZING

As illustrated in Figure (a), a molecule is represented as an attributed graph G = (V, E), where V
denotes atom nodes with associated features, and F denotes bond edges with bond-type attributes.
The editing instruction is a sequence of tokens S = [s1, ..., s,]. Given a source molecule graph
Gse = (Vire, Esre), the model aims to predict the target graph Gige = (Vige, Erge) that reflects the
required edits. These components are embedded and concatenated into a unified input sequence:

0 _ src src tgt tgt (n+k+m)xdp
h? =T1hi,..., hn, ST e hn+k+1,...,hn+k+m]eR R €))]
where hy,. .., h, € R% are embeddings for the instruction tokens, hiys .o by € R encode
source atoms, and hfﬁ PETRR higf_ kam € R4 encode target atoms. dj, is the model’s hidden size,

and variable-size graphs are handled via sequence serialization with dynamic padding.

3.2 STRUCTURE-PRESERVING EDITING NETWORK

Recent work has demonstrated the effectiveness of unified architectures for multi-modal learning |Xi+
ang et al.[(2024)); Zhao et al.|(2025). Such unified frameworks enable better capture of cross-modal
dependencies and shared representations while reducing architectural complexity. To enable precise
and structure-aware molecular editing, we propose the Structure-Preserving Editing Network, which
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(a) (b) Structure-Preserving Pretraining via Discrete Diffusion
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Figure 2: Overview of MolEditRL.

jointly encodes the semantic intent of natural language instructions and the topological features
of source and target graphs. We initialize our transformer encoder with a pretrained RoOBERTa
model [Liu| (2019), but enhance it with a structure-aware attention mechanism. This mechanism
injects bond-level connectivity priors into attention scores via learnable bias terms that encode graph
connectivity, guiding attention flows to preserve structural integrity while selectively updating target

representations. For tokens ¢ and j at layer [, the raw attention score A ; is computed as:

A 1 T
Ay = g (iWa) (W) + b, &)

where Wg, Wg € R >4 are learnable projection matrices. To incorporate graph-level dependen-
cies and better preserve structure during editing, we introduce bé) ; to encode structural priors:

Eg i —n,j —n,:, ifn<i,j<n-+k,
B Eigili—(n+k), j— (n+k),:], ifl=0andn+k <i,j, 3)
b At ifl >0andn+k <4,j,

0, otherwise.

The bias term bl ; preserves structure by injecting source adjacency at all layers, using target adjacency
at the first layer and propagating attention from previous layers to maintain topology-aware attention
flow. The attention weights are then normalized, and the updated hidden states are calculated as:

exp(AL )
T Sre(iy M 2 (e @

where Wy € R%*dr and W5 € R%%*4n are learnable parameters. After L transformer layers, the
model outputs H(Vig) € R™*® for atom types and p(Eyy) € R™*™*? for bond types, where m is
the maximum number of atoms per molecule, a the atom vocabulary size, and b the number of bond
types. Edge predictions are symmetrized (e;,j + €;,;)/2 to respect bond-direction constraints.

3.3 STRUCTURE-PRESERVING PRETRAINING VIA DISCRETE DIFFUSION

As Figure[2)(b), we pretrain the editing network via a discrete denoising diffusion process conditioned
on the source molecule and instruction, enabling topology-aware generation.
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1. Forward Process. We define a discrete forward process that gradually corrupts the target molecular
graph Glgl over T timesteps. At each step ¢, atom and bond features are independently masked with

probability B(t) = (T —t + 1)1
T
(GllgtTI Gtgl) - Ht:l ( lgt‘ Gtgt )a ( tgl‘ Gtgl ) (Vlét ! Qz‘t/? Ettgt ! QtE)a (5)

where (); is a transition matrix that gradually increases the masking rate and ¢() denotes the transition
distribution of the forward diffusion process. At each step, each element remains the same with
probablhty 1 — B(t) or transitions to [MASK] with probability 5(¢). This process gradually converts

G? e 10t0 a fully masked graph Gtg[

2. Reverse Process. To recover Gtgt from the fully corrupted graph G[gt, we train a denoising model
¢ to iteratively refine Glgt conditioned on the source molecule Gy and instruction S:

T
po(Gor—1| Gl Gares S) = Ht 0(Gla ' | Gla Gsrer S). (6)

At each timestep, ¢y predicts the denoised graph Gfgt ! using the editing network described earlier.

3. Training Objective. Although instruction .S is not corrupted during diffusion, we include a
cross-entropy loss on instruction tokens to enforce semantic alignment with the predicted molecule.

n+k+m n+k+m
»Cpre = Z CE('Ui, lﬁz(vz)) + Z CE(ez Js ng ZCE sz» Pi(si ) 7
i=n-+1 i,j=n+k+1

4. Sampling. At inference time we start from a fully masked graph Gtg[ and iteratively apply the
reverse process. Each step: (1) Graph-Text Encoding: The transformer ¢y encodes Gtgt, G, and
S, producing logits (Vi) and p(Eig). (2) Prediction: Following x-parameterization Austin et al.
(2021)), the model predicts the denoised graph as Gtgt

is sampled from the posterior q(Gfgl o Gtgt, ; lgt) by independently sampling atoms

= arg max p(Vigt, Ergt). (3) Sampling: The
next graph Glg[
and bonds: G’fgll [1;pe(vi™) Hi,jpg(ez,;l).

3.4 EDITING-AWARE FINE-TUNING VIA REINFORCEMENT LEARNING

While the pretrained diffusion model captures molecular structure and ensures validity, it lacks
explicit optimization for property-specific editing. We address this by introducing Editing-Aware
Reinforcement Learning, which fine-tunes the model using rewards computed from well-established
chemical toolkits (RDKit |Bento et al.| (2020) and TDC |[Huang et al.| (2021)). A KL-regularized
objective guides optimization toward desired properties while preserving structural consistency.

1. MDP Formulation for Molecular Editing. We recast discrete graph denoising as a Markov
Decision Process (MDP) tailored specifically for molecular editing [Uehara et al.|(2024)): (1) State:

(S G, Gtgt ) includes the instruction, source molecule, and current noisy target graph. (2)
Acnon. ar = Ggl =1 is sampled from the model’s predicted distribution over denoised graphs at
the next step. (3) Initial State: Py(so) = p(S) p(Gswe) q(Gy) combines an instruction, a source
molecule, and a fully masked target graph. (4) Transition: Given a sampled action a,, the next state
becomes sy = (S, Glres at). (5) Policy: The stochastic policy mg(a; | s¢) outputs a categorical
distribution over atom and bond types, from which a; is sampled. (6) Reward: A scalar reward is
assigned only at the final step (¢ = T'—1) to evaluate editing success:

GO, S, Gye), ift=T-1,
R(8t7at) — {0( ) 1

tgts
, otherwise,

where r(-) equals 1 if the generated molecule successfully performs the required edit, 0.2 if it is

chemically valid but does not fully satisfy the instruction, and 0 if it is invalid.

®

2. KL-Regularized RL Objective. To optimize molecular editing while preserving structural fidelity,
we adopt a KL-regularized reinforcement learning objective. Formally, the objective is:

L(8) = ~Ep($) p(Gue) Epo(cy [M(Glgs S Giee) ]

+ 5 Z (GL) {DKL (p@( tgt | Gtgta S, Gsrc) ” ppre( tgt | Gtgta S, Gsrc))} )]
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where py is the current policy’s distribution over denoised target molecules at timestep ¢, and ppre is
the pretrained diffusion model, acting as a structure-aware prior. The coefficient § balances reward
maximization and structural consistency and is set to 0.1 in our experiments. To stabilize training,

we normalize the final reward of each trajectory within each batch: A= S;{:‘;%.
computation and improve efficiency, we apply policy updates at a fixed stride ¢, rather than every
timestep. Specifically, we define the update setas: 7 = {t € [1,T] | ¢t mod ¢, = 0}, and compute

gradients only at ¢ € 7. The resulting policy gradient becomes:

To reduce

Vo J(0) = ]EG&iTNpg [A : ZtET Vo 1ng9(éggt | G(tgn S, Gge) — B ZtE’T VoDxL (pe || ppre)} . (10

3. Gradient Estimation via x(-Parameterization. We estimate the gradient of the reward term (i.e.,
the first term of Eq.[0). By the policy gradient theorem, the gradient is:

VQEG%;T [r] = EG%;T {7‘(6’80,l7 S, Gye) - ZtET Vg log pe (Gngl | Gttg[, S, Gsrc)] . (1n

Since rewards are only available at t=0, directly estimating the gradient suffers from high variance |Liu
et al.|(2024b)). To reduce this, we adopt xo-parameterization |Austin et al.|(2021), rewriting the reverse
transition as:

pe(GngI | Gfgt7S7 Gae) = ZGO q(Gngl | GngGSgt) pe(Gtogl

tgt

Gt

tgt>

S, Ge), (12)

where ¢(-) denotes the corruption distribution from the forward process. This approximation yields:

Vo logpa(GFl | Gfgta S, Gse) = Vo logpe(é’?gt ‘ Gttgn S, Gre)- 13)

tgt

A detailed derivation of this approximation is provided in Appendix [Ql Under this formulation, the
gradient of the reward term can be approximated via a reward-weighted cross-entropy loss:

Zf,eTT(Gtogtv S7 Gsrc) : <21 CE(U?a p()( ‘ Gfgtasa Gsrc)) + ZZJ CE(6?17 p(i( ‘ Gfgtas7 GSI‘C))) b (14)

0

where v¥ and ¢! ; are atoms and bonds in the final predicted molecule Gy,

’ reused as supervision
targets at each selected step ¢ € 7.

4 EXPERIMENTS

4.1 DATA CONSTRUCTION

We construct MolEdit, a large-scale and property-rich dataset specifically tailored for molecular
editing with natural language instructions. Existing datasets, such as MolOpt-Instructions Ye et al.
(2025), MuMOlnstruct Dey et al.| (2025b) and C-MuMOiInstruct Dey et al.|(2025a), are limited in
either property coverage, task diversity, or data scale. MolEdit addresses these gaps by extending
the property set to 10 diverse chemical attributes—spanning biological activity, physicochemical
characteristics, and synthetic accessibility—and defining 20 representative editing tasks (10 increases
and 10 decreases). It contains 3 million high-quality molecular pairs (967K unique), each exhibiting
substantial property shifts while maintaining high structural similarity (Tanimoto scores from 0.650 to
0.982). This provides a more realistic and comprehensive testbed for training and evaluating editing
models. Further dataset construction details are provided in Appendix [Rl The model architecture
is described in Appendix [B] and the training setup is detailed in Appendix [C] Additionally, to
further validate our approach against existing methods, we also conducted pretraining and evaluation
experiments on the C-MuMOInstruct dataset, with comprehensive results presented in Section[4.5]

4.2 EVALUATION METRICS

To comprehensively assess molecular editing performance, we use the following metrics to evaluate
chemical validity, editing accuracy under structural constraints, and overall molecular quality. Chem-
ical validity and property values are computed using RDKit Bento et al.| (2020) and Therapeutics
Data Commons (TDC) Huang et al|(2021), two widely used and trusted toolkits for molecular
analysis: (1) Validity is the proportion of generated molecules that are chemically valid, reflecting
the model’s ability to produce syntactically correct molecular structures. (2) Overall Accuracy
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Table 1: Comparison of molecular editing models across tasks. Bold indicates best performance.
Arrows (1, |) denote desired property increase or decrease.

TS>0.65 MCS>0.6 GED<4 TS>0.65 MCS>0.6 GED<4

Model Task Validity AcCar  AcCuiia  AcCai  AcCvaiia  Accai  AcCulia fieo Task Validity Accar  AcCuiia  AcCai AcCyaiia  AcCai  AcCulig fieo
BioT5 1 0 0 0.0 0.0 0066 0066 15.00 1 0 0 0.004  0.004 0 0 13.40
MolGen 1 0.024 0024 0032 0032 0018 0018 1161 1 0016 0016 0020 0020 0015 0015 1419
MoleculeSTM 0794 0096 0097 0.116 0120 0094 0112 1281 0728 0074 0086 0.098 0115 0044 0063 13.59
Reinvent4 0722 030 0152 0.106 0117 0.101 0.115 10.98 0.582 0010 0017 0.048 0063 0056 0061 2131
DrugAssist GSK3 3t 0976 0236 0242 0258 0264 0212 0222 9.42 SAL 0.988  0.537 0.544 0551 0.558 0202 0.205 9.05
Gellm?o_M 0924 0.164 0178 028 0307 0.22 0132 1032 0916 0350 0382 0352 0363 0232 0246 885
Gellm?o_L 0902  0.114 0126 0256 0260 0.170 0198 9.74 0.888 0238 0268 0262 0276 0.194 0208 9.10
Gellm*o-C_M 0908  0.144 0152 0224 0235 0214 0232 9.84 0.864 0326 0377 0401 0409 0217 0229 985
Gellm?o-C_L 0922 0.138  0.145  0.196  0.199 0.162  0.190 10.82 0.849 0218 0226 0224 0248 0.104 0.143  10.67
MolEditRL 0952 0342 0359 0364 0382 0242 0254  7.99 0988  0.628 0.636 0.694 0702 0248 0251 7.10
BioT5 1 0 0 0.048  0.048 0 0 17.21 1 0 0 0.101  0.101 0 0 16.95
MolGen 1 0017 0017 0062 0062 0037 0037 16.19 1 0072 0072 0094 0094 0063 0063 12.57
MoleculeSTM 0741 0044 0049 0.066 0080 0048 0052 11.93 0672 0.098 0105 0.129 0148 0091 0.122  11.67
Reinvent4 0701  0.143 0241 0.113 0164 0106 0109 11.70 0.581  0.173  0.197 0.189  0.197 0.105 0.109 1215
DrugAssist QED? 0980 0532 0543 0449 0456 0216 0255 9.68 Haccept) 0984 0372 0378 0328 0335 0126 0152 1233
Gellm*o_M SA| 0.882 0012 0014 0138 0143 0107 0113 1320 LogPt 0906 0224 0247 0254 0268 0207 0212 10.68
Gellm®o_L 0904 0206 0228 0213 0226 0.114 0127 976 0904  0.130 0.144 0.168 0176 0.138 0.149 11.24
Gellm*o-C_M 0924 0188  0.197 0.192 0198 0.35 0.149 1047 0905 0237 0243 0254 0259 0.169 0176 1091
Gellm*o-C_L 0.894 0209 0216 0248 0280 0.108 0123 11.09 0911 0220 0223 0248 0251 0.8 0192 10.83
MolEditRL 0974 0632 0649 0678 0715 0268 0271 7.54 0946 0316 0334 0344 0356 0224 0232 1011
BioT5S 1 0 0 0 0 0 0 24.32 1 0 0 0.064  0.064 0 0 26.24
MolGen 1 0.039 0039 0075 0.075 0012 0012 1195 1 0.033  0.033  0.061 0.061 0.031 0.031 13.75
MoleculeSTM 0.693 0038 0041 0090 0109 0076 0.081 1143 0.638 0014 0016 0032 0035 0040 0.046 14.87
Reinventd pRDz, 0522 0093 0230 0153 0163 0124 0035 1149 Lo 0638 0017 0163 0103 0112 0091 0107 1208
DrugAssist MW] 0980 0422 0431 0388 0472 0236 0242  9.89 MW‘; 0956 0230 0241 0248 0251 0.26 0129 1172
Gellm*o_M SAL 0900 0080 0089 0150 081 0112 0114 1035 oy 0906 0010 0016 0023 0029 0014 0015 1622
Gellm®o_L 0918 0108 0.118 0130 0152 0104 0109 10.19 0.886  0.042 0047 0051 0060 0032 0039 1570
Gellm*o-C_M 0916 0072 0080 0.127 0144 0.116 0118 1121 0.897 0.128 0131 0.119 0125 009 0097 1176
Gellm*o-C_L 0909  0.155 0.164 0.198 0218 0.164 0.198 10.07 0.853  0.188 0.196 0.198 0205 0.144 0161 10.38
MolEditRL 0986 0518 0.525 0.548 0.566 0.252  0.261 7.28 0.958 0430 0449 0432 0436 0228 0.232 9.79

(Accy (7)) and Valid Accuracy (Accyaig(7)) jointly measure editing success under structural simi-
larity constraints. We employ three complementary structural similarity metrics with corresponding
thresholds: Tanimoto similarity (TS > 0.65) Bajusz et al.| (2015)), Maximum Common Substructure
similarity (MCS > 0.6) |Cao et al.| (2008)), and Graph Edit Distance (GED < 4)|Gao et al.| (2010).
For each threshold 7, Acc(7) is the percentage of all outputs that satisfy both the desired property
changes and structural similarity constraints; Accy,jiq(7) restricts this to valid molecules only. This
multi-metric approach provides comprehensive evaluation of structure preservation: TS captures
fingerprint-based similarity, MCS quantifies shared molecular scaffolds, and GED measures the
minimum structural editing operations required. (3) Fréchet ChemNet Distance (FCD) Preuer et al.
(2018) quantifies the distributional distance between generated and reference molecules. Lower FCD
values indicate better alignment in chemical space, capturing both diversity and realism.

4.3 EXPERIMENTAL RESULTS

We compare MolEditRL against publicly released, large-scale—trained molecule-editing models,
evaluated in their released form; baseline details are provided in Appendix [A] Table[T]compares the
performance of various molecular editing models on single-property and multi-property tasks using
our comprehensive multi-metric evaluation framework. MolEditRL consistently achieves the highest
editing accuracy across all tasks and structural similarity metrics (TS>0.65, MCS>0.6, GED<4).
Although SELFIES-based models (BioT5, MolGen) guarantee perfect chemical validity, they fail
to maintain structural similarity, achieving zero accuracy on most metrics, which reflects a lack of
structural alignment. DrugAssist, based on SMILES and LLM fine-tuning, maintains high validity
but performs significantly worse than MolEditRL on both Accall and Accvalid. This indicates that
chemical correctness alone is insufficient for precise, property-aligned editing. Although DrugAssist
generates valid molecules, it struggles to retain scaffold similarity while optimizing properties. All
baseline models yield substantially higher FCD scores than MolEditRL, suggesting greater divergence
from real molecule distributions. In contrast, MolEditRL generates molecules that are both valid
and distributionally faithful, benefiting from structure-aware graph editing. For multi-property tasks,
we evaluate scenarios aligned with real-world drug discovery objectives, such as improving stability
and synthesis (Haccept|, LogP1), balancing drug-likeness and accessibility (QEDT, SAJ), and
managing conflicting constraints (Hacceptt, MW1, QEDJ). MolEditRL consistently outperforms all
baselines across all similarity metrics, with the convergent high performance across TS, MCS, and
GED providing comprehensive evidence of effective multi-objective optimization while preserving
molecular scaffolds. Extended results on single-property and multi-property tasks are available in
Appendix[Uland Appendix [V] respectively.
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Table 2: Generalization to unseen properties. Results on editing three held-out molecular properties
(BBBP, HIA, hERG) that are excluded from the pretraining dataset.

Accai  AcCyaia AcCai  ACCyaig Accar  AcCyaia AcCar  AcCyaiig

Model Task Validity (0.65) (0.65) (0.15) (0.15) FCD Task Validity (0.65) (0.65) 0.15) 0.15) FCD
BioT5 1.0 0.0 0.0 0.276 0276 25.7031 1.0 0.0 0.0 0452 0452 21.4869
DrugAssist 0.9719 03066 03155 0.3727 0.3835  7.4848 0.9879  0.3952 0.4 0.5423  0.549 7.9316
GeLLM?0_M BBBP| 0.9 0.17  0.1889 0.33 03667 7.8632 BBBPT  0.908 0.06  0.0661 0356 03921  9.4042
GeLLM?0_L 0.92 0.116  0.1261 0292 03174  7.8038 0.91 0254 02791 0716  0.7868  7.2142
MolEditRL 0.944 0.326  0.337 0.516  0.5347  7.0901 0.954 0409 0418 0.782  0.8075 6.7043
BioT5 1.0 0.0 0.0 0.426 0.426 15.246 1.0 0.0 0.0 0356 0356 15.7829
DrugAssist 0.982 0.344 03503  0.408  0.4155  7.0462 0976 02725 0.2793 0.4068 0.4168  9.7314
GeLLM?0O_M  HIA| 0.904 0.124  0.1372 0286 03164  8.2303 HIAT 0.904 0.348 0.385 0.662  0.7323  7.2866
GeLLM?0_L 0.894 0.134  0.1499 0382 04273 8.1844 0.922 0222 0.2408 0.554  0.6009  7.7484
MolEditRL 0.98 0.374 0.3816  0.628  0.6396  6.8726 0.986 0.446 04523 0.738  0.7459  6.7928
BioT5 1.0 0.0 0.0 0.396 0396  16.3127 1.0 0.0 0.0 0.368 0368  15.0537
DrugAssist 0.9659  0.2992  0.3098 0.4438  0.4595 7.815 0.9839 0.2294 02331 0.4064 04131  9.9241
GeLLM?0O_M hERG/ 0.91 0.162 0.178 0308 0.3385 7.9945 hERG?T 0.89 0.194 0218 0.554  0.6225  7.5913
GeLLM?0_L 0914 0.144  0.1575  0.424 0.4639  8.0866 0.922 0.062  0.0672 0.364 0.3948 11.7363
MolEditRL 0.986 0.474  0.4807 0.694 0.7039  6.0764 0.972 0.31 03189  0.59  0.6147  6.8304

Table 3: Performance comparison on C-MuMOlInstruct dataset. Bold values indicate the best
performance for each metric.

Properties Validity Total_Accuracy Valid_Accuracy

P GeLLM'O-C_.M  GeLLM'O-C_L  MOolEditRL | GeLLM'O-C_.M  GeLLM'O-C_L MOolEditRL | GeLLM*O-C_.M  GeLLM?O-C_L MolEditRL
bbbp+plogp+qed 09118 0.9076 0.952 0.2064 0.2605 0.302 0.2264 0.287 0.3172
erg+liver+qed 0.934 0.925 0.952 0.174 0.25 0.278 0.1863 0.2703 0.289
ampa+carc+erg+plogp 0.934 0.944 0.954 0.226 0.208 0.229 0.242 0.2203 0.231
bbbp+drd2+plogp+qed 0.9359 0.9518 0.956 0.2285 0.3373 0.338 0.2441 0.3544 0.341
drd2+hia+mutagenicity+qed 0.924 0.9326 0.958 0.18 0.191 0.286 0.1948 0.2048 0.294
carc+drd2+erg 0.894 0.8043 0.948 0.138 0.2174 0.266 0.1544 0.2703 0.275
ampa-+bbbp-+mutagenicity+plogp 0.9499 0.9024 0.94 0.2545 0.2358 0.202 0.2679 0.2613 0.223
bbbp+carc+mutagenicity+qed 0.9519 0.8889 0.96 0.2104 0.1818 0.247 0.2211 0.2045 0.288
bbbp+drd2+erg+qed 0.908 0.8302 0.944 0.186 0.1887 0.236 0.2048 0.2273 0.275
hia+liver+mutagenicity+plogp+qed 0.942 0.9423 0.946 0.212 0.2212 0.202 0.2251 0.2347 0.2135

4.4 GENERALIZATION TO UNSEEN PROPERTIES

We evaluate MolEditRL on three properties—BBBP, HIA, and hERG inhibition—that are entirely
absent from the MolEdit-Instruct pretraining corpus. These pharmacokinetic and safety-related
attributes allow us to assess the model’s ability to adapt to new optimization objectives not seen
during pretraining. In this setup, the pretrained model is fine-tuned via reinforcement learning using
property-specific oracles, without requiring any prior data or molecule—property pairs for these tasks.
MolEditRL only receives natural-language descriptions of the unseen objectives and relies on RL
fine-tuning over arbitrary molecules, simulating realistic deployment scenarios where new properties
emerge after pretraining. Unlike baseline approaches, no additional pretraining or dataset construction
is needed. As shown in Table[2] MolEditRL achieves the best performance across all unseen-property
tasks, with the highest editing accuracy under both strict (7 = 0.65) and relaxed (7 = 0.15) structural
similarity constraints, while maintaining high validity and the lowest FCD. These results demonstrate
that MolEditRL can efficiently generalize to entirely new property objectives through task-specific
reward oracles—without retraining the model from scratch.

4.5 EVALUATION ON C-MUMOINSTRUCT DATASET

To further assess the generality of MolEditRL, we evaluate it on the publicly available C-
MuMOiInstruct dataset Dey et al.| (2025a), a large instruction-tuning benchmark for controllable
multi-property molecular optimization. Each task specifies which properties must increase or de-
crease to target thresholds while keeping others unchanged, requiring models to satisfy complex
multi-objective constraints across 3—5 attributes simultaneously. We generate one edited molecule
per instruction and measure chemical validity, total accuracy, and valid accuracy. As shown in
Table [3] MolEditRL achieves competitive or superior performance compared to the much larger
GeLLM*O-C models. It obtains the highest validity in 8 of 10 tasks and outperforms both base-
lines in 7 tasks in terms of total accuracy, with clear gains on challenging combinations such as
“drd2+hia+mutagenicity+qed” and “carc+drd2+erg.” Although larger models show slight advantages
on a few tasks, the differences remain small. These results demonstrate that MolEditRL can match
or exceed the performance of models with over 50x more parameters (7B+ vs. 125M), highlight-
ing the effectiveness of our structure-aware diffusion and reinforcement learning framework for
multi-property molecular optimization.
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4.6 MULTI-PROPERTY EDITING PERFORMANCE

To assess model robustness under increasing task complexity, we evaluate performance on molecular
editing tasks involving 1, 2, or 3 simultaneous property changes. For each setting, 10 combinations
of editing objectives are randomly sampled, and the results are averaged. Figure [3(a) shows mean
chemical validity, while (b) presents mean editing accuracy using TS similarity threshold of 0.15.
As expected, accuracy drops for all models as the number of target properties increases, reflecting
the challenge of jointly satisfying multiple constraints while preserving molecular structure. Some
models maintain high validity but suffer from very low accuracy, indicating that generating chemically
plausible molecules alone is insufficient for precise, property-aligned edits. MolEditRL consistently
outperforms all baselines across all settings. In the most difficult 3-property scenario, it achieves an
average accuracy of 0.363, more than double the second-best baseline (DrugAssist, 0.165). These
results demonstrate the effectiveness of our structure-aware diffusion framework and reinforcement
learning fine-tuning in enabling scalable and precise instruction-based molecular editing.
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Figure 3: Performance by number of edited properties.

4.7 EFFECT OF FINE-TUNING STRATEGIES AND KLL REGULARIZATION
1.00
0.8
g 0.75 MolEditRL
2 >0.6 —e— MolEditRL w/o KL
§050 % —s— GDPO w/ KL
£ = —e— GDPO
e 0.25 2 04 +— DDPO w/ KL
' W Validity B AcCyaia(0.65) B AcCyig(0.15) —— DDPO
0,00 LA 21(0.65) @ AcC,(0.15) 0.2 N —
\’('eﬂa pk(exza\“\f’\ 1000 00?0 w® Ggg\c’) “'Y\\'wlc’v‘ g 0.0 s
WO 200 400 600 800
Model Fine-tuning Step
(a) Accuracy across models. (b) Training stability.

Figure 4: Impact of step size, fine-tuning strategy, and KL regularization.

We conduct ablation studies on denoising step size, RL fine-tuning strategies, and KL regularization
(Figure [d). Results are averaged over 20 single-property editing tasks. Subfigure (a) shows accuracy
and validity; (b) shows training stability. "Pretrain(z)" denotes models without RL fine-tuning,
where 2 € {50,25,10} is the denoising step size. Smaller = improves accuracy but increases
computational cost. We use t; = 50 as the policy update stride for efficiency. We compare two
RL strategies: DDPO applies REINFORCE independently at each denoising step, while GDPO
leverages xp-parameterization to optimize only the final output. DDPO performs joint fine-tuning
across all tasks but suffers from instability since intermediate molecules are chemically meaningless.
GDPO improves stability but requires separate models for each task, limiting scalability. Neither
method enforces structural constraints during fine-tuning. MolEditRL introduces KL-regularized
optimization over the entire diffusion process, enabling stable, structure-aware fine-tuning across
diverse tasks. It consistently achieves higher accuracy and validity than both alternatives. Figure @(b)
shows DDPO exhibits rapid validity degradation regardless of KL regularization, indicating inherent
instability in step-wise optimization. GDPO shows improved stability with KL regularization but
plateaus below MolEditRL’s performance due to task-specific limitations. MolEditRL maintains
consistently high accuracy and validity throughout training, with KL regularization further enhancing
stability without compromising performance.
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Figure 5: Performance comparison under structural constraints.
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Figure 6: Visualization of edits. Red highlights indicate structural changes from the source.

4.8 STRUCTURE FIDELITY AND DISTRIBUTIONAL QUALITY

Figure [5(a) shows Accyy across different Tanimoto similarity thresholds. MolEditRL consistently
achieves the highest accuracy at all thresholds, demonstrating its ability to generate molecules that
satisfy desired property changes while preserving structural similarity. In contrast, LLM-based
baselines such as BioT5 and MolGen perform substantially worse, especially under stricter similarity
constraints. Figure[5{b) reports Fréchet ChemNet Distance (FCD) at a fixed threshold of 0.15. Lower
FCD indicates better alignment between the distributions of generated and real molecules. Consistent
with the accuracy results in (a), MolEditRL achieves the lowest FCD, highlighting its ability to
produce chemically realistic and distributionally faithful molecules.

4.9 QUALITATIVE ANALYSIS OF MOLECULAR EDITING

We visualize successful molecular modifications from four representative models across 20 single-
property tasks using the same source molecule. As shown in Figure[6] MolEditRL achieves the highest
task success rate and is the only model that consistently preserves the core scaffold across all edits,
demonstrating strong structural controllability. In contrast, BioT5 and DrugAssist frequently produce
structurally divergent molecules with scaffold disruptions, while GeLLMO_L maintains partial
alignment but still alters major structural components in several cases. These qualitative observations
align with our quantitative results and highlight the effectiveness of MolEditRL’s structure-aware
diffusion and full-trajectory RL fine-tuning. Additional visualizations are provided in Appendix[Y]

5 CONCLUSION

We introduce MolEditRL, a novel framework that integrates discrete graph diffusion with reinforce-
ment learning to enable precise, structure-preserving molecular edits. It achieves state-of-the-art
performance on the MolEdit-Instruct benchmark while using significantly fewer parameters.

10
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APPENDIX

This appendix provides extended technical and experimental details that support the findings in the
main paper. It is organized as follows:

(1) Appendix E Baseline methods (BioT5, DrugAssist, GeLLMO, MolGen, REINVENT 4,
MoleculeSTM).

2) Appendix@ Model architecture (RoBERTa, embeddings, diffusion modules).
(3) Appendix [C} Training setup (hyperparameters, optimization, hardware).
(4) Appendix [D} KL regularization weight ablation (5 values).

(5) Appendix [Ef Policy-update stride ablation (update frequency).

(6) Appendix [F} Top-k sampling ablation (sampling diversity).

(7) Appendix Q Partial-success reward ablation (reward values).

(8) Appendix [Ht Structure-aware attention ablation (graph-level constraints).
(9) Appendix [[} Pretrain vs. RL fine-tuning comparison.

(10) Appendix I Chemical realism metrics vs. RL baselines (synthesizability, drug-likeness).
(11) Appendix [K} Prompt sensitivity analysis (instruction robustness).

(12) Appendix [} Complex localized editing (fine-grained operations).

(13) Appendix [M} Noisy oracle robustness (estimation errors).

(14) Appendix E Oracle-query efficiency (limited oracle budgets).

(15) Appendix |Of Inference efficiency (denoising steps vs. runtime).

(16) Appendix [P} Computational efficiency (accuracy vs. cost).

(17) Appendix |Q} Gradient derivation (x(-parameterization).

(18) Appendix [R} Dataset statistics (property ranges, prompts).

(19) Appendix S} Limitations and future work.

(20) Appendix [T} LLM usage statement.

(21) Appendix [U} Extended single-property results (10 tasks).

(22) Appendix |V} Extended multi-property results (2-4 constraints).

(23) Appendix m Qualitative visualizations (structural modifications).

A BASELINES

(1) BioT5|Pei et al.| (2023)) leverages SELFIES and a T5-style architecture for cross-modal learning

between molecules and text. (2) DrugAssist|Ye et al.|(2025) is a Llama2-7B-based dialogue model
for interactive molecule optimization. (3) GeLLM>O Dey et al.| (2025b) uses instruction tuning
on Mistral and Llama3 models for multi-property optimization; we evaluate both GeLLM30O_M
and GeLLM3O_L. (4) MolGen |[Fang et al.| (2024) is a domain-agnostic language model trained
with chemical feedback to reduce invalid generations. (5) REINVENT 4 |Loeffler et al.| (2024)
integrates reinforcement learning, transfer learning, and curriculum learning for molecular design
using RNN and Transformer backbones. (6) MoleculeSTM |[Liu et al.[(2023) is a multi-modal
molecule structure—text model trained on large structure—text pairs to enable zero-shot text-guided
retrieval and editing of molecules. (7) GeLLM*O-C|Dey et al.| (20254l is an instruction-tuned LLM
on the C-MuMOiInstruct dataset, built on Mistral-7B and Llama3 models.
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B MODEL ARCHITECTURE

Table (] details the structure-aware diffusion model used in MolEditRL. The architecture includes
token and edge embeddings, a RoOBERTa-based transformer with graph-aware attention, a discrete
diffusion module for masked denoising, and a reinforcement learning component guided by property-
based rewards. During inference, we employ top-k sampling and apply policy updates at fixed stride

intervals to improve efficiency.
Table 4: Technical specifications of the structure-aware diffusion model in MolEditRL.

Module Types Dimensions Structures

Input Layer - Source Tokens [batch, seq_len] — Concat
Embedding Vocab Size = 51,933 TokenEmbedding [seq_len, 768] + PositionEmbedding
[seq_len, 768]
Edge Embedding Edge Types = 6 EdgeEmbedding [nodes, nodes, 768]
Input [batch, seq_len, 768]

RoBERTa 12 Layers J Self-Attention (12 x 64) — LayerNorm + Residual
J FEN (768—3072—768) — LayerNorm + Residual

Forward: Input — Masked Tokens
Diffusion 2000 steps J Reverse (stride = 50)
J Denoising Network

seq_len x 51,933 AtomLogits [batch, seq_len, 51933]
nodes x nodes x 6 EdgeLogits [batch, nodes, nodes, 6]

Prediction

Atom Categorical Sampling
Edge Structure Sampling

Reward Calculation (0, 0.2, 1.0)
Advantage Function — Loss Weighting

Sampling Top-k = 15

Property-Guided -

C TRAINING AND HYPERPARAMETER SETUP

We train MolEditRL on a multi-GPU cluster using PyTorch with Distributed Data Parallel (DDP). The
model is initialized from a RoOBERTa-base encoder with 12 layers, 12 heads, and hidden size 768. The
tokenizer is extended to 51,933 tokens to accommodate molecular and instruction-specific vocabulary,
and the embedding layer is resized accordingly. For optimization, we use the AdamW optimizer with
a learning rate of 5e-5, weight decay of 0.01, and a linear warm-up scheduler over 10,000 steps. Mixed
precision (FP16) is enabled to reduce memory usage and accelerate training. During pretraining, the
model is trained for 100 epochs with a per-GPU batch size of 16. A discrete diffusion schedule with
2,000 denoising steps is used, following a mutual noise schedule 5, = 1/(T — t) where T' = 2000.
We apply word- and edge-level frequency weighting with sinusoidal modulation (A = 0.3) to guide
denoising dynamics. The edge vocabulary includes 6 bond types. During reinforcement learning
fine-tuning, rewards are computed using property oracles (e.g., RDKit, TDC). A key advantage
of MolEditRL is its remarkable oracle efficiency. The pretrained model achieves strong property
optimization performance even without any oracle calls during inference, already outperforming
most state-of-the-art baselines as demonstrated in our ablation studies. This efficiency stems from
our editing-based formulation, which performs structure-constrained, localized modifications starting
from known molecules. This approach drastically reduces the chemical search space and required
oracle queries by orders of magnitude compared to de novo generation methods. Our empirical results
confirm this efficiency under strict oracle budgets, where MolEditRL’s performance quickly saturates
with most improvements achieved within just 6,400 oracle queries during the standard 400-step
fine-tuning protocol. We use top-k sampling with k£ = 15 and a temperature of 1.0 during evaluation.
To improve efficiency, the policy is updated every t; = 50 steps, resulting in 40 updates over the
2000-step diffusion process. For consistency, inference also runs for 40 denoising steps, starting
from a fully masked graph and progressively reconstructing the final molecule. All experiments
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were conducted on a single NVIDIA A6000 GPU using PyTorch and DGL. Pretraining on the
MolEdit-Instruct dataset (3M examples) took approximately 100 hours. RL fine-tuning for each task
required 1-2 hours.

D ABLATION STUDY ON KL REGULARIZATION WEIGHT

Table[3]reports an ablation study on the KL-regularization weight 3, evaluating models trained with
B €{0,0.1,0.2,0.3,0.4,0.5} under a fixed fine-tuning budget of 500 steps. The results highlight
the importance of balancing structural preservation and reward-driven optimization. When 8 = 0,
the policy is no longer anchored to the pretrained diffusion prior, resulting in unstable behavior and
overly aggressive edits that harm structural similarity. Conversely, larger 5 values impose excessive
regularization, restricting the policy’s ability to improve the target property and increasing FCD.
Across both LogP1 and SA| tasks, moderate regularization consistently yields the best trade-off
between validity, similarity-constrained accuracy, and distributional quality. Based on these trends,
we adopt 5 = 0.1 as the default setting in all experiments, as it provides stable structure-preserving
updates while enabling effective property optimization.
Table 5: Ablation study on KL regularization weight 3

Task B Validity Accy (TS>0.65) Acca (MCS>0.6) Accy (GED<4) FCDJ

LogPt 0.0 0.986 0.278 0.376 0.186 9.142
0.1 0976 0.462 0.498 0.214 7.812
0.2 0.920 0.416 0.458 0.196 9.762
03 0.884 0.386 0414 0.206 9.649
04  0.840 0.350 0.402 0.210 10.812
0.5 0.842 0.356 0.380 0.194 10.700

SA | 0.0 0982 0.602 0.700 0.208 7.295
0.1  0.988 0.608 0.680 0.258 6.735
0.2 0942 0.576 0.582 0.186 8.503
0.3 0.956 0.574 0.576 0.192 8.679
04 0928 0.562 0.558 0.186 8.900
0.5 00918 0.544 0.548 0.194 9.100

E ABLATION STUDY ON POLICY-UPDATE STRIDE

Table [6] presents a sensitivity analysis of the policy-update stride, comparing stride values in {1, 2, 3,
4, 5} under an identical fine-tuning budget of 500 steps. Each table entry reports Validity / Acci(TS
> 0.65) / FCD, enabling joint assessment of chemical correctness, structural-similarity—constrained
accuracy, and distributional fidelity. The results show that stride = 1 consistently achieves the best
performance across both LogP{ and SA| tasks, providing the highest accuracy and lowest FCD
throughout the training trajectory. Increasing the stride reduces the frequency of policy updates,
which slows optimization progress and leads to noticeable degradation in both property alignment
and structural quality. These findings demonstrate that frequent policy updates are essential for stable
and effective reinforcement learning in the discrete diffusion setting, and we therefore adopt stride =
1 as the default configuration for all experiments.

F ABLATION STUDY ON TOP-K SAMPLING
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Table 6: Sensitivity analysis of policy-update stride

Task Step Stride=1 Stride=2 Stride=3 Stride=4 Stride=5

LogPt 99 0.910/0.436/8.425  0.816/0.326/11.164  0.802/0.334/11.037  0.776/0.332/10.998  0.780/0.290/11.597
199 0.933/0.442/8.076  0.842/0.318/11.159  0.834/0.358/10.430  0.796/0.346/11.031  0.824/0.344/10.494
299 0.958/0.438/8.294  0.860/0.370/10.569  0.866/0.368/9.431  0.838/0.372/9.901  0.828/0.348/10.499
399 0.956/0.456/7.965  0.914/0.364/9.844  0.862/0.356/10.451  0.866/0.370/9.950  0.860/0.358/10.736
499 0.976/0.462/7.812  0.938/0.408/9.095  0.898/0.382/9.884  0.866/0.372/9.803  0.888/0.366/10.348

SA | 99 0.984/0.587/7.466  0.848/0.526/9.482  0.844/0.516/9.466  0.780/0.430/11.379  0.788/0.436/10.665
199 0.982/0.580/7.510  0.872/0.536/9.378  0.876/0.522/9.474  0.818/0.456/10.692  0.834/0.486/10.459
299  0.978/0.591/7.322  0.916/0.556/8.818  0.904/0.550/9.191  0.862/0.480/10.197  0.896/0.548/8.881
399  0.971/0.599/7.251  0.946/0.598/8.333  0.910/0.558/8.757  0.904/0.504/9.925  0.904/0.558/8.636
499  0.988/0.608/6.735  0.956/0.592/8.202  0.932/0.512/9.737  0.924/0.530/9.523  0.920/0.574/8.904

Table[7]analyzes the effect of the top-k sampling parameter by evaluating settings from k = 5 to k
= 25 under otherwise identical inference conditions. Across both the LogP1 and SA| tasks, model
performance remains largely stable, with only mild fluctuations in validity, structural-similarity
accuracy, and FCD. Smaller top-k values can restrict sampling diversity and slightly reduce structural
flexibility, while excessively large values introduce unnecessary stochasticity that may weaken
property alignment. Overall, moderate top-k values achieve the best balance between diversity and
reliability. Based on the observed trends, we adopt top-k = 15 as the default sampling configuration
in all experiments.
Table 7: Sensitivity analysis of top-k sampling parameter

Task Top-k  Validity Accy; (TS>0.65) Accy MCS>0.6) Acc,; (GED<4) FCD|
LogP1 5 0.956 0.460 0.462 0.208 7.924
10 0.950 0.458 0.438 0.202 7.977
15 0.976 0.462 0.498 0.214 7.812
20 0.946 0.448 0.490 0.216 8.110
25 0.940 0.456 0.492 0.224 8.082
SA | 5 0.982 0.600 0.642 0.232 7.043
10 0.990 0.578 0.564 0.202 7.192
15 0.988 0.608 0.690 0.258 6.735
20 0.980 0.638 0.684 0.252 6.657
25 0.990 0.616 0.671 0.242 6.921

G ABLATION STUDY ON PARTIAL-SUCCESS REWARD

Table [§] presents an ablation study on the partial-success reward, evaluated using values in {0, 0.2,
0.4, 0.6, 0.8, 1.0}. This reward is assigned to molecules that are chemically valid but fail to satisfy
the editing objective, allowing the model to differentiate between invalid outputs and structurally
plausible but suboptimal edits. The results show that removing this reward entirely (0.0) leads to
unstable optimization and decreased validity, as the model receives no guidance for valid-but-incorrect
molecules. Conversely, overly large partial-success rewards (> 0.6) diminish the incentive to complete
the desired edit, resulting in lower similarity-constrained accuracy and higher FCD. Moderate values
in the range 0.2-0.4 provide the most effective balance between stability, structural fidelity, and
property optimization. Based on these observations, we adopt 0.2 as the default partial-success reward
in all experiments.

H ABLATION STUDY ON STRUCTURE-AWARE ATTENTION MECHANISM
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Table 8: Sensitivity analysis of partial-success reward values

Task Partial Reward  Validity =~ Accyy (TS>0.65)  Accyy MCS>0.6)  Accyy (GED<4) FCDJ

LogPt 0.0 0.952 0.484 0.508 0.202 7.906
0.2 0.976 0.462 0.498 0.214 7.812
0.4 0.962 0.464 0.528 0.218 7.859
0.6 0.958 0.480 0.504 0.202 8.234
0.8 0.964 0.434 0.468 0.208 8.890
1.0 0.964 0.402 0.438 0.216 9.458
SA | 0.0 0.976 0.600 0.634 0.234 7.110
0.2 0.988 0.608 0.680 0.258 6.735
0.4 0.984 0.626 0.656 0.220 7.142
0.6 0.980 0.542 0.582 0.208 7.773
0.8 0.984 0.590 0.594 0.212 7.998
1.0 0.984 0.530 0.556 0.196 8.530

Table 0] presents an ablation study evaluating the structure-aware attention bias during both the
pretraining and fine-tuning stages. Including the bias during pretraining yields modest gains in
structural-similarity accuracy and FCD, reflecting its role as a helpful but not dominant inductive
prior when the model is learning general molecular distributions. However, the benefit becomes
significantly more pronounced after reinforcement learning fine-tuning. Models equipped with the
structure-aware bias during fine-tuning achieve substantially higher accuracy across all similarity-
constrained metrics and markedly lower FCD for both LogP{ and SA| tasks. These results indicate
that while structural bias provides useful guidance during pretraining, its primary impact emerges
during RL optimization, where explicit graph-level constraints help the model perform chemically
valid, topology-preserving edits and avoid drifting away from realistic molecular structures.

Table 9: Ablation Study on Structure-Aware Attention Mechanism Across Pretraining and Fine-tuning
Stages

Task Setting Validity  Accy; (TS>0.65)  Accy; (MCS>0.6)  Accy (GED<4) FCDJ
LogP 1 Pretrain w/o Structure Bias 0.744 0.176 0.208 0.182 13.714
Pretrain w/ Structure Bias 0.758 0.316 0.232 0.196 11.896
Finetune w/o Structure Bias ~ 0.890 0.212 0.266 0.213 12.486
Finetune w/ Structure Bias 0.976 0.462 0.498 0.218 7.812
SA | Pretrain w/o Structure Bias 0.836 0.196 0.224 0.128 12.364
Pretrain w/ Structure Bias 0.842 0.213 0.256 0.195 10.522
Finetune w/o Structure Bias ~ 0.904 0.412 0.468 0.176 8.452
Finetune w/ Structure Bias 0.988 0.608 0.680 0.258 6.735

I COMPARISON OF PRETRAINED DIFFUSION AND RL FINE-TUNED MODELS

Table [T0] presents a detailed comparison between the pretrained diffusion model and the RL fine-
tuned version of MolEditRL across five representative editing tasks. The results show that the
diffusion model alone already achieves strong structural fidelity, as reflected by the consistently high
MACCS_FTS, RDK_FTS, and Morgan_FTS scores, indicating that pretraining successfully learns a
stable and realistic structural prior. After RL fine-tuning, these structural similarity metrics remain
largely unchanged, demonstrating that the KL-regularized optimization preserves the learned molecu-
lar topology instead of distorting it. In contrast, RL fine-tuning brings substantial improvements in
validity and property-aligned accuracy, and consistently reduces FCD across all tasks, confirming that
the edited molecular distribution becomes closer to real molecules while more effectively satisfying
target properties. Overall, Table [I0[highlights the complementary nature of the two stages: diffusion
pretraining establishes a reliable structure-aware foundation, and RL fine-tuning delivers targeted
property optimization without compromising structural integrity.
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Table 10: Performance comparison between pretrained diffusion model and RL fine-tuned model

Task Validity ~ Accai(TS>0.65)  Accyqia(TS>0.65) MACCS_FTS RDK_FTS Morgan_FTS FCD/|
QED?T Pretrain 0.812 0.460 0.567 0.832 0.736 0.684 10.518
Finetune  0.974 0.604 0.620 0.834 0.735 0.667 7.678
Haccept?  Pretrain 0.750 0.266 0.355 0.789 0.688 0.609 9.489
Finetune  0.968 0.484 0.500 0.798 0.691 0.623 7.316
LogP? Pretrain 0.758 0.316 0.417 0.776 0.672 0.643 11.896
Finetune  0.964 0.578 0.599 0.795 0.682 0.620 7.012
DRD21 Pretrain 0.850 0.220 0.259 0.796 0.698 0.637 11.194
Finetune  0.966 0.308 0.319 0.791 0.677 0.629 9.389
MW7 Pretrain 0.774 0.142 0.184 0.783 0.651 0.562 10.890
Finetune  0.960 0.404 0.421 0.805 0.673 0.576 6.588

J COMPARISON WITH RL-BASED METHODS ON CHEMICAL REALISM METRICS

Figure [7] provides a comprehensive evaluation of the distributional shifts in key physicochemical
properties between the source molecules (Input) and the molecules optimized by MolEditRL (Output).
The green shaded regions delineate the ideal ranges for drug-like compounds according to medicinal
chemistry standards (e.g., Lipinski’s Rule of Five). The results demonstrate that MolEditRL does not
merely preserve the validity of the source molecules but actively optimizes their pharmacological
quality. Specifically, the Quantitative Estimate of Drug-likeness (QED) shows a substantial improve-
ment, with the mean value increasing from 0.44 to 0.59, shifting the distribution significantly into the
highly desirable range (> 0.5). Similarly, the Synthetic Accessibility (SA) score decreases from 3.48
to 3.16, indicating that the generated molecules are chemically easier to synthesize. Furthermore,
fundamental properties such as Molecular Weight (MW) and LogP shift towards more favorable,
central values within the ideal windows, avoiding the property drift often observed in generative
models. Most notably, the compliance ratio with Lipinski’s Rule of 5 improves dramatically from
52.7% in the source molecules to 84.7% in the output, underscoring MolEditRL’s ability to generate

structures that are not only target-optimized but also highly realistic, stable, and developable.
Stability and Synthesizability Analysis
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Figure 7: Stability and Synthesizability Analysis. Comparison of property distributions between
source molecules (Input) and MolEditRL-generated outputs (Output). The green shaded areas
represent ideal value ranges for drug-like candidates.
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Table [TT|compares MolEditRL with three representative RL-based molecular optimization frame-
works—GCPN (2018)), MoIDQN [Zhou et al.| (2019), and REINVENT 4
(2024)—under a strict oracle budget of 5,000 queries on the HIA? task, which is fully held out from
pretraining. Across all chemical realism metrics, including synthesizability, drug-likeness, and Lipin-
ski compliance, MolEditRL significantly outperforms existing RL methods and even improves beyond
the source molecules themselves. While traditional RL approaches tend to suffer from distributional
drift and generate chemically implausible structures when optimizing unseen properties, MolEditRL
maintains high validity, low FCD, and superior realism due to its KL-regularized objective. By
anchoring policy updates to the pretrained diffusion prior, the model avoids degenerate exploration
and consistently produces realistic, synthesizable, and pharmacologically relevant molecules.
Table 11: Comparison with RL-based methods on chemical realism metrics

Method Validity  Accyy (TS>0.65) FCDJ]  Is_Synthesizable Is_Druglike Lipinski_ROS5
Source Molecule 1.000 - - 0.278 0.376 0.527
GCPN 0.858 0.000 20.260 0.047 0.153 0.205
MolDQN 1.000 0.003 13.152 0.092 0.178 0.246
Reinvent4 0.835 0.124 13.786 0.278 0.370 0.428
MolEditRL 0.958 0.466 7.964 0.460 0.681 0.847

K PROMPT SENSITIVITY ANALYSIS

Table [12] evaluates the prompt robustness of MolEditRL on the SA| task by testing five distinct
paraphrased natural-language instructions. Although Table [I9] presents only one representative
template, the MolEdit-Instruct pretraining corpus contains many alternative linguistic formulations
for each editing objective, exposing the model to broad variability in syntax, vocabulary, and semantic
emphasis. To explicitly assess the effect of such variation, we evaluate the following five prompts: (1)
P1: “Reduce the synthetic accessibility of molecule SMILE.” (2) P2: “Make this molecule SMILE
easier to synthesize.” (3) P3: “Adjust the structure of SMILE to lower its synthetic complexity.” (4)
P4: “Modify SMILE so that its overall synthetic accessibility score decreases.” (5) P5: “Transform
the molecule SMILE into a form that is simpler to assemble synthetically.” The results show that
MolEditRL sustains consistently high validity, structural similarity accuracy, and competitive FCD
scores across all prompt variants, with only minor performance fluctuations. This indicates that the
model does not rely on any specific phrasing pattern; instead, it benefits from the diverse paraphrasing
present during pretraining, enabling a prompt-invariant and semantically robust understanding of user

instructions. L . . . . . .
Table 12: Prompt sensitivity analysis on SA] task with diverse instruction formulations

Prompt Validity Accy(TS>0.65) Acc,;(MCS>0.6) Acc,(GED<4) FCD|

Pl 0.986 0.636 0.696 0.244 7.107
P2 0.974 0.604 0.618 0.253 7.307
P3 0.979 0.652 0.636 0.224 7.157
P4 0.984 0.629 0.614 0.244 7.052
P5 0.980 0.646 0.642 0.256 7.339

L COMPLEX LOCALIZED EDITING INSTRUCTIONS

To assess the flexibility of MolEditRL in interpreting complex, localized natural-language editing
instructions, we fine-tuned the pretrained model for 500 steps using five structurally explicit prompts.
Unlike simple property-based commands, these instructions specify concrete chemical operations such
as functional group removal, fragment addition, and scaffold simplification. The five prompts used
are: (1) P1: “Remove a CO5H group from SMILE and decrease its H-bond donor characteristics.” (2)
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P2: “Add an additional amide fragment to SMILE to increase its molecular weight.” (3) P3: “Remove
an aromatic ring from SMILE to lower its structural complexity and improve synthetic accessibility.”
(4) P4: “Reduce the synthetic accessibility of molecule SMILE.” (5) P5: “Eliminate a CONH unit
from SMILE to make the scaffold easier to assemble.” Table [[3|reports the results using two key
metrics: FG Editing Success, which evaluates whether the required functional group operation is
correctly executed, and Acc, (TS > 0.65), which additionally requires structural similarity and
successful property alignment. Across all prompts, MolEditRL consistently achieves higher validity,
substantially better functional-group editing accuracy, and more realistic molecular outputs than
Reinvent4, while also maintaining strong synthesizability, drug-likeness, and Lipinski compliance.
These findings demonstrate that MolEditRL can reliably interpret fine-grained chemical instructions
and execute highly localized edits—capabilities that cannot be captured using scalar property targets
alone. This highlights natural language as a powerful and expressive interface for precise, interpretable
molecular manipulation.

Table 13: Performance on complex localized editing instructions demonstrating natural language
flexibility

Prompt  Model Validity ~ FG Editing Success  Accy(TS>0.65) FCD  MACCS_FTS Is_Synthesizable Is_Druglike Lipinski_ROS5
Source Molecule 1.000 - - - - 0.278 0.376 0.520
Pl Reinvent4 0.656 0.252 0.078 15.77 0.428 0.157 0.267 0.297
MolEditRL 0.970 0.810 0.572 7.01 0.789 0.396 0.655 0.787
P2 Reinvent4 0.512 0.328 0.102 14.58 0.387 0.185 0.252 0.389
MolEditRL 0.968 0.798 0.360 8.98 0.785 0.332 0.574 0.884
P3 Reinvent4 0.606 0.320 0.112 13.28 0.385 0.157 0.188 0.246
MolEditRL 0.994 0.744 0.358 7.98 0.784 0.328 0.505 0.874
P4 Reinvent4 0.632 0.340 0.126 12.86 0.379 0.104 0.185 0.283
MolEditRL 0.984 0.872 0.370 7.93 0.763 0.392 0.591 0.839
P5 Reinvent4 0.642 0.234 0.128 12.32 0.365 0.160 0.179 0.204
MolEditRL 0.978 0.752 0.310 7.60 0.778 0.327 0.503 0.712

M ROBUSTNESS TO NOISY ORACLE

Table[[4]evaluates the robustness of MolEditRL when the optimization oracle is imperfect or noisy—a
realistic scenario in molecular design where property predictors often contain estimation errors. To
simulate such conditions, we inject controlled label noise by randomly flipping oracle outputs at
varying rates from O to 0.2. Across both the LogP{ and SA| tasks, MolEditRL maintains high
validity and stable editing accuracy, with only marginal fluctuations even under the highest noise
level. Importantly, structural similarity metrics and FCD remain largely unaffected, indicating that the
model continues to operate within a realistic chemical distribution despite corrupted reward signals.
These results show that MolEditRL does not rely on a perfect or deterministic oracle; instead, its
KL-regularized optimization anchors policy updates to the pretrained diffusion prior, preventing
overreaction to noisy rewards and ensuring consistent, reliable editing behavior.
Table 14: Robustness to Noisy Oracle Across Different Noise Levels

Task Noise Level Validity Accy (TS>0.65)  Accy (MCS>0.6)  Accy (GED<4) FCDJ

LogP1 0.0 0.976 0.462 0.498 0.214 7.812
0.05 0.920 0.457 0.508 0.220 7.529
0.1 0.944 0.460 0.514 0.219 7.582
0.15 0.924 0.454 0.488 0.216 7.925
0.2 0.914 0.448 0.472 0.212 8.215
SA | 0.0 0.988 0.608 0.680 0.258 6.735
0.05 0.980 0.618 0.658 0.236 7.174
0.1 0.986 0.612 0.668 0.236 7.146
0.15 0.984 0.618 0.672 0.238 7.055
0.2 0.980 0.592 0.666 0.242 7.172
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N ORACLE-QUERY EFFICIENCY COMPARISON

Table [T3] presents a detailed comparison of MolEditRL with three classical RL-based molecular
optimization frameworks—GCPN, MolDQN, and REINVENT4—under progressively increasing
oracle-query budgets from 1,000 to 5,000. We evaluate the HIA? property, which is entirely absent
from pretraining, making it an ideal benchmark for understanding real-world oracle efficiency when
optimizing previously unseen molecular attributes. Across all query budgets, MolEditRL consistently
achieves higher editing accuracy, lower FCD, and competitive validity compared to baseline RL
methods. This superior efficiency stems from the strong structure-aware prior established during
discrete diffusion pretraining, allowing MolEditRL to begin reinforcement learning from an already
realistic and structurally faithful distribution. In contrast, conventional RL approaches must rely on
uninformed trial-and-error exploration, requiring a large number of oracle interactions to discover
viable editing strategies. The consistent gains observed across all budgets highlight MolEditRL’s
ability to perform effective, low-cost molecular editing even when oracle access is limited.
Table 15: Oracle-query efficiency comparison on HIAT task across different oracle budgets

Oracle Queries Method Validity  Accyy (TS>0.65)  Accyy (MCS>0.6)  Accy (GED<4) FCDJ

1000 GCPN 0.842 0.000 0.000 0.026 22.140
MolDQN 1.000 0.002 0.138 0.086 15.598
Reinvent4 0.598 0.092 0.148 0.044 14.682
MolEditRL  0.864 0.388 0.408 0.202 9.686
2000 GCPN 0.882 0.000 0.000 0.022 21.175
MolDQN 1.000 0.000 0.122 0.026 14.857
Reinvent4 0.608 0.104 0.167 0.052 14.236
MolEditRL  0.898 0.396 0.448 0.218 9.489
3000 GCPN 0.878 0.000 0.000 0.016 21.324
MolDQN 1.000 0.002 0.156 0.036 14.828
Reinvent4 0.711 0.114 0.187 0.080 13.997
MolEditRL  0.902 0.430 0.472 0.216 8.609
4000 GCPN 0.850 0.000 0.000 0.022 20.672
MolDQN 1.000 0.002 0.156 0.032 13.362
Reinvent4 0.769 0.118 0.192 0.105 13.868
MolEditRL  0.928 0.448 0.488 0.214 8.387
5000 GCPN 0.858 0.000 0.000 0.029 20.260
MolDQN 1.000 0.003 0.142 0.045 13.152
Reinvent4 0.835 0.124 0.196 0.139 13.786
MolEditRL  0.958 0.466 0.490 0.226 7.964

O INFERENCE EFFICIENCY COMPARISON

Table[T6] compares inference efficiency across baseline models and MolEditRL under varying skip-
step configurations during the reverse diffusion process. Here, step refers to the stride of the
denoising trajectory: with a total of 2000 diffusion steps, larger stride values (e.g., step = 500)
correspond to fewer denoising updates, while smaller stride values (e.g., step = 50) yield finer-grained
refinement with more update iterations. The results show that MolEditRL maintains strong accuracy
and favorable distributional fidelity even under coarse schedules, achieving lower FCD than large
LLM-based baselines while preserving fast per-sample inference time on an A6000 GPU. As the
stride decreases, performance gradually improves with moderate increases in computation. Overall,
MolEditRL demonstrates robust behavior under step skipping, delivering high-quality generations
across a wide range of schedules. Based on the balance between accuracy and runtime, we adopt step
= 50 as the default configuration in the main experiments.
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Table 16: Inference efficiency comparison across baselines and different denoising step settings

Method Validity ~ Accy(TS>0.65)  Acc,j(MCS>0.6) Acc,i(GED<4) FCDJ]  Time/Sample (s)
BioT5 1.000 0.000 0.004 0.000 13.4000 0.7550
DrugAssist 0.988 0.537 0.551 0.202 9.0500 1.5221
Gellm*o-C_L 0.849 0.218 0.224 0.104 10.6700 4.5600
MOolEditRL (step=500)  0.900 0.536 0.590 0.220 7.9273 1.0608
(step=400) 0.924 0.568 0.628 0.240 7.5318 1.0684
(step=250) 0.952 0.588 0.644 0.234 7.3480 1.0954
(step=200) 0.956 0.576 0.638 0.234 7.4078 1.1135
(step=100) 0.972 0.590 0.668 0.232 7.1624 1.2039
(step=50) 0.988 0.608 0.680 0.258 6.7350 1.3857
(step=40) 0.979 0.624 0.682 0.234 6.5894 1.4778
(step=20) 0.988 0.628 0.686 0.246 6.4828 1.9286
(step=10) 0.984 0.636 0.690 0.238 6.2055 2.8393

P COMPUTATIONAL EFFICIENCY COMPARISON

Table [T7|compares MolEditRL with a range of RL-based molecular editing approaches in terms of
both editing performance and computational efficiency on the HIAT task, which is fully excluded from
pretraining. Under a fixed 5,000-oracle budget, traditional RL methods such as GCPN, MolDQN,
and REINVENT4 fail to achieve meaningful accuracy due to their reliance on costly trial-and-
error exploration. In contrast, MolEditRL benefits from its pretrained structure-aware diffusion
prior, enabling effective fine-tuning with far fewer oracle queries and delivering substantially higher
similarity-constrained accuracy and lower FCD. Although MolEditRL incurs a one-time fine-tuning
cost, this investment yields performance that surpasses both RL-from-scratch and large LLM-based
baselines, which either suffer from poor editing precision or require heavy inference computation. At
inference time, MolEditRL requires no oracle calls and achieves 1.39 s/sample, supporting real-time
interactive molecular editing. These results demonstrate that MolEditRL achieves an advantageous
balance of accuracy, robustness, and computational efficiency compared to existing baselines.
Table 17: Computational Efficiency and Editing Performance Comparison Across Baselines

Method Validity  Accyy (TS>0.65)  Accy (MCS>0.6)  Accy) (GED<4) FCDJ]  Finetune Time (min) Inference Time (s/sample)
GCPN 0.858 0.000 0.000 0.029 20.260 32.92 0.78
MolDQN 1.000 0.003 0.142 0.045 13.152 35.76 4.73
Reinvent4 0.835 0.124 0.196 0.139 13.786 40.51 0.85
MolEditRL  0.958 0.466 0.490 0.226 7.964 58.14 1.39

Q GRADIENT DERIVATION UNDER 73-PARAMETERIZATION

This appendix provides a complete derivation for the step in the main text going from the policy-
gradient term Vg log pg (Gfg? ! | Gfgt, S, G ) to its zg-parameterized form and the resulting reward-

weighted cross-entropy objective.

SETUP AND ASSUMPTIONS

Q.1

We consider a discrete diffusion setting on molecular graphs. The forward process defines a known
. . . . . . . t—1 t 0 o) . .

corruption distribution with an analytic posterior ¢(Glg - | Gigts Gtgt). Let the conditioning variables

be C' = (S, Ggc). Our modeling assumptions are standard in conditional diffusion: (i) the reverse-step

factorization uses the forward posterior kernel, which depends only on (Gfgl, G?gt) and is independent
of 6 and C; and (i) the model predicts py(Giy | Giy, C).
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Q.2 THE PRECISE VERSION OF THE MAIN-TEXT EQ. (12)

By the law of total probability and the above conditional independence,

t—1 t—1 0
(Gtgt | G[gﬁ ) Z (Gtgt | GlgU Gtgt) pe( tgt ‘ Gtglv C) (15)
Gy
Equation equation[T3]is an equality in the discrete diffusion setting. The common single-sample/MAP
form that replaces the sum by Gtgt then becomes an approximation.
Q.3 LOG-GRADIENT OF A MIXTURE: A WEIGHTED EXPECTATION

Taking the logarithm of equation[I3]and differentiating w.r.t. 6, using that ¢ does not depend on 6,
yields the exact identity

Vg log pg (Gtgl IEU Z wG lgt7 Gttgt 1, Gfgn C) Vg log pe (G
lgl

), 16)

tgw

with normalized weights
wo (G *) = 4(Gg" | Giev: Gie) Po (Gl | Gigr ©)
& Yl (Gfgtl | GtgtaG/) Po (G | Gtgtac)
Thus, the exact gradient is a posterior-weighted expectation of Vi log pg(Giy | Gly, C).

a7

Q.4 PRACTICAL APPROXIMATIONS

Exact evaluation of equation [I6] is intractable due to the exponential number of graphs. Ac-
cording to the Single sample / straight-through (MAP) approximation, with K=1, or taking
G?gt = arg max pg (G et | Gtgt, (') and ignoring (or stop-gradient on) normalization, we obtain
the widely used estimator

Vologps(Glg ' | Gl ©) ~ Vologpy (G | Gl C) (18)
which is the ap rox1rnati0n used to move from the equation[I2]to equation|[I3] Direct REINFORCE
on log pg( ot ) has hlgh variance due to (a) sparse rewards (only at t=0), (b) weak correlation

between 1ntermedlate noisy states and the terminal reward, and (c) accumulated stochasticity across
transitions. DDPO |Black et al.|(2023) treats the denoising steps as an MDP and applies step-wise
policy-gradient surrogates; GDPO [Liu et al.|(2024b) adapts these ideas to discrete graph diffusion and
proposes eager/low-variance estimators. The single-sample x surrogate in equation [I8]is a practical
variance/computation trade-off also adopted in these works.

R DATASET STATISTICS

Our dataset is constructed following a procedure similar to DrugAssist|Ye et al.|(2025), involving
three main steps: (1) drug-like molecules are filtered from public databases such as ZINC and
ChEMBL based on Lipinski’s Rule of Five; (2) Matched Molecular Pairs (MMP) are extracted using
BRICS fragmentation to identify structurally similar molecule pairs with local edits; and (3) pairs
showing significant property shifts are retained, and corresponding natural language instructions are
generated to describe the desired property modifications. To prevent data leakage, we construct the
splits at the molecule level using canonical SMILES: duplicate or equivalent structures are removed,
and no molecule in the test set appears in the training set or in any RL fine-tuning inputs. This ensures
that all test-time molecules are entirely unseen by the model. Table[I8|reports descriptive statistics
drawn directly from the MolEdit dataset. These ranges reflect the empirical distributions of property
values in our collected molecule pairs. The physicochemical properties in our dataset are carefully
selected in accordance with Lipinski’s Rule of Five, a key set of guidelines for drug-like molecules
that includes constraints on molecular weight (< 500 Da), LogP (< 5), hydrogen bond donors (< 5),
and hydrogen bond acceptors (< 10). These constraints are reflected in the value ranges of our dataset
properties. The dataset covers both biological activity properties and physicochemical properties,
each playing crucial roles in drug discovery:
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R.1 BIOLOGICAL ACTIVITY PROPERTIES

* DRD2 (Dopamine D2 receptor): A key target in antipsychotic drug development, with
values ranging from O to 1 indicating binding probability. Our dataset captures substantial
changes in DRD2 activity, from minor adjustments (£0.050) to major shifts (+0.951), where
positive values indicate decreased binding and negative values indicate increased binding.

* GSK34 (Glycogen synthase kinase-3 beta): An important target in treating neurological
disorders, with values from O to 1 representing inhibition probability. The dataset includes
modifications ranging from £0.050 to +0.750.

* JNK3 (c-Jun N-terminal kinase 3): A target for neurodegenerative diseases, with values
from O to 1 indicating inhibition probability. Property changes range from subtle (4-0.030)
to significant (£0.690).

Table 18: Descriptive statistics of property changes in the MolEdit dataset.
Property Direction Pairs A Range Source Range Target Range
DRD2 0 80,627 [-0.951, -0.050] [0.000, 0.944] [0.050, 1.000]
i) 80,627 [0.050, 0.951] [0.050, 1.000] [0.000, 0.944]
GSK33 0 98,310 [-0.750, -0.050] [0.000, 0.940] [0.052, 0.990]
i} 98,310 [0.050, 0.750] [0.052, 0.990] [0.000, 0.940]
INK3 0 94,131 [-0.690, -0.030] [0.000, 0.880] [0.040, 0.990]
1 94,131 [0.030, 0.690] [0.040, 0.990] [0.000, 0.880]
QED 0 97,750 [-0.794, -0.380] [0.041, 0.564] [0.438, 0.948]
) 98,249 [0.380, 0.794] [0.438, 0.948] [0.050, 0.565]
SA 0 90,192 [-6.563, -0.700] [1.059, 7.268] [2.189, 7.999]
i) 87,453 [0.700, 6.104] [2.277,7.996] [1.397, 7.268]
LoaP 0 89,088 [-6.132, -2.625] [-17.073, 2.369] [-13.745, 5.000]
g ) 90,489 [2.625, 6.132] [-13.745, 5.000] [-17.073, 2.372]
MW 0 80,647  [-195.744,-99.031] [218.106, 399.216] [336.084, 499.999]
) 79,712 [99.031, 195.744]  [336.073,499.994] [218.094, 400.241]
HAccent 0 98,562 [-7.000, -2.000] [0.000, 8.000] [2.000, 10.000]
P 1 98,562 [2.000, 7.000] [2.000, 10.000] [0.000, 8.000]
HDonors 0 104,468 [-5.000, -2.000] [0.000, 3.000] [2.000, 5.000]
i} 104,468 [2.000, 5.000] [2.000, 5.000] [0.000, 3.000]
RotBonds 0 66,369 [-9.000, -3.000] [0.000, 7.000] [3.000, 10.000]
1 65,806 [3.000, 9.000] [3.000, 10.000] [0.000, 7.000]

R.2 PHYSICOCHEMICAL PROPERTIES

* QED (Quantitative Estimate of Drug-likeness): Ranges from 0 to 1, where higher values
indicate better drug-likeness. Our dataset covers modifications from +0.380 to +-0.794.

* SA (Synthetic Accessibility): Ranges from 1 to 10, where lower values indicate easier
synthesis. The dataset includes substantial changes from 30.700 to £6.563.

* MW (Molecular Weight): A fundamental property ranging from 218 to 500 Da in our
dataset, with modifications spanning +99.031 to +195.744 Da.

* LogP (Octanol-water partition coefficient): Measures lipophilicity, ranging from —17 to 5
in our dataset, with changes from £2.625 to +6.132.

*» HDONORS (Hydrogen Bond Donors): Ranges from 0 to 5, with modifications of 2 to
=+5 donors.

 HACCEPT (Hydrogen Bond Acceptors): Ranges from O to 10, with changes of 2 to £7
acceptors.

* ROTBONDS (Rotatable Bonds): Ranges from 0 to 10, with modifications of 3 to £9
bonds, affecting molecular flexibility.
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For each property, table I8 shows the number of molecular pairs, the range of property changes (A
Range), and the value distributions in both source and target molecules. The + notation indicates
that changes occur in both directions — positive values for property reduction and negative values
for property increase, representing the observed range of property modifications across all molecule
pairs in the dataset.

R.3 NATURAL LANGUAGE PROMPTS

Table[T9| presents the natural language prompts designed for our single property editing tasks. For
each of the ten molecular properties, we crafted two complementary prompts corresponding to
property value increase and decrease. The prompts are purposefully designed to be clear and concise
while maintaining chemical accuracy and relevance. For biological activity properties (DRD2,
GSK34, JNK3), the prompts emphasize binding affinity and inhibitory activity. For physicochemical
properties, the prompts use specific chemical terminology (e.g., "hydrogen bond acceptors," "rotatable
bonds") while remaining accessible. Some prompts, such as those for LogP, include additional context
about the property’s practical implications (e.g., "enhance its fat solubility" or "improve its water
solubility"). Each prompt contains a [SMILE] placeholder that is replaced with the actual SMILES
string of the molecule to be modified during the editing process.
Table 19: Natural language prompts for single property editing tasks.

Property Direction Prompt

DRD2 T Optimize this molecule [SMILE] to increase its DRD2 binding affinity.
J Help me reduce the DRD2 binding activity of molecule [SMILE].
GSK33 T Help me optimize this molecule [SMILE] to improve its GSK3/ inhibitory activity.
J Reduce the GSK30 inhibition potential of this molecule [SMILE].
INK3 T Enhance the JNK3 binding properties of molecule [SMILE].
3 Make changes to lower the JNK3 binding affinity of molecule [SMILE].
QED T Optimize the QED score of molecule [SMILE] to make it more drug-like.
1 Decrease the QED value of this molecule [SMILE].
SA T Make this molecule [SMILE] harder to synthesize.
J Make this molecule [SMILE] easier to synthesize.
LogP T Help me increase the LogP value of molecule [SMILE] to enhance its fat solubility.
& 1 Help me decrease the LogP value of molecule [SMILE] to improve its water solubility.
MW 1 Help me increase the molecular weight of this molecule [SMILE].
1 Help me reduce the molecular weight of this molecule [SMILE].
T Add more hydrogen bond acceptors to this molecule [SMILE].
HAccept -
J Reduce the number of hydrogen bond acceptors in molecule [SMILE].
HDonors T Help me increase the number of H-bond donors in [SMILE].
1 Help me decrease the H-bond donor count in this molecule [SMILE].
RotBonds T Add more rotatable bonds to this molecule [SMILE].
J Reduce the number of rotatable bonds in molecule [SMILE].

S LIMITATIONS AND FUTURE WORK

MolEditRL demonstrates strong and consistent performance in structure-preserving editing across
a wide range of chemical properties, particularly on small to medium-sized molecules. While our
current experiments focus on this regime, the underlying framework is designed to generalize and is
expected to extend effectively to larger biomolecules, such as proteins or complex natural products,
with minor adaptations. The reinforcement learning component leverages property oracles (e.g., from
RDKit and TDC) to guide optimization. These oracles validate MolEditRL’s effectiveness on widely
studied molecular properties. For less-characterized or emerging attributes, task-specific predictors
can be trained and integrated, enabling flexible extension of the framework to new property domains.

However, in particular, the framework may struggle when a target property is extremely rare, lacks
a reliable predictive model, or requires prohibitively expensive evaluations. In addition, when
user instructions contain logical contradictions—such as requesting simultaneous improvement of
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Table 20: Extended results on single-property molecular editing tasks. Bold indicates best perfor-
mance. Arrows (T, |) denote desired property increase or decrease.

Accat  Accyia Accyr AcCyqlia Accar  Accyaia Accyr  AcCyqlid

Model Task Validity (0.65) (0.65) 0.15) (0.15) FCD Task Validity (0.65) (0.65) 0.15) 0.15) FCD
REINVENT4 0.524 0.19 03626 0.4 0.7634  11.0566 0.704 0.19 02699 0442 0.6278 11.7456
MolGen 1.0 0.022 0022 025 0256 14.6826 1.0 0.004  0.004 0404 0404 14.943
BioT5 1.0 0.0 0.0 0.148  0.148  30.3159 1.0 0.0 0.0 0472 0472  15.1916
DrugAssist HACCEPTT 09439 03467 03673 04429 04692 87609 HACCEPT| 09819 0.161 0.1639 03421 0.3484 11.8052
Gellmo_M 0.904 0.064  0.0708  0.15  0.1659  14.259 0.89 0298 0.3348  0.524  0.5888  9.2035
Gellmo_L 0.89 0.07  0.0787 0.162  0.182  12.7839 0914  0.178  0.1947 0.508  0.5558  8.8893
MolEditRL 0.968 0.484 0.5 0.826  0.8533  7.3163 0974 0388 03984 0712 0731 9.0711
REINVENT4 0.568 0268 04718 0.548 0.7648  9.966 0.7581 0.3841 0.5067 0.6585 0.8686  7.7976
MolGen 1.0 0.038  0.038 0418 0418  9.8619 1.0 0.016  0.016 0432 0432  14.4007
BioT5 1.0 0.0 0.0 0.36 0.36 16.5037 1.0 0.0 0.0 0.348  0.348  17.2348
DrugAssist SAt 0.988 0216 0.2186  0.294  0.2976 10.14 MW/| 0.98 0.5391  0.5501 0.5872  0.5992  9.2859
Gellmo_M 0.91 0.12  0.1319 0288 03165 8.9319 0.898 029 03229 0564 0.6281 6.6778
Gellmo_L 0.912 0.104  0.114 0.28 0.307 8.9652 0.906 0.26 0.287  0.684  0.755  6.6965
MolEditRL 0.95 049 05158 0.776  0.8168  7.5281 0984  0.632  0.6423  0.952  0.9675  6.3935
REINVENT4 0.678 0268 0.3953 0458 0.6755 11.739 0.7 0.286 04086 0418 0.5971  9.2662
MolGen 1.0 0.022 0022 0243 0.243  13.4729 1.0 0.042  0.042 0418 0418 11.0476
BioT5 1.0 0.0 0.0 0.144  0.144  23.7964 1.0 0.0 0.0 0272 0.272 16.231
DrugAssist HDONORST 09319 03267 03505 0.4449 04774  8.4057 DRD2| 0984  0.524 05325 057 05793 7.5935
Gellmo_M 0.898 0.044 0049  0.092 0.1024 12.5726 0.922 0.136  0.1475 0274 02972  9.3582
Gellmo_L 0.896 0.04  0.0446 0.1 0.1116  14.7698 0916  0.132  0.1441 0336 03668  9.8566
MolEditRL 0942  0.582 0.6178 0.842 0.8938 8.0114 0986  0.656 0.6639  0.72  0.7302  6.549
REINVENT4 0.61 0.1714 0.I869 036  0.5902 13.997 0.508 0268 0.5276 0424 0.8346  7.5582
MolGen 1.0 0.094  0.094 0474 0474  10.5549 1.0 0.11 0.11 0474 0474  13.7158
BioT5 1.0 0.0 0.0 0492 0492  27.5634 1.0 0.0 0.0 0202  0.202  34.7724
DrugAssist LOGP? 0.964 0382 03963 0442 04585 11.3282 LOGP| 0966  0.548  0.5673  0.604  0.6253  6.3703
Gellmo_M 0.89 0.374 04202 0.724 08135  6.878 0906  0.004 0.0044 0224 02472 12.9582
Gellmo_L 0.91 0268 02945 059  0.6484  6.7566 0918 0.15  0.1634 0444 04837  7.7802
MolEditRL 0.964 0578 05996  0.91 0.944  6.0118 0.972 071 0.7305 094 09671 5.1015
REINVENT4 0.61 0.112  0.1836 0384 0.6295 11.671 0.652 0.15 02301 0312 04785 11.1066
MolGen 1.0 0.084 0084 0356 0356 11.3428 1.0 0.024  0.024 0421 0.421  10.9996
BioT5 1.0 0.0 0.0 0.306  0.306 16.85 1.0 0.0 0.0 0374 0374 157723
DrugAssist ~ ROTBONDST 09537  0.1469  0.154  0.2716 0.2848 10.7588 QED| 0.9859  0.1044 0.1059 0247 0.2505 10.8724
Gellmo_M 0.888 0.072  0.0811 0.16  0.1802 12.1059 0924  0.012  0.013 0.15 0.1623  15.4165
Gellmo_L 0.888 0.098  0.1104 0218 02455 10.0684 0.904  0.088 0.0973 0218 02412 10.3736
MolEditRL 0.934 0392 04197 0764  0.818  7.2532 0.948 0.612  0.6456  0.894  0.943  6.9314

mutually exclusive properties—the model is unable to produce feasible edits. Looking ahead, we
plan to explore interactive, dialogue-based molecular editing, enabling users to iteratively refine
molecules via multi-turn natural language instructions. This direction could support more intuitive
and human-centric workflows for molecular design and lead optimization.

T LLM USAGE STATEMENT

Large language models were employed solely as general-purpose assistance tools during the writing
process, specifically for improving clarity and checking grammar. All technical contributions,
experimental results, and scientific insights are entirely the authors’ own work. No LLMs were used
to generate core research ideas, experimental data, or technical implementations. The authors take
full responsibility for all content and claims presented in this paper.

U EXTENDED SINGLE-PROPERTY RESULTS

Table 20| reports extended quantitative results for 10 representative single-property molecular editing
tasks from the MolEdit-Instruct benchmark. MolEditRL consistently achieves the highest accuracy
across both similarity thresholds, while maintaining high chemical validity and the lowest FCD scores
across most tasks. This indicates strong structural fidelity and superior alignment with target property
distributions. In contrast, baselines such as BioT5 and MolGen often generate valid molecules but
fail to satisfy property and similarity constraints. REINVENT4 and DrugAssist perform moderately
well but fall short in structural preservation and distributional realism. These detailed results further
confirm the robustness and effectiveness of MolEditRL in single-property editing scenarios.

V EXTENDED MULTI-PROPERTY RESULTS
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Table 21: Extended results on multi-property molecular editing tasks. Bold indicates best performance.
Arrows (1, |) denote desired property increase or decrease.

Accar  AcCyaia  AcCar  AcCyuiia Accar  AcCyaig  AcCar  ACCyalia

Model Task Validity (0.65) (0.65) (0.15) (0.15) FCD Task Validity (0.65) (0.65) 0.15) 0.15) FCD
BioT5 1.0 0.0 0.0 0352 0352 17.731 1.0 0.0 0.0 0.19 0.19 19.8292
DrugAssist 09819 02711 0.2761 0.3574  0.364 12.987 0.98 0.292 0.298 0.336 03429 11.1755
GeLLM*0_M gggggl;é‘i 0.89 0.108  0.1213 0264  0.2966 14.7575 J(l)\gg# 0914  0.148 0.1619 0326 0.3567  10.123
GeLLM®0_L ) 0.9 0.146  0.1622  0.36 0.4 12.0622 0.9 0.098  0.1089  0.352  0.3911  10.866
MolEditRL 0972 0.358  0.3739  0.612  0.6497 11.7393 0.976 033 03381 0416  0.4262  9.6139
BioT5 1.0 0.0 0.0 0.098  0.098 247313 1.0 0.0 0.0 0.088  0.088 24.19
DrugAssist 0.954 0226  0.2369  0.284  0.2977 11.5424 0.992 0.104  0.1048  0.126 0.127 12.3998
GeLLM*0_M HA(;(;?PTT 0.918 0.012  0.0131 0.07  0.0763  23.0712 (?;zlg’%T 0942 0036 0.0382 0.064 0.0679 156116
GeLLM®0_L 0.904  0.026 0.0288 0.048 0.0531 14.8785 0.9 005 00556 0.098 0.1089 12.7831
MolEditRL 0962 0316 03583  0.58  0.6576 11.2492 0.97 0186  0.1918  0.228  0.2351  11.4433
BioT5 1.0 0.0 0.0 0.104 0.104 27.651 1.0 0.0 0.0 0.25 0.25 28.7563
DrugAssist LOGP| 0.98 0.346  0.3531  0.384 0.3918  8.4341 DRD2} 0976 0212 02172 0254 02602 11.4352
GeLLM?*0_M ROTBONDS| 0.892  0.032 0.0359 0.128 0.1435 16.9039 SAT 0.898 0.102  0.1136 0232 0.2584 11.5436
GeLLM®0_L 0.908 0.09  0.0991 0.3 0.3304  10.9156 0.924 0.07 00758 0222 0.2403 12.0196
MolEditRL 0.97 0454 0468  0.686 0.7072  6.2095 0.912 023 02522 0398 0.4364 10.8934
BioT5 1.0 0.0 0.0 0.072 0.072 31.688 1.0 0.0 0.0 0.216 0.216 19.1627
DrugAssist LOGP, 0.96 0.09  0.0938 0.1 0.1042  19.404 QED| 0.984 024 02439 0276 02805 11.0221
GeLLM?*0_M ROTBONDS| 0.86 0.014  0.0163  0.034 0.0395 30.3704 ROTBONDS} 0.878 0.014  0.0159 0.096 0.1093 21.1825
GeLLM®0_L 0906  0.022 0.0243 0.06 00662 16.6925 0902 0064  0.071 0.166  0.184  11.7206
MolEditRL 0954 0344 0.3891  0.634  0.7172  12.0673 0.943 0422 04742 0.83  0.9326  7.564
BioT5 1.0 0.0 0.0 0.27 0.27 17.3349 1.0 0.0 0.0 0.196  0.196  20.749
DrugAssist MWt 0.98 0298  0.3041 0354 03612 9.5465 QED| 0978 02325 0.2377 02766 0.2828 11.0132
GeLLM*0_M QED/ 0926  0.072 0.0778 0238 0257 12.8711 SAT 0.906  0.086 0.0949 0.184 0.2031 10.3846
GeLLM?0_L 0.882 0.158  0.1791 0316 0.3583  7.8458 0.894 0.078  0.0872 0.172  0.1924  10.3566
MolEditRL 0.944 035 04147 0.79 0.936  7.0482 0938  0.592  0.6311 0.878  0.936  7.3882
BioT5 1.0 0.0 0.0 0.016  0.016  49.8934 1.0 0.0 0.0 0.07 0.07  36.9063
DrugAssist DRD2| 0.95 0.062  0.0653  0.082 0.0863 14.6988 DRD27 0956  0.142  0.1485  0.192  0.2008 13.9149
GeLLM*0O_M  HACCEPT? 0.91 0.018 0.0198 0.034 0.0374 169543 HACCEPT? 0.904  0.004 0.0044 0.064 0.0708 28.5396
GeLLM®0_L MwW| 0.916 0.01 0.0109 0.02 0.0218  24.1798 SAT 0.92 0.016  0.0174 0.05 0.0543  18.2579
MolEditRL 0.962 0.1 0.104 0264 02744  12.5672 0.966  0.192  0.1988  0.288  0.2981 13.7681
BioT5 1.0 0.0 0.0 0.086  0.086 282977 1.0 0.0 0.0 0.1T6  0.116  23.0032
DrugAssist DRD2% 0.972 0.09  0.0926  0.14 0.144 158384 DRD27 0.99 0.114  0.1152  0.158  0.1596  13.438
GeLLM®*0_M  HACCEPT? 0.904 0.03 0.0332  0.082  0.0907 23.1175 JNK3t 0.91 0.062  0.0681 0.13 0.1429  15.6618
GeLLM®0_L JNK371 0.91 0.026  0.0286  0.054 0.0593 18.5348 QED| 0912 0034 0.0373 0.082 0.0899 18.1148
MolEditRL 0.94 0.22 0.234 0294 03128 13.1873 0.938  0.258 0.2751  0.438 0467  9.2013
BioT5 GSK3B1 1.0 0.0 0.0 0.066  0.066 32.3437 DRD2) 1.0 0.0 0.0 0.024  0.024  43.4139
DrugAssist HDONORS? 0.948 0.056  0.0591  0.062 0.0654 21.3896 GSK3BT 0.954 0.02 0.021 0.028  0.0294 19.8179
GeLLM?*0_M QED. 0.902 0.002  0.0022  0.004 0.0044 24.7065 HDONORS? 0.884 0.0 0.0 0.006  0.0068  60.738
GeLLM®0_L SAT 0914  0.012 00131  0.036  0.0394 18.4036 LOGP, 0.898  0.002 0.0022 0.008 0.0089 19.9507
MolEditRL 0.954 0206  0.2159  0.416  0.4361  14.599 0962 0174 01809 0232 0.2412 11.4978
BioT5 1.0 0.0 0.0 0.088  0.088  30.4432 ~Q 1.0 0.0 0.0 0.1 0.1 27.6262
DrugAssisl (?SRngBii 0.988 0.082 0.083 0.092  0.0931 21.3253 Hl()’(b)]l\(lg)]:llsi 0.992 0.09 0.0907  0.098  0.0988 24.7748
GeLLM*0_M HACCEPT|, 0.91 0.042  0.0462 0.094 0.1033 18.8187 LOGPt 0.906 0.05 00552 0.108 0.1192 18.0398
GeLLM®0_L SA| 0.918 0.042  0.0458  0.12  0.1307 20.2584 MW/ 0.91 0.034  0.0374  0.11 0.1209  20.1217
MolEditRL 0986 0122 01237  0.21 0213 14.735 0966  0.146 01511 0212 0.2195  18.0029

Table 2] presents detailed evaluation results on multi-property molecular editing tasks from the
MolEdit-Instruct benchmark. Each task involves optimizing 2 to 4 chemical properties simultaneously,
reflecting practical constraints encountered in real-world molecular design. MolEditRL consistently
achieves strong performance across all multi-property tasks, demonstrating its ability to balance
complex property requirements while preserving molecular validity and structural similarity. The
results confirm its robustness under increasingly constrained and realistic editing scenarios. The
property combinations in these tasks are carefully selected to reflect common design goals in
medicinal chemistry. For example, tasks like (HACCEPT,, HDONORS,) aim to reduce molecular
polarity, which is essential for improving membrane permeability and bioavailability. (LOGP/,
ROTBONDS\) targets molecules with lower lipophilicity and rigidity, which improves metabolic
stability and reduces off-target binding. On the other hand, combinations such as (MW7, QEDJ)
simulate early-stage exploration of larger, less drug-like molecules, often relevant in hit expansion or
macrocycle design. Biologically motivated combinations like (DRD2],, GSK331) reflect efforts to
reduce off-target dopamine receptor activity while enhancing GSK3 g inhibition, a common challenge
in polypharmacology. Furthermore, high-complexity tasks such as (GSK331, HDONORST, QEDJ,
SAT) require optimizing target activity while managing solubility, drug-likeness, and synthetic
complexity—mirroring real trade-offs in lead optimization pipelines. These results collectively
showcase MolEditRL’s effectiveness not only in individual property edits but also in realistic, multi-
objective optimization scenarios critical for practical drug development.

W  ETHICS STATEMENT

This work focuses on computational molecular editing for drug discovery applications. We ac-
knowledge several ethical considerations: (1) Dataset Release: We release the MolEdit-Instruct
dataset publicly to benefit the research community, following established practices for molecular
datasets. All molecular data is derived from publicly available databases (ZINC, ChEMBL) and
contains no proprietary or sensitive information. (2) Intended Applications: Our method is designed
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to support legitimate drug discovery research, and the dataset is intended for beneficial applications
in medicine and chemistry. (3) Reproducibility: We provide comprehensive implementation details,
hyperparameters, and dataset construction procedures to ensure reproducible research. (4) No human
subjects were involved in this study, and all experiments were conducted on computational datasets.

X REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we provide comprehensive details across multiple sections:
(1) Model Architecture: Complete architectural specifications are provided in Appendix, including
all hyperparameters, network dimensions, and training configurations. (2) Training Setup: Detailed
training procedures, optimization settings, and hardware specifications are documented in Appendix.
(3) Dataset Construction: The MolEdit-Instruct dataset construction process is thoroughly described
in Appendix, including property definitions, filtering criteria, and prompt generation procedures. The
dataset is publicly available on Hugging Face. (4) Experimental Details: All evaluation metrics,
baseline implementations, and experimental protocols are specified in Section 4. (5) Code Availability:
Upon acceptance, we will release the complete implementation including model code, training scripts,
and evaluation pipelines to facilitate reproduction of all reported results.

Y MORE VISUALIZATION OF MOLECULAR EDITING

To further illustrate the editing behavior of different models, we present additional qualitative results
in Figure 8] Figure 9] and Figure[I0] These figures show visualization of edits across 20 single-
property tasks. For each task, subfigure (a) displays the source molecule, and subfigures (b—e)
show successful edits produced by BioT5, DrugAssist, GeLLMO_L, and MolEditRL, respectively.
Red-colored substructures indicate regions that have been modified relative to the source molecule.
Across all tasks, MolEditRL consistently achieves the highest number of successful edits, as well
as the best structural fidelity—preserving the core scaffold of the original molecule while precisely
introducing the required modifications. Additionally, Figure[T2] Figure[I3] and Figure [I4 highlight
side-by-side visual comparisons of different models editing the same molecular structure for a single
target property. These visualizations confirm that only MolEditRL can reliably perform property-
aligned edits while preserving molecular similarity. Competing models often over-modify or disrupt
key structural elements, leading to reduced similarity or invalid transformations.
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Figure 8: More visualization of edits on 20 tasks.
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Figure 9: More visualization of edits on 20 tasks.
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Figure 10: More visualization of edits on 20 tasks.
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Figure 11: Qualitative comparison of molecular editing methods.
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Figure 12: Qualitative comparison of molecular editing methods.
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Figure 13: Qualitative comparison of molecular editing methods.
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Figure 14: Qualitative comparison of molecular editing methods.
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