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ABSTRACT

Molecular editing aims to modify a given molecule to optimize desired chemical
properties while preserving structural similarity. However, current approaches typi-
cally rely on string-based or continuous representations, which fail to adequately
capture the discrete, graph-structured nature of molecules, resulting in limited
structural fidelity and poor controllability. In this paper, we propose MolEditRL, a
molecular editing framework that explicitly integrates structural constraints with
precise property optimization. Specifically, MolEditRL consists of two stages:
(1) a discrete graph diffusion model pretrained to reconstruct target molecules
conditioned on source structures and natural language instructions; (2) an editing-
aware reinforcement learning fine-tuning stage that further enhances property
alignment and structural preservation by explicitly optimizing editing decisions
under graph constraints. For comprehensive evaluation, we construct MolEdit-
Instruct, the largest and most property-rich molecular editing dataset, comprising
3 million diverse examples spanning single- and multi-property tasks across 10
chemical attributes. Experimental results demonstrate that MolEditRL significantly
outperforms state-of-the-art methods in both property optimization accuracy and
structural fidelity, achieving a 74% improvement in editing success rate while using
98% fewer parameters.

1 INTRODUCTION

Figure 1: Performance, FCD, and parameter size
comparison.

Designing molecules with tailored properties is
essential for drug discovery Ma et al. (2024).
Unlike de novo molecular generation that cre-
ates molecules from scratch Wang et al. (2022),
molecular editing Hui et al. (2022) focuses on
precisely modifying existing molecules to opti-
mize targeted properties while preserving known
structure-activity relationships Hansch (1969).

Traditional molecular editing approaches fall
into three main paradigms: (1) Rule-based
methods apply predefined fragment transforma-
tions Chen et al. (2021); Fu et al. (2021), but
their generalization is limited by manually de-
signed rules. (2) Latent generative modelsJin
et al. (2018); Shi et al. (2020) optimize molecular properties in continuous spaces, yet often struggle
with fine-grained control due to latent compression. (3) Sequence-to-sequence methodsHe et al.
(2021); Loeffler et al. (2024); Wu et al. (2024) frame editing as SMILES translation, enabling scalable
learning but lacking structural precision, as small token changes can produce unpredictable or invalid
edits Kusner et al. (2017); Krenn et al. (2020).

Recently, language models have expanded the landscape of molecular editing by integrating natural
language understanding with chemical representations, enabling models to leverage semantic instruc-
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tions for molecular modifications: (1) Graph-embedding approach Liu et al. (2023) encodes both
molecules and textual instructions into a shared latent space via contrastive learning. (2) SMILES-
based models Ye et al. (2025); Le & Chawla (2024); Dey et al. (2025b) use retrieval-augmented
generation or adopt instruction tuning to enhance editing relevance. (3) SELFIES-based method Fang
et al. (2024) incorporates chemical feedback to reduce syntax errors and improve property alignment
during generation. Despite their promise, these language-based methods often struggle to preserve
scaffolds or perform precise, localized modifications, due to the non-uniqueness of textual molecular
representations. Structurally similar molecules may appear textually distant, leading to inconsistent
and unreliable edits Noutahi et al. (2024); Arús-Pous et al. (2019).

There are several critical challenges in molecular editing for ensuring structural preservation and
editing precision: First, molecular editing must explicitly align with the discrete, graph-structured
nature of molecules. String-based representations fail to explicitly encode topological constraints,
often limiting the model’s ability to preserve scaffolds and perform localized modifications. Second,
existing methods trained solely on fixed datasets lack mechanisms for actively exploring novel
editing strategies, restricting generalization and adaptability to complex or underexplored regions
of chemical space. Third, performing discrete edits directly on molecular graphs while preserving
structural fidelity and aligning with natural language instructions is technically challenging due to the
non-differentiable, high-dimensional nature of graph representations.

In this paper, we propose MolEditRL, a structure-aware molecular editing framework that combines
discrete graph diffusion with reinforcement learning. MolEditRL first employs discrete diffusion
to reconstruct target molecules conditioned simultaneously on source molecular structures and
natural language instructions, effectively capturing both structural and semantic relationships. To
further enhance the precision of property optimization and alignment with instructions, we introduce
editing-aware reinforcement learning guided by explicit property rewards, while incorporating
constraints to preserve structural integrity. To enable comprehensive evaluation, we introduce
MolEdit-Instruct, a large-scale molecular editing dataset containing 3 million editing examples
spanning 10 diverse chemical properties, including biological activities, physicochemical attributes,
and synthetic accessibility. Compared to existing datasets Ye et al. (2025); Dey et al. (2025b),
MolEdit-Instruct provides broader property coverage and more realistic single- and multi-property
editing scenarios. We release MolEdit-Instruct publicly on Hugging Face to facilitate future research.

Experimental results demonstrate that MolEditRL significantly outperforms state-of-the-art methods
in both editing accuracy and distributional fidelity (measured by Fréchet ChemNet Distance, FCD).
Remarkably, MolEditRL achieves a 74% improvement in editing success rate over leading baselines
while requiring 98% fewer parameters (Figure 1). Our contributions are summarized as follows: (1)
We propose MolEditRL, a molecular editing framework explicitly designed to maintain structural
integrity during editing. (2) We introduce a two-stage training strategy that combines discrete
diffusion pretraining with reinforcement learning fine-tuning, achieving precise property optimization
with structural constraints. (3) MolEditRL achieves SOTA editing performance with substantially
fewer parameters and the lowest distributional distance (FCD) compared to existing methods.

2 RELATED WORKS

Molecular Editing. Molecular editing aims to modify a given molecule to enhance specific
chemical properties while preserving its structural similarity. Formally, given a source molecule
Gsrc and a textual instruction S describing desired modifications, the goal is to generate an edited
molecule Gtgt that satisfies both the semantic intent of S and structural similarity constraints. This
formulation enables flexible, user-centric molecular design where optimization objectives can be
expressed intuitively. Existing molecular editing approaches typically fall into three main paradigms:
(1) Rule-based Graph Editing. These methods directly manipulate molecular graphs using predefined
or data-driven transformation rules, such as fragment replacements or bond editing templates, inspired
by Matched Molecular Pairs (MMP) Dalke et al. (2018); Chen et al. (2021); Fu et al. (2021). While
offering high chemical interpretability and precise local modifications, their generalizability is limited
by the coverage and flexibility of manually or heuristically derived rules. (2) Latent Generative Graph
Editing. Approaches such as JT-VAE Jin et al. (2018) and GraphAF Shi et al. (2020) encode molecules
into continuous latent spaces and decode edited structures by sampling. Hierarchical decoding
techniques like HierG2G Jin et al. (2020) enhance structural preservation by generating molecules
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in a coarse-to-fine manner. However, these methods frequently face issues such as information
loss due to latent compression, resulting in limited accuracy and insufficient control over edits. (3)
Sequence-based Generation. These approaches treat molecular editing as a sequence translation task,
converting source SMILES strings into target SMILES using Transformer-based architectures He
et al. (2021); Loeffler et al. (2024); Wu et al. (2024). These models suffer from syntactic instability
and representation ambiguity: structurally similar molecules can have significantly different SMILES
representations, and small token-level edits may lead to unpredictable or chemically invalid outputs,
limiting their precision and structural controllability. (4) Language-based models. MOLGEN Fang
et al. (2024) addresses SMILES fragility by adopting the SELFIES representation. Methods such as
ChatDrug Liu et al. (2024a), DrugAssist Ye et al. (2025), and Re2DF Le & Chawla (2024) utilize
retrieval-augmented generation or instruction tuning to enhance editing relevance. Additionally,
embedding-based methods leveraging diffusion Xiong et al. (2024) or contrastive learning Liu et al.
(2023) have been proposed. Nonetheless, these approaches continue to rely on textual or continuous
representations that lack explicit alignment with discrete molecular graph structures, compromising
structural fidelity and editing accuracy.

Reinforcement Learning in Molecular Generation. Reinforcement learning (RL) provides a
flexible framework for molecular optimization by formulating molecule generation as a Markov
Decision Process (MDP), in which agents sequentially modify molecular structures to maximize
rewards associated with desired chemical properties Sridharan et al. (2024). SMILES-based RL
methods such as ReLeaSE Popova et al. (2018) and REINVENT Olivecrona et al. (2017) guide
generative models using property predictors and prior policies. Graph-based RL methods, including
MolGAN De Cao & Kipf (2018), GCPN You et al. (2018), and MolDQN Zhou et al. (2019),
facilitate goal-directed graph construction through adversarial training, policy gradients, or Q-learning.
Recently, sequence-level discrete flow–based models such as InVirtuoGen Kaech et al. (2025), which
operate on fragmented SMILES, have introduced refinement-driven fragment-level generation with
the objective of optimizing molecular leads by iteratively improving given fragments. Although
effective in exploring chemical space, these RL-based frameworks typically focus on de novo
molecule generation and lack explicit mechanisms to enforce structural constraints derived from
source molecules, limiting their applicability to structurally constrained molecular editing tasks.

3 METHOD

We present MolEditRL, a structure-preserving molecular editing framework trained in two stages.
First, molecules and instructions are encoded into unified graph-text representations. Then, a structure-
aware editing network is trained via (1) discrete diffusion pretraining to reconstruct target molecules
from noisy graphs and instructions, and (2) reinforcement learning fine-tuning to optimize property
alignment while preserving structural fidelity.

3.1 MOLECULAR TOKENIZING

As illustrated in Figure 2 (a), a molecule is represented as an attributed graph G = (V,E), where V
denotes atom nodes with associated features, and E denotes bond edges with bond-type attributes.
The editing instruction is a sequence of tokens S = [s1, . . . , sn]. Given a source molecule graph
Gsrc = (Vsrc, Esrc), the model aims to predict the target graph Gtgt = (Vtgt, Etgt) that reflects the
required edits. These components are embedded and concatenated into a unified input sequence:

h0 = [h1, . . . , hn, h
src
n+1, . . . , h

src
n+k, h

tgt
n+k+1, . . . , h

tgt
n+k+m ] ∈ R(n+k+m)×dh , (1)

where h1, . . . , hn ∈ Rdh are embeddings for the instruction tokens, hsrc
n+1, . . . , h

src
n+k ∈ Rdh encode

source atoms, and htgt
n+k+1, . . . , h

tgt
n+k+m ∈ Rdh encode target atoms. dh is the model’s hidden size,

and variable-size graphs are handled via sequence serialization with dynamic padding.

3.2 STRUCTURE-PRESERVING EDITING NETWORK

Recent work has demonstrated the effectiveness of unified architectures for multi-modal learning Xi-
ang et al. (2024); Zhao et al. (2025). Such unified frameworks enable better capture of cross-modal
dependencies and shared representations while reducing architectural complexity. To enable precise
and structure-aware molecular editing, we propose the Structure-Preserving Editing Network, which

3
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(a) 
Molecular Tokenizing

[图片]

(b) Structure-Preserving Pretraining via Discrete Diffusion

(c) Editing-Aware Fine-Tuning via Reinforcement Leaning
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Figure 2: Overview of MolEditRL.

jointly encodes the semantic intent of natural language instructions and the topological features
of source and target graphs. We initialize our transformer encoder with a pretrained RoBERTa
model Liu (2019), but enhance it with a structure-aware attention mechanism. This mechanism
injects bond-level connectivity priors into attention scores via learnable bias terms that encode graph
connectivity, guiding attention flows to preserve structural integrity while selectively updating target
representations. For tokens i and j at layer l, the raw attention score Âl

i,j is computed as:

Âl
i,j =

1√
dk

(hl
iWQ)

(
hl
jWK

)⊤
+ bli,j , (2)

where WQ,WK ∈ Rdh×dk are learnable projection matrices. To incorporate graph-level dependen-
cies and better preserve structure during editing, we introduce bli,j to encode structural priors:

bli,j =


Esrc[i− n, j − n, :], if n < i, j ≤ n+ k,

Etgt[i− (n+ k), j − (n+ k), :], if l = 0 and n+ k < i, j,

Al−1
i,j , if l > 0 and n+ k < i, j,

0, otherwise.

(3)

The bias term bli,j preserves structure by injecting source adjacency at all layers, using target adjacency
at the first layer, and propagating attention from previous layers to maintain topology-aware attention
flow. The attention weights are then normalized, and the updated hidden states are calculated as:

Al
i,j =

exp
(
Âl

i,j

)∑
k exp

(
Âl

i,k

) , hl+1
i =

∑
j

Al
i,j

(
hl
jWV

)
WO, (4)

where WV ∈ Rdh×dk and WO ∈ Rdk×dh are learnable parameters. After L transformer layers, the
model outputs p̂(Vtgt) ∈ Rm×a for atom types and p̂(Etgt) ∈ Rm×m×b for bond types, where m is
the maximum number of atoms per molecule, a the atom vocabulary size, and b the number of bond
types. Edge predictions are symmetrized (ei,j + ej,i)/2 to respect bond-direction constraints.

3.3 STRUCTURE-PRESERVING PRETRAINING VIA DISCRETE DIFFUSION

As Figure 2 (b), we pretrain the editing network via a discrete denoising diffusion process conditioned
on the source molecule and instruction, enabling topology-aware generation.

4
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1. Forward Process. We define a discrete forward process that gradually corrupts the target molecular
graph G0

tgt over T timesteps. At each step t, atom and bond features are independently masked with
probability β(t) = (T − t+ 1)−1:

q(G1:T
tgt | G0

tgt) =
∏T

t=1
q(Gt

tgt | Gt−1
tgt ), q(Gt

tgt | Gt−1
tgt ) =

(
V t−1

tgt QV
t , E

t−1
tgt QE

t

)
, (5)

where Qt is a transition matrix that gradually increases the masking rate and q() denotes the transition
distribution of the forward diffusion process. At each step, each element remains the same with
probability 1− β(t) or transitions to [MASK] with probability β(t). This process gradually converts
G0

tgt into a fully masked graph GT
tgt.

2. Reverse Process. To recover G0
tgt from the fully corrupted graph GT

tgt, we train a denoising model
ϕθ to iteratively refine Gt

tgt conditioned on the source molecule Gsrc and instruction S:

pθ
(
G0:T−1 | GT

tgt, Gsrc, S
)

=
∏T

t=1
pθ
(
Gt−1

tgt | Gt
tgt, Gsrc, S

)
. (6)

At each timestep, ϕθ predicts the denoised graph Gt−1
tgt using the editing network described earlier.

3. Training Objective. Although instruction S is not corrupted during diffusion, we include a
cross-entropy loss on instruction tokens to enforce semantic alignment with the predicted molecule.

Lpre =

n+k+m∑
i=n+1

CE
(
vi, p̂i(vi)

)
+

n+k+m∑
i,j=n+k+1

CE
(
ei,j , p̂i,j(e

t
i,j)

)
+

n∑
i=1

CE
(
si, p̂i(si)

)
. (7)

4. Sampling. At inference time we start from a fully masked graph GT
tgt and iteratively apply the

reverse process. Each step: (1) Graph-Text Encoding: The transformer ϕθ encodes Gt
tgt, Gsrc, and

S, producing logits p̂(Vtgt) and p̂(Etgt). (2) Prediction: Following x0-parameterization Austin et al.
(2021), the model predicts the denoised graph as Ĝ0

tgt = argmax p̂(Vtgt, Etgt). (3) Sampling: The
next graph Gt−1

tgt is sampled from the posterior q(Gt−1
tgt | Gt

tgt, Ĝ
0
tgt) by independently sampling atoms

and bonds: Gt−1
tgt ∼

∏
i pθ(v

t−1
i )

∏
i,j pθ(e

t−1
i,j ).

3.4 EDITING-AWARE FINE-TUNING VIA REINFORCEMENT LEARNING

While the pretrained diffusion model captures molecular structure and ensures validity, it lacks
explicit optimization for property-specific editing. We address this by introducing Editing-Aware
Reinforcement Learning, which fine-tunes the model using rewards computed from well-established
chemical toolkits (RDKit Bento et al. (2020) and TDC Huang et al. (2021)). A KL-regularized
objective guides optimization toward desired properties while preserving structural consistency.

1. MDP Formulation for Molecular Editing. We recast discrete graph denoising as a Markov
Decision Process (MDP) tailored specifically for molecular editing Uehara et al. (2024): (1) State:
st =

(
S, Gsrc, G

T−t
tgt

)
includes the instruction, source molecule, and current noisy target graph. (2)

Action: at = GT−t−1
tgt is sampled from the model’s predicted distribution over denoised graphs at

the next step. (3) Initial State: P0(s0) = p(S) p(Gsrc) q(G
T
tgt) combines an instruction, a source

molecule, and a fully masked target graph. (4) Transition: Given a sampled action at, the next state
becomes st+1 =

(
S, Gsrc, at

)
. (5) Policy: The stochastic policy πθ(at | st) outputs a categorical

distribution over atom and bond types, from which at is sampled. (6) Reward: A scalar reward is
assigned only at the final step (t = T−1) to evaluate editing success:

R(st, at) =

{
r(G0

tgt, S,Gsrc), if t = T − 1,

0, otherwise,
(8)

where r(·) equals 1 if the generated molecule successfully performs the required edit, 0.2 if it is
chemically valid but does not fully satisfy the instruction, and 0 if it is invalid.

2. KL-Regularized RL Objective. To optimize molecular editing while preserving structural fidelity,
we adopt a KL-regularized reinforcement learning objective. Formally, the objective is:

L(θ) = −Ep(S) p(Gsrc) Epθ(G0
tgt)

[
r(G0

tgt, S,Gsrc)
]

+ β
∑T

t=1
Epθ(Gt

tgt)

[
DKL

(
pθ(G

0
tgt | Gt

tgt, S,Gsrc) ∥ ppre(G
0
tgt | Gt

tgt, S,Gsrc)
)]
, (9)
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where pθ is the current policy’s distribution over denoised target molecules at timestep t, and ppre is
the pretrained diffusion model, acting as a structure-aware prior. The coefficient β balances reward
maximization and structural consistency and is set to 0.1 in our experiments. To stabilize training,
we normalize the final reward of each trajectory within each batch: Â = r−mean(r)

std(r)+10−6 . To reduce
computation and improve efficiency, we apply policy updates at a fixed stride ts, rather than every
timestep. Specifically, we define the update set as: T = {t ∈ [1, T ] | t mod ts = 0}, and compute
gradients only at t ∈ T . The resulting policy gradient becomes:

∇θJ(θ) = EG0:T
tgt ∼pθ

[
Â ·

∑
t∈T ∇θ log pθ(Ĝ

0
tgt | Gt

tgt, S,Gsrc)− β
∑

t∈T ∇θDKL (pθ ∥ ppre)
]
. (10)

3. Gradient Estimation via x0-Parameterization. We estimate the gradient of the reward term (i.e.,
the first term of Eq. 9). By the policy gradient theorem, the gradient is:

∇θEG0:T
tgt

[r] = EG0:T
tgt

[
r(G0

tgt, S,Gsrc) ·
∑

t∈T
∇θ log pθ(G

t−1
tgt | Gt

tgt, S,Gsrc)
]
. (11)

Since rewards are only available at t=0, directly estimating the gradient suffers from high variance Liu
et al. (2024b). To reduce this, we adopt x0-parameterization Austin et al. (2021), rewriting the reverse
transition as:

pθ(G
t−1
tgt | Gt

tgt, S,Gsrc) =
∑

G0
tgt

q(Gt−1
tgt | Gt

tgt, G
0
tgt) pθ(G

0
tgt | Gt

tgt, S,Gsrc), (12)

where q(·) denotes the corruption distribution from the forward process. This approximation yields:

∇θ log pθ(G
t−1
tgt | Gt

tgt, S,Gsrc) ≈ ∇θ log pθ(Ĝ
0
tgt | Gt

tgt, S,Gsrc). (13)

A detailed derivation of this approximation is provided in Appendix Q. Under this formulation, the
gradient of the reward term can be approximated via a reward-weighted cross-entropy loss:∑

t∈T r(G0
tgt, S,Gsrc) ·

(∑
i CE

(
v0i , pθ(· | Gt

tgt, S,Gsrc)
)
+
∑

i,j CE
(
e0i,j , pθ(· | Gt

tgt, S,Gsrc)
))

, (14)

where v0i and e0i,j are atoms and bonds in the final predicted molecule G0
tgt, reused as supervision

targets at each selected step t ∈ T .

4 EXPERIMENTS

4.1 DATA CONSTRUCTION

We construct MolEdit, a large-scale and property-rich dataset specifically tailored for molecular
editing with natural language instructions. Existing datasets, such as MolOpt-Instructions Ye et al.
(2025), MuMOInstruct Dey et al. (2025b) and C-MuMOInstruct Dey et al. (2025a), are limited in
either property coverage, task diversity, or data scale. MolEdit addresses these gaps by extending
the property set to 10 diverse chemical attributes—spanning biological activity, physicochemical
characteristics, and synthetic accessibility—and defining 20 representative editing tasks (10 increases
and 10 decreases). It contains 3 million high-quality molecular pairs (967K unique), each exhibiting
substantial property shifts while maintaining high structural similarity (Tanimoto scores from 0.650 to
0.982). This provides a more realistic and comprehensive testbed for training and evaluating editing
models. Further dataset construction details are provided in Appendix R. The model architecture
is described in Appendix B, and the training setup is detailed in Appendix C. Additionally, to
further validate our approach against existing methods, we also conducted pretraining and evaluation
experiments on the C-MuMOInstruct dataset, with comprehensive results presented in Section 4.5.

4.2 EVALUATION METRICS

To comprehensively assess molecular editing performance, we use the following metrics to evaluate
chemical validity, editing accuracy under structural constraints, and overall molecular quality. Chem-
ical validity and property values are computed using RDKit Bento et al. (2020) and Therapeutics
Data Commons (TDC) Huang et al. (2021), two widely used and trusted toolkits for molecular
analysis: (1) Validity is the proportion of generated molecules that are chemically valid, reflecting
the model’s ability to produce syntactically correct molecular structures. (2) Overall Accuracy

6
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Table 1: Comparison of molecular editing models across tasks. Bold indicates best performance.
Arrows (↑, ↓) denote desired property increase or decrease.

Model Task Validity TS≥0.65 MCS≥0.6 GED≤4 FCD Task Validity TS≥0.65 MCS≥0.6 GED≤4 FCDAccall Accvalid Accall Accvalid Accall Accvalid Accall Accvalid Accall Accvalid Accall Accvalid

BioT5

GSK3 β↑

1 0 0 0.0 0.0 0.066 0.066 15.00

SA ↓

1 0 0 0.004 0.004 0 0 13.40
MolGen 1 0.024 0.024 0.032 0.032 0.018 0.018 11.61 1 0.016 0.016 0.020 0.020 0.015 0.015 14.19

MoleculeSTM 0.794 0.096 0.097 0.116 0.120 0.094 0.112 12.81 0.728 0.074 0.086 0.098 0.115 0.044 0.063 13.59
Reinvent4 0.722 0.130 0.152 0.106 0.117 0.101 0.115 10.98 0.582 0.010 0.017 0.048 0.063 0.056 0.061 21.31
DrugAssist 0.976 0.236 0.242 0.258 0.264 0.212 0.222 9.42 0.988 0.537 0.544 0.551 0.558 0.202 0.205 9.05
Gellm3o_M 0.924 0.164 0.178 0.284 0.307 0.122 0.132 10.32 0.916 0.350 0.382 0.352 0.363 0.232 0.246 8.85
Gellm3o_L 0.902 0.114 0.126 0.256 0.260 0.170 0.198 9.74 0.888 0.238 0.268 0.262 0.276 0.194 0.208 9.10

Gellm4o-C_M 0.908 0.144 0.152 0.224 0.235 0.214 0.232 9.84 0.864 0.326 0.377 0.401 0.409 0.217 0.229 9.85
Gellm4o-C_L 0.922 0.138 0.145 0.196 0.199 0.162 0.190 10.82 0.849 0.218 0.226 0.224 0.248 0.104 0.143 10.67
MolEditRL 0.952 0.342 0.359 0.364 0.382 0.242 0.254 7.99 0.988 0.628 0.636 0.694 0.702 0.248 0.251 7.10

BioT5

QED↑
SA↓

1 0 0 0.048 0.048 0 0 17.21

Haccept↓
LogP↑

1 0 0 0.101 0.101 0 0 16.95
MolGen 1 0.017 0.017 0.062 0.062 0.037 0.037 16.19 1 0.072 0.072 0.094 0.094 0.063 0.063 12.57

MoleculeSTM 0.741 0.044 0.049 0.066 0.080 0.048 0.052 11.93 0.672 0.098 0.105 0.129 0.148 0.091 0.122 11.67
Reinvent4 0.701 0.143 0.241 0.113 0.164 0.106 0.109 11.70 0.581 0.173 0.197 0.189 0.197 0.105 0.109 12.15
DrugAssist 0.980 0.532 0.543 0.449 0.456 0.216 0.255 9.68 0.984 0.372 0.378 0.328 0.335 0.126 0.152 12.33
Gellm3o_M 0.882 0.012 0.014 0.138 0.143 0.107 0.113 13.20 0.906 0.224 0.247 0.254 0.268 0.207 0.212 10.68
Gellm3o_L 0.904 0.206 0.228 0.213 0.226 0.114 0.127 9.76 0.904 0.130 0.144 0.168 0.176 0.138 0.149 11.24

Gellm4o-C_M 0.924 0.188 0.197 0.192 0.198 0.135 0.149 10.47 0.905 0.237 0.243 0.254 0.259 0.169 0.176 10.91
Gellm4o-C_L 0.894 0.209 0.216 0.248 0.280 0.108 0.123 11.09 0.911 0.220 0.223 0.248 0.251 0.184 0.192 10.83
MolEditRL 0.974 0.632 0.649 0.678 0.715 0.268 0.271 7.54 0.946 0.316 0.334 0.344 0.356 0.224 0.232 10.11

BioT5

DRD2↓
MW↓
SA↓

1 0 0 0 0 0 0 24.32

Haccept↑
MW↑
QED↓

1 0 0 0.064 0.064 0 0 26.24
MolGen 1 0.039 0.039 0.075 0.075 0.012 0.012 11.95 1 0.033 0.033 0.061 0.061 0.031 0.031 13.75

MoleculeSTM 0.693 0.038 0.041 0.090 0.109 0.076 0.081 11.43 0.638 0.014 0.016 0.032 0.035 0.040 0.046 14.87
Reinvent4 0.522 0.093 0.230 0.153 0.163 0.124 0.135 11.49 0.638 0.017 0.163 0.103 0.112 0.091 0.107 12.08
DrugAssist 0.980 0.422 0.431 0.388 0.472 0.236 0.242 9.89 0.956 0.230 0.241 0.248 0.251 0.126 0.129 11.72
Gellm3o_M 0.900 0.080 0.089 0.150 0.181 0.112 0.114 10.35 0.906 0.010 0.016 0.023 0.029 0.014 0.015 16.22
Gellm3o_L 0.918 0.108 0.118 0.130 0.152 0.104 0.109 10.19 0.886 0.042 0.047 0.051 0.060 0.032 0.039 15.70

Gellm4o-C_M 0.916 0.072 0.080 0.127 0.144 0.116 0.118 11.21 0.897 0.128 0.131 0.119 0.125 0.094 0.097 11.76
Gellm4o-C_L 0.909 0.155 0.164 0.198 0.218 0.164 0.198 10.07 0.853 0.188 0.196 0.198 0.205 0.144 0.161 10.38
MolEditRL 0.986 0.518 0.525 0.548 0.566 0.252 0.261 7.28 0.958 0.430 0.449 0.432 0.436 0.228 0.232 9.79

(Accall(τ )) and Valid Accuracy (Accvalid(τ )) jointly measure editing success under structural simi-
larity constraints. We employ three complementary structural similarity metrics with corresponding
thresholds: Tanimoto similarity (TS ≥ 0.65) Bajusz et al. (2015), Maximum Common Substructure
similarity (MCS ≥ 0.6) Cao et al. (2008), and Graph Edit Distance (GED ≤ 4) Gao et al. (2010).
For each threshold τ , Accall(τ ) is the percentage of all outputs that satisfy both the desired property
changes and structural similarity constraints; Accvalid(τ ) restricts this to valid molecules only. This
multi-metric approach provides comprehensive evaluation of structure preservation: TS captures
fingerprint-based similarity, MCS quantifies shared molecular scaffolds, and GED measures the
minimum structural editing operations required. (3) Fréchet ChemNet Distance (FCD) Preuer et al.
(2018) quantifies the distributional distance between generated and reference molecules. Lower FCD
values indicate better alignment in chemical space, capturing both diversity and realism.

4.3 EXPERIMENTAL RESULTS

We compare MolEditRL against publicly released, large-scale–trained molecule-editing models,
evaluated in their released form; baseline details are provided in Appendix A. Table 1 compares the
performance of various molecular editing models on single-property and multi-property tasks using
our comprehensive multi-metric evaluation framework. MolEditRL consistently achieves the highest
editing accuracy across all tasks and structural similarity metrics (TS≥0.65, MCS≥0.6, GED≤4).
Although SELFIES-based models (BioT5, MolGen) guarantee perfect chemical validity, they fail
to maintain structural similarity, achieving zero accuracy on most metrics, which reflects a lack of
structural alignment. DrugAssist, based on SMILES and LLM fine-tuning, maintains high validity
but performs significantly worse than MolEditRL on both Accall and Accvalid. This indicates that
chemical correctness alone is insufficient for precise, property-aligned editing. Although DrugAssist
generates valid molecules, it struggles to retain scaffold similarity while optimizing properties. All
baseline models yield substantially higher FCD scores than MolEditRL, suggesting greater divergence
from real molecule distributions. In contrast, MolEditRL generates molecules that are both valid
and distributionally faithful, benefiting from structure-aware graph editing. For multi-property tasks,
we evaluate scenarios aligned with real-world drug discovery objectives, such as improving stability
and synthesis (Haccept↓, LogP↑), balancing drug-likeness and accessibility (QED↑, SA↓), and
managing conflicting constraints (Haccept↑, MW↑, QED↓). MolEditRL consistently outperforms all
baselines across all similarity metrics, with the convergent high performance across TS, MCS, and
GED providing comprehensive evidence of effective multi-objective optimization while preserving
molecular scaffolds. Extended results on single-property and multi-property tasks are available in
Appendix U and Appendix V, respectively.
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Table 2: Generalization to unseen properties. Results on editing three held-out molecular properties
(BBBP, HIA, hERG) that are excluded from the pretraining dataset.

Model Task Validity Accall
(0.65)

Accvalid
(0.65)

Accall
(0.15)

Accvalid
(0.15) FCD Task Validity Accall

(0.65)
Accvalid
(0.65)

Accall
(0.15)

Accvalid
(0.15) FCD

BioT5

BBBP↓

1.0 0.0 0.0 0.276 0.276 25.7031

BBBP↑

1.0 0.0 0.0 0.452 0.452 21.4869
DrugAssist 0.9719 0.3066 0.3155 0.3727 0.3835 7.4848 0.9879 0.3952 0.4 0.5423 0.549 7.9316

GeLLM3O_M 0.9 0.17 0.1889 0.33 0.3667 7.8632 0.908 0.06 0.0661 0.356 0.3921 9.4042
GeLLM3O_L 0.92 0.116 0.1261 0.292 0.3174 7.8038 0.91 0.254 0.2791 0.716 0.7868 7.2142
MolEditRL 0.944 0.326 0.337 0.516 0.5347 7.0901 0.954 0.409 0.418 0.782 0.8075 6.7043

BioT5

HIA↓

1.0 0.0 0.0 0.426 0.426 15.246

HIA↑

1.0 0.0 0.0 0.356 0.356 15.7829
DrugAssist 0.982 0.344 0.3503 0.408 0.4155 7.0462 0.976 0.2725 0.2793 0.4068 0.4168 9.7314

GeLLM3O_M 0.904 0.124 0.1372 0.286 0.3164 8.2303 0.904 0.348 0.385 0.662 0.7323 7.2866
GeLLM3O_L 0.894 0.134 0.1499 0.382 0.4273 8.1844 0.922 0.222 0.2408 0.554 0.6009 7.7484
MolEditRL 0.98 0.374 0.3816 0.628 0.6396 6.8726 0.986 0.446 0.4523 0.738 0.7459 6.7928

BioT5

hERG↓

1.0 0.0 0.0 0.396 0.396 16.3127

hERG↑

1.0 0.0 0.0 0.368 0.368 15.0537
DrugAssist 0.9659 0.2992 0.3098 0.4438 0.4595 7.815 0.9839 0.2294 0.2331 0.4064 0.4131 9.9241

GeLLM3O_M 0.91 0.162 0.178 0.308 0.3385 7.9945 0.89 0.194 0.218 0.554 0.6225 7.5913
GeLLM3O_L 0.914 0.144 0.1575 0.424 0.4639 8.0866 0.922 0.062 0.0672 0.364 0.3948 11.7363
MolEditRL 0.986 0.474 0.4807 0.694 0.7039 6.0764 0.972 0.31 0.3189 0.59 0.6147 6.8304

Table 3: Performance comparison on C-MuMOInstruct dataset. Bold values indicate the best
performance for each metric.

Properties Validity Total_Accuracy Valid_Accuracy
GeLLM4O-C_M GeLLM4O-C_L MolEditRL GeLLM4O-C_M GeLLM4O-C_L MolEditRL GeLLM4O-C_M GeLLM4O-C_L MolEditRL

bbbp+plogp+qed 0.9118 0.9076 0.952 0.2064 0.2605 0.302 0.2264 0.287 0.3172
erg+liver+qed 0.934 0.925 0.952 0.174 0.25 0.278 0.1863 0.2703 0.289

ampa+carc+erg+plogp 0.934 0.944 0.954 0.226 0.208 0.229 0.242 0.2203 0.231
bbbp+drd2+plogp+qed 0.9359 0.9518 0.956 0.2285 0.3373 0.338 0.2441 0.3544 0.341

drd2+hia+mutagenicity+qed 0.924 0.9326 0.958 0.18 0.191 0.286 0.1948 0.2048 0.294
carc+drd2+erg 0.894 0.8043 0.948 0.138 0.2174 0.266 0.1544 0.2703 0.275

ampa+bbbp+mutagenicity+plogp 0.9499 0.9024 0.94 0.2545 0.2358 0.202 0.2679 0.2613 0.223
bbbp+carc+mutagenicity+qed 0.9519 0.8889 0.96 0.2104 0.1818 0.247 0.2211 0.2045 0.288

bbbp+drd2+erg+qed 0.908 0.8302 0.944 0.186 0.1887 0.236 0.2048 0.2273 0.275
hia+liver+mutagenicity+plogp+qed 0.942 0.9423 0.946 0.212 0.2212 0.202 0.2251 0.2347 0.2135

4.4 GENERALIZATION TO UNSEEN PROPERTIES

We evaluate MolEditRL on three properties—BBBP, HIA, and hERG inhibition—that are entirely
absent from the MolEdit-Instruct pretraining corpus. These pharmacokinetic and safety-related
attributes allow us to assess the model’s ability to adapt to new optimization objectives not seen
during pretraining. In this setup, the pretrained model is fine-tuned via reinforcement learning using
property-specific oracles, without requiring any prior data or molecule–property pairs for these tasks.
MolEditRL only receives natural-language descriptions of the unseen objectives and relies on RL
fine-tuning over arbitrary molecules, simulating realistic deployment scenarios where new properties
emerge after pretraining. Unlike baseline approaches, no additional pretraining or dataset construction
is needed. As shown in Table 2, MolEditRL achieves the best performance across all unseen-property
tasks, with the highest editing accuracy under both strict (τ = 0.65) and relaxed (τ = 0.15) structural
similarity constraints, while maintaining high validity and the lowest FCD. These results demonstrate
that MolEditRL can efficiently generalize to entirely new property objectives through task-specific
reward oracles—without retraining the model from scratch.

4.5 EVALUATION ON C-MUMOINSTRUCT DATASET

To further assess the generality of MolEditRL, we evaluate it on the publicly available C-
MuMOInstruct dataset Dey et al. (2025a), a large instruction-tuning benchmark for controllable
multi-property molecular optimization. Each task specifies which properties must increase or de-
crease to target thresholds while keeping others unchanged, requiring models to satisfy complex
multi-objective constraints across 3–5 attributes simultaneously. We generate one edited molecule
per instruction and measure chemical validity, total accuracy, and valid accuracy. As shown in
Table 3, MolEditRL achieves competitive or superior performance compared to the much larger
GeLLM4O-C models. It obtains the highest validity in 8 of 10 tasks and outperforms both base-
lines in 7 tasks in terms of total accuracy, with clear gains on challenging combinations such as
“drd2+hia+mutagenicity+qed” and “carc+drd2+erg.” Although larger models show slight advantages
on a few tasks, the differences remain small. These results demonstrate that MolEditRL can match
or exceed the performance of models with over 50× more parameters (7B+ vs. 125M), highlight-
ing the effectiveness of our structure-aware diffusion and reinforcement learning framework for
multi-property molecular optimization.
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4.6 MULTI-PROPERTY EDITING PERFORMANCE

To assess model robustness under increasing task complexity, we evaluate performance on molecular
editing tasks involving 1, 2, or 3 simultaneous property changes. For each setting, 10 combinations
of editing objectives are randomly sampled, and the results are averaged. Figure 3(a) shows mean
chemical validity, while (b) presents mean editing accuracy using TS similarity threshold of 0.15.
As expected, accuracy drops for all models as the number of target properties increases, reflecting
the challenge of jointly satisfying multiple constraints while preserving molecular structure. Some
models maintain high validity but suffer from very low accuracy, indicating that generating chemically
plausible molecules alone is insufficient for precise, property-aligned edits. MolEditRL consistently
outperforms all baselines across all settings. In the most difficult 3-property scenario, it achieves an
average accuracy of 0.363, more than double the second-best baseline (DrugAssist, 0.165). These
results demonstrate the effectiveness of our structure-aware diffusion framework and reinforcement
learning fine-tuning in enabling scalable and precise instruction-based molecular editing.

(a) Mean validity. (b) Mean accuracy (Accall).

Figure 3: Performance by number of edited properties.

4.7 EFFECT OF FINE-TUNING STRATEGIES AND KL REGULARIZATION

(a) Accuracy across models. (b) Training stability.

Figure 4: Impact of step size, fine-tuning strategy, and KL regularization.
We conduct ablation studies on denoising step size, RL fine-tuning strategies, and KL regularization
(Figure 4). Results are averaged over 20 single-property editing tasks. Subfigure (a) shows accuracy
and validity; (b) shows training stability. "Pretrain(x)" denotes models without RL fine-tuning,
where x ∈ {50, 25, 10} is the denoising step size. Smaller x improves accuracy but increases
computational cost. We use ts = 50 as the policy update stride for efficiency. We compare two
RL strategies: DDPO applies REINFORCE independently at each denoising step, while GDPO
leverages x0-parameterization to optimize only the final output. DDPO performs joint fine-tuning
across all tasks but suffers from instability since intermediate molecules are chemically meaningless.
GDPO improves stability but requires separate models for each task, limiting scalability. Neither
method enforces structural constraints during fine-tuning. MolEditRL introduces KL-regularized
optimization over the entire diffusion process, enabling stable, structure-aware fine-tuning across
diverse tasks. It consistently achieves higher accuracy and validity than both alternatives. Figure 4(b)
shows DDPO exhibits rapid validity degradation regardless of KL regularization, indicating inherent
instability in step-wise optimization. GDPO shows improved stability with KL regularization but
plateaus below MolEditRL’s performance due to task-specific limitations. MolEditRL maintains
consistently high accuracy and validity throughout training, with KL regularization further enhancing
stability without compromising performance.
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(a) Accuracy under increasing similarity thresholds. (b) Fréchet ChemNet Distance across models.
Figure 5: Performance comparison under structural constraints.

(a) Source (b) BioT5 (9/20 successful edits) (c) DrugAssist (10/20 successful edits)

(d) GeLLMO_L (11/20 successful edits)
(e) MolEditRL (13/20 successful edits)

Figure 6: Visualization of edits. Red highlights indicate structural changes from the source.

4.8 STRUCTURE FIDELITY AND DISTRIBUTIONAL QUALITY

Figure 5(a) shows Accall across different Tanimoto similarity thresholds. MolEditRL consistently
achieves the highest accuracy at all thresholds, demonstrating its ability to generate molecules that
satisfy desired property changes while preserving structural similarity. In contrast, LLM-based
baselines such as BioT5 and MolGen perform substantially worse, especially under stricter similarity
constraints. Figure 5(b) reports Fréchet ChemNet Distance (FCD) at a fixed threshold of 0.15. Lower
FCD indicates better alignment between the distributions of generated and real molecules. Consistent
with the accuracy results in (a), MolEditRL achieves the lowest FCD, highlighting its ability to
produce chemically realistic and distributionally faithful molecules.

4.9 QUALITATIVE ANALYSIS OF MOLECULAR EDITING

We visualize successful molecular modifications from four representative models across 20 single-
property tasks using the same source molecule. As shown in Figure 6, MolEditRL achieves the highest
task success rate and is the only model that consistently preserves the core scaffold across all edits,
demonstrating strong structural controllability. In contrast, BioT5 and DrugAssist frequently produce
structurally divergent molecules with scaffold disruptions, while GeLLMO_L maintains partial
alignment but still alters major structural components in several cases. These qualitative observations
align with our quantitative results and highlight the effectiveness of MolEditRL’s structure-aware
diffusion and full-trajectory RL fine-tuning. Additional visualizations are provided in Appendix Y.

5 CONCLUSION

We introduce MolEditRL, a novel framework that integrates discrete graph diffusion with reinforce-
ment learning to enable precise, structure-preserving molecular edits. It achieves state-of-the-art
performance on the MolEdit-Instruct benchmark while using significantly fewer parameters.
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APPENDIX

This appendix provides extended technical and experimental details that support the findings in the
main paper. It is organized as follows:

(1) Appendix A: Baseline methods (BioT5, DrugAssist, GeLLMO, MolGen, REINVENT 4,
MoleculeSTM).

(2) Appendix B: Model architecture (RoBERTa, embeddings, diffusion modules).

(3) Appendix C: Training setup (hyperparameters, optimization, hardware).

(4) Appendix D: KL regularization weight ablation (β values).

(5) Appendix E: Policy-update stride ablation (update frequency).

(6) Appendix F: Top-k sampling ablation (sampling diversity).

(7) Appendix G: Partial-success reward ablation (reward values).

(8) Appendix H: Structure-aware attention ablation (graph-level constraints).

(9) Appendix I: Pretrain vs. RL fine-tuning comparison.

(10) Appendix J: Chemical realism metrics vs. RL baselines (synthesizability, drug-likeness).

(11) Appendix K: Prompt sensitivity analysis (instruction robustness).

(12) Appendix L: Complex localized editing (fine-grained operations).

(13) Appendix M: Noisy oracle robustness (estimation errors).

(14) Appendix N: Oracle-query efficiency (limited oracle budgets).

(15) Appendix O: Inference efficiency (denoising steps vs. runtime).

(16) Appendix P: Computational efficiency (accuracy vs. cost).

(17) Appendix Q: Gradient derivation (x0-parameterization).

(18) Appendix R: Dataset statistics (property ranges, prompts).

(19) Appendix S: Limitations and future work.

(20) Appendix T: LLM usage statement.

(21) Appendix U: Extended single-property results (10 tasks).

(22) Appendix V: Extended multi-property results (2-4 constraints).

(23) Appendix Y: Qualitative visualizations (structural modifications).

A BASELINES

(1) BioT5 Pei et al. (2023) leverages SELFIES and a T5-style architecture for cross-modal learning
between molecules and text. (2) DrugAssist Ye et al. (2025) is a Llama2-7B-based dialogue model
for interactive molecule optimization. (3) GeLLM3O Dey et al. (2025b) uses instruction tuning
on Mistral and Llama3 models for multi-property optimization; we evaluate both GeLLM3O_M
and GeLLM3O_L. (4) MolGen Fang et al. (2024) is a domain-agnostic language model trained
with chemical feedback to reduce invalid generations. (5) REINVENT 4 Loeffler et al. (2024)
integrates reinforcement learning, transfer learning, and curriculum learning for molecular design
using RNN and Transformer backbones. (6) MoleculeSTM Liu et al. (2023) is a multi-modal
molecule structure–text model trained on large structure–text pairs to enable zero-shot text-guided
retrieval and editing of molecules. (7) GeLLM4O-C Dey et al. (2025a) is an instruction-tuned LLM
on the C-MuMOInstruct dataset, built on Mistral-7B and Llama3 models.
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B MODEL ARCHITECTURE

Table 4 details the structure-aware diffusion model used in MolEditRL. The architecture includes
token and edge embeddings, a RoBERTa-based transformer with graph-aware attention, a discrete
diffusion module for masked denoising, and a reinforcement learning component guided by property-
based rewards. During inference, we employ top-k sampling and apply policy updates at fixed stride
intervals to improve efficiency.

Table 4: Technical specifications of the structure-aware diffusion model in MolEditRL.

Module Types Dimensions Structures
Input Layer – Source Tokens [batch, seq_len] → Concat

Embedding Vocab Size = 51,933 TokenEmbedding [seq_len, 768] + PositionEmbedding
[seq_len, 768]

Edge Embedding Edge Types = 6 EdgeEmbedding [nodes, nodes, 768]

RoBERTa 12 Layers
Input [batch, seq_len, 768]
↓ Self-Attention (12 × 64) → LayerNorm + Residual
↓ FFN (768→3072→768) → LayerNorm + Residual

Diffusion 2000 steps
Forward: Input → Masked Tokens
↓ Reverse (stride = 50)
↓ Denoising Network

Prediction seq_len × 51,933 AtomLogits [batch, seq_len, 51933]
nodes × nodes × 6 EdgeLogits [batch, nodes, nodes, 6]

Sampling Top-k = 15 Atom Categorical Sampling
Edge Structure Sampling

Property-Guided – Reward Calculation (0, 0.2, 1.0)
Advantage Function → Loss Weighting

C TRAINING AND HYPERPARAMETER SETUP

We train MolEditRL on a multi-GPU cluster using PyTorch with Distributed Data Parallel (DDP). The
model is initialized from a RoBERTa-base encoder with 12 layers, 12 heads, and hidden size 768. The
tokenizer is extended to 51,933 tokens to accommodate molecular and instruction-specific vocabulary,
and the embedding layer is resized accordingly. For optimization, we use the AdamW optimizer with
a learning rate of 5e-5, weight decay of 0.01, and a linear warm-up scheduler over 10,000 steps. Mixed
precision (FP16) is enabled to reduce memory usage and accelerate training. During pretraining, the
model is trained for 100 epochs with a per-GPU batch size of 16. A discrete diffusion schedule with
2,000 denoising steps is used, following a mutual noise schedule βt = 1/(T − t) where T = 2000.
We apply word- and edge-level frequency weighting with sinusoidal modulation (λ = 0.3) to guide
denoising dynamics. The edge vocabulary includes 6 bond types. During reinforcement learning
fine-tuning, rewards are computed using property oracles (e.g., RDKit, TDC). A key advantage
of MolEditRL is its remarkable oracle efficiency. The pretrained model achieves strong property
optimization performance even without any oracle calls during inference, already outperforming
most state-of-the-art baselines as demonstrated in our ablation studies. This efficiency stems from
our editing-based formulation, which performs structure-constrained, localized modifications starting
from known molecules. This approach drastically reduces the chemical search space and required
oracle queries by orders of magnitude compared to de novo generation methods. Our empirical results
confirm this efficiency under strict oracle budgets, where MolEditRL’s performance quickly saturates
with most improvements achieved within just 6,400 oracle queries during the standard 400-step
fine-tuning protocol. We use top-k sampling with k = 15 and a temperature of 1.0 during evaluation.
To improve efficiency, the policy is updated every ts = 50 steps, resulting in 40 updates over the
2000-step diffusion process. For consistency, inference also runs for 40 denoising steps, starting
from a fully masked graph and progressively reconstructing the final molecule. All experiments
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were conducted on a single NVIDIA A6000 GPU using PyTorch and DGL. Pretraining on the
MolEdit-Instruct dataset (3M examples) took approximately 100 hours. RL fine-tuning for each task
required 1–2 hours.

D ABLATION STUDY ON KL REGULARIZATION WEIGHT

Table 5 reports an ablation study on the KL-regularization weight β, evaluating models trained with
β ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5} under a fixed fine-tuning budget of 500 steps. The results highlight
the importance of balancing structural preservation and reward-driven optimization. When β = 0,
the policy is no longer anchored to the pretrained diffusion prior, resulting in unstable behavior and
overly aggressive edits that harm structural similarity. Conversely, larger β values impose excessive
regularization, restricting the policy’s ability to improve the target property and increasing FCD.
Across both LogP↑ and SA↓ tasks, moderate regularization consistently yields the best trade-off
between validity, similarity-constrained accuracy, and distributional quality. Based on these trends,
we adopt β = 0.1 as the default setting in all experiments, as it provides stable structure-preserving
updates while enabling effective property optimization.

Table 5: Ablation study on KL regularization weight β

Task β Validity Accall (TS≥0.65) Accall (MCS≥0.6) Accall (GED≤4) FCD↓
LogP ↑ 0.0 0.986 0.278 0.376 0.186 9.142

0.1 0.976 0.462 0.498 0.214 7.812
0.2 0.920 0.416 0.458 0.196 9.762
0.3 0.884 0.386 0.414 0.206 9.649
0.4 0.840 0.350 0.402 0.210 10.812
0.5 0.842 0.356 0.380 0.194 10.700

SA ↓ 0.0 0.982 0.602 0.700 0.208 7.295
0.1 0.988 0.608 0.680 0.258 6.735
0.2 0.942 0.576 0.582 0.186 8.503
0.3 0.956 0.574 0.576 0.192 8.679
0.4 0.928 0.562 0.558 0.186 8.900
0.5 0.918 0.544 0.548 0.194 9.100

E ABLATION STUDY ON POLICY-UPDATE STRIDE

Table 6 presents a sensitivity analysis of the policy-update stride, comparing stride values in {1, 2, 3,
4, 5} under an identical fine-tuning budget of 500 steps. Each table entry reports Validity / Accall(TS
≥ 0.65) / FCD, enabling joint assessment of chemical correctness, structural-similarity–constrained
accuracy, and distributional fidelity. The results show that stride = 1 consistently achieves the best
performance across both LogP↑ and SA↓ tasks, providing the highest accuracy and lowest FCD
throughout the training trajectory. Increasing the stride reduces the frequency of policy updates,
which slows optimization progress and leads to noticeable degradation in both property alignment
and structural quality. These findings demonstrate that frequent policy updates are essential for stable
and effective reinforcement learning in the discrete diffusion setting, and we therefore adopt stride =
1 as the default configuration for all experiments.

F ABLATION STUDY ON TOP-K SAMPLING
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Table 6: Sensitivity analysis of policy-update stride

Task Step Stride=1 Stride=2 Stride=3 Stride=4 Stride=5

LogP ↑ 99 0.910/0.436/8.425 0.816/0.326/11.164 0.802/0.334/11.037 0.776/0.332/10.998 0.780/0.290/11.597
199 0.933/0.442/8.076 0.842/0.318/11.159 0.834/0.358/10.430 0.796/0.346/11.031 0.824/0.344/10.494
299 0.958/0.438/8.294 0.860/0.370/10.569 0.866/0.368/9.431 0.838/0.372/9.901 0.828/0.348/10.499
399 0.956/0.456/7.965 0.914/0.364/9.844 0.862/0.356/10.451 0.866/0.370/9.950 0.860/0.358/10.736
499 0.976/0.462/7.812 0.938/0.408/9.095 0.898/0.382/9.884 0.866/0.372/9.803 0.888/0.366/10.348

SA ↓ 99 0.984/0.587/7.466 0.848/0.526/9.482 0.844/0.516/9.466 0.780/0.430/11.379 0.788/0.436/10.665
199 0.982/0.580/7.510 0.872/0.536/9.378 0.876/0.522/9.474 0.818/0.456/10.692 0.834/0.486/10.459
299 0.978/0.591/7.322 0.916/0.556/8.818 0.904/0.550/9.191 0.862/0.480/10.197 0.896/0.548/8.881
399 0.971/0.599/7.251 0.946/0.598/8.333 0.910/0.558/8.757 0.904/0.504/9.925 0.904/0.558/8.636
499 0.988/0.608/6.735 0.956/0.592/8.202 0.932/0.512/9.737 0.924/0.530/9.523 0.920/0.574/8.904

Table 7 analyzes the effect of the top-k sampling parameter by evaluating settings from k = 5 to k
= 25 under otherwise identical inference conditions. Across both the LogP↑ and SA↓ tasks, model
performance remains largely stable, with only mild fluctuations in validity, structural-similarity
accuracy, and FCD. Smaller top-k values can restrict sampling diversity and slightly reduce structural
flexibility, while excessively large values introduce unnecessary stochasticity that may weaken
property alignment. Overall, moderate top-k values achieve the best balance between diversity and
reliability. Based on the observed trends, we adopt top-k = 15 as the default sampling configuration
in all experiments.

Table 7: Sensitivity analysis of top-k sampling parameter

Task Top-k Validity Accall (TS≥0.65) Accall (MCS≥0.6) Accall (GED≤4) FCD↓
LogP ↑ 5 0.956 0.460 0.462 0.208 7.924

10 0.950 0.458 0.438 0.202 7.977
15 0.976 0.462 0.498 0.214 7.812
20 0.946 0.448 0.490 0.216 8.110
25 0.940 0.456 0.492 0.224 8.082

SA ↓ 5 0.982 0.600 0.642 0.232 7.043
10 0.990 0.578 0.564 0.202 7.192
15 0.988 0.608 0.690 0.258 6.735
20 0.980 0.638 0.684 0.252 6.657
25 0.990 0.616 0.671 0.242 6.921

G ABLATION STUDY ON PARTIAL-SUCCESS REWARD

Table 8 presents an ablation study on the partial-success reward, evaluated using values in {0, 0.2,
0.4, 0.6, 0.8, 1.0}. This reward is assigned to molecules that are chemically valid but fail to satisfy
the editing objective, allowing the model to differentiate between invalid outputs and structurally
plausible but suboptimal edits. The results show that removing this reward entirely (0.0) leads to
unstable optimization and decreased validity, as the model receives no guidance for valid-but-incorrect
molecules. Conversely, overly large partial-success rewards (≥ 0.6) diminish the incentive to complete
the desired edit, resulting in lower similarity-constrained accuracy and higher FCD. Moderate values
in the range 0.2–0.4 provide the most effective balance between stability, structural fidelity, and
property optimization. Based on these observations, we adopt 0.2 as the default partial-success reward
in all experiments.

H ABLATION STUDY ON STRUCTURE-AWARE ATTENTION MECHANISM
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Table 8: Sensitivity analysis of partial-success reward values

Task Partial Reward Validity Accall (TS≥0.65) Accall (MCS≥0.6) Accall (GED≤4) FCD↓
LogP ↑ 0.0 0.952 0.484 0.508 0.202 7.906

0.2 0.976 0.462 0.498 0.214 7.812
0.4 0.962 0.464 0.528 0.218 7.859
0.6 0.958 0.480 0.504 0.202 8.234
0.8 0.964 0.434 0.468 0.208 8.890
1.0 0.964 0.402 0.438 0.216 9.458

SA ↓ 0.0 0.976 0.600 0.634 0.234 7.110
0.2 0.988 0.608 0.680 0.258 6.735
0.4 0.984 0.626 0.656 0.220 7.142
0.6 0.980 0.542 0.582 0.208 7.773
0.8 0.984 0.590 0.594 0.212 7.998
1.0 0.984 0.530 0.556 0.196 8.530

Table 9 presents an ablation study evaluating the structure-aware attention bias during both the
pretraining and fine-tuning stages. Including the bias during pretraining yields modest gains in
structural-similarity accuracy and FCD, reflecting its role as a helpful but not dominant inductive
prior when the model is learning general molecular distributions. However, the benefit becomes
significantly more pronounced after reinforcement learning fine-tuning. Models equipped with the
structure-aware bias during fine-tuning achieve substantially higher accuracy across all similarity-
constrained metrics and markedly lower FCD for both LogP↑ and SA↓ tasks. These results indicate
that while structural bias provides useful guidance during pretraining, its primary impact emerges
during RL optimization, where explicit graph-level constraints help the model perform chemically
valid, topology-preserving edits and avoid drifting away from realistic molecular structures.
Table 9: Ablation Study on Structure-Aware Attention Mechanism Across Pretraining and Fine-tuning
Stages

Task Setting Validity Accall (TS≥0.65) Accall (MCS≥0.6) Accall (GED≤4) FCD↓
LogP ↑ Pretrain w/o Structure Bias 0.744 0.176 0.208 0.182 13.714

Pretrain w/ Structure Bias 0.758 0.316 0.232 0.196 11.896
Finetune w/o Structure Bias 0.890 0.212 0.266 0.213 12.486
Finetune w/ Structure Bias 0.976 0.462 0.498 0.218 7.812

SA ↓ Pretrain w/o Structure Bias 0.836 0.196 0.224 0.128 12.364
Pretrain w/ Structure Bias 0.842 0.213 0.256 0.195 10.522
Finetune w/o Structure Bias 0.904 0.412 0.468 0.176 8.452
Finetune w/ Structure Bias 0.988 0.608 0.680 0.258 6.735

I COMPARISON OF PRETRAINED DIFFUSION AND RL FINE-TUNED MODELS

Table 10 presents a detailed comparison between the pretrained diffusion model and the RL fine-
tuned version of MolEditRL across five representative editing tasks. The results show that the
diffusion model alone already achieves strong structural fidelity, as reflected by the consistently high
MACCS_FTS, RDK_FTS, and Morgan_FTS scores, indicating that pretraining successfully learns a
stable and realistic structural prior. After RL fine-tuning, these structural similarity metrics remain
largely unchanged, demonstrating that the KL-regularized optimization preserves the learned molecu-
lar topology instead of distorting it. In contrast, RL fine-tuning brings substantial improvements in
validity and property-aligned accuracy, and consistently reduces FCD across all tasks, confirming that
the edited molecular distribution becomes closer to real molecules while more effectively satisfying
target properties. Overall, Table 10 highlights the complementary nature of the two stages: diffusion
pretraining establishes a reliable structure-aware foundation, and RL fine-tuning delivers targeted
property optimization without compromising structural integrity.
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Table 10: Performance comparison between pretrained diffusion model and RL fine-tuned model

Task Validity Accall(TS≥0.65) Accvalid(TS≥0.65) MACCS_FTS RDK_FTS Morgan_FTS FCD↓
QED↑ Pretrain 0.812 0.460 0.567 0.832 0.736 0.684 10.518

Finetune 0.974 0.604 0.620 0.834 0.735 0.667 7.678
Haccept↑ Pretrain 0.750 0.266 0.355 0.789 0.688 0.609 9.489

Finetune 0.968 0.484 0.500 0.798 0.691 0.623 7.316
LogP↑ Pretrain 0.758 0.316 0.417 0.776 0.672 0.643 11.896

Finetune 0.964 0.578 0.599 0.795 0.682 0.620 7.012
DRD2↑ Pretrain 0.850 0.220 0.259 0.796 0.698 0.637 11.194

Finetune 0.966 0.308 0.319 0.791 0.677 0.629 9.389
MW↑ Pretrain 0.774 0.142 0.184 0.783 0.651 0.562 10.890

Finetune 0.960 0.404 0.421 0.805 0.673 0.576 6.588

J COMPARISON WITH RL-BASED METHODS ON CHEMICAL REALISM METRICS

Figure 7 provides a comprehensive evaluation of the distributional shifts in key physicochemical
properties between the source molecules (Input) and the molecules optimized by MolEditRL (Output).
The green shaded regions delineate the ideal ranges for drug-like compounds according to medicinal
chemistry standards (e.g., Lipinski’s Rule of Five). The results demonstrate that MolEditRL does not
merely preserve the validity of the source molecules but actively optimizes their pharmacological
quality. Specifically, the Quantitative Estimate of Drug-likeness (QED) shows a substantial improve-
ment, with the mean value increasing from 0.44 to 0.59, shifting the distribution significantly into the
highly desirable range (> 0.5). Similarly, the Synthetic Accessibility (SA) score decreases from 3.48
to 3.16, indicating that the generated molecules are chemically easier to synthesize. Furthermore,
fundamental properties such as Molecular Weight (MW) and LogP shift towards more favorable,
central values within the ideal windows, avoiding the property drift often observed in generative
models. Most notably, the compliance ratio with Lipinski’s Rule of 5 improves dramatically from
52.7% in the source molecules to 84.7% in the output, underscoring MolEditRL’s ability to generate
structures that are not only target-optimized but also highly realistic, stable, and developable.

Figure 7: Stability and Synthesizability Analysis. Comparison of property distributions between
source molecules (Input) and MolEditRL-generated outputs (Output). The green shaded areas
represent ideal value ranges for drug-like candidates.
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Table 11 compares MolEditRL with three representative RL-based molecular optimization frame-
works—GCPN You et al. (2018), MolDQN Zhou et al. (2019), and REINVENT 4 Loeffler et al.
(2024)—under a strict oracle budget of 5,000 queries on the HIA↑ task, which is fully held out from
pretraining. Across all chemical realism metrics, including synthesizability, drug-likeness, and Lipin-
ski compliance, MolEditRL significantly outperforms existing RL methods and even improves beyond
the source molecules themselves. While traditional RL approaches tend to suffer from distributional
drift and generate chemically implausible structures when optimizing unseen properties, MolEditRL
maintains high validity, low FCD, and superior realism due to its KL-regularized objective. By
anchoring policy updates to the pretrained diffusion prior, the model avoids degenerate exploration
and consistently produces realistic, synthesizable, and pharmacologically relevant molecules.

Table 11: Comparison with RL-based methods on chemical realism metrics

Method Validity Accall (TS≥0.65) FCD↓ Is_Synthesizable Is_Druglike Lipinski_RO5

Source Molecule 1.000 - - 0.278 0.376 0.527
GCPN 0.858 0.000 20.260 0.047 0.153 0.205
MolDQN 1.000 0.003 13.152 0.092 0.178 0.246
Reinvent4 0.835 0.124 13.786 0.278 0.370 0.428
MolEditRL 0.958 0.466 7.964 0.460 0.681 0.847

K PROMPT SENSITIVITY ANALYSIS

Table 12 evaluates the prompt robustness of MolEditRL on the SA↓ task by testing five distinct
paraphrased natural-language instructions. Although Table 19 presents only one representative
template, the MolEdit-Instruct pretraining corpus contains many alternative linguistic formulations
for each editing objective, exposing the model to broad variability in syntax, vocabulary, and semantic
emphasis. To explicitly assess the effect of such variation, we evaluate the following five prompts: (1)
P1: “Reduce the synthetic accessibility of molecule SMILE.” (2) P2: “Make this molecule SMILE
easier to synthesize.” (3) P3: “Adjust the structure of SMILE to lower its synthetic complexity.” (4)
P4: “Modify SMILE so that its overall synthetic accessibility score decreases.” (5) P5: “Transform
the molecule SMILE into a form that is simpler to assemble synthetically.” The results show that
MolEditRL sustains consistently high validity, structural similarity accuracy, and competitive FCD
scores across all prompt variants, with only minor performance fluctuations. This indicates that the
model does not rely on any specific phrasing pattern; instead, it benefits from the diverse paraphrasing
present during pretraining, enabling a prompt-invariant and semantically robust understanding of user
instructions.

Table 12: Prompt sensitivity analysis on SA↓ task with diverse instruction formulations

Prompt Validity Accall(TS≥0.65) Accall(MCS≥0.6) Accall(GED≤4) FCD↓
P1 0.986 0.636 0.696 0.244 7.107
P2 0.974 0.604 0.618 0.253 7.307
P3 0.979 0.652 0.636 0.224 7.157
P4 0.984 0.629 0.614 0.244 7.052
P5 0.980 0.646 0.642 0.256 7.339

L COMPLEX LOCALIZED EDITING INSTRUCTIONS

To assess the flexibility of MolEditRL in interpreting complex, localized natural-language editing
instructions, we fine-tuned the pretrained model for 500 steps using five structurally explicit prompts.
Unlike simple property-based commands, these instructions specify concrete chemical operations such
as functional group removal, fragment addition, and scaffold simplification. The five prompts used
are: (1) P1: “Remove a CO2H group from SMILE and decrease its H-bond donor characteristics.” (2)
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P2: “Add an additional amide fragment to SMILE to increase its molecular weight.” (3) P3: “Remove
an aromatic ring from SMILE to lower its structural complexity and improve synthetic accessibility.”
(4) P4: “Reduce the synthetic accessibility of molecule SMILE.” (5) P5: “Eliminate a CONH unit
from SMILE to make the scaffold easier to assemble.” Table 13 reports the results using two key
metrics: FG Editing Success, which evaluates whether the required functional group operation is
correctly executed, and Accall(TS ≥ 0.65), which additionally requires structural similarity and
successful property alignment. Across all prompts, MolEditRL consistently achieves higher validity,
substantially better functional-group editing accuracy, and more realistic molecular outputs than
Reinvent4, while also maintaining strong synthesizability, drug-likeness, and Lipinski compliance.
These findings demonstrate that MolEditRL can reliably interpret fine-grained chemical instructions
and execute highly localized edits—capabilities that cannot be captured using scalar property targets
alone. This highlights natural language as a powerful and expressive interface for precise, interpretable
molecular manipulation.
Table 13: Performance on complex localized editing instructions demonstrating natural language
flexibility

Prompt Model Validity FG Editing Success Accall(TS≥0.65) FCD MACCS_FTS Is_Synthesizable Is_Druglike Lipinski_RO5

- Source Molecule 1.000 - - - - 0.278 0.376 0.520

P1 Reinvent4 0.656 0.252 0.078 15.77 0.428 0.157 0.267 0.297
MolEditRL 0.970 0.810 0.572 7.01 0.789 0.396 0.655 0.787

P2 Reinvent4 0.512 0.328 0.102 14.58 0.387 0.185 0.252 0.389
MolEditRL 0.968 0.798 0.360 8.98 0.785 0.332 0.574 0.884

P3 Reinvent4 0.606 0.320 0.112 13.28 0.385 0.157 0.188 0.246
MolEditRL 0.994 0.744 0.358 7.98 0.784 0.328 0.505 0.874

P4 Reinvent4 0.632 0.340 0.126 12.86 0.379 0.104 0.185 0.283
MolEditRL 0.984 0.872 0.370 7.93 0.763 0.392 0.591 0.839

P5 Reinvent4 0.642 0.234 0.128 12.32 0.365 0.160 0.179 0.204
MolEditRL 0.978 0.752 0.310 7.60 0.778 0.327 0.503 0.712

M ROBUSTNESS TO NOISY ORACLE

Table 14 evaluates the robustness of MolEditRL when the optimization oracle is imperfect or noisy—a
realistic scenario in molecular design where property predictors often contain estimation errors. To
simulate such conditions, we inject controlled label noise by randomly flipping oracle outputs at
varying rates from 0 to 0.2. Across both the LogP↑ and SA↓ tasks, MolEditRL maintains high
validity and stable editing accuracy, with only marginal fluctuations even under the highest noise
level. Importantly, structural similarity metrics and FCD remain largely unaffected, indicating that the
model continues to operate within a realistic chemical distribution despite corrupted reward signals.
These results show that MolEditRL does not rely on a perfect or deterministic oracle; instead, its
KL-regularized optimization anchors policy updates to the pretrained diffusion prior, preventing
overreaction to noisy rewards and ensuring consistent, reliable editing behavior.

Table 14: Robustness to Noisy Oracle Across Different Noise Levels

Task Noise Level Validity Accall (TS≥0.65) Accall (MCS≥0.6) Accall (GED≤4) FCD↓
LogP ↑ 0.0 0.976 0.462 0.498 0.214 7.812

0.05 0.920 0.457 0.508 0.220 7.529
0.1 0.944 0.460 0.514 0.219 7.582
0.15 0.924 0.454 0.488 0.216 7.925
0.2 0.914 0.448 0.472 0.212 8.215

SA ↓ 0.0 0.988 0.608 0.680 0.258 6.735
0.05 0.980 0.618 0.658 0.236 7.174
0.1 0.986 0.612 0.668 0.236 7.146
0.15 0.984 0.618 0.672 0.238 7.055
0.2 0.980 0.592 0.666 0.242 7.172
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N ORACLE-QUERY EFFICIENCY COMPARISON

Table 15 presents a detailed comparison of MolEditRL with three classical RL-based molecular
optimization frameworks—GCPN, MolDQN, and REINVENT4—under progressively increasing
oracle-query budgets from 1,000 to 5,000. We evaluate the HIA↑ property, which is entirely absent
from pretraining, making it an ideal benchmark for understanding real-world oracle efficiency when
optimizing previously unseen molecular attributes. Across all query budgets, MolEditRL consistently
achieves higher editing accuracy, lower FCD, and competitive validity compared to baseline RL
methods. This superior efficiency stems from the strong structure-aware prior established during
discrete diffusion pretraining, allowing MolEditRL to begin reinforcement learning from an already
realistic and structurally faithful distribution. In contrast, conventional RL approaches must rely on
uninformed trial-and-error exploration, requiring a large number of oracle interactions to discover
viable editing strategies. The consistent gains observed across all budgets highlight MolEditRL’s
ability to perform effective, low-cost molecular editing even when oracle access is limited.

Table 15: Oracle-query efficiency comparison on HIA↑ task across different oracle budgets

Oracle Queries Method Validity Accall (TS≥0.65) Accall (MCS≥0.6) Accall (GED≤4) FCD↓
1000 GCPN 0.842 0.000 0.000 0.026 22.140

MolDQN 1.000 0.002 0.138 0.086 15.598
Reinvent4 0.598 0.092 0.148 0.044 14.682
MolEditRL 0.864 0.388 0.408 0.202 9.686

2000 GCPN 0.882 0.000 0.000 0.022 21.175
MolDQN 1.000 0.000 0.122 0.026 14.857
Reinvent4 0.608 0.104 0.167 0.052 14.236
MolEditRL 0.898 0.396 0.448 0.218 9.489

3000 GCPN 0.878 0.000 0.000 0.016 21.324
MolDQN 1.000 0.002 0.156 0.036 14.828
Reinvent4 0.711 0.114 0.187 0.080 13.997
MolEditRL 0.902 0.430 0.472 0.216 8.609

4000 GCPN 0.850 0.000 0.000 0.022 20.672
MolDQN 1.000 0.002 0.156 0.032 13.362
Reinvent4 0.769 0.118 0.192 0.105 13.868
MolEditRL 0.928 0.448 0.488 0.214 8.387

5000 GCPN 0.858 0.000 0.000 0.029 20.260
MolDQN 1.000 0.003 0.142 0.045 13.152
Reinvent4 0.835 0.124 0.196 0.139 13.786
MolEditRL 0.958 0.466 0.490 0.226 7.964

O INFERENCE EFFICIENCY COMPARISON

Table 16 compares inference efficiency across baseline models and MolEditRL under varying skip-
step configurations during the reverse diffusion process. Here, step refers to the stride of the
denoising trajectory: with a total of 2000 diffusion steps, larger stride values (e.g., step = 500)
correspond to fewer denoising updates, while smaller stride values (e.g., step = 50) yield finer-grained
refinement with more update iterations. The results show that MolEditRL maintains strong accuracy
and favorable distributional fidelity even under coarse schedules, achieving lower FCD than large
LLM-based baselines while preserving fast per-sample inference time on an A6000 GPU. As the
stride decreases, performance gradually improves with moderate increases in computation. Overall,
MolEditRL demonstrates robust behavior under step skipping, delivering high-quality generations
across a wide range of schedules. Based on the balance between accuracy and runtime, we adopt step
= 50 as the default configuration in the main experiments.
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Table 16: Inference efficiency comparison across baselines and different denoising step settings

Method Validity Accall(TS≥0.65) Accall(MCS≥0.6) Accall(GED≤4) FCD↓ Time/Sample (s)

BioT5 1.000 0.000 0.004 0.000 13.4000 0.7550
DrugAssist 0.988 0.537 0.551 0.202 9.0500 1.5221
Gellm4o-C_L 0.849 0.218 0.224 0.104 10.6700 4.5600

MolEditRL (step=500) 0.900 0.536 0.590 0.220 7.9273 1.0608
(step=400) 0.924 0.568 0.628 0.240 7.5318 1.0684
(step=250) 0.952 0.588 0.644 0.234 7.3480 1.0954
(step=200) 0.956 0.576 0.638 0.234 7.4078 1.1135
(step=100) 0.972 0.590 0.668 0.232 7.1624 1.2039
(step=50) 0.988 0.608 0.680 0.258 6.7350 1.3857
(step=40) 0.979 0.624 0.682 0.234 6.5894 1.4778
(step=20) 0.988 0.628 0.686 0.246 6.4828 1.9286
(step=10) 0.984 0.636 0.690 0.238 6.2055 2.8393

P COMPUTATIONAL EFFICIENCY COMPARISON

Table 17 compares MolEditRL with a range of RL-based molecular editing approaches in terms of
both editing performance and computational efficiency on the HIA↑ task, which is fully excluded from
pretraining. Under a fixed 5,000-oracle budget, traditional RL methods such as GCPN, MolDQN,
and REINVENT4 fail to achieve meaningful accuracy due to their reliance on costly trial-and-
error exploration. In contrast, MolEditRL benefits from its pretrained structure-aware diffusion
prior, enabling effective fine-tuning with far fewer oracle queries and delivering substantially higher
similarity-constrained accuracy and lower FCD. Although MolEditRL incurs a one-time fine-tuning
cost, this investment yields performance that surpasses both RL-from-scratch and large LLM-based
baselines, which either suffer from poor editing precision or require heavy inference computation. At
inference time, MolEditRL requires no oracle calls and achieves 1.39 s/sample, supporting real-time
interactive molecular editing. These results demonstrate that MolEditRL achieves an advantageous
balance of accuracy, robustness, and computational efficiency compared to existing baselines.

Table 17: Computational Efficiency and Editing Performance Comparison Across Baselines

Method Validity Accall (TS≥0.65) Accall (MCS≥0.6) Accall (GED≤4) FCD↓ Finetune Time (min) Inference Time (s/sample)

GCPN 0.858 0.000 0.000 0.029 20.260 32.92 0.78
MolDQN 1.000 0.003 0.142 0.045 13.152 35.76 4.73
Reinvent4 0.835 0.124 0.196 0.139 13.786 40.51 0.85
MolEditRL 0.958 0.466 0.490 0.226 7.964 58.14 1.39

Q GRADIENT DERIVATION UNDER x0-PARAMETERIZATION

This appendix provides a complete derivation for the step in the main text going from the policy-
gradient term ∇θ log pθ(G

t−1
tgt | Gt

tgt, S,Gsrc) to its x0-parameterized form and the resulting reward-
weighted cross-entropy objective.

Q.1 SETUP AND ASSUMPTIONS

We consider a discrete diffusion setting on molecular graphs. The forward process defines a known
corruption distribution with an analytic posterior q(Gt−1

tgt | Gt
tgt, G

0
tgt). Let the conditioning variables

be C = (S,Gsrc). Our modeling assumptions are standard in conditional diffusion: (i) the reverse-step
factorization uses the forward posterior kernel, which depends only on (Gt

tgt, G
0
tgt) and is independent

of θ and C; and (ii) the model predicts pθ(G0
tgt | Gt

tgt, C).
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Q.2 THE PRECISE VERSION OF THE MAIN-TEXT EQ. (12)

By the law of total probability and the above conditional independence,

pθ
(
Gt−1

tgt | Gt
tgt, C

)
=

∑
G0

tgt

q
(
Gt−1

tgt | Gt
tgt, G

0
tgt

)
pθ
(
G0

tgt | Gt
tgt, C

)
. (15)

Equation equation 15 is an equality in the discrete diffusion setting. The common single-sample/MAP
form that replaces the sum by Ĝ0

tgt then becomes an approximation.

Q.3 LOG-GRADIENT OF A MIXTURE: A WEIGHTED EXPECTATION

Taking the logarithm of equation 15 and differentiating w.r.t. θ, using that q does not depend on θ,
yields the exact identity

∇θ log pθ
(
Gt−1

tgt | Gt
tgt, C

)
=

∑
G0

tgt

wθ

(
G0

tgt;G
t−1
tgt , Gt

tgt, C
)
∇θ log pθ

(
G0

tgt | Gt
tgt, C

)
, (16)

with normalized weights

wθ

(
G0

tgt; ·
)
=

q
(
Gt−1

tgt | Gt
tgt, G

0
tgt

)
pθ
(
G0

tgt | Gt
tgt, C

)∑
G′ q

(
Gt−1

tgt | Gt
tgt, G′

)
pθ
(
G′ | Gt

tgt, C
) . (17)

Thus, the exact gradient is a posterior-weighted expectation of ∇θ log pθ(G
0
tgt | Gt

tgt, C).

Q.4 PRACTICAL APPROXIMATIONS

Exact evaluation of equation 16 is intractable due to the exponential number of graphs. Ac-
cording to the Single-sample / straight-through (MAP) approximation, with K=1, or taking
Ĝ0

tgt = argmax pθ(G
0
tgt | Gt

tgt, C) and ignoring (or stop-gradient on) normalization, we obtain
the widely used estimator

∇θ log pθ(G
t−1
tgt | Gt

tgt, C) ≈ ∇θ log pθ

(
Ĝ0

tgt | Gt
tgt, C

)
, (18)

which is the approximation used to move from the equation 12 to equation 13. Direct REINFORCE
on log pθ(G

t−1
tgt | ·) has high variance due to (a) sparse rewards (only at t=0), (b) weak correlation

between intermediate noisy states and the terminal reward, and (c) accumulated stochasticity across
transitions. DDPO Black et al. (2023) treats the denoising steps as an MDP and applies step-wise
policy-gradient surrogates; GDPO Liu et al. (2024b) adapts these ideas to discrete graph diffusion and
proposes eager/low-variance estimators. The single-sample x0 surrogate in equation 18 is a practical
variance/computation trade-off also adopted in these works.

R DATASET STATISTICS

Our dataset is constructed following a procedure similar to DrugAssist Ye et al. (2025), involving
three main steps: (1) drug-like molecules are filtered from public databases such as ZINC and
ChEMBL based on Lipinski’s Rule of Five; (2) Matched Molecular Pairs (MMP) are extracted using
BRICS fragmentation to identify structurally similar molecule pairs with local edits; and (3) pairs
showing significant property shifts are retained, and corresponding natural language instructions are
generated to describe the desired property modifications. To prevent data leakage, we construct the
splits at the molecule level using canonical SMILES: duplicate or equivalent structures are removed,
and no molecule in the test set appears in the training set or in any RL fine-tuning inputs. This ensures
that all test-time molecules are entirely unseen by the model. Table 18 reports descriptive statistics
drawn directly from the MolEdit dataset. These ranges reflect the empirical distributions of property
values in our collected molecule pairs. The physicochemical properties in our dataset are carefully
selected in accordance with Lipinski’s Rule of Five, a key set of guidelines for drug-like molecules
that includes constraints on molecular weight (≤ 500 Da), LogP (≤ 5), hydrogen bond donors (≤ 5),
and hydrogen bond acceptors (≤ 10). These constraints are reflected in the value ranges of our dataset
properties. The dataset covers both biological activity properties and physicochemical properties,
each playing crucial roles in drug discovery:
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R.1 BIOLOGICAL ACTIVITY PROPERTIES

• DRD2 (Dopamine D2 receptor): A key target in antipsychotic drug development, with
values ranging from 0 to 1 indicating binding probability. Our dataset captures substantial
changes in DRD2 activity, from minor adjustments (±0.050) to major shifts (±0.951), where
positive values indicate decreased binding and negative values indicate increased binding.

• GSK3β (Glycogen synthase kinase-3 beta): An important target in treating neurological
disorders, with values from 0 to 1 representing inhibition probability. The dataset includes
modifications ranging from ±0.050 to ±0.750.

• JNK3 (c-Jun N-terminal kinase 3): A target for neurodegenerative diseases, with values
from 0 to 1 indicating inhibition probability. Property changes range from subtle (±0.030)
to significant (±0.690).

Table 18: Descriptive statistics of property changes in the MolEdit dataset.

Property Direction Pairs ∆ Range Source Range Target Range

DRD2 ↑ 80,627 [-0.951, -0.050] [0.000, 0.944] [0.050, 1.000]
↓ 80,627 [0.050, 0.951] [0.050, 1.000] [0.000, 0.944]

GSK3β ↑ 98,310 [-0.750, -0.050] [0.000, 0.940] [0.052, 0.990]
↓ 98,310 [0.050, 0.750] [0.052, 0.990] [0.000, 0.940]

JNK3 ↑ 94,131 [-0.690, -0.030] [0.000, 0.880] [0.040, 0.990]
↓ 94,131 [0.030, 0.690] [0.040, 0.990] [0.000, 0.880]

QED ↑ 97,750 [-0.794, -0.380] [0.041, 0.564] [0.438, 0.948]
↓ 98,249 [0.380, 0.794] [0.438, 0.948] [0.050, 0.565]

SA ↑ 90,192 [-6.563, -0.700] [1.059, 7.268] [2.189, 7.999]
↓ 87,453 [0.700, 6.104] [2.277, 7.996] [1.397, 7.268]

LogP ↑ 89,088 [-6.132, -2.625] [-17.073, 2.369] [-13.745, 5.000]
↓ 90,489 [2.625, 6.132] [-13.745, 5.000] [-17.073, 2.372]

MW ↑ 80,647 [-195.744, -99.031] [218.106, 399.216] [336.084, 499.999]
↓ 79,712 [99.031, 195.744] [336.073, 499.994] [218.094, 400.241]

HAccept ↑ 98,562 [-7.000, -2.000] [0.000, 8.000] [2.000, 10.000]
↓ 98,562 [2.000, 7.000] [2.000, 10.000] [0.000, 8.000]

HDonors ↑ 104,468 [-5.000, -2.000] [0.000, 3.000] [2.000, 5.000]
↓ 104,468 [2.000, 5.000] [2.000, 5.000] [0.000, 3.000]

RotBonds ↑ 66,369 [-9.000, -3.000] [0.000, 7.000] [3.000, 10.000]
↓ 65,806 [3.000, 9.000] [3.000, 10.000] [0.000, 7.000]

R.2 PHYSICOCHEMICAL PROPERTIES

• QED (Quantitative Estimate of Drug-likeness): Ranges from 0 to 1, where higher values
indicate better drug-likeness. Our dataset covers modifications from ±0.380 to ±0.794.

• SA (Synthetic Accessibility): Ranges from 1 to 10, where lower values indicate easier
synthesis. The dataset includes substantial changes from ±0.700 to ±6.563.

• MW (Molecular Weight): A fundamental property ranging from 218 to 500 Da in our
dataset, with modifications spanning ±99.031 to ±195.744 Da.

• LogP (Octanol-water partition coefficient): Measures lipophilicity, ranging from −17 to 5
in our dataset, with changes from ±2.625 to ±6.132.

• HDONORS (Hydrogen Bond Donors): Ranges from 0 to 5, with modifications of ±2 to
±5 donors.

• HACCEPT (Hydrogen Bond Acceptors): Ranges from 0 to 10, with changes of ±2 to ±7
acceptors.

• ROTBONDS (Rotatable Bonds): Ranges from 0 to 10, with modifications of ±3 to ±9
bonds, affecting molecular flexibility.
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For each property, table 18 shows the number of molecular pairs, the range of property changes (∆
Range), and the value distributions in both source and target molecules. The ± notation indicates
that changes occur in both directions — positive values for property reduction and negative values
for property increase, representing the observed range of property modifications across all molecule
pairs in the dataset.

R.3 NATURAL LANGUAGE PROMPTS

Table 19 presents the natural language prompts designed for our single property editing tasks. For
each of the ten molecular properties, we crafted two complementary prompts corresponding to
property value increase and decrease. The prompts are purposefully designed to be clear and concise
while maintaining chemical accuracy and relevance. For biological activity properties (DRD2,
GSK3β, JNK3), the prompts emphasize binding affinity and inhibitory activity. For physicochemical
properties, the prompts use specific chemical terminology (e.g., "hydrogen bond acceptors," "rotatable
bonds") while remaining accessible. Some prompts, such as those for LogP, include additional context
about the property’s practical implications (e.g., "enhance its fat solubility" or "improve its water
solubility"). Each prompt contains a [SMILE] placeholder that is replaced with the actual SMILES
string of the molecule to be modified during the editing process.

Table 19: Natural language prompts for single property editing tasks.

Property Direction Prompt

DRD2 ↑ Optimize this molecule [SMILE] to increase its DRD2 binding affinity.
↓ Help me reduce the DRD2 binding activity of molecule [SMILE].

GSK3β ↑ Help me optimize this molecule [SMILE] to improve its GSK3β inhibitory activity.
↓ Reduce the GSK3β inhibition potential of this molecule [SMILE].

JNK3 ↑ Enhance the JNK3 binding properties of molecule [SMILE].
↓ Make changes to lower the JNK3 binding affinity of molecule [SMILE].

QED ↑ Optimize the QED score of molecule [SMILE] to make it more drug-like.
↓ Decrease the QED value of this molecule [SMILE].

SA ↑ Make this molecule [SMILE] harder to synthesize.
↓ Make this molecule [SMILE] easier to synthesize.

LogP ↑ Help me increase the LogP value of molecule [SMILE] to enhance its fat solubility.
↓ Help me decrease the LogP value of molecule [SMILE] to improve its water solubility.

MW ↑ Help me increase the molecular weight of this molecule [SMILE].
↓ Help me reduce the molecular weight of this molecule [SMILE].

HAccept ↑ Add more hydrogen bond acceptors to this molecule [SMILE].
↓ Reduce the number of hydrogen bond acceptors in molecule [SMILE].

HDonors ↑ Help me increase the number of H-bond donors in [SMILE].
↓ Help me decrease the H-bond donor count in this molecule [SMILE].

RotBonds ↑ Add more rotatable bonds to this molecule [SMILE].
↓ Reduce the number of rotatable bonds in molecule [SMILE].

S LIMITATIONS AND FUTURE WORK

MolEditRL demonstrates strong and consistent performance in structure-preserving editing across
a wide range of chemical properties, particularly on small to medium-sized molecules. While our
current experiments focus on this regime, the underlying framework is designed to generalize and is
expected to extend effectively to larger biomolecules, such as proteins or complex natural products,
with minor adaptations. The reinforcement learning component leverages property oracles (e.g., from
RDKit and TDC) to guide optimization. These oracles validate MolEditRL’s effectiveness on widely
studied molecular properties. For less-characterized or emerging attributes, task-specific predictors
can be trained and integrated, enabling flexible extension of the framework to new property domains.

However, in particular, the framework may struggle when a target property is extremely rare, lacks
a reliable predictive model, or requires prohibitively expensive evaluations. In addition, when
user instructions contain logical contradictions—such as requesting simultaneous improvement of
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Table 20: Extended results on single-property molecular editing tasks. Bold indicates best perfor-
mance. Arrows (↑, ↓) denote desired property increase or decrease.

Model Task Validity Accall
(0.65)

Accvalid
(0.65)

Accall
(0.15)

Accvalid
(0.15) FCD Task Validity Accall

(0.65)
Accvalid
(0.65)

Accall
(0.15)

Accvalid
(0.15) FCD

REINVENT4

HACCEPT↑

0.524 0.19 0.3626 0.4 0.7634 11.0566

HACCEPT↓

0.704 0.19 0.2699 0.442 0.6278 11.7456
MolGen 1.0 0.022 0.022 0.256 0.256 14.6826 1.0 0.004 0.004 0.404 0.404 14.943
BioT5 1.0 0.0 0.0 0.148 0.148 30.3159 1.0 0.0 0.0 0.472 0.472 15.1916

DrugAssist 0.9439 0.3467 0.3673 0.4429 0.4692 8.7609 0.9819 0.161 0.1639 0.3421 0.3484 11.8052
Gellmo_M 0.904 0.064 0.0708 0.15 0.1659 14.259 0.89 0.298 0.3348 0.524 0.5888 9.2035
Gellmo_L 0.89 0.07 0.0787 0.162 0.182 12.7839 0.914 0.178 0.1947 0.508 0.5558 8.8893

MolEditRL 0.968 0.484 0.5 0.826 0.8533 7.3163 0.974 0.388 0.3984 0.712 0.731 9.0711
REINVENT4

SA↑

0.568 0.268 0.4718 0.548 0.7648 9.966

MW↓

0.7581 0.3841 0.5067 0.6585 0.8686 7.7976
MolGen 1.0 0.038 0.038 0.418 0.418 9.8619 1.0 0.016 0.016 0.432 0.432 14.4007
BioT5 1.0 0.0 0.0 0.36 0.36 16.5037 1.0 0.0 0.0 0.348 0.348 17.2348

DrugAssist 0.988 0.216 0.2186 0.294 0.2976 10.14 0.98 0.5391 0.5501 0.5872 0.5992 9.2859
Gellmo_M 0.91 0.12 0.1319 0.288 0.3165 8.9319 0.898 0.29 0.3229 0.564 0.6281 6.6778
Gellmo_L 0.912 0.104 0.114 0.28 0.307 8.9652 0.906 0.26 0.287 0.684 0.755 6.6965

MolEditRL 0.95 0.49 0.5158 0.776 0.8168 7.5281 0.984 0.632 0.6423 0.952 0.9675 6.3935
REINVENT4

HDONORS↑

0.678 0.268 0.3953 0.458 0.6755 11.739

DRD2↓

0.7 0.286 0.4086 0.418 0.5971 9.2662
MolGen 1.0 0.022 0.022 0.243 0.243 13.4729 1.0 0.042 0.042 0.418 0.418 11.0476
BioT5 1.0 0.0 0.0 0.144 0.144 23.7964 1.0 0.0 0.0 0.272 0.272 16.231

DrugAssist 0.9319 0.3267 0.3505 0.4449 0.4774 8.4057 0.984 0.524 0.5325 0.57 0.5793 7.5935
Gellmo_M 0.898 0.044 0.049 0.092 0.1024 12.5726 0.922 0.136 0.1475 0.274 0.2972 9.3582
Gellmo_L 0.896 0.04 0.0446 0.1 0.1116 14.7698 0.916 0.132 0.1441 0.336 0.3668 9.8566

MolEditRL 0.942 0.582 0.6178 0.842 0.8938 8.0114 0.986 0.656 0.6639 0.72 0.7302 6.549
REINVENT4

LOGP↑

0.61 0.114 0.1869 0.36 0.5902 13.997

LOGP↓

0.508 0.268 0.5276 0.424 0.8346 7.5582
MolGen 1.0 0.094 0.094 0.474 0.474 10.5549 1.0 0.11 0.11 0.474 0.474 13.7158
BioT5 1.0 0.0 0.0 0.492 0.492 27.5634 1.0 0.0 0.0 0.202 0.202 34.7724

DrugAssist 0.964 0.382 0.3963 0.442 0.4585 11.3282 0.966 0.548 0.5673 0.604 0.6253 6.3703
Gellmo_M 0.89 0.374 0.4202 0.724 0.8135 6.878 0.906 0.004 0.0044 0.224 0.2472 12.9582
Gellmo_L 0.91 0.268 0.2945 0.59 0.6484 6.7566 0.918 0.15 0.1634 0.444 0.4837 7.7802

MolEditRL 0.964 0.578 0.5996 0.91 0.944 6.0118 0.972 0.71 0.7305 0.94 0.9671 5.1015
REINVENT4

ROTBONDS↑

0.61 0.112 0.1836 0.384 0.6295 11.671

QED↓

0.652 0.15 0.2301 0.312 0.4785 11.1066
MolGen 1.0 0.084 0.084 0.356 0.356 11.3428 1.0 0.024 0.024 0.421 0.421 10.9996
BioT5 1.0 0.0 0.0 0.306 0.306 16.85 1.0 0.0 0.0 0.374 0.374 15.7723

DrugAssist 0.9537 0.1469 0.154 0.2716 0.2848 10.7588 0.9859 0.1044 0.1059 0.247 0.2505 10.8724
Gellmo_M 0.888 0.072 0.0811 0.16 0.1802 12.1059 0.924 0.012 0.013 0.15 0.1623 15.4165
Gellmo_L 0.888 0.098 0.1104 0.218 0.2455 10.0684 0.904 0.088 0.0973 0.218 0.2412 10.3736

MolEditRL 0.934 0.392 0.4197 0.764 0.818 7.2532 0.948 0.612 0.6456 0.894 0.943 6.9314

mutually exclusive properties—the model is unable to produce feasible edits. Looking ahead, we
plan to explore interactive, dialogue-based molecular editing, enabling users to iteratively refine
molecules via multi-turn natural language instructions. This direction could support more intuitive
and human-centric workflows for molecular design and lead optimization.

T LLM USAGE STATEMENT

Large language models were employed solely as general-purpose assistance tools during the writing
process, specifically for improving clarity and checking grammar. All technical contributions,
experimental results, and scientific insights are entirely the authors’ own work. No LLMs were used
to generate core research ideas, experimental data, or technical implementations. The authors take
full responsibility for all content and claims presented in this paper.

U EXTENDED SINGLE-PROPERTY RESULTS

Table 20 reports extended quantitative results for 10 representative single-property molecular editing
tasks from the MolEdit-Instruct benchmark. MolEditRL consistently achieves the highest accuracy
across both similarity thresholds, while maintaining high chemical validity and the lowest FCD scores
across most tasks. This indicates strong structural fidelity and superior alignment with target property
distributions. In contrast, baselines such as BioT5 and MolGen often generate valid molecules but
fail to satisfy property and similarity constraints. REINVENT4 and DrugAssist perform moderately
well but fall short in structural preservation and distributional realism. These detailed results further
confirm the robustness and effectiveness of MolEditRL in single-property editing scenarios.

V EXTENDED MULTI-PROPERTY RESULTS
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Table 21: Extended results on multi-property molecular editing tasks. Bold indicates best performance.
Arrows (↑, ↓) denote desired property increase or decrease.

Model Task Validity Accall
(0.65)

Accvalid
(0.65)

Accall
(0.15)

Accvalid
(0.15) FCD Task Validity Accall

(0.65)
Accvalid
(0.65)

Accall
(0.15)

Accvalid
(0.15) FCD

BioT5

HACCEPT↓
HDONORS↓

1.0 0.0 0.0 0.352 0.352 17.731

JNK3↓
QED↑

1.0 0.0 0.0 0.19 0.19 19.8292
DrugAssist 0.9819 0.2711 0.2761 0.3574 0.364 12.987 0.98 0.292 0.298 0.336 0.3429 11.1755

GeLLM3O_M 0.89 0.108 0.1213 0.264 0.2966 14.7575 0.914 0.148 0.1619 0.326 0.3567 10.123
GeLLM3O_L 0.9 0.146 0.1622 0.36 0.4 12.0622 0.9 0.098 0.1089 0.352 0.3911 10.866
MolEditRL 0.972 0.358 0.3739 0.612 0.6497 11.7393 0.976 0.33 0.3381 0.416 0.4262 9.6139

BioT5

HACCEPT↑
SA↑

1.0 0.0 0.0 0.098 0.098 24.7313

DRD2↓
GSK3B↑

1.0 0.0 0.0 0.088 0.088 24.19
DrugAssist 0.954 0.226 0.2369 0.284 0.2977 11.5424 0.992 0.104 0.1048 0.126 0.127 12.3998

GeLLM3O_M 0.918 0.012 0.0131 0.07 0.0763 23.0712 0.942 0.036 0.0382 0.064 0.0679 15.6116
GeLLM3O_L 0.904 0.026 0.0288 0.048 0.0531 14.8785 0.9 0.05 0.0556 0.098 0.1089 12.7831
MolEditRL 0.962 0.316 0.3583 0.58 0.6576 11.2492 0.97 0.186 0.1918 0.228 0.2351 11.4433

BioT5

LOGP↓
ROTBONDS↓

1.0 0.0 0.0 0.104 0.104 27.651

DRD2↑
SA↑

1.0 0.0 0.0 0.25 0.25 28.7563
DrugAssist 0.98 0.346 0.3531 0.384 0.3918 8.4341 0.976 0.212 0.2172 0.254 0.2602 11.4352

GeLLM3O_M 0.892 0.032 0.0359 0.128 0.1435 16.9039 0.898 0.102 0.1136 0.232 0.2584 11.5436
GeLLM3O_L 0.908 0.09 0.0991 0.3 0.3304 10.9156 0.924 0.07 0.0758 0.222 0.2403 12.0196
MolEditRL 0.97 0.454 0.468 0.686 0.7072 6.2095 0.912 0.23 0.2522 0.398 0.4364 10.8934

BioT5

LOGP↓
ROTBONDS↑

1.0 0.0 0.0 0.072 0.072 31.688

QED↓
ROTBONDS↑

1.0 0.0 0.0 0.216 0.216 19.1627
DrugAssist 0.96 0.09 0.0938 0.1 0.1042 19.404 0.984 0.24 0.2439 0.276 0.2805 11.0221

GeLLM3O_M 0.86 0.014 0.0163 0.034 0.0395 30.3704 0.878 0.014 0.0159 0.096 0.1093 21.1825
GeLLM3O_L 0.906 0.022 0.0243 0.06 0.0662 16.6925 0.902 0.064 0.071 0.166 0.184 11.7206
MolEditRL 0.954 0.344 0.3891 0.634 0.7172 12.0673 0.943 0.422 0.4742 0.83 0.9326 7.564

BioT5

MW↑
QED↓

1.0 0.0 0.0 0.27 0.27 17.3349

QED↓
SA↑

1.0 0.0 0.0 0.196 0.196 20.749
DrugAssist 0.98 0.298 0.3041 0.354 0.3612 9.5465 0.978 0.2325 0.2377 0.2766 0.2828 11.0132

GeLLM3O_M 0.926 0.072 0.0778 0.238 0.257 12.8711 0.906 0.086 0.0949 0.184 0.2031 10.3846
GeLLM3O_L 0.882 0.158 0.1791 0.316 0.3583 7.8458 0.894 0.078 0.0872 0.172 0.1924 10.3566
MolEditRL 0.944 0.35 0.4147 0.79 0.936 7.0482 0.938 0.592 0.6311 0.878 0.936 7.3882

BioT5
DRD2↓

HACCEPT↑
MW↓

1.0 0.0 0.0 0.016 0.016 49.8934
DRD2↑

HACCEPT↑
SA↑

1.0 0.0 0.0 0.07 0.07 36.9063
DrugAssist 0.95 0.062 0.0653 0.082 0.0863 14.6988 0.956 0.142 0.1485 0.192 0.2008 13.9149

GeLLM3O_M 0.91 0.018 0.0198 0.034 0.0374 16.9543 0.904 0.004 0.0044 0.064 0.0708 28.5396
GeLLM3O_L 0.916 0.01 0.0109 0.02 0.0218 24.1798 0.92 0.016 0.0174 0.05 0.0543 18.2579
MolEditRL 0.962 0.1 0.104 0.264 0.2744 12.5672 0.966 0.192 0.1988 0.288 0.2981 13.7681

BioT5
DRD2↑

HACCEPT↑
JNK3↑

1.0 0.0 0.0 0.086 0.086 28.2977
DRD2↑
JNK3↑
QED↓

1.0 0.0 0.0 0.116 0.116 23.0032
DrugAssist 0.972 0.09 0.0926 0.14 0.144 15.8384 0.99 0.114 0.1152 0.158 0.1596 13.438

GeLLM3O_M 0.904 0.03 0.0332 0.082 0.0907 23.1175 0.91 0.062 0.0681 0.13 0.1429 15.6618
GeLLM3O_L 0.91 0.026 0.0286 0.054 0.0593 18.5348 0.912 0.034 0.0373 0.082 0.0899 18.1148
MolEditRL 0.94 0.22 0.234 0.294 0.3128 13.1873 0.938 0.258 0.2751 0.438 0.467 9.2013

BioT5 GSK3B↑
HDONORS↑

QED↓
SA↑

1.0 0.0 0.0 0.066 0.066 32.3437 DRD2↓
GSK3B↑

HDONORS↑
LOGP↓

1.0 0.0 0.0 0.024 0.024 43.4139
DrugAssist 0.948 0.056 0.0591 0.062 0.0654 21.3896 0.954 0.02 0.021 0.028 0.0294 19.8179

GeLLM3O_M 0.902 0.002 0.0022 0.004 0.0044 24.7065 0.884 0.0 0.0 0.006 0.0068 60.738
GeLLM3O_L 0.914 0.012 0.0131 0.036 0.0394 18.4036 0.898 0.002 0.0022 0.008 0.0089 19.9507
MolEditRL 0.954 0.206 0.2159 0.416 0.4361 14.599 0.962 0.174 0.1809 0.232 0.2412 11.4978

BioT5 DRD2↓
GSK3B↓

HACCEPT↓
SA↓

1.0 0.0 0.0 0.088 0.088 30.4482 GSK3B↓
HDONORS↓

LOGP↑
MW↓

1.0 0.0 0.0 0.1 0.1 27.6262
DrugAssist 0.988 0.082 0.083 0.092 0.0931 21.3253 0.992 0.09 0.0907 0.098 0.0988 24.7748

GeLLM3O_M 0.91 0.042 0.0462 0.094 0.1033 18.8187 0.906 0.05 0.0552 0.108 0.1192 18.0398
GeLLM3O_L 0.918 0.042 0.0458 0.12 0.1307 20.2584 0.91 0.034 0.0374 0.11 0.1209 20.1217
MolEditRL 0.986 0.122 0.1237 0.21 0.213 14.735 0.966 0.146 0.1511 0.212 0.2195 18.0029

Table 21 presents detailed evaluation results on multi-property molecular editing tasks from the
MolEdit-Instruct benchmark. Each task involves optimizing 2 to 4 chemical properties simultaneously,
reflecting practical constraints encountered in real-world molecular design. MolEditRL consistently
achieves strong performance across all multi-property tasks, demonstrating its ability to balance
complex property requirements while preserving molecular validity and structural similarity. The
results confirm its robustness under increasingly constrained and realistic editing scenarios. The
property combinations in these tasks are carefully selected to reflect common design goals in
medicinal chemistry. For example, tasks like (HACCEPT↓, HDONORS↓) aim to reduce molecular
polarity, which is essential for improving membrane permeability and bioavailability. (LOGP↓,
ROTBONDS↓) targets molecules with lower lipophilicity and rigidity, which improves metabolic
stability and reduces off-target binding. On the other hand, combinations such as (MW↑, QED↓)
simulate early-stage exploration of larger, less drug-like molecules, often relevant in hit expansion or
macrocycle design. Biologically motivated combinations like (DRD2↓, GSK3β↑) reflect efforts to
reduce off-target dopamine receptor activity while enhancing GSK3β inhibition, a common challenge
in polypharmacology. Furthermore, high-complexity tasks such as (GSK3β↑, HDONORS↑, QED↓,
SA↑) require optimizing target activity while managing solubility, drug-likeness, and synthetic
complexity—mirroring real trade-offs in lead optimization pipelines. These results collectively
showcase MolEditRL’s effectiveness not only in individual property edits but also in realistic, multi-
objective optimization scenarios critical for practical drug development.

W ETHICS STATEMENT

This work focuses on computational molecular editing for drug discovery applications. We ac-
knowledge several ethical considerations: (1) Dataset Release: We release the MolEdit-Instruct
dataset publicly to benefit the research community, following established practices for molecular
datasets. All molecular data is derived from publicly available databases (ZINC, ChEMBL) and
contains no proprietary or sensitive information. (2) Intended Applications: Our method is designed
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to support legitimate drug discovery research, and the dataset is intended for beneficial applications
in medicine and chemistry. (3) Reproducibility: We provide comprehensive implementation details,
hyperparameters, and dataset construction procedures to ensure reproducible research. (4) No human
subjects were involved in this study, and all experiments were conducted on computational datasets.

X REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we provide comprehensive details across multiple sections:
(1) Model Architecture: Complete architectural specifications are provided in Appendix, including
all hyperparameters, network dimensions, and training configurations. (2) Training Setup: Detailed
training procedures, optimization settings, and hardware specifications are documented in Appendix.
(3) Dataset Construction: The MolEdit-Instruct dataset construction process is thoroughly described
in Appendix, including property definitions, filtering criteria, and prompt generation procedures. The
dataset is publicly available on Hugging Face. (4) Experimental Details: All evaluation metrics,
baseline implementations, and experimental protocols are specified in Section 4. (5) Code Availability:
Upon acceptance, we will release the complete implementation including model code, training scripts,
and evaluation pipelines to facilitate reproduction of all reported results.

Y MORE VISUALIZATION OF MOLECULAR EDITING

To further illustrate the editing behavior of different models, we present additional qualitative results
in Figure 8, Figure 9, and Figure 10. These figures show visualization of edits across 20 single-
property tasks. For each task, subfigure (a) displays the source molecule, and subfigures (b–e)
show successful edits produced by BioT5, DrugAssist, GeLLMO_L, and MolEditRL, respectively.
Red-colored substructures indicate regions that have been modified relative to the source molecule.
Across all tasks, MolEditRL consistently achieves the highest number of successful edits, as well
as the best structural fidelity—preserving the core scaffold of the original molecule while precisely
introducing the required modifications. Additionally, Figure 12, Figure 13, and Figure 14 highlight
side-by-side visual comparisons of different models editing the same molecular structure for a single
target property. These visualizations confirm that only MolEditRL can reliably perform property-
aligned edits while preserving molecular similarity. Competing models often over-modify or disrupt
key structural elements, leading to reduced similarity or invalid transformations.
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(a) Source (b) BioT5 (8/20 successful edits) (c) DrugAssist (9/20 successful edits)

(d) GeLLMO_L (6/20
successful edits) (e) MolEditRL (16/20 successful edits)

(f) Source (g) BioT5 (9/20 successful edits) (h) DrugAssist (9/20 successful edits)

(i) GeLLMO_L (9/20 successful edits) (j) MolEditRL (15/20 successful edits)

(k) Source (l) BioT5 (9/20 successful edits) (m) DrugAssist (8/20 successful edits)

(n) GeLLMO_L (10/20 successful edits) (o) MolEditRL (14/20 successful edits)

Figure 8: More visualization of edits on 20 tasks.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

(a) Source (b) BioT5 (10/20 successful edits) (c) DrugAssist (12/20 successful edits)

(d) GeLLMO_L (6/20 suc-
cessful edits) (e) MolEditRL (16/20 successful edits)

(f) Source (g) BioT5 (11/20 successful edits) (h) DrugAssist (12/20 successful edits)

(i) GeLLMO_L (9/20 successful edits) (j) MolEditRL (14/20 successful edits)

(k) Source (l) BioT5 (12/20 successful edits) (m) DrugAssist (12/20 successful edits)

(n) GeLLMO_L (7/20 successful ed-
its) (o) MolEditRL (16/20 successful edits)

Figure 9: More visualization of edits on 20 tasks.
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(a) Source (b) BioT5 (6/20 successful edits) (c) DrugAssist (9/20 successful edits)

(d) GeLLMO_L (5/20 successful ed-
its) (e) MolEditRL (14/20 successful edits)

(f) Source (g) BioT5 (11/20 successful edits) (h) DrugAssist (12/20 successful edits)

(i) GeLLMO_L (7/20 successful
edits) (j) MolEditRL (16/20 successful edits)

(k) Source (l) BioT5 (9/20 successful edits) (m) DrugAssist (9/20 successful edits)

(n) GeLLMO_L (5/20 successful edits) (o) MolEditRL (13/20 successful edits)

Figure 10: More visualization of edits on 20 tasks.
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Figure 11: Qualitative comparison of molecular editing methods.
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Figure 12: Qualitative comparison of molecular editing methods.
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Figure 13: Qualitative comparison of molecular editing methods.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Figure 14: Qualitative comparison of molecular editing methods.
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