

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MOLEdITRL: STRUCTURE-PRESERVING MOLECULAR EDITING VIA DISCRETE DIFFUSION AND REINFORCE- MENT LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Molecular editing aims to modify a given molecule to optimize desired chemical properties while preserving structural similarity. However, current approaches typically rely on string-based or continuous representations, which fail to adequately capture the discrete, graph-structured nature of molecules, resulting in limited structural fidelity and poor controllability. In this paper, we propose MolEditRL, a molecular editing framework that explicitly integrates structural constraints with precise property optimization. Specifically, MolEditRL consists of two stages: (1) a discrete graph diffusion model pretrained to reconstruct target molecules conditioned on source structures and natural language instructions; (2) an editing-aware reinforcement learning fine-tuning stage that further enhances property alignment and structural preservation by explicitly optimizing editing decisions under graph constraints. For comprehensive evaluation, we construct MolEdit-Instruct, the largest and most property-rich molecular editing dataset, comprising 3 million diverse examples spanning single- and multi-property tasks across 10 chemical attributes. Experimental results demonstrate that MolEditRL significantly outperforms state-of-the-art methods in both property optimization accuracy and structural fidelity, achieving a 74% improvement in editing success rate while using 98% fewer parameters.

1 INTRODUCTION

Designing molecules with tailored properties is essential for drug discovery Ma et al. (2024). Unlike *de novo* molecular generation that creates molecules from scratch Wang et al. (2022), molecular editing Hui et al. (2022) focuses on precisely modifying existing molecules to optimize targeted properties while preserving known structure-activity relationships Hansch (1969).

Traditional molecular editing approaches fall into three main paradigms: (1) Rule-based methods apply predefined fragment transformations Chen et al. (2021); Fu et al. (2021), but their generalization is limited by manually designed rules. (2) Latent generative models Jin et al. (2018); Shi et al. (2020) optimize molecular properties in continuous spaces, yet often struggle with fine-grained control due to latent compression. (3) Sequence-to-sequence methods He et al. (2021); Loeffler et al. (2024); Wu et al. (2024) frame editing as SMILES translation, enabling scalable learning but lacking structural precision, as small token changes can produce unpredictable or invalid edits Kusner et al. (2017); Krenn et al. (2020).

Recently, language models have expanded the landscape of molecular editing by integrating natural language understanding with chemical representations, enabling models to leverage semantic instruc-

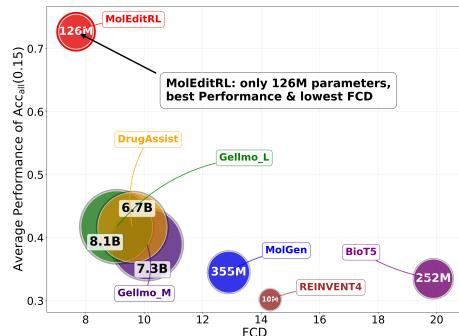


Figure 1: Performance, FCD, and parameter size comparison.

054 tions for molecular modifications: (1) Graph-embedding approach Liu et al. (2023) encodes both
 055 molecules and textual instructions into a shared latent space via contrastive learning. (2) SMILES-
 056 based models Ye et al. (2025); Le & Chawla (2024); Dey et al. (2025b) use retrieval-augmented
 057 generation or adopt instruction tuning to enhance editing relevance. (3) SELFIES-based method Fang
 058 et al. (2024) incorporates chemical feedback to reduce syntax errors and improve property alignment
 059 during generation. Despite their promise, these language-based methods often struggle to preserve
 060 scaffolds or perform precise, localized modifications, due to the non-uniqueness of textual molecular
 061 representations. Structurally similar molecules may appear textually distant, leading to inconsistent
 062 and unreliable edits Noutahi et al. (2024); Arús-Pous et al. (2019).

063 There are several critical challenges in molecular editing for ensuring structural preservation and
 064 editing precision: First, molecular editing must explicitly align with the discrete, graph-structured
 065 nature of molecules. String-based representations fail to explicitly encode topological constraints,
 066 often limiting the model’s ability to preserve scaffolds and perform localized modifications. Second,
 067 existing methods trained solely on fixed datasets lack mechanisms for actively exploring novel
 068 editing strategies, restricting generalization and adaptability to complex or underexplored regions
 069 of chemical space. Third, performing discrete edits directly on molecular graphs while preserving
 070 structural fidelity and aligning with natural language instructions is technically challenging due to the
 071 non-differentiable, high-dimensional nature of graph representations.

072 In this paper, we propose MolEditRL, a structure-aware molecular editing framework that combines
 073 discrete graph diffusion with reinforcement learning. MolEditRL first employs discrete diffusion
 074 to reconstruct target molecules conditioned simultaneously on source molecular structures and
 075 natural language instructions, effectively capturing both structural and semantic relationships. To
 076 further enhance the precision of property optimization and alignment with instructions, we introduce
 077 editing-aware reinforcement learning guided by explicit property rewards, while incorporating
 078 constraints to preserve structural integrity. To enable comprehensive evaluation, we introduce
 079 MolEdit-Instruct, a large-scale molecular editing dataset containing 3 million editing examples
 080 spanning 10 diverse chemical properties, including biological activities, physicochemical attributes,
 081 and synthetic accessibility. Compared to existing datasets Ye et al. (2025); Dey et al. (2025b),
 082 MolEdit-Instruct provides broader property coverage and more realistic single- and multi-property
 083 editing scenarios. We release MolEdit-Instruct publicly on Hugging Face to facilitate future research.

084 Experimental results demonstrate that MolEditRL significantly outperforms state-of-the-art methods
 085 in both editing accuracy and distributional fidelity (measured by Fréchet ChemNet Distance, FCD).
 086 Remarkably, MolEditRL achieves a 74% improvement in editing success rate over leading baselines
 087 while requiring 98% fewer parameters (Figure 1). Our contributions are summarized as follows: (1)
 088 We propose MolEditRL, a molecular editing framework explicitly designed to maintain structural
 089 integrity during editing. (2) We introduce a two-stage training strategy that combines discrete
 090 diffusion pretraining with reinforcement learning fine-tuning, achieving precise property optimization
 091 with structural constraints. (3) MolEditRL achieves SOTA editing performance with substantially
 092 fewer parameters and the lowest distributional distance (FCD) compared to existing methods.

093 2 RELATED WORKS

094 **Molecular Editing.** Molecular editing aims to modify a given molecule to enhance specific
 095 chemical properties while preserving its structural similarity. Formally, given a source molecule
 096 G_{src} and a textual instruction S describing desired modifications, the goal is to generate an edited
 097 molecule G_{tgt} that satisfies both the semantic intent of S and structural similarity constraints. This
 098 formulation enables flexible, user-centric molecular design where optimization objectives can be
 099 expressed intuitively. Existing molecular editing approaches typically fall into three main paradigms:
 100 (1) Rule-based Graph Editing. These methods directly manipulate molecular graphs using predefined
 101 or data-driven transformation rules, such as fragment replacements or bond editing templates, inspired
 102 by Matched Molecular Pairs (MMP) Dalke et al. (2018); Chen et al. (2021); Fu et al. (2021). While
 103 offering high chemical interpretability and precise local modifications, their generalizability is limited
 104 by the coverage and flexibility of manually or heuristically derived rules. (2) Latent Generative Graph
 105 Editing. Approaches such as JT-VAE Jin et al. (2018) and GraphAF Shi et al. (2020) encode molecules
 106 into continuous latent spaces and decode edited structures by sampling. Hierarchical decoding
 107 techniques like HierG2G Jin et al. (2020) enhance structural preservation by generating molecules

108 in a coarse-to-fine manner. However, these methods frequently face issues such as information
 109 loss due to latent compression, resulting in limited accuracy and insufficient control over edits. (3)
 110 Sequence-based Generation. These approaches treat molecular editing as a sequence translation task,
 111 converting source SMILES strings into target SMILES using Transformer-based architectures He
 112 et al. (2021); Loeffler et al. (2024); Wu et al. (2024). These models suffer from syntactic instability
 113 and representation ambiguity: structurally similar molecules can have significantly different SMILES
 114 representations, and small token-level edits may lead to unpredictable or chemically invalid outputs,
 115 limiting their precision and structural controllability. (4) Language-based models. MOLGEN Fang
 116 et al. (2024) addresses SMILES fragility by adopting the SELFIES representation. Methods such as
 117 ChatDrug Liu et al. (2024a), DrugAssist Ye et al. (2025), and Re2DF Le & Chawla (2024) utilize
 118 retrieval-augmented generation or instruction tuning to enhance editing relevance. Additionally,
 119 embedding-based methods leveraging diffusion Xiong et al. (2024) or contrastive learning Liu et al.
 120 (2023) have been proposed. Nonetheless, these approaches continue to rely on textual or continuous
 121 representations that lack explicit alignment with discrete molecular graph structures, compromising
 122 structural fidelity and editing accuracy.

123 **Reinforcement Learning in Molecular Generation.** Reinforcement learning (RL) provides a
 124 flexible framework for molecular optimization by formulating molecule generation as a Markov
 125 Decision Process (MDP), in which agents sequentially modify molecular structures to maximize
 126 rewards associated with desired chemical properties Sridharan et al. (2024). SMILES-based RL
 127 methods such as ReLeaSE Popova et al. (2018) and REINVENT Olivecrona et al. (2017) guide
 128 generative models using property predictors and prior policies. Graph-based RL methods, including
 129 MolGAN De Cao & Kipf (2018), GCPN You et al. (2018), and MoldQNN Zhou et al. (2019),
 130 facilitate goal-directed graph construction through adversarial training, policy gradients, or Q-learning.
 131 Recently, sequence-level discrete flow-based models such as InVirtuoGen Kaech et al. (2025), which
 132 operate on fragmented SMILES, have introduced refinement-driven fragment-level generation with
 133 the objective of optimizing molecular leads by iteratively improving given fragments. Although
 134 effective in exploring chemical space, these RL-based frameworks typically focus on *de novo*
 135 molecule generation and lack explicit mechanisms to enforce structural constraints derived from
 136 source molecules, limiting their applicability to structurally constrained molecular editing tasks.

137 3 METHOD

138 We present MolEditRL, a structure-preserving molecular editing framework trained in two stages.
 139 First, molecules and instructions are encoded into unified graph-text representations. Then, a structure-
 140 aware editing network is trained via (1) discrete diffusion pretraining to reconstruct target molecules
 141 from noisy graphs and instructions, and (2) reinforcement learning fine-tuning to optimize property
 142 alignment while preserving structural fidelity.

144 3.1 MOLECULAR TOKENIZING

145 As illustrated in Figure 2 (a), a molecule is represented as an attributed graph $G = (V, E)$, where V
 146 denotes atom nodes with associated features, and E denotes bond edges with bond-type attributes.
 147 The editing instruction is a sequence of tokens $S = [s_1, \dots, s_n]$. Given a source molecule graph
 148 $G_{src} = (V_{src}, E_{src})$, the model aims to predict the target graph $G_{tgt} = (V_{tgt}, E_{tgt})$ that reflects the
 149 required edits. These components are embedded and concatenated into a unified input sequence:

$$151 \quad h^0 = [h_1, \dots, h_n, h_{n+1}^{src}, \dots, h_{n+k}^{src}, h_{n+k+1}^{tgt}, \dots, h_{n+k+m}^{tgt}] \in \mathbb{R}^{(n+k+m) \times d_h}, \quad (1)$$

152 where $h_1, \dots, h_n \in \mathbb{R}^{d_h}$ are embeddings for the instruction tokens, $h_{n+1}^{src}, \dots, h_{n+k}^{src} \in \mathbb{R}^{d_h}$ encode
 153 source atoms, and $h_{n+k+1}^{tgt}, \dots, h_{n+k+m}^{tgt} \in \mathbb{R}^{d_h}$ encode target atoms. d_h is the model’s hidden size,
 154 and variable-size graphs are handled via sequence serialization with dynamic padding.

157 3.2 STRUCTURE-PRESERVING EDITING NETWORK

158 Recent work has demonstrated the effectiveness of unified architectures for multi-modal learning Xi-
 159 ang et al. (2024); Zhao et al. (2025). Such unified frameworks enable better capture of cross-modal
 160 dependencies and shared representations while reducing architectural complexity. To enable precise
 161 and structure-aware molecular editing, we propose the Structure-Preserving Editing Network, which

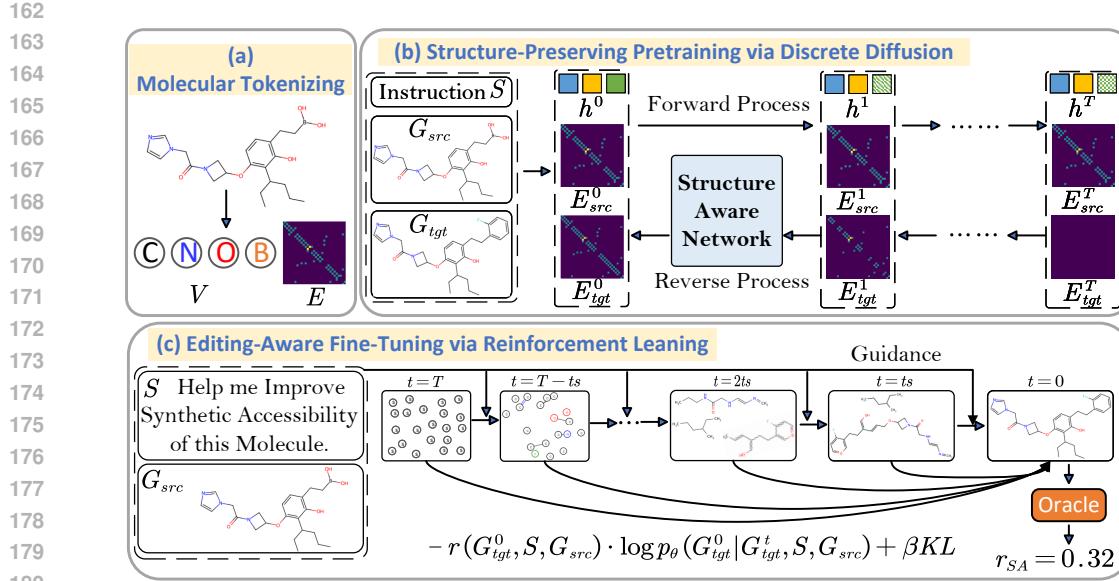


Figure 2: Overview of MolEditRL.

jointly encodes the semantic intent of natural language instructions and the topological features of source and target graphs. We initialize our transformer encoder with a pretrained RoBERTa model Liu (2019), but enhance it with a structure-aware attention mechanism. This mechanism injects bond-level connectivity priors into attention scores via learnable bias terms that encode graph connectivity, guiding attention flows to preserve structural integrity while selectively updating target representations. For tokens i and j at layer l , the raw attention score $\hat{A}_{i,j}^l$ is computed as:

$$\hat{A}_{i,j}^l = \frac{1}{\sqrt{d_k}} (h_i^l W_Q) (h_j^l W_K)^\top + b_{i,j}^l, \quad (2)$$

where $W_Q, W_K \in \mathbb{R}^{d_h \times d_k}$ are learnable projection matrices. To incorporate graph-level dependencies and better preserve structure during editing, we introduce $b_{i,j}^l$ to encode structural priors:

$$b_{i,j}^l = \begin{cases} E_{src}[i-n, j-n, :], & \text{if } n < i, j \leq n+k, \\ E_{tgt}[i-(n+k), j-(n+k), :], & \text{if } l=0 \text{ and } n+k < i, j, \\ A_{i,j}^{l-1}, & \text{if } l > 0 \text{ and } n+k < i, j, \\ 0, & \text{otherwise.} \end{cases} \quad (3)$$

The bias term $b_{i,j}^l$ preserves structure by injecting source adjacency at all layers, using target adjacency at the first layer, and propagating attention from previous layers to maintain topology-aware attention flow. The attention weights are then normalized, and the updated hidden states are calculated as:

$$A_{i,j}^l = \frac{\exp(\hat{A}_{i,j}^l)}{\sum_k \exp(\hat{A}_{i,k}^l)}, \quad h_i^{l+1} = \sum_j A_{i,j}^l (h_j^l W_V) W_O, \quad (4)$$

where $W_V \in \mathbb{R}^{d_h \times d_k}$ and $W_O \in \mathbb{R}^{d_k \times d_h}$ are learnable parameters. After L transformer layers, the model outputs $\hat{p}(V_{tgt}) \in \mathbb{R}^{m \times a}$ for atom types and $\hat{p}(E_{tgt}) \in \mathbb{R}^{m \times m \times b}$ for bond types, where m is the maximum number of atoms per molecule, a the atom vocabulary size, and b the number of bond types. Edge predictions are symmetrized $(e_{i,j} + e_{j,i})/2$ to respect bond-direction constraints.

3.3 STRUCTURE-PRESERVING PRETRAINING VIA DISCRETE DIFFUSION

As Figure 2 (b), we pretrain the editing network via a discrete denoising diffusion process conditioned on the source molecule and instruction, enabling topology-aware generation.

216 **1. Forward Process.** We define a discrete forward process that gradually corrupts the target molecular
 217 graph G_{tgt}^0 over T timesteps. At each step t , atom and bond features are independently masked with
 218 probability $\beta(t) = (T - t + 1)^{-1}$:

$$220 \quad q(G_{\text{tgt}}^{1:T} | G_{\text{tgt}}^0) = \prod_{t=1}^T q(G_{\text{tgt}}^t | G_{\text{tgt}}^{t-1}), \quad q(G_{\text{tgt}}^t | G_{\text{tgt}}^{t-1}) = (V_{\text{tgt}}^{t-1} Q_t^V, E_{\text{tgt}}^{t-1} Q_t^E), \quad (5)$$

221 where Q_t is a transition matrix that gradually increases the masking rate and $q()$ denotes the transition
 222 distribution of the forward diffusion process. At each step, each element remains the same with
 223 probability $1 - \beta(t)$ or transitions to [MASK] with probability $\beta(t)$. This process gradually converts
 224 G_{tgt}^0 into a fully masked graph G_{tgt}^T .

226 **2. Reverse Process.** To recover G_{tgt}^0 from the fully corrupted graph G_{tgt}^T , we train a denoising model
 227 ϕ_θ to iteratively refine G_{tgt}^t conditioned on the source molecule G_{src} and instruction S :

$$228 \quad p_\theta(G_{0:T-1} | G_{\text{tgt}}^T, G_{\text{src}}, S) = \prod_{t=1}^T p_\theta(G_{\text{tgt}}^{t-1} | G_{\text{tgt}}^t, G_{\text{src}}, S). \quad (6)$$

230 At each timestep, ϕ_θ predicts the denoised graph G_{tgt}^{t-1} using the editing network described earlier.

232 **3. Training Objective.** Although instruction S is not corrupted during diffusion, we include a
 233 cross-entropy loss on instruction tokens to enforce semantic alignment with the predicted molecule.

$$234 \quad \mathcal{L}_{\text{pre}} = \sum_{i=n+1}^{n+k+m} \text{CE}(v_i, \hat{p}_i(v_i)) + \sum_{i,j=n+k+1}^{n+k+m} \text{CE}(e_{i,j}, \hat{p}_{i,j}(e_{i,j}^t)) + \sum_{i=1}^n \text{CE}(s_i, \hat{p}_i(s_i)). \quad (7)$$

237 **4. Sampling.** At inference time we start from a fully masked graph G_{tgt}^T and iteratively apply the
 238 reverse process. Each step: (1) *Graph-Text Encoding*: The transformer ϕ_θ encodes G_{tgt}^t , G_{src} , and
 239 S , producing logits $\hat{p}(V_{\text{tgt}})$ and $\hat{p}(E_{\text{tgt}})$. (2) *Prediction*: Following x_0 -parameterization Austin et al.
 240 (2021), the model predicts the denoised graph as $\hat{G}_{\text{tgt}}^0 = \arg \max \hat{p}(V_{\text{tgt}}, E_{\text{tgt}})$. (3) *Sampling*: The
 241 next graph G_{tgt}^{t-1} is sampled from the posterior $q(G_{\text{tgt}}^{t-1} | G_{\text{tgt}}^t, \hat{G}_{\text{tgt}}^0)$ by independently sampling atoms
 242 and bonds: $G_{\text{tgt}}^{t-1} \sim \prod_i p_\theta(v_i^{t-1}) \prod_{i,j} p_\theta(e_{i,j}^{t-1})$.

244 3.4 EDITING-AWARE FINE-TUNING VIA REINFORCEMENT LEARNING

246 While the pretrained diffusion model captures molecular structure and ensures validity, it lacks
 247 explicit optimization for property-specific editing. We address this by introducing Editing-Aware
 248 Reinforcement Learning, which fine-tunes the model using rewards computed from well-established
 249 chemical toolkits (RDKit Bento et al. (2020) and TDC Huang et al. (2021)). A KL-regularized
 250 objective guides optimization toward desired properties while preserving structural consistency.

251 **1. MDP Formulation for Molecular Editing.** We recast discrete graph denoising as a Markov
 252 Decision Process (MDP) tailored specifically for molecular editing Uehara et al. (2024): (1) *State*:
 253 $s_t = (S, G_{\text{src}}, G_{\text{tgt}}^{T-t})$ includes the instruction, source molecule, and current noisy target graph. (2)
 254 *Action*: $a_t = G_{\text{tgt}}^{T-t-1}$ is sampled from the model’s predicted distribution over denoised graphs at
 255 the next step. (3) *Initial State*: $P_0(s_0) = p(S) p(G_{\text{src}}) q(G_{\text{tgt}}^T)$ combines an instruction, a source
 256 molecule, and a fully masked target graph. (4) *Transition*: Given a sampled action a_t , the next state
 257 becomes $s_{t+1} = (S, G_{\text{src}}, a_t)$. (5) *Policy*: The stochastic policy $\pi_\theta(a_t | s_t)$ outputs a categorical
 258 distribution over atom and bond types, from which a_t is sampled. (6) *Reward*: A scalar reward is
 259 assigned only at the final step ($t = T-1$) to evaluate editing success:

$$261 \quad R(s_t, a_t) = \begin{cases} r(G_{\text{tgt}}^0, S, G_{\text{src}}), & \text{if } t = T-1, \\ 0, & \text{otherwise,} \end{cases} \quad (8)$$

263 where $r(\cdot)$ equals 1 if the generated molecule successfully performs the required edit, 0.2 if it is
 264 chemically valid but does not fully satisfy the instruction, and 0 if it is invalid.

265 **2. KL-Regularized RL Objective.** To optimize molecular editing while preserving structural fidelity,
 266 we adopt a KL-regularized reinforcement learning objective. Formally, the objective is:

$$267 \quad \mathcal{L}(\theta) = -\mathbb{E}_{p(S) p(G_{\text{src}})} \mathbb{E}_{p_\theta(G_{\text{tgt}}^0)} [r(G_{\text{tgt}}^0, S, G_{\text{src}})] \\ 268 \quad + \beta \sum_{t=1}^T \mathbb{E}_{p_\theta(G_{\text{tgt}}^t)} \left[D_{\text{KL}}(p_\theta(G_{\text{tgt}}^0 | G_{\text{tgt}}^t, S, G_{\text{src}}) \| p_{\text{pre}}(G_{\text{tgt}}^0 | G_{\text{tgt}}^t, S, G_{\text{src}})) \right], \quad (9)$$

270 where p_θ is the current policy’s distribution over denoised target molecules at timestep t , and p_{pre} is
 271 the pretrained diffusion model, acting as a structure-aware prior. The coefficient β balances reward
 272 maximization and structural consistency and is set to 0.1 in our experiments. To stabilize training,
 273 we normalize the final reward of each trajectory within each batch: $\hat{A} = \frac{r - \text{mean}(r)}{\text{std}(r) + 10^{-6}}$. To reduce
 274 computation and improve efficiency, we apply policy updates at a fixed stride t_s , rather than every
 275 timestep. Specifically, we define the update set as: $\mathcal{T} = \{t \in [1, T] \mid t \bmod t_s = 0\}$, and compute
 276 gradients only at $t \in \mathcal{T}$. The resulting policy gradient becomes:
 277

$$\nabla_\theta J(\theta) = \mathbb{E}_{G_{\text{tgt}}^{0:T} \sim p_\theta} \left[\hat{A} \cdot \sum_{t \in \mathcal{T}} \nabla_\theta \log p_\theta(\hat{G}_{\text{tgt}}^0 \mid G_{\text{tgt}}^t, S, G_{\text{src}}) - \beta \sum_{t \in \mathcal{T}} \nabla_\theta D_{\text{KL}}(p_\theta \parallel p_{\text{pre}}) \right]. \quad (10)$$

280 **3. Gradient Estimation via x_0 -Parameterization.** We estimate the gradient of the reward term (i.e.,
 281 the first term of Eq. 9). By the policy gradient theorem, the gradient is:

$$\nabla_\theta \mathbb{E}_{G_{\text{tgt}}^{0:T}}[r] = \mathbb{E}_{G_{\text{tgt}}^{0:T}} \left[r(G_{\text{tgt}}^0, S, G_{\text{src}}) \cdot \sum_{t \in \mathcal{T}} \nabla_\theta \log p_\theta(G_{\text{tgt}}^{t-1} \mid G_{\text{tgt}}^t, S, G_{\text{src}}) \right]. \quad (11)$$

282 Since rewards are only available at $t=0$, directly estimating the gradient suffers from high variance Liu
 283 et al. (2024b). To reduce this, we adopt x_0 -parameterization Austin et al. (2021), rewriting the reverse
 284 transition as:

$$\nabla_\theta(G_{\text{tgt}}^{t-1} \mid G_{\text{tgt}}^t, S, G_{\text{src}}) = \sum_{G_{\text{tgt}}^0} q(G_{\text{tgt}}^{t-1} \mid G_{\text{tgt}}^t, G_{\text{tgt}}^0) p_\theta(G_{\text{tgt}}^0 \mid G_{\text{tgt}}^t, S, G_{\text{src}}), \quad (12)$$

285 where $q(\cdot)$ denotes the corruption distribution from the forward process. This approximation yields:
 286

$$\nabla_\theta \log p_\theta(G_{\text{tgt}}^{t-1} \mid G_{\text{tgt}}^t, S, G_{\text{src}}) \approx \nabla_\theta \log p_\theta(\hat{G}_{\text{tgt}}^0 \mid G_{\text{tgt}}^t, S, G_{\text{src}}). \quad (13)$$

287 A detailed derivation of this approximation is provided in Appendix Q. Under this formulation, the
 288 gradient of the reward term can be approximated via a reward-weighted cross-entropy loss:
 289

$$\sum_{t \in \mathcal{T}} r(G_{\text{tgt}}^0, S, G_{\text{src}}) \cdot \left(\sum_i \text{CE}(v_i^0, p_\theta(\cdot \mid G_{\text{tgt}}^t, S, G_{\text{src}})) + \sum_{i,j} \text{CE}(e_{i,j}^0, p_\theta(\cdot \mid G_{\text{tgt}}^t, S, G_{\text{src}})) \right), \quad (14)$$

290 where v_i^0 and $e_{i,j}^0$ are atoms and bonds in the final predicted molecule G_{tgt}^0 , reused as supervision
 291 targets at each selected step $t \in \mathcal{T}$.
 292

300 4 EXPERIMENTS

301 4.1 DATA CONSTRUCTION

302 We construct MolEdit, a large-scale and property-rich dataset specifically tailored for molecular
 303 editing with natural language instructions. Existing datasets, such as MolOpt-Instructions Ye et al.
 304 (2025), MuMOInstruct Dey et al. (2025b) and C-MuMOInstruct Dey et al. (2025a), are limited in
 305 either property coverage, task diversity, or data scale. MolEdit addresses these gaps by extending
 306 the property set to 10 diverse chemical attributes—spanning biological activity, physicochemical
 307 characteristics, and synthetic accessibility—and defining 20 representative editing tasks (10 increases
 308 and 10 decreases). It contains 3 million high-quality molecular pairs (967K unique), each exhibiting
 309 substantial property shifts while maintaining high structural similarity (Tanimoto scores from 0.650 to
 310 0.982). This provides a more realistic and comprehensive testbed for training and evaluating editing
 311 models. Further dataset construction details are provided in Appendix R. The model architecture
 312 is described in Appendix B, and the training setup is detailed in Appendix C. Additionally, to
 313 further validate our approach against existing methods, we also conducted pretraining and evaluation
 314 experiments on the C-MuMOInstruct dataset, with comprehensive results presented in Section 4.5.
 315

316 4.2 EVALUATION METRICS

317 To comprehensively assess molecular editing performance, we use the following metrics to evaluate
 318 chemical validity, editing accuracy under structural constraints, and overall molecular quality. Chemical
 319 validity and property values are computed using RDKit Bento et al. (2020) and Therapeutics
 320 Data Commons (TDC) Huang et al. (2021), two widely used and trusted toolkits for molecular
 321 analysis: (1) **Validity** is the proportion of generated molecules that are chemically valid, reflecting
 322 the model’s ability to produce syntactically correct molecular structures. (2) **Overall Accuracy**

324 Table 1: Comparison of molecular editing models across tasks. Bold indicates best performance.
325 Arrows (\uparrow , \downarrow) denote desired property increase or decrease.

327	Model	Task	Validity	TS ≥ 0.65		MCS ≥ 0.6		GED ≤ 4		FCD	Task	Validity	TS ≥ 0.65		MCS ≥ 0.6		GED ≤ 4		FCD
				Acc _{all}	Acc _{valid}	Acc _{all}	Acc _{valid}	Acc _{all}	Acc _{valid}				Acc _{all}	Acc _{valid}	Acc _{all}	Acc _{valid}	Acc _{all}	Acc _{valid}	
328	BioT5		1	0	0	0.0	0.0	0.066	0.066	15.00		1	0	0	0.004	0.004	0	0	13.40
329	MolGen		1	0.024	0.024	0.032	0.032	0.018	0.018	11.61		1	0.016	0.016	0.020	0.020	0.015	0.015	14.19
330	MoleculeSTM		0.794	0.096	0.097	0.116	0.120	0.094	0.112	12.81		0.728	0.074	0.086	0.098	0.115	0.044	0.063	13.59
331	Reinvent4		0.722	0.130	0.152	0.106	0.117	0.101	0.115	10.98		0.582	0.010	0.017	0.048	0.063	0.056	0.061	21.31
332	DrugAssist	GSK3 $\beta \uparrow$	0.976	0.236	0.242	0.258	0.264	0.212	0.222	9.42		0.988	0.537	0.544	0.551	0.558	0.202	0.205	9.05
333	Gelml ^o o_M		0.924	0.164	0.178	0.284	0.307	0.122	0.132	10.32		0.916	0.350	0.382	0.352	0.363	0.252	0.246	8.85
334	Gelml ^o o_L		0.902	0.114	0.126	0.256	0.260	0.170	0.198	9.74		0.888	0.238	0.268	0.262	0.276	0.194	0.208	9.10
335	Gelml ^o o_C_M		0.908	0.144	0.152	0.224	0.235	0.214	0.232	9.84		0.864	0.326	0.377	0.401	0.409	0.217	0.229	9.85
336	Gelml ^o o_C_L		0.922	0.138	0.145	0.196	0.199	0.162	0.190	10.82		0.849	0.218	0.226	0.224	0.248	0.104	0.143	10.67
337	MolEditRL		0.952	0.342	0.359	0.364	0.382	0.242	0.254	7.99		0.988	0.628	0.638	0.694	0.702	0.248	0.251	7.10
338	BioT5		1	0	0	0.048	0.048	0	0	17.21		1	0	0	0.101	0.101	0	0	16.95
339	MolGen		1	0.017	0.017	0.062	0.062	0.037	0.037	16.19		1	0.072	0.072	0.094	0.094	0.063	0.063	12.57
340	MoleculeSTM		0.741	0.044	0.049	0.066	0.080	0.048	0.052	11.93		0.672	0.098	0.105	0.129	0.148	0.091	0.122	11.67
341	Reinvent4		0.701	0.143	0.241	0.113	0.164	0.106	0.109	11.70		0.581	0.173	0.197	0.189	0.197	0.105	0.109	12.15
342	DrugAssist	QED \uparrow	0.980	0.532	0.543	0.449	0.456	0.216	0.255	9.68	Haccept \downarrow	0.984	0.372	0.378	0.328	0.335	0.126	0.152	12.33
343	Gelml ^o o_M	SA \downarrow	0.882	0.012	0.014	0.138	0.143	0.107	0.113	13.20	LogP \uparrow	0.906	0.224	0.247	0.254	0.268	0.207	0.212	10.68
344	Gelml ^o o_L		0.904	0.206	0.228	0.213	0.226	0.114	0.127	9.76		0.904	0.130	0.144	0.168	0.176	0.138	0.149	11.24
345	Gelml ^o o_C_M		0.924	0.188	0.197	0.192	0.198	0.135	0.149	10.47		0.905	0.237	0.243	0.254	0.259	0.169	0.176	10.91
346	Gelml ^o o_C_L		0.894	0.209	0.216	0.248	0.280	0.108	0.123	11.09		0.911	0.220	0.223	0.248	0.251	0.184	0.192	10.83
347	MolEditRL		0.974	0.632	0.649	0.678	0.715	0.268	0.271	7.54		0.946	0.316	0.334	0.344	0.356	0.224	0.232	10.11
348	BioT5		1	0	0	0	0	0	0	24.32		1	0	0	0.064	0.064	0	0	26.24
349	MolGen		1	0.039	0.039	0.075	0.075	0.012	0.012	11.95		1	0.033	0.033	0.061	0.061	0.031	0.031	13.75
350	MoleculeSTM		0.693	0.038	0.041	0.090	0.109	0.076	0.081	11.43		0.638	0.014	0.016	0.032	0.035	0.040	0.046	14.87
351	Reinvent4	DRD2 \downarrow	0.522	0.093	0.230	0.153	0.163	0.124	0.135	11.49	Haccept \downarrow	0.638	0.017	0.163	0.103	0.112	0.091	0.107	12.08
352	DrugAssist	MW \downarrow	0.980	0.422	0.431	0.388	0.472	0.236	0.242	9.89	MW \uparrow	0.956	0.230	0.241	0.248	0.251	0.126	0.129	11.72
353	Gelml ^o o_M	SA \downarrow	0.900	0.080	0.089	0.150	0.181	0.112	0.114	10.35	QED \downarrow	0.906	0.010	0.016	0.023	0.029	0.014	0.015	16.22
354	Gelml ^o o_L		0.918	0.108	0.118	0.130	0.152	0.104	0.109	10.19		0.886	0.042	0.047	0.051	0.060	0.032	0.039	15.70
355	Gelml ^o o_C_M		0.916	0.072	0.080	0.127	0.144	0.116	0.118	11.21		0.897	0.128	0.131	0.119	0.125	0.094	0.097	11.76
356	Gelml ^o o_C_L		0.909	0.155	0.164	0.198	0.218	0.164	0.198	10.07		0.853	0.188	0.190	0.198	0.205	0.144	0.161	10.38
357	MolEditRL		0.986	0.518	0.525	0.548	0.566	0.252	0.261	7.28		0.958	0.430	0.449	0.432	0.436	0.228	0.232	9.79

(Acc_{all}(τ)) and Valid Accuracy (Acc_{valid}(τ)) jointly measure editing success under structural similarity constraints. We employ three complementary structural similarity metrics with corresponding thresholds: Tanimoto similarity (TS ≥ 0.65) Bajusz et al. (2015), Maximum Common Substructure similarity (MCS ≥ 0.6) Cao et al. (2008), and Graph Edit Distance (GED ≤ 4) Gao et al. (2010). For each threshold τ , Acc_{all}(τ) is the percentage of all outputs that satisfy both the desired property changes and structural similarity constraints; Acc_{valid}(τ) restricts this to valid molecules only. This multi-metric approach provides comprehensive evaluation of structure preservation: TS captures fingerprint-based similarity, MCS quantifies shared molecular scaffolds, and GED measures the minimum structural editing operations required. (3) **Fréchet ChemNet Distance (FCD)** Preuer et al. (2018) quantifies the distributional distance between generated and reference molecules. Lower FCD values indicate better alignment in chemical space, capturing both diversity and realism.

4.3 EXPERIMENTAL RESULTS

We compare MolEditRL against publicly released, large-scale-trained molecule-editing models, evaluated in their released form; baseline details are provided in Appendix A. Table 1 compares the performance of various molecular editing models on single-property and multi-property tasks using our comprehensive multi-metric evaluation framework. MolEditRL consistently achieves the highest editing accuracy across all tasks and structural similarity metrics (TS ≥ 0.65 , MCS ≥ 0.6 , GED ≤ 4). Although SELFIES-based models (BioT5, MolGen) guarantee perfect chemical validity, they fail to maintain structural similarity, achieving zero accuracy on most metrics, which reflects a lack of structural alignment. DrugAssist, based on SMILES and LLM fine-tuning, maintains high validity but performs significantly worse than MolEditRL on both Acc_{all} and Acc_{valid}. This indicates that chemical correctness alone is insufficient for precise, property-aligned editing. Although DrugAssist generates valid molecules, it struggles to retain scaffold similarity while optimizing properties. All baseline models yield substantially higher FCD scores than MolEditRL, suggesting greater divergence from real molecule distributions. In contrast, MolEditRL generates molecules that are both valid and distributionally faithful, benefiting from structure-aware graph editing. For multi-property tasks, we evaluate scenarios aligned with real-world drug discovery objectives, such as improving stability and synthesis (Haccept \downarrow , LogP \uparrow), balancing drug-likeness and accessibility (QED \uparrow , SA \downarrow), and managing conflicting constraints (Haccept \uparrow , MW \uparrow , QED \downarrow). MolEditRL consistently outperforms all baselines across all similarity metrics, with the convergent high performance across TS, MCS, and GED providing comprehensive evidence of effective multi-objective optimization while preserving molecular scaffolds. Extended results on single-property and multi-property tasks are available in Appendix U and Appendix V, respectively.

Table 2: Generalization to unseen properties. Results on editing three held-out molecular properties (BBBP, HIA, hERG) that are excluded from the pretraining dataset.

Model	Task	Validity	Acc _{call} (0.65)	Acc _{call} (0.65)	Acc _{call} (0.15)	Acc _{valid} (0.15)	FCD	Task	Validity	Acc _{call} (0.65)	Acc _{call} (0.65)	Acc _{call} (0.15)	Acc _{valid} (0.15)	FCD
BioT5	BBBP ↓	1.0	0.0	0.0	0.276	0.276	25.7031	BBBP ↑	1.0	0.0	0.0	0.452	0.452	21.4869
DrugAssist		0.9719	0.3066	0.3155	0.3727	0.3835	7.4848		0.9879	0.3952	0.4	0.5423	0.549	7.9316
GeLLM ³ O_M		0.9	0.17	0.1889	0.33	0.3667	7.8632		0.908	0.06	0.0661	0.356	0.3921	9.4042
GeLLM ³ O_L		0.92	0.116	0.1261	0.292	0.3174	7.8038		0.91	0.254	0.2791	0.716	0.7868	7.2142
MolEditRL		0.944	0.326	0.337	0.516	0.5347	7.9091		0.954	0.409	0.418	0.782	0.8075	6.7043
BioT5		1.0	0.0	0.0	0.426	0.426	15.246		1.0	0.0	0.0	0.356	0.356	15.7829
DrugAssist	HIA ↓	0.982	0.344	0.3503	0.408	0.4155	7.0462	HIA ↑	0.976	0.2725	0.2793	0.4068	0.4168	9.7314
GeLLM ³ O_M		0.904	0.124	0.1372	0.286	0.3164	8.2303		0.904	0.348	0.385	0.662	0.7323	7.2866
GeLLM ³ O_L		0.894	0.134	0.1499	0.382	0.4273	8.1844		0.922	0.222	0.2408	0.554	0.6009	7.7484
MolEditRL		0.98	0.374	0.3816	0.628	0.6396	6.8726		0.986	0.446	0.4523	0.738	0.7459	6.7928
BioT5		1.0	0.0	0.0	0.396	0.396	16.3127		1.0	0.0	0.0	0.368	0.368	15.0537
DrugAssist		0.9659	0.2992	0.3098	0.4438	0.4595	7.815		0.9839	0.2294	0.2331	0.4064	0.4131	9.9241
GeLLM ³ O_M	hERG ↓	0.91	0.162	0.178	0.308	0.3385	7.9945	hERG ↑	0.89	0.194	0.218	0.554	0.6225	7.5913
GeLLM ³ O_L		0.914	0.144	0.1575	0.424	0.4639	8.0866		0.922	0.062	0.0672	0.364	0.3948	11.7363
MolEditRL		0.986	0.474	0.4807	0.694	0.7039	6.0764		0.972	0.31	0.3189	0.59	0.6147	6.8304

Table 3: Performance comparison on C-MuMOInstruct dataset. Bold values indicate the best performance for each metric.

Properties	Validity			Total_Accuracy			Valid_Accuracy		
	GeLLM ⁴ O-C_M	GeLLM ⁴ O-C_L	MolEditRL	GeLLM ⁴ O-C_M	GeLLM ⁴ O-C_L	MolEditRL	GeLLM ⁴ O-C_M	GeLLM ⁴ O-C_L	MolEditRL
bbbb+plgop+qed	0.9118	0.9076	0.952	0.2064	0.2605	0.302	0.2264	0.287	0.3172
erg+liver+qed	0.934	0.925	0.952	0.174	0.25	0.278	0.1863	0.2703	0.289
ampa+care+erg+plgop	0.934	0.944	0.954	0.226	0.208	0.229	0.242	0.2203	0.231
bbhp+drd2+plgop+qed	0.9359	0.9518	0.956	0.2285	0.3373	0.338	0.2441	0.3544	0.341
drd2+lia+mutagenicity+qed	0.924	0.9226	0.958	0.18	0.191	0.286	0.1948	0.2048	0.294
care+drd2+erg	0.894	0.8043	0.948	0.138	0.2174	0.266	0.1544	0.2703	0.275
ampa+bbhp+mutagenicity+plgop	0.9499	0.9024	0.94	0.2545	0.2358	0.202	0.2679	0.2613	0.223
bbhp+care+mutagenicity+qed	0.9519	0.8889	0.96	0.2104	0.1818	0.247	0.2211	0.2045	0.288
bbhp+drd2+erg+qed	0.908	0.8302	0.944	0.186	0.1887	0.236	0.2048	0.2273	0.275
lia+liver+mutagenicity+plgop+qed	0.942	0.9423	0.946	0.212	0.2212	0.202	0.2251	0.2347	0.2135

4.4 GENERALIZATION TO UNSEEN PROPERTIES

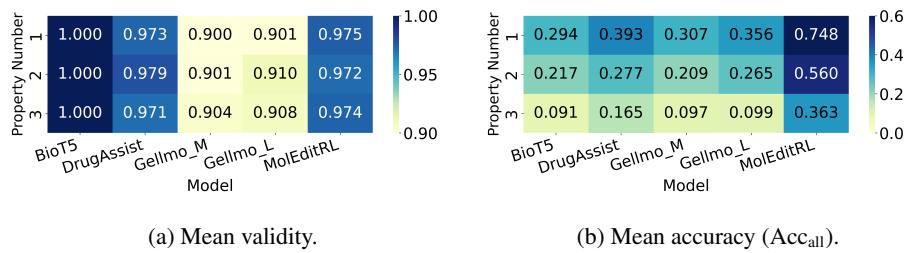
We evaluate MolEditRL on three properties—BBBP, HIA, and hERG inhibition—that are entirely absent from the MolEdit-Instruct pretraining corpus. These pharmacokinetic and safety-related attributes allow us to assess the model’s ability to adapt to new optimization objectives not seen during pretraining. In this setup, the pretrained model is fine-tuned via reinforcement learning using property-specific oracles, without requiring any prior data or molecule–property pairs for these tasks. MolEditRL only receives natural-language descriptions of the unseen objectives and relies on RL fine-tuning over arbitrary molecules, simulating realistic deployment scenarios where new properties emerge after pretraining. Unlike baseline approaches, no additional pretraining or dataset construction is needed. As shown in Table 2, MolEditRL achieves the best performance across all unseen-property tasks, with the highest editing accuracy under both strict ($\tau = 0.65$) and relaxed ($\tau = 0.15$) structural similarity constraints, while maintaining high validity and the lowest FCD. These results demonstrate that MolEditRL can efficiently generalize to entirely new property objectives through task-specific reward oracles—without retraining the model from scratch.

4.5 EVALUATION ON C-MUMOINSTRUCT DATASET

To further assess the generality of MolEditRL, we evaluate it on the publicly available C-MuMOInstruct dataset Dey et al. (2025a), a large instruction-tuning benchmark for controllable multi-property molecular optimization. Each task specifies which properties must increase or decrease to target thresholds while keeping others unchanged, requiring models to satisfy complex multi-objective constraints across 3–5 attributes simultaneously. We generate one edited molecule per instruction and measure chemical validity, total accuracy, and valid accuracy. As shown in Table 3, MolEditRL achieves competitive or superior performance compared to the much larger GeLLM⁴O-C models. It obtains the highest validity in 8 of 10 tasks and outperforms both baselines in 7 tasks in terms of total accuracy, with clear gains on challenging combinations such as “drd2+hia+mutagenicity+qed” and “carc+drd2+erg.” Although larger models show slight advantages on a few tasks, the differences remain small. These results demonstrate that MolEditRL can match or exceed the performance of models with over 50x more parameters (7B+ vs. 125M), highlighting the effectiveness of our structure-aware diffusion and reinforcement learning framework for multi-property molecular optimization.

432 4.6 MULTI-PROPERTY EDITING PERFORMANCE
433

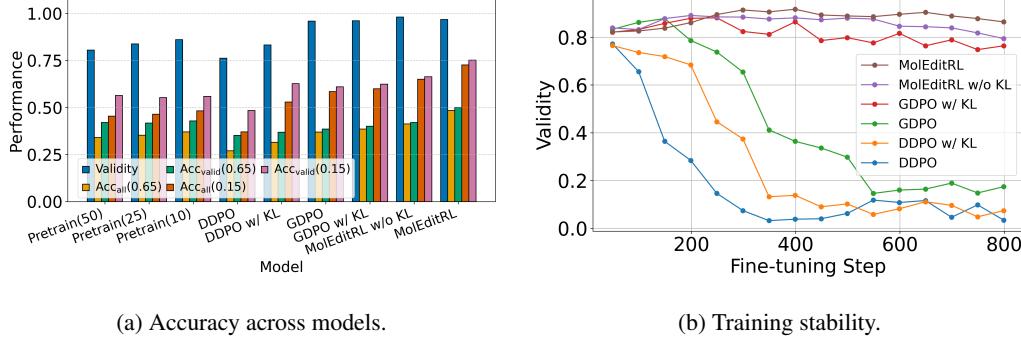
434 To assess model robustness under increasing task complexity, we evaluate performance on molecular
435 editing tasks involving 1, 2, or 3 simultaneous property changes. For each setting, 10 combinations
436 of editing objectives are randomly sampled, and the results are averaged. Figure 3(a) shows mean
437 chemical validity, while (b) presents mean editing accuracy using TS similarity threshold of 0.15.
438 As expected, accuracy drops for all models as the number of target properties increases, reflecting
439 the challenge of jointly satisfying multiple constraints while preserving molecular structure. Some
440 models maintain high validity but suffer from very low accuracy, indicating that generating chemically
441 plausible molecules alone is insufficient for precise, property-aligned edits. MolEditRL consistently
442 outperforms all baselines across all settings. In the most difficult 3-property scenario, it achieves an
443 average accuracy of 0.363, more than double the second-best baseline (DrugAssist, 0.165). These
444 results demonstrate the effectiveness of our structure-aware diffusion framework and reinforcement
445 learning fine-tuning in enabling scalable and precise instruction-based molecular editing.
446



(a) Mean validity.

(b) Mean accuracy (Acc_all).

Figure 3: Performance by number of edited properties.

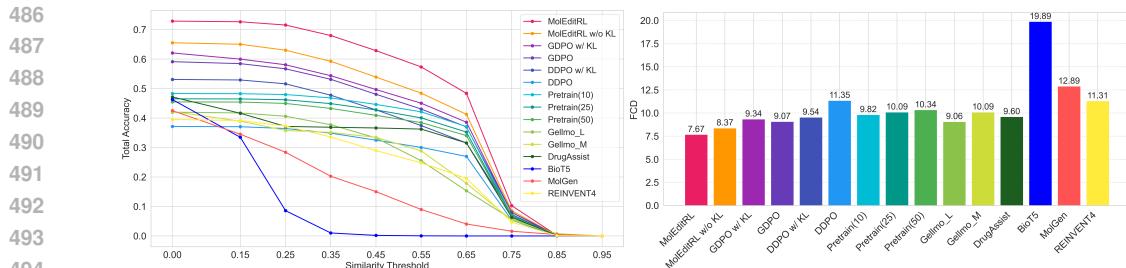
456 4.7 EFFECT OF FINE-TUNING STRATEGIES AND KL REGULARIZATION
457

(a) Accuracy across models.

(b) Training stability.

Figure 4: Impact of step size, fine-tuning strategy, and KL regularization.

471 We conduct ablation studies on denoising step size, RL fine-tuning strategies, and KL regularization
472 (Figure 4). Results are averaged over 20 single-property editing tasks. Subfigure (a) shows accuracy
473 and validity; (b) shows training stability. "Pretrain(x)" denotes models without RL fine-tuning,
474 where $x \in \{50, 25, 10\}$ is the denoising step size. Smaller x improves accuracy but increases
475 computational cost. We use $t_s = 50$ as the policy update stride for efficiency. We compare two
476 RL strategies: DDPO applies REINFORCE independently at each denoising step, while GDPO
477 leverages x_0 -parameterization to optimize only the final output. DDPO performs joint fine-tuning
478 across all tasks but suffers from instability since intermediate molecules are chemically meaningless.
479 GDPO improves stability but requires separate models for each task, limiting scalability. Neither
480 method enforces structural constraints during fine-tuning. MolEditRL introduces KL-regularized
481 optimization over the entire diffusion process, enabling stable, structure-aware fine-tuning across
482 diverse tasks. It consistently achieves higher accuracy and validity than both alternatives. Figure 4(b)
483 shows DDPO exhibits rapid validity degradation regardless of KL regularization, indicating inherent
484 instability in step-wise optimization. GDPO shows improved stability with KL regularization but
485 plateaus below MolEditRL's performance due to task-specific limitations. MolEditRL maintains
486 consistently high accuracy and validity throughout training, with KL regularization further enhancing
487 stability without compromising performance.



(a) Accuracy under increasing similarity thresholds. (b) Fréchet ChemNet Distance across models.
Figure 5: Performance comparison under structural constraints.

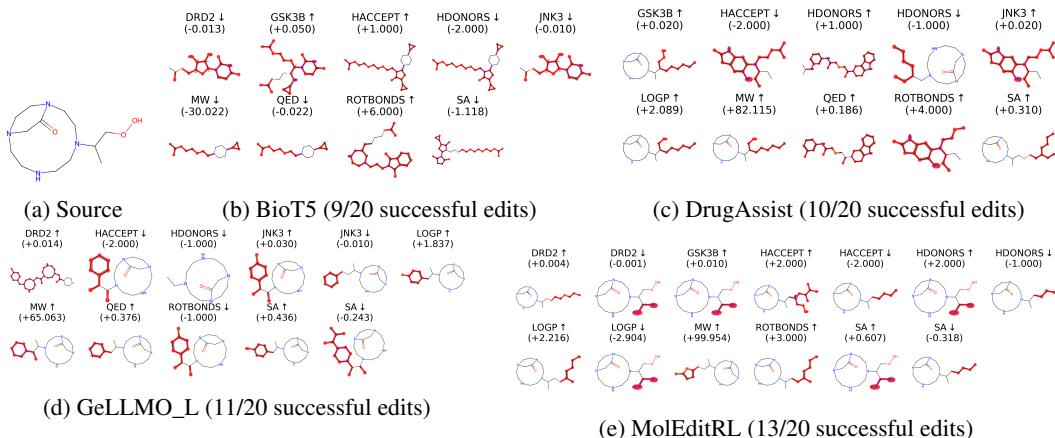


Figure 6: Visualization of edits. Red highlights indicate structural changes from the source.

4.8 STRUCTURE FIDELITY AND DISTRIBUTIONAL QUALITY

Figure 5(a) shows Acc_{all} across different Tanimoto similarity thresholds. MolEditRL consistently achieves the highest accuracy at all thresholds, demonstrating its ability to generate molecules that satisfy desired property changes while preserving structural similarity. In contrast, LLM-based baselines such as BioT5 and MolGen perform substantially worse, especially under stricter similarity constraints. Figure 5(b) reports Fréchet ChemNet Distance (FCD) at a fixed threshold of 0.15. Lower FCD indicates better alignment between the distributions of generated and real molecules. Consistent with the accuracy results in (a), MolEditRL achieves the lowest FCD, highlighting its ability to produce chemically realistic and distributionally faithful molecules.

4.9 QUALITATIVE ANALYSIS OF MOLECULAR EDITING

We visualize successful molecular modifications from four representative models across 20 single-property tasks using the same source molecule. As shown in Figure 6, MolEditRL achieves the highest task success rate and is the only model that consistently preserves the core scaffold across all edits, demonstrating strong structural controllability. In contrast, BioT5 and DrugAssist frequently produce structurally divergent molecules with scaffold disruptions, while GeLLMO_L maintains partial alignment but still alters major structural components in several cases. These qualitative observations align with our quantitative results and highlight the effectiveness of MolEditRL’s structure-aware diffusion and full-trajectory RL fine-tuning. Additional visualizations are provided in Appendix Y.

5 CONCLUSION

We introduce MolEditRL, a novel framework that integrates discrete graph diffusion with reinforcement learning to enable precise, structure-preserving molecular edits. It achieves state-of-the-art performance on the MolEdit-Instruct benchmark while using significantly fewer parameters.

540 REFERENCES
541

542 Josep Arús-Pous, Simon Viet Johansson, Oleksii Prykhodko, Esben Jannik Bjerrum, Christian
543 Tyrchan, Jean-Louis Reymond, Hongming Chen, and Ola Engkvist. Randomized smiles strings
544 improve the quality of molecular generative models. *Journal of cheminformatics*, 11:1–13, 2019.

545 Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
546 denoising diffusion models in discrete state-spaces. *NeurIPS*, 34:17981–17993, 2021.

547 Dávid Bajusz, Anita Rácz, and Károly Héberger. Why is tanimoto index an appropriate choice for
548 fingerprint-based similarity calculations? *Journal of cheminformatics*, 7:1–13, 2015.

549 A Patrícia Bento, Anne Hersey, Eloy Félix, Greg Landrum, Anna Gaulton, Francis Atkinson, Louisa J
550 Bellis, Marleen De Veij, and Andrew R Leach. An open source chemical structure curation pipeline
551 using rdkit. *Journal of Cheminformatics*, 12:1–16, 2020.

552 Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion models
553 with reinforcement learning. *arXiv preprint arXiv:2305.13301*, 2023.

554 Yiqun Cao, Tao Jiang, and Thomas Girke. A maximum common substructure-based algorithm for
555 searching and predicting drug-like compounds. *Bioinformatics*, 24(13):i366–i374, 2008.

556 557 558 Ziqi Chen, Martin Renqiang Min, Srinivasan Parthasarathy, and Xia Ning. A deep generative model
559 for molecule optimization via one fragment modification. *Nature machine intelligence*, 3(12):
560 1040–1049, 2021.

561 Andrew Dalke, Jerome Hert, and Christian Kramer. mmpdb: An open-source matched molecular
562 pair platform for large multiproperty data sets. *Journal of chemical information and modeling*, 58
563 (5):902–910, 2018.

564 565 Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs.
566 *arXiv preprint arXiv:1805.11973*, 2018.

567 568 Vishal Dey, Xiao Hu, and Xia Ning. Large language models for controllable multi-property multi-
569 objective molecule optimization. *arXiv preprint arXiv:2505.23987*, 2025a.

570 571 Vishal Dey, Xiao Hu, and Xia Ning. GeLLM³⁰: Generalizing large language models for multi-property
572 molecule optimization. *arXiv preprint arXiv:2502.13398*, 2025b.

573 574 Yin Fang, Ningyu Zhang, Zhuo Chen, Lingbing Guo, Xiaohui Fan, and Huajun Chen. Domain-
575 agnostic molecular generation with chemical feedback. In *The Twelfth International Conference
576 on Learning Representations*, 2024.

577 578 Tianfan Fu, Cao Xiao, Xinhao Li, Lucas M Glass, and Jimeng Sun. Mimosa: Multi-constraint
579 molecule sampling for molecule optimization. In *Proceedings of the AAAI Conference on Artificial
580 Intelligence*, volume 35, pp. 125–133, 2021.

581 582 Xinbo Gao, Bing Xiao, Dacheng Tao, and Xuelong Li. A survey of graph edit distance. *Pattern
583 Analysis and applications*, 13(1):113–129, 2010.

584 585 Corwin Hansch. Quantitative approach to biochemical structure-activity relationships. *Accounts of
586 chemical research*, 2(8):232–239, 1969.

587 588 Jiazen He, Huifang You, Emil Sandström, Eva Nittinger, Esben Jannik Bjerrum, Christian Tyrchan,
589 Werngard Czechitzky, and Ola Engkvist. Molecular optimization by capturing chemist’s intuition
590 using deep neural networks. *Journal of cheminformatics*, 13:1–17, 2021.

591 592 Kexin Huang, Tianfan Fu, Wenhao Gao, Yue Zhao, Yusuf Roohani, Jure Leskovec, Connor W Coley,
593 Cao Xiao, Jimeng Sun, and Marinka Zitnik. Therapeutics data commons: Machine learning
594 datasets and tasks for drug discovery and development. *arXiv preprint arXiv:2102.09548*, 2021.

595 596 Chunngai Hui, Zhuo Wang, Shiping Wang, and Chunfa Xu. Molecular editing in natural product
597 synthesis. *Organic Chemistry Frontiers*, 9(5):1451–1457, 2022.

594 Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
 595 molecular graph generation. In *ICML*, pp. 2323–2332. PMLR, 2018.

596

597 Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Hierarchical generation of molecular graphs
 598 using structural motifs. In *ICML*, pp. 4839–4848. PMLR, 2020.

599 Benno Kaech, Luis Wyss, Karsten Borgwardt, and Gianvito Grasso. Refine drugs, don't com-
 600 plete them: Uniform-source discrete flows for fragment-based drug discovery. *arXiv preprint*
 601 *arXiv:2509.26405*, 2025.

602

603 Mario Krenn, Florian Häse, AkshatKumar Nigam, Pascal Friederich, and Alan Aspuru-Guzik. Self-
 604 referencing embedded strings (selfies): A 100% robust molecular string representation. *Machine*
 605 *Learning: Science and Technology*, 1(4):045024, 2020.

606 Matt J Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar variational autoencoder.
 607 In *International conference on machine learning*, pp. 1945–1954. PMLR, 2017.

608 Khiem Le and Nitesh V Chawla. Utilizing large language models in an iterative paradigm with
 609 domain feedback for molecule optimization. *arXiv preprint arXiv:2410.13147*, 2024.

610

611 Shengchao Liu, Weili Nie, Chengpeng Wang, Jiarui Lu, Zhuoran Qiao, Ling Liu, Jian Tang, Chaowei
 612 Xiao, and Animashree Anandkumar. Multi-modal molecule structure–text model for text-based
 613 retrieval and editing. *Nature Machine Intelligence*, 5(12):1447–1457, 2023.

614 Shengchao Liu, Jiongxiao Wang, Yijin Yang, Chengpeng Wang, Ling Liu, Hongyu Guo, and Chaowei
 615 Xiao. Conversational drug editing using retrieval and domain feedback. In *The Twelfth International*
 616 *Conference on Learning Representations*, 2024a.

617

618 Yijing Liu, Chao Du, Tianyu Pang, Chongxuan Li, Min Lin, and Wei Chen. Graph diffusion policy
 619 optimization. *NeurIPS*, 37:9585–9611, 2024b.

620 Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. *arXiv preprint*
 621 *arXiv:1907.11692*, 364, 2019.

622

623 Hannes H Loeffler, Jiazhen He, Alessandro Tibo, Jon Paul Janet, Alexey Voronov, Lewis H Mervin,
 624 and Ola Engkvist. Reinvent 4: Modern ai–driven generative molecule design. *Journal of Chemin-*
 625 *formatics*, 16(1):20, 2024.

626 Chunhua Ma, Craig W Lindsley, Junbiao Chang, and Bin Yu. Rational molecular editing: a new
 627 paradigm in drug discovery, 2024.

628

629 Emmanuel Noutahi, Cristian Gabellini, Michael Craig, Jonathan SC Lim, and Prudencio Tossou.
 630 Gotta be safe: a new framework for molecular design. *Digital Discovery*, 3(4):796–804, 2024.

631

632 Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular de-novo
 633 design through deep reinforcement learning. *Journal of cheminformatics*, 9:1–14, 2017.

634

635 Qizhi Pei, Wei Zhang, Jinhua Zhu, Kehan Wu, Kaiyuan Gao, Lijun Wu, Yingce Xia, and Rui Yan.
 636 Biot5: Enriching cross-modal integration in biology with chemical knowledge and natural language
 637 associations. *arXiv preprint arXiv:2310.07276*, 2023.

638

639 Mariya Popova, Olexandr Isayev, and Alexander Tropsha. Deep reinforcement learning for de novo
 640 drug design. *Science advances*, 4(7):eaap7885, 2018.

641

642 Kristina Preuer, Philipp Renz, Thomas Unterthiner, Sepp Hochreiter, and Gunter Klambauer. Fréchet
 643 chemnet distance: a metric for generative models for molecules in drug discovery. *Journal of*
 644 *chemical information and modeling*, 58(9):1736–1741, 2018.

645

646 Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. Graphaf: a
 647 flow-based autoregressive model for molecular graph generation. *arXiv preprint arXiv:2001.09382*,
 648 2020.

649

650 Bhuvanesh Sridharan, Animesh Sinha, Jai Bardhan, Rohit Modee, Masahiro Ehara, and U Deva
 651 Priyakumar. Deep reinforcement learning in chemistry: A review. *Journal of Computational*
 652 *Chemistry*, 45(22):1886–1898, 2024.

648 Masatoshi Uehara, Yulai Zhao, Tommaso Biancalani, and Sergey Levine. Understanding rein-
649 forcement learning-based fine-tuning of diffusion models: A tutorial and review. *arXiv preprint*
650 *arXiv:2407.13734*, 2024.

651 Mingyang Wang, Zhe Wang, Huiyong Sun, Jike Wang, Chao Shen, Gaoqi Weng, Xin Chai, Honglin
652 Li, Dongsheng Cao, and Tingjun Hou. Deep learning approaches for de novo drug design: An
653 overview. *Current opinion in structural biology*, 72:135–144, 2022.

654 Zhenxing Wu, Odin Zhang, Xiaorui Wang, Li Fu, Huifeng Zhao, Jike Wang, Hongyan Du, Dejun
655 Jiang, Yafeng Deng, Dongsheng Cao, et al. Leveraging language model for advanced multiproperty
656 molecular optimization via prompt engineering. *Nature Machine Intelligence*, pp. 1–11, 2024.

657 Yuran Xiang, Haiteng Zhao, Chang Ma, and Zhi-Hong Deng. Instruction-based molecular graph
658 generation with unified text-graph diffusion model. *arXiv preprint arXiv:2408.09896*, 2024.

659 Yida Xiong, Kun Li, Weiwei Liu, Jia Wu, Bo Du, Shirui Pan, and Wenbin Hu. Text-guided multi-
660 property molecular optimization with a diffusion language model. *arXiv preprint arXiv:2410.13597*,
661 2024.

662 Geyan Ye, Xibao Cai, Houtim Lai, Xing Wang, Junhong Huang, Longyue Wang, Wei Liu, and
663 Xiangxiang Zeng. Drugassist: A large language model for molecule optimization. *Briefings in*
664 *Bioinformatics*, 26(1):bbae693, 2025.

665 Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional policy
666 network for goal-directed molecular graph generation. *Advances in neural information processing*
667 *systems*, 31, 2018.

668 Lei Zhao, Linfeng Feng, Dongxu Ge, Rujin Chen, Fangqiu Yi, Chi Zhang, Xiao-Lei Zhang, and
669 Xuelong Li. Uniform: A unified multi-task diffusion transformer for audio-video generation. *arXiv*
670 *preprint arXiv:2502.03897*, 2025.

671 Zhenpeng Zhou, Steven Kearnes, Li Li, Richard N Zare, and Patrick Riley. Optimization of molecules
672 via deep reinforcement learning. *Scientific reports*, 9(1):10752, 2019.

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 APPENDIX
703
704705 This appendix provides extended technical and experimental details that support the findings in the
706 main paper. It is organized as follows:707 (1) Appendix A: **Baseline methods** (BioT5, DrugAssist, GeLLMO, MolGen, REINVENT 4,
708 MoleculeSTM).
709 (2) Appendix B: **Model architecture** (RoBERTa, embeddings, diffusion modules).
710 (3) Appendix C: **Training setup** (hyperparameters, optimization, hardware).
711 (4) Appendix D: **KL regularization weight** ablation (β values).
712 (5) Appendix E: **Policy-update stride** ablation (update frequency).
713 (6) Appendix F: **Top-k sampling** ablation (sampling diversity).
714 (7) Appendix G: **Partial-success reward** ablation (reward values).
715 (8) Appendix H: **Structure-aware attention** ablation (graph-level constraints).
716 (9) Appendix I: **Pretrain vs. RL fine-tuning** comparison.
717 (10) Appendix J: **Chemical realism metrics** vs. RL baselines (synthesizability, drug-likeness).
718 (11) Appendix K: **Prompt sensitivity** analysis (instruction robustness).
719 (12) Appendix L: **Complex localized editing** (fine-grained operations).
720 (13) Appendix M: **Noisy oracle robustness** (estimation errors).
721 (14) Appendix N: **Oracle-query efficiency** (limited oracle budgets).
722 (15) Appendix O: **Inference efficiency** (denoising steps vs. runtime).
723 (16) Appendix P: **Computational efficiency** (accuracy vs. cost).
724 (17) Appendix Q: **Gradient derivation** (x_0 -parameterization).
725 (18) Appendix R: **Dataset statistics** (property ranges, prompts).
726 (19) Appendix S: **Limitations and future work**.
727 (20) Appendix T: **LLM usage statement**.
728 (21) Appendix U: **Extended single-property results** (10 tasks).
729 (22) Appendix V: **Extended multi-property results** (2-4 constraints).
730 (23) Appendix Y: **Qualitative visualizations** (structural modifications).
731
732
733
734
735
736
737
738
739
740
741
742
743
744A BASELINES
745746 (1) BioT5 Pei et al. (2023) leverages SELFIES and a T5-style architecture for cross-modal learning
747 between molecules and text. (2) DrugAssist Ye et al. (2025) is a Llama2-7B-based dialogue model
748 for interactive molecule optimization. (3) GeLLM³O Dey et al. (2025b) uses instruction tuning
749 on Mistral and Llama3 models for multi-property optimization; we evaluate both GeLLM³O_M
750 and GeLLM³O_L. (4) MolGen Fang et al. (2024) is a domain-agnostic language model trained
751 with chemical feedback to reduce invalid generations. (5) REINVENT 4 Loeffler et al. (2024)
752 integrates reinforcement learning, transfer learning, and curriculum learning for molecular design
753 using RNN and Transformer backbones. (6) MoleculeSTM Liu et al. (2023) is a multi-modal
754 molecule structure–text model trained on large structure–text pairs to enable zero-shot text-guided
755 retrieval and editing of molecules. (7) GeLLM⁴O-C Dey et al. (2025a) is an instruction-tuned LLM
on the C-MuMOInstruct dataset, built on Mistral-7B and Llama3 models.

756 **B MODEL ARCHITECTURE**
757
758
759760 Table 4 details the structure-aware diffusion model used in MolEditRL. The architecture includes
761 token and edge embeddings, a RoBERTa-based transformer with graph-aware attention, a discrete
762 diffusion module for masked denoising, and a reinforcement learning component guided by property-
763 based rewards. During inference, we employ top- k sampling and apply policy updates at fixed stride
764 intervals to improve efficiency.
765

Table 4: Technical specifications of the structure-aware diffusion model in MolEditRL.

766 Module Types	767 Dimensions	768 Structures
769 Input Layer	770 –	771 Source Tokens [batch, seq_len] → Concat
772 Embedding	773 Vocab Size = 51,933	774 TokenEmbedding [seq_len, 768] + PositionEmbedding [seq_len, 768]
775 Edge Embedding	776 Edge Types = 6	777 EdgeEmbedding [nodes, nodes, 768]
778 RoBERTa	779 12 Layers	780 Input [batch, seq_len, 768] ↓ Self-Attention (12×64) → LayerNorm + Residual ↓ FFN (768 → 3072 → 768) → LayerNorm + Residual
781 Diffusion	782 2000 steps	783 Forward: Input → Masked Tokens ↓ Reverse (stride = 50) ↓ Denoising Network
784 Prediction	785 seq_len × 51,933 786 nodes × nodes × 6	787 AtomLogits [batch, seq_len, 51933] EdgeLogits [batch, nodes, nodes, 6]
788 Sampling	789 Top-k = 15	790 Atom Categorical Sampling Edge Structure Sampling
791 Property-Guided	792 –	793 Reward Calculation (0, 0.2, 1.0) Advantage Function → Loss Weighting

794 **C TRAINING AND HYPERPARAMETER SETUP**
795
796
797798 We train MolEditRL on a multi-GPU cluster using PyTorch with Distributed Data Parallel (DDP). The
799 model is initialized from a RoBERTa-base encoder with 12 layers, 12 heads, and hidden size 768. The
800 tokenizer is extended to 51,933 tokens to accommodate molecular and instruction-specific vocabulary,
801 and the embedding layer is resized accordingly. For optimization, we use the AdamW optimizer with
802 a learning rate of 5e-5, weight decay of 0.01, and a linear warm-up scheduler over 10,000 steps. Mixed
803 precision (FP16) is enabled to reduce memory usage and accelerate training. During pretraining, the
804 model is trained for 100 epochs with a per-GPU batch size of 16. A discrete diffusion schedule with
805 2,000 denoising steps is used, following a mutual noise schedule $\beta_t = 1/(T - t)$ where $T = 2000$.
806 We apply word- and edge-level frequency weighting with sinusoidal modulation ($\lambda = 0.3$) to guide
807 denoising dynamics. The edge vocabulary includes 6 bond types. During reinforcement learning
808 fine-tuning, rewards are computed using property oracles (e.g., RDKit, TDC). A key advantage
809 of MolEditRL is its remarkable oracle efficiency. The pretrained model achieves strong property
810 optimization performance even without any oracle calls during inference, already outperforming
811 most state-of-the-art baselines as demonstrated in our ablation studies. This efficiency stems from
812 our editing-based formulation, which performs structure-constrained, localized modifications starting
813 from known molecules. This approach drastically reduces the chemical search space and required
814 oracle queries by orders of magnitude compared to de novo generation methods. Our empirical results
815 confirm this efficiency under strict oracle budgets, where MolEditRL’s performance quickly saturates
816 with most improvements achieved within just 6,400 oracle queries during the standard 400-step
817 fine-tuning protocol. We use top- k sampling with $k = 15$ and a temperature of 1.0 during evaluation.
818 To improve efficiency, the policy is updated every $t_s = 50$ steps, resulting in 40 updates over the
819 2000-step diffusion process. For consistency, inference also runs for 40 denoising steps, starting
820 from a fully masked graph and progressively reconstructing the final molecule. All experiments

were conducted on a single NVIDIA A6000 GPU using PyTorch and DGL. Pretraining on the MolEdit-Instruct dataset (3M examples) took approximately 100 hours. RL fine-tuning for each task required 1–2 hours.

813

814

815

816 D ABLATION STUDY ON KL REGULARIZATION WEIGHT

817

818

819

820 Table 5 reports an ablation study on the KL-regularization weight β , evaluating models trained with
 821 $\beta \in \{0, 0.1, 0.2, 0.3, 0.4, 0.5\}$ under a fixed fine-tuning budget of 500 steps. The results highlight
 822 the importance of balancing structural preservation and reward-driven optimization. When $\beta = 0$,
 823 the policy is no longer anchored to the pretrained diffusion prior, resulting in unstable behavior and
 824 overly aggressive edits that harm structural similarity. Conversely, larger β values impose excessive
 825 regularization, restricting the policy’s ability to improve the target property and increasing FCD.
 826 Across both LogP↑ and SA↓ tasks, moderate regularization consistently yields the best trade-off
 827 between validity, similarity-constrained accuracy, and distributional quality. Based on these trends,
 828 we adopt $\beta = 0.1$ as the default setting in all experiments, as it provides stable structure-preserving
 829 updates while enabling effective property optimization.

830

Table 5: Ablation study on KL regularization weight β

Task	β	Validity	Acc _{all} (TS ≥ 0.65)	Acc _{all} (MCS ≥ 0.6)	Acc _{all} (GED ≤ 4)	FCD↓
LogP ↑	0.0	0.986	0.278	0.376	0.186	9.142
	0.1	0.976	0.462	0.498	0.214	7.812
	0.2	0.920	0.416	0.458	0.196	9.762
	0.3	0.884	0.386	0.414	0.206	9.649
	0.4	0.840	0.350	0.402	0.210	10.812
	0.5	0.842	0.356	0.380	0.194	10.700
SA ↓	0.0	0.982	0.602	0.700	0.208	7.295
	0.1	0.988	0.608	0.680	0.258	6.735
	0.2	0.942	0.576	0.582	0.186	8.503
	0.3	0.956	0.574	0.576	0.192	8.679
	0.4	0.928	0.562	0.558	0.186	8.900
	0.5	0.918	0.544	0.548	0.194	9.100

844

845

846 E ABLATION STUDY ON POLICY-UPDATE STRIDE

847

848

849

850 Table 6 presents a sensitivity analysis of the policy-update stride, comparing stride values in {1, 2, 3,
 851 4, 5} under an identical fine-tuning budget of 500 steps. Each table entry reports Validity / Acc_{all}(TS
 852 ≥ 0.65) / FCD, enabling joint assessment of chemical correctness, structural-similarity-constrained
 853 accuracy, and distributional fidelity. The results show that stride = 1 consistently achieves the best
 854 performance across both LogP↑ and SA↓ tasks, providing the highest accuracy and lowest FCD
 855 throughout the training trajectory. Increasing the stride reduces the frequency of policy updates,
 856 which slows optimization progress and leads to noticeable degradation in both property alignment
 857 and structural quality. These findings demonstrate that frequent policy updates are essential for stable
 858 and effective reinforcement learning in the discrete diffusion setting, and we therefore adopt stride =
 859 1 as the default configuration for all experiments.

860

861

862

863 F ABLATION STUDY ON TOP-K SAMPLING

Table 6: Sensitivity analysis of policy-update stride

Task	Step	Stride=1	Stride=2	Stride=3	Stride=4	Stride=5
LogP \uparrow	99	0.910/0.436/8.425	0.816/0.326/11.164	0.802/0.334/11.037	0.776/0.332/10.998	0.780/0.290/11.597
	199	0.933/0.442/8.076	0.842/0.318/11.159	0.834/0.358/10.430	0.796/0.346/11.031	0.824/0.344/10.494
	299	0.958/0.438/8.294	0.860/0.370/10.569	0.866/0.368/9.431	0.838/0.372/9.901	0.828/0.348/10.499
	399	0.956/0.456/7.965	0.914/0.364/9.844	0.862/0.356/10.451	0.866/0.370/9.950	0.860/0.358/10.736
	499	0.976/0.462/7.812	0.938/0.408/9.095	0.898/0.382/9.884	0.866/0.372/9.803	0.888/0.366/10.348
SA \downarrow	99	0.984/0.587/7.466	0.848/0.526/9.482	0.844/0.516/9.466	0.780/0.430/11.379	0.788/0.436/10.665
	199	0.982/0.580/7.510	0.872/0.536/9.378	0.876/0.522/9.474	0.818/0.456/10.692	0.834/0.486/10.459
	299	0.978/0.591/7.322	0.916/0.556/8.818	0.904/0.550/9.191	0.862/0.480/10.197	0.896/0.548/8.881
	399	0.971/0.599/7.251	0.946/0.598/8.333	0.910/0.558/8.757	0.904/0.504/9.925	0.904/0.558/8.636
	499	0.988/0.608/6.735	0.956/0.592/8.202	0.932/0.512/9.737	0.924/0.530/9.523	0.920/0.574/8.904

Table 7 analyzes the effect of the top-k sampling parameter by evaluating settings from $k = 5$ to $k = 25$ under otherwise identical inference conditions. Across both the LogP \uparrow and SA \downarrow tasks, model performance remains largely stable, with only mild fluctuations in validity, structural-similarity accuracy, and FCD. Smaller top-k values can restrict sampling diversity and slightly reduce structural flexibility, while excessively large values introduce unnecessary stochasticity that may weaken property alignment. Overall, moderate top-k values achieve the best balance between diversity and reliability. Based on the observed trends, we adopt top-k = 15 as the default sampling configuration in all experiments.

Table 7: Sensitivity analysis of top-k sampling parameter

Task	Top-k	Validity	Acc _{all} (TS ≥ 0.65)	Acc _{all} (MCS ≥ 0.6)	Acc _{all} (GED ≤ 4)	FCD \downarrow
LogP \uparrow	5	0.956	0.460	0.462	0.208	7.924
	10	0.950	0.458	0.438	0.202	7.977
	15	0.976	0.462	0.498	0.214	7.812
	20	0.946	0.448	0.490	0.216	8.110
	25	0.940	0.456	0.492	0.224	8.082
SA \downarrow	5	0.982	0.600	0.642	0.232	7.043
	10	0.990	0.578	0.564	0.202	7.192
	15	0.988	0.608	0.690	0.258	6.735
	20	0.980	0.638	0.684	0.252	6.657
	25	0.990	0.616	0.671	0.242	6.921

G ABLATION STUDY ON PARTIAL-SUCCESS REWARD

Table 8 presents an ablation study on the partial-success reward, evaluated using values in $\{0, 0.2, 0.4, 0.6, 0.8, 1.0\}$. This reward is assigned to molecules that are chemically valid but fail to satisfy the editing objective, allowing the model to differentiate between invalid outputs and structurally plausible but suboptimal edits. The results show that removing this reward entirely (0.0) leads to unstable optimization and decreased validity, as the model receives no guidance for valid-but-incorrect molecules. Conversely, overly large partial-success rewards (≥ 0.6) diminish the incentive to complete the desired edit, resulting in lower similarity-constrained accuracy and higher FCD. Moderate values in the range 0.2–0.4 provide the most effective balance between stability, structural fidelity, and property optimization. Based on these observations, we adopt 0.2 as the default partial-success reward in all experiments.

H ABLATION STUDY ON STRUCTURE-AWARE ATTENTION MECHANISM

918
919
920 Table 8: Sensitivity analysis of partial-success reward values
921
922
923
924
925
926

Task	Partial Reward	Validity	Acc _{all} (TS \geq 0.65)	Acc _{all} (MCS \geq 0.6)	Acc _{all} (GED \leq 4)	FCD \downarrow
LogP \uparrow	0.0	0.952	0.484	0.508	0.202	7.906
	0.2	0.976	0.462	0.498	0.214	7.812
	0.4	0.962	0.464	0.528	0.218	7.859
	0.6	0.958	0.480	0.504	0.202	8.234
	0.8	0.964	0.434	0.468	0.208	8.890
	1.0	0.964	0.402	0.438	0.216	9.458
SA \downarrow	0.0	0.976	0.600	0.634	0.234	7.110
	0.2	0.988	0.608	0.680	0.258	6.735
	0.4	0.984	0.626	0.656	0.220	7.142
	0.6	0.980	0.542	0.582	0.208	7.773
	0.8	0.984	0.590	0.594	0.212	7.998
	1.0	0.984	0.530	0.556	0.196	8.530

932
933
934 Table 9 presents an ablation study evaluating the structure-aware attention bias during both the
935 pretraining and fine-tuning stages. Including the bias during pretraining yields modest gains in
936 structural-similarity accuracy and FCD, reflecting its role as a helpful but not dominant inductive
937 prior when the model is learning general molecular distributions. However, the benefit becomes
938 significantly more pronounced after reinforcement learning fine-tuning. Models equipped with the
939 structure-aware bias during fine-tuning achieve substantially higher accuracy across all similarity-
940 constrained metrics and markedly lower FCD for both LogP \uparrow and SA \downarrow tasks. These results indicate
941 that while structural bias provides useful guidance during pretraining, its primary impact emerges
942 during RL optimization, where explicit graph-level constraints help the model perform chemically
943 valid, topology-preserving edits and avoid drifting away from realistic molecular structures.

944 Table 9: Ablation Study on Structure-Aware Attention Mechanism Across Pretraining and Fine-tuning
945 Stages

Task	Setting	Validity	Acc _{all} (TS \geq 0.65)	Acc _{all} (MCS \geq 0.6)	Acc _{all} (GED \leq 4)	FCD \downarrow
LogP \uparrow	Pretrain w/o Structure Bias	0.744	0.176	0.208	0.182	13.714
	Pretrain w/ Structure Bias	0.758	0.316	0.232	0.196	11.896
	Finetune w/o Structure Bias	0.890	0.212	0.266	0.213	12.486
	Finetune w/ Structure Bias	0.976	0.462	0.498	0.218	7.812
SA \downarrow	Pretrain w/o Structure Bias	0.836	0.196	0.224	0.128	12.364
	Pretrain w/ Structure Bias	0.842	0.213	0.256	0.195	10.522
	Finetune w/o Structure Bias	0.904	0.412	0.468	0.176	8.452
	Finetune w/ Structure Bias	0.988	0.608	0.680	0.258	6.735

954 955 956 I COMPARISON OF PRETRAINED DIFFUSION AND RL FINE-TUNED MODELS 957

958
959
960 Table 10 presents a detailed comparison between the pretrained diffusion model and the RL fine-
961 tuned version of MolEditRL across five representative editing tasks. The results show that the
962 diffusion model alone already achieves strong structural fidelity, as reflected by the consistently high
963 MACCS_FTS, RDKit_FTS, and Morgan_FTS scores, indicating that pretraining successfully learns a
964 stable and realistic structural prior. After RL fine-tuning, these structural similarity metrics remain
965 largely unchanged, demonstrating that the KL-regularized optimization preserves the learned molecu-
966 lar topology instead of distorting it. In contrast, RL fine-tuning brings substantial improvements in
967 validity and property-aligned accuracy, and consistently reduces FCD across all tasks, confirming that
968 the edited molecular distribution becomes closer to real molecules while more effectively satisfying
969 target properties. Overall, Table 10 highlights the complementary nature of the two stages: diffusion
970 pretraining establishes a reliable structure-aware foundation, and RL fine-tuning delivers targeted
971 property optimization without compromising structural integrity.

972 Table 10: Performance comparison between pretrained diffusion model and RL fine-tuned model
973

974 Task	975 Validity	976 Acc _{all} (TS \geq 0.65)	977 Acc _{valid} (TS \geq 0.65)	978 MACCS_FTS	979 RDK_FTS	980 Morgan_FTS	981 FCD \downarrow
975 QED \uparrow	976 Pretrain	977 0.812	978 0.460	979 0.567	980 0.832	981 0.736	982 0.684
	976 Finetune	977 0.974	978 0.604				
977 Haccept \uparrow	978 Pretrain	979 0.750	980 0.266	981 0.355	982 0.789	983 0.688	984 0.609
	978 Finetune	979 0.968	980 0.484				
978 LogP \uparrow	979 Pretrain	980 0.758	981 0.316	982 0.417	983 0.776	984 0.672	985 0.643
	979 Finetune	980 0.964	981 0.578				
980 DRD2 \uparrow	981 Pretrain	982 0.850	983 0.220	984 0.259	985 0.796	986 0.698	987 0.637
	981 Finetune	982 0.966	983 0.308				
982 MW \uparrow	983 Pretrain	984 0.774	985 0.142	986 0.184	987 0.783	988 0.651	989 0.562
	983 Finetune	984 0.960	985 0.404				

984
985 **J COMPARISON WITH RL-BASED METHODS ON CHEMICAL REALISM METRICS**
986

987
988
989
990 Figure 7 provides a comprehensive evaluation of the distributional shifts in key physicochemical
991 properties between the source molecules (Input) and the molecules optimized by MolEditRL (Output).
992 The green shaded regions delineate the ideal ranges for drug-like compounds according to medicinal
993 chemistry standards (e.g., Lipinski’s Rule of Five). The results demonstrate that MolEditRL does not
994 merely preserve the validity of the source molecules but actively optimizes their pharmacological
995 quality. Specifically, the Quantitative Estimate of Drug-likeness (QED) shows a substantial improve-
996 ment, with the mean value increasing from 0.44 to 0.59, shifting the distribution significantly into the
997 highly desirable range (> 0.5). Similarly, the Synthetic Accessibility (SA) score decreases from 3.48
998 to 3.16, indicating that the generated molecules are chemically easier to synthesize. Furthermore,
999 fundamental properties such as Molecular Weight (MW) and LogP shift towards more favorable,
1000 central values within the ideal windows, avoiding the property drift often observed in generative
1001 models. Most notably, the compliance ratio with Lipinski’s Rule of 5 improves dramatically from
1002 52.7% in the source molecules to 84.7% in the output, underscoring MolEditRL’s ability to generate
1003 structures that are not only target-optimized but also highly realistic, stable, and developable.

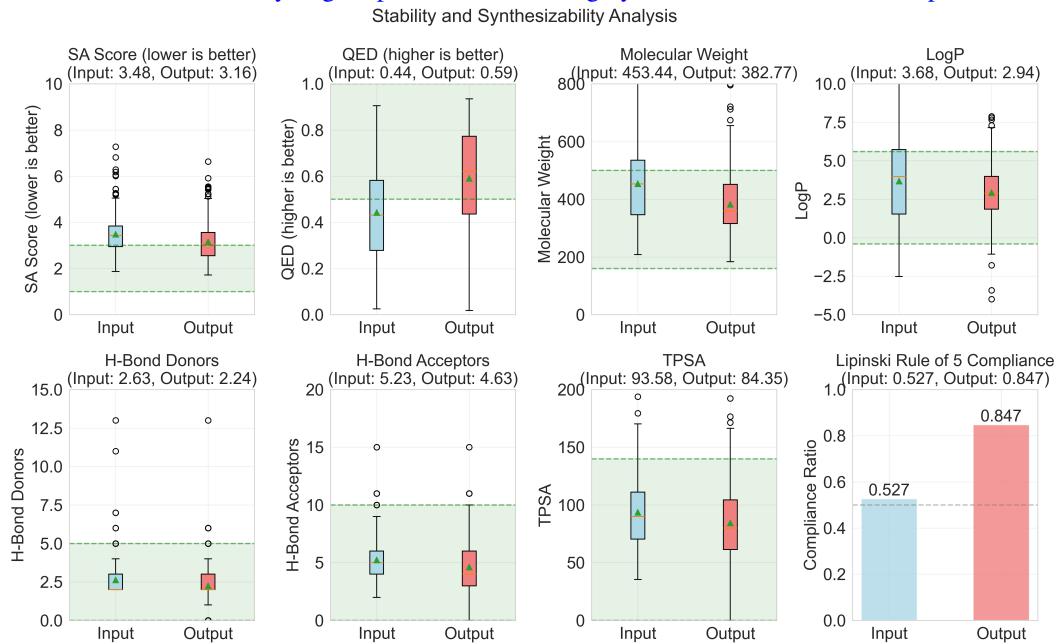


Figure 7: **Stability and Synthesizability Analysis.** Comparison of property distributions between source molecules (Input) and MolEditRL-generated outputs (Output). The green shaded areas represent ideal value ranges for drug-like candidates.

Table 11 compares MolEditRL with three representative RL-based molecular optimization frameworks—GCPN You et al. (2018), MolDQN Zhou et al. (2019), and REINVENT 4 Loeffler et al. (2024)—under a strict oracle budget of 5,000 queries on the HIA \uparrow task, which is fully held out from pretraining. Across all chemical realism metrics, including synthesizability, drug-likeness, and Lipinski compliance, MolEditRL significantly outperforms existing RL methods and even improves beyond the source molecules themselves. While traditional RL approaches tend to suffer from distributional drift and generate chemically implausible structures when optimizing unseen properties, MolEditRL maintains high validity, low FCD, and superior realism due to its KL-regularized objective. By anchoring policy updates to the pretrained diffusion prior, the model avoids degenerate exploration and consistently produces realistic, synthesizable, and pharmacologically relevant molecules.

Table 11: Comparison with RL-based methods on chemical realism metrics

Method	Validity	Acc _{all} (TS \geq 0.65)	FCD \downarrow	Is_Synthesizable	Is_Druglike	Lipinski_RO5
Source Molecule	1.000	-	-	0.278	0.376	0.527
GCPN	0.858	0.000	20.260	0.047	0.153	0.205
MolDQN	1.000	0.003	13.152	0.092	0.178	0.246
Reinvent4	0.835	0.124	13.786	0.278	0.370	0.428
MolEditRL	0.958	0.466	7.964	0.460	0.681	0.847

K PROMPT SENSITIVITY ANALYSIS

Table 12 evaluates the prompt robustness of MolEditRL on the SA \downarrow task by testing five distinct paraphrased natural-language instructions. Although Table 19 presents only one representative template, the MolEdit-Instruct pretraining corpus contains many alternative linguistic formulations for each editing objective, exposing the model to broad variability in syntax, vocabulary, and semantic emphasis. To explicitly assess the effect of such variation, we evaluate the following five prompts: (1) P1: “Reduce the synthetic accessibility of molecule SMILE.” (2) P2: “Make this molecule SMILE easier to synthesize.” (3) P3: “Adjust the structure of SMILE to lower its synthetic complexity.” (4) P4: “Modify SMILE so that its overall synthetic accessibility score decreases.” (5) P5: “Transform the molecule SMILE into a form that is simpler to assemble synthetically.” The results show that MolEditRL sustains consistently high validity, structural similarity accuracy, and competitive FCD scores across all prompt variants, with only minor performance fluctuations. This indicates that the model does not rely on any specific phrasing pattern; instead, it benefits from the diverse paraphrasing present during pretraining, enabling a prompt-invariant and semantically robust understanding of user instructions.

Table 12: Prompt sensitivity analysis on SA \downarrow task with diverse instruction formulations

Prompt	Validity	Acc _{all} (TS \geq 0.65)	Acc _{all} (MCS \geq 0.6)	Acc _{all} (GED \leq 4)	FCD \downarrow
P1	0.986	0.636	0.696	0.244	7.107
P2	0.974	0.604	0.618	0.253	7.307
P3	0.979	0.652	0.636	0.224	7.157
P4	0.984	0.629	0.614	0.244	7.052
P5	0.980	0.646	0.642	0.256	7.339

L COMPLEX LOCALIZED EDITING INSTRUCTIONS

To assess the flexibility of MolEditRL in interpreting complex, localized natural-language editing instructions, we fine-tuned the pretrained model for 500 steps using five structurally explicit prompts. Unlike simple property-based commands, these instructions specify concrete chemical operations such as functional group removal, fragment addition, and scaffold simplification. The five prompts used are: (1) P1: “Remove a CO₂H group from SMILE and decrease its H-bond donor characteristics.” (2)

P2: “Add an additional amide fragment to SMILE to increase its molecular weight.” (3) P3: “Remove an aromatic ring from SMILE to lower its structural complexity and improve synthetic accessibility.” (4) P4: “Reduce the synthetic accessibility of molecule SMILE.” (5) P5: “Eliminate a CONH unit from SMILE to make the scaffold easier to assemble.” Table 13 reports the results using two key metrics: FG Editing Success, which evaluates whether the required functional group operation is correctly executed, and $\text{Acc}_{\text{all}}(\text{TS} \geq 0.65)$, which additionally requires structural similarity and successful property alignment. Across all prompts, MolEditRL consistently achieves higher validity, substantially better functional-group editing accuracy, and more realistic molecular outputs than Reinvent4, while also maintaining strong synthesizability, drug-likeness, and Lipinski compliance. These findings demonstrate that MolEditRL can reliably interpret fine-grained chemical instructions and execute highly localized edits—capabilities that cannot be captured using scalar property targets alone. This highlights natural language as a powerful and expressive interface for precise, interpretable molecular manipulation.

Table 13: Performance on complex localized editing instructions demonstrating natural language flexibility

Prompt	Model	Validity	FG Editing Success	$\text{Acc}_{\text{all}}(\text{TS} \geq 0.65)$	FCD	MACCS_FTS	Is_Synthesizable	Is_Druglike	Lipinski_RO5
-	Source Molecule	1.000	-	-	-	-	0.278	0.376	0.520
P1	Reinvent4	0.656	0.252	0.078	15.77	0.428	0.157	0.267	0.297
	MolEditRL	0.970	0.810	0.572	7.01	0.789	0.396	0.655	0.787
P2	Reinvent4	0.512	0.328	0.102	14.58	0.387	0.185	0.252	0.389
	MolEditRL	0.968	0.798	0.360	8.98	0.785	0.332	0.574	0.884
P3	Reinvent4	0.606	0.320	0.112	13.28	0.385	0.157	0.188	0.246
	MolEditRL	0.994	0.744	0.358	7.98	0.784	0.328	0.505	0.874
P4	Reinvent4	0.632	0.340	0.126	12.86	0.379	0.104	0.185	0.283
	MolEditRL	0.984	0.872	0.370	7.93	0.763	0.392	0.591	0.839
P5	Reinvent4	0.642	0.234	0.128	12.32	0.365	0.160	0.179	0.204
	MolEditRL	0.978	0.752	0.310	7.60	0.778	0.327	0.503	0.712

M ROBUSTNESS TO NOISY ORACLE

Table 14 evaluates the robustness of MolEditRL when the optimization oracle is imperfect or noisy—a realistic scenario in molecular design where property predictors often contain estimation errors. To simulate such conditions, we inject controlled label noise by randomly flipping oracle outputs at varying rates from 0 to 0.2. Across both the $\text{LogP} \uparrow$ and $\text{SA} \downarrow$ tasks, MolEditRL maintains high validity and stable editing accuracy, with only marginal fluctuations even under the highest noise level. Importantly, structural similarity metrics and FCD remain largely unaffected, indicating that the model continues to operate within a realistic chemical distribution despite corrupted reward signals. These results show that MolEditRL does not rely on a perfect or deterministic oracle; instead, its KL-regularized optimization anchors policy updates to the pretrained diffusion prior, preventing overreaction to noisy rewards and ensuring consistent, reliable editing behavior.

Table 14: Robustness to Noisy Oracle Across Different Noise Levels

Task	Noise Level	Validity	$\text{Acc}_{\text{all}}(\text{TS} \geq 0.65)$	$\text{Acc}_{\text{all}}(\text{MCS} \geq 0.6)$	$\text{Acc}_{\text{all}}(\text{GED} \leq 4)$	$\text{FCD} \downarrow$
$\text{LogP} \uparrow$	0.0	0.976	0.462	0.498	0.214	7.812
	0.05	0.920	0.457	0.508	0.220	7.529
	0.1	0.944	0.460	0.514	0.219	7.582
	0.15	0.924	0.454	0.488	0.216	7.925
	0.2	0.914	0.448	0.472	0.212	8.215
$\text{SA} \downarrow$	0.0	0.988	0.608	0.680	0.258	6.735
	0.05	0.980	0.618	0.658	0.236	7.174
	0.1	0.986	0.612	0.668	0.236	7.146
	0.15	0.984	0.618	0.672	0.238	7.055
	0.2	0.980	0.592	0.666	0.242	7.172

1134 **N ORACLE-QUERY EFFICIENCY COMPARISON**
1135
1136
1137

1138 Table 15 presents a detailed comparison of MolEditRL with three classical RL-based molecular
1139 optimization frameworks—GCPN, MolDQN, and REINVENT4—under progressively increasing
1140 oracle-query budgets from 1,000 to 5,000. We evaluate the $HIA\uparrow$ property, which is entirely absent
1141 from pretraining, making it an ideal benchmark for understanding real-world oracle efficiency when
1142 optimizing previously unseen molecular attributes. Across all query budgets, MolEditRL consistently
1143 achieves higher editing accuracy, lower FCD, and competitive validity compared to baseline RL
1144 methods. This superior efficiency stems from the strong structure-aware prior established during
1145 discrete diffusion pretraining, allowing MolEditRL to begin reinforcement learning from an already
1146 realistic and structurally faithful distribution. In contrast, conventional RL approaches must rely on
1147 uninformed trial-and-error exploration, requiring a large number of oracle interactions to discover
1148 viable editing strategies. The consistent gains observed across all budgets highlight MolEditRL’s
1149 **ability to perform effective, low-cost molecular editing even when oracle access is limited.**

1149 Table 15: Oracle-query efficiency comparison on $HIA\uparrow$ task across different oracle budgets
1150

Oracle Queries	Method	Validity	Acc _{all} (TS ≥ 0.65)	Acc _{all} (MCS ≥ 0.6)	Acc _{all} (GED ≤ 4)	FCD \downarrow
1000	GCPN	0.842	0.000	0.000	0.026	22.140
	MolDQN	1.000	0.002	0.138	0.086	15.598
	Reinvent4	0.598	0.092	0.148	0.044	14.682
	MolEditRL	0.864	0.388	0.408	0.202	9.686
2000	GCPN	0.882	0.000	0.000	0.022	21.175
	MolDQN	1.000	0.000	0.122	0.026	14.857
	Reinvent4	0.608	0.104	0.167	0.052	14.236
	MolEditRL	0.898	0.396	0.448	0.218	9.489
3000	GCPN	0.878	0.000	0.000	0.016	21.324
	MolDQN	1.000	0.002	0.156	0.036	14.828
	Reinvent4	0.711	0.114	0.187	0.080	13.997
	MolEditRL	0.902	0.430	0.472	0.216	8.609
4000	GCPN	0.850	0.000	0.000	0.022	20.672
	MolDQN	1.000	0.002	0.156	0.032	13.362
	Reinvent4	0.769	0.118	0.192	0.105	13.868
	MolEditRL	0.928	0.448	0.488	0.214	8.387
5000	GCPN	0.858	0.000	0.000	0.029	20.260
	MolDQN	1.000	0.003	0.142	0.045	13.152
	Reinvent4	0.835	0.124	0.196	0.139	13.786
	MolEditRL	0.958	0.466	0.490	0.226	7.964

1173 **O INFERENCE EFFICIENCY COMPARISON**
1174
1175
1176

1177 Table 16 compares inference efficiency across baseline models and MolEditRL under varying skip-
1178 step configurations during the reverse diffusion process. Here, step refers to the stride of the
1179 denoising trajectory: with a total of 2000 diffusion steps, larger stride values (e.g., step = 500)
1180 correspond to fewer denoising updates, while smaller stride values (e.g., step = 50) yield finer-grained
1181 refinement with more update iterations. The results show that MolEditRL maintains strong accuracy
1182 and favorable distributional fidelity even under coarse schedules, achieving lower FCD than large
1183 LLM-based baselines while preserving fast per-sample inference time on an A6000 GPU. As the
1184 stride decreases, performance gradually improves with moderate increases in computation. Overall,
1185 MolEditRL demonstrates robust behavior under step skipping, delivering high-quality generations
1186 across a wide range of schedules. Based on the balance between accuracy and runtime, we adopt step
1187 = 50 as the default configuration in the main experiments.

1188 Table 16: Inference efficiency comparison across baselines and different denoising step settings
1189

1190 Method	1191 Validity	1192 $Acc_{all}(TS \geq 0.65)$	1193 $Acc_{all}(MCS \geq 0.6)$	1194 $Acc_{all}(GED \leq 4)$	1195 $FCD \downarrow$	1196 Time/Sample (s)
BioT5	1.000	0.000	0.004	0.000	13.4000	0.7550
DrugAssist	0.988	0.537	0.551	0.202	9.0500	1.5221
Gelmim ⁴ -o-C_L	0.849	0.218	0.224	0.104	10.6700	4.5600
MolEditRL (step=500)	0.900	0.536	0.590	0.220	7.9273	1.0608
(step=400)	0.924	0.568	0.628	0.240	7.5318	1.0684
(step=250)	0.952	0.588	0.644	0.234	7.3480	1.0954
(step=200)	0.956	0.576	0.638	0.234	7.4078	1.1135
(step=100)	0.972	0.590	0.668	0.232	7.1624	1.2039
(step=50)	0.988	0.608	0.680	0.258	6.7350	1.3857
(step=40)	0.979	0.624	0.682	0.234	6.5894	1.4778
(step=20)	0.988	0.628	0.686	0.246	6.4828	1.9286
(step=10)	0.984	0.636	0.690	0.238	6.2055	2.8393

1201
1202
1203 P COMPUTATIONAL EFFICIENCY COMPARISON
1204
1205
1206
1207

1208 Table 17 compares MolEditRL with a range of RL-based molecular editing approaches in terms of
1209 both editing performance and computational efficiency on the HIA \uparrow task, which is fully excluded from
1210 pretraining. Under a fixed 5,000-oracle budget, traditional RL methods such as GCPN, MolDQN,
1211 and REINVENT4 fail to achieve meaningful accuracy due to their reliance on costly trial-and-
1212 error exploration. In contrast, MolEditRL benefits from its pretrained structure-aware diffusion
1213 prior, enabling effective fine-tuning with far fewer oracle queries and delivering substantially higher
1214 similarity-constrained accuracy and lower FCD. Although MolEditRL incurs a one-time fine-tuning
1215 cost, this investment yields performance that surpasses both RL-from-scratch and large LLM-based
1216 baselines, which either suffer from poor editing precision or require heavy inference computation. At
1217 inference time, MolEditRL requires no oracle calls and achieves 1.39 s/sample, supporting real-time
1218 interactive molecular editing. These results demonstrate that MolEditRL achieves an advantageous
1219 balance of accuracy, robustness, and computational efficiency compared to existing baselines.

1220 Table 17: Computational Efficiency and Editing Performance Comparison Across Baselines
1221

1220 Method	1221 Validity	1222 $Acc_{all}(TS \geq 0.65)$	1223 $Acc_{all}(MCS \geq 0.6)$	1224 $Acc_{all}(GED \leq 4)$	1225 $FCD \downarrow$	1226 Finetune Time (min)	1227 Inference Time (s/sample)
GCPN	0.858	0.000	0.000	0.029	20.260	32.92	0.78
MolDQN	1.000	0.003	0.142	0.045	13.152	35.76	4.73
Reinvent4	0.835	0.124	0.196	0.139	13.786	40.51	0.85
MolEditRL	0.958	0.466	0.490	0.226	7.964	58.14	1.39

1228
1229
1230 Q GRADIENT DERIVATION UNDER x_0 -PARAMETERIZATION
1231
1232
1233

1234 This appendix provides a complete derivation for the step in the main text going from the policy-
1235 gradient term $\nabla_{\theta} \log p_{\theta}(G_{tgt}^{t-1} | G_{tgt}^t, S, G_{src})$ to its x_0 -parameterized form and the resulting reward-
1236 weighted cross-entropy objective.

1237
1238 Q.1 SETUP AND ASSUMPTIONS
1239
1240

1241 We consider a discrete diffusion setting on molecular graphs. The forward process defines a known
1242 corruption distribution with an analytic posterior $q(G_{tgt}^{t-1} | G_{tgt}^t, G_{tgt}^0)$. Let the conditioning variables
1243 be $C = (S, G_{src})$. Our modeling assumptions are standard in conditional diffusion: (i) the reverse-step
1244 factorization uses the *forward* posterior kernel, which depends only on (G_{tgt}^t, G_{tgt}^0) and is independent
1245 of θ and C ; and (ii) the model predicts $p_{\theta}(G_{tgt}^0 | G_{tgt}^t, C)$.

1242 Q.2 THE PRECISE VERSION OF THE MAIN-TEXT EQ. (12)
1243

1244 By the law of total probability and the above conditional independence,

1245
$$p_\theta(G_{\text{tgt}}^{t-1} | C_{\text{tgt}}^t, C) = \sum_{G_{\text{tgt}}^0} q(G_{\text{tgt}}^{t-1} | G_{\text{tgt}}^t, G_{\text{tgt}}^0) p_\theta(G_{\text{tgt}}^0 | C_{\text{tgt}}^t, C). \quad (15)$$

1246

1247 Equation equation 15 is an *equality* in the discrete diffusion setting. The common single-sample/MAP
1248 form that replaces the sum by \hat{G}_{tgt}^0 then becomes an approximation.
12491250 Q.3 LOG-GRADIENT OF A MIXTURE: A WEIGHTED EXPECTATION
12511252 Taking the logarithm of equation 15 and differentiating w.r.t. θ , using that q does not depend on θ ,
1253 yields the exact identity
1254

1255
$$\nabla_\theta \log p_\theta(G_{\text{tgt}}^{t-1} | C_{\text{tgt}}^t, C) = \sum_{G_{\text{tgt}}^0} w_\theta(G_{\text{tgt}}^0; G_{\text{tgt}}^{t-1}, G_{\text{tgt}}^t, C) \nabla_\theta \log p_\theta(G_{\text{tgt}}^0 | C_{\text{tgt}}^t, C), \quad (16)$$

1256

1257 with normalized weights
1258

1259
$$w_\theta(G_{\text{tgt}}^0; \cdot) = \frac{q(G_{\text{tgt}}^{t-1} | G_{\text{tgt}}^t, G_{\text{tgt}}^0) p_\theta(G_{\text{tgt}}^0 | C_{\text{tgt}}^t, C)}{\sum_{G'} q(G_{\text{tgt}}^{t-1} | G_{\text{tgt}}^t, G') p_\theta(G' | C_{\text{tgt}}^t, C)}. \quad (17)$$

1260

1261 Thus, the exact gradient is a posterior-weighted expectation of $\nabla_\theta \log p_\theta(G_{\text{tgt}}^0 | C_{\text{tgt}}^t, C)$.
12621263 Q.4 PRACTICAL APPROXIMATIONS
12641265 Exact evaluation of equation 16 is intractable due to the exponential number of graphs. According
1266 to the Single-sample / straight-through (MAP) approximation, with $K=1$, or taking
1267 $\hat{G}_{\text{tgt}}^0 = \arg \max p_\theta(G_{\text{tgt}}^0 | C_{\text{tgt}}^t, C)$ and ignoring (or stop-gradient on) normalization, we obtain
1268 the widely used estimator
1269

1270
$$\nabla_\theta \log p_\theta(G_{\text{tgt}}^{t-1} | C_{\text{tgt}}^t, C) \approx \nabla_\theta \log p_\theta(\hat{G}_{\text{tgt}}^0 | C_{\text{tgt}}^t, C), \quad (18)$$

1271

1272 which is the approximation used to move from the equation 12 to equation 13. Direct REINFORCE
1273 on $\log p_\theta(G_{\text{tgt}}^{t-1} | \cdot)$ has high variance due to (a) sparse rewards (only at $t=0$), (b) weak correlation
1274 between intermediate noisy states and the terminal reward, and (c) accumulated stochasticity across
1275 transitions. DDPO Black et al. (2023) treats the denoising steps as an MDP and applies step-wise
1276 policy-gradient surrogates; GDPO Liu et al. (2024b) adapts these ideas to discrete graph diffusion and
1277 proposes eager/low-variance estimators. The single-sample x_0 surrogate in equation 18 is a practical
1278 variance/computation trade-off also adopted in these works.
12791280 R DATASET STATISTICS
12811282 Our dataset is constructed following a procedure similar to DrugAssist Ye et al. (2025), involving
1283 three main steps: (1) drug-like molecules are filtered from public databases such as ZINC and
1284 ChEMBL based on Lipinski’s Rule of Five; (2) Matched Molecular Pairs (MMP) are extracted using
1285 BRICS fragmentation to identify structurally similar molecule pairs with local edits; and (3) pairs
1286 showing significant property shifts are retained, and corresponding natural language instructions are
1287 generated to describe the desired property modifications. To prevent data leakage, we construct the
1288 splits at the molecule level using canonical SMILES: duplicate or equivalent structures are removed,
1289 and no molecule in the test set appears in the training set or in any RL fine-tuning inputs. This ensures
1290 that all test-time molecules are entirely unseen by the model. Table 18 reports descriptive statistics
1291 drawn directly from the MolEdit dataset. These ranges reflect the empirical distributions of property
1292 values in our collected molecule pairs. The physicochemical properties in our dataset are carefully
1293 selected in accordance with Lipinski’s Rule of Five, a key set of guidelines for drug-like molecules
1294 that includes constraints on molecular weight (≤ 500 Da), LogP (≤ 5), hydrogen bond donors (≤ 5),
1295 and hydrogen bond acceptors (≤ 10). These constraints are reflected in the value ranges of our dataset
1296 properties. The dataset covers both biological activity properties and physicochemical properties,
1297 each playing crucial roles in drug discovery:
1298

1296 R.1 BIOLOGICAL ACTIVITY PROPERTIES
1297

1298 • **DRD2** (Dopamine D2 receptor): A key target in antipsychotic drug development, with
1299 values ranging from 0 to 1 indicating binding probability. Our dataset captures substantial
1300 changes in DRD2 activity, from minor adjustments (± 0.050) to major shifts (± 0.951), where
1301 positive values indicate decreased binding and negative values indicate increased binding.
1302 • **GSK3 β** (Glycogen synthase kinase-3 beta): An important target in treating neurological
1303 disorders, with values from 0 to 1 representing inhibition probability. The dataset includes
1304 modifications ranging from ± 0.050 to ± 0.750 .
1305 • **JNK3** (c-Jun N-terminal kinase 3): A target for neurodegenerative diseases, with values
1306 from 0 to 1 indicating inhibition probability. Property changes range from subtle (± 0.030)
1307 to significant (± 0.690).

1308 Table 18: Descriptive statistics of property changes in the MolEdit dataset.
1309

Property	Direction	Pairs	Δ Range	Source Range	Target Range
DRD2	\uparrow	80,627	[-0.951, -0.050]	[0.000, 0.944]	[0.050, 1.000]
	\downarrow	80,627	[0.050, 0.951]	[0.050, 1.000]	[0.000, 0.944]
GSK3 β	\uparrow	98,310	[-0.750, -0.050]	[0.000, 0.940]	[0.052, 0.990]
	\downarrow	98,310	[0.050, 0.750]	[0.052, 0.990]	[0.000, 0.940]
JNK3	\uparrow	94,131	[-0.690, -0.030]	[0.000, 0.880]	[0.040, 0.990]
	\downarrow	94,131	[0.030, 0.690]	[0.040, 0.990]	[0.000, 0.880]
QED	\uparrow	97,750	[-0.794, -0.380]	[0.041, 0.564]	[0.438, 0.948]
	\downarrow	98,249	[0.380, 0.794]	[0.438, 0.948]	[0.050, 0.565]
SA	\uparrow	90,192	[-6.563, -0.700]	[1.059, 7.268]	[2.189, 7.999]
	\downarrow	87,453	[0.700, 6.104]	[2.277, 7.996]	[1.397, 7.268]
LogP	\uparrow	89,088	[-6.132, -2.625]	[-17.073, 2.369]	[-13.745, 5.000]
	\downarrow	90,489	[2.625, 6.132]	[-13.745, 5.000]	[-17.073, 2.372]
MW	\uparrow	80,647	[-195.744, -99.031]	[218.106, 399.216]	[336.084, 499.999]
	\downarrow	79,712	[99.031, 195.744]	[336.073, 499.994]	[218.094, 400.241]
HAccept	\uparrow	98,562	[-7.000, -2.000]	[0.000, 8.000]	[2.000, 10.000]
	\downarrow	98,562	[2.000, 7.000]	[2.000, 10.000]	[0.000, 8.000]
HDonors	\uparrow	104,468	[-5.000, -2.000]	[0.000, 3.000]	[2.000, 5.000]
	\downarrow	104,468	[2.000, 5.000]	[2.000, 5.000]	[0.000, 3.000]
RotBonds	\uparrow	66,369	[-9.000, -3.000]	[0.000, 7.000]	[3.000, 10.000]
	\downarrow	65,806	[3.000, 9.000]	[3.000, 10.000]	[0.000, 7.000]

1333 R.2 PHYSICOCHEMICAL PROPERTIES
1334

1335 • **QED** (Quantitative Estimate of Drug-likeness): Ranges from 0 to 1, where higher values
1336 indicate better drug-likeness. Our dataset covers modifications from ± 0.380 to ± 0.794 .
1337 • **SA** (Synthetic Accessibility): Ranges from 1 to 10, where lower values indicate easier
1338 synthesis. The dataset includes substantial changes from ± 0.700 to ± 6.563 .
1339 • **MW** (Molecular Weight): A fundamental property ranging from 218 to 500 Da in our
1340 dataset, with modifications spanning ± 99.031 to ± 195.744 Da.
1341 • **LogP** (Octanol-water partition coefficient): Measures lipophilicity, ranging from -17 to 5
1342 in our dataset, with changes from ± 2.625 to ± 6.132 .
1343 • **HDONORS** (Hydrogen Bond Donors): Ranges from 0 to 5, with modifications of ± 2 to
1344 ± 5 donors.
1345 • **HACCEPT** (Hydrogen Bond Acceptors): Ranges from 0 to 10, with changes of ± 2 to ± 7
1346 acceptors.
1347 • **ROTBONDS** (Rotatable Bonds): Ranges from 0 to 10, with modifications of ± 3 to ± 9
1348 bonds, affecting molecular flexibility.

1350 For each property, table 18 shows the number of molecular pairs, the range of property changes (Δ
 1351 Range), and the value distributions in both source and target molecules. The \pm notation indicates
 1352 that changes occur in both directions — positive values for property reduction and negative values
 1353 for property increase, representing the observed range of property modifications across all molecule
 1354 pairs in the dataset.

1355

1356 R.3 NATURAL LANGUAGE PROMPTS

1357

1358 Table 19 presents the natural language prompts designed for our single property editing tasks. For
 1359 each of the ten molecular properties, we crafted two complementary prompts corresponding to
 1360 property value increase and decrease. The prompts are purposefully designed to be clear and concise
 1361 while maintaining chemical accuracy and relevance. For biological activity properties (DRD2,
 1362 GSK3 β , JNK3), the prompts emphasize binding affinity and inhibitory activity. For physicochemical
 1363 properties, the prompts use specific chemical terminology (e.g., "hydrogen bond acceptors," "rotatable
 1364 bonds") while remaining accessible. Some prompts, such as those for LogP, include additional context
 1365 about the property's practical implications (e.g., "enhance its fat solubility" or "improve its water
 1366 solubility"). Each prompt contains a [SMILE] placeholder that is replaced with the actual SMILES
 1367 string of the molecule to be modified during the editing process.

1368

Table 19: Natural language prompts for single property editing tasks.

1369 Property	1370 Direction	1371 Prompt
1372 DRD2	↑	Optimize this molecule [SMILE] to increase its DRD2 binding affinity.
	↓	Help me reduce the DRD2 binding activity of molecule [SMILE].
1373 GSK3 β	↑	Help me optimize this molecule [SMILE] to improve its GSK3 β inhibitory activity.
	↓	Reduce the GSK3 β inhibition potential of this molecule [SMILE].
1374 JNK3	↑	Enhance the JNK3 binding properties of molecule [SMILE].
	↓	Make changes to lower the JNK3 binding affinity of molecule [SMILE].
1376 QED	↑	Optimize the QED score of molecule [SMILE] to make it more drug-like.
	↓	Decrease the QED value of this molecule [SMILE].
1378 SA	↑	Make this molecule [SMILE] harder to synthesize.
	↓	Make this molecule [SMILE] easier to synthesize.
1380 LogP	↑	Help me increase the LogP value of molecule [SMILE] to enhance its fat solubility.
	↓	Help me decrease the LogP value of molecule [SMILE] to improve its water solubility.
1382 MW	↑	Help me increase the molecular weight of this molecule [SMILE].
	↓	Help me reduce the molecular weight of this molecule [SMILE].
1384 HAccept	↑	Add more hydrogen bond acceptors to this molecule [SMILE].
	↓	Reduce the number of hydrogen bond acceptors in molecule [SMILE].
1386 HDonors	↑	Help me increase the number of H-bond donors in [SMILE].
	↓	Help me decrease the H-bond donor count in this molecule [SMILE].
1388 RotBonds	↑	Add more rotatable bonds to this molecule [SMILE].
	↓	Reduce the number of rotatable bonds in molecule [SMILE].

1389

1390 S LIMITATIONS AND FUTURE WORK

1391

1392

1393

1394 MolEditRL demonstrates strong and consistent performance in structure-preserving editing across
 1395 a wide range of chemical properties, particularly on small to medium-sized molecules. While our
 1396 current experiments focus on this regime, the underlying framework is designed to generalize and is
 1397 expected to extend effectively to larger biomolecules, such as proteins or complex natural products,
 1398 with minor adaptations. The reinforcement learning component leverages property oracles (e.g., from
 1399 RDKit and TDC) to guide optimization. These oracles validate MolEditRL's effectiveness on widely
 1400 studied molecular properties. For less-characterized or emerging attributes, task-specific predictors
 1401 can be trained and integrated, enabling flexible extension of the framework to new property domains.

1402

1403

However, in particular, the framework may struggle when a target property is extremely rare, lacks a reliable predictive model, or requires prohibitively expensive evaluations. In addition, when user instructions contain logical contradictions—such as requesting simultaneous improvement of

1404 Table 20: Extended results on single-property molecular editing tasks. Bold indicates best performance.
1405 Arrows (\uparrow , \downarrow) denote desired property increase or decrease.

Model	Task	Validity	Acc _{all} (0.65)	Acc _{valid} (0.65)	Acc _{all} (0.15)	Acc _{valid} (0.15)	FCD	Task	Validity	Acc _{all} (0.65)	Acc _{valid} (0.65)	Acc _{all} (0.15)	Acc _{valid} (0.15)	FCD
REINVENT4		0.524	0.19	0.3626	0.4	0.7634	11.0566		0.704	0.19	0.2699	0.442	0.6278	11.7456
MolGen		1.0	0.022	0.022	0.256	0.256	14.6826		1.0	0.004	0.004	0.404	0.404	14.943
BioT5		1.0	0.0	0.0	0.148	0.148	30.3159		1.0	0.0	0.0	0.472	0.472	15.1916
DrugAssist	HACCEPT \uparrow	0.9439	0.3467	0.3673	0.4429	0.4692	8.7609	HACCEPT \downarrow	0.9819	0.161	0.1639	0.3421	0.3484	11.8052
Gellmo_M		0.904	0.064	0.0708	0.15	0.1659	14.259		0.89	0.298	0.3348	0.524	0.5888	9.2035
Gellmo_L		0.89	0.07	0.0787	0.162	0.182	12.7839		0.914	0.178	0.1947	0.508	0.5558	8.8893
MolEditRL		0.968	0.484	0.5	0.826	0.8533	7.3163		0.974	0.388	0.3984	0.712	0.731	9.0711
REINVENT4		0.568	0.268	0.4718	0.548	0.7648	9.966		0.7581	0.3841	0.5067	0.6585	0.8686	7.7976
MolGen		1.0	0.038	0.038	0.418	0.418	9.8619		1.0	0.016	0.016	0.432	0.432	14.4007
BioT5		1.0	0.0	0.0	0.36	0.36	16.5037		1.0	0.0	0.0	0.348	0.348	17.2348
DrugAssist	SA \uparrow	0.988	0.216	0.2186	0.294	0.2976	10.14	MW \downarrow	0.98	0.5391	0.5501	0.5872	0.5992	9.2859
Gellmo_M		0.91	0.12	0.1319	0.288	0.3165	8.9319		0.898	0.29	0.3229	0.564	0.6281	6.6778
Gellmo_L		0.912	0.104	0.114	0.28	0.307	8.9652		0.906	0.26	0.287	0.684	0.755	6.6965
MolEditRL		0.95	0.49	0.5158	0.776	0.8168	7.5281		0.984	0.632	0.6423	0.952	0.9675	6.3935
REINVENT4		0.678	0.268	0.3953	0.458	0.6755	11.739		0.7	0.286	0.4086	0.418	0.5971	9.2662
MolGen		1.0	0.022	0.022	0.243	0.243	13.4729		1.0	0.042	0.042	0.418	0.418	11.0476
BioT5		1.0	0.0	0.0	0.144	0.144	23.7964		1.0	0.0	0.0	0.272	0.272	16.231
DrugAssist	HDONORS \uparrow	0.9319	0.3267	0.3505	0.4449	0.4774	8.4057	DRD2 \downarrow	0.984	0.524	0.5325	0.57	0.5793	7.5935
Gellmo_M		0.898	0.044	0.049	0.092	0.1024	12.5726		0.922	0.136	0.1475	0.274	0.2972	9.3582
Gellmo_L		0.896	0.04	0.0446	0.1	0.1116	14.7698		0.916	0.132	0.1441	0.336	0.3668	9.8566
MolEditRL		0.942	0.582	0.6178	0.842	0.8938	8.0114		0.986	0.656	0.6639	0.72	0.7302	6.549
REINVENT4		0.61	0.114	0.1869	0.36	0.5902	13.997		0.508	0.268	0.5276	0.424	0.8346	7.5582
MolGen		1.0	0.094	0.094	0.474	0.474	10.5549		1.0	0.11	0.11	0.474	0.474	13.7158
BioT5		1.0	0.0	0.0	0.492	0.492	27.5634		1.0	0.0	0.0	0.202	0.202	34.7724
DrugAssist	LOGP \uparrow	0.964	0.382	0.3963	0.442	0.4585	11.3282	LOGP \downarrow	0.966	0.548	0.5673	0.604	0.6253	6.3703
Gellmo_M		0.89	0.374	0.4202	0.724	0.8135	6.878		0.906	0.004	0.0044	0.224	0.2472	12.9582
Gellmo_L		0.91	0.268	0.2945	0.59	0.6484	6.7566		0.918	0.15	0.1634	0.444	0.4837	7.7802
MolEditRL		0.964	0.578	0.5996	0.91	0.944	6.0118		0.972	0.71	0.7305	0.94	0.9671	5.1015
REINVENT4		0.61	0.112	0.1836	0.384	0.6295	11.671		0.652	0.15	0.2301	0.312	0.4785	11.1066
MolGen		1.0	0.084	0.084	0.356	0.356	11.3428		1.0	0.024	0.024	0.421	0.421	10.9996
BioT5		1.0	0.0	0.0	0.306	0.306	16.85		1.0	0.0	0.0	0.374	0.374	15.7723
DrugAssist	ROTBOIDS \uparrow	0.9537	0.1469	0.154	0.2716	0.2848	10.7588	QED \downarrow	0.9859	0.1044	0.1059	0.247	0.2505	10.8724
Gellmo_M		0.888	0.072	0.0811	0.16	0.1802	12.1059		0.924	0.012	0.013	0.15	0.1623	15.4165
Gellmo_L		0.888	0.098	0.1104	0.218	0.2455	10.0684		0.904	0.088	0.0973	0.218	0.2412	10.3736
MolEditRL		0.934	0.392	0.4197	0.764	0.818	7.2532		0.948	0.612	0.6456	0.894	0.943	6.9314

1428 **mutually exclusive properties—the model is unable to produce feasible edits.** Looking ahead, we
1429 plan to explore interactive, dialogue-based molecular editing, enabling users to iteratively refine
1430 molecules via multi-turn natural language instructions. This direction could support more intuitive
1431 and human-centric workflows for molecular design and lead optimization.

T LLM USAGE STATEMENT

1437 Large language models were employed solely as general-purpose assistance tools during the writing
1438 process, specifically for improving clarity and checking grammar. All technical contributions,
1439 experimental results, and scientific insights are entirely the authors' own work. No LLMs were used
1440 to generate core research ideas, experimental data, or technical implementations. The authors take
1441 full responsibility for all content and claims presented in this paper.

U EXTENDED SINGLE-PROPERTY RESULTS

1447 Table 20 reports extended quantitative results for 10 representative single-property molecular editing
1448 tasks from the MolEdit-Instruct benchmark. MolEditRL consistently achieves the highest accuracy
1449 across both similarity thresholds, while maintaining high chemical validity and the lowest FCD scores
1450 across most tasks. This indicates strong structural fidelity and superior alignment with target property
1451 distributions. In contrast, baselines such as BioT5 and MolGen often generate valid molecules but
1452 fail to satisfy property and similarity constraints. REINVENT4 and DrugAssist perform moderately
1453 well but fall short in structural preservation and distributional realism. These detailed results further
1454 confirm the robustness and effectiveness of MolEditRL in single-property editing scenarios.

V EXTENDED MULTI-PROPERTY RESULTS

1458 Table 21: Extended results on multi-property molecular editing tasks. Bold indicates best performance.
 1459 Arrows (\uparrow , \downarrow) denote desired property increase or decrease.
 1460

Model	Task	Validity	Acc _{all} (0.65)	Acc _{valid} (0.65)	Acc _{all} (0.15)	Acc _{valid} (0.15)	FCD	Task	Validity	Acc _{all} (0.65)	Acc _{valid} (0.65)	Acc _{all} (0.15)	Acc _{valid} (0.15)	FCD
BioT5		1.0	0.0	0.0	0.352	0.352	17.731		1.0	0.0	0.0	0.19	0.19	19.8292
DrugAssist	HACCEPT \downarrow	0.9819	0.2711	0.2761	0.3574	0.364	12.987	JNK3 \downarrow	0.98	0.292	0.298	0.336	0.3429	11.1755
GeLLM ³ O_M	HDONORS \downarrow	0.89	0.108	0.1213	0.264	0.2966	14.7575	QED \uparrow	0.914	0.148	0.1619	0.326	0.3567	10.123
GeLLM ³ O_L		0.9	0.146	0.1622	0.36	0.4	12.0622		0.9	0.098	0.1089	0.352	0.3911	10.866
MolEditRL		0.972	0.358	0.3739	0.612	0.6497	11.7393		0.976	0.33	0.3381	0.416	0.4262	9.6139
BioT5		1.0	0.0	0.0	0.098	0.098	24.7313		1.0	0.0	0.0	0.088	0.088	24.19
DrugAssist	HACCEPT \uparrow	0.954	0.226	0.2369	0.284	0.2977	11.5424	DRD2 \downarrow	0.992	0.104	0.1048	0.126	0.127	12.3998
GeLLM ³ O_M	SA \uparrow	0.918	0.012	0.0131	0.07	0.0763	23.0712	GSK3B \uparrow	0.942	0.036	0.0382	0.064	0.0679	15.6116
GeLLM ³ O_L		0.904	0.026	0.0288	0.048	0.0531	14.8785		0.9	0.05	0.0556	0.098	0.1089	12.7831
MolEditRL		0.962	0.316	0.3583	0.58	0.6576	11.2492		0.97	0.186	0.1918	0.228	0.2351	11.4433
BioT5		1.0	0.0	0.0	0.104	0.104	27.651		1.0	0.0	0.0	0.25	0.25	28.7563
DrugAssist	LOGP \downarrow	0.98	0.346	0.3531	0.384	0.3918	8.4341	DRD2 \uparrow	0.976	0.212	0.2172	0.254	0.2602	11.4352
GeLLM ³ O_M	ROTBONDS \downarrow	0.892	0.032	0.0359	0.128	0.1435	16.9039	SA \uparrow	0.898	0.102	0.1136	0.232	0.2584	11.5436
GeLLM ³ O_L		0.908	0.09	0.0991	0.3	0.3304	10.9156		0.924	0.07	0.0758	0.222	0.2403	12.0196
MolEditRL		0.97	0.454	0.468	0.686	0.7072	6.2095		0.912	0.23	0.2522	0.398	0.4364	10.8934
BioT5		1.0	0.0	0.0	0.072	0.072	31.688		1.0	0.0	0.0	0.216	0.216	19.1627
DrugAssist	LOGP \downarrow	0.96	0.09	0.0938	0.1	0.1042	19.404	QED \downarrow	0.984	0.24	0.2439	0.276	0.2805	11.0221
GeLLM ³ O_M	ROTBONDS \uparrow	0.86	0.014	0.0163	0.034	0.0395	30.3704	ROTBONDS \uparrow	0.878	0.014	0.0159	0.096	0.1093	21.1825
GeLLM ³ O_L		0.906	0.022	0.0243	0.06	0.0662	16.6925		0.902	0.064	0.071	0.166	0.184	11.7206
MolEditRL		0.954	0.344	0.3891	0.634	0.7172	12.0673		0.943	0.422	0.4742	0.83	0.9326	7.564
BioT5		1.0	0.0	0.0	0.27	0.27	17.3349		1.0	0.0	0.0	0.196	0.196	20.749
DrugAssist	MW \uparrow	0.98	0.298	0.3041	0.354	0.3612	9.5465	QED \downarrow	0.978	0.2325	0.2377	0.2766	0.2828	11.0132
GeLLM ³ O_M	QED \downarrow	0.926	0.072	0.0778	0.238	0.257	12.8711	SA \uparrow	0.906	0.086	0.0949	0.184	0.2031	10.3846
GeLLM ³ O_L		0.882	0.158	0.1791	0.316	0.3583	7.8458		0.894	0.078	0.0872	0.172	0.1924	10.3566
MolEditRL		0.944	0.35	0.4147	0.79	0.936	7.0482		0.938	0.592	0.6311	0.878	0.936	7.3882
BioT5		1.0	0.0	0.0	0.016	0.016	49.8934		1.0	0.0	0.0	0.07	0.07	36.9063
DrugAssist	DRD2 \downarrow	0.95	0.062	0.0653	0.082	0.0863	14.6988	DRD2 \uparrow	0.956	0.142	0.1485	0.192	0.2008	13.9149
GeLLM ³ O_M	HACCEPT \uparrow	0.91	0.018	0.0198	0.034	0.0374	16.9543	HACCEPT \uparrow	0.904	0.004	0.0044	0.064	0.0708	28.5396
GeLLM ³ O_L	MW \downarrow	0.916	0.01	0.0109	0.02	0.0218	24.1798	SA \uparrow	0.92	0.016	0.0174	0.05	0.0543	18.2579
MolEditRL		0.962	0.1	0.104	0.264	0.2744	12.5672		0.966	0.192	0.1988	0.288	0.2981	13.7681
BioT5		1.0	0.0	0.0	0.086	0.086	28.2977		1.0	0.0	0.0	0.116	0.116	23.0032
DrugAssist	DRD2 \uparrow	0.972	0.09	0.0926	0.14	0.144	15.8384	DRD2 \downarrow	0.99	0.114	0.1152	0.158	0.1596	13.438
GeLLM ³ O_M	HACCEPT \uparrow	0.904	0.03	0.0332	0.082	0.0907	23.1175	JNK3 \uparrow	0.91	0.062	0.0681	0.13	0.1429	15.6618
GeLLM ³ O_L	JNK3 \uparrow	0.91	0.026	0.0286	0.054	0.0593	18.5348	QED \downarrow	0.912	0.034	0.0373	0.082	0.0899	18.1148
MolEditRL		0.94	0.22	0.234	0.294	0.3128	13.1873		0.938	0.258	0.2751	0.438	0.467	9.2013
BioT5		1.0	0.0	0.0	0.066	0.066	32.3437	DRD2 \downarrow	1.0	0.0	0.0	0.024	0.024	43.4139
DrugAssist	GSK3B \uparrow	0.948	0.056	0.0591	0.062	0.0654	21.3896	GSK3B \downarrow	0.954	0.02	0.021	0.028	0.0294	19.8179
GeLLM ³ O_M	HDONORS \uparrow	0.902	0.002	0.0022	0.004	0.0044	24.7065	HDONORS \uparrow	0.884	0.0	0.0	0.0068	0.0068	60.738
GeLLM ³ O_L	QED \downarrow	0.914	0.012	0.0131	0.036	0.0394	18.4036	LOGP \uparrow	0.898	0.002	0.0022	0.008	0.0089	19.9507
MolEditRL		0.954	0.206	0.2159	0.416	0.4361	14.599		0.962	0.174	0.1809	0.232	0.2412	11.4978
BioT5		1.0	0.0	0.0	0.088	0.088	30.4482	GSK3B \downarrow	1.0	0.0	0.0	0.1	0.1	27.6262
DrugAssist	DRD2 \downarrow	0.988	0.082	0.083	0.092	0.0931	21.3253	HDONORS \downarrow	0.992	0.09	0.0907	0.098	0.0988	24.7748
GeLLM ³ O_M	GSK3B \downarrow	0.91	0.042	0.0462	0.094	0.1033	18.8187	LOGP \uparrow	0.906	0.05	0.0552	0.108	0.1192	18.0398
GeLLM ³ O_L	HACCEPT \downarrow	0.918	0.042	0.0458	0.12	0.1307	20.2584	MW \downarrow	0.91	0.034	0.0374	0.11	0.1209	20.1217
MolEditRL		0.986	0.122	0.1237	0.21	0.213	14.735		0.966	0.146	0.1511	0.212	0.2195	18.0029

1487 Table 21 presents detailed evaluation results on multi-property molecular editing tasks from the
 1488 MolEdit-Instruct benchmark. Each task involves optimizing 2 to 4 chemical properties simultaneously,
 1489 reflecting practical constraints encountered in real-world molecular design. MolEditRL consistently
 1490 achieves strong performance across all multi-property tasks, demonstrating its ability to balance
 1491 complex property requirements while preserving molecular validity and structural similarity. The
 1492 results confirm its robustness under increasingly constrained and realistic editing scenarios. The
 1493 property combinations in these tasks are carefully selected to reflect common design goals in
 1494 medicinal chemistry. For example, tasks like (HACCEPT \downarrow , HDONORS \downarrow) aim to reduce molecular
 1495 polarity, which is essential for improving membrane permeability and bioavailability. (LOGP \downarrow ,
 1496 ROTBONDS \downarrow) targets molecules with lower lipophilicity and rigidity, which improves metabolic
 1497 stability and reduces off-target binding. On the other hand, combinations such as (MW \uparrow , QED \downarrow)
 1498 simulate early-stage exploration of larger, less drug-like molecules, often relevant in hit expansion or
 1499 macrocycle design. Biologically motivated combinations like (DRD2 \downarrow , GSK3 β \uparrow) reflect efforts to
 1500 reduce off-target dopamine receptor activity while enhancing GSK3 β inhibition, a common challenge
 1501 in polypharmacology. Furthermore, high-complexity tasks such as (GSK3 β \uparrow , HDONORS \uparrow , QED \downarrow ,
 1502 SA \uparrow) require optimizing target activity while managing solubility, drug-likeness, and synthetic
 1503 complexity—mirroring real trade-offs in lead optimization pipelines. These results collectively
 1504 showcase MolEditRL’s effectiveness not only in individual property edits but also in realistic,
 1505 multi-objective optimization scenarios critical for practical drug development.

W ETHICS STATEMENT

1508 This work focuses on computational molecular editing for drug discovery applications. We ac-
 1509 knowledge several ethical considerations: (1) Dataset Release: We release the MolEdit-Instruct
 1510 dataset publicly to benefit the research community, following established practices for molecular
 1511 datasets. All molecular data is derived from publicly available databases (ZINC, ChEMBL) and
 1512 contains no proprietary or sensitive information. (2) Intended Applications: Our method is designed

1512 to support legitimate drug discovery research, and the dataset is intended for beneficial applications
1513 in medicine and chemistry. (3) Reproducibility: We provide comprehensive implementation details,
1514 hyperparameters, and dataset construction procedures to ensure reproducible research. (4) No human
1515 subjects were involved in this study, and all experiments were conducted on computational datasets.
1516

1517 X REPRODUCIBILITY STATEMENT

1518 To ensure reproducibility of our results, we provide comprehensive details across multiple sections:
1519 (1) Model Architecture: Complete architectural specifications are provided in Appendix, including
1520 all hyperparameters, network dimensions, and training configurations. (2) Training Setup: Detailed
1521 training procedures, optimization settings, and hardware specifications are documented in Appendix.
1522 (3) Dataset Construction: The MolEdit-Instruct dataset construction process is thoroughly described
1523 in Appendix, including property definitions, filtering criteria, and prompt generation procedures. The
1524 dataset is publicly available on Hugging Face. (4) Experimental Details: All evaluation metrics,
1525 baseline implementations, and experimental protocols are specified in Section 4. (5) Code Availability:
1526 Upon acceptance, we will release the complete implementation including model code, training scripts,
1527 and evaluation pipelines to facilitate reproduction of all reported results.
1528

1529 Y MORE VISUALIZATION OF MOLECULAR EDITING

1530 To further illustrate the editing behavior of different models, we present additional qualitative results
1531 in Figure 8, Figure 9, and Figure 10. These figures show visualization of edits across 20 single-
1532 property tasks. For each task, subfigure (a) displays the source molecule, and subfigures (b–e)
1533 show successful edits produced by BioT5, DrugAssist, GeLLMO_L, and MolEditRL, respectively.
1534 Red-colored substructures indicate regions that have been modified relative to the source molecule.
1535 Across all tasks, MolEditRL consistently achieves the highest number of successful edits, as well
1536 as the best structural fidelity—preserving the core scaffold of the original molecule while precisely
1537 introducing the required modifications. Additionally, Figure 12, Figure 13, and Figure 14 highlight
1538 side-by-side visual comparisons of different models editing the same molecular structure for a single
1539 target property. These visualizations confirm that only MolEditRL can reliably perform property-
1540 aligned edits while preserving molecular similarity. Competing models often over-modify or disrupt
1541 key structural elements, leading to reduced similarity or invalid transformations.
1542

1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

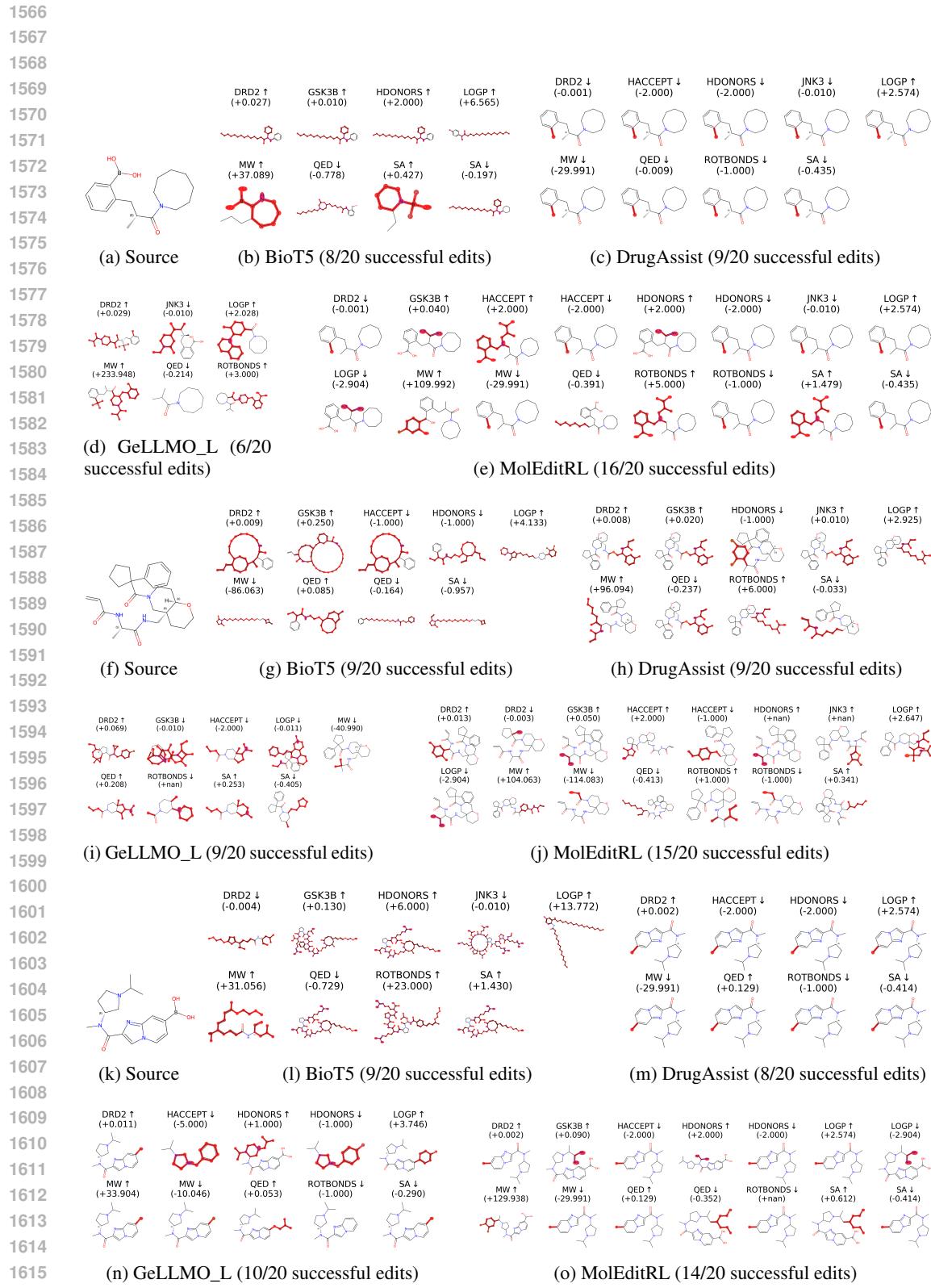


Figure 8: More visualization of edits on 20 tasks.

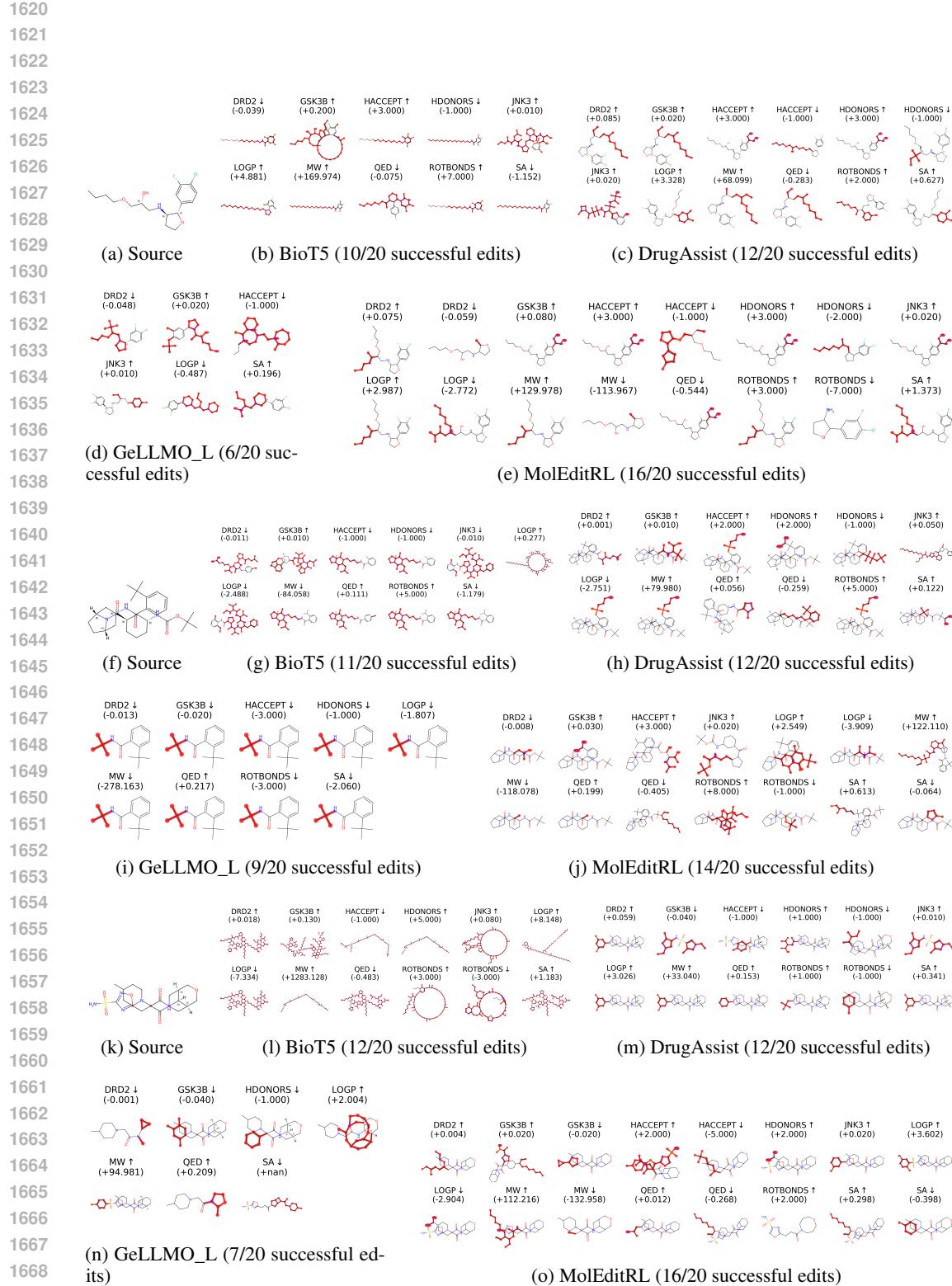


Figure 9: More visualization of edits on 20 tasks.

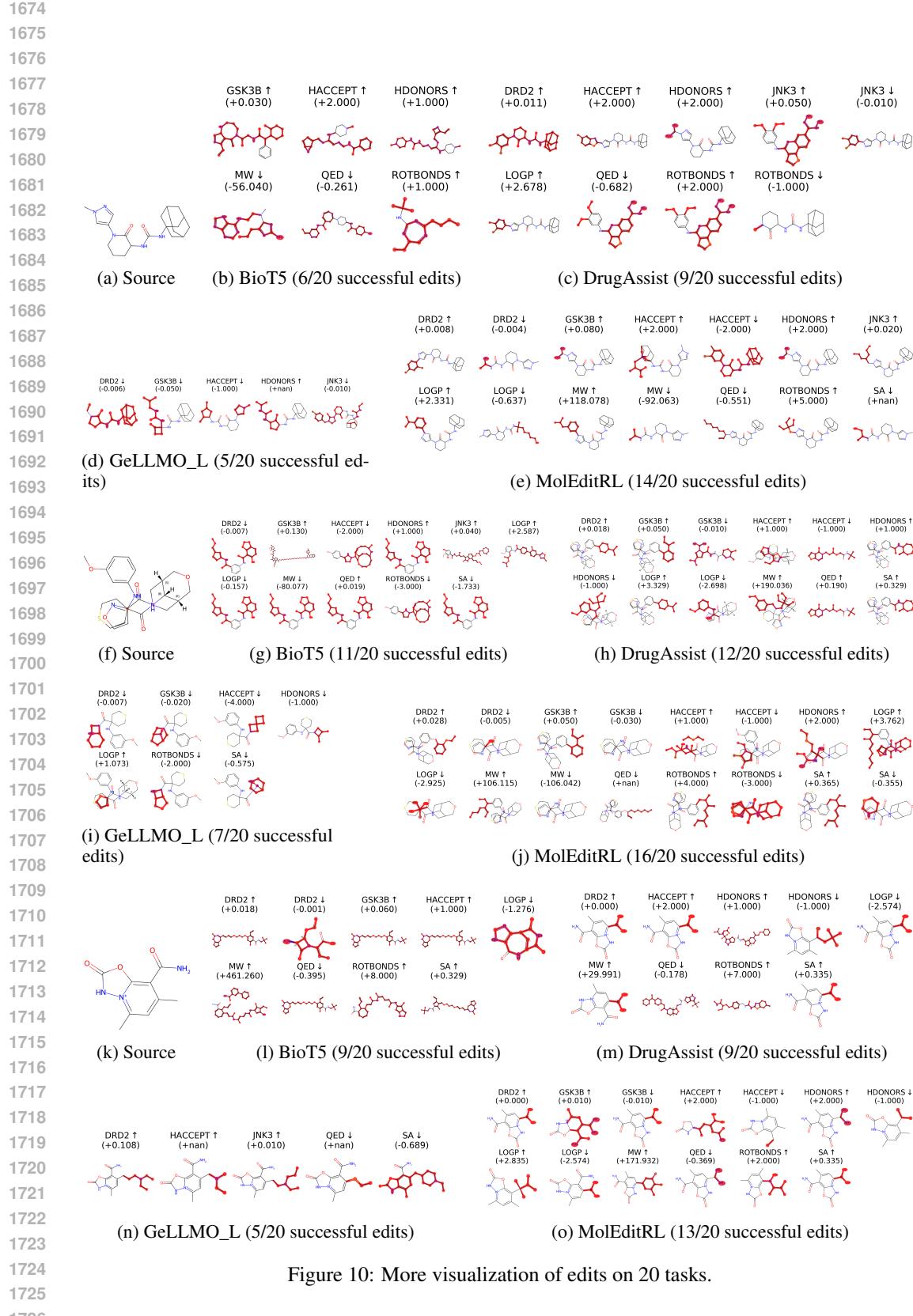


Figure 10: More visualization of edits on 20 tasks.

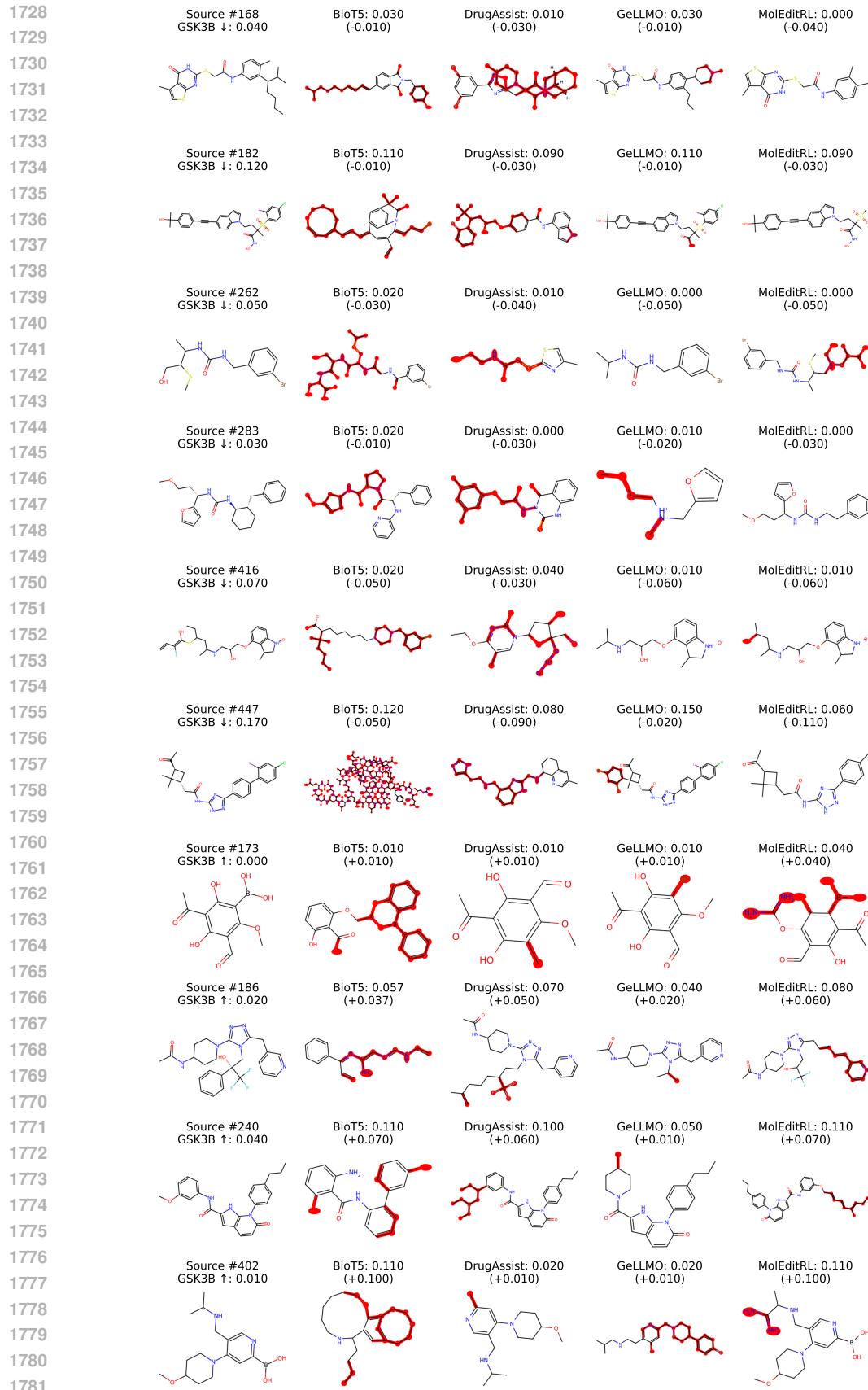


Figure 11: Qualitative comparison of molecular editing methods.

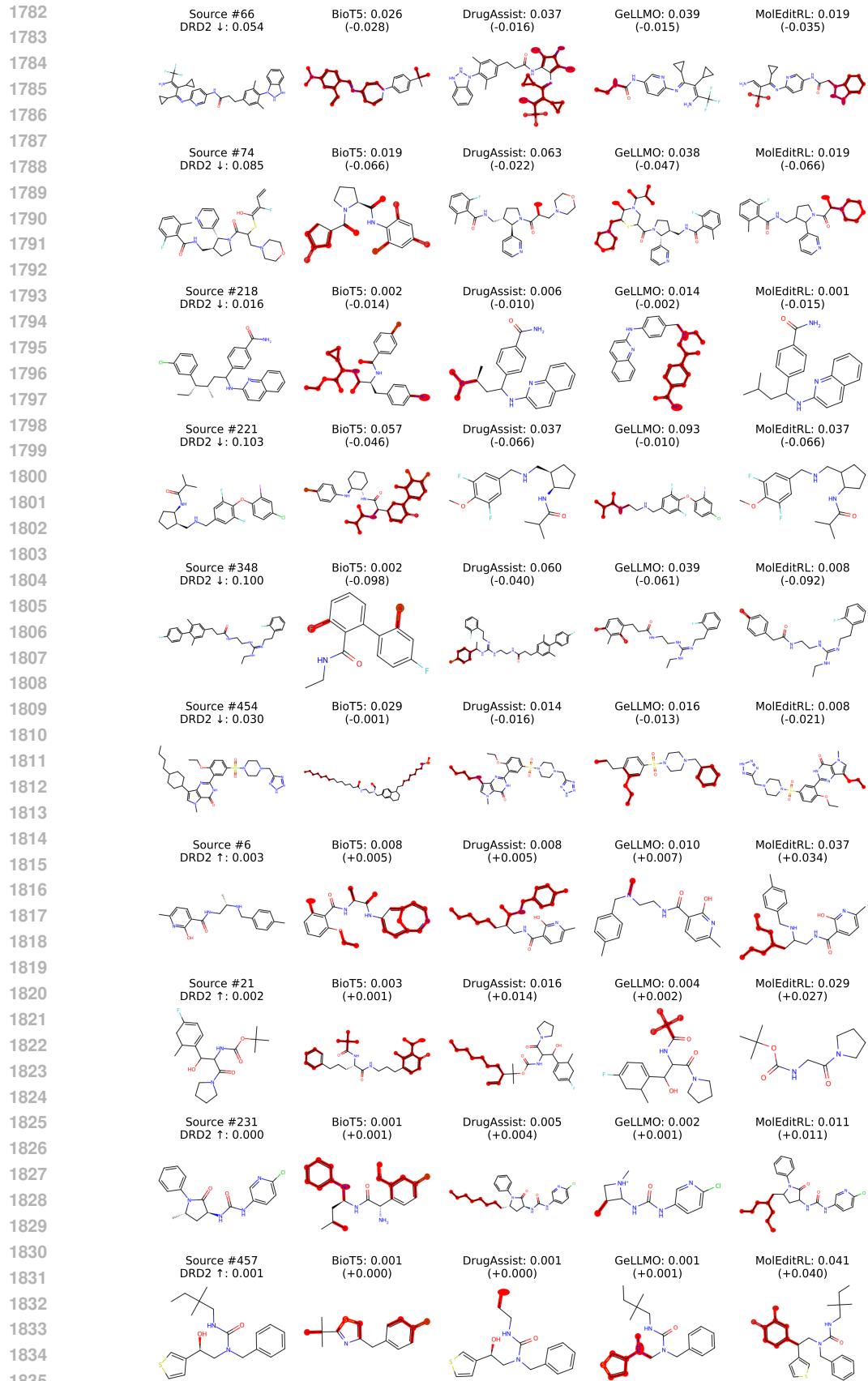


Figure 12: Qualitative comparison of molecular editing methods.

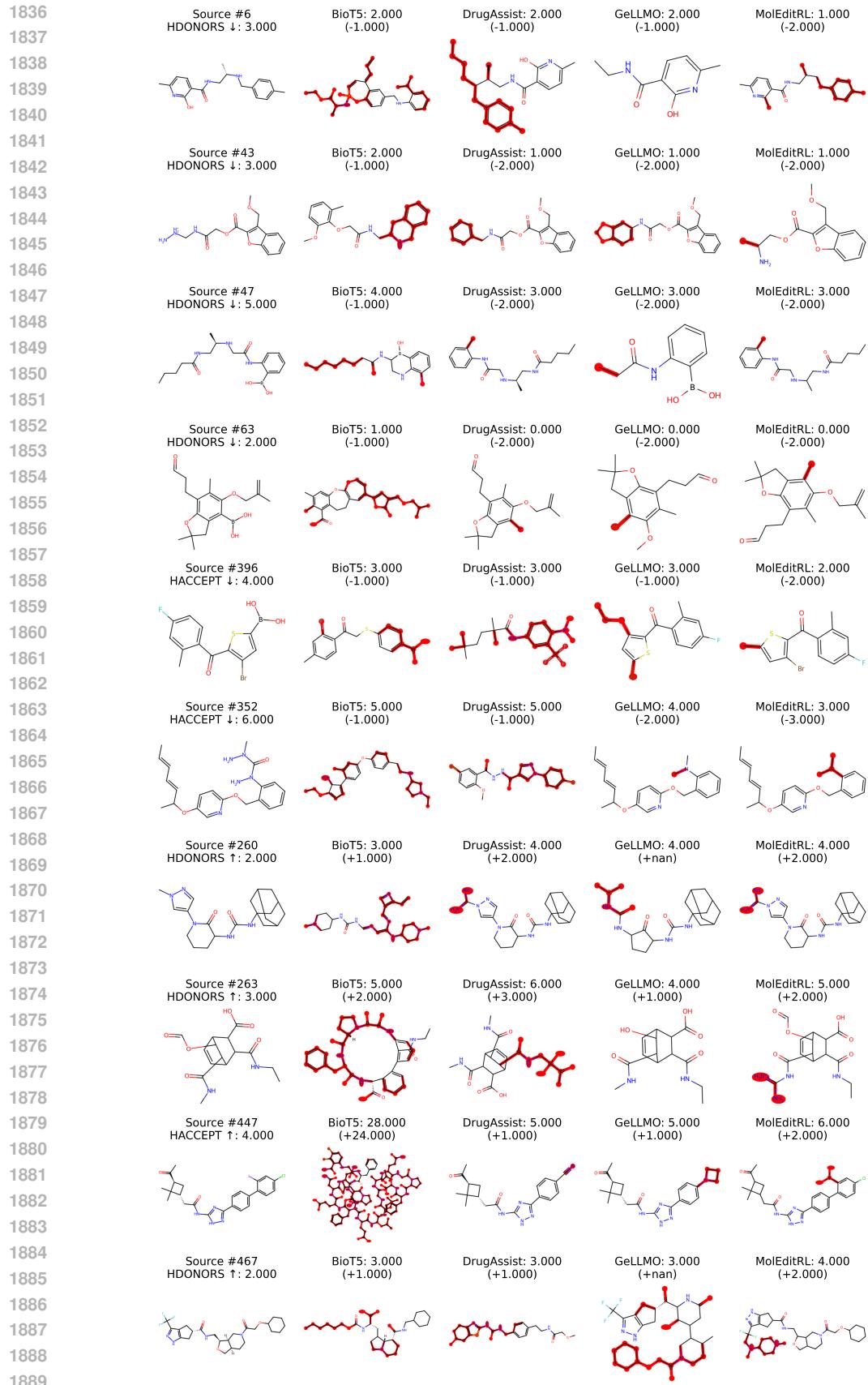


Figure 13: Qualitative comparison of molecular editing methods.

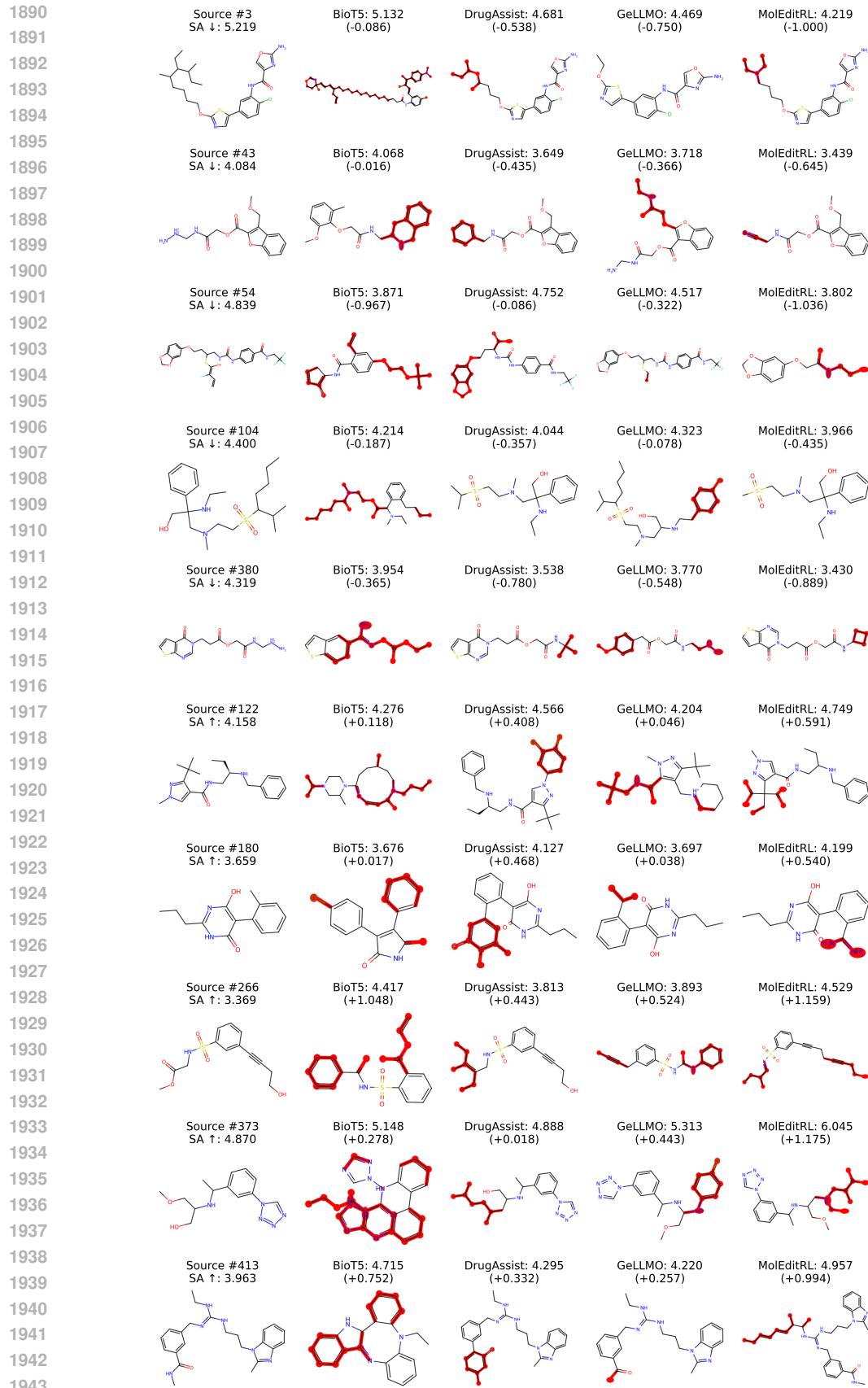


Figure 14: Qualitative comparison of molecular editing methods.