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ABSTRACT

Federated learning (FL) has recently attracted increasing attention from academia
and industry, with the ultimate goal of achieving collaborative training under pri-
vacy and communication constraints. Existing iterative model averaging based
FL algorithms require a large number of communication rounds to obtain a well-
performed model due to extremely unbalanced and non-i.i.d data partitioning
among different clients. Thus, we propose FedDM to build the global training
objective from multiple local surrogate functions, which enables the server to
gain a more global view of the loss landscape. In detail, we construct synthetic
sets of data on each client to locally match the loss landscape from original data
through distribution matching. FedDM reduces communication rounds and im-
proves model quality by transmitting more informative and smaller synthesized
data compared with unwieldy model weights. We conduct extensive experiments
on three image classification datasets, and show that our method can outperform
other FL counterparts in terms of efficiency and model performance. Moreover,
we demonstrate that FedDM can be adapted to preserve differential privacy with
Gaussian mechanism and train a better model under the same privacy budget.

1 INTRODUCTION

Traditional machine learning methods are designed with the assumption that all training data can be
accessed from a central location. However, due to the growing data size together with the model
complexity (Dosovitskiy et al., 2020; Kenton & Toutanova, 2019; Krizhevsky et al., 2012), dis-
tributed optimization (Shamir et al., 2014; Dean et al., 2012; Chilimbi et al., 2014) is necessary over
different machines. This leads to the problem of Federated Learning (McMahan et al., 2017a) (FL)
– multiple clients (e.g. mobile devices or local organizations) collaboratively train a global model
under the orchestration of a central server (e.g. service provider) while the training data are kept
decentralized and private. Such a practical setting poses two primary challenges (Kairouz et al.,
2021; McMahan et al., 2017a; Li et al., 2021; Konečnỳ et al., 2016; Li et al., 2020b): training data
of the FL system are highly unbalanced and non-i.i.d. across downstream clients and more
efficient communication with fewer costs is expected because of unreliable devices with limited
transmission bandwidth.

Most of the existing FL methods (McMahan et al., 2017a; Li et al., 2020b; Wang et al., 2020; Karim-
ireddy et al., 2020; Li et al., 2022) adopt an iterative training procedure from FedAvg (McMahan
et al., 2017a), in which each round takes the following steps: 1) The global model is synchronized
with a selected subset of clients; 2) Each client trains the model locally and sends its weight or
gradient back to the server; 3) The server updates the global model by aggregating messages from
selected clients. This framework works effectively for generic distributed optimization while the
difficult and challenging setting of FL, unbalanced data partition in particular, would result in sta-
tistical heterogeneity in the whole system (Li et al., 2020a) and make the gradient from each client
inconsistent. It poses a great challenge to the training of the shared model, which requires a substan-
tial number of communication rounds to converge (Li et al., 2022). Although some improvements
have been made over FedAvg (McMahan et al., 2017a) including modifying loss functions (Li et al.,
2020b), correcting client-shift with control variates (Karimireddy et al., 2020) and the like, the re-
duced number of communication round is still considerable and even the amount of information
required by the server rises (Zhou et al., 2020).
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In our paper, we propose a different iterative surrogate minimization based method, FedDM, re-
ferred to Federated Learning with iterative Distribution Matching. Instead of the commonly-
used scheme where each client maintains a locally trained model respectively and sends its gra-
dient/weight to the server for aggregation, we take a distinct perspective at the client’s side and
attempt to build a local surrogate function to approximate the local training objective. By sending
those local surrogate functions to the server, the server can then build a global surrogate function
around the current solution and conduct the update by minimizing this surrogate. The question is
then how to build local surrogate functions that are informative and with a relative succinct rep-
resentation. Inspired by recent progresses in data condensation (Zhao et al., 2020; Zhao & Bilen,
2021a) we build local surrogate functions by learning a synthetic dataset to replace the original one
to approximate the objective. It can be achieved by matching the original data distribution in the
embedding space with the maximum mean discrepancy measurement (MMD) (Gretton et al., 2012).
After the optimization of synthesized data, the client can transmit them to the server, which can
then leverage the synthetic dataset to recover the global objective function for training. Our method
enables the server to have implicit access to the global objective defined by the whole balanced
dataset from all clients, and thus outperforms previous algorithms involved in training a local model
with unbalanced data in terms of communication efficiency and effectiveness. We also demonstrate
that our method can be adapted to preserve differential privacy under a modest budget, an important
factor to the deployment of FL systems.

Our contributions are primarily summarized as follows:

• We propose FedDM, which is based on iterative distribution matching to learn a surrogate
function. It sends synthesized data to the server rather than commonly-used local model
updates and improves communication efficiency and effectiveness significantly.

• We further analyze how to protect privacy of client’s data for our method and show that it is
able to guarantee (ϵ, δ)-differential privacy with the Gaussian mechanism and train a better
model under the same privacy budget.

• We conduct comprehensive experiments on three tasks and demonstrate that FedDM is bet-
ter than its FL counterparts in communication efficiency and the final model performance.

2 RELATED WORK

Federated Learning. Federated learning (McMahan et al., 2017a; Kairouz et al., 2021) has
aroused heated discussion nowadays from both research and applied areas. With the goal to train
the model collaboratively, it incorporates the principles of focused data collection and minimiza-
tion (Kairouz et al., 2021). FedAvg (McMahan et al., 2017a) was proposed along with the concept of
FL as the first effective method to train the global model under the coordination of multiple devices.
Since it is based on iterative model averaging, FedAvg suffers from heterogeneity in the FL system,
especially the non-i.i.d. data partitioning, which degrades the performance of the global model and
adds to the burden of communication (Li et al., 2020a). To mitigate the issue, some variants have
been developed upon FedAvg including (Li et al., 2020b; Wang et al., 2020; Karimireddy et al.,
2020). For instance, FedProx (Li et al., 2020b) modifies the loss function while FedNova (Wang
et al., 2020) and SCAFFOLD (Karimireddy et al., 2020) leverage auxiliary information to balance
the distribution shift. Apart from better learning algorithms with faster convergence rate, another
perspective at improving efficiency is to reduce communication costs explicitly (Chen et al., 2021;
Sattler et al., 2019; Xie et al., 2019; Chen et al., 2019; Reisizadeh et al., 2020). An intuitive approach
is to quantize and sparsify the uploaded weights directly (Reisizadeh et al., 2020). Efforts have also
been made towards one-shot federated learning (Zhou et al., 2020; Guha et al., 2019; Salehkaleybar
et al., 2021; Sharifnassab et al., 2019), expecting to obtain a satisfactory model through only one
communication round.

Differential Privacy. To measure and quantify information disclosure about individuals, re-
searchers usually adopt the state-of-the-art model, differential privacy (DP) (Dwork et al., 2006b;
2014; Dwork, 2011). DP describes the patterns of groups while withholding information about indi-
viduals in the dataset. There are many scenarios in which DP guarantee is necessary (Dwork et al.,
2006a; Dwork & Lei, 2009; Abadi et al., 2016; Papernot & Steinke, 2021; Agarwal et al., 2018).
For example, Abadi et.al (Abadi et al., 2016) developed differentially private SGD (DP-SGD) which
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enabled training deep neural networks with non-convex objectives under a certain privacy budget. It
was further extended to settings of federated learning, where various techniques have been designed
to guarantee user-level or local differential privacy (McMahan et al., 2017b; Papernot et al., 2016).
Recently, DP has been taken into account for hyperparameter tuning (Papernot & Steinke, 2021).

Dataset Distillation. With the explosive growing of the size of training data, it becomes much
more challenging and costly to acquire large datasets and train a neural network within moderate
time (Nguyen et al., 2020; 2021). Thus, constructing smaller but still informative datasets is of vital
importance. The traditional way to reduce the size is through coreset selection (Chen et al., 2012;
Borsos et al., 2020), which select samples based on particular heuristic criteria. However, this kind
of method has to deal with a trade-off between performance and data size (Nguyen et al., 2020;
Zhao et al., 2020). To improve the expressiveness of the smaller dataset, recent approaches consider
learning a synthetic set of data from the original set, or data distillation for simplicity. Along this
line, different methods are proposed using meta-learning (Wang et al., 2018; Sucholutsky & Schon-
lau, 2021), gradient matching (Zhao et al., 2020; Zhao & Bilen, 2021b), distribution matching (Zhao
& Bilen, 2021a; Wang et al., 2022), neural kernels (Nguyen et al., 2020; 2021) or generative mod-
els (Such et al., 2020). A recent work (Dong et al., 2022) has analyzed the privacy property of dataset
distillation methods, focusing on membership attacks. It provides a complementary prospective to
(ϵ, δ)-differential privacy discussed in our paper.

3 METHODOLOGY

In this part, we first present the iterative surrogate minimization framework in Section 3.1, and then
expand on the details of our implementation of FedDM in Section 3.2. In addition, we discuss
preserving differential privacy of our method through Gaussian mechanism in Section 3.3.

3.1 ITERATIVE SURROGATE MINIMIZATION FRAMEWORK FOR FEDERATED LEARNING

Neural network training can be formulated as solving the finite sum minimization problem:

min
w

f(D;w) where f(D;w) = 1

n

n∑
i=1

ℓ(xi, yi;w), (1)

where w ∈ Rd is the parameter to be optimized, D is the dataset and ℓ(xi, yi;w) is the loss of the
prediction on sample (xi, yi) ∈ D w.r.t. w such as cross entropy. We will abbreviate these terms
as f(w) and ℓi(w) for simplicity. Equation 1 is typically solved by stochastic optimizers when
training data are gathered in a single machine. However, the scenario is different under the setting
of federated learning with K clients. In detail, each client k has access to its local dataset of the size
nk with the set of indices Ik (nk = |Ik|), and we can rewrite the objective as

f(w) =

K∑
k=1

nk

n
fk(w) where fk(w) =

1

nk

∑
i∈Ik

li(w). (2)
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Figure 1: A 1-D example showing ad-
vantages of the surrogate function.

Since information can only be communicated between the
server and clients, previous methods (McMahan et al.,
2017a; Li et al., 2020b; Wang et al., 2020; Karimireddy
et al., 2020) train the global model by aggregation of lo-
cal model updates, as introduced in Section 1. However, as
each client only sees local data which could be biased and
skewed, the local updates is often insufficient to capture the
global information. Further, since local weight update con-
sists limited information, it is hard for the server to obtain
better joint update direction by considering higher order in-
teractions between different clients. We are motivated to
leverage the surrogate function by the example in Figure 1.
Specifically, we synthesize a 1-D binary classification prob-
lem and learn a surrogate for the objective function. We
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learn the surrogate function via distribution matching introduced in Section 3.2 around the weight
of 0. Compared with the tangent line computed by the gradient, the surrogate function in orange
matches the original one accurately and minimizing it leads to a satisfactory solution. More details
can be checked in Appendix A. Thus, we hope to develop a novel scheme such that each client can
send a local surrogate function instead of a single gradient or weight update to the server, so the
server has a more global view to loss landscape to obtain a better update instead of pure averaging.

To achieve this goal, we propose to conduct federated learning with an iterative surrogate minimiza-
tion framework. At each round, let wr be the current solution, we build a surrogate training objective
f̂r(·) to approximate the original training objective in the local area around wr, and then update the
model by minimizing the local surrogate function. The update rule can be written as

wr+1 = min
w∈Bρ(wr)

f̂r(w), where f̂r(w) ≈ f(w), ∀w ∈ Bρ(wr). (3)

Bρ(wr) is a ρ-radius ball around wr. Note that we do not expect to build a good surrogate function in
the entire parameter space; instead, we only construct it near wr and obtain the update by minimizing
the surrogate function within this space. In fact, many optimization algorithms can be described
under this framework. For instance, if f̂r(w) = ∇f(wr)

T (w − wr) (based on the first-order Taylor
expansion), then Equation 3 leads to the gradient descent update where ρ controls the step size.

To apply this framework in the federated learning setting, we consider the decomposition of Equa-
tion 2 and try to build surrogate functions to approximate each fk(w) on each client. More specifi-
cally, each client aims to find

f̂r,k(w) ≈ fk(w), ∀w ∈ Bρ(wt) (4)

and send the local surrogate function f̂r,k(·) instead of gradient or weights to the server. The server
then form the aggregated surrogate function

f̂r(w) = f̂r,1(w) + · · ·+ f̂r,K(w) (5)

and then use Equation 3 to obtain the update. Again, if each f̂r,k is the Taylor expansion based on
local data, it is sufficient for the client to send local gradient to the server, and the update will be
equivalent to (large batch) gradient descent. However, we will show that there exists other ways to
build local approximations to make federated learning more communication efficient.

3.2 LOCAL DISTRIBUTION MATCHING

Inspired by recent progresses in data distillation (Zhao et al., 2020; Zhao & Bilen, 2021a;b; Nguyen
et al., 2020; 2021), it is possible to learn a set of synthesized data for each client to represent original
data in terms of the objective function. Therefore, we propose to build local surrogate models based
on the following approximation for the r-th round:

fk(w) =
1

nk

∑
i∈Ik

fi(w) ≈
1

ns
k

∑
j∈IS

k

ℓj(x̃j , ỹj ;w) = f̂r,k(S;w), ∀w ∈ Bρ(wr), (6)

where S denotes the set of synthesized data and ISk is the corresponding set of indices. Note that
we aim to approximate fk only in a local region around wr instead of finding the approximation
globally, which is hard as demonstrated in (Zhao et al., 2020; Zhao & Bilen, 2021a). To form the
approximation function in Equation 6, we solve the following minimization problem:

min
S

Ew∼Pw
∥fk(w)− f̂r,k(S;w)∥2 (7)

where w is sampled from distribution Pw, which is a Gaussian distribution truncated at radius ρ. A
different perspective at Equation 7 is that we can just match the distribution between the real data
and synthesized ones given fk(w) and f̂r,k(S;w) are just empirical risks. A common way to achieve
this is to estimate the real data distribution in the latent space with a lower dimension by maximum
mean discrepancy (MMD) (Wang et al., 2022; Zhao & Bilen, 2021a):

sup
∥hw∥H≤1

(E[hw(D)]− E[hw(S)]) . (8)
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Here hw is the embedding function that maps the input into the hidden representation. We use
the empirical estimate of MMD in (Zhao & Bilen, 2021a) since the underlying data distribution is
inaccessible. To make our approximation more accurate and effective, we match the outputs of the
logit layer which corresponds with the Equation 7, together with the preceding embedding layer:

L = ∥ 1

|D|
∑

(x,y)∈D

hw(x)−
1

|S|
∑

(x̃,ỹ)∈S

hw(x̃)∥2

+ ∥ 1

|D|
∑

(x,y)∈D

zw(x)−
1

|S|
∑

(x̃,ỹ)∈S

zw(x̃)∥2,
(9)

where hw(x) again denotes intermediate features of the input while zw(x) ∈ RC represents the
output of the final logit layer. It should be emphasized that we learn synthesized data for each class
respectively, which means samples inD and S belong to the same class. For training, we adopt mini-
batch based optimizers to make it more efficiently. Specifically, a batch of real data and a batch of
synthetic data are sampled randomly for each class independently by BDk

c ∼ Dk and BSk
c ∼ Sk.

We plug these two batches into Equation 9 to compute Lc and L =
∑C−1

c=0 Lc. Sk can be updated
with SGD by minimizing L for each client.

Then we aggregate all synthesized data from K clients at the server’s side:

f(w) =

K∑
k=1

nk

n
fk(w) ≈

K∑
k=1

nS
k

n
f̂r,k(Sk;w), ∀w ∈ Bρ(wr). (10)

Moreover, since synthesized data are trained based on a specific distribution around the current value
of w, we need to iteratively synchronize the global weights with all the clients and obtain proper S
according to the latest w for the next communication round.

Therefore, instead of transmitting information such as parameters or gradients in previous FL algo-
rithms, we propose federated learning with iterative distribution matching (FedDM) in Algorithm 1
following the steps below to train the global model:

(a) At each communication round, for each client, we adopt Equation 9 as the objective func-
tion to train synthesized data for each class.

(b) The server receives synthesized data and leverages them to update the global model.
(c) The current weight is then synchronized with all the clients and a new communication

rounds start by repeating step (a) and (b).

It should be noticed that through estimating the local objective, FedDM extracts richer information
than existing model averaging based methods, and enables the server to explore the loss landscape
from a more global view. It reduces communication rounds significantly. On the other hand, the
explicit message uploaded to the server, or the number of float parameters, is relatively smaller.
This is especially true when training large neural network models, where the size of neural network
parameters (and therefore gradient update) is much larger than the size of the input. Take CIFAR10
as an example, when training data are distributed obeying Dir10(0.5), the average number of classes
per client (cpc) is 9. When we adopt the number of images per class (ipc) of 10 for the synthetic set,
the total number of float parameters uploaded to the server is: the number of clients × cpc × ipc ×
image size = 10× 9× 10× 3× 32× 32 ≈ 2.8× 106. For those iterative model averaging model
methods, the number of float parameters is equal to the product of weight size and the number of
clients, which is 320010 × 10 ≈ 3.2 × 106 for ConvNet (Zhao et al., 2020) and comparably larger
than FedDM. An extensive comparison is presented in Appendix C.

3.3 DIFFERENTIAL PRIVACY OF FEDDM

An important factor to evaluate a federated learning algorithm is whether it can preserve differential
privacy. Before analyzing our method, we first review fundamentals of differential privacy.
Definition 3.1 (Differential Privacy (Dwork et al., 2006a)). A randomized mechanismM : D → R
with domain D and range R satisfies (ϵ, δ)-differential privacy if for any two adjacent datasets
D1, D2 and any measurable subset S ⊆ R,

Pr(M(D1) ∈ S) ≤ eϵPr(M(D2) ∈ S) + δ. (11)
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Algorithm 1 FedDM: Federated Learing with Distribution Matching

1: Input: Training set D, set of synthetic samples S, deep neural network parameterized with w,
probability distribution over parameters Pw, Gaussian noise level σ, gradient norm bound C,
training iterations of distribution matching T , learning rate ηc and ηs.

2: Server executes:
3: for each round r = 1, . . . , R do
4: for client k = 1, . . . ,K do
5: Sk ← ClientUpdate(k,wr, σ)
6: Transmit Sk to the server
7: Aggregate synthesized data from each client and build the surrogate function by Equa-

tion 10
8: Update weights to wr+1 on S by SGD with the learning rate ηs
9: end for

10: end for
11: ClientUpdate(k,wr, σ):
12: for t = 0, · · · , T − 1 do
13: Sample w ∼ Pw(wr)
14: Sample mini-batch pairs BDk

c ∼ Dk and BSk
c ∼ Sk for each class c

15: Compute Lc based on Equation 9, L ←
∑C−1

c=0 Lc

16: if σ > 0 then
17: Obtain the clipped gradient: ∇Sk

Lc ← ∇Sk
Lc/max

(
1,

∥∇Sk
Lc∥2

C

)
18: Add Gaussian noise: ∇Sk

Lc ← ∇Sk
Lc +

1

|BDk
c |
N (0, σ2C2I)

19: end if
20: Update Sk ← Sk − ηc∇Sk

L
21: end for

Typically, the randomized mechanism is applied to a query function of the dataset, f : D → X .
Without loss of generality, we assume that the output spaces R,X ⊆ Rm. A key quantity in
characterizing differential privacy for various mechanisms is the sensitivity of a query (Dwork et al.,
2014) f : D → Rm in a given norm ℓp. Formally this is defined as

∆p
∆
= max

D1,D2

∥f(D1)− f(D2)∥p. (12)

Gaussian mechanism (Dwork et al., 2014) is one simple and effective method to achieve (ϵ, δ)-
differential privacy:

M(D)
∆
= f(D) + Z, where Z ∼ N (0, σ2∆2

pI). (13)

It has been proved that under Gaussian mechanism, (ϵ, δ)-differential privacy is satisfied for the

function f of sensitivity ∆p if we choose σ ≥
√
2 log 1.25

δ /ϵ (Dwork et al., 2014). Differentially
private SGD (DP-SGD) (Abadi et al., 2016) then applies Gaussian mechanism to deep learning
optimization with hundreds of steps and demonstrates the following theorem:
Theorem 3.1. There exist constants c1 and c2 so that given the sampling probability q and the
number of steps T , for any ϵ < c1q

2T , DP-SGD is (ϵ, δ)-differentially private for any δ > 0 if

σ ≥ c2∆p
q
√
T log(1/δ)

ϵ
. (14)

Back to FedDM, we look at each client separately to investigate its differential privacy. A natural
question is: can we leverage DP-SGD to update synthetic set S and claim that the training procedure
is locally differentially private by Theorem 3.1? The answer is yes! We show that the gradient of Lc

in equation 9 can be written as the average of individual gradients for each real example,

∇Sk
Lc =

1

|BDk
c |

∑
(xi,yi)∈B

Dk
c

g̃(xi), (15)
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where g̃(xi) is the modified gradient for xi and the complete proof is presented in Appendix B. It
indicates that the synthetic set can be regarded as an equivalence to the network parameter in DP-
SGD, and leads to the conclusion that for each client k, Theorem 3.1 holds during optimizing Sk.
To extend DP guarantee to a system with K clients, we use parallel composition (McSherry, 2009):
Theorem 3.2. If there are n mechanisms M1, . . . ,Mn computed on disjoint subsets whose
privacy guarantees are (ϵ1, δ1), . . . , (ϵn, δn) respectively, then any function of M1, . . . ,Mn is
(maxi ϵi,maxi δi)-differential private.

We can see that different clients maintain their own local datasets, which satisfies disjoint property.
Then this Gaussian mechanism is still (ϵ, δ)-differentially private for the whole system if each client
satisfies (ϵ, δ)-differential privacy. In addition, to quantify how much noise is required for each
client, we can make use of the Tail bound in (Abadi et al., 2016):

δ = min
λ

exp(αM (λ)− λϵ). (16)

Based on (Abadi et al., 2016), αM (λ) ≤ Tq2λ2/σ2, without loss of generality, set λ = σ2, we can

obtain that δ ≤ exp(Tq2σ2−ϵσ2), and σ ≥
√

log(δ)
Tq2−ϵ . When Tq2 ≤ ϵ/2, we have σ ≥

√
2 log(1/σ)

ϵ .

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. In this paper, we focus on image classification tasks, and select three commonly-used
datasets: MNIST (LeCun, 1998), CIFAR10 (Krizhevsky et al., 2009), and CIFAR100 (Krizhevsky
et al., 2009). We adopt the standard training and testing split. Following commonly-used
scheme (Wang et al., 2019), we simulate non-i.i.d. data partitioning with Dirichlet distribution
DirK(α), where K is the number of clients and α determines the non-i.i.d. level, and allocate
divided subsets to clients respectively. A smaller value of α leads to more unbalanced data distribu-
tion. The default data partitioning is based on Dir10(0.5) with 10 clients. Furthermore, we also take
into account different scenarios of data distribution, including Dir10(0.1), Dir10(0.01). Results of
Dir50(0.5) and Dir10(50) (i.i.d. scenario) can be found in Appendix D.1.
Baseline methods. We compare FedDM with four representative iterative model averaging based
methods: FedAvg (McMahan et al., 2017a), FedProx (Li et al., 2020b), FedNova (Wang et al., 2020),
and SCAFFOLD (Karimireddy et al., 2020). We summarize the action of the client and the server,
together with the transmitted message for all methods in Table 1.

Table 1: Summary of different FL methods.

Method Client Message Server

FedAvg (McMahan et al., 2017a) min fk(w) ∆w
* model averaging

FedProx (Li et al., 2020b) min fk(w) + µ∥w − wr∥/2 ∆w model averaging
FedNova (Wang et al., 2020) min fk(w) d and a* normalized model averaging

SCAFFOLD (Karimireddy et al., 2020) min fk(w, c) ∆w and ∆c
* model averaging for both w and c

FedDM(Ours) min Equation 9 S model updating on S
* ∆w denotes the model update, d is the aggregated gradient and a is the coefficient vector, ∆c is the change of control

variates. Refer to original papers for more details.

Hyperparameters. For FedDM, following (Zhao & Bilen, 2021a), we select the batch size as
256 for real images, and update the synthetic set Sk for T = 1, 000 iterations with ηc = 1 for
each client in each communication round, and tune the number of images per class (ipc) within
the range [3, 5, 10]. Synthetic images are initialized as randomly sampled real images with corre-
sponding labels suggested by (Zhao et al., 2020; Zhao & Bilen, 2021a). Considering the trade-off
between communication efficiency and model performance, we choose ipc to be 10 for MNIST and
CIFAR10, 5 for CIFAR100 when there are 10 clients. The choice of radius ρ = 5 is discussed
in Appendix D.3. On the server’s side, the global model is trained with the batch size 256 for 500
epochs by SGD of ηs = 0.01. For baseline methods1, we choose the same batch size of 256 for local
training, and tune the learning rate of SGD from [0.001, 0.01, 0.1] and local epoch from [10, 15, 20].

1We use implementations from https://github.com/Xtra-Computing/NIID-Bench in Li
et al. (2022).
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In particular, we tune µ for FedProx in [0.01, 0.1, 1]. For a fair comparison, all methods share the
fixed number of communication rounds as 20, and the same model structure ConvNet (Zhao et al.,
2020) by default. A different network ResNet-18 (He et al., 2016) is evaluated as well. All exper-
iments are run for three times with different random seeds with one NVIDIA 2080Ti GPU and the
average performance is reported in the paper.

4.2 COMMUNICATION EFFICIENCY AND CONVERGENCE RATE

We first evaluate our method in terms of communication efficiency and convergence rate on all three
datasets on the default data partitioning Dir10(0.5). As we can see in Figure 2(a)-(c), our method
FedDM performs the best among all considered algorithms by a large margin on MNIST, CIFAR10,
and CIFAR100. Specifically, for CIFAR10, FedDM achieves 69.66± 0.13% on test accuracy while
the best baseline SCAFFOLD only has 66.12±0.17% after 20 communication rounds. FedDM also
has the best convergence rate and it significantly outperforms baseline methods within the initial few
rounds. Advantages of FedDM are more evident when we evaluate convergence as a function of the
message size. As mentioned in 3.2, FedDM requires less information per round. Therefore, we can
observe in Figure 2(d)-(e) that FedDM converges the fastest along with the message size. Details of
the message size of each method for different tasks are provided in Appendix C.
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(b) CIFAR10; rounds
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(c) CIFAR100; rounds
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(d) MNIST; message size
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(e) CIFAR10; message size
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(f) CIFAR100; message size

Figure 2: Test accuracy along with the number of communication rounds and the message size.

4.3 EVALUATION ON DIFFERENT DATA PARTITIONING

In real-world applications, there are various extreme data distributions among clients. To synthesize
such non-i.i.d. partitioning, we consider two more scenarios with Dir10(0.1) and Dir10(0.01). As
mentioned, α → 0 implies each client holds examples from only one random class. It can be seen
in Table 2 that previous methods based on iterative model averaging are insufficient to handle these
two challenging scenarios and their performance degrades drastically compared with Dir10(0.5). In
contrast, FedDM performs consistently better and more robustly, since distribution matching enables
it to approximate the global training objective more accurately.

Table 2: Test accuracy of FL methods with different level of non-uniform data partitioning.

Method α = 0.1 α = 0.01
MNIST CIFAR10 CIFAR100 MNIST CIFAR10 CIFAR100

FedAvg 96.92 ± 0.09 57.32 ± 0.04 32.00 ± 0.50 91.04 ± 0.80 57.32 ± 0.04 27.05 ± 0.45
FedProx 96.72 ± 0.04 56.92 ± 0.30 30.77 ± 0.52 91.18 ± 0.16 40.30 ± 0.15 25.88 ± 0.39
FedNova 98.04 ± 0.03 60.76 ± 0.14 31.92 ± 0.42 90.27 ± 0.49 36.46 ± 0.42 27.52 ± 0.43

SCAFFOLD 98.32 ± 0.06 60.96 ± 1.20 34.39 ± 0.25 88.37 ± 0.25 32.42 ± 1.13 31.14 ± 0.20
FedDM 98.67 ± 0.01 67.38 ± 0.32 37.58 ± 0.27 98.21 ± 0.23 63.82 ± 0.17 34.98 ± 0.17
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4.4 PERFORMANCE WITH DP GUARANTEE

As discussed in Section 3.3, using DP-SGD in local training of FedDM can satisfy (ϵ, δ)-differential

privacy, with σ ≥
√

2 log(1/δ)
ϵ . for any Tq2 ≤ ϵ/2. Such a mechanism also works on baseline

methods with the same DP guarantee. Therefore, our evaluation scheme just adopts the same level
of Gaussian noise in DP-SGD given the specific budget (ϵ, δ) and then compares performance of dif-
ferent algorithms. Specifically, we choose three noise levels from small (σ = 1), medium (σ = 3),
to large (σ = 5), and set the gradient norm bound C = 5. We notice in Figure 3 that under the
same differential privacy guarantee, FedDM outperforms other FL counterparts in terms of conver-
gence rate and final performance. Moreover, compared with the original accuracy with no noise
incorporated, FedDM is most resistant to the perturbed optimization among all considered methods.
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(a) Small noise (σ = 1).
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(b) Medium noise (σ = 3).
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(c) Large noise (σ = 5).

Figure 3: Performance of FL methods with different levels of noise.

4.5 ANALYSIS OF FEDDM

We analyze FedDM to investigate effects of hyperparameters such as ipc and network structure.
Besides, we compare our method with a strong baseline of sending real images with the same size.
More extensive results are reported in Appendix D including visualization of learned synthetic data.

Effects of ipc. Experiments are conducted on CIFAR10 with the distribution Dir10(0.5) with three
different ipc values from [3, 5, 10]. As the ipc increases, the performance gradually get better from
53.64±0.35%, 62.24±0.04% to 69.62±0.14%. However, in the meanwhile, more images per class
indicates a heavier communication burden. We need to trade off the model performance against the
communication cost, and thus choose an appropriate ipc value based on the task.
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Figure 4: Test accuracy on ResNet-18.

Different network structures. Besides ConvNet, we
evaluate FedDM under the default CIFAR10 setting on
ResNet-18. It can be observed that our method works
well even for this more complicated and larger model in
Figure 4. It should also be emphasized that for FL base-
line methods, they have to transmit a larger amount of
message while FedDM maintains the original size. This
makes FedDM more efficient in larger networks.
Comparison with transmitting real images. Our
method is compared with REAL, which sends real im-
ages of the same size as FedDM (ipc = 10). In particular,
REAL achieves test acccuracy of 68.66 ± 0.08% on CIFAR10 with the default setting, but can-
not beat FedDM with 69.62 ± 0.14%. It indicates that our learned synthetic set can capture richer
information of the whole dataset rather than just a few images.

5 CONCLUSIONS AND LIMITATIONS

In this paper we propose an iterative distribution matching based method, FedDM to achieve more
communication-efficient federated learning. By learning a synthetic dataset for each client to ap-
proximate the local objective function, the server can obtain a global view of the loss landscape
better than aggregating local model updates. We also show that FedDM can preserve differential
privacy with Gaussian mechanism. However, there is still a trade-off between the size of the syn-
thetic set and the final performance, especially for classification tasks with hundreds of clients or
classes. How to reduce the synthetic set to save communication costs can be a future direction.
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A SYNTHETIC BINARY CLASSIFICATION

We design a synthetic 1-D binary classification problem to better illustrate the advantage of learn-
ing a surrogate function for the training objective. Specifically, we construct a dataset Ds =
{(xi, yi)|i = 1, . . . , n} with n = 100 synthetic pairs in the following way:

xi ∼ N (0, 1), yi =

{
1 (xi ≥ 0 and pi ≥ 0.9) or (xi < 0 and pi < 0.1)

0 otherwise
, (17)

where pi is a random value sampled from Uniform(0, 1). A prediction is made by ŷi =
Sigmoid(wxi) with the weight w as the trainable parameter. We use the binary cross entropy as
the training objective:

LBCE = − 1

n

n∑
i=1

yi log(ŷi) + (1− yi) log((1− ŷi)). (18)

Then we use n′ = 20 randomly initialized examples {(x̃j , ỹj)|j = 1, . . . , 20} to match the objective
around w = 0 as introduced in Section 3.2. We plot the original objective, the surrogate function,
and the tangent line at w = 0 obtained by the gradient in Figure 1.

B PROOF OF EQUATION 15

Recall the equation of Lc, we have

Lc =

Lc,h︷ ︸︸ ︷
∥ 1

|BDk
c |

∑
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hw(x)−
1

|BSk
c |
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+ ∥ 1
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|BSk
c |
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(x̃,ỹ)∈B

Sk
c

zw(x̃)∥2

︸ ︷︷ ︸
Lc,z

.
(19)

Lc are divided into two similar parts, Lc,h and Lc,z . Then we first take a look at the gradient of Lc,h

with respect to Sk below:

∇Sk
Lc,h =

JSk︷ ︸︸ ︷
2(
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(20)
Similarly, we have

∇Sk
Lc,z =

1

|BDk
c |

∑
(x,y)∈B

Dk
c

z̃w(x). (21)

Then the final gradient of Lc is

∇Sk
Lc = ∇Sk

Lc,h +∇Sk
Lc,z =

1
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c |

∑
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c
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c
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(22)
It completes the proof of Equation 15.
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C MESSAGE SIZE OF DIFFERENT FL METHODS

In this section, we provide specific message size under different data partitioning of FedDM. As
discussed previously, the message size of all baseline methods are determined on the model size,
while the message size varies from different scenarios and ipc values. When there are 10 clients,
we set ipc=10 for MNIST and CIFAR10, and ipc=5 for CIFAR100. We present the results in Ta-
ble 3. It can be observed that FedDM are more advantageous for unbalanced data partitioning, such
as Dir10(0.1) and Dir10(0.01). For the experiment of Dir50(0.5) on CIFAR10 with ConvNet, the
message sizes of FedDM and baselines are 3.1× 106 and 1.6× 107 respectively, where our method
saves about 80% costs per round. Moreover, if the underlying model are changed to ResNet-18 for
Dir10(0.5), then the number of parameters is about 1.1× 108.

Table 3: The size of message uploaded to the server (number of float parameters).

MNIST CIFAR10 CIFAR100

Dir10(0.5) 635040 2672640 10045440
Dir10(0.1) 368480 1351680 4761600

Dir10(0.01) 109760 460800 2135040
Baseline 3177060 3200100 5044200

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 LEARNING CURVES OF FL METHODS

We show a complete set of learning curves for all of our experiments.

Different data partitioning. Here we present curves for different data partitioning. We observe
that FedDM still outperforms all other baselines under scenarios of Dir10(50) in Figure 8 which is
almost an i.i.d. data partitioning, and Dir50(0.5) in Figure 9 which has more clients.
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Figure 5: Test accuracy under Dir10(0.5).
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(f) CIFAR100; message size

Figure 6: Test accuracy under Dir10(0.1).
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(a) MNIST; rounds
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(b) CIFAR10; rounds
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(c) CIFAR100; rounds
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(d) MNIST; message size
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(e) CIFAR10; message size
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(f) CIFAR100; message size

Figure 7: Test accuracy under Dir10(0.01).
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• i.i.d., Dir10(50)
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(a) CIFAR10; rounds

0 10 20 30 40 50
# of float parameters(×106)

40

45

50

55

60

65

70

Te
st

 A
cc

ur
ac

y 
(%

)

CIFAR10

FedAvg
FedProx
FedNova
SCAFFOLD
FedDM

(b) CIFAR10; message size

Figure 8: Test accuracy under Dir10(50).

• Dir50(0.5)
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(a) CIFAR10; rounds
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(b) CIFAR10; message size

Figure 9: Test accuracy under Dir50(0.5).

Different noise levels. Figure 10 displays learning curves of different σ.
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(a) Small noise (σ = 1).

0 5 10 15 20
Communication Round

30

35

40

45

50

55

60

Te
st

 A
cc

ur
ac

y 
(%

)

CIFAR10, = 3

FedAvg
FedProx
FedNova
SCAFFOLD
FedDM

(b) Medium noise (σ = 3).
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(c) Large noise (σ = 5).
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(d) Small noise (σ = 1).
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(e) Medium noise (σ = 3).
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(f) Large noise (σ = 5).

Figure 10: Performance of FL methods with different levels of noise.
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Effects of ipc. We show test accuracy curves to analyze effects of ipc in Figure 11.

0 5 10 15 20
Communication Round

30

35

40

45

50

55

60

65

70

Te
st

 A
cc

ur
ac

y 
(%

)

CIFAR10

FedAvg
FedProx
FedNova
SCAFFOLD
FedDM(ipc=10)
FedDM(ipc=5)
FedDM(ipc=3)

(a) ipc.
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(b) ipc.

Figure 11: Performance of FedDM with different values of ipc.

Performance on ResNet-18. Detailed learning curves of test accuracy along with rounds and
message size are shown in Figure 12.
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(a) ResNet-18.
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Figure 12: Performance of FL methods on ResNet-18.

Transmitting real data. We present a comparison with sending real images (REAL) in Figure 13.

0 5 10 15 20
Communication Round

52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

Te
st

 A
cc

ur
ac

y 
(%

)

CIFAR10

REAL
FedDM

Figure 13: Test accuracy of FedDM and REAL.

D.2 VISUALIZATION OF THE SYNTHETIC DATASET

By randomly picking a client under data partitioning of Dir10(0.5), we provide the visualization of
our synthetic dataset under different noise levels in Figure 14, 15, 16, and 17. It can be observed
that even when there is no noise added to the gradient during optimization of the synthetic dataset,
those images are still illegible from their original classes in Figure 14. Furthermore, as σ increases,
synthesized data become harder to recognize, which protects the client’s privacy successfully.
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Figure 14: Synthesized images when no noise is added.

Figure 15: Synthesized images with σ = 2

Figure 16: Synthesized images with σ = 3.
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Figure 17: Synthesized images with σ = 5.

D.3 ρ-RADIUS BALL

It has been discussed in Section 3.1 that Bρ(wr) is a ρ-radius ball around wr. Specifically,

Bρ(wr) = {w|∥w − wr∥2 ≤ ρ}. (23)

In FedDM, we sample w based on a truncated Gaussian distribution below:

Pw(wr) = Clip(N (wr, 1), ρ), (24)

where we clip the sampled weight to guarantee that ∥w − wr∥2 ≤ ρ. At the server’s side, when
training the global model, we also clip the weight to the ρ-radius ball. We conduct experiments to
choose ρ from [3, 5, 10] and present the test accuracy after 20 communication rounds on CIFAR10
under the default Dir10(0.5) setting in Table 4. We find that performance is similar and FedDM is
not very sensitive to the choice of ρ. ρ = 5 performs relatively the best and we hypothesize that a too
small weight restricts the optimization to a limited range and a too big one adds to the difficulty of
learning a surrogate function. Based on results in Table 4, we select ρ = 5 for all our experiments.

Table 4: Test accuracy of FedDM under different ρ.

ρ Test accuracy

ρ = 3 69.15 ± 0.09%
ρ = 5 69.66 ± 0.13%
ρ = 10 69.32 ± 0.24%

E REPRODUCIBILITY & ETHICS STATEMENTS

Reproducibility We have specified the setup for all experiments in the paper including hyperpa-
rameters, presented the algorithm in detail, and also provided the source code in the supplemental
material to make sure that our results are reproducible.

Ethics Our work is related to federated learning and one of FL’s goals is to preserve user’s privacy.
Considering this ethically sensitive topic, we have shown that differential privacy of our method
FedDM can be guaranteed with Gaussian mechanism. On the other hand, potential negative impacts
to users like data leakage must be taken into account carefully and cautiously if such differentially
private algorithms are deployed in real-world sensitive applications. Whereas, it should be noted
that our work do not directly leverage real-world sensitive data, and all experiments are conducted
on synthetic data, MNIST, CIFAR10 or CIFAR100, all of which are standard non-private datasets.
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