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ABSTRACT

Generalized Category Discovery (GCD) aims to identify both known and un-
known categories, with only partial labels given for the known categories, posing
a challenging open-set recognition problem. Recently, Visual-Language Models
(VLMs) are employed to learn multi-modality representations for GCD task. Usu-
ally the representation learning approaches for multi-modal GCD are depend upon
modality alignment. However, there is a lack of sufficient investigation on the un-
derlying structure of distributions. In this paper, we propose a novel and effective
multi-modal representation learning framework for GCD via Semi-Supervised
Rate Reduction, called SSR2-GCD, which is able to learn cross-modality rep-
resentations with desired structural properties to align the intra-modality relation-
ships. Moreover, we also integrate semantic information from prompt candidates
by leveraging the inter-modal alignment offered by VLMs. Experiments con-
ducted on generic and fine-grained benchmark datasets demonstrate the superior
performance of our approach.

1 INTRODUCTION

Generalized Category Discovery (GCD) has emerged as a natural and challenging extension of open-
set recognition with the aim of discovering categories (i.e., patterns) in the open world (Vaze et al.,
2022; Scheirer et al., 2012). The goal of GCD is to recognize both known and unknown categories,
going beyond the standard open-set recognition problem by leveraging knowledge learned from
known categories to discover unknown categories. For example, in the typical setting of GCD
task, half of categories are partially labeled (known) and the rest of categories remain unlabeled
(unknown). This setting is relevant to real-world exploration scenarios in which data exhibit a
mixture of known and unknown class structures.

Existing approaches to address the GCD problem usually follow a two-phases framework: a) gen-
erating representations for images by fine-tuning the pre-trained models, and b) applying clustering
algorithms on the learned representations of all unlabeled data. However, these methods lack of
effective signals to transfer knowledge from known categories to discovering unknown categories,
e.g., using the given partial labels to improve the performance on known categories but recovering
the unknown categories in unsupervised or self-supervised manner.

For human being, it is consciously or unconsciously leveraging information with multiple sources
of cues from known categories to recognize unknown categories. Recently, there are a few attempts
to explore multi-modal frameworks for GCD by integrating information from textual modality. For
example, CLIP-GCD (Ouldnoughi et al., 2023) leverages a knowledge database to search for similar
texts of query images, TextGCD (Zheng et al., 2025) constructs prompts from tag and attribute lexi-
cons, and GET (Wang et al., 2025) learns a textual inversion network to generate prompts. Previous
multi-modal GCD frameworks have explored introducing textual cues into visual datasets, yet lack
sufficient investigation on the underlying structure of the distribution in multi-modal representa-
tion learning. For example, these frameworks simply incorporate existing CLIP-style inter-modality
loss (Radford et al., 2021) or GCD-style intra-modality loss (Vaze et al., 2022) for representation
learning. They neither offer clear insights into the role of inter-modal and intra-modal interactions,
nor address the inherent issues in existing representation learning paradigms.
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In this paper, we propose a novel framework, called Semi-Supervised Rate Reduction for Gener-
alized Category Discovery (SSR2-GCD), to address multi-modality representation learning in the
GCD task. To be specific, we incorporate a Semi-Supervised Rate Reduction (SSR2) principle to
learn structured representations, in which the consistency of intra-modal representations is encour-
aged and the representations across known and unknown categories are evenly compressed. Unlike
the existing multi-modal GCD methods that presuppose the criticality of the inter-modal alignment,
we find empirically that the inter-modal alignment is not that important offering novel insights. This
finding is thoroughly discussed and validated through extensive experiments. Moreover, we also
present a Retrieval-based Text Aggregation (RTA) strategy to enhance the text generation, in which
the information from a larger amount of prompt candidates is integrated to generate semantic-rich
textual representations.

Contribution. The main contributions of the paper are highlighted as follows.

1. We incorporate a Semi-Supervised Rate Reduction principle for Generalized Category Dis-
covery (SSR2-GCD) to learn structured representations by which both the known and un-
known categories are evenly compressed.

2. We demonstrate that inter-modal alignment can be non-essential, offering insights for rep-
resentation learning in multi-modal GCD frameworks.

3. We conduct extensive experiments on eight datasets, showing superior performance of the
proposed approach.

2 RELATE WORK

Generalized Category Discovery (GCD). GCD considers a realistic scenario in which the unla-
beled dataset includes samples from both known and unknown categories, requiring simultaneous
discovering of known and unknown categories. Vaze et al. (2022) first address the GCD problem by
leveraging supervised and self-supervised contrastive learning to refine features produced by pre-
trained vision models, and clustering via semi-supervised k-means algorithm. Then, a number of
methods for GCD follow such a pipeline. For instance, SimGCD (Wen et al., 2023), which is a no-
table baseline for GCD, introduces a parametric classifier to replace the non-parametric clustering
and incorporates an entropy regularization to alleviate the degradation of classifier on unknown cate-
gories; SelEx (Rastegar et al., 2024) leverages a hierarchical semi-supervised k-means and achieves
better results on fine-grained datasets; GPC (Zhao et al., 2023) employs Gaussian mixture mod-
els to learn representations while simultaneously estimating the number of unknown categories;
PromptCAL (Zhang et al., 2023) introduces a contrastive affinity learning framework, in which
auxiliary visual prompts are incorporated to address the false negative-induced category collision
issue; SPTNet (Wang et al., 2024a) proposes a spatial prompt tuning method that iteratively fine-
tunes the backbone and learns pixel-level prompts, effectively transferring semantic knowledge in
GCD; HypCD (Liu et al., 2025) introduces a framework that considers both hyperbolic distance and
the angle between samples to learn hierarchy-aware representations. However, all these methods
mentioned above exploit the visual cues. Note that for human being, each known visual category
inherently corresponds to specific semantic meanings described by natural language and thus it is
typically incorporating cues from multiple modalities to recognize new categories.

Multi-modal Generalized Category Discovery. Vision-language pre-trained models (VLMs) such
as CLIP (Radford et al., 2021) embed images and text into an aligned semantic space by pulling the
representations of positive image-text pairs, enabling various downstream applications. Recently,
multi-modal GCD methods (Su et al., 2024; Ouldnoughi et al., 2023; Zheng et al., 2025; Wang
et al., 2025) leverage the external guidance of textual modality brought by VLMs to facilitate knowl-
edge transfer between known and unknown categories. For instance, CLIP-GCD (Ouldnoughi et al.,
2023) leverages a knowledge database to generate texture descriptions and concatenates both the
visual embedding and text embedding obtained from a frozen CLIP backbone for clustering; MM-
GCD (Su et al., 2024) propose a multi-modal framework to align with both the feature and output
spaces of different modalities using contrastive learning and distillation technique; TextGCD (Zheng
et al., 2025) proposes a retrieval-based text generation method to generate semantic-rich texture
descriptions by incorporating abundant tag and attribute candidates, and introduces a co-teaching
technique to align the clustering outputs of vision and text branches. However, TextGCD simply
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employs the inter-modal contrastive loss of CLIP to fine-tune the backbone, while using the sim-
ilarities within each modality for intra-modal clustering. More recently, GET (Wang et al., 2025)
trains a textual inversion network (Baldrati et al., 2023) that maps the image embedding to pseudo
textual token for unlabeled images. To alleviate the distributional shift of the text manifold towards
the image manifold, GET aligns the embedding of pseudo-token with the embedding of class names
on labeled data. However, only class names of known categories are available in the GCD setting,
which prevents the textual inversion network from generating high-quality pseudo-tokens for im-
ages belonging to unknown categories. While existing multi-modal GCD approaches have achieved
promising results, they fail to fully exploit the information provided by the textual modality.

3 PRELIMINARIES

3.1 PROBLEM NOTATION

Denote the data set as DL ∪ DU , which consists of labeled data DL = (xi, y
l
i)

M

i=1 ⊆ X × YL

and unlabeled data DU = (xi, y
u
i )

N
i=1 ⊆ X × YU , where YL and YU denote the label spaces, and

YL ⊂ YU . In the GCD setting, the labeled samples in DL are from the known categories; whereas
unlabeled samples in DU are either from the known categories nor from some unknown categories.
As usual, the total number of categories K = |YU | is given or can be estimated. The goal of GCD
is to estimate the labels of samples in DU .

3.2 MULTI-MODAL GCD BASELINES

In this section, we review the multi-modal GCD baselines relevant to our approach. The common
practice of multi-modal GCD frameworks consist of three components, i.e., text generation, repre-
sentation learning, and clustering.

Text Generation. To introduce textual cues to visual datasets, inherent inter-modal alignment ca-
pability of pre-trained VLMs is leveraged to generate pseudo-texts for query images. Among these
approaches, retrieval-based methods (Li et al., 2024; Zheng et al., 2025) construct a prompt database
P and search for the optimal prompt p ∈ P that maximizes the cosine similarity between the embed-
dings of query image and prompt candidates. For instance, TextGCD (Zheng et al., 2025) uses the
class names in ImageNet (Deng et al., 2009) to construct the tag lexicon and leverages GPT3 (Brown
et al., 2020) to generate distinguishing attributes for these tags. For each query image, the top-3 sim-
ilar tags and top-2 similar attributes are used to construct the prompt: “most likely {tag1}, perhaps
{tag2}, likely {tag3}, most likely {attr1}, perhaps {attr2}”.

Representation Learning. Given query images and their corresponding pseudo-texts, multi-modal
GCD frameworks usually refine their representations simultaneously. For instance, TextGCD learns
the representations by simply following the CLIP-style inter-modal contrastive loss, i.e.,

LCLIP = − 1

|B|
∑
i∈B

log
exp

(
zI
i
⊤
zT
i /τc

)
∑

j ̸=i exp
(
zI
i
⊤
zT
j /τc

) , (1)

where B denotes the mini-batch of data, zI
i, z

T
i ∈ Rd denote the embeddings of i-th image and

pseudo-text, and τc is the temperature factor. Optimizing LCLIP encourages the inter-modal align-
ment between image and text manifolds, but does not account for intra-modal alignment within
each modality. GET also encourages the inter-modal alignment in representation learning, while
incorporating the widely-used supervised and unsupervised contrastive losses to align intra-modal
relationships within each modality, i.e.,

Lcon = λLs
con + (1− λ)Lu

con,

Ls
con = −

∑
i∈Bl

1

|Ni|
∑
j∈Ni

log
exp

(
z⊤
i z′

j/τa
)∑

m ̸=i exp
(
z⊤
i z′

m/τa
) ,

Lu
con = −

∑
i∈B

log
exp

(
z⊤
i z′

i/τb
)∑

m̸=i exp
(
z⊤
i z′

m/τb
) ,

(2)
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Figure 1: Illustration of Our Proposed Framework.

where λ is the balancing parameter, Bℓ denotes the labeled subset of B, zi and z′
i are embeddings

of augmented data pairs, Ni is data indices with the same label as i-th data, and τa and τb are the
temperature parameters. Still, the intra-modal representation learning in multi-modal GCD frame-
works adheres to the paradigm of uni-modal counterparts, and fails to resolve the inherent problems
of this paradigm. That is, optimizing Lcon results in the imbalanced compression of embeddings,
since Lu

con pulls positive augmented data pairs across all categories, while Ls
con further pulls labeled

data together only for known categories. As illustrated in Figure 1, such an imbalanced compression
issue prevents clustering algorithms from accurately identifying cluster boundaries.

Clustering. Existing multi-modal GCD frameworks usually follow SimGCD (Wen et al., 2023)
for clustering unlabeled data, which consists of a supervised cross-entropy loss (Krizhevsky et al.,
2012) and an unsupervised self-distillation loss (Assran et al., 2022), i.e.,

Lcls =
∑
i∈Bl

ℓCE(y
∗
i ,yi) + γ

∑
i∈B

ℓCE(y
′
i,yi)− µH(y), (3)

where γ and µ are the balancing parameters, ℓCE denotes the cross-entropy loss, y∗
i is the ground-

truth label of the i-th image, ŷi is the prediction of the i-th embedding zi, y′
i is the prediction of

the augmented counterpart z′
i with a sharper temperature in Softmax. The mean entropy regular-

izer (Van Gansbeke et al., 2020) H(y) = −
∑

k y
(k) log y(k) is introduced to prevent degenerated

predictions in new categories, where y = 1
2|B|

∑
i∈B(yi + y′

i) denotes the mean prediction of

yi + y′
i in a mini-batch using the same temperature, and y(k) is the value of y in the k-th class. For

example, GET trains a single MLP by optimizing the loss in Eq.(3) to produce predictions for both
image and text embeddings, while TextGCD implements dual-branch classifiers to handle image
and text embeddings, respectively. Additionally, TextGCD uses the co-teaching strategy, in which
high-confidence samples are used to supervise the learning of classifiers, i.e.,

Lco-teach =
∑
i∈S I

ℓCE(y
I
i ,y

T
i ) +

∑
j∈ST

ℓCE(y
T
j ,y

I
j), (4)

where S I,ST are the sample sets selected based on the confidence score of yI and yT, respectively.

4 OUR PROPOSED APPROACH: SSR2-GCD

Roughly, our proposed framework consists of three modules: a) a Retrieval-based Text Aggrega-
tion (RTA) strategy for text generation; b) a Semi-Supervised Rate Reduction (SSR2) principle for
representation learning; and c) dual-branch classifiers to learn pseudo-labels from each modality.
Specifically, at first we use RTA to aggregate embeddings of prompts to incorporate textual infor-
mation that is helpful in discovering unknown categories; then, we use the Semi-Supervised Rate

4
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Reduction (SSR2) objective to learn structured representations with desired properties. The dual-
branch classifiers are deployed to learn pseudo-labels from each modality. For clarity, we illustrate
our proposed framework in Figure 1.

4.1 RETRIEVAL-BASED TEXT AGGREGATION

For text generation, we adopt TextGCD (Zheng et al., 2025) to construct tag and attribute lexicons,
and then search for similar tags and attributes, since we find that incorporating more information
from multiple tag and attribute candidates is helpful in discovering patterns of unknown categories.
Still, due to CLIP’s limitation in handling long textual prompts, the way of constructing prompts
in TextGCD is sub-optimal, because CLIP fails to generate satisfactory embeddings for prompts
exceeding 20 tokens (Zhang et al., 2024). Given CLIP’s text encoder FT and tokenizer T , we use
the text encoder to embed tag and attribute prompts, and then compute the textual embedding by:

zT =

c∑
i=1

σiFT(T (ai)) +

c∑
i=1

σiFT(T (bi)), (5)

where ai and bi are the i-th similar tags and attributes, respectively, as ranked by the cosine similarity
between their embeddings and the embedding of query image zI, c means that only the top-c most
similar tags and attributes are considered, and the variable σi assigns higher weights to the most-
similar tag and attribute and aggregates information from other candidates, i.e.,

σi =

{
1− α if i = 1
α

c−1 otherwise,
(6)

where α > 0 is hyper-parameter (e.g., α = 0.5). This method aggregates richer information from a
larger set of candidates (e.g., c = 4).

4.2 SEMI-SUPERVISED RATE REDUCTION PRINCIPLE FOR REPRESENTATION LEARNING

In this section, we tackle the imbalanced compression issue in existing representation learning
methods. Specifically, we propose a Semi-supervised Rate Reduction (SSR2) approach to to learn
structured representations from intra-modal relationships while achieving even compression across
known and unknown categories. Inspired by the principle of Maximal Coding Rate Reduction (Yu
et al., 2020), a structured representation learning technique originally developed for supervised set-
tings, we formulate SSR2 objective as follows:

LSSR2 = −R(Z) +Rs
c(Z,Y

∗) +Ru
c(Z,Y), (7)

where

R(Z) := log det

(
I+

d

Nϵ2
ZZ⊤

)
,

Rs
c(Zs,Y

∗) :=
1

N

k∑
j=1

log det

(
I+

d

N s
jϵ

2
ZsDiag(Y∗

j )Z
⊤
s

)
,

Ru
c(Zu,Y) :=

1

N

k∑
j=1

log det

(
I+

d

N u
j ϵ

2
ZuDiag(Yj)Z

⊤
u

)
,

where Z denotes the embeddings of a mini-batch, Zs,Zu are the embeddings of labeled and unla-
beled data, Y∗ denotes ground-truth labels, Y denotes the pseudo-labels predicted by classifiers,
I is the identity matrix, k is the number of categories, ϵ > 0 is the hyper-parameter (ϵ = 0.5 in
experiments), N s

j is the number of labeled data points assigned by Y∗ that belong to the j-th class,
and N u

j is the number of unlabeled data points assigned by Y that belong to the j-th class.

During training, we fine-tune the image and text encoders of CLIP (Radford et al., 2021), and the
loss for each encoder is analogous to LSSR2 , with the replacement of embedding Z and pseudo-labels
Y by image and text embeddings ZI,ZT and pseudo-labels of dual-branch classifiers YI,YT, i.e.,

LI
SSR2 = −R(ZI) +Rs

c(Z
I,Y∗) +Ru

c(Z
I,YI),

LT
SSR2 = −R(ZT) +Rs

c(Z
T,Y∗) +Ru

c(Z
I,YT).

(8)
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The contributions of our proposed SSR2 are twofold. On the one hand, maximizing the term R(·) in
Eq. 7 expands the whole embeddings globally while minimizing the terms Rs

c(·) and Ru
c(·) encour-

ages the embeddings of each category to span low-dimensional subspaces with even matrix ranks,
as proved in (Yu et al., 2020; Wang et al., 2024b). Owing to such a desired property, the representa-
tions in each category are evenly compressed. Additionally, the proposed SSR2 focuses on aligning
intra-modal relationships and accommodate the discrepancies between modalities. We find that the
inter-modal alignment leads to intra-modal misalignment and can be unnecessary in multi-modal
GCD frameworks, as discussed and validated in our experiments. To our knowledge, this is the first
work to address the imbalanced compression issue in contrastive-based representation learning, and
to rethink the necessity of inter-modal alignment in the context of multi-modal GCD.

4.3 DUAL-BRANCH CLUSTERING

To fully discover the differences between modalities, we deploy dual-branch classifiers to tackle with
image and text embeddings. The training of the two branch classifiers is conducted concurrently with
the representation learning and is divided into warm-up and alignment stages.

Warm-up Stage. Following SimGCD (Wen et al., 2023), we adopt the loss Lcls in Eq. (3) for
training classifiers. Specifically, the dual-branch classifiers accept image and text embeddings as the
input, yielding modality-specific clustering losses LI

cls and LT
cls. By combining the representation

losses in Eq. (8), the total loss during the warm-up stage becomes:

Lwarm = LI
SSR2 + LT

SSR2 + LI
cls + LT

cls. (9)

Alignment Stage. To align the orders of pseudo-labels predicted by dual-branch classifiers, we
follow the co-teaching strategy of TextGCD (Zheng et al., 2025). By combining the loss Lco-teach in
Eq 4, the total training loss in the alignment stage is formulated as:

Lalign = LI
SSR2 + LT

SSR2 + LI
cls + LT

cls + Lco-teach. (10)

After training, the predicted pseudo-label of the i-th image is calculated by argmax(yI
i + yT

i ).

Remark. The clustering algorithm of our framework is the same as that in previous multi-modal
GCD methods. However, the key distinction lies in representation learning. Specifically, TextGCD
emphasizes only on the inter-modal alignment without incorporating the intra-modal constraints, and
the learning of dual-branch classifiers is based on intra-modal similarities. As criticized in (Mistretta
et al., 2025), using inter-modal alignment loss without intra-modal constraint will lead to intra-
modal misalignment, i.e., the intra-modal similarities might not correspond to the actual pair-wise
relationships, thereby degrading the performance of intra-modal clustering. In contrast, the intra-
modal relationships are well aligned by using LSSR2 , and thus the dual-branch classifiers produce
satisfactory results. In addition, the predictions produced by the dual-branch classifiers are also
utilized as self-supervised signals to guide the joint representation learning, as shown in Eq. (7).

5 EXPERIMENTS

Datasets. We evaluate the performance of GCD methods on generic datasets, i.e., CIFAR-10/-
100 (Krizhevsky et al., 2009), and fine-grained datasets, i.e., CUB-200-2011 (Wah et al., 2011),
Stanford Cars (Krause et al., 2013), Oxford Pets (Parkhi et al., 2012) and Oxford 102 Flowers (Nils-
back & Zisserman, 2008). Following the GCD protocol (Vaze et al., 2022), half of the samples
from the known categories are selected to form the labeled dataset DL, while the remaining samples
constitute the unlabeled dataset DU .

Metrics. Given pseudo-labels and ground-truths of DU , one can compute the clustering accuracy
(ACC) using Hungarian matching algorithm (Kuhn, 1955). Following the GCD protocol, we report
ACC on all categories (“All”), on known categories (“Old”), and on unknown categories (“New”),
respectively. The average ACC over 3 trials is reported.

Implementation Details. In Retrieval-based Text Aggregation, we use the CLIP-H/14 (Radford
et al., 2021) to search prompt candidates to ensure a fair comparison to TextGCD (Zheng et al.,
2025). During training, we use the CLIP-B/16 encoders to produce text and image features. We
report the performance of uni-modal counterparts using DINO (Caron et al., 2021) with ViT-B/16.
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Table 1: The average ACC (%) on generic and fine-grained datasets. “†” denotes the reproduction
of using CLIP backbone.

CIFAR-10 CIFAR-100 CUB Stanford Cars Oxford Pets Flowers102

Method All Old New All Old New All Old New All Old New All Old New All Old New

D
IN

O
v1

GCD 91.5 97.9 88.2 73.0 76.2 66.5 51.3 56.6 48.7 39.0 57.6 29.9 80.2 85.1 77.6 74.4 74.9 74.1
GPC 92.2 98.2 89.1 77.9 85.0 63.0 55.4 58.2 53.1 42.8 59.2 32.8 - - - - - -
SimGCD 97.1 95.1 98.1 80.1 81.2 77.8 60.3 65.6 57.7 53.8 71.9 45.0 87.7 85.9 88.6 71.3 80.9 66.5
PromptCAL 97.9 96.6 98.5 81.2 84.2 75.3 62.9 64.4 62.1 50.2 70.1 40.6 - - - - - -
SPTNet 97.3 95.0 98.6 81.3 84.3 75.6 65.8 68.8 65.1 59.0 79.2 49.3 - - - - - -
SelEx 95.9 98.1 94.8 82.3 85.3 76.3 73.6 75.3 72.8 58.5 75.6 50.3 92.5 91.9 92.8 - - -
Hyp-SelEx 96.7 97.6 96.3 82.4 85.1 77.0 79.8 75.8 81.8 62.9 80.0 54.7 - - - - - -

C
LI

P

SimGCD† 96.6 94.7 97.5 81.6 82.6 79.5 62.0 76.8 54.6 75.9 81.4 73.1 88.6 75.2 95.7 75.3 87.8 69.0
CLIP-GCD 96.6 97.2 96.4 85.2 85.0 85.6 - - - 62.8 77.1 55.7 70.6 88.2 62.2 76.3 88.6 70.2
TextGCD 98.2 98.0 98.6 85.7 86.3 84.6 76.6 80.6 74.7 86.1 91.8 83.9 93.7 93.2 94.0 87.2 90.7 85.4
GET 97.2 94.6 98.5 82.1 85.5 75.5 77.0 78.1 76.4 78.5 86.8 74.5 91.1 89.7 92.4 85.5 90.8 81.3
Ours 98.5 98.3 98.6 86.4 86.2 86.9 78.3 78.5 78.2 89.2 93.1 87.3 95.7 95.1 96.0 93.5 93.3 93.9

The classifier parameters are set following the default configurations as in SimGCD (Wen et al.,
2023) and TextGCD (Zheng et al., 2025). More details are provided in the supplementary.

5.1 PERFORMANCE ON BENCHMARK DATASETS

We compare the performance of SSR2-GCD with recent uni-modal GCD methods, including
GCD (Vaze et al., 2022), GPC (Zhao et al., 2023), SimGCD (Wen et al., 2023), PromptCAL (Zhang
et al., 2023), SPTNet (Wang et al., 2024a), SelEx (Rastegar et al., 2024) and HypCD with the SelEx
backbone (Liu et al., 2025), and multi-modal GCD methods, including CLIP-GCD (Ouldnoughi
et al., 2023), TextGCD (Zheng et al., 2025) and GET (Wang et al., 2025). Since that GET did not
provide results on Oxford Pets and Flowers102, we reproduce the results with the open-source code.
As shown in Tables 1, our method consistently outperforms all other multi-modal counterparts on all
tested datasets. We can also observe that our method decreases the accuracy gap between “Old” and
“New” categories, and we will discuss it in the latter section. HypCD achieves the highest accuracy
on CUB when using SelEx as the backbone. HypCD changes the embedding space from the Eu-
clidean the hyperbolic, and thus it is complementary to our method. In addition, our method excels
notably on the datasets Stanford Cars and Flowers102, achieving an accuracy of 89.2% and 93.5% on
“All” categories, outperforming all other baselines by 3.1% and 6.3%, respectively. Note that CLIP
performs poorly in out-of-domain datasets including Flowers102, achieving an accuracy of 70.4%
of zero-shot classification (Radford et al., 2021). Our method effectively refines the representations
generated by CLIP to the target domain of Flowers102 and yields satisfactory performance.

5.2 EVALUATION ON REPRESENTATION LEARNING

Is Inter-Modal Alignment Necessary? To evaluate the effect of using inter-modal and intra-modal
alignment in our framework, we keep the text generation and classification methods the same and re-
port the performance of using different losses for representation learning, including the inter-modal
loss (i.e., LCLIP in Eq. (1)), the intra-modal losses (i.e., Lcon in Eq. (2) and our LSSR2 in Eq. (7))
and their combinations (e.g., LCLIP + Lcon). As can be seen in Table 2, we find that encouraging
inter-modal alignment alone provides merely limited performance gain when compared to using
the intra-modal losses alone, since that the learning of classifiers is based on the intra-modal rela-
tionships within each modality. Specifically, our framework achieves the highest accuracy on five
benchmark datasets when using the proposed LSSR2 . Our framework trained with supervised and
unsupervised contrastive loss Lcon is still a strong intra-modal learning baseline, achieving the high-
est accuracy on CIFAR-100. Interestingly, combining LCLIP with intra-modal losses Lcon or LSSR2

cannot significantly improve the clustering accuracy and even may obstacle the intra-modal learn-
ing. Specifically, “Lcon” outperforms “LCLIP + Lcon” on four datasets, except for CUB and Oxford
Pets; whereas LSSR2 surpasses “LCLIP + LSSR2” on all datasets, suggesting that explicitly imposing
inter-modal alignment might hinder the intra-modal representation learning.

Discussions and Evaluations. For the reason why the inter-modal alignment is no longer necessary,
we account it in the hypothesis of clustering algorithms. On the one hand, the Retrieval-based Text

7
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Table 2: Evaluation of different representation learning methods. Average ACC (%) on “All” cate-
gories is reported. “N/A” denotes using frozen CLIP.

Rep. Losses Inter Intra CIFAR-10 CIFAR-100 CUB Stanford Cars Oxford Pets Flowers102

N/A × × 97.9 84.1 74.5 86.0 91.9 87.4
LCLIP ✓ × 98.3 86.0 76.7 87.0 94.1 89.7
Lcon × ✓ 98.4 86.7 77.5 87.9 94.9 91.8
LSSR2 × ✓ 98.5 86.4 78.3 89.2 95.7 93.5
LCLIP+Lcon ✓ ✓ 98.2 86.3 78.0 86.7 95.0 90.9
LCLIP+LSSR2 ✓ ✓ 98.3 86.1 77.2 88.1 95.0 92.9

(a) Visual modality (b) Textual modality (c) Image embeddings (d) Text embeddings

Figure 2: Re curves with different losses on (a)-(b): Flowers102 and (c)-(d): Stanford Cars datasets.

Aggregation strategy and the clustering via dual-branch classifiers have fully utilized the consistency
between modalities, while further encouraging inter-modal alignment during the finetuning of multi-
modal representations may eliminate the discrepancies between modalities. On the other hand, most
GCD frameworks, including ours, utilize a self-distillation loss for clustering. As detailed in Eq. (3),
the self-distillation loss, which minimizes the cross-entropy between the predictions of augmented
data pairs from the same modality, is built on the assumption that the intra-modal embeddings of
augmented data pairs should be close enough to be assigned to the same cluster. In other words, this
loss rely on the hypothesis that only involves the consistency of the intra-modal embedding pairs. To
quantize such intra-modal consistency, we construct the adjacency matrices W for each modality,
in which the weighted edges are the cosine similarities of the intra-modal embedding pairs, i.e.,
Wi,j = z⊤

i zj . Given the ground-truth categories {C1, . . . , Ck} indicated by their labels, one can
quantize the consistency by computing the ratio of edges within each category to edges between
categories, i.e.,

Re =
1

k

k∑
ℓ=1

Re(Cℓ), Re(Cℓ) :=
∑

i∈Cℓ

∑
j∈Cℓ

Wi,j∑
i∈Cℓ

∑
j /∈Cℓ

Wi,j
. (11)

Apparently, a larger value of Re indicates a higher ratio of correct intra-category links to incorrect
inter-category links, reflecting better consistency of intra-modal embeddings.

In Figure 2 we show the Re curves with different representation losses (i.e., LCLIP, LSSR2 and LCLIP+
LSSR2 ) on Flowers102. As can be seen, our framework achieves higher Re by using LSSR2 when
compared to using LCLIP. While LCLIP can implicitly enhance intra-class discriminability to some
extent, it is insufficient to ensure intra-modal alignment and thus achieves less satisfactory clustering
accuracy. This verifies that the inter-modal alignment without any intra-modal constraint leads to
intra-modal misalignment. Moreover, we can see that the Re curve of using LCLIP + LSSR2 rises in
step with that of using LSSR2 early in training, eventually converges toward the curve of using LCLIP.
This verifies that the inter-modal alignment may damage the learning of intra-modal consistency.

SSR2 is a Compressor for Balanced Representation. To evaluate the effectiveness of our pro-
posed LSSR2 , we conduct experiments to compare it to the widely used contrastive loss Lcon. To
quantify the uniformity of the compression, we compute the effective rank, which is defined as the
number of leading singular values whose cumulative energy proportion reaches 95% of all singu-
lar values, of image embeddings per category, i.e., {rank(Z(i))}ki=1, where Z(i) is the sub-matrix
formed by embeddings from i-th ground-truth category. We train our framework via using Lcon
and LSSR2 , respectively, and plot the averaged ranks of “Old” categories and “New” categories,
i.e., 1

|Yl|
∑

i∈Yl
rank(Z(i)) and 1

|(Yu\Yl)|
∑

j∈(Yu\Yl)
rank(Z(j)) on Flowers102 and Oxford Pets,

respectively, and display the results in Figure 3. We can see that the average rank of the “Old” cat-
egories dramatically decreases during the training period when using the loss Lcon, which is much

8
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lower than that of the “New” categories. Intuitively, using the loss Lcon will overly compress the
embeddings toward the contrastive prototypes of the known categories, and thereby damages the ac-
curacy of clustering those data points in the boundaries of the category manifolds. In contrast, when
training with the loss LSSR2 , the average ranks of the ‘Old” and “New” categories are preserved well.
This indicates that the embeddings of each category are compressed evenly, resulting in comparable
clustering accuracy of ‘Old” and “New” categories (see, e.g., Table 1).

(a) Optimized via Lcon (b) Optimized via LSSR2 (c) Optimized via Lcon (d) Optimized via LSSR2

Figure 3: Effective ranks in (a)-(b): Oxford Pets, and (c)-(d): Flowers102 dataets.

5.3 ABLATION STUDY

To evaluate the effectiveness of each component in the proposed approach, we conduct a set of
experiments on Stanford Cars and Flowers-102, in which the baseline is set up by using the most
similar tag as pseudo-text, leveraging the frozen CLIP to generate embeddings, and clustering both
image and text embeddings with shared parameters of a single classifier. Experimental results are
listed in Table 3. We can read that the co-taught dual-branch classifiers outperform the baseline by
identifying disparities between modalities. The proposed RTA integrates rich information from tag
and attribute candidates, thereby enhancing clustering performance on “New” categories. The intra-
modal representation learning with using the loss LSSR2 is also critical, as the training of classifiers
relies on intra-modal relationships. Our framework achieves best performance by integrating all
proposed components.

Table 3: Ablation study of different components.

Dual RTA LSSR2
Stanford Cars Flowers102

All Old New All Old New

× × × 75.2 85.4 71.8 78.3 88.1 72.5
✓ × × 81.7 90.3 77.1 83.9 88.3 81.3
✓ ✓ × 86.0 91.0 83.4 87.4 90.8 85.5
✓ × ✓ 85.5 91.7 82.2 89.1 91.8 88.0
✓ ✓ ✓ 89.2 93.1 87.3 93.5 93.3 93.9

6 CONCLUSION

We have proposed a novel framework, called SSR2-GCD, to tackle with the multi-modal GCD task.
In particular, we incorporate a semi-supervised rate reduction principle to learn structured represen-
tations that are evenly compressed across categories, and we rethink the necessarity of performing
inter-modal alignment in multi-modal GCD framework. Moreover, we have presented a retrieval-
based text aggregation approach to enhance text generation. We conducted extensive experiments
on eight benchmark datasets and experimental results have verified our findings and demonstrated
the effectiveness of our proposed SSR2-GCD.

Limitations. The time and memory burden of our approach will increase when the number of can-
didates increases due to using multiple tag and attribute candidates as the input to CLIP encoders.
Besides, in our framework currently the image and text cues are treated equally. A further explo-
ration on the importance of each modality in the multi-modal GCD task is left for future work.

9
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SUPPLEMENTARY MATERIALS OF “MULTI-MODAL
REPRESENTATION LEARNING VIA SEMI-SUPERVISED RATE
REDUCTION FOR GENERALIZED CATEGORY DISCOVERY”

A ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal ex-
perimentation was involved. All datasets used were sourced in compliance with relevant usage
guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or discrimi-
natory outcomes in our research process. No personally identifiable information was used and no
experiments were conducted that could raise privacy or security concerns. We are committed to
maintaining transparency and integrity throughout the research process.

B REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All
codes will be available to facilitate replication and verification. All datasets are publicly available,
ensuring consistent and reproducible evaluation results. The experimental setup, including training
steps, model configurations, and hardware details, is described in detail in appendix D to assist
others in reproducing our experiments.

C LLM USAGE

In accordance with the ICLR 2026 policy, we confirm that no large language models (LLMs) were
used at any stage of this work. All aspects of the research process—including problem formula-
tion, methodology design, experimentation, analysis, and manuscript preparation—were carried out
solely by the authors. The results, discussions, and conclusions presented in this paper are entirely
based on the authors’ own contributions, without reliance on any generative AI tools. The authors
take full responsibility for the content under their names.

D EXPERIMENTAL DETAILS

D.1 DATASETS

In Table D.1, we provide a statistical summarization of all generic and fine-grained datasets.
Among these benchmarks, the generic datasets including CIFAR-10, CIFAR-100, ImageNet-100
and ImageNet-1k consist of categories of open-world, whereas the fine-grained benchmarks includ-
ing CUB, Stanford Cars, Oxford Pets, and Flowers102 are largely domain-specific. Following the
GCD protocol, we select the first 80 classes of CIFAR-100 as the known categories and use the first
half of classes as the known categories for the other benchmarks.

Table D.1: Statistics of the benchmark datasets.

Dataset Labelled Unlabelled

#Image #Class #Image #Class

CIFAR10 12.5K 5 37.5K 10
CIFAR100 20.0K 80 30.0K 100
ImageNet-100 31.9K 50 95.3K 100
ImageNet-1K 321K 500 960K 1000
CUB 1.5K 100 4.5K 200
Stanford Cars 2.0K 98 6.1K 196
Oxford Pets 1.9K 19 5.5K 37
Flowers102 0.3K 51 0.8K 102
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Table D.2: Model architectures. “CLIP” denotes the learnable parameters in CLIP and “Cls” denotes
the classifiers.

C
LI

P Last residual attention block: R512 → R512

Image/text projector: R512 → R512

C
ls

. Linear: R512 → Rk

Softmax

Table D.3: Pseudo-code of the image augmentation.

from torchvision.transforms import *

Compose([
RandomResizedCrop(32, BILINEAR)
RandomHorizontalFlip(p=0.5),
ColorJitter()
ToTensor(),
Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])
)])

D.2 EXPERIMENT SETTINGS

Model Architecture. In Table D.2, we present the model architecture of the learnable parameters in
the CLIP encoders and classifiers. The visual and textual branches share the same model architec-
ture. Specifically, when using CLIP-B/16 as the backbone, we fine-tune the last residual attention
block (which includes the multi-head self-attention mechanism, feed-forward network, and layer
normalization), along with the image and text projectors of CLIP. Additionally, the dual-branch
classifiers are learned with the fine-tuning of CLIP jointly.

Data Preparation. For each mini-batch data, we generate text embeddings for query images by in-
tegrating 4 similar tags and 4 similar attributes through the proposed retrieval-based text aggregation
for all tested datasets. Then, both images and text are augmented into two views, and the augmen-
tation strategies are the same across datasets, as detailed in Tables D.3 and D.4. The embeddings of
augmented images and text are used for representation learning.

Table D.4: Pseudo-code of the text augmentation.

Text Augmentation Strategy

Input: text
For each word in text:

If len(word) ≥ 3:
index← random(1, len(word)-2)
action← random( {replace, delete, add, none} )
Case action:

replace: word← replace random char at index
delete: word← remove char at index
add: word← insert random char at index
none: continue

Output: augmented text

Training Settings. During the training, we use the same setting for all tested datasets. We use the the
stochastic gradient descent (SGD) with the momentum of 0.9, the weight decay of 1×10−4, and the
cosine annealing learning rate decay for the training process. We train the model for 200 epochs and
set the batch size to 128. The random seed for 3-trials is set to [0, 1, 2]. For representation learning,
the initial learning rate for CLIP is set to 0.001, and our proposed objective LSSR2 does not introduce
an additional hyper-parameter. For clustering, the setting follows the default configurations as in
SimGCD and TextGCD. Specifically, the initial learning rate for classifiers is set to 0.1, the epochs
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Table D.5: The mean ± std ACC (%) of TextGCD, GET and our approach on fine-grained datasets.

CUB Stanford Cars Oxford Pets Flowers102

Method All Old New All Old New All Old New All Old New

TextGCD 76.6±0.6 80.6±2.0 74.7±1.7 86.1±0.9 91.8±0.4 83.9±1.3 93.7±0.6 93.2±1.1 94.0±0.9 87.2±2.3 90.7±1.3 85.4±3.8

GET 77.0±0.5 78.1±1.6 76.4±1.2 78.5±1.3 86.8±1.5 74.5±2.2 91.1±1.0 89.7±1.6 92.4±1.2 85.5±0.5 90.8±1.5 81.3±1.7

Ours 78.3±0.4 78.5±1.0 78.2±0.9 89.2±0.3 93.1±0.9 87.3±0.2 95.7±0.1 95.1±0.5 96.0±0.4 93.5±1.3 93.3±1.8 93.9±2.0

for warm-up stage is set to 10, and 60% of pseudo-labels of each categories are selected for co-
teaching. All experiments are conducted on single NVIDIA GeForce RTX3090 GPU.

E MORE EXPERIMENTS

E.1 EVALUATION ON MODEL STABILITY

In Tables D.5, we report the mean and standard deviation of accuracies over 3 trials, and compare
them to those of the multi-modal counterparts TextGCD and GET. As can be seen, the performance
of our proposed method is relatively stable.

E.2 EVALUATION ON RETRIEVAL-BASED TEXT AGGREGATION

Compared to other Text Generation Methods.

We evaluate the effectiveness of proposed Retrieval-based Text Aggregation (RTA) and compare it
to other text generation methods in multi-modal GCD. For a fair comparison, we replace the text
generation methods in TextGCD (Zheng et al., 2025) and GET (Wang et al., 2025) with our RTA,
marked the methods by adding a prefix ‘RTA-’. Recall that we follow TextGCD and use CLIP with
ViT-H/14 backbone to search prompt candidates from tag and attribute lexicons, we also report the
performance of using different backbones. As can be seen from Table E.6 that, RTA significantly
improves the performance of the GET framework as it incorporates more information from multiple
prompts, which is helpful for discovering the patterns of unknown categories. Moreover, RTA also
outperforms the text generation method proposed in TextGCD as it avoids the problem of CLIP in
handling long texts and allows for aggregating more prompts. Finally, we also report the overall
performance of the proposed SSR2-GCD in Table E.7 by using different CLIP backbones to find
candidates for the search of the candidates from the tag and attribute lexicons.

Table E.6: Evaluation of different text generation methods on benchmark datasets. Average ACC
(%) on “All” categories is reported.

Methods Backbone CIFAR-10 CIFAR-100 CUB Stanford Cars Oxford Pets Flowers102

TextGCD ViT-H/14 98.2 85.7 76.6 86.1 93.7 87.2
RTA-TextGCD ViT-H/14 98.3 86.0 76.7 87.0 94.1 89.7
TextGCD ViT-B/16 97.1 83.0 73.2 83.0 90.9 83.1
RTA-TextGCD ViT-B/16 97.7 84.5 74.9 85.1 93.2 88.6
GET ViT-B/16 97.2 82.1 77.0 78.5 91.1 85.5
RTA-GET ViT-B/16 97.9 85.0 77.5 84.8 93.0 89.1

Effect of Hyper-Parameter α. In our proposed Retrieval-based Text Aggregation (RTA), the hyper-
parameter α serves as the balance factor of integrating most-similar candidates and other candidates.
To evaluate the effect of hyper-parameter α, we report the accuracy of “All” categories on 4 generic
and fine-grained datasets, with varying values of α in {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8} while keeping
other components in our framework unchanged. As shown in Table E.8, we observe that using
the proposed RTA achieves its best performance on CIFAR-10, Stanford Cars and Flowers102 with
α = 0.5, and achieves its best performance on CIFAR-100 with α = 0.4.

Effect of the Number of Candidates. In RTA, we select multiple candidates for tags and attributes.
To evaluate the effect of the number of candidates, we report the accuracy of “All” categories on the
generic and fine-grained datasets, with varying number of tags and attributes in {1, 2, 3, 4, 5}, re-
spectively, while keeping other components in our framework unchanged. As shown in Figure E.1,
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Table E.7: The average ACC (%) of our proposed SSR2-GCD with different backbones for searching
prompt candidates on generic and fine-grained datasets.

CIFAR-10 CIFAR-100 CUB Stanford Cars Oxford Pets Flowers102

Backbone All Old New All Old New All Old New All Old New All Old New All Old New

CLIP-H/14 98.5 98.3 98.6 86.4 86.2 86.9 78.3 78.5 78.2 89.2 93.1 87.3 95.7 95.1 96.0 93.5 93.3 93.9
CLIP-B/16 98.2 98.4 98.0 85.7 85.1 86.6 77.2 76.8 77.7 87.8 91.2 85.5 93.8 94.3 93.4 92.0 92.3 91.8

Table E.8: Effect of the hyper-parameter α in RTA strategy.

Data α 0.2 0.3 0.4 0.5 0.6 0.7 0.8

CIFAR-10 98.3 98.4 98.4 98.5 98.3 98.2 97.8
CIFAR-100 86.0 86.6 86.7 86.4 85.8 85.2 84.1
Stanford Cars 87.1 88.7 88.9 89.2 88.8 87.2 86.4
Flowers102 92.9 93.3 93.3 93.5 92.8 92.1 91.5

we can read that integrating more information from candidates yields consistent performance im-
provements. Specifically, the proposed RTA achieves its best performance when the number of
candidates for tags and attributes is set to 3 or 4, respectively.

E.3 EVALUATION ON REPRESENTATION LEARNING

Evaluation on More Inter-Modal Alignment Methods. To further evaluate the necessity of inter-
modal alignment, we report the performance of using different inter-modal representation loss for
training our framework. Specifically, we reproduce the cross-modal instance consistency objective
(CICO) which is proposed in GET to serve as the inter-modal alignment constraint:

LCICO =
1

2|B|
∑
i∈B

(
DKL(s

T
i ||sI

i) +DKL(s
I
i||sT

i )
)
, (12)

where DKL is the Kullback-Leibler divergence, B denotes the mini-batch data, sI
i =

Softmax(zI
i
⊤AI) and sT

i = Softmax(zT
i
⊤AT) measure the distance between the i-th image/text

embeddings and prototypes, and AI,AT are the prototypes calculated using the labeled anchors for
each modality.

In Table E.9, we report the performance of using LCICO and its combination with the intra-modal
alignment losses for representation learning, in which the results are marked in gray. As can be seen
that, both inter-modal alignment losses LCLIP and LCICO fail to provide performance improvements
when combined with the intra-modal alignment loss, further verifying the argument that the inter-
modal alignment is not necessary.

Table E.9: Evaluation of different representation learning methods. Average ACC (%) on “All”
categories is reported. “N/A” denotes using frozen CLIP.

Rep. Losses Inter Intra CIFAR-10 CIFAR-100 CUB Cars Pets Flowers

N/A × × 97.9 84.1 74.5 86.0 91.9 87.4
LCLIP ✓ × 98.3 86.0 76.6 86.7 93.9 89.7
LCICO ✓ × 98.0 85.0 76.4 86.1 94.9 87.2
Lcon × ✓ 98.4 86.7 77.5 87.9 94.9 91.8
LSSR2 × ✓ 98.5 86.4 78.3 89.2 95.7 93.5
LCLIP+Lcon ✓ ✓ 98.2 86.3 78.0 86.7 95.0 90.9
LCICO+Lcon ✓ ✓ 98.4 85.9 76.8 87.0 94.4 88.6
LCLIP+LSSR2 ✓ ✓ 98.3 86.1 77.2 88.1 95.0 92.9
LCICO+LSSR2 ✓ ✓ 98.3 86.1 76.7 87.5 95.5 92.1

Evaluation on Uni-Modal Representation Learning. As an intra-modal alignment loss, the pro-
posed LSSR2 can also be used for uni-modal GCD counterparts. Specifically, for GCD and simGCD
frameworks, we keep their pre-trained models and clustering algorithms and replace the supervised
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(a) CIFAR-10 (b) CIFAR-100 (c) Stanford Cars (d) Flowers102

Figure E.1: Effect of the number of candidates.
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Image-text
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Figure E.2: Distribution of pairwise similarities on the Flowers102 dataset (a): at the beginning
of training, (b)-(c): training with LSSR2 at epochs 10 and 200, and (d)-(e): training with LCLIP at
epochs 10 and 200.

and unsupervised contrastive loss Lcon with our proposed LSSR2 . As can be seen from Table E.10
that, using our LSSR2 for representation learning achieves improvements on all tested datasets, while
achieves a relatively less significant improvement on the CUB dataset.

Evaluation on the Role of Inter-Modal and Intra-Modal Alignments. To evaluate the role of
inter-modal and intra-modal alignments in representation learning, we conduct experiments and dis-
play in Figure E.2 the distributions of the similarity computed by image-text (i.e., ZTZ

⊤
I ), image-

image (i.e., ZIZ
⊤
I ), and text-text (i.e., ZTZ

⊤
T ), obtained from our framework, when using the loss

LSSR2 or LCLIP at the beginning of the training (i.e., epoch 0), the end of the warm-up (i.e., epoch
10) and the end of the training (i.e., epoch 200), respectively. Clearly, we observe from Figure E.2
that the distributions of inter-modal similarities and intra-modal similarities exhibit substantial diver-
gence at the beginning, while the distributions of image-image and text-text similarities within each
modality also differ notably. When using the proposed loss LSSR2 , the distributions of intra-modal
similarities are well aligned in the warm-up stage, and all distributions gaps almost vanish at the end
of the training. By contrast, using the loss LCLIP can help to align the distributions of image-text
similarities, whereas the image-image and text-text similarities, which are critical for GCD, remain
poorly aligned.

Figure E.3: ACC (%) with varying ϵ in SSR2 across six benchmark datasets.
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Table E.10: Comparison to uni-modal counterparts. Clustering ACC (%) on generic and fine-grained
datasets.

CIFAR-10 CIFAR-100 CUB Stanford Cars Oxford Pets Flowers102

Method All Old New All Old New All Old New All Old New All Old New All Old New

GCD 91.5 97.9 88.2 73.0 76.2 66.5 51.3 56.6 48.7 39.0 57.6 29.9 80.2 85.1 77.6 74.4 74.9 74.1
GCD+SSR2 92.5 96.4 91.6 73.9 79.0 63.2 51.9 55.0 47.1 47.9 56.1 47.3 83.6 87.7 79.8 80.0 83.3 78.5
SimGCD 97.1 95.1 98.1 80.1 81.2 77.8 60.3 65.6 57.7 53.8 71.9 45.0 87.7 85.9 88.6 71.3 80.9 66.5
SimGCD+SSR2 97.6 97.5 97.7 81.1 82.5 78.9 60.8 64.7 59.0 57.1 66.8 53.9 90.0 89.8 91.2 81.6 83.5 80.1

To further evaluate the role of inter-modal and intra-modal interactions, we combine our proposed
intra-modal alignment loss LSSR2 with the inter-modal alignment loss LCLIP by:

LSSR2 + φ · LCLIP,

where φ is the penalty weight of LCLIP. In Figure E.4, we report the accuracy with varying penalty
weight φ on the Flowers102 dataset. Existing multi-modal GCD frameworks, such as GET, assume
that the learning of inter-modal alignment does not affect that of intra-modal alignment, and naively
treat these two learning processes in representation learning as both independent and equally impor-
tant. However, we can see from Figure E.4 that the learning of inter-modal alignment significantly
impairs the learning of intra-modal alignment as φ increases.

Figure E.4: Mean and standard accuracy (3 trials)
of “All” categories with varying penalty weight φ
on Flowers102.

More Results on the Ratio of Edges. Re-
call that we define the ratio of edges Re in
our manuscript to quantize the intra-modal con-
sistency of embeddings and explain why inter-
modal alignment can be unnecessary. In this
paragraph, we additionally report Re of more
inter-modal alignment loss (i.e., LCLIP), intra-
modal alignment losses (i.e., LSSR2 and Lcon)
and their combinations (i.e., LSSR2 +LCLIP and
Lcon + LCLIP) on the Stanford Cars dataset.

Furthermore, as shown in Figure E.5, the
inter-modal alignment also damages the learn-
ing of other intra-modal losses such as the
widely adopted supervised and unsupervised
contrastive loss Lcon. This confirms that the
aforementioned trend is not exclusive to scenar-
ios where LCLIP is combined with our proposed LSSR2 .

(a) Image embeddings (b) Text embeddings

Figure E.5: Re curves with different losses on Stanford Cars.
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E.4 EVALUATION ON THE HYPER-PARAMETERS

We evaluate the impact of different hyper-parameters introduced by our representation learning
method. Recall that the scaling parameter ϵ > 0 is specific to our method, while the settings of
all other hyper-parameters follow those of existing GCD counterparts. In Figure E.3, we report the
clustering accuracy with varying value of ϵ on six benchmark datasets, i.e., CIFAR-10, CIFAR-100,
CUB, Stanford Cars, Oxford Pets and Flowers102. As can be seen, our framework is not sensitive
to ϵ and achieves the best performance when ϵ is in the range of [0.2, 0.5].

(a) Frozen CLIP (b) LCLIP (c) LSSR2

(d) Frozen CLIP (e) LCLIP (f) LSSR2

Figure E.6: Visualization of image embeddings (top) and text embeddings (bottom) with varying
representation learning methods on the Oxford Pets dataset.

(a) CIFAR-10 (b) CIFAR-100 (c) Stanford Cars (d) Flowers102

Figure E.7: ACC curves on benchmark datasets.

E.5 VISUALIZATION

In Figure E.6, we visualize the image embeddings and text embeddings of our framework using
different representation learning methods on the Oxford Pet dataset. As can be seen, the distribu-
tion of image embeddings generated by the frozen CLIP image encoder is rather diffuse and can
be roughly divided into two hyper-classes (“cat” and “dog”). In contrast, thanks to our proposed
Retrieval-based Text Aggregation (RTA) strategy, the distribution of text embeddings produced by
the frozen CLIP text encoder exhibits significantly greater discriminability. Such discrepancies be-
tween the two modalities may explain why optimizing the inter-modal alignment loss can enhance
intra-class discriminability to some extent—the learning of image embeddings is largely guided by
the inherently discriminative text embeddings. Meanwhile, the gap between the two hyper-class still
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remains (See, e.g., Figure E.6a and Figure E.6b for comparison). In contrast, our method learns
discriminative and well-balanced representations for both modalities.

E.6 LEARNING CURVES

We plot the learning curves with respect to the clustering accuracy of our method on CIFAR-100,
CIFAR-100, Stanford Cars and Flowers102 in Figure E.7. We can observe that our SSR2-GCD
converges and achieves stable clustering results on “All” categories within 50 epochs.
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