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ABSTRACT

In this paper, we study the Kronecker compressed sensing problem, which focuses
on recovering sparse vectors using linear measurements obtained using the Kro-
necker product of two or more matrices. We first introduce the hierarchical view of
the Kronecker compressed sensing, showing that the Kronecker product measure-
ment matrix probes the sparse vector from different levels, following a block-wise
and hierarchical structure. Leveraging this insight, we develop a versatile multi-
stage sparse recovery algorithmic framework and tailor it to three different spar-
sity models: standard, hierarchical, and Kronecker-supported. We further analyze
the restricted isometry property of Kronecker product matrices under different
sparsity models, and provide theoretical recovery guarantees for our multi-stage
algorithm. Simulations demonstrate that our method achieves comparable recov-
ery performance to other state-of-the-art techniques while substantially reducing
runtime owing to the hierarchical, multi-stage recovery process.

1 INTRODUCTION

Kronecker compressed sensing (KCS) is a measurement framework that employs the Kronecker
product of multiple factor matrices as a measurement matrix, capturing multidimensional signal
structure while reducing measurement complexity. It appears in many acquisition systems, such
as sensor arrays in communication systems (He & Joseph, [2025a) or separable filters in imaging
(Friedland et al., 2014). We focus on the general KCS problem with canonical form,

y:H:c—i—n:(H1®H171®-~-®H1):c+n:(®}:IHi)w+n. (D

Here, € RY is the unknown sparse vector and y € R is the noisy measurements via a known
measurement matrix H = ®!_, H;, where each factor matrix H; € RM:*N: has full row rank.

A key challenge in solving Equation [I]is the high dimensionality of the multidimensional signal .
It grows rapidly with both the number and size of factor matrices H;, e.g., O(NT) if N; = O(N).
Another challenge is exploiting sparsity patterns as prior knowledge. Beyond simple sparsity, the
nonzero elements in x often exhibit more complex but regulated patterns. We consider three preva-
lent models. The first model is the standard sparsity, where the nonzero entries can be positioned
arbitrarily. This model is ubiquitous and has been applied to various fields, such as image processing
(Duarte & Baraniuk| 2010; L1 & Bernal, 2017; |Zhao et al.,|2019), system identification (Sun et al.,
2022; |Yuan et al.| |2019), regression (Ament & Gomes, 2021)), and communications (Berger et al.,
2010; | Xiao et al.l [2024). The second model, hierarchical sparsity, considers a vector a partitioned
into blocks at multiple levels with sparsity structured across these levels. For example, in massive
machine-type communication (Wunder et al.,|2017;[Roth et al.|[2018;/2020)), only a subset of devices
are active (device-level sparsity), and each active device sends a sparse signal, forming a two-level
hierarchical structured sparsity pattern on x. The third model, Kronecker-supported sparsity (or
block tensor sparsity) (He & Josephl [2025a; 2023} |Caiafa & Cichockil 2013} [Zhao et al. [2019;
Boyer & Haardt, 2016), assumes the support of x is the Kronecker product of multiple binary sup-
port vectors. This pattern arises in radar imaging and wireless communications, where signals are
separable across dimensions (He & Josephl |[2023; Xu et al.| 2022} He & Joseph| [2025d)). Motivated
by varied sparsity patterns, we focus on efficient methods for KCS with structured sparsity.

This paper introduces a novel hierarchical view on KCS, showing how its dimension-wise measuring
structure can be used to design and analyze efficient recovery methods to exploit structured sparsity
effectively. Our main contributions are as follows:
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* Hierarchical View: We establish that when measuring via Kronecker product matrices, each factor
matrix in the Kronecker product captures the vector at a distinct hierarchical level. It provides a
unified perspective for handling different sparsity models within a single framework.

* Unified Algorithm: We design a multi-stage sparse recovery algorithm using the hierarchical view.
By leveraging the Kronecker structure of H through tensor operation and investigating the un-
derlying structure, our method achieves a significant complexity reduction, e.g., reducing from
O((MN)T) (He & Josephl 2025a) to O(M N) regarding Kronecker-supported sparse vector re-
covery, and accommodates the mentioned sparsity patterns within a single, flexible framework.

* Theoretical Guarantees: We establish a unified restricted isometry property (RIP) analysis for
KCS covering the standard, hierarchical, and Kronecker-supported sparsity. It proves that sparsity
at each hierarchical level, rather than total sparsity, drives the recovery. Our result improves
the RIP-based bound for KCS with standard sparsity and provides a cohesive understanding of
structured sparsity. We also provide a RIP-based recovery guarantee for our unified algorithm.

Related works: The Kronecker product measurement matrix is introduced for compressed imaging
in|Rivenson & Stern|(2009). KCS is formalized in|Duarte & Baraniuk! (201 1a) tailored to hyperspec-
tral imaging, with an RIP analysis for KCS with standard sparsity (Duarte & Baraniukl [2011a}b).
It bounds the restricted isometry constant (RIC) of the Kronecker product using the RIC of fac-
tor matrices H;. However, the recovery algorithm fails to leverage the Kronecker structure in H.
To leverage this structure, Kronecker orthogonal matching pursuit (KroOMP) (Caiafa & Cichocki,
2013) adopts tensor operations . Nonetheless, it still incurs a high complexity of O(N'), and lacks
theoretical analysis. |[Friedland et al.| (2014} [2015) presents two algorithms: one uses tensor unfold-
ing for sequential recovery in dimension, and the other uses approximate Tucker decomposition to
recover along each dimension for compressible image and video representation and recovery. Still,
both approaches are limited to standard sparsity. |Li & Bernal| (2017) decomposes the unfolding-
based approach into multiple independent subproblems for hyperspectral imaging. Yet, it fails to
exploit joint sparsity patterns and is not immediately extendable to other sparsity patterns.

KCS with structured sparse recovery is also investigated in the literature. For hierarchically sparse
vectors, Roth et al.| (2020) discusses the hierarchical hard thresholding pursuit (HiHTP), adapting
classic hard thresholding pursuit (HTP) with a tailored RIP and coherence analysis for channel esti-
mation for massive multiple-input multiple-output systems (Wunder et al.| |2019). However, it fails
to incorporate the Kronecker structure in H, leading to higher computational costs. For Kronecker-
supported sparsity, both greedy and Bayesian methods have been explored. An orthogonal matching
pursuit (OMP)-based algorithm offers reduced complexity (Caiafa & Cichockil [2012; |Caiafa & Ci-
chockil, [2013) but performs poorly in noisy settings (He & Joseph| [2025a). Bayesian algorithms,
designed for applications such as hyperspectral image processing (Zhao et al., [2019) and wireless
communication (He & Josephl 2025a; (Chang & Sul [2021}; |Xu et al.| [2022), use a structured prior
distribution. They suffer from poor generalization and high complexity (He & Joseph, 2025b). Be-
sides, both OMP-based and Bayesian algorithms lack theoretical guarantees. Recently,[He & Joseph
(2025c) provides an algorithm and RIP analysis for KCS for the I = 2 case. However, the analysis
is decoupled from the algorithm. Also, it relies heavily on specific matrix properties, making the
generalization to higher orders (/ > 2) nontrivial.

To summarize, existing approaches reveal several literature gaps. First, KCS methods mostly ignore
the structures of H, relying on generic solvers, while our method is specifically designed to leverage
the Kronecker structure through tensor operations. Second, current methods are largely tailored to
a single sparsity pattern and cannot be generalized, whereas our work provides a unified framework
for multiple patterns. Third, many methods suffer from high computational complexity, while our
approach is efficient and low-complexity. Besides, no prior work offers a unified RIP analysis
of Kronecker-structured matrices across various sparsity patterns, nor a recovery framework for
different sparsity patterns with RIP-based guarantees, which are our central theoretical contributions.

Notation and tensor preliminaries: We use [I] to denote the set {1,2, - - , I'} for any scalar I and
Iy to denote the N x N identity matrix. The symbols ® and X ; denote Kronecker and jth mode
product, respectively. The jth mode unfolding T ;) of tensor T € RN X N2x- X NI g [T(j)]

nj,k -
Ty gy £ 5 € M with b= 14+ 20 o (T ey N ) (= 1), with n; € [N]. Also,
[T(j)ln; & is (nj, k)th matrix entry, and [T],, y,,... n, is the (nq,--- ,ng)th tensor entry. The ith
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mode product of D; € RY:XMi with Tis M = T x; D; € RMix - XMicaxXNixXMip1x-xMr - The
ith mode unfolding of M is M(Z-) = DiT(i) (Kolda & Bader, 2009).

2 HIERARCHICAL VIEW OF THE KRONECKER-STRUCTURED MEASURING

Our hierarchical view builds on the Kronecker structure in Equation |1} interpreting the measure-
ment matrix as probing the signal’s sparsity across multiple block-wise and hierarchical levels. To
illustrate this, we first introduce the hierarchical block partition of a sparse vector € RV .

Hierarchical partition: We first partition « in Equation[I|into N; equal-length blocks, denoting the
Ith level blocks as {w(m)}nNII:l € RIL= Ni| Each X () is further partitioned into N;_; blocks,

denoted as (I — 1)th level blocks {w(m_hm)}g] € RITIZE Vi We continue until we reach

blocks of length N; at the second level. The first-level blocks are the individual entries of .

For brevity, we use x,,; to denote a block in the jth level with length Hf;ll N; and encapsulation
nj := (n4, -+ ,nr—1,nr). Anencapsulation nj := (n;,--- ,n7_1,nr) can be viewed as a coordi-
nate for blocks in this hierarchical block structure. Also, set [[:Jcnjﬂ contains all N; child blocks that
share the same parent block at the level j + 1 as that of @,,;. We illustrate a hierarchical partition for

x € R in Figure where [z 3)] = [x(2,3)] = {T(1,3), T(2,3)} as they share the parent x 3.
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Figure 1: (a) Hierarchical partition for z € R* with I = 3, N3 =5, Ny = 2, N; = 4, and N = 40.

(b) Reordered tensor X. (¢) Mode unfolding X (2) and the relation between the n;_;th row within

the nsth column block and the (I — 1)th level child block @, , withn;_y = (2,1) and I = 3.

Hierarchical view: We first focus on the noiseless version of Equation|I|reformulated using tensors,
T::YZXX1H1~-- X]H[,

where the first mode unfolding satisfy vec(X 1)) = a and vec(T(1)) = vec(Y(1)) = y. Unfolding
T on the /th mode leads to

Ty = Hi X (®11:171H1'T) — H;U; € RMxIlizr o M
Here, U; = X(p) (®}_;_1H;") € RV < TTimr 1 Mi gng X € RV ¥ ITi=r-1 Vi whose nyth row
is the Ith level block «,,, with n; = (n;). Therefore, matrix H acts on Uy, and a zero row in

U7 indicates that the corresponding /th level block is entirely zero. Hence, matrix H captures the
sparsity pattern of the Ith-level blocks.

For the (I — 1)th level, we fold Uy into a new tensor T, whose /th mode unfolding T(;) = Uy, as
T=X><1 H, - - x;_1H;_4 XIINI«
Unfolding T along its (I — 1)th mode gives
T 1) = Hi Xpoy (I, @ (91, H)) = Hy_ Uy € RN N1 a0t

Here, X(I_l) € RN1-1xN/Ni—1 g Ny column blocks, with nsth block corresponding to x,,, with
n; = (ny). Within the nsth column block, the ny_th row is the (I — 1)th level child block @, _,
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with nj_1 = (n7_1,nr), as illustrated in Figure|lt. The Kronecker product Iy, ® (®}_;_,H,")
is a block matrix and preserves the column block structure in U;_1. Column blocks of Uj_; are
associated with I-level blocks, and the rows of a column block correspond to the (I —1) level blocks.
Hence, the zero rows in each column block of U;_; indicate that the corresponding (I — 1)th level
blocks are entirely zero. Therefore, H;_; captures the sparsity pattern at the (I — 1)th-level blocks.
For a general jth level, we define T = X x; Hy X2 Hy -+ x; Hj xj11 Iy, -+ X1 In,, and

I = Hj X (IHZI} N, ® <®}:j71Hi)) € RM R Nelliy o M,

is its jth unfolding. Similar to the column block structure at (I — 1)th level, we have the following.

Lemma 1. Consider a sparse tensor X reordered from a sparse vector x such that vec(X (1)) = x.
For the jth mode unfolding of X, i.e., X ;), and with full row rank H;’s, the matrix

Uj = X(J) ( H7+1N & (®z =j— 1H)> RN XHJ+1N H} Ji— 11\/1

can be divided into N column blocks. Each block is indexed by an encapsulation nj1 with
Dip1 = (Mg, nI)for ng € [Ng]fork = j+1,..., L. The number of nonzero rows in a column
block indexed by n;j1 equals the number of nonzero blocks in @y, ] withnj = (nj, 541, ,ny).

Lemma |1| implies that matrix H; actually captures the sparsity at the jth level blocks, which we
refer to as the hierarchical view of KCS. The above perspective can also be interpreted directly
from Equation [I] The Kronecker product matrix H has a recursive column-block structure: each
block of columns is obtained by taking the Kronecker product of a column of H; with ®, H;,
which itself has a column block structure. This recursive structure aligns with the hierarchical
partition block of @. Hence, in this hierarchical framework, factor matrices {Hl}ll: 1 operate at
different levels: for any p, ¢ with p > ¢, H,, first measures each gth level block of @, the resulting
measurements of all blocks are then processed by H),, which captures sparsity at a higher level.

3 MULTI-STAGE SPARSE RECOVERY ALGORITHM

We aim to recover x in Equation Ifrom noisy measurement y, given { H; }/_,. Guided by the hier-
archical view in Section[2] we next present a recovery framework that handles each H; sequentially.
We formally define the following three considered sparsity models.

Sparsity 1 (Standard sparsity). A vector x € RY s s sparse if T contains at most S nonzeros.

Sparsity 2 (Hierarchical sparsity). A vector € RY s s hzerarchically sparse with s =
(81,81-1,+ ,81) if it has a hierarchical partition defined by {N;}!_,, and at each level j € [I],
every set [x,,] contains at most s; nonzero blocks.

Jj=r

Sparsity 3 (Kronecker-supported sparsity). A vector x € RY is s Kronecker supported sparse if its
support is the Kronecker product of s; sparse support vectors b; € {0,1}i for j € [I].

‘We note that the Kronecker-supported sparsity is a special case of hierarchical sparsity, where at each
level j € [I], the s; nonzero blocks @, share the same support. See Appendixlfor illustration.

Our framework first solves for Uy = X 1y (®1_;_, H; ) from unfolding along Ith mode using
T =Yy =H U+ Nqy. (2

Here, U7 exhibits a row sparsity pattern where a zero row in U corresponds to an all-zero Ith level

block @, . Thus, recovering U; from Equation [2)is a multiple measurement vector (MMYV) problem

and solved using MMV algorithms such as simultaneous OMP (SOMP), simultaneous iterative hard
thresholding (SIHT), simultaneous HTP (SHTP), or MMV sparse Bayesian learning (MMV-SBL).

Let the estimate of Uy be U 7 with error E; modeling the estimation error and residual noise, U =
U; + E;. In the second step, we treat TJ} as the noisy measurement and E7 as noise, reorder them
into tensor T and N such that T(;) = U; and N = Er,toobtain T = X xy Hy -+~ xr1 Hy 1 X7
Iy, + N. Unfolding T along its (I — 1)th mode as

T;-1)y=H;1Ur1+ Ny €)]
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For standard and hierarchical sparsity models, the supports of different (I — 1)th level blocks of «
are different. By Lemma zero (I —1)th level blocks leads to the zero rows in each column block in
U; 1, making it a concatenation of Ny row sparse matrices [Ur—1]n, = [X(7-1)]n, (®11:1_2H,;)T
for ny = (ns) and n; € [N;]. We thus partition Equation 3|into N; independent MMV problems as

(Tir-1)ln = Hr—1[Ur-1)n; + [N(7=1)Jny

and solve them (sequentially or in parallel) using MMV solvers. Concatenating estimates U, =
[[Ujflh, [U[,ﬂg, sy, [Ujfl]Nl] gives the final solution, where [Ujfl]nl = [Ujfl]nl + [Ejfl]m.
However, for the Kronecker-supported sparsity, Equation [3|is a single MMV problem because the
support is common across the (I — 1)th level blocks.

Generalizing, for jth mode unfolding step, with measurement ﬁj+1 from the previous step,

.
Uji1 = Usi1 + Ejp1 = Xy (I v, @ (91, H) ) + By, @

We unfold the measurement tensor formed from ﬁjH along its jth mode as
Ty) = H;U; + Ngj). ®)

Lemma [1|reduces Equation |5|to Hfi} N, independent MMV problems for standard and hierarchi-
cal sparsity. Sparsity varies across MMVs for the standard model (defined by total sparsity rather
than level-wise sparsity) but remains identical in the hierarchical model. For Kronecker-supported
sparsity, Equation[3]is a single MMV due to shared block support. While mixed models with single
and multiple MM Vs at different levels are possible, we focus on these three main cases for brevity,
leading to the Multi-Stage Recovery (MSR) algorithm, summarized in Algorithm|[I]

Algorithm 1 Multi-Stage Recovery (MSR)

Input: Measurement y, dictionaries { H; }/_, € RM:xNi

: Fold y to Y according to the dimensions of dictionaries { H;}!_;, and initialize T =Y

cforj=I1,I1—-1,--- ,1do
Obtain the jth mode unfolding of T, i.e., T(j)
Solve Equation for U; via a compressed sensing algorithm to get estimate U;;
Fold U. ;j back to T such that the jth mode unfolding of T, i.e., T{; is Uj

end for _

Output: Estimated sparse vector & = vec(Uy)

A A

Complexity: We compare the complexity of MSR variants with existing methods for each sparsity
model, assuming Equation [3]is solved sequentially, and M; = O(M), N; = O(N) for i € [I] with
I < M < N. For standard sparsity, MSR with OMP matches the time complexity of KroOMP (Ca-
iafa & Cichockil 2013), but reduces space complexity from O(N¥) to O(M!~1N). For hierarchical
sparsity, our MSR with HTP has time complexity O(M NT) and space complexity O(M*~1N), im-
proving over HIHTP (Roth et al.,[2020) with time and space complexities of O(M?2N?) for I = 2.
For Kronecker-supported sparsity, MSR with SBL lowers time complexity to O(M N') and space
complexity to O(N) compared to AM- and SVD-KroSBL (He & Joseph, 2025a) with both com-
plexities O(MTNT). The improvements are due to i) the exploitation of the Kronecker structure
through tensor operation, reducing the dimensionality; and i) leveraging the MMV structure from
Lemma([T} We refer to Table[3]in Appendix [F for a comprehensive comparison.

4 UNIFIED ANALYSIS FOR STRUCTURED SPARSITY MODELS

We establish a unified RIP analysis via a generalized notion of RIP called the (s, N)-RIP condition
with s := (s7,87-1, -+ ,s1) and N := (Ny,N;_1,---, Ny) defined by the dimension of factor
matrices in KCS. To this end, we introduce the generalized (s, N) sparsity model, tailored to the
KCS problem, which reflects a hierarchical view where sparsity at each level affects recovery.

Sparsity 4 (Generalized sparsity). Consider KCS with H; € RMi*Ni_ A vector x € RY is (s,N)
sparse if for tensor X € RNV XNI yeordered from x using N := (N7, N;_1,--- , Ny), the maxi-
mum number of nonzero rows of each of the column blocks of its jth mode unfolding X ;) is s;.
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Relation to other models: We relate the above model to the standard, hierarchical, Kronecker-
supported, and block sparsity models. The standard sparsity model is not a special case of (s, N)
sparsity, but the set of s sparse vectors is contained in a union of (s, N) sparse vectors.

Lemma 2. Let set S contains all s standard sparse vectors in RN, and S, contains all (s,N)
sparse vectors in RN for a given (s,N). Then, S C Uge p(s)Ss, where fx(s) = {s : ZZ 18 <
s+(I—-1),1<s; <s}.

Hierarchical sparsity is a special case of (s,N) sparsity when the hierarchical partition structure
matches the dimensions of factor matrices in the Kronecker measurement matrix. If, additionally,
all the column blocks of jth mode unfolding X ;) share the same support regarding nonzero rows,
then we arrive at the Kronecker-supported sparsity. Block sparsity can also be viewed as (s, N)
sparsity with I = 2 when the block boundary matches the hierarchical partition structure.

We next define the (s, N)-RIP condition for a Kronecker product matrix H.
Definition 1 ((s, N)-RIP). A Kronecker product matrix H = ®}_; H; with H; € RMixNi satisfies

(s,N) RIP if there exzsts § € (0, 1) such that for all (s,N) sparse & € RY, it satisfies (1—0)||x||3 <
Hcz|)? 14 6)||x||5. The smallest feasible 9, denoted as 6 xy(H ), is the (s,N)-RIC of H.
2 < 5 (s,N)

Under our models, (s, N)-RIP is defined over the unions of subspaces, thus can be used to guarantee
the success of recovery algorithms, such as iterative hard thresholding (IHT) and HTP (Blumensath),
2011). In general, such guarantees are established using the upper bound of the RICs. Therefore, we
first derive the upper bound of 0, n)(H ), then discuss its implications for different sparsity models,
and finally discuss the associated recovery algorithms and guarantees. Here, we denote the standard
s-RIC of matrix H as 05(H).

Theorem 1. The (s, N)-RIC of Kronecker product dictionary H = ®;_, H,, i.e., (s ny(H), satis-
fies b(sx) (H) < [T (1 + 05, (H)) — 1.

The above result immediately applies to hierarchical and Kronecker-supported sparsity, as both are
special cases of (s, N) sparsity. For Kronecker-supported sparsity, a tighter bound could be expected
due to its additional joint sparsity structure arising from the shared support across the nonzero block.
However, improving the RIC bound by exploiting this additional joint sparsity is difficult. As noted
in |Li & Petropulu| (2013)); [Eldar & Mishali| (2009), RIP analysis considers the worst-case perfor-
mance and does not guarantee that MMV outperforms the SMV case. So, our bound shows no
improvement, and deriving a stronger RIP-based condition for the MMV model is an open problem.

Theorem [I]can also be tailored to standard sparsity using Lemma 2}

Corollary 1. Consider the Kronecker product H = ®!_,H;. For any s, the s-RIC of H satisfies
I

0s(H) < maxXse p(s) O(s,N) (H) < maXoe po(s) [Tiz1 (1405, (Hi)) — 1.

The s-RIC bound corroborates that only the sparsity level at different levels of blocks explic-
itly affects the s-RIC of Kronecker-structured H. Also, a known upper RIC bound is §;(H) <

Hle (1+95(H;)) — 1 (Duarte & Baraniukl [2011a). Our bound slightly improves this bound:

1

I
max 1+ 6, (H;) (14 64( -1,
sE€/n(s) i=1 ( ];[

because J, is a non-decreasing function of s (Foucart & Rauhut, |2013) and s} < s for all ¢ € [[]
and the equality cannot be achieved simultaneously.

Maximum sparsity level: Corollary [T]indicates that recovering s standard sparse vectors via KCS
with M; < N; is only guaranteed when s < min; IV;, as it is a worst-case analysis. When s =
min; N; with j = arg min; /V;, a worst-case scenario is s; = s = IN; and s; = 1 for all 7 # j.
Then, 6. = ||H H; — Iy, |2 > 1, making H; is a non-injective map, and recovery is impossible.
This also 1ndlcates that it is only possible to recover block-sparse vectors with block length smaller
than min; IV;. However, recovery is still possible for s > min; IV, in structured sparsity settings.

Measurement bounds for classical methods: We discuss the implications of Theorem [I|on mea-
surement bounds for recovering (s, N)-sparse vectors using classical iterative algorithms, namely
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IHT and HTP. For both algorithms, at iteration k, the support is updated via thresholding operator
Lsas T"™' = Lg (x"+ H' (y — Hx")). The thresholding operator depends on the sparsity
model. For standard s sparse, Ls returns the support of the s largest entries of  in amplitude (Fou-
cart & Rauhut, 2013)). For s hierarchically sparse, it selects the top s; entries within each first-level
block, then recursively picks top so, .. ., sy blocks at higher levels based on the ¢5 norm, as in Roth
et al.|(2020). However, finding the thresholding operator Ls for s Kronecker-supported sparse vec-
tors is NP-hard and not available in the literature. For example, when I = 2, it reduces to selecting
rows and columns whose intersection maximizes the squared sum, equivalent to the NP-hard max-
imum weight biclique problem. A practical alternative is to first select the top s; blocks at the Ith
level by £5 norm, then recursively sum norms across matching indices at each lower level and select

the top s;—1, ..., s1 blocks; this is the approach we use in simulations for comparison. Then, IHT
applies a simple projection while HTP solves a least-squares problem on the support,
$k+1 = (Cck + HT (y - Hwk))Tk+l ; (IHT)
" = arg min ||y — Hel|z, supp(x) € TFH, (HTP)
zeRN

where operator (-)7++1 only preserves the entries within the set 7**! and sets the others to zero.

We next discuss the implications for measurement bounds. It is known that for IHT and HTP to
recover a vector from a union of subspaces, tailoring the thresholding operator Ls to the union and
having an RIC below 1/+/3 over that union is sufficient to guarantee convergence to the ground
truth (Foucart & Rauhut, 2013} Roth et al., [2020). So, our results shows that max ¢ Ixn(3s) 5(37N) <

1/ /3 (for s standard sparsity) and & 3s,N) <1 / V/3 (for s hierarchical sparsity) are sufficient for the
success of IHT and HTP. However, it does not guarantee the recovery of the s Kronecker-supported
sparse vectors as the thresholding operator is suboptimal.

To compare the measurement bound for KCS, we consider the simplest case with / = 2 and s =
O(s1s2) for s € fx(s), and Gaussian factor matrices H;’s. For recovering s standard sparse vec-
tors, our Corollaryﬂ]implies that each H,; satisfies the s;-RIP, requiring M; = O(s; log N;) (Foucart
& Rauhut, 2013)). So, the total measurement bound scales as M = O(s152 log N log Ny) improv-
ing over the existing bound M = O(s?log Ny log N2) = O(s3s3log Ny log N) (Duarte & Bara-
niuk, [2011a)). In comparison, standard compressed sensing with fully unstructured Gaussian matrix
requires only O(s1 3 log N1 Ny) measurements, which is smaller due to greater flexibility and ran-
domness in measurement. However, KCS exploits the multidimensional structure to reduce the
computational complexity during recovery. For the recovery of s hierarchical sparse vectors, Corol-
lary |1| suggests a measurement bound O(s1s2 log N1 log No), while a fully unstructured Gaussian
matrix requires only O(s1s2log N1 + s2log Na) (Roth et al.l [2020).

Measurement bounds for our MSR: We now establish recovery guarantees for MSR with IHT and
HTP using the RICs of factor matrices.

Theorem 2. Consider the sparse recovery problem, y = (®11: H l) x +n. Define tensors X and N,
which are reshaped from x and n, respectively, using the dimensions of H;’s. If x is an s standard
sparse vector and the factor matrices H; for i € [I] satisfy 63, (H;) < 1/v/3 forVs € fx(s), then
the estimate & of x using k-iteration IHT or HTP in Algorithm([l} satisfies

I i—-1

1
&=l < mex 32 | 3 [Tl 0 e+ TL7INIr )
=1

no, N i=1 j=1

where [Uin,, = [X(5)]niss (®}:i_1Hl)T, and if  is an s hierarchically sparse vector, and the

factor matrices H; for i € [I] satisfy 035, (H;) < 1/+/3, then the estimate & of x using k-iteration
IHT or HTP in Algorithm[l} satisfies

I i—1 I
& — 2 < Z ZHTjafH[Ui]ni+1||F+HTi”N”F )
na,,np \ i=1 j=1 i=1

and if x is an s Kronecker-supported sparse vector, there is
I i1 I

I —ll2 < Y [ o 1Uillp + [ ] 7ilINIe,
1

i=1 j=1 i=
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-

where U; = X ;) (IHZ'Z} N ® (®11:i_1Hz)) , with a; < 1, and T; are

3(1 + 625, (H,))
1-— (67

V2(1 = 0g4, (H3)) + /1 + 6., (H,)
(1= 025, (Hi)) (1 — o)

i , and

MSHTP: a; = \/25531- (H:)/(1— 62, (H,)); 7 = (1— k)

(2

As the number of iterations k — oo, the error bound reduces to 7; Hf=2 7;N;||N||r for the stan-

dard and hierarchical sparsity, and Hle 7i||N||¢ for Kronecker-supported sparsity. So, MSIHT and
MSHTP approach the true value within a constant factor of measurement noise power. Although
factors 71 ]_L{:z 7;IN; and Hle T; suggest error propagation as the algorithm proceeds from j = I
till j = 1 and scale with the problem dimension, this amplification is not observed in practice (see
Figure[3). The bound for s Kronecker-supported sparsity is tighter than that for the other two mod-
els because it solves a single MMV problem, resulting a collective error bound, instead of a looser
bounds due to the sum of each individual MMV bound. While our MSR’s measurement bound scales
the same as classical methods due to a shared requirement on the s;-RIP of H;’s, it can have a larger
error from propagation, potentially requiring more iterations or H;’s with smaller s;-RICs. How-
ever, a key advantage of MSR is that it provides recovery guarantees for the Kronecker-supported
sparsity model, unlike classical IHT and HTP-based methods.

5 NUMERICAL EVALUATIONS

For numerical results, we combine MSR with MMV-SBL (Wipf & Raol [2007), SIHT (Blanchard
et al.| [2014), SHTP (Blanchard et al., |2014), and SOMP (Tropp et al., |2006)), and the resulting al-
gorithms are referred to as MSSBL, MSIHT, MSHTP, and MSOMP, respectively. Our benchmark
for the standard sparsity is KroOMP (Caiafa & Cichocki, |2013). Here, we omit computationally in-
tensive SBL and OMP whose results are identical to KroOMP. For hierarchical sparsity, our bench-
mark is the state-of-the-art HIHTP (Roth et al |2020). For Kronecker-structured support sparsity,
we benchmark with the state-of-the-art AM- and SVD-KroSBL (He & Josephl [2025a)). Unlike the
OMP/SBL-based algorithms, the IHT/HTP-based algorithms need the true sparsity level s as input.

For all three models, we set M; = M, N; = N, and s; = s for ¢ € [I]. For the s standard
sparsity, we opt for H = ®]_;H; with I = 2, M = 64, and N = 80. The entries of H;
and the nonzero entries of x are drawn independently from the standard normal distribution. We
set s = 15, and the support is randomly drawn from a uniform distribution. For s hierarchically
sparse vectors, we also opt for I = 2, M = 64, N = 80, and s = 15. Here, supports are
generated by first selecting s blocks uniformly at random, then assigning support within each block
uniformly. In the Kronecker-supported sparsity model, we opt for I = 3, M = 15, N = 18, and
s = 4. The measurement noise is zero mean white Gaussian noise whose variance is determined by
SNR (dB) = 10log,, E{[|Hz|3/||n3} of {3,5,--- ,23,25}.

Our metrics are runtime and the normalized squared error NSE = ||z — &||3/||z||3, where x is the
ground truth and & is the estimated vector. The results are shown in Figure 2| and Table |1} with
the figure showing median and 25%/75% quartiles, and the table showing averages. The NSE for
recovering an s standard sparse vector is shown in Figure Compared to KroOMP, MSOMP
provides similar performance regarding NSE but needs one to three orders less runtime, as in Table
[ MSSBL outperforms KroOMP in all SNR cases with one or two orders less runtime. The NSE
for hierarchical sparsity is shown in Figure 2bjusing only the HTP/IHT-based algorithms (full com-
parison in Appendix [H). Our MSHTP/MSIHT offers similar performance to HTP and HiHTP, and
IHT. However, MSHTP requires two orders less runtime than HTP and one order less runtime than
HiHTP; and MSIHT requires two orders less runtime than IHT. The NSE for Kronecker-supported
sparsity is shown in Figure Our MSSBL consistently achieves a comparable NSE and is two or
three orders faster than AM- and SVD-KroSBL. In summary, MSR variants achieve similar or better
accuracy than existing methods while drastically reducing computation time.

Figure [3| shows how the NSE and runtime (median with 25%/75% quartiles) of MSSBL, MSHTP,
and MSIHT scale with the problem dimension, focusing on hierarchical sparsity. We choose I = 3
and SNR as 20dB and vary N = {50,60,--- ,110}, so that the problem dimension N = NT =
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k ¥ MSOMP
(OMSSBL
: k? CISVD-KroSBL
OMSSBL-Seq - AM-KroSBL ‘*)\W
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25
SNR (dB) SNR (dB) SNR (dB)
(a) Standard sparsity. (b) Hierarchical sparsity. (c) Kronecker-supported sparsity.

Figure 2: NSE as a function of SNR.

Table 1: Average runtime in seconds. Bold: the best result.

SNR [ 3dB | 7dB [ 11dB | 15dB [ 19dB [ 23dB
Recovery of s sparse vectors
MSOMP-Seq 0.4256 0.4119 0.3827 0.3329 0.2204 0.0568
KroOMP (Caiafa & Cichocki}[2013) 130.5405 108.0526 | 76.6942 | 39.9844 11.5774 0.7525
MSSBL-Seq 1.8191 1.1016 0.5758 0.2218 0.1417 0.1141
Recovery of s hierarchically sparse vectors
MSHTP-Seq 0.0379 0.0305 0.0297 0.0247 0.0186 0.0168
HiHTP (Roth et al.[[2020) 0.6512 0.5493 0.5204 0.5444 0.4398 0.4574
HTP 2.2436 1.7170 1.3256 0.8450 0.8264 0.5311
MSIHT-Seq 0.0500 0.0510 0.0532 0.0509 0.0450 0.0434
THT 8.2437 8.2412 8.2554 8.2917 8.2889 8.2789
Recovery of s Kronecker-supported sparse vectors
MSOMP 0.0042 0.0041 0.0040 0.0038 0.0026 0.0015
MSSBL 0.0728 0.0587 0.0447 0.0279 0.0119 0.0051
SVD-KroSBL (He & Joseph}[2025a) 37.1233 26.9816 14.2405 8.6036 5.4067 4.0681
AM-KroSBL (He & Joseph) 2025a) 55.9532 63.4676 75.9727 | 74.5840 | 51.7089 | 34.1331

125000, 216000, - - - , 1331000, where M = [(0.6N)'/!] and s = [0.4N]. As expected, parallel
implementation is faster than sequential. MSSBL has the best NSE but is slower than MSIHT and
MSHTP. The MSIHT is worse than MSHTP due to IHT’s slow convergence (Foucart & Rauhut,
[2013). Overall, our MSR efficiently handles large dimensional KCS problems.

MSSBL-PI1 (OMSSBL-Seq [>MSHTP-Seq AMSIHT-Seq
<|MSHTP-PI MSSBL-PI <|MSHTP-PI 7MSIHT-P1
S/MSIHT-PI

g
'y
V\V\V\V\KH' E 10'¢ M :
4
* ka\Q\Q—Q—G\H -
<

217 218 219 220 217 218 219 220

NSE

Problem Dimension Problem Dimension

Figure 3: NSE and runtime of MSR as functions of problem dimension N.

Application to wideband massive multiple-input multiple-output (MIMO) channel estimation:
Massive MIMO has been a key enabler for the fifth generation communication. For data trans-
mission, an important task is to estimate the channel by processing the received pilot signals sent
from user. We focus on the orthogonal frequency-division multiplexing (OFDM)-based wideband
massive MIMO channel estimation, where we consider a base station with a half-wavelength spac-
ing uniform linear array equipped with IV, elements serving one single antenna user. Due to the
environment reflection, we consider L impinging angles, each containing up to K, delays. The
maximum delay is o7 with o« < 1 where 75 is the OFDM symbol duration. The number of sub-
carriers of the OFDM symbol is Ng. The channel matrix C'is the superposition of impinging waves
characterized by delays and angles as C' = Zle ZZL: L oL (TR )a (6)) (IHaghighatshoar &l
[Caire] 2017} [Chen & Yang| 2016), where p; 5, € C is the complex gain of the path correspond-
ing to the kjth delay of the Ith angle, d(7;4,) := [1,e 27 tm/Ts Lo e=a2n(Ne= D /T T g

the delay manifold vector of the delay 7;1,, while a(6;) := [1,e772 0 ... =72r(Nam AT jg
the steering vector for §; € [0, 1] representing the equivalent /th impinging angle (Wunder et al
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[2019). Due to the significant path loss, the received signal is transmitted through a limited num-
ber of paths, making the channel intrinsically sparse over two sparsifying bases. The first is ob-
tained by sampling the delay range [0, 7] with N, samples as {nT,/N,})=5', leading to a de-
lay basis Hy := [d(0),d(Ty/Ns), - ,d((Ng — 1)Ty/Ng)] € CN>Na_ with Ny = |alNs].
The second is obtained by sampling the angular domain as {n/Na}gial, yielding angle basis
H, = [a(0),a(1/N,), - ,a(l — 1/N,)] € CNa*Na_ Then the channel can be represented as
C = Hy X H!, where X € CNa*Na s the sparse representation with up to LK, nonzeros.

To reduce the overhead, one may use a subset of OFDM subcarriers and array elements for channel
estimation. Denote the pilot as p € CMa | where My < N is the number of subcarriers in a
subset. Let Sq € {0,1}Ma>*Ns be the sampling matrix for subcarriers and S, € {0, 1}Ma*Na pe
the sampling matrix for array where only M, out of IV, elements are chosen. We write the received
signal as Y = diag(p)SqCS,)] + N € CMa*Ma with N being noise (Wunder et al [2019).
Plugging in the sparse channel representation and vectorizing both sides of the equation, we have

where y = vec(Y), x = vec(X), n = vec(IN), and (-)* is the conjugate. Denoting
S.H = Hy € CMaxNa diag(p)SqHy = H;, € CMaxNa and I = 2, the channel estima-
tion problem is a Kronecker compressed sensing problem with  being s = (L, K,) hierarchically
sparse. For simulation, we consider N, = 512, L. = {5, 10, 15, 20, 25, 35,50, 75,100}, K1, = 3,
Ns; = 1024 OFDM subcarriers, and « = 0.5 for the maximum delay. We fix M, = [0.3N,]
and My = [0.1Ny], making Hy € C'4*512 and H; € C193%512, Both angles {6;} and delays
{7k, } are generated independently and uniformly over the sampling grid, while path gains {p; x, }
are drawn from a standard normal distribution (Wunder et al.|[2019). The measurement noise is zero
mean white Gaussian noise whose variance is determined by SNR (dB) = 101og,, E{||((S.H}) ®
(diag(p)SaHy))zx||2/||n||3} of 20dB. We evaluate NSE := ||C' — H, X HY||2/||C||% and runtime
and compare MSHTP and MSOMP to HilHT/HiHTP in (Wunder et al} 2019). Results are obtained
by two hundred independent trials.

w
202l iam : ‘ b Fangles L | HiHTP | HIilHT | MSHIP | MSOMP
s 5 0.0738 | 4.1465 | 0.0195 | 0.0080
= 10 0.1303 | 4.1792 | 0.0404 | 0.0135
£ 15 0.1444 | 41287 | 00550 | 0.0189
=
100} KD 20 0.1957 | 41337 | 00769 | 0.0247
= SHIHT 25 02107 | 41670 | 00920 | 0.0303
g OMSHTP 35 03117 | #1311 | 0.1243 | 0.0426
s 0 ‘ ‘ | XMSOMP 50 05073 | #1571 | 0.1816 | 0.0641
O 10" 510152025 35 50 75 100 7 08801 | 42211 | 0.2706 | 0.1188
The number of angles 100 13406 | 42272 | 0.386 | 02139
Figure 4: NSE of different schemes. Table 2: Average runtime in seconds.

We present NSE of channel estimation and average runtime in Figure ff] and Table 2} respectively.
We observe that MSHTP and MSOMP provide better performance than HIHTP and HilHT in most
cases, with one or two orders less runtime. MSOMP’s relatively higher NSE with large L is because
it wrongly identifies many insignificant paths (smaller |p; x,|). since it does not require the true
sparsity level (L, K;,) as input. However, we still observe that the significant paths are estimated
accurately and efficiently, making MSOMP a practical option for the channel estimation task.

6 CONCLUSION

We investigated the Kronecker compressed sensing problem for signals with multiple sparsity struc-
tures. We presented a novel hierarchical view, comprehending that each factor matrix in the Kro-
necker product dictionary senses the sparse signal at a different level, obeying a hierarchical struc-
ture. This insight led to a computationally efficient, multi-stage recovery framework that achieved
performance comparable to state-of-the-art methods with one order or less runtime. On the theo-
retical front, we unified the RIP analysis for Kronecker product matrices across various structured
sparsity models, and also established the recovery guarantee for our multi-stage recovery algorithm.
This hierarchical framework opens promising avenues for designing new algorithms to accommo-
date more structured patterns and provide efficient solutions to many applications.

10
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7 REPRODUCIBILITY STATEMENT

All conditions required to reproduce the results are included in Section [5] and Appendix [H Our
implementation and data for reproducing figures and tables are available as supplementary material.
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A PROOF OF LEMMA[T]

The proof proceeds in two parts: first, establishing the column block structure, and second, analyzing
the sparsity of each block.

T
For the first step, we observe that matrix (I i+ N, @ (@l jflﬂi)> is a block-diagonal matrix.
It has Hfi} N, identical diagonal blocks, each equal to (®}= j_lHi)T. To match this structure, we
partition the columns of the unfolded matrix X ;) into HZI 11 N; column blocks. The standard column

ordering in tensor unfolding places elements with higher-level indices (n,41, ..., n) further apart.
Consequently, we can partition X;) into Hf: j+1 Vi column blocks, where each block corresponds
to a unique encapsulation nj11 = (n;41,...,ny) as

X=X o XG)Wennn] -

T
Since (I T+ N, ® (®}:j,1H z)) is block-diagonal, the multiplication with X ;) decouples and
operates on each of these blocks independently,

.
X) (Imi} N ® (®3:j71Hi))

T T
= [X0r0m @ H) T Xy (B H) T
I

This confirms that the resulting matrix is also composed of [ [,_ j+1 Vi column blocks, each indexed

. T
by nj;1 and given by X jy ., (®1_, H;) .

nj41 (®11:j71Hi)T'
The rows of this block are indexed by n; € [N;]. The kth row of X ;) ., (®1_,_H;) " will be
nonzero if and only if the kth row of X; ,, , contains nonzeros due to the full row rankness.
Moreover, the kth row of X ()it is the hierarchical block Ty, where the encapsulation is n; =
(k,mj41,...,nr). This equivalence follows because the indices of the entries in the kth row of
X (j),n;,, align exactly with those of the hierarchical block ,,; withnj = (k, 741, ...,nr). Hence,
the kthrow of X ;) ,,;, and the hierarchical block @,,; with nj = (k,nj41,...,nr)contain identical

. s . . T
entries with identical order. Thus, the number of non-zero rows in X ;) ;. , (®}:j_1HZ-) is the
number of hierarchical blocks {x,; } (within the parent block defined by nj, ) that contain at least
one non-zero element, which concludes the proof.

For the second step, consider a column block indexed by a fixed nj;,i.e., X ),

Illustrative Example: We provide an example in Figure [5] for the proof of Lemma[l} In Figure
[Ska), we consider the same vector & € R* with [ = 3, N3 = 5, Ny = 2, N; = 4, N = 40 as in
Figurem and mark s = 3 nonzero entries using colored cubes. FigureEkb), (c), and (d) illustrate the
reordered tensor X, its mode unfolding X ;) with j = 2, and how Us is computed, respectively.

The first step of the proof corresponds to FigureBJc). To see why there is a block column structure,
we first investigate how the unfolding matrix X ) is obtained. Since the unfolding tensor mode
is j = 2, the row of the unfolding matrix X ) is indexed by na = 1,2. The column index k is
determined by ng and n, jointly as k = 1 + (nq — 1) + Ny(ns — 1), according to the definition in
Sectionm When n; increments by one, k increases by 1; when n3 increments by one, k increases
by Nl.

To arrange the columns of X (3), we fix n3 and let ny runs through 1, 2, 3, 4, and then increase n3 by

one and let n; runs through 1,2, 3,4 again, as shown in Figure Blc). This indicates that nz indexes
{Ll N; = N3 = 5 column blocks, each containing H;;ll N; = Ny = 4 columns. Besides, the

T
matrix (Il_["“ N ® (®}:j_1Hi)> in this case reduces to the block diagonal matrix (I5 ® Hl)T
i=1 *Vi

in Figure Ekd), matching the column block structure of X (2)- Therefore, Us can be divided into

N3 = 5 column blocks given by the product of the column blocks of X5y and Hy, where each

block of Uy is also indexed by an encapsulation ng = (n3) for ns € [N3].

For the second step, to understand why the number of nonzero rows in a column block indexed
by nj;; in U; equals the number of nonzero blocks in [x,,;] with nj = (nj,n;41,--- ,n1), we
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examine Figure 5fd). Consider n3 = 4. In Uy, it corresponds to the fourth column block given by
X (2),(yHy , where X (2) (1) is the fourth column block of X5). Also, we have

[[acn2]] = [33(1,4)]] = {3’3(1,4),3@(2,4)}-

Each element of [[w(174)]] corresponds to one row of the column block X (3) (4). Only (3 4) is
nonzero leading to a nonzero row in X9y 4y H 1T . This demonstrates that the number of nonzero
rows in a column block indexed by nj; in U; equals the number of nonzero blocks in [, ] with
nj = (nj,mjq1, -, nr).

(a) T/ j aEE \ \
. L(1) / L(2) L(3) T (4) Iy L(5)
J=3 jmy { REE 4 ! \ )
[®(1) T2, T2) T22) T(13) T23) T(L4), T(2.4) T(15) T(25)
j:2/ | / I g | !.|z | 19 ! \ g
G=10 w O o O e B o { |
T(1,1,1) T2,2,1) T(3,1,2) £(4,22) T(3,1,3) T (3,2,4) T(4,2,5)
®) p (€ ma=1 .2 3 45
n i — A .
n1|L3 X @ no I,Qi
ng ny=1,2,3,4
(d)
Hf
U, | = | H]
; HT
— =
_— X = X (I ® H )_I_ HT
T 5 & 11 HT
X(2),(4) .

Figure 5: An illustrative example of the proof of Lemma with H; € R3*4,

B ILLUSTRATIONS OF DIFFERENT SPARSITY PATTERNS

In this section, we provide examples of sparsity patterns considered in this paper in Figure[6} using
the same vector shown in Figure [T]

In Figure Eka), we present the standard sparsity with s = 3. Three nonzero entries ©(31,1), T(4,1,3)»
and @ (3 o 4 are arbitrarily positioned. Take x 3 5 4) as an example. Its encapsulation (3, 2, 4) means
X (3,2,4) is the third entry of the block indexed by encapsulation (2,4), i.e., & (2 4), while (5 4) means
it is the second block of the block indexed by encapsulation @ 4). Then (4 is the fourth block of
vector .

In Figure [f[b), we show an example of s = (s3,s2,51) = (2,1,2) hierarchical sparsity. For
the third level blocks, the set [z (2] contains all blocks that share the same parent block as x(s),
meaning [z()] = {zq),z@),ze),zu),z6)} = [zo)] = [z@)] = [zw] = [z@E)]. Since
53 = 2, according to the definition of Sparsity [2| [2(2)] contains at most s3 = 2 nonzero blocks,
which are (o) and @ (4). For the second level sparsity sa, we take @ (2 and its child blocks @(; 2 and
X (2,2) as an example. Since sy = 1, it means that [z 2)] = {®(1,2), B(2,2)} = [®(2,2)] contains
at most sy nonzero block, which is x(1,2)- Similarly, [[a;(m)]] contains at most s, nonzero block.
For the first level sparsity s; = 2, we take x(; 2y and its child blocks as an example. There should
be at most s; = 2 nonzero blocks in the set of children of x(; 5y, which are @ (5 1 2) and x(3 1 2) in
[ (3,1,2)]- Since this is the first level, a block corresponds to an individual element of .

Figure Ekc) illustrates the s = (s3,$2,51) = (2,1,2) Kronecker-supported sparsity with by =
[0,1,0,1,0], bo = [1,0], and by = [0, 1, 1,0]. Its support is then b3 ® by @ b;.
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(a) T, ," ! o ‘ !
, /o Zay T2) Ty T(ag) Z(5)
j=3 [0y 1 HIOm, 1 SRS S

[®(11) T(2,1) T,2) B22) m(l,g%"a. T(2.3) T(14) T(24) T(1,5), T(2,5)
j =2 7 W va “ vh ‘ A i . i i t a 1 ! T

ZT(1,1,1) T(2,2,1) %(3,1,2) £(4,22) Z(3,1,3) T (32,4) T (4,2,5)

(d) z; ) | o |
, STy [ ®(@ TE@) oL T LX)
J=3 ; o ; \ e

[ ®2,1) TA,2) T22) TA3) T2,3) T4y T24) T(1,5), T25)
Jj=2] N =l 3 O o ]
j=1/ SIS~ 5 IS R - e Gt

[[w(3,1,2)]] [[35(1,1,4)]] [[w(zﬁz,s)]]

(c) T Il ! \ {
, S Tw ) ®(oy T L Ty Z(5)
J= 3 / T " et i ‘ ". :‘. ' ‘x “". X

[E(11) T(2,1) TA,2) T(22) T13) T(2,3) T(14) T(2,4) T(1,5), T(2,5)
i=2, 7 [ 179 OO0 {1 .
j:l' e ) i ¢ b (i

[xe31,2)] [xa,1,49] [Te25]

Figure 6: Examples of different sparsity patterns. (a) Standard sparsity. (b) (2, 1,2) hierarchical
sparsity. (c) (2, 1, 2) Kronecker-supported sparsity.

C PROOF OF LEMMA

Let = be an s-sparse vector. We denote k; as the total number of nonzero blocks within all jth-
level blocks of x. Clearly, k; = s and k41 = 1. Then, each nonzero block in the j + 1th level
can have at most k; — (k;41 — 1) number of nonzero jth level blocks. This occurs in the most
unbalanced case, where k; 1 — 1 blocks have only one nonzero jth level block while the remaining
block has k; — (k;4+1 — 1) nonzero jth level blocks. This observation leads to the upper bound for

the sparsity level, s; < k; — (k;4+1 — 1), which yields Zle si < s+ (I —1). So, any s sparse
Vector T € Uge fy(5)Ss-

D PROOF OF THEOREM [I]

For any &, we note that Equationbounds | Hz||3. Following the hierarchical view, we note

-
|Hez|5 =X x1 Hy - x; Hf||g = [|H X () (@, H;) |5
Using the RIC of H;, we have

T T
(1= 0 )1 Xr) (@icy—a H) I} < [ H|3 < (1401 Xy (@111 Hi) -

We also note that || X (®}:1_1Hi)T 12 = 1H-1 X (r-1) (In, ® (®}:1_2Hi))T |2 due to the
tensor folding and unfolding. Therefore, using RIC of H;_1, we arrive at

T
(1= 38s) (1 =0, NI X1y (In; © (®1212H:)) &
-
< |Hz|3 < (1+85,)(1+ 65, )1 Xy (@11 Hi)  I§
Repeating these steps recursively, following the analysis in the hierarchical view, we obtain

I I
T T
[ =s)1Xq (@1 In,) IIF < I[Hzl3 < ]+ 6:)1X0) (@i=r1In,) 7
=1 =1
. T
Since X (1) (®}_;_1In,) = X1 and | X 1[I} = [|z]|3.

I

I
[T —dlzll3 < | Hel3 < (1 +6,)

i=1 =1

13-
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Hence, we derive
I I I
S(spy(H) <max{l — [J(1=6,). [J@+6.,) -1} =]](1+6,,) -1
i=1 i=1 i=1
which completes the proof.

Remark: We note that the high-level proof strategy of our Theorem [T]and The-
orem 4) is similar in that both aim to sequentially unwrap the effect of the Kronecker product.
The key difference is that we employ tensor representations and operations such as tensor unfold-
ing, enabling a straightforward, flip-operator-free proof. This formulation clearly demonstrates
how the sparse signal x (or its tensor form X and its unfolding X ;)) is measured by factor ma-

-
trix H; through a linear transformation X (IH{III N, © (®}:j,1Hi)) . The row sparsity of

.
X ( ! N, ® (®1 j—1H; )) is dictated by the sparsity of our hierarchical block partition as
in Section[3] The aspect of this multi-stage measurement framework is missing in[Roth et al] (2020).
Thus, Theorem 4) focuses solely on hierarchical sparsity while our multi-stage
framework provides a general perspective that defines generalized sparsity, where standard, hier-
archical, and Kronecker-supported sparsity are special cases for analysis and recovery. This proof
also explains why standard RIP cannot be improved beyond hierarchical sparsity, clarifies the max-
imum achievable sparsity level, and shows why the corresponding bounds are fundamentally tight.
It further provides insight into why proofs for Kronecker-supported sparsity can be strengthened,
drawing analogies to standard RIP and MMV analyses.

E COMPLETE RESULTS ON THE NUMBER OF MEASUREMENTS

In this section, we present the measurement bounds for unstructured H with different sparsity pat-
terns. Let H € RM >N has independent and identically distributed standard Gaussian. For

_ N
M=0 (s ln(e)>
s
where c is a positive constant, s sparse vectors can be recovered from the measurement of H with
high probability (Foucart & Rauhut,2013). Also, if

ZHSJIH HSz ,

1=1j=1

s hierarchical sparse vectors can be recovered from the measurement of H with high probability
(Roth et al', 2020). These two results lead to the discussed measurement bounds in Section [4]

F CoOMPLEXITY COMPARISON

We comprehensively analyze the complexity of our MSR algorithm to demonstrate the benefit of
exploiting the Kronecker structure of H via the hierarchical view. We consider MSR combined
with MMV-SBL (Wipf & Raol,[2007)), SIHT (Blanchard et al.}2014), SHTP (Blanchard et al.,[2014),
and SOMP (Tropp et all [2006) as sparse recovery algorithms, referred to as MSSBL, MSIHT,
MSHTP, and MSOMP, respectively. We also use Seq and P1 to represent the sequential and parallel
implementation of Equation[5] Assume M;’s are O(M), N;’s are O(N) fori € [I],and I < M <
N. We compare the time and space complexities of our algorithms with those of other state-of-the-
art algorithms. For the recovery of s sparse vectors, we include SBL (Wipf & Raol [2004), OMP,
and KroOMP (Caiafa & Cichockil 2013)) as benchmarks. For the recovery of s hierarchically sparse
vectors, HIHTP (Roth et al., [2020), IHT, and HTP are used as benchmarks. We note that only the
exact implementation of HIHTP for I = 2 is given in (Roth et al| 2020). Regarding recovering s
Kronecker-supported sparse vectors, we consider AM- and SVD-KroSBL (He & Josephl, [2025a)) for
benchmarking.

For the recovery of s standard sparse vectors, our MSSBL and MSOMP substantially reduce both the
time and space complexity compared to their traditional counterparts. In terms of time complexity,
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our MSSBL (O(M?N') for seq and O(M!N) for P1) is superior than SBL (O(M?! NT)), while
the time complexity of MSOMP (O(M N¥) for Seq and O(M?! N) for Pl) is also lower than OMP
with O(MTN?). Moreover, both MSSBL and MSOMP avoid O(M N)? in space complexity and
have (9(’ MI=IN) for seq and O(MNY) for P1. Compared to KroOMP with time complexity

and space complexity O(N'), MSOMP-Seq achieves the same time complexity but
w1th a much lower space complexity O(MI~1N). Alternatively, we can achieve a much lower time
complexity O(M?TN) by parallel implementation, at the cost of a slightly higher space complexity
of O(MNY).

The computational gains are particularly significant in the context of structured sparsity. For both
hierarchically sparse and Kronecker-supported sparse vectors, classical methods like IHT and HTP
exhibit a time and space complexity of O(MN'). Our MSIHT-Seq, MSHTP-Seq, and MSSBL-
Seq have time complexity O(M NT), O(M N'), and O(M?N?), respectively, and O(M!~1N)) for
space complexity. Compared to HIHTP, our MSSBL-Seq has the same time complexity O(M2N?)
while MSSBL-P 1 has a lower space complexity (O(M N?) compared to O(M?N?) of HiHTP.

Similarly, for Kronecker-supported sparse recovery, when compared to AM-KroSBL and SVD-
KroSBL, the MSSBL algorithm demonstrates lower time complexity from O(MIN7) to O(MNT)
and space complexity from O(MINT) to O(NT). MSIHT and MSHTP exhibit the same or even
lower time and space complexities than MSSBL, which is lower than AM-KroSBL and SVD-
KroSBL, demonstrating the superiority of our multi-stage framework. We list all the time and space
complexity of the algorithms in Table@ We use Renv, Romp, Rute, Riut, and Ray to denote the
number of EM, OMP, HTP, IHT, and AM iterations. These values can vary for different algorithms
and experimental settings.

Table 3: Complexity of different algorithms in different sparse recovery problems.

Method [ Time Complexity [ Space Complexity
Recovery of s sparse vectors
MSSBL-Seq O(Rem(M>NT + MNI)) O(MT=TN)
MSSBL-P1 O(Rem(IM?N + M'N)) O(MNT)
MSOMP-Seq O(RompMN™ + R\ (p NT- T+ ROMPMNI_l) OM™'N)
MSOMP-P 1 O(RompM'N + ROMPM + R ypMTh) O(MNT)
KroOMP O(RompMN™ + R\ pM” + ROy pMN + R yp) | ONT)
SBL O (Rem M?TNT) O((MN)T)
OMP O(Romp(MN)" + RE \yp + Royp M7) O((MN)T)
Recovery of s hierarchically sparse vectors
MSSBL-Seq O(Rem(M2NT + MNT)) O(MT7IN)
MSSBL-P1 O(Rem(IM?N + MTN)) O(MNT)
MSHTP-Seq O (Rutp (MNT 4+ max; s MNT™T)) O(MT=TIN)
MSIHT-Seq O(RiuTMNT) oM™ TN)
HiHTP|Roth et al[(2020) (I = 2) O(Rutp ((s152)°M?* + (MN)?)) O((MN)?)
IHT O (Rint (MN)T) O((MN)T)
HTP O(Rure(MN)" + (TT1_, 5:)°M")) O((MN)T)
Recovery of s Kronecker-supported sparse vectors
MSSBL O(REM(IMQN + MNT)) O(NT)
MSIHT O(RmutMNT ) O(NT)
MSHTP O(RutpMNT + Rurp M 3.1 1 5 D) O(NT)
MSOMP ] O(REypNT T+ REyp MN™™ T+ Romp MNT) O(NT)
AM-KroSBL|He & Joseph|(2025a) O(Rem(RamINT + (MN)T)) O((MN)T)
SVD-KroSBL|He & Joseph[(20252) | O (Rem(N'TT + (MN)T)) O((MN)T)
IHT O (Rinr (MN)T) O((MN)T)
HTP O(Rure((MN)" + (IT1_, 5:)°M")) O((MN)T)

Table [3] compares the complexity of different versions of MSR to different traditional compressed
sensing algorithms. The conclusion can be extended to a more general case. Consider N > M > 1
and I > 1 with M, N,I € Z. In a prototypical compressed sensing problem y, = H,z, with
H, € RM>*No being a dense, unstructured measurement matrix, consider a general compressed
sensing algorithm that has complexity (’)(AJ}?NS) to recover ¢, with a,b > 1. We note that a, b > 1
is a fair consideration since computing H,,x,, already requires O(M,N,,). Then applying this algo-
rithm to Equationinduces a time complexity of O(M I N®T). If we combine the same compressed
sensing algorithm with our MSR, regardless of the special structure or the MMV property of U,
step 4 in Algorithm is simply solving N/~ M7—1 compressed sensing subproblems where each
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has M measurements and N unknowns, inducing a per level complexity of O(M*N*NT=7 Mi—1),
Considering all steps from j = I to 1, the total complexity is given by

I
S M(NI J\[I) NT — M1
MONOPNI=ippi=t = ppo-INbH _— _ —— J — ppanb—__ — |
; NI(N - M) N —-M
To compare to M al NOT e consider the ratio
J\J“Nb(NI—]\/II) B NI — Ml (<Z) NI — M1 (Z) [ (i)
MaINVI(N — M) o Maeld-DNU-D)(N — M) = MIZINI-}(N — M) MI-1

where (7) holds since the ratio is a decreasing function of a and b, (i7) is due to

I
N'—M'=(N— M) N'=M~' < INT"Y(N - M),

1=1
and (4ii) holds since M1~ > 21=1 > [ for VI, M > 1,1, M & Z, we conclude that [I <1,

and thus MNP N =ML Nfal NV for any N > M > 1,1 > 1,and a,b > 1 with M, N, I €
Z. Hence, in general, our MSR has lower computational complexity than traditional compressed
sensing algorithms when both are applied to Equation[I[} We note that when I = 1, Equation [I]
reduces to the traditional compressed sensing problem and MSR has identical complexity to that of
a traditional compressed sensing algorithm.

G PROOF OF THEOREM

Before the proof of Theorem 2} we introduce four aiding lemmas.

Lemma 3. (Foucart & Rauhut, |2013, Lemma 6.16) Given a vector v € RN and an index set
T C [N], there is

I((In = HTH)v)7|l2 < 8t[|v]2,
if the cardinality of the union of T and the support set of v is not exceeding t.

Lemma 4. (Foucart & Rauhut, 2013, Lemma 6.20) Given vector n. € R and set T C [N] with
cardinality not exceeding s, then

I(H )72 < /1 + ds[nll2.

Lemma 5. For sparse matrix X with row support T with card(T) < s, and N € RMXN ' the
sequence {X*)} defined by SIHT or SHTP for solving an MMV problem Y = HX + N with
X0 = 0, satisfies for any k > 0,

IX* = Xl < o*[[ X |lp + 7]V ][e,

where

1
for SIHT: o = /3035, 7 = \/3(1 + 025) , and

1-—

o s (V201 = 6) + VI F05)(1 - aF)
for SHTP: o = \/EvT (1 —d25) (1 — @) .

Proof. The proof closely follows the technique in [Foucart & Rauhut (2013, Theorem 6.18) and
Blanchard et al| (2014). Here, we extend the SMV case in [Foucart & Rauhut| (2013] Theorem
6.18) to the MMV case. In the MMV case, the thresholding operator retains the rows of X* 4
HT (Y —HX k) with the s largest row ¢ norms, and then we have

HXE+HT (Y - HX")f < [(X"+ HT (Y = HXY)) 0 [l7
Removing the common rows from both sides, we arrive at
| (X*+HT (Y - HX"))

<|(X*+H'" (Y -HX"))

T\Tk+1 HF Th+I\T H%
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IHT proceeds with X**! = (X* + H' (Y — HX")),,,. Since (X**')r\ 7101 = 0 and
(X)Tk-Jrl\T =0, we get

[(X -X*'+ X" - X+H" (Y - HX"))
< (XF-X+H'" (Y -HX"))

T\T*+1 ||F

TrHN\T ”F .
Applying reverse triangle inequality to the left-hand side and rearranging, we arrive at

(X —x*) <X ~X+H' (Y -HX") 10 v
+[(XF =X+ HT (Y — HX"))
SV2(XP - X+ H' (Y - HX")) i vy

where TATF+1 = (T\ TF+1) U (T*+1\ T) denoting the symmetric difference of the sets 7 and
TFk+1. Therefore, we obtain the error in the kth iteration as

144 = X = (= X s [ (X = X) s [
= || (Xk' +HT (Y —HXk) _X)Tk+1 H%‘ + H (Xk+1 —X)
<N (XF+HT (Y -HX") - X)_,.,. |#

T\TFk+1 ||F

T\Tk+1 ||F

2
T\Th+1 I

+2 (X=X +H" (Y -HX")) i 7
<3| (XF-X+H' (Y- HX’“))TU,F,M 3.
Considering Y = HX + N, we then have
X5 = X e < VB (XF = X+ HT (Y = HX")) o |l
=V3|[(I-HH) (X*-X)+H'N)_ .l

S \/5” ((I_ HTH) (Xk - X))TuTkJrl ||F + \/§H (HTN)TuTk+1 HF
< V303, | X* = X[lp + v/3(1 + 624) | N[,

where the last step is the direct consequence of Lemma[3]and Lemmad] To see this, we note

(I = HTH) (X* = X)) 7= DI (= HTH) [X* = X10) 7 |13
<05, ) NIX* = X3 = 65,01X" - X%,

where [X* — X, is the nth column of matrix X* — X. We can derive similar argument for
V1 4+ 025|| N ||p. Conclusion for HTP has been given in Blanchard et al.| (2014, Theorem 3). This
concludes the proof.

O

Lemma 6. For the sparse recovery problem in the stage of unfolding jth (7 < I —1) mode of tensor
T:XX1H1 XQHQ"' XjHj Xj+1INj+1"' X[INI-l-N,
where the sparse tensor X corresponds to s standard sparse x or s hierarchically sparse x. Its jth
mode unfolding leads to
T
Ty) = H;U; + N(j) = H; X ) (Ing;;} N ® (®3=j_1Hz')) + Ny (6)
Then the estimate of U;, denoted as U; and obtained through IHT or HTP, satisfies
||[Uj]nj+1 - [Uj]anrl ”F < O‘?H[Uj]nyrl ||F + Tj||[Uj+1 - Uj+1]nj+2||F’ (7)

where [Uj]n,., and [Ujln,, = [X(j)]n (®}:j_1Hi)T denote the nj1th column block of U,
and U, respectively. Here, encapsulation njy1 := (Nj41,- -+ ,Ny—1,ny) is the index for the column
block. The indices {n;}|_;  , in encapsulation vy := (4o, -+ ,ny_1,ns) have the same value
as the indices {n;}I_ j+2 In encapsulation nj 1, iL.e., the block indexed by 1 should be a parent

block of the block indexed by n;.,. Constants u; and 7; depend on the iteration number k and
matrix H.
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Proof. According to Lemma we solve EquationlEIby separating it into Hf;l N; MMV problem,
where each MMV problem 1s indexed by an encapsulation n;, ;. Suppose we consider a fixed
encapsulation n, ; = (nj 4, ,n}), and consider the MMV problem indexed by n}’, ; as

.
(Tij)lnr,, = Hj[Ujlnr (®izj—1Hi) + [N

i+

NGz, = H [ X (j)lor,, e

According to Lemmaand denoting the solution as [ﬁj}n;+l with k& IHT or HTP iterations, we have

[T, — U]

s r < of||[U;]

nr |l nr, e+ 75 NG, I,

where 11; and 7; relate to the RICs of matrix Hj;. The only step left is to bound [|[N(;|nr , [[r using

[Ej+1}n;+2, where Ej+1 = gj—&-l — Uj+1.

We recall that Equation [6is obtained by unfolding the measurement tensor formed from the matrix
Uji1 = Uj1+E; along its jth mode. Hence, IN;y is simply reordered version of E; 1. Conse-
quently, the entries of the matrix [IN(;)],-  are essentially entries of the n} ,th row of [E; ]
leading to

« «
j+1 Djy2’

I[N lnz,, e < [[Ejtalnr,, lr,
and we arrive at the desired result.

To elaborate, we first investigate the indices of the entries of [IN(;]n- . The entries of the nth row

N
Dt

of matrix [IN(;|nr, , are obtained by i) fixing n; = n (row index) and nj 41 =nj q,- - ,ny =nj
(encapsulation), and ¢7) running nq, - - - ,nj_1 from one till Ny,---, N;_1, respectively. Thus, the
entries of matrix [N(;)]n | can be obtained by i) fixing nj41 = nj,q, - ,n; = nj, i) run-
ning nq,--- ,nj_1 from one till Ny,---,N,_1, respectively, and ¢i¢) running n; = 1,---, N;

(going over all rows). Given such knowledge, we start investigating the nj_ th row of matrix
[Ej+1}n_;"+2' The entries of this row are obtained by 7) fixing nj41 = nj, (row index), i1) fix-
ing njio = nio, -+ ,ny = nj (fixed encapsulation), and i44) running nq,--- ,n; from one
till Ny,---,N;, respectively. By comparing how indices are arranged, we can see that the en-
tries of the matrix [IN(j)]n-  are essentially entries of the n,  th row of [Eji1]u- . inferring

1IN oz, ([0 < NGa]n,, [le- u

*
i+1

As we have described before, Equation [6]is solved through multiple independent MMV problems.
Thus, the error bound is also given regarding each individual MMV problem. Further, not only the
Jth step, but also the j + 1th step is solved through multiple independent MMV problems. Thus, we
do not have the upper bound for E;, in Equation 4|as a whole but only the upper bound for each
column block [Ej 1]y, ,. Fortunately, since all the noise entries in the jth step are contained as one
single row of the noise block in the previous step, having the upper bound for each column block
[Ej+1]n;., is sufficient to derive the noise bound for the jth step, which is shown in Lemma@ and
Equation

Now, we proceed to the proof of Theorem 2} Generally speaking, Theorem [2]is obtained by recur-
sively applying Lemma [6] Particularly, focusing on the s hierarchical sparse vectors, for the last
step, i.e., the first mode unfolding, we solve

Tny = Hi X(1) + Ny,

leading to H§:2 N; SMV problems. They are SMV because there is only one column in each
column block, and hence the MMV problem reduces to the SMV problem. Lemma [6]indicates that

10~ Uillr < Y 0 — Wikalle < Y- b U lle + 7l [Belug I

N2, ,ny n2, - ,ny
< > b [Uinllr + 71 (51Ul llr + 72/l [Es],[Ir)
na, - ,ny
I i—1 I
=< Z ZI_A[TJ'OCQc H[Ui]ni+1||F+H7—i”[El]n1+1”F
na,,ny \ =1 j=1 i=1
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We note that I + 1th level contains only one block, leading to [Ef],,,, = E;. Using the relation

Ur=U;+ E;and Lemmaleads to ||E;|lr < a§||Ur|lp + 77| N(1y||¢- This concludes the proof
for s hierarchical sparsity. For s standard sparsity, the upper bound for all s standard sparse vectors
is the worst upper bound among all possible s corresponding to the sparsity level s. Therefore,
taking the maximum over Vs € fx(s) concludes the proof.

For s Kronecker-supported sparsity, since the support is shared among different blocks in the same
level, it is unnecessary to introduce multiple MMV problems, but to solve only one MMV problem.
Thus, recursively applying Lemma 5]leads to the final result. For the last step, we solve

Ty = HiX ) + Ny,
which leads to the following relations,
1Ty — Uslr < o5 |Ullr + 71| Nyl
< | Xylle +71 (a5 |Uslle + 72| N2 lIr)
I 1—1 I
<> [ e¥71Uile + [ ] =INIle.
i=1j=1 i=1

Thus, the proof is complete.

H ADDITIONAL NUMERICAL EVALUATIONS

H.1 COMPREHENSIVE STRUCTURED SPARSE VECTOR RECOVERY PERFORMANCE

This section presents a more comprehensive evaluation of our MSR framework compared to the
state-of-the-art, consisting of complete results of Section[5|and a new set of results where we vary the
number of measurements with a fixed SNR. We also include a new metric named support recovery
rate (SRR) defined as

| supp(Z) N supp(z)|

supp(&) U supp(z)|’

where supp(-) returns the set of positions of the nonzero entries of the argument vector, | - | returns
the cardinality of the argument set, & is the estimated sparse vector, and  is the ground truth.

SRR =

Table 4: Average runtime. A complete version of Table|l} Bold: the best result.

SNR [ 3B | 7dB [ 11dB [ 15dB [ 19dB | 23dB
Recovery of s sparse vectors
MSOMP-Seq 0.4256 0.4119 0.3827 0.3329 0.2204 0.0568
KroOMP 130.5405 108.0526 | 76.6942 | 39.9844 11.5774 0.7525
MSSBL-Seq 1.8191 1.1016 0.5758 0.2218 0.1417 0.1141
MSSBL-P1 0.4517 4.9263 0.2658 1.8292 0.1531 0.1281
Recovery of s hierarchically sparse vectors
MSSBL-Seqg 2.4930 2.0134 1.2501 0.6102 0.1965 0.1112
MSSBL-P1 0.4962 0.4607 1.3664 0.2513 0.1447 0.1081
MSHTP-Seq 0.0379 0.0305 0.0297 0.0247 0.0186 0.0168
HiHTP 0.6512 0.5493 0.5204 0.5444 0.4398 0.4574
HTP 2.2436 1.7170 1.3256 0.8450 0.8264 0.5311
MSIHT-seq 0.0500 0.0510 0.0532 0.0509 0.0450 0.0434
THT 8.2437 8.2412 8.2554 8.2917 8.2889 8.2789
Recovery of s Kronecker-supported sparse vectors
MSOMP 0.0042 0.0041 0.0040 0.0038 0.0026 0.0015
MSHTP 0.0011 0.0010 0.0011 0.0010 0.0010 0.0010
MSSBL 0.0728 0.0587 0.0447 0.0279 0.0119 0.0051
SVD-KroSBL 37.1233 26.9816 14.2405 8.6036 5.4067 4.0681
AM-KroSBL 55.9532 63.4676 759727 | 74.5840 | 51.7089 | 34.1331
HTP 0.9772 0.8347 0.4709 0.3465 0.2339 0.2323
MSIHT 0.0008 0.0007 0.0007 0.0007 0.0007 0.0007
THT 6.0771 6.0760 6.0763 6.0690 6.0677 6.0535
KSHTP 0.1018 0.0730 0.0665 0.0811 0.0865 0.0881

We show a complete version of Figure Q] in Figure [/ We use Tensorlab (Vervliet et al., |2016) for
tensor operation and Seq and P1 to represent the sequential and parallel (parfor function in
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(b) s hierarchically sparsity.

% MSOMP [>MSHTP O MSSBL <] HTP ) AM-KroSBL [] SVD-KroSBL /\ MSIHT Y7 IHT X KSHTP — /o Spasity —==w/ Sparsity

10"

SNR (dB) SNR (dB)

(c) s Kronecker-supported sparsity.

Figure 7: NSE and SRR as functions of SNR. A complete version of Figure

Matlab 2024)) implementation of Equation [3} they have the same recovery performance but
different runtimes.

For fairness, we cap the number of EM iterations for SBL-based methods (MSSBL, AM-KroSBL,
and SVD-KroSBL) to two hundred, for HTP based methods to one hundred, and for all IHT based
methods to two hundred. For HTP-based algorithms, we stop the iterations if the detected support
remains the same in two consecutive iterations [201T])), while IHT-based algorithms are ter-
minated when the normalized difference between two consecutive estimations is smaller than 1076,
For OMP-based algorithms, we stop when the norm of the residual is smaller than €||y||2. Here, the
coefficient ¢ = 0.05 is fixed for all OMP-based algorithms, which is empirically determined. We
also prune small entries in hyperparameters for faster convergence for SBL-based algorithms.

In the recovery of s standard sparse vectors, compared to Figure [2a] Figure [7a]includes both the se-
quential and parallel implementation of our MSSBL. Regardless of different runtimes as in Table[4]
sequential and parallel implementations provide identical NSE and SRR results. Regarding runtime,
MSSBL-P1 is only faster than MSSBL-Seq in low SNR cases. This is because in high SNR cases,
the parallel overhead dominates, including data transfer and communication cost. As we see in Fig-
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(c) s Kronecker-supported sparsity.

Figure 8: NSE and SRR as functions of the number of measurements.
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Table 5: Average runtime in seconds. Bold: the best result.

Recovery of s sparse vectors

M [ 48 52 56 60 64 68 72
MSOMP-Seqg | 0.0735  0.0951  0.1265  0.1574  0.1937 0.2312 0.2918
KroOMP 0.7139  1.1941  2.1137 37952 7.4092  12.5439  22.4149
MSSBL-Seq 0.1726  0.1743  0.1439  0.1364  0.1332 0.1368 0.1321
MSSBL-P1 0.1412  0.1464  0.1508  0.1517  0.1498 0.1527 0.3298
Recovery of s hierarchically sparse vectors
M [ 48 52 56 60 64 68 72
MSSBL-Seq | 0.2978  0.2594  0.2031  0.1692  0.1552  0.1407 0.1274
MSSBL-P1 0.1734  0.1614  0.1467  0.1363  0.1299  0.1248 0.1197
MSHTP-seq | 0.0204  0.0198  0.0190 0.0191 0.0178  0.0170 0.0168
HiHTP 03661  0.3622 03691 04189  0.4181  0.4599 0.5127
HTP 0.3071 0.3641 0.4753  0.4980  0.6407  0.6867 0.4566
MSIHT-Seq 0.0527  0.0502  0.0479  0.0457  0.0449  0.0421 0.0416
THT 47097 54549  6.2188  7.1292 83298  9.1231 10.1874
Recovery of s Kronecker-supported sparse vectors
M [ 12 13 14 15 16
MSOMP 0.0017 0.0017 0.0019 0.0020 0.0023
MSHTP 0.0010 0.0010 0.0011 0.0011 0.0013
MSSBL 0.0187 0.0141 0.0118 0.0092 0.0083
SVD-KroSBL 53134 4.8928 4.7247 5.0780 5.3094
AM-KroSBL 52.0891 524779  49.6836  47.0243  42.6749
HTP 0.0715 0.1113 0.1658 0.2508 0.2745
MSIHT 0.0009 0.0008 0.0009 0.0007 0.0007
THT 3.4581 4.0502 4.9489 6.0187 7.2859
KSHTP 0.1184 0.0908 0.1048 0.0885 0.0829

ure |3} when the computation cost dominates, there is a significant gain in computation time, as a
trade-off for memory usage. In the recovery of s hierarchical sparse vectors, compared to Figure [2b
Figure [/blincludes the performance of MSSBL. MSSBL exhibits a worse performance in low SNR
scenario because it does not require the true sparsity level s as an input, while for IHT/HTP-based
algorithms, this prior knowledge is necessary. However, MSSBL is still able to offer a comparable
performance in high SNR scenarios, making it a powerful candidate when the prior knowledge s is
absent. In the recovery of s Kronecker-supported sparse vectors, compared to Figure 2c| we include
IHT/HTP-based algorithms in Figure KSHTP is the algorithm we explained in Equation
Although the thresholding operator for Kronecker support is not optimal, KSHTP still offers the best
SRR performance, followed by MSHTP. MSIHT has the least runtime, which is four orders less than
its classic counterpart IHT. Overall, Figure 7] and Table 4] demonstrate that our MSR framework can
offer similar or better performance with significantly reduced runtime.

We next evaluate the performance of different algorithms by fixing the SNR and varying the number
of measurements. The setting is as follows. For the s standard sparsity, we opt for H = ®@!_, H;
with I = 2, and set M = {48,52,56,---,72} and N = 80. The entries of H; and the nonzero
entries of x are drawn independently from the standard normal distribution. We set s = 15, and
the support is randomly drawn from a uniform distribution. For s hierarchically sparse vectors, we
also opt for I = 2, and set M = {48,52,56,---,72}, N = 80, and s = 15. In the Kronecker-
supported sparsity model, we opt for I = 3, and set M = {12,13,--- 16}, N = 18, and s = 4.
We adopt the additive white Gaussian noise with zero mean with SNR (dB) = 20. Ratio is defined
as M/N = [[/_, M;/N; = (M/N)'. We consider NSE, SRR, and runtime for performance
evaluation. We follow the same way to cap the number of iterations. Results in Figure[§|and Table[5]
are obtained through two hundred independent trials. Overall, we observe similar trends as in Figure
and Table[d Our MSR is able to provide comparable or better performance with reduced runtime,
demonstrating the efficacy of exploiting the Kronecker product structure in the recovery process.

H.2 COMPARISONS WITH TRADITIONAL COMPRESSED SENSING APPROACHES

In this section, we compare our MSR to traditional compressed sensing algorithms, including IHT,
HTP, SBL, OMP, and the #; norm-based basis pursuit denoising (BPDN) (Foucart & Rauhut, [2013))
(basisPursuit function in Matlab (Inc.,[2024)).
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(a) Standard sparsity. (b) Hierarchical sparsity. (c) Kronecker-supported sparsity.

Figure 9: NSE as a function of SNR compared to traditional compressed sensing algorithms.

For all three models, we set M; = M, N; = N, and s; = s for i € [I]. For the s standard sparsity,
we opt for H = ®11:1H7; with I = 3, M = 12, and N = 15. The entries of H; and the nonzero
entries of x are drawn independently from the standard normal distribution. We set s = 8, and the
support is randomly drawn from a uniform distribution. For s hierarchically sparse vectors, we opt
forI =2, M = 35, N = 40, and s = 8 per dimension. Here, supports are generated by first
selecting s blocks uniformly at random, then assigning support within each block uniformly. In the
s Kronecker-supported sparsity model, we opt for I = 3, M = 12, N = 15, and s = 4. In all
models, the measurement noise is zero mean white Gaussian noise whose variance is determined
by SNR (dB) = 10log;, E{||Hz||3/||n|3} of {0, 5,10, 15,20, 25}. We follow the same condition
to cap the iterative algorithms, and for BPDN, we cap the number of iterations at fifty. Compared
to Section [B]and Appendix [H:I} we downsize the measurement matrices mainly for computational
feasibility. With the same condition as in Appendix [H.T] it is hard to evaluate traditional algorithms
such as BPDN and SBL. The NSE shown in Figure [9] are median and 25%/75% quartiles, while
Table[f] shows the average runtime, both over fifty independent trials.

As shown in Figure Da] HTP achieves the lowest runtime and high accuracy but relies on prior
knowledge of the true sparsity level s, which is generally unavailable in practice. While SBL yields
higher reconstruction accuracy than MSSBL in the high SNR regime, it incurs a runtime two or-
ders of magnitude higher, limiting its scalability. MSSBL emerges as the most robust solution: it
outperforms traditional methods (IHT, OMP, BPDN) and has lower runtime than SBL, offering a
balance between reconstruction accuracy and computational efficiency, without requiring specific
prior knowledge.

We illustrate the hierarchical sparsity recovery against traditional compressed sensing algorithms
in Figure Pb] Compared to HTP, MSHTP achieves almost the same reconstruction accuracy but
with one to two orders of less runtime. This also happens to MSSBL compared to SBL. MSSBL,
in this case, is also a balanced option when the true sparsity level is unknown, without sacrificing
efficiency significantly. OMP and IHT are only slightly worse than their counterparts, i.e., MSOMP
and MSIHT, but the gain in runtime is significant by two orders of magnitude. Finally, Figure
contains the results for Kronecker-supported sparsity recovery against traditional benchmarks.
MSSBL constantly achieves the best performance, seconded by MSHTP and MSOMP (high SNR
case), with two to three orders less runtime than their counterparts.

H.3 SPARSE VECTOR RECOVERY PERFORMANCE WITH VARYING NUMBER OF
DIMENSIONS [

OMSSBL-Seq % MSSBL-P1 [SMSHTP-Seq<] MSHTP-PIAMSIHT-SeqVMSIHT-P]

10° 102
E 10'
w No 1g?
7] £
z G E 10"
-1
10 > 10‘2
D .
1 2 3 g 10 2 3 a
System Order I System Order I

Figure 10: NSE and runtime of MSR as functions of system order I.
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Table 6: Average runtime for comparison with traditional compressed sensing algorithms. Bold: the
best result.

SNR [ 0dB | 5dB [ 10dB [ 15dB [ 20dB [ 25dB
Recovery of s sparse vectors
MSOMP 0.0631 0.0607 0.0618 0.0578 0.0385 0.0095
MSSBL 0.4547 0.4096 0.3356 0.1929 0.0969 0.0583
HTP 0.0210 0.0129 0.0100 0.0098 0.0091 0.0109
THT 2.2580 2.2627 2.2629 2.2577 2.2473 2.2425
OMP 22.4379 20.1685 15.7469 8.9826 2.3411 0.0363
SBL 37.9208 21.5275 13.2480 10.9864 10.0749 9.4921
BPDN 102.8134 | 102.0363 101.4731 99.6498 96.1337 85.2775

Recovery of s hierarchically sparse vectors
MSOMP 0.0246 0.0248 0.0232 0.0233 0.0173 0.0024
MSHTP 0.0047 0.0037 0.0031 0.0032 0.0033 0.0028

MSIHT 0.0066 0.0071 0.0069 0.0082 0.0088 0.0089
MSSBL 0.4694 0.3997 0.2533 0.1538 0.0424 0.0172
HTP 0.1965 0.1225 0.0777 0.0620 0.0363 0.0274
IHT 0.4816 0.4834 0.4842 0.4805 0.4814 0.4824
OMP 6.5235 5.7934 4.4745 2.6242 0.7864 0.0365
SBL 18.3118 16.1878 8.3721 3.2350 2.1724 1.8597
BPDN 20.9009 20.8322 20.3150 19.2756 17.5916 16.0579
Recovery of s Kronecker-supported sparse vectors
MSOMP 0.0031 0.0027 0.0027 0.0025 0.0023 0.0014
MSHTP 0.0012 0.0011 0.0010 0.0010 0.0011 0.0010
MSIHT 0.0010 0.0009 0.0010 0.0008 0.0010 0.0009
MSSBL 0.0540 0.0500 0.0451 0.0322 0.0183 0.0057
HTP 0.3165 0.2945 0.2105 0.0945 0.0678 0.0344
THT 1.8995 1.9024 1.8995 1.8991 1.9152 1.8953
OMP 23.6829 21.5929 16.4708 9.4103 2.6839 0.1793
SBL 46.1748 42.6398 29.0591 15.0069 11.0725 9.5650

BPDN 108.0371 108.1285 108.0272 106.9569 102.1098 | 91.1148

Here we present results where we fix the size of each factor matrix H; but vary I from 1 to 4, to
demonstrate the ability of our MSR to handle arbitrary system order I.

We consider N; = N and M; = M for i € [I], opt for N = 50, and determine M and s through
M = [(0.6N)'/] and s = [0.4N] as in Section We fix SNR at 20dB and results in Figure
shows how the NSE and runtime (median with 25% /75% quartiles) of MSSBL, MSHTP, and
MSIHT scale with different I for Kronecker-supported sparsity model.

In Figure[T0] we observe similar trends as in Figure[3]} Parallel and sequential implementations have
identical recovery performance but different runtimes. Thus, for NSE, we only show the results
for parallel implementation. The only exception in Figure [I0] compared to Figure [3 is that for
I = 2, parallel implementation for MSHTP and MSIHT requires more computation time than the
sequential implementation. This is because when the problem is computationally light, parallel
overhead dominates the time consumption, including data transfer and communication, rather than
computation itself.

H.4 APPLICATION: CHANNEL ESTIMATION FOR INTELLIGENT REFLECTING
SURFACE-AIDED WIRELESS SYSTEM

w 0
wn 10
z SNR (dB) | AM-KroSBL | SVD-KroSBL | MSSBL
2 4" 5 138.9725 3.1272 0.0212
©
E 10 121.7270 2.8479 0.0147
b e 15 77.7143 27911 0.0099
° SVD-KroSBL
< ¢ AM-KroSBL 20 43.9860 2.7752 0.0066
© QOMSSBL
£ 06 ‘ ‘ | ‘ 25 26.3338 27479 0.0052
© s 10 15 20 25 30

SNR (dB) 30 18.7202 27450 0.0052

Figure 11: NSE of different schemes. Table 7: Average runtime in seconds.
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An intelligent reflecting surface (IRS) is a reconfigurable meta-surface consisting of a large num-
ber of adjustable reflecting elements. By changing the reflection coefficients of elements, IRS can
reflect the signal to a certain area to improve the coverage of the wireless communication systems
operating at millimeter-wave/terahertz frequency bands. But properly configuring the IRS requires
the channel state information. It is hence important to develop efficient and accurate channel esti-
mation algorithms for the IRS-aided system. In this section, we consider an uplink narrowband IRS-
aided MIMO system, consisting of a 7" half-wavelength spacing-antenna transmitter mobile station
(MS), an R half-wavelength spacing-antenna receiver base station (BS), and an L half-wavelength
spacing-element uniform linear array IRS. If the channel matrices of the MS-IRS, and the IRS-BS
channel are denoted as ®yrs € C*T and g € CH*L, respectively, according to the geometric

channel model (You et al] 2022} [Wang et al] [2020; [Alkhateeb et al 2014} [He & Josephl [2023)),

®\ig € CHXT and @y € CFXE can be formulated as

Pus

LT
Pyis = Z —— Bus par(bus p)ar(oms)™, (8)
— Pus
Pgs
RL
Pps =) ?mﬂBs,paR(aBs,p)aL(¢Bs)“, 9)
p=1

where Pyis and Ppg are the number of paths between MS and IRS, and IRS and BS, respectively.
The angles dns p, mis, aBs,p, and ¢ps represent the pth AoA of the IRS, and the pth AoD of
the MS, the pth AoA of the BS, and the AoD of the IRS, respectively, while Sng , and fBgg,, are
the complex path gains. Steering vector ag(v) € C® for any integer () and angle v is defined
as ag(y) = 1/\/Q[1,e/meV ... Im(@=1)cos¥]T  Then, the cascaded MS-IRS-BS channel is
given by ®pg diag(0)®Pys for a given IRS configuration @ € CL whose ith entry of  models the
reflection of the ith IRS element. Channel estimation problem targets to estimate the cascaded chan-
nel ®pg diag(0)®\s given any 6, which is sufficient for subsequent tasks such as beamforming

(Wang et al] 2020)

Wireless channels operating on millimeter-wave/terahertz bands are intrinsically sparse due to se-
vere path loss. To reveal this sparsity, we adopt three sparsifying bases Agr, Ay, and Ar, corre-
sponding to the angular domain of the array at BS, IRS, and MS, respectively. Such bases contain
steering vectors evaluated over N grid angles {1, }V_; such that cos(v,,) = 2n/N — 1

2022)), defined as Ag = [aq (Y1), aq(¥2),...,ag(n)] € CP*N for any integer Q > 0. Then,
Equation [§]and Q] reduce to

®ps = Apzray jA] and  Pys = Apw @y AL, (10)

where vectors TR, x1,.4, 1,0, TT € CN are the unknown channel representations over the known
sparsifying bases. They are sparse due to the intrinsic sparsity of the channel.

Channel estimation is performed by processing the received pilot signals, given the knowledge of the
sent pilot signals and the training IRS configurations. Suppose we allocate K time slots for channel
estimation, over which the channel is considered to be constant. We vary IRS configurations for K7
times, and for each different configuration, we transmit the same set of pilot signal G € CT*Kr
over Kp time slots such that K = KjKp. The received signal Y;, € C**K* corresponding to the
kth training configuration 6y, is

Y, = ®$pg diag(ak)‘I)MsG—l—Nk, (11)

where N, € C*XP is the noise. Substituting Equation into Equation [l 1{ and vectorizing the
received signal {Yk}f:fl followed by some algebraic operations (IHe & Joseph! |2023|), we have

y=(H,® Hr ® Hy) € +n = Hx +n € CIX, (12)
where Hy, € CK1*N is formed by the first N columns of © T (A] ® AY)T whose N2 columns
are just N repetitions the columns of Hy, Hy = XTA}, and Hr = Apg, with ® being the
Khatri-Rao product. We collect K IRS configurations {6}, } ", in matrix @ € CX**1 and define

T =, QThH QxR € CN* with 21, € CV being the scaled version of the first N entries of
Ty, . @ T} 4, corresponding to the removal of redundant columns in ® " (A] ® AY)T. Denoting
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H;, as H3 with Ky as M3, Hy as Hy with Kp as My, Hg as H; with R as My, and N = N3 =
Ny = Ny, the channel estimation problem is transformed into a KCS problem following the form of
Equationwith unknown s = (s3, $2,$1) = (Pus, 1, Pps) Kronecker-supported sparse vector x.
With the estimated &, the estimated channel for a given IRS configuration 6, i.e., ‘i>Bs diag(@)@Ms,
is obtained by reshaping (‘i’;/ls ® @BS)O with known size R x T, where <i>1\T/[S ® ®pg with known
size RT x L is reconstructed as vec(®q © ®pg) = (B4 ® A% @ Ag)z with 4 being the first
N columns of (A] ® AMHT.

Weset T' = 6, R = 16, and L. = 256. To set up the sparsifying bases, we opt for N = 18. Pilot
signals contained in G are randomly generated quadrature phase shift keying symbols using a uni-
form distribution while the IRS training configuration is randomly drawn from uniform distribution
{+1/VL} . Regarding the pilot signals and training IRS configurations, we con-
sider K1 = Kp = 10, making Hy € C'°%18 H, ¢ C'9%!8 and H; € C'6*'®, To model the
scatters, we set P\is = Ppg = 3 and all angles ¢nis p, ams, aBs,p, and ¢pg are drawn uniformly
and independently from the grid points, while path gains S\s , and Bgg p are drawn independently
from complex standard normal distribution (He & Josephl [2023). We compare MSSBL with SVD-
/AM-KroSBL in[He & Joseph| (2023)) with the same way to cap iterative algorithms. Metrics include
channel estimation NSE given by - N I®es dmgf&i:ﬁg&jﬁ;ﬁiﬁé‘gk )2uslE 4nd runtime.
Figure [T1] shows 25%/50%/75% quartiles of NSE, while Table [7] shows the average runtime, both
over fifty independent trials. We observe that all three algorithms provide comparable channel esti-
mation performance, while MSSBL has two orders less runtime than SVD-KroSBL and four orders
less runtime than AM-KroSBL, making it more efficient in this application scenario.

H.5 APPLICATION: FOREMAN VIDEO SEQUENCE RECOVERY

35 . Ratio ¢ Traditional CS MSR
Traditional CS D 0.05 775294 105590

30| OMSR 0.10 912761 9.0006

- 0.15 70.1564 9.7536

Z 05! 0.20 758293 9.9201
@ 0.25 67.9980 11.6894
20l 0.30 992622 11.1384
035 79.0998 TLI011

0.40 109.8495 11.1645

1% 0.1 0.2 0.3 0.4 0.5 0.45 92.8983 7.7705
Ratio 0.50 66.3104 6.7719
Figure 12: PSNR of different schemes. Table 8: Runtime in seconds.

This section presents the recovery results for Foreman video sequence to demonstrate MSR’s ability
to deal with a real-world dataset and its superiority over the traditional compressed sensing algo-
rithm. In the experiment, we follow the settings in [Duarte & Baraniuk| (2011a}jb) and to make this
paper self-contained, we provide a brief overview of these settings.

Tested frames are generated by cropping around the center to form a frame size of 128 x 128 pixels
and there are in total eight frames used in the experiment. To spatially sparsify the image content
within a single frame, we vectorize each frame and adopt a 2D inverse discrete wavelet transform
basis Wy € R16384x16384 applied to the sparse coefficients of each video frame. For the sparsity in
the temporal dimension, we turn to a 1D inverse discrete wavelet transform basis Wy € R8>8, It
exploits the correlation between frames to sparsify the signal over time. Suppose the video sequence
is denoted by 8 € R'31072 where 131072 = 8 (frames) x 128 (row pixels) x 128 (columns pixels),
then its relation to sparsifying bases and the sparse coefficient vector € R*31072 is = (W, ®
Wi)x. To compress the video sequence, we use a measurement matrix as I ® S, where I means
that there is no temporal compression while § € RM*16384 from a subsampled permuted Hadamard
transform denotes the spatial compression. Here, M is the number of measurements taken in one
frame. This leads to the following measurement/sparsifying model

y=(Wy® SW;)z. (13)

The goal is to obtain sparse coefficient  using the compressed measurement y, and finally we
reconstruct the video sequence as 6 = (Wo @ W)x.
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Figure 13: Comparison of reconstructed Foreman video frames. Row 1: ground truth. Row 2:
traditional CS with ¢ = 0.1. Row 3: MSR with { = 0.1. Row 4: traditional CS with { = 0.5. Row
5: MSR with ¢ = 0.5.

Denoting W5 as Hy, SW7 as Hy, and I = 2, we note that Equationﬂzlis mathematically equivalent
to Equation |1} hence can be solved using our MSR. The benchmark in this experiment is ¢;-based
basis pursuit (Duarte & Baraniuk| 201Ta), where Equation[T3]is treated as a traditional compressed
sensing problem and the Kronecker structure of Wy ® SW1 is ignored. For a fair comparison,
we adopt the same ¢; solver (van den Berg & Friedlander] 2008} [2019) in MSR as in
(201Ta) with the same stopping criterion. We determine the number of measurements
M as M = |16384(¢]| with measurement ratio ¢ € {0.05,0.10,---,0.45,0.50}. We use the peak
signal-to-noise ratio (PSNR) and runtime as evaluation metrics. Results are shown in Figure [I2]
and Table [B] where traditional CS refers to traditional compressed sensing algorithm. We observe
that MSR achieves the same PSNR as that of traditional CS with roughly one order of magnitude
less runtime, effectively demonstrating the efficacy of our MSR on a real-world dataset. We also
compare all used video frames in Figure[T3]
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