
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HIERARCHICAL MULTI-STAGE RECOVERY FRAME-
WORK FOR KRONECKER COMPRESSED SENSING

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we study the Kronecker compressed sensing problem, which focuses
on recovering sparse vectors using linear measurements obtained using the Kro-
necker product of two or more matrices. We first introduce the hierarchical view of
the Kronecker compressed sensing, showing that the Kronecker product measure-
ment matrix probes the sparse vector from different levels, following a block-wise
and hierarchical structure. Leveraging this insight, we develop a versatile multi-
stage sparse recovery algorithmic framework and tailor it to three different spar-
sity models: standard, hierarchical, and Kronecker-supported. We further analyze
the restricted isometry property of Kronecker product matrices under different
sparsity models, and provide theoretical recovery guarantees for our multi-stage
algorithm. Simulations demonstrate that our method achieves comparable recov-
ery performance to other state-of-the-art techniques while substantially reducing
runtime owing to the hierarchical, multi-stage recovery process.

1 INTRODUCTION

Kronecker compressed sensing (KCS) is a measurement framework that employs the Kronecker
product of multiple factor matrices as a measurement matrix, capturing multidimensional signal
structure while reducing measurement complexity. It appears in many acquisition systems, such
as sensor arrays in communication systems (He & Joseph, 2025a) or separable filters in imaging
(Friedland et al., 2014). We focus on the general KCS problem with canonical form,

y = Hx+ n = (HI ⊗HI−1 ⊗ · · · ⊗H1)x+ n =
(
⊗1
i=IHi

)
x+ n. (1)

Here, x ∈ RN̄ is the unknown sparse vector and y ∈ RM̄ is the noisy measurements via a known
measurement matrix H = ⊗1

i=IHi, where each factor matrix Hi ∈ RMi×Ni has full row rank.

A key challenge in solving Equation 1 is the high dimensionality of the multidimensional signal x.
It grows rapidly with both the number and size of factor matrices Hi, e.g., O(N I) if Ni = O(N).
Another challenge is exploiting sparsity patterns as prior knowledge. Beyond simple sparsity, the
nonzero elements in x often exhibit more complex but regulated patterns. We consider three preva-
lent models. The first model is the standard sparsity, where the nonzero entries can be positioned
arbitrarily. This model is ubiquitous and has been applied to various fields, such as image processing
(Duarte & Baraniuk, 2010; Li & Bernal, 2017; Zhao et al., 2019), system identification (Sun et al.,
2022; Yuan et al., 2019), regression (Ament & Gomes, 2021), and communications (Berger et al.,
2010; Xiao et al., 2024). The second model, hierarchical sparsity, considers a vector x partitioned
into blocks at multiple levels with sparsity structured across these levels. For example, in massive
machine-type communication (Wunder et al., 2017; Roth et al., 2018; 2020), only a subset of devices
are active (device-level sparsity), and each active device sends a sparse signal, forming a two-level
hierarchical structured sparsity pattern on x. The third model, Kronecker-supported sparsity (or
block tensor sparsity) (He & Joseph, 2025a; 2023; Caiafa & Cichocki, 2013; Zhao et al., 2019;
Boyer & Haardt, 2016), assumes the support of x is the Kronecker product of multiple binary sup-
port vectors. This pattern arises in radar imaging and wireless communications, where signals are
separable across dimensions (He & Joseph, 2023; Xu et al., 2022; He & Joseph, 2025d). Motivated
by varied sparsity patterns, we focus on efficient methods for KCS with structured sparsity.

This paper introduces a novel hierarchical view on KCS, showing how its dimension-wise measuring
structure can be used to design and analyze efficient recovery methods to exploit structured sparsity
effectively. Our main contributions are as follows:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

• Hierarchical View: We establish that when measuring via Kronecker product matrices, each factor
matrix in the Kronecker product captures the vector at a distinct hierarchical level. It provides a
unified perspective for handling different sparsity models within a single framework.

• Unified Algorithm: We design a multi-stage sparse recovery algorithm using the hierarchical view.
By leveraging the Kronecker structure of H through tensor operation and investigating the un-
derlying structure, our method achieves a significant complexity reduction, e.g., reducing from
O((MN)I) (He & Joseph, 2025a) to O(MN I) regarding Kronecker-supported sparse vector re-
covery, and accommodates the mentioned sparsity patterns within a single, flexible framework.

• Theoretical Guarantees: We establish a unified restricted isometry property (RIP) analysis for
KCS covering the standard, hierarchical, and Kronecker-supported sparsity. It proves that sparsity
at each hierarchical level, rather than total sparsity, drives the recovery. Our result improves
the RIP-based bound for KCS with standard sparsity and provides a cohesive understanding of
structured sparsity. We also provide a RIP-based recovery guarantee for our unified algorithm.

Related works: The Kronecker product measurement matrix is introduced for compressed imaging
in Rivenson & Stern (2009). KCS is formalized in Duarte & Baraniuk (2011a) tailored to hyperspec-
tral imaging, with an RIP analysis for KCS with standard sparsity (Duarte & Baraniuk, 2011a;b).
It bounds the restricted isometry constant (RIC) of the Kronecker product using the RIC of fac-
tor matrices Hi. However, the recovery algorithm fails to leverage the Kronecker structure in H .
To leverage this structure, Kronecker orthogonal matching pursuit (KroOMP) (Caiafa & Cichocki,
2013) adopts tensor operations . Nonetheless, it still incurs a high complexity of O(N I), and lacks
theoretical analysis. Friedland et al. (2014; 2015) presents two algorithms: one uses tensor unfold-
ing for sequential recovery in dimension, and the other uses approximate Tucker decomposition to
recover along each dimension for compressible image and video representation and recovery. Still,
both approaches are limited to standard sparsity. Li & Bernal (2017) decomposes the unfolding-
based approach into multiple independent subproblems for hyperspectral imaging. Yet, it fails to
exploit joint sparsity patterns and is not immediately extendable to other sparsity patterns.

KCS with structured sparse recovery is also investigated in the literature. For hierarchically sparse
vectors, Roth et al. (2020) discusses the hierarchical hard thresholding pursuit (HiHTP), adapting
classic hard thresholding pursuit (HTP) with a tailored RIP and coherence analysis for channel esti-
mation for massive multiple-input multiple-output systems (Wunder et al., 2019). However, it fails
to incorporate the Kronecker structure in H , leading to higher computational costs. For Kronecker-
supported sparsity, both greedy and Bayesian methods have been explored. An orthogonal matching
pursuit (OMP)-based algorithm offers reduced complexity (Caiafa & Cichocki, 2012; Caiafa & Ci-
chocki, 2013) but performs poorly in noisy settings (He & Joseph, 2025a). Bayesian algorithms,
designed for applications such as hyperspectral image processing (Zhao et al., 2019) and wireless
communication (He & Joseph, 2025a; Chang & Su, 2021; Xu et al., 2022), use a structured prior
distribution. They suffer from poor generalization and high complexity (He & Joseph, 2025b). Be-
sides, both OMP-based and Bayesian algorithms lack theoretical guarantees. Recently, He & Joseph
(2025c) provides an algorithm and RIP analysis for KCS for the I = 2 case. However, the analysis
is decoupled from the algorithm. Also, it relies heavily on specific matrix properties, making the
generalization to higher orders (I > 2) nontrivial.

To summarize, existing approaches reveal several literature gaps. First, KCS methods mostly ignore
the structures of H , relying on generic solvers, while our method is specifically designed to leverage
the Kronecker structure through tensor operations. Second, current methods are largely tailored to
a single sparsity pattern and cannot be generalized, whereas our work provides a unified framework
for multiple patterns. Third, many methods suffer from high computational complexity, while our
approach is efficient and low-complexity. Besides, no prior work offers a unified RIP analysis
of Kronecker-structured matrices across various sparsity patterns, nor a recovery framework for
different sparsity patterns with RIP-based guarantees, which are our central theoretical contributions.

Notation and tensor preliminaries: We use [I] to denote the set {1, 2, · · · , I} for any scalar I and
IN to denote the N × N identity matrix. The symbols ⊗ and ×j denote Kronecker and jth mode
product, respectively. The jth mode unfolding T(j) of tensor T ∈ RN1×N2×···×NI is

[
T(j)

]
nj ,k

=

[T]n1,n2,...,nI
for j ∈ [I] with k = 1 +

∑I
ℓ=1,ℓ̸=j

(∏ℓ−1
p=1,p̸=j Np

)
(nl − 1), with nj ∈ [Nj]. Also,

[T(j)]nj ,k is (nj , k)th matrix entry, and [T]n1,n2,··· ,nI
is the (n1, · · · , nI)th tensor entry. The ith

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

mode product of Di ∈ RNi×Mi with T is M = T ×i Di ∈ RM1×···×Mi−1×Ni×Mi+1×···×MI . The
ith mode unfolding of M is M(i) = DiT(i) (Kolda & Bader, 2009).

2 HIERARCHICAL VIEW OF THE KRONECKER-STRUCTURED MEASURING

Our hierarchical view builds on the Kronecker structure in Equation 1, interpreting the measure-
ment matrix as probing the signal’s sparsity across multiple block-wise and hierarchical levels. To
illustrate this, we first introduce the hierarchical block partition of a sparse vector x ∈ RN̄ .

Hierarchical partition: We first partition x in Equation 1 intoNI equal-length blocks, denoting the
Ith level blocks as {x(nI)}

NI
nI=1 ∈ R

∏I−1
i=1 Ni . Each x(nI) is further partitioned into NI−1 blocks,

denoted as (I − 1)th level blocks {x(nI−1,nI)}
NI−1

nI−1=1 ∈ R
∏I−2

i=1 Ni . We continue until we reach
blocks of length N1 at the second level. The first-level blocks are the individual entries of x.

For brevity, we use xnj
to denote a block in the jth level with length

∏j−1
i=1 Ni and encapsulation

nj := (nj , · · · , nI−1, nI). An encapsulation nj := (nj , · · · , nI−1, nI) can be viewed as a coordi-
nate for blocks in this hierarchical block structure. Also, set Jxnj

K contains all Nj child blocks that
share the same parent block at the level j+1 as that of xnj

. We illustrate a hierarchical partition for
x ∈ R40 in Figure 1, where Jx(1,3)K = Jx(2,3)K = {x(1,3),x(2,3)} as they share the parent x(3).

… … … … … …

Figure 1: (a) Hierarchical partition for x ∈ R40 with I = 3, N3 = 5, N2 = 2, N1 = 4, and N̄ = 40.
(b) Reordered tensor X. (c) Mode unfolding X(2) and the relation between the nI−1th row within
the nI th column block and the (I − 1)th level child block xnI−1

with nI−1 = (2, 1) and I = 3.

Hierarchical view: We first focus on the noiseless version of Equation 1 reformulated using tensors,

T := Y = X ×1 H1 · · · ×I HI ,

where the first mode unfolding satisfy vec(X(1)) = x and vec(T(1)) = vec(Y(1)) = y. Unfolding
T on the Ith mode leads to

T(I) = HIX(I)

(
⊗1
i=I−1H

⊤
i

)
= HIUI ∈ RMI×

∏I
i=I−1Mi .

Here, UI = X(I)

(
⊗1
i=I−1H

⊤
i

)
∈ RNI×

∏I
i=I−1Mi and X(I) ∈ RNI×

∏I
i=I−1Ni whose nI th row

is the Ith level block xnI
with nI = (nI). Therefore, matrix HI acts on UI , and a zero row in

UI indicates that the corresponding Ith level block is entirely zero. Hence, matrix HI captures the
sparsity pattern of the Ith-level blocks.

For the (I − 1)th level, we fold UI into a new tensor T, whose Ith mode unfolding T(I) = UI , as

T = X ×1 H1 · · · ×I−1 HI−1 ×I INI
.

Unfolding T along its (I − 1)th mode gives

T(I−1) = HI−1X(I−1)

(
INI

⊗
(
⊗1
i=I−2H

⊤
i

))
= HI−1UI−1 ∈ RMI−1×NI

∏I
i=I−2Mi .

Here, X(I−1) ∈ RNI−1×N̄/NI−1 has NI column blocks, with nI th block corresponding to xnI with
nI = (nI). Within the nI th column block, the nI−1th row is the (I − 1)th level child block xnI−1

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

with nI−1 = (nI−1, nI), as illustrated in Figure 1c. The Kronecker product INI
⊗

(
⊗1
i=I−2H

⊤
i

)
is a block matrix and preserves the column block structure in UI−1. Column blocks of UI−1 are
associated with I-level blocks, and the rows of a column block correspond to the (I−1) level blocks.
Hence, the zero rows in each column block of UI−1 indicate that the corresponding (I − 1)th level
blocks are entirely zero. Therefore, HI−1 captures the sparsity pattern at the (I− 1)th-level blocks.
For a general jth level, we define T = X ×1 H1 ×2 H2 · · · ×j Hj ×j+1 INj+1

· · · ×I INI
, and

T(j) = HjX(j)

(
I∏j+1

i=I Ni
⊗

(
⊗1
i=j−1Hi

))⊤
∈ RMj×

∏j+1
i=I Ni

∏1
i=j−1Mi ,

is its jth unfolding. Similar to the column block structure at (I − 1)th level, we have the following.
Lemma 1. Consider a sparse tensor X reordered from a sparse vector x such that vec(X(1)) = x.
For the jth mode unfolding of X, i.e., X(j), and with full row rank Hi’s, the matrix

Uj := X(j)

(
I∏j+1

i=I Ni
⊗

(
⊗1
i=j−1Hi

))⊤
∈ RNj×

∏j+1
i=I Ni

∏1
i=j−1Mi ,

can be divided into
∏j+1
i=I Ni column blocks. Each block is indexed by an encapsulation nj+1 with

nj+1 = (nj+1, · · · , nI) for nk ∈ [Nk] for k = j+1, . . . , I . The number of nonzero rows in a column
block indexed by nj+1 equals the number of nonzero blocks in Jxnj

K with nj = (nj , nj+1, · · · , nI).

Lemma 1 implies that matrix Hj actually captures the sparsity at the jth level blocks, which we
refer to as the hierarchical view of KCS. The above perspective can also be interpreted directly
from Equation 1. The Kronecker product matrix H has a recursive column-block structure: each
block of columns is obtained by taking the Kronecker product of a column of HI with ⊗1

i=I−1Hi,
which itself has a column block structure. This recursive structure aligns with the hierarchical
partition block of x. Hence, in this hierarchical framework, factor matrices {Hi}1i=I operate at
different levels: for any p, q with p > q, Hq first measures each qth level block of x, the resulting
measurements of all blocks are then processed by Hp, which captures sparsity at a higher level.

3 MULTI-STAGE SPARSE RECOVERY ALGORITHM

We aim to recover x in Equation 1 from noisy measurement y, given {Hi}Ii=1. Guided by the hier-
archical view in Section 2, we next present a recovery framework that handles each Hi sequentially.
We formally define the following three considered sparsity models.

Sparsity 1 (Standard sparsity). A vector x ∈ RN̄ is s sparse if x contains at most s nonzeros.

Sparsity 2 (Hierarchical sparsity). A vector x ∈ RN̄ is s hierarchically sparse with s :=
(sI , sI−1, · · · , s1) if it has a hierarchical partition defined by {Nj}Ij=1, and at each level j ∈ [I],
every set Jxnj

K contains at most si nonzero blocks.

Sparsity 3 (Kronecker-supported sparsity). A vector x ∈ RN̄ is s Kronecker supported sparse if its
support is the Kronecker product of sj sparse support vectors bj ∈ {0, 1}Nj for j ∈ [I].

We note that the Kronecker-supported sparsity is a special case of hierarchical sparsity, where at each
level j ∈ [I], the sj nonzero blocks xnj share the same support. See Appendix B for illustration.

Our framework first solves for UI = X(I)

(
⊗1
i=I−1Hi

)⊤
from unfolding along Ith mode using

T(I) := Y(I) = HIUI +N(I). (2)

Here, UI exhibits a row sparsity pattern where a zero row in UI corresponds to an all-zero Ith level
block xnI

. Thus, recovering UI from Equation 2 is a multiple measurement vector (MMV) problem
and solved using MMV algorithms such as simultaneous OMP (SOMP), simultaneous iterative hard
thresholding (SIHT), simultaneous HTP (SHTP), or MMV sparse Bayesian learning (MMV-SBL).

Let the estimate of UI be ŨI with error EI modeling the estimation error and residual noise, ŨI =
UI +EI . In the second step, we treat ŨI as the noisy measurement and EI as noise, reorder them
into tensor T and N such that T(I) = ŨI and N(I) = EI , to obtain T = X×1H1 · · ·×I−1HI−1×I
INI

+ N. Unfolding T along its (I − 1)th mode as

T(I−1) = HI−1UI−1 +N(I−1). (3)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

For standard and hierarchical sparsity models, the supports of different (I − 1)th level blocks of x
are different. By Lemma 1, zero (I−1)th level blocks leads to the zero rows in each column block in
UI−1, making it a concatenation of NI row sparse matrices [UI−1]nI

:= [X(I−1)]nI

(
⊗1
i=I−2Hi

)⊤
for nI = (nI) and nI ∈ [NI]. We thus partition Equation 3 into NI independent MMV problems as

[T(I−1)]nI = HI−1[UI−1]nI + [N(I−1)]nI ,

and solve them (sequentially or in parallel) using MMV solvers. Concatenating estimates ŨI−1 :=

[[ŨI−1]1, [ŨI−1]2, · · · , [ŨI−1]NI
] gives the final solution, where [ŨI−1]nI

= [UI−1]nI
+[EI−1]nI

.
However, for the Kronecker-supported sparsity, Equation 3 is a single MMV problem because the
support is common across the (I − 1)th level blocks.

Generalizing, for jth mode unfolding step, with measurement Ũj+1 from the previous step,

Ũj+1 = Uj+1 +Ej+1 = X(j+1)

(
I∏j+2

i=I Ni
⊗

(
⊗1
i=jHi

))⊤
+Ej+1. (4)

We unfold the measurement tensor formed from Ũj+1 along its jth mode as
T(j) = HjUj +N(j). (5)

Lemma 1 reduces Equation 5 to
∏j+1
i=I Ni independent MMV problems for standard and hierarchi-

cal sparsity. Sparsity varies across MMVs for the standard model (defined by total sparsity rather
than level-wise sparsity) but remains identical in the hierarchical model. For Kronecker-supported
sparsity, Equation 5 is a single MMV due to shared block support. While mixed models with single
and multiple MMVs at different levels are possible, we focus on these three main cases for brevity,
leading to the Multi-Stage Recovery (MSR) algorithm, summarized in Algorithm 1.

Algorithm 1 Multi-Stage Recovery (MSR)

Input: Measurement y, dictionaries {Hi}Ii=1 ∈ RMi×Ni

1: Fold y to Y according to the dimensions of dictionaries {Hi}Ii=1, and initialize T = Y
2: for j = I, I − 1, · · · , 1 do
3: Obtain the jth mode unfolding of T, i.e., T(j)

4: Solve Equation 5 for Uj via a compressed sensing algorithm to get estimate Ũj

5: Fold Ũj back to T such that the jth mode unfolding of T, i.e., T(j) is Ũj

6: end for
Output: Estimated sparse vector x̂ = vec(Ũ1)

Complexity: We compare the complexity of MSR variants with existing methods for each sparsity
model, assuming Equation 5 is solved sequentially, and Mi = O(M), Ni = O(N) for i ∈ [I] with
I < M < N . For standard sparsity, MSR with OMP matches the time complexity of KroOMP (Ca-
iafa & Cichocki, 2013), but reduces space complexity from O(N I) to O(M I−1N). For hierarchical
sparsity, our MSR with HTP has time complexity O(MN I) and space complexity O(M I−1N), im-
proving over HiHTP (Roth et al., 2020) with time and space complexities of O(M2N2) for I = 2.
For Kronecker-supported sparsity, MSR with SBL lowers time complexity to O(MN I) and space
complexity to O(N I) compared to AM- and SVD-KroSBL (He & Joseph, 2025a) with both com-
plexities O(M IN I). The improvements are due to i) the exploitation of the Kronecker structure
through tensor operation, reducing the dimensionality; and ii) leveraging the MMV structure from
Lemma 1. We refer to Table 3 in Appendix F for a comprehensive comparison.

4 UNIFIED ANALYSIS FOR STRUCTURED SPARSITY MODELS

We establish a unified RIP analysis via a generalized notion of RIP called the (s,N)-RIP condition
with s := (sI , sI−1, · · · , s1) and N := (NI , NI−1, · · · , N1) defined by the dimension of factor
matrices in KCS. To this end, we introduce the generalized (s,N) sparsity model, tailored to the
KCS problem, which reflects a hierarchical view where sparsity at each level affects recovery.

Sparsity 4 (Generalized sparsity). Consider KCS with Hi ∈ RMi×Ni . A vector x ∈ RN̄ is (s,N)
sparse if for tensor X ∈ RN1×···×NI reordered from x using N := (NI , NI−1, · · · , N1), the maxi-
mum number of nonzero rows of each of the column blocks of its jth mode unfolding X(j) is sj .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Relation to other models: We relate the above model to the standard, hierarchical, Kronecker-
supported, and block sparsity models. The standard sparsity model is not a special case of (s,N)
sparsity, but the set of s sparse vectors is contained in a union of (s,N) sparse vectors.

Lemma 2. Let set S contains all s standard sparse vectors in RN̄ , and Ss contains all (s,N)

sparse vectors in RN̄ for a given (s,N). Then, S ⊂ ∪s∈fN(s)Ss, where fN(s) = {s :
∑I
i=1 si ≤

s+ (I − 1), 1 ≤ si ≤ s}.

Hierarchical sparsity is a special case of (s,N) sparsity when the hierarchical partition structure
matches the dimensions of factor matrices in the Kronecker measurement matrix. If, additionally,
all the column blocks of jth mode unfolding X(j) share the same support regarding nonzero rows,
then we arrive at the Kronecker-supported sparsity. Block sparsity can also be viewed as (s,N)
sparsity with I = 2 when the block boundary matches the hierarchical partition structure.

We next define the (s,N)-RIP condition for a Kronecker product matrix H .
Definition 1 ((s,N)-RIP). A Kronecker product matrix H = ⊗1

i=IHi with Hi ∈ RMi×Ni satisfies
(s,N)-RIP if there exists δ ∈ (0, 1) such that for all (s,N) sparse x ∈ RN̄ , it satisfies (1−δ)∥x∥22 ≤
∥Hx∥22 ≤ (1 + δ)∥x∥22. The smallest feasible δ, denoted as δ(s,N)(H), is the (s,N)-RIC of H .

Under our models, (s,N)-RIP is defined over the unions of subspaces, thus can be used to guarantee
the success of recovery algorithms, such as iterative hard thresholding (IHT) and HTP (Blumensath,
2011). In general, such guarantees are established using the upper bound of the RICs. Therefore, we
first derive the upper bound of δ(s,N)(H), then discuss its implications for different sparsity models,
and finally discuss the associated recovery algorithms and guarantees. Here, we denote the standard
s-RIC of matrix H as δs(H).
Theorem 1. The (s,N)-RIC of Kronecker product dictionary H = ⊗1

i=IHi, i.e., δ(s,N)(H), satis-
fies δ(s,N)(H) ≤

∏1
i=I(1 + δsi(Hi))− 1.

The above result immediately applies to hierarchical and Kronecker-supported sparsity, as both are
special cases of (s,N) sparsity. For Kronecker-supported sparsity, a tighter bound could be expected
due to its additional joint sparsity structure arising from the shared support across the nonzero block.
However, improving the RIC bound by exploiting this additional joint sparsity is difficult. As noted
in Li & Petropulu (2013); Eldar & Mishali (2009), RIP analysis considers the worst-case perfor-
mance and does not guarantee that MMV outperforms the SMV case. So, our bound shows no
improvement, and deriving a stronger RIP-based condition for the MMV model is an open problem.

Theorem 1 can also be tailored to standard sparsity using Lemma 2.
Corollary 1. Consider the Kronecker product H = ⊗1

i=IHi. For any s, the s-RIC of H satisfies
δs(H) ≤ maxs∈fN(s) δ(s,N)(H) ≤ maxs∈fN(s)

∏I
i=1(1 + δsi(Hi))− 1.

The s-RIC bound corroborates that only the sparsity level at different levels of blocks explic-
itly affects the s-RIC of Kronecker-structured H . Also, a known upper RIC bound is δs(H) ≤∏I
i=1(1 + δs(Hi))− 1 (Duarte & Baraniuk, 2011a). Our bound slightly improves this bound:

max
s∈fN(s)

I∏
i=1

(1 + δsi(Hi))− 1 ≤
I∏
i=1

(1 + δs(Hi))− 1,

because δs is a non-decreasing function of s (Foucart & Rauhut, 2013) and s∗i ≤ s for all i ∈ [I]
and the equality cannot be achieved simultaneously.

Maximum sparsity level: Corollary 1 indicates that recovering s standard sparse vectors via KCS
with Mi < Ni is only guaranteed when s < miniNi, as it is a worst-case analysis. When s =
miniNi with j = argminiNi, a worst-case scenario is sj = s = Nj and si = 1 for all i ̸= j.
Then, δsj = ∥H⊤

j Hj − INj∥2 ≥ 1, making Hj is a non-injective map, and recovery is impossible.
This also indicates that it is only possible to recover block-sparse vectors with block length smaller
than miniNi. However, recovery is still possible for s ≥ miniNi in structured sparsity settings.

Measurement bounds for classical methods: We discuss the implications of Theorem 1 on mea-
surement bounds for recovering (s,N)-sparse vectors using classical iterative algorithms, namely

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

IHT and HTP. For both algorithms, at iteration k, the support is updated via thresholding operator
LS as T k+1 = LS

(
xk +H⊤ (

y −Hxk
))

. The thresholding operator depends on the sparsity
model. For standard s sparse, LS returns the support of the s largest entries of x in amplitude (Fou-
cart & Rauhut, 2013). For s hierarchically sparse, it selects the top s1 entries within each first-level
block, then recursively picks top s2, . . . , sI blocks at higher levels based on the ℓ2 norm, as in Roth
et al. (2020). However, finding the thresholding operator LS for s Kronecker-supported sparse vec-
tors is NP-hard and not available in the literature. For example, when I = 2, it reduces to selecting
rows and columns whose intersection maximizes the squared sum, equivalent to the NP-hard max-
imum weight biclique problem. A practical alternative is to first select the top sI blocks at the Ith
level by ℓ2 norm, then recursively sum norms across matching indices at each lower level and select
the top sI−1, . . . , s1 blocks; this is the approach we use in simulations for comparison. Then, IHT
applies a simple projection while HTP solves a least-squares problem on the support,

xk+1 =
(
xk +H⊤ (

y −Hxk
))

T k+1 , (IHT)

xk+1 = arg min
x∈RN̄

∥y −Hx∥2, supp(x) ∈ T k+1, (HTP)

where operator (·)T k+1 only preserves the entries within the set T k+1 and sets the others to zero.

We next discuss the implications for measurement bounds. It is known that for IHT and HTP to
recover a vector from a union of subspaces, tailoring the thresholding operator LS to the union and
having an RIC below 1/

√
3 over that union is sufficient to guarantee convergence to the ground

truth (Foucart & Rauhut, 2013; Roth et al., 2020). So, our results shows that maxs∈fN(3s) δ(s,N) <

1/
√
3 (for s standard sparsity) and δ(3s,N) < 1/

√
3 (for s hierarchical sparsity) are sufficient for the

success of IHT and HTP. However, it does not guarantee the recovery of the s Kronecker-supported
sparse vectors as the thresholding operator is suboptimal.

To compare the measurement bound for KCS, we consider the simplest case with I = 2 and s =
O(s1s2) for s ∈ fN(s), and Gaussian factor matrices Hi’s. For recovering s standard sparse vec-
tors, our Corollary 1 implies that each Hi satisfies the si-RIP, requiringMi = O(si logNi) (Foucart
& Rauhut, 2013). So, the total measurement bound scales as M̄ = O(s1s2 logN1 logN2) improv-
ing over the existing bound M̄ = O(s2 logN1 logN2) = O(s21s

2
2 logN1 logN2) (Duarte & Bara-

niuk, 2011a). In comparison, standard compressed sensing with fully unstructured Gaussian matrix
requires only O(s1s2 logN1N2) measurements, which is smaller due to greater flexibility and ran-
domness in measurement. However, KCS exploits the multidimensional structure to reduce the
computational complexity during recovery. For the recovery of s hierarchical sparse vectors, Corol-
lary 1 suggests a measurement bound O(s1s2 logN1 logN2), while a fully unstructured Gaussian
matrix requires only O(s1s2 logN1 + s2 logN2) (Roth et al., 2020).

Measurement bounds for our MSR: We now establish recovery guarantees for MSR with IHT and
HTP using the RICs of factor matrices.
Theorem 2. Consider the sparse recovery problem, y =

(
⊗1
i=IHi

)
x+n. Define tensors X and N,

which are reshaped from x and n, respectively, using the dimensions of Hi’s. If x is an s standard
sparse vector and the factor matrices Hi for i ∈ [I] satisfy δ3si(Hi) < 1/

√
3 for ∀s ∈ fN(s), then

the estimate x̂ of x using k-iteration IHT or HTP in Algorithm 1, satisfies

∥x̂− x∥2 ≤ max
s∈fN(s)

∑
n2,··· ,nI

 I∑
i=1

i−1∏
j=1

τjα
k
i

∥∥[Ui]ni+1

∥∥
F
+

I∏
i=1

τi∥N∥F

 ,

where [Ui]ni+1
= [X(i)]ni+1

(
⊗1
l=i−1Hl

)⊤
, and if x is an s hierarchically sparse vector, and the

factor matrices Hi for i ∈ [I] satisfy δ3si(Hi) < 1/
√
3, then the estimate x̂ of x using k-iteration

IHT or HTP in Algorithm 1, satisfies

∥x̂− x∥2 ≤
∑

n2,··· ,nI

 I∑
i=1

i−1∏
j=1

τjα
k
i

∥∥[Ui]ni+1

∥∥
F
+

I∏
i=1

τi∥N∥F

 ,

and if x is an s Kronecker-supported sparse vector, there is

∥x̂− x∥2 ≤
I∑
i=1

i−1∏
j=1

τjα
k
i ∥Ui∥F +

I∏
i=1

τi∥N∥F,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

where Ui = X(i)

(
I∏i+1

l=I Nl
⊗
(
⊗1
l=i−1Hl

))⊤
, with αi < 1, and τi are

MSIHT: αi =
√
3δ3si(Hi); τi = (1− αki)

√
3(1 + δ2si(Hi))

1− αi
, and

MSHTP: αi =
√
2δ23si(Hi)/(1− δ22si(Hi)); τi = (1−αki)

√
2(1− δ2si(Hi)) +

√
1 + δsi(Hi)

(1− δ2si(Hi)) (1− αi)
.

As the number of iterations k → ∞, the error bound reduces to τ1
∏I
i=2 τiNi∥N∥F for the stan-

dard and hierarchical sparsity, and
∏I
i=1 τi∥N∥F for Kronecker-supported sparsity. So, MSIHT and

MSHTP approach the true value within a constant factor of measurement noise power. Although
factors τ1

∏I
i=2 τiNi and

∏I
i=1 τi suggest error propagation as the algorithm proceeds from j = I

till j = 1 and scale with the problem dimension, this amplification is not observed in practice (see
Figure 3). The bound for s Kronecker-supported sparsity is tighter than that for the other two mod-
els because it solves a single MMV problem, resulting a collective error bound, instead of a looser
bounds due to the sum of each individual MMV bound. While our MSR’s measurement bound scales
the same as classical methods due to a shared requirement on the si-RIP of Hi’s, it can have a larger
error from propagation, potentially requiring more iterations or Hi’s with smaller si-RICs. How-
ever, a key advantage of MSR is that it provides recovery guarantees for the Kronecker-supported
sparsity model, unlike classical IHT and HTP-based methods.

5 NUMERICAL EVALUATIONS

For numerical results, we combine MSR with MMV-SBL (Wipf & Rao, 2007), SIHT (Blanchard
et al., 2014), SHTP (Blanchard et al., 2014), and SOMP (Tropp et al., 2006), and the resulting al-
gorithms are referred to as MSSBL, MSIHT, MSHTP, and MSOMP, respectively. Our benchmark
for the standard sparsity is KroOMP (Caiafa & Cichocki, 2013). Here, we omit computationally in-
tensive SBL and OMP whose results are identical to KroOMP. For hierarchical sparsity, our bench-
mark is the state-of-the-art HiHTP (Roth et al., 2020). For Kronecker-structured support sparsity,
we benchmark with the state-of-the-art AM- and SVD-KroSBL (He & Joseph, 2025a). Unlike the
OMP/SBL-based algorithms, the IHT/HTP-based algorithms need the true sparsity level s as input.

For all three models, we set Mi = M , Ni = N , and si = s for i ∈ [I]. For the s standard
sparsity, we opt for H = ⊗1

i=IHi with I = 2, M = 64, and N = 80. The entries of Hi

and the nonzero entries of x are drawn independently from the standard normal distribution. We
set s = 15, and the support is randomly drawn from a uniform distribution. For s hierarchically
sparse vectors, we also opt for I = 2, M = 64, N = 80, and s = 15. Here, supports are
generated by first selecting s blocks uniformly at random, then assigning support within each block
uniformly. In the Kronecker-supported sparsity model, we opt for I = 3, M = 15, N = 18, and
s = 4. The measurement noise is zero mean white Gaussian noise whose variance is determined by
SNR (dB) = 10 log10 E{∥Hx∥22/∥n∥22} of {3, 5, · · · , 23, 25}.

Our metrics are runtime and the normalized squared error NSE = ∥x− x̂∥22/∥x∥22, where x is the
ground truth and x̂ is the estimated vector. The results are shown in Figure 2 and Table 1, with
the figure showing median and 25%/75% quartiles, and the table showing averages. The NSE for
recovering an s standard sparse vector is shown in Figure 2a. Compared to KroOMP, MSOMP
provides similar performance regarding NSE but needs one to three orders less runtime, as in Table
1. MSSBL outperforms KroOMP in all SNR cases with one or two orders less runtime. The NSE
for hierarchical sparsity is shown in Figure 2b using only the HTP/IHT-based algorithms (full com-
parison in Appendix H). Our MSHTP/MSIHT offers similar performance to HTP and HiHTP, and
IHT. However, MSHTP requires two orders less runtime than HTP and one order less runtime than
HiHTP; and MSIHT requires two orders less runtime than IHT. The NSE for Kronecker-supported
sparsity is shown in Figure 2c. Our MSSBL consistently achieves a comparable NSE and is two or
three orders faster than AM- and SVD-KroSBL. In summary, MSR variants achieve similar or better
accuracy than existing methods while drastically reducing computation time.

Figure 3 shows how the NSE and runtime (median with 25%/75% quartiles) of MSSBL, MSHTP,
and MSIHT scale with the problem dimension, focusing on hierarchical sparsity. We choose I = 3
and SNR as 20dB and vary N = {50, 60, · · · , 110}, so that the problem dimension N̄ = N I =

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 10 15 20 25
SNR (dB)

10-4

10-2

100

102

N
S

E

MSOMP
KroOMP
MSSBL-Seq

(a) Standard sparsity.

5 10 15 20 25
SNR (dB)

10-3

10-2

10-1

N
S

E

MSHTP-Seq
HiHTP
HTP
MSIHT-Seq
IHT

(b) Hierarchical sparsity.

5 10 15 20 25
SNR (dB)

10-4

10-2

100

102

N
S

E

MSOMP
MSSBL
SVD-KroSBL
AM-KroSBL

(c) Kronecker-supported sparsity.

Figure 2: NSE as a function of SNR.

Table 1: Average runtime in seconds. Bold: the best result.

SNR 3 dB 7 dB 11 dB 15 dB 19 dB 23 dB

Recovery of s sparse vectors
MSOMP-Seq 0.4256 0.4119 0.3827 0.3329 0.2204 0.0568
KroOMP (Caiafa & Cichocki, 2013) 130.5405 108.0526 76.6942 39.9844 11.5774 0.7525
MSSBL-Seq 1.8191 1.1016 0.5758 0.2218 0.1417 0.1141

Recovery of s hierarchically sparse vectors
MSHTP-Seq 0.0379 0.0305 0.0297 0.0247 0.0186 0.0168
HiHTP (Roth et al., 2020) 0.6512 0.5493 0.5204 0.5444 0.4398 0.4574
HTP 2.2436 1.7170 1.3256 0.8450 0.8264 0.5311
MSIHT-Seq 0.0500 0.0510 0.0532 0.0509 0.0450 0.0434
IHT 8.2437 8.2412 8.2554 8.2917 8.2889 8.2789

Recovery of s Kronecker-supported sparse vectors
MSOMP 0.0042 0.0041 0.0040 0.0038 0.0026 0.0015
MSSBL 0.0728 0.0587 0.0447 0.0279 0.0119 0.0051
SVD-KroSBL (He & Joseph, 2025a) 37.1233 26.9816 14.2405 8.6036 5.4067 4.0681
AM-KroSBL (He & Joseph, 2025a) 55.9532 63.4676 75.9727 74.5840 51.7089 34.1331

125000, 216000, · · · , 1331000, where M =
⌈
(0.6N̄)1/I

⌉
and s = ⌈0.4N⌉. As expected, parallel

implementation is faster than sequential. MSSBL has the best NSE but is slower than MSIHT and
MSHTP. The MSIHT is worse than MSHTP due to IHT’s slow convergence (Foucart & Rauhut,
2013). Overall, our MSR efficiently handles large dimensional KCS problems.

217 218 219 220

Problem Dimension

10-1

N
S

E

MSSBL-Pl
MSHTP-Pl
MSIHT-Pl

217 218 219 220

Problem Dimension

10-1

100

101

102

T
im

e

MSSBL-Seq
MSSBL-Pl

MSHTP-Seq
MSHTP-Pl

MSIHT-Seq
MSIHT-Pl

Figure 3: NSE and runtime of MSR as functions of problem dimension N̄ .

Application to wideband massive multiple-input multiple-output (MIMO) channel estimation:
Massive MIMO has been a key enabler for the fifth generation communication. For data trans-
mission, an important task is to estimate the channel by processing the received pilot signals sent
from user. We focus on the orthogonal frequency-division multiplexing (OFDM)-based wideband
massive MIMO channel estimation, where we consider a base station with a half-wavelength spac-
ing uniform linear array equipped with Na elements serving one single antenna user. Due to the
environment reflection, we consider L impinging angles, each containing up to KL delays. The
maximum delay is αTs with α ≤ 1 where Ts is the OFDM symbol duration. The number of sub-
carriers of the OFDM symbol is Ns. The channel matrix C is the superposition of impinging waves
characterized by delays and angles as C =

∑L
l=1

∑KL

kl=1 ρl,kld(τl,kl)a
H(θl) (Haghighatshoar &

Caire, 2017; Chen & Yang, 2016), where ρl,kl ∈ C is the complex gain of the path correspond-
ing to the klth delay of the lth angle, d(τl,kl) := [1, e−j2πτl,kl

/Ts , · · · , e−j2π(Ns−1)τl,kl
/Ts]⊤ is

the delay manifold vector of the delay τl,kl , while a(θl) := [1, e−j2πθl , · · · , e−j2π(Na−1)θl]⊤ is
the steering vector for θl ∈ [0, 1] representing the equivalent lth impinging angle (Wunder et al.,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

2019). Due to the significant path loss, the received signal is transmitted through a limited num-
ber of paths, making the channel intrinsically sparse over two sparsifying bases. The first is ob-
tained by sampling the delay range [0, Ts] with Ns samples as {nTs/Ns}Ns−1

n=0 , leading to a de-
lay basis Hd := [d(0),d(Ts/Ns), · · · ,d((Nd − 1)Ts/Ns)] ∈ CNs×Nd , with Nd := ⌊αNs⌋.
The second is obtained by sampling the angular domain as {n/Na}Na−1

n=0 , yielding angle basis
Ha := [a(0),a(1/Na), · · · ,a(1 − 1/Na)] ∈ CNa×Na . Then the channel can be represented as
C = HdXHH

a , where X ∈ CNd×Na is the sparse representation with up to LKL nonzeros.

To reduce the overhead, one may use a subset of OFDM subcarriers and array elements for channel
estimation. Denote the pilot as p ∈ CMd , where Md ≤ Ns is the number of subcarriers in a
subset. Let Sd ∈ {0, 1}Md×Ns be the sampling matrix for subcarriers and Sa ∈ {0, 1}Ma×Na be
the sampling matrix for array where only Ma out of Na elements are chosen. We write the received
signal as Y = diag(p)SdCS⊤

a + N ∈ CMd×Ma with N being noise (Wunder et al., 2019).
Plugging in the sparse channel representation and vectorizing both sides of the equation, we have

y = ((SaH
∗
a)⊗ (diag(p)SdHd))x+ n,

where y = vec(Y), x = vec(X), n = vec(N), and (·)∗ is the conjugate. Denoting
SaH

∗
a = H2 ∈ CMa×Na , diag(p)SdHd = H1 ∈ CMd×Nd , and I = 2, the channel estima-

tion problem is a Kronecker compressed sensing problem with x being s = (L,KL) hierarchically
sparse. For simulation, we consider Na = 512, L = {5, 10, 15, 20, 25, 35, 50, 75, 100}, KL = 3,
Ns = 1024 OFDM subcarriers, and α = 0.5 for the maximum delay. We fix Ma = ⌈0.3Na⌉
and Md = ⌈0.1Ns⌉, making H2 ∈ C154×512 and H1 ∈ C103×512. Both angles {θl} and delays
{τl,kl} are generated independently and uniformly over the sampling grid, while path gains {ρl,kl}
are drawn from a standard normal distribution (Wunder et al., 2019). The measurement noise is zero
mean white Gaussian noise whose variance is determined by SNR (dB) = 10 log10 E{∥((SaH

∗
a)⊗

(diag(p)SdHd))x∥22/∥n∥22} of 20dB. We evaluate NSE := ∥C−HdX̂HH
a ∥2F/∥C∥2F and runtime

and compare MSHTP and MSOMP to HiIHT/HiHTP in (Wunder et al., 2019). Results are obtained
by two hundred independent trials.

5 10152025 35 50 75 100
The number of angles

10-6

10-4

10-2

C
ha

nn
el

 E
st

im
at

io
n

N
SE

HiHTP
HiIHT
MSHTP
MSOMP

Figure 4: NSE of different schemes.

#angles L HiHTP HiIHT MSHTP MSOMP
5 0.0738 4.1465 0.0195 0.0080
10 0.1303 4.1792 0.0404 0.0135
15 0.1444 4.1287 0.0550 0.0189
20 0.1957 4.1337 0.0769 0.0247
25 0.2107 4.1670 0.0920 0.0303
35 0.3117 4.1311 0.1243 0.0426
50 0.5073 4.1571 0.1816 0.0641
75 0.8801 4.2211 0.2706 0.1188

100 1.3406 4.2272 0.2386 0.2139

Table 2: Average runtime in seconds.

We present NSE of channel estimation and average runtime in Figure 4 and Table 2, respectively.
We observe that MSHTP and MSOMP provide better performance than HiHTP and HiIHT in most
cases, with one or two orders less runtime. MSOMP’s relatively higher NSE with large L is because
it wrongly identifies many insignificant paths (smaller |ρl,kl |), since it does not require the true
sparsity level (L,KL) as input. However, we still observe that the significant paths are estimated
accurately and efficiently, making MSOMP a practical option for the channel estimation task.

6 CONCLUSION

We investigated the Kronecker compressed sensing problem for signals with multiple sparsity struc-
tures. We presented a novel hierarchical view, comprehending that each factor matrix in the Kro-
necker product dictionary senses the sparse signal at a different level, obeying a hierarchical struc-
ture. This insight led to a computationally efficient, multi-stage recovery framework that achieved
performance comparable to state-of-the-art methods with one order or less runtime. On the theo-
retical front, we unified the RIP analysis for Kronecker product matrices across various structured
sparsity models, and also established the recovery guarantee for our multi-stage recovery algorithm.
This hierarchical framework opens promising avenues for designing new algorithms to accommo-
date more structured patterns and provide efficient solutions to many applications.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

All conditions required to reproduce the results are included in Section 5 and Appendix H. Our
implementation and data for reproducing figures and tables are available as supplementary material.

REFERENCES

Ahmed Alkhateeb, Omar El Ayach, Geert Leus, and Robert W Heath. Channel estimation and
hybrid precoding for millimeter wave cellular systems. IEEE Journal of Selected Topics in Signal
Processing, 8(5):831–846, 2014.

Sebastian E Ament and Carla P Gomes. Sparse Bayesian learning via stepwise regression. In
Proceedings of the International Conference on Machine Learning, pp. 264–274. PMLR, 2021.

Christian R Berger, Zhaohui Wang, Jianzhong Huang, and Shengli Zhou. Application of compres-
sive sensing to sparse channel estimation. IEEE Communications Magazine, 48(11):164–174,
2010.

Jeffrey D Blanchard, Michael Cermak, David Hanle, and Yirong Jing. Greedy algorithms for joint
sparse recovery. IEEE Transactions on Signal Processing, 62(7):1694–1704, Jan. 2014.

Thomas Blumensath. Sampling and reconstructing signals from a union of linear subspaces. IEEE
Transactions on Information Theory, 57(7):4660–4671, July 2011.

Rémy Boyer and Martin Haardt. Noisy compressive sampling based on block-sparse tensors: Per-
formance limits and beamforming techniques. IEEE Transactions on Signal Processing, 64(23):
6075–6088, 2016.

Cesar F Caiafa and Andrzej Cichocki. Block sparse representations of tensors using Kronecker
bases. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing, pp. 2709–2712, Mar. 2012.

Cesar F Caiafa and Andrzej Cichocki. Computing sparse representations of multidimensional sig-
nals using Kronecker bases. Neural Computation, 25(1):186–220, Jan. 2013.

Wen-Che Chang and Yu T Su. Sparse Bayesian learning based tensor dictionary learning and signal
recovery with application to MIMO channel estimation. IEEE Journal of Selected Topics in Signal
Processing, 15(3):847–859, Apr. 2021.

Zhilin Chen and Chenyang Yang. Pilot decontamination in wideband massive mimo systems by
exploiting channel sparsity. IEEE Transactions on Wireless Communications, 15(7):5087–5100,
2016.

Marco F Duarte and Richard G Baraniuk. Kronecker compressive sensing. IEEE Transactions on
Image Processing, 21(2):494–504, Aug. 2011a.

Marco F Duarte and Richard G Baraniuk. Kronecker product matrices for compressive sensing.
Rice University, Houston, Technical Report, Mar. 2011b.

Marco F Duarte and Richard G Baraniuk. Kronecker product matrices for compressive sensing. In
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing,
pp. 3650–3653, Mar. 2010.

Yonina C Eldar and Moshe Mishali. Robust recovery of signals from a structured union of subspaces.
IEEE Transactions on Information Theory, 55(11):5302–5316, Oct. 2009.

Simon Foucart. Hard thresholding pursuit: an algorithm for compressive sensing. SIAM Journal on
numerical analysis, 49(6):2543–2563, 2011.

Simon Foucart and Holger Rauhut. A mathematical introduction to compressive sensing. Birkhäuser
Basel, 2013. ISBN 0817649476.

Shmuel Friedland, Qun Li, and Dan Schonfeld. Compressive sensing of sparse tensors. IEEE
Transactions on Image Processing, 23(10):4438–4447, Oct. 2014.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shmuel Friedland, Qun Li, Dan Schonfeld, and Edgar A Bernal. Two algorithms for compressed
sensing of sparse tensors. In Compressed Sensing and its Applications: MATHEON Workshop
2013, pp. 259–281. Springer, 2015.

Saeid Haghighatshoar and Giuseppe Caire. Massive mimo pilot decontamination and channel in-
terpolation via wideband sparse channel estimation. IEEE Transactions on Wireless Communica-
tions, 16(12):8316–8332, 2017.

Yanbin He and Geethu Joseph. Structure-aware sparse Bayesian learning-based channel estimation
for intelligent reflecting surface-aided MIMO. In Proceedings of the IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing, pp. 1–5, Jun. 2023.

Yanbin He and Geethu Joseph. Bayesian algorithms for Kronecker-structured sparse vector recovery
with application to IRS-MIMO channel estimation. IEEE Transactions on Signal Processing, 73:
142–157, 2025a.

Yanbin He and Geethu Joseph. Efficient off-grid Bayesian parameter estimation for Kronecker-
structured signals. IEEE Transactions on Signal Processing, 73:2616–2630, 2025b.

Yanbin He and Geethu Joseph. A hierarchical view of structured sparsity in Kronecker compressive
sensing. In Proceedings of the European Signal Processing Conference, pp. 1–5, Sept. 2025c.

Yanbin He and Geethu Joseph. Kronecker-structured sparse vector recovery with application to IRS-
MIMO channel estimation. In Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing, pp. 1–5, Apr. 2025d.

The MathWorks Inc. Matlab version: 24.2.0.2923080 (r2024b), 2024.

Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM Review, 51(3):
455–500, 2009.

Bo Li and Athina P Petropulu. Structured sampling of structured signals. In Proceedings of the IEEE
Global Conference on Signal and Information Processing, pp. 1009–1012. IEEE, Feb. 2013.

Qun Li and Edgar A Bernal. An algorithm for parallel reconstruction of jointly sparse tensors with
applications to hyperspectral imaging. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pp. 24–31, 2017.

Yuxing Lin, Shi Jin, Michail Matthaiou, and Xiaohu You. Channel estimation and user localization
for IRS-assisted MIMO-OFDM systems. IEEE Transactions on Wireless Communications, 21
(4):2320–2335, Apr. 2021.

Zhendong Mao, Xiqing Liu, and Mugen Peng. Channel estimation for intelligent reflecting surface
assisted massive MIMO systems—A deep learning approach. IEEE Communications Letters, 26
(4):798–802, Jan. 2022.

Yair Rivenson and Adrian Stern. Compressed imaging with a separable sensing operator. IEEE
Signal Processing Letters, 16(6):449–452, 2009.

Ingo Roth, Axel Flinth, Richard Kueng, Jens Eisert, and Gerhard Wunder. Hierarchical restricted
isometry property for Kronecker product measurements. In Proceedings of the Annual Allerton
Conference on Communication, Control, and Computing, pp. 632–638. IEEE, 2018.

Ingo Roth, Martin Kliesch, Axel Flinth, Gerhard Wunder, and Jens Eisert. Reliable recovery of hier-
archically sparse signals for Gaussian and Kronecker product measurements. IEEE Transactions
on Signal Processing, 68:4002–4016, June 2020.

Luning Sun, Daniel Huang, Hao Sun, and Jian-Xun Wang. Bayesian spline learning for equation
discovery of nonlinear dynamics with quantified uncertainty. Proceedings of Advances in Neural
Information Processing Systems, 35:6927–6940, 2022.

Joel A Tropp, Anna C Gilbert, and Martin J Strauss. Algorithms for simultaneous sparse approxi-
mation. Part I: Greedy pursuit. Signal Processing, 86(3):572–588, 2006.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

E. van den Berg and M. P. Friedlander. Probing the pareto frontier for basis pursuit solutions. SIAM
Journal on Scientific Computing, 31(2):890–912, 2008. doi: 10.1137/080714488.

E. van den Berg and M. P. Friedlander. SPGL1: A solver for large-scale sparse reconstruction,
December 2019.

N. Vervliet, O. Debals, L. Sorber, M. Van Barel, and L. De Lathauwer. Tensorlab 3.0, Mar. 2016.
Available online.

Peilan Wang, Jun Fang, Huiping Duan, and Hongbin Li. Compressed channel estimation for intel-
ligent reflecting surface-assisted millimeter wave systems. IEEE Signal Processing Letters, 27:
905–909, May 2020.

David P Wipf and Bhaskar D Rao. Sparse Bayesian learning for basis selection. IEEE Transactions
on Signal Processing, 52(8):2153–2164, Aug. 2004.

David P Wipf and Bhaskar D Rao. An empirical Bayesian strategy for solving the simultaneous
sparse approximation problem. IEEE Transactions on Signal Processing, 55(7):3704–3716, June
2007.

Gerhard Wunder, Ingo Roth, Rick Fritschek, and Jens Eisert. Hihtp: A custom-tailored hierarchical
sparse detector for massive MTC. In Proceedings of the Asilomar Conference on Signals, Systems,
and Computers, pp. 1929–1934. IEEE, 2017.

Gerhard Wunder, Stelios Stefanatos, Axel Flinth, Ingo Roth, and Giuseppe Caire. Low-overhead
hierarchically-sparse channel estimation for multiuser wideband massive mimo. IEEE Transac-
tions on Wireless Communications, 18(4):2186–2199, 2019.

Zhenyu Xiao, Songqi Cao, Lipeng Zhu, Yanming Liu, Boyu Ning, Xiang-Gen Xia, and Rui Zhang.
Channel estimation for movable antenna communication systems: A framework based on com-
pressed sensing. IEEE Transactions on Wireless Communications, 23(9):11814–11830, 2024.

Xiaowen Xu, Shun Zhang, Feifei Gao, and Jiangzhou Wang. Sparse Bayesian learning based chan-
nel extrapolation for RIS assisted MIMO-OFDM. IEEE Transactions on Communications, 70(8):
5498–5513, Aug. 2022.

You You, Li Zhang, Minhua Yang, Yongming Huang, Xiaohu You, and Chuan Zhang. Structured
OMP for IRS-Assisted mmWave channel estimation by exploiting angular spread. IEEE Trans-
actions on Vehicular Technology, 71(4):4444–4448, Apr. 2022.

Ye Yuan, Xiuchuan Tang, Wei Zhou, Wei Pan, Xiuting Li, Hai-Tao Zhang, Han Ding, and Jorge
Goncalves. Data driven discovery of cyber physical systems. Nature Communications, 10(1):
4894, 2019.

Rongqiang Zhao, Qiang Wang, Jun Fu, and Luquan Ren. Exploiting block-sparsity for hyperspectral
Kronecker compressive sensing: A tensor-based Bayesian method. IEEE Transactions on Image
Processing, 29:1654–1668, Oct. 2019.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A PROOF OF LEMMA 1

The proof proceeds in two parts: first, establishing the column block structure, and second, analyzing
the sparsity of each block.

For the first step, we observe that matrix
(
I∏j+1

i=I Ni
⊗

(
⊗1
i=j−1Hi

))⊤
is a block-diagonal matrix.

It has
∏j+1
i=I Ni identical diagonal blocks, each equal to

(
⊗1
i=j−1Hi

)⊤
. To match this structure, we

partition the columns of the unfolded matrix X(j) into
∏j+1
i=I Ni column blocks. The standard column

ordering in tensor unfolding places elements with higher-level indices (nj+1, . . . , nI) further apart.
Consequently, we can partition X(j) into

∏I
i=j+1Ni column blocks, where each block corresponds

to a unique encapsulation nj+1 = (nj+1, . . . , nI) as
X(j) =

[
X(j),(1,...,1) . . . X(j),(Nj+1,...,NI)

]
.

Since
(
I∏j+1

i=I Ni
⊗
(
⊗1
i=j−1Hi

))⊤
is block-diagonal, the multiplication with X(j) decouples and

operates on each of these blocks independently,

X(j)

(
I∏j+1

i=I Ni
⊗
(
⊗1
i=j−1Hi

))⊤

=
[
X(j),(1,...,1)

(
⊗1
i=j−1Hi

)⊤
. . . X(j),(Nj+1,...,NI)

(
⊗1
i=j−1Hi

)⊤]
.

This confirms that the resulting matrix is also composed of
∏I
i=j+1Ni column blocks, each indexed

by nj+1 and given by X(j),nj+1

(
⊗1
i=j−1Hi

)⊤
.

For the second step, consider a column block indexed by a fixed nj+1, i.e., X(j),nj+1

(
⊗1
i=j−1Hi

)⊤
.

The rows of this block are indexed by nj ∈ [Nj]. The kth row of X(j),nj+1

(
⊗1
i=j−1Hi

)⊤
will be

nonzero if and only if the kth row of X(j),nj+1
contains nonzeros due to the full row rankness.

Moreover, the kth row of X(j),nj+1
is the hierarchical block xnj

where the encapsulation is nj =
(k, nj+1, . . . , nI). This equivalence follows because the indices of the entries in the kth row of
X(j),nj+1

align exactly with those of the hierarchical block xnj
with nj = (k, nj+1, . . . , nI). Hence,

the kth row of X(j),nj+1
and the hierarchical block xnj with nj = (k, nj+1, . . . , nI) contain identical

entries with identical order. Thus, the number of non-zero rows in X(j),nj+1

(
⊗1
i=j−1Hi

)⊤
is the

number of hierarchical blocks {xnj
} (within the parent block defined by nj+1) that contain at least

one non-zero element, which concludes the proof.

Illustrative Example: We provide an example in Figure 5 for the proof of Lemma 1. In Figure
5(a), we consider the same vector x ∈ R40 with I = 3, N3 = 5, N2 = 2, N1 = 4, N̄ = 40 as in
Figure 1, and mark s = 3 nonzero entries using colored cubes. Figure 5(b), (c), and (d) illustrate the
reordered tensor X, its mode unfolding X(j) with j = 2, and how U2 is computed, respectively.

The first step of the proof corresponds to Figure 5(c). To see why there is a block column structure,
we first investigate how the unfolding matrix X(2) is obtained. Since the unfolding tensor mode
is j = 2, the row of the unfolding matrix X(2) is indexed by n2 = 1, 2. The column index k is
determined by n3 and n1 jointly as k = 1 + (n1 − 1) +N1(n3 − 1), according to the definition in
Section 1. When n1 increments by one, k increases by 1; when n3 increments by one, k increases
by N1.

To arrange the columns of X(2), we fix n3 and let n1 runs through 1, 2, 3, 4, and then increase n3 by
one and let n1 runs through 1, 2, 3, 4 again, as shown in Figure 5(c). This indicates that n3 indexes∏j+1
i=I Ni = N3 = 5 column blocks, each containing

∏j−1
i=1 Ni = N1 = 4 columns. Besides, the

matrix
(
I∏j+1

i=I Ni
⊗
(
⊗1
i=j−1Hi

))⊤
in this case reduces to the block diagonal matrix (I5 ⊗H1)

⊤

in Figure 5(d), matching the column block structure of X(2). Therefore, U2 can be divided into
N3 = 5 column blocks given by the product of the column blocks of X(2) and H1, where each
block of U2 is also indexed by an encapsulation n3 = (n3) for n3 ∈ [N3].

For the second step, to understand why the number of nonzero rows in a column block indexed
by nj+1 in Uj equals the number of nonzero blocks in Jxnj

K with nj = (nj , nj+1, · · · , nI), we

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

examine Figure 5(d). Consider n3 = 4. In U2, it corresponds to the fourth column block given by
X(2),(4)H

⊤
1 , where X(2),(4) is the fourth column block of X(2). Also, we have

Jxn2K = Jx(1,4)K = {x(1,4),x(2,4)}.

Each element of Jx(1,4)K corresponds to one row of the column block X(2),(4). Only x(2,4) is
nonzero leading to a nonzero row in X(2),(4)H

⊤
1 . This demonstrates that the number of nonzero

rows in a column block indexed by nj+1 in Uj equals the number of nonzero blocks in JxnjK with
nj = (nj , nj+1, · · · , nI).

… … … … … …

Figure 5: An illustrative example of the proof of Lemma 1 with H1 ∈ R3×4.

B ILLUSTRATIONS OF DIFFERENT SPARSITY PATTERNS

In this section, we provide examples of sparsity patterns considered in this paper in Figure 6, using
the same vector shown in Figure 1.

In Figure 6(a), we present the standard sparsity with s = 3. Three nonzero entries x(3,1,1), x(4,1,3),
and x(3,2,4) are arbitrarily positioned. Take x(3,2,4) as an example. Its encapsulation (3, 2, 4) means
x(3,2,4) is the third entry of the block indexed by encapsulation (2, 4), i.e., x(2,4), while x(2,4) means
it is the second block of the block indexed by encapsulation x(4). Then x(4) is the fourth block of
vector x.

In Figure 6(b), we show an example of s = (s3, s2, s1) = (2, 1, 2) hierarchical sparsity. For
the third level blocks, the set Jx(2)K contains all blocks that share the same parent block as x(2),
meaning Jx(2)K = {x(1),x(2),x(3),x(4),x(5)} = Jx(1)K = Jx(3)K = Jx(4)K = Jx(5)K. Since
s3 = 2, according to the definition of Sparsity 2, Jx(2)K contains at most s3 = 2 nonzero blocks,
which are x(2) and x(4). For the second level sparsity s2, we take x(2) and its child blocks x(1,2) and
x(2,2) as an example. Since s2 = 1, it means that Jx(1,2)K = {x(1,2),x(2,2)} = Jx(2,2)K contains
at most s2 nonzero block, which is x(1,2). Similarly, Jx(1,4)K contains at most s2 nonzero block.
For the first level sparsity s1 = 2, we take x(1,2) and its child blocks as an example. There should
be at most s1 = 2 nonzero blocks in the set of children of x(1,2), which are x(2,1,2) and x(3,1,2) in
Jx(3,1,2)K. Since this is the first level, a block corresponds to an individual element of x.

Figure 6(c) illustrates the s = (s3, s2, s1) = (2, 1, 2) Kronecker-supported sparsity with b3 =
[0, 1, 0, 1, 0], b2 = [1, 0], and b1 = [0, 1, 1, 0]. Its support is then b3 ⊗ b2 ⊗ b1.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

… … … … … …

… … … … …

… … … … …

Figure 6: Examples of different sparsity patterns. (a) Standard sparsity. (b) (2, 1, 2) hierarchical
sparsity. (c) (2, 1, 2) Kronecker-supported sparsity.

C PROOF OF LEMMA 2

Let x be an s-sparse vector. We denote kj as the total number of nonzero blocks within all jth-
level blocks of x. Clearly, k1 = s and kI+1 = 1. Then, each nonzero block in the j + 1th level
can have at most kj − (kj+1 − 1) number of nonzero jth level blocks. This occurs in the most
unbalanced case, where kj+1 − 1 blocks have only one nonzero jth level block while the remaining
block has kj − (kj+1 − 1) nonzero jth level blocks. This observation leads to the upper bound for
the sparsity level, sj ≤ kj − (kj+1 − 1), which yields

∑I
i=1 si ≤ s + (I − 1). So, any s sparse

vector x ∈ ∪s∈fN(s)Ss.

D PROOF OF THEOREM 1

For any x, we note that Equation 1 bounds ∥Hx∥22. Following the hierarchical view, we note

∥Hx∥22 = ∥X ×1 H1 · · · ×I HI∥2F = ∥HIX(I)

(
⊗1
i=I−1Hi

)⊤ ∥2F.
Using the RIC of HI , we have

(1− δsI)∥X(I)

(
⊗1
i=I−1Hi

)⊤ ∥2F ≤ ∥Hx∥22 ≤ (1 + δsI)∥X(I)

(
⊗1
i=I−1Hi

)⊤ ∥2F.

We also note that ∥X(I)

(
⊗1
i=I−1Hi

)⊤ ∥2F = ∥HI−1X(I−1)

(
INI

⊗
(
⊗1
i=I−2Hi

))⊤ ∥2F due to the
tensor folding and unfolding. Therefore, using RIC of HI−1, we arrive at

(1− δsI)(1− δsI−1
))∥X(I−1)

(
INI

⊗
(
⊗1
i=I−2Hi

))⊤ ∥2F
≤ ∥Hx∥22 ≤ (1 + δsI)(1 + δsI−1

)∥X(I)

(
⊗1
i=I−1Hi

)⊤ ∥2F
Repeating these steps recursively, following the analysis in the hierarchical view, we obtain

I∏
i=1

(1− δsi)∥X(1)

(
⊗1
i=I−1INi

)⊤ ∥2F ≤ ∥Hx∥22 ≤
I∏
i=1

(1 + δsi)∥X(1)

(
⊗1
i=I−1INi

)⊤ ∥2F.

Since X(1)

(
⊗1
i=I−1INi

)⊤
= X(1) and ∥X(1)∥2F = ∥x∥22,

I∏
i=1

(1− δsi)∥x∥22 ≤ ∥Hx∥22 ≤
I∏
i=1

(1 + δsi)∥x∥22.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Hence, we derive

δ(s,N)(H) ≤ max{1−
I∏
i=1

(1− δsi)),

I∏
i=1

(1 + δsi)− 1} =

I∏
i=1

(1 + δsi)− 1,

which completes the proof.

Remark: We note that the high-level proof strategy of our Theorem 1 and Roth et al. (2020, The-
orem 4) is similar in that both aim to sequentially unwrap the effect of the Kronecker product.
The key difference is that we employ tensor representations and operations such as tensor unfold-
ing, enabling a straightforward, flip-operator-free proof. This formulation clearly demonstrates
how the sparse signal x (or its tensor form X and its unfolding X(j)) is measured by factor ma-

trix Hj through a linear transformation X(j)

(
I∏j+1

i=I Ni
⊗

(
⊗1
i=j−1Hi

))⊤
. The row sparsity of

X(j)

(
I∏j+1

i=I Ni
⊗
(
⊗1
i=j−1Hi

))⊤
is dictated by the sparsity of our hierarchical block partition as

in Section 3. The aspect of this multi-stage measurement framework is missing in Roth et al. (2020).
Thus, Roth et al. (2020, Theorem 4) focuses solely on hierarchical sparsity while our multi-stage
framework provides a general perspective that defines generalized sparsity, where standard, hier-
archical, and Kronecker-supported sparsity are special cases for analysis and recovery. This proof
also explains why standard RIP cannot be improved beyond hierarchical sparsity, clarifies the max-
imum achievable sparsity level, and shows why the corresponding bounds are fundamentally tight.
It further provides insight into why proofs for Kronecker-supported sparsity can be strengthened,
drawing analogies to standard RIP and MMV analyses.

E COMPLETE RESULTS ON THE NUMBER OF MEASUREMENTS

In this section, we present the measurement bounds for unstructured H with different sparsity pat-
terns. Let H ∈ RM̄×N̄ has independent and identically distributed standard Gaussian. For

M̄ = O
(
s ln(

eN̄

s
)

)
where c is a positive constant, s sparse vectors can be recovered from the measurement of H with
high probability (Foucart & Rauhut, 2013). Also, if

M̄ = O

 I∑
i=1

I∏
j=i

sj ln(
eNi
si

) +

I∏
i=1

si

 ,

s hierarchical sparse vectors can be recovered from the measurement of H with high probability
(Roth et al., 2020). These two results lead to the discussed measurement bounds in Section 4.

F COMPLEXITY COMPARISON

We comprehensively analyze the complexity of our MSR algorithm to demonstrate the benefit of
exploiting the Kronecker structure of H via the hierarchical view. We consider MSR combined
with MMV-SBL (Wipf & Rao, 2007), SIHT (Blanchard et al., 2014), SHTP (Blanchard et al., 2014),
and SOMP (Tropp et al., 2006) as sparse recovery algorithms, referred to as MSSBL, MSIHT,
MSHTP, and MSOMP, respectively. We also use Seq and Pl to represent the sequential and parallel
implementation of Equation 5. Assume Mi’s are O(M), Ni’s are O(N) for i ∈ [I], and I < M <
N . We compare the time and space complexities of our algorithms with those of other state-of-the-
art algorithms. For the recovery of s sparse vectors, we include SBL (Wipf & Rao, 2004), OMP,
and KroOMP (Caiafa & Cichocki, 2013) as benchmarks. For the recovery of s hierarchically sparse
vectors, HiHTP (Roth et al., 2020), IHT, and HTP are used as benchmarks. We note that only the
exact implementation of HiHTP for I = 2 is given in (Roth et al., 2020). Regarding recovering s
Kronecker-supported sparse vectors, we consider AM- and SVD-KroSBL (He & Joseph, 2025a) for
benchmarking.

For the recovery of s standard sparse vectors, our MSSBL and MSOMP substantially reduce both the
time and space complexity compared to their traditional counterparts. In terms of time complexity,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

our MSSBL (O(M2N I) for Seq and O(M IN) for Pl) is superior than SBL (O(M2IN I)), while
the time complexity of MSOMP (O(MN I) for Seq and O(M IN) for Pl) is also lower than OMP
with O(M IN I). Moreover, both MSSBL and MSOMP avoid O(MN)I in space complexity and
have O(M I−1N) for Seq and O(MN I) for Pl. Compared to KroOMP with time complexity
O(MN I) and space complexity O(N I), MSOMP-Seq achieves the same time complexity but
with a much lower space complexity O(M I−1N). Alternatively, we can achieve a much lower time
complexity O(M IN) by parallel implementation, at the cost of a slightly higher space complexity
of O(MN I).

The computational gains are particularly significant in the context of structured sparsity. For both
hierarchically sparse and Kronecker-supported sparse vectors, classical methods like IHT and HTP
exhibit a time and space complexity of O(M IN I). Our MSIHT-Seq, MSHTP-Seq, and MSSBL-
Seq have time complexity O(MN I), O(MN I), and O(M2N I), respectively, and O(M I−1N) for
space complexity. Compared to HiHTP, our MSSBL-Seq has the same time complexity O(M2N2)
while MSSBL-Pl has a lower space complexity (O(MN2) compared to O(M2N2) of HiHTP.

Similarly, for Kronecker-supported sparse recovery, when compared to AM-KroSBL and SVD-
KroSBL, the MSSBL algorithm demonstrates lower time complexity from O(M IN I) to O(MN I)
and space complexity from O(M IN I) to O(N I). MSIHT and MSHTP exhibit the same or even
lower time and space complexities than MSSBL, which is lower than AM-KroSBL and SVD-
KroSBL, demonstrating the superiority of our multi-stage framework. We list all the time and space
complexity of the algorithms in Table 3. We useREM,ROMP,RHTP,RIHT, andRAM to denote the
number of EM, OMP, HTP, IHT, and AM iterations. These values can vary for different algorithms
and experimental settings.

Table 3: Complexity of different algorithms in different sparse recovery problems.

Method Time Complexity Space Complexity

Recovery of s sparse vectors
MSSBL-Seq O

(
REM(M2NI +MNI)

)
O(MI−1N)

MSSBL-Pl O
(
REM(IM2N +MIN)

)
O(MNI)

MSOMP-Seq O
(
ROMPMNI + R3

OMPN
I−1 + R2

OMPMNI−1
)

O(MI−1N)

MSOMP-Pl O
(
ROMPM

IN + R2
OMPM

I + R3
OMPM

I−1
)

O(MNI)

KroOMP O
(
ROMPMNI + R2

OMPM
I + R2

OMPMN + R3
OMP

)
O(NI)

SBL O
(
REMM

2INI
)

O((MN)I)

OMP O
(
ROMP(MN)I + R3

OMP + R2
OMPM

I
)

O((MN)I)

Recovery of s hierarchically sparse vectors
MSSBL-Seq O

(
REM(M2NI +MNI)

)
O(MI−1N)

MSSBL-Pl O
(
REM(IM2N +MIN)

)
O(MNI)

MSHTP-Seq O
(
RHTP(MNI + maxi s

2
iMNI−1)

)
O(MI−1N)

MSIHT-Seq O
(
RIHTMNI

)
O(MI−1N)

HiHTP Roth et al. (2020) (I = 2) O
(
RHTP((s1s2)

2M2 + (MN)2)
)

O((MN)2)

IHT O
(
RIHT(MN)I

)
O((MN)I)

HTP O
(
RHTP((MN)I + (

∏I
i=1 si)

2MI)
)

O((MN)I)

Recovery of s Kronecker-supported sparse vectors
MSSBL O

(
REM(IM2N +MNI)

)
O(NI)

MSIHT O
(
RIHTMNI

)
O(NI)

MSHTP O
(
RHTPMNI + RHTPM

∑I
i=1 s

2
i)

)
O(NI)

MSOMP O
(
R3

OMPN
I−1 + R2

OMPMNI−1 + ROMPMNI
)

O(NI)

AM-KroSBL He & Joseph (2025a) O
(
REM(RAMIN

I + (MN)I)
)

O((MN)I)

SVD-KroSBL He & Joseph (2025a) O
(
REM(NI+1 + (MN)I)

)
O((MN)I)

IHT O
(
RIHT(MN)I

)
O((MN)I)

HTP O
(
RHTP((MN)I + (

∏I
i=1 si)

2MI)
)

O((MN)I)

Table 3 compares the complexity of different versions of MSR to different traditional compressed
sensing algorithms. The conclusion can be extended to a more general case. Consider N > M > 1
and I > 1 with M,N, I ∈ Z. In a prototypical compressed sensing problem yp = Hpxp with
Hp ∈ RMp×Np being a dense, unstructured measurement matrix, consider a general compressed
sensing algorithm that has complexity O(Ma

pN
b
p) to recover xp with a, b ≥ 1. We note that a, b ≥ 1

is a fair consideration since computing Hpxp already requires O(MpNp). Then applying this algo-
rithm to Equation 1 induces a time complexity of O(MaIN bI). If we combine the same compressed
sensing algorithm with our MSR, regardless of the special structure or the MMV property of Uj ,
step 4 in Algorithm 1 is simply solving N I−jM j−1 compressed sensing subproblems where each

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

has M measurements and N unknowns, inducing a per level complexity of O(MaN bN I−jM j−1).
Considering all steps from j = I to 1, the total complexity is given by

I∑
j=1

MaN bN I−jM j−1 =Ma−1N b+IM(N I −M I)

N I(N −M)
=MaN bN

I −M I

N −M
.

To compare to MaIN bI , we consider the ratio

MaN b(N I −M I)

MaIN bI(N −M)
=

N I −M I

Ma(I−1)N b(I−1)(N −M)

(i)

≤ N I −M I

M I−1N I−1(N −M)

(ii)
<

I

M I−1

(iii)

≤ 1,

where (i) holds since the ratio is a decreasing function of a and b, (ii) is due to

N I −M I = (N −M)

I∑
i=1

N I−iM i−1 < IN I−1(N −M),

and (iii) holds since M I−1 ≥ 2I−1 ≥ I for ∀I,M > 1, I,M ∈ Z, we conclude that I
MI−1 ≤ 1,

and thus MaN b NI−MI

N−M < MaIN bI for any N > M > 1, I > 1, and a, b ≥ 1 with M,N, I ∈
Z. Hence, in general, our MSR has lower computational complexity than traditional compressed
sensing algorithms when both are applied to Equation 1. We note that when I = 1, Equation 1
reduces to the traditional compressed sensing problem and MSR has identical complexity to that of
a traditional compressed sensing algorithm.

G PROOF OF THEOREM 2

Before the proof of Theorem 2, we introduce four aiding lemmas.
Lemma 3. (Foucart & Rauhut, 2013, Lemma 6.16) Given a vector v ∈ RN and an index set
T ⊂ [N], there is

∥((IN −H⊤H)v)T ∥2 ≤ δt∥v∥2,
if the cardinality of the union of T and the support set of v is not exceeding t.
Lemma 4. (Foucart & Rauhut, 2013, Lemma 6.20) Given vector n ∈ RN and set T ⊂ [N] with
cardinality not exceeding s, then

∥(H⊤n)T ∥2 ≤
√
1 + δs∥n∥2.

Lemma 5. For sparse matrix X with row support T with card(T) ≤ s, and N ∈ RM×N , the
sequence {Xk} defined by SIHT or SHTP for solving an MMV problem Y = HX + N with
X0 = 0, satisfies for any k ≥ 0,

∥Xk −X∥F ≤ αk∥X∥F + τ∥N∥F,

where

for SIHT: α =
√
3δ3s, τ =

√
3(1 + δ2s)

1− αk

1− α
, and

for SHTP: α =

√
2δ23s

1− δ22s
, τ =

(
√
2(1− δ2s) +

√
1 + δs)(1− αk)

(1− δ2s) (1− α)
.

Proof. The proof closely follows the technique in Foucart & Rauhut (2013, Theorem 6.18) and
Blanchard et al. (2014). Here, we extend the SMV case in Foucart & Rauhut (2013, Theorem
6.18) to the MMV case. In the MMV case, the thresholding operator retains the rows of Xk +
H⊤ (

Y −HXk
)

with the s largest row ℓ2 norms, and then we have

∥
(
Xk +H⊤ (

Y −HXk
))

T ∥2F ≤ ∥
(
Xk +H⊤ (

Y −HXk
))

T k+1 ∥2F.

Removing the common rows from both sides, we arrive at

∥
(
Xk +H⊤ (

Y −HXk
))

T \T k+1 ∥2F ≤ ∥
(
Xk +H⊤ (

Y −HXk
))

T k+1\T ∥2F.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

IHT proceeds with Xk+1 =
(
Xk +H⊤ (

Y −HXk
))

T k+1 . Since (Xk+1)T \T k+1 = 0 and
(X)T k+1\T = 0, we get

∥
(
X −Xk+1 +Xk −X +H⊤ (

Y −HXk
))

T \T k+1 ∥F

≤ ∥
(
Xk −X +H⊤ (

Y −HXk
))

T k+1\T ∥F.

Applying reverse triangle inequality to the left-hand side and rearranging, we arrive at

∥
(
X −Xk+1

)
T \T k+1 ∥F ≤ ∥

(
Xk −X +H⊤ (

Y −HXk
))

T k+1\T ∥F

+ ∥
(
Xk −X +H⊤ (

Y −HXk
))

T \T k+1 ∥F

≤
√
2∥

(
Xk −X +H⊤ (

Y −HXk
))

T ∆T k+1 ∥F,

where T ∆T k+1 = (T \ T k+1) ∪ (T k+1 \ T) denoting the symmetric difference of the sets T and
T k+1. Therefore, we obtain the error in the kth iteration as

∥Xk+1 −X∥2F = ∥
(
Xk+1 −X

)
T k+1 ∥2F + ∥

(
Xk+1 −X

)
T \T k+1 ∥2F

= ∥
(
Xk +H⊤ (

Y −HXk
)
−X

)
T k+1 ∥2F + ∥

(
Xk+1 −X

)
T \T k+1 ∥2F

≤ ∥
(
Xk +H⊤ (

Y −HXk
)
−X

)
T k+1 ∥2F

+ 2∥
(
Xk −X +H⊤ (

Y −HXk
))

T ∆T k+1 ∥2F
≤ 3∥

(
Xk −X +H⊤ (

Y −HXk
))

T ∪T k+1 ∥2F.
Considering Y = HX +N , we then have

∥Xk+1 −X∥F ≤
√
3∥

(
Xk −X +H⊤ (

Y −HXk
))

T ∪T k+1 ∥F
=

√
3∥

((
I −H⊤H

) (
Xk −X

)
+H⊤N

)
T ∪T k+1 ∥F

≤
√
3∥

((
I −H⊤H

) (
Xk −X

))
T ∪T k+1 ∥F +

√
3∥

(
H⊤N

)
T ∪T k+1 ∥F

≤
√
3δ3s∥Xk −X∥F +

√
3(1 + δ2s)∥N∥F,

where the last step is the direct consequence of Lemma 3 and Lemma 4. To see this, we note

∥
((
I −H⊤H

) (
Xk −X

))
T ∪T k+1 ∥2F =

∑
n

∥
((
I −H⊤H

)
[Xk −X]n

)
T ∪T k+1 ∥22

≤ δ23s
∑
n

∥[Xk −X]n∥22 = δ23s∥Xk −X∥2F,

where [Xk − X]n is the nth column of matrix Xk − X . We can derive similar argument for√
1 + δ2s∥N∥F. Conclusion for HTP has been given in Blanchard et al. (2014, Theorem 3). This

concludes the proof.

Lemma 6. For the sparse recovery problem in the stage of unfolding jth (j ≤ I−1) mode of tensor
T = X ×1 H1 ×2 H2 · · · ×j Hj ×j+1 INj+1

· · · ×I INI
+ N,

where the sparse tensor X corresponds to s standard sparse x or s hierarchically sparse x. Its jth
mode unfolding leads to

T(j) = HjUj +N(j) = HjX(j)

(
I∏j+1

i=I Ni
⊗
(
⊗1
i=j−1Hi

))⊤
+N(j). (6)

Then the estimate of Uj , denoted as Ũj and obtained through IHT or HTP, satisfies

∥[Ũj]nj+1
− [Uj]nj+1

∥F ≤ αkj ∥[Uj]nj+1
∥F + τj∥[Ũj+1 −Uj+1]nj+2

∥F, (7)

where [Ũj]nj+1 and [Uj]nj+1 := [X(j)]nj+1

(
⊗1
i=j−1Hi

)⊤
denote the nj+1th column block of Ũj

and Uj , respectively. Here, encapsulation nj+1 := (nj+1, · · · , nI−1, nI) is the index for the column
block. The indices {ni}Ii=j+2 in encapsulation nj+2 := (nj+2, · · · , nI−1, nI) have the same value
as the indices {ni}Ii=j+2 in encapsulation nj+1, i.e., the block indexed by nj+2 should be a parent
block of the block indexed by nj+1. Constants µj and τj depend on the iteration number k and
matrix Hj .

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Proof. According to Lemma 1, we solve Equation 6 by separating it into
∏j+1
i=I Ni MMV problem,

where each MMV problem is indexed by an encapsulation nj+1. Suppose we consider a fixed
encapsulation n∗j+1 = (n∗j+1, · · · , n∗I), and consider the MMV problem indexed by n∗j+1 as

[T(j)]n∗
j+1

= Hj [Uj]n∗
j+1

+ [N(j)]n∗
j+1

= Hj [X(j)]n∗
j+1

(
⊗1
i=j−1Hi

)⊤
+ [N(j)]n∗

j+1
.

According to Lemma 5 and denoting the solution as [Ũj]n∗
j+1

with k IHT or HTP iterations, we have

∥[Ũj]n∗
j+1

− [Uj]n∗
j+1

∥F ≤ αkj ∥[Uj]n∗
j+1

∥F + τj∥[N(j)]n∗
j+1

∥F,

where µj and τj relate to the RICs of matrix Hj . The only step left is to bound ∥[N(j)]n∗
j+1

∥F using
[Ej+1]n∗

j+2
, where Ej+1 = Ũj+1 −Uj+1.

We recall that Equation 6 is obtained by unfolding the measurement tensor formed from the matrix
Ũj+1 = Uj+1+Ej+1 along its jth mode. Hence, N(j) is simply reordered version of Ej+1. Conse-
quently, the entries of the matrix [N(j)]n∗

j+1
are essentially entries of the n∗j+1th row of [Ej+1]n∗

j+2
,

leading to
∥[N(j)]n∗

j+1
∥F ≤ ∥[Ej+1]n∗

j+2
∥F,

and we arrive at the desired result.

To elaborate, we first investigate the indices of the entries of [N(j)]n∗
j+1

. The entries of the n∗j th row
of matrix [N(j)]n∗

j+1
are obtained by i) fixing nj = n∗j (row index) and nj+1 = n∗j+1, · · · , nI = n∗I

(encapsulation), and ii) running n1, · · · , nj−1 from one till N1, · · · , Nj−1, respectively. Thus, the
entries of matrix [N(j)]n∗

j+1
can be obtained by i) fixing nj+1 = n∗j+1, · · · , nI = n∗I , ii) run-

ning n1, · · · , nj−1 from one till N1, · · · , Nj−1, respectively, and iii) running nj = 1, · · · , Nj
(going over all rows). Given such knowledge, we start investigating the n∗j+1th row of matrix
[Ej+1]n∗

j+2
. The entries of this row are obtained by i) fixing nj+1 = n∗j+1 (row index), ii) fix-

ing nj+2 = n∗j+2, · · · , nI = n∗I (fixed encapsulation), and iii) running n1, · · · , nj from one
till N1, · · · , Nj , respectively. By comparing how indices are arranged, we can see that the en-
tries of the matrix [N(j)]n∗

j+1
are essentially entries of the n∗j+1th row of [Ej+1]n∗

j+2
, inferring

∥[N(j)]n∗
j+1

∥F ≤ ∥[Nj+1]n∗
j+2

∥F.

As we have described before, Equation 6 is solved through multiple independent MMV problems.
Thus, the error bound is also given regarding each individual MMV problem. Further, not only the
jth step, but also the j+1th step is solved through multiple independent MMV problems. Thus, we
do not have the upper bound for Ej+1 in Equation 4 as a whole but only the upper bound for each
column block [Ej+1]nj+2 . Fortunately, since all the noise entries in the jth step are contained as one
single row of the noise block in the previous step, having the upper bound for each column block
[Ej+1]nj+2

is sufficient to derive the noise bound for the jth step, which is shown in Lemma 6 and
Equation 7.

Now, we proceed to the proof of Theorem 2. Generally speaking, Theorem 2 is obtained by recur-
sively applying Lemma 6. Particularly, focusing on the s hierarchical sparse vectors, for the last
step, i.e., the first mode unfolding, we solve

T(1) = H1X(1) +N(1),

leading to
∏I
j=2Nj SMV problems. They are SMV because there is only one column in each

column block, and hence the MMV problem reduces to the SMV problem. Lemma 6 indicates that

∥Ũ1 −U1∥F ≤
∑

n2,··· ,nI

∥[Ũ1]n2
− [U1]n2

∥F ≤
∑

n2,··· ,nI

αk1∥[U1]n2
∥F + τ1∥[E2]n3

∥F

≤
∑

n2,··· ,nI

αk1∥[U1]n2∥F + τ1
(
αk2∥[U2]n3∥F + τ2∥[E3]n4∥F

)
≤

∑
n2,··· ,nI

 I∑
i=1

i−1∏
j=1

τjα
k
i

∥∥[Ui]ni+1

∥∥
F
+

I∏
i=1

τi∥[EI]nI+1∥F

 .

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

We note that I + 1th level contains only one block, leading to [EI]nI+1
= EI . Using the relation

ŨI = UI +EI and Lemma 5 leads to ∥EI∥F ≤ αkI∥UI∥F + τI∥N(1)∥F. This concludes the proof
for s hierarchical sparsity. For s standard sparsity, the upper bound for all s standard sparse vectors
is the worst upper bound among all possible s corresponding to the sparsity level s. Therefore,
taking the maximum over ∀s ∈ fN(s) concludes the proof.

For s Kronecker-supported sparsity, since the support is shared among different blocks in the same
level, it is unnecessary to introduce multiple MMV problems, but to solve only one MMV problem.
Thus, recursively applying Lemma 5 leads to the final result. For the last step, we solve

T(1) = H1X(1) +N(1),

which leads to the following relations,

∥Ũ1 −U1∥F ≤ αk1∥U1∥F + τ1∥N(1)∥F
≤ αk1∥X(1)∥F + τ1

(
αk2∥U2∥F + τ2∥N(2)∥F

)
≤

I∑
i=1

i−1∏
j=1

αki τj∥Ui∥F +

I∏
i=1

τi∥N∥F.

Thus, the proof is complete.

H ADDITIONAL NUMERICAL EVALUATIONS

H.1 COMPREHENSIVE STRUCTURED SPARSE VECTOR RECOVERY PERFORMANCE

This section presents a more comprehensive evaluation of our MSR framework compared to the
state-of-the-art, consisting of complete results of Section 5 and a new set of results where we vary the
number of measurements with a fixed SNR. We also include a new metric named support recovery
rate (SRR) defined as

SRR =
| supp(x̂) ∩ supp(x)|
| supp(x̂) ∪ supp(x)|

,

where supp(·) returns the set of positions of the nonzero entries of the argument vector, | · | returns
the cardinality of the argument set, x̂ is the estimated sparse vector, and x is the ground truth.

Table 4: Average runtime. A complete version of Table 1. Bold: the best result.

SNR 3 dB 7 dB 11 dB 15 dB 19 dB 23 dB

Recovery of s sparse vectors
MSOMP-Seq 0.4256 0.4119 0.3827 0.3329 0.2204 0.0568
KroOMP 130.5405 108.0526 76.6942 39.9844 11.5774 0.7525
MSSBL-Seq 1.8191 1.1016 0.5758 0.2218 0.1417 0.1141
MSSBL-Pl 0.4517 4.9263 0.2658 1.8292 0.1531 0.1281

Recovery of s hierarchically sparse vectors
MSSBL-Seq 2.4930 2.0134 1.2501 0.6102 0.1965 0.1112
MSSBL-Pl 0.4962 0.4607 1.3664 0.2513 0.1447 0.1081
MSHTP-Seq 0.0379 0.0305 0.0297 0.0247 0.0186 0.0168
HiHTP 0.6512 0.5493 0.5204 0.5444 0.4398 0.4574
HTP 2.2436 1.7170 1.3256 0.8450 0.8264 0.5311
MSIHT-Seq 0.0500 0.0510 0.0532 0.0509 0.0450 0.0434
IHT 8.2437 8.2412 8.2554 8.2917 8.2889 8.2789

Recovery of s Kronecker-supported sparse vectors
MSOMP 0.0042 0.0041 0.0040 0.0038 0.0026 0.0015
MSHTP 0.0011 0.0010 0.0011 0.0010 0.0010 0.0010
MSSBL 0.0728 0.0587 0.0447 0.0279 0.0119 0.0051
SVD-KroSBL 37.1233 26.9816 14.2405 8.6036 5.4067 4.0681
AM-KroSBL 55.9532 63.4676 75.9727 74.5840 51.7089 34.1331
HTP 0.9772 0.8347 0.4709 0.3465 0.2339 0.2323
MSIHT 0.0008 0.0007 0.0007 0.0007 0.0007 0.0007
IHT 6.0771 6.0760 6.0763 6.0690 6.0677 6.0535
KSHTP 0.1018 0.0730 0.0665 0.0811 0.0865 0.0881

We show a complete version of Figure 2 in Figure 7. We use Tensorlab (Vervliet et al., 2016) for
tensor operation and Seq and Pl to represent the sequential and parallel (parfor function in

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

5 10 15 20 25
SNR (dB)

10-6

10-4

10-2

100

102

N
S

E

5 10 15 20 25
SNR (dB)

0

0.2

0.4

0.6

0.8

1

S
R

R

MSOMP KroOMP MSSBL-Seq MSSBL-Pl

(a) s standard sparsity.

5 10 15 20 25
SNR (dB)

10-4

10-3

10-2

10-1

100

N
S

E

5 10 15 20 25
SNR (dB)

0

0.2

0.4

0.6

0.8

1

S
R

R

MSSBL-Seq MSSBL-Pl MSHTP-Seq HiHTP HTP MSIHT-Seq IHT w/o Sparsity w/ Sparsity

(b) s hierarchically sparsity.

5 10 15 20 25
SNR (dB)

10-4

10-2

100

102

104

N
S

E

5 10 15 20 25
SNR (dB)

0

0.2

0.4

0.6

0.8

1

S
R

R

MSOMP MSHTP MSSBL HTP AM-KroSBL SVD-KroSBL MSIHT IHT KSHTP w/o Sparsity w/ Sparsity

(c) s Kronecker-supported sparsity.

Figure 7: NSE and SRR as functions of SNR. A complete version of Figure 2.

Matlab (Inc., 2024)) implementation of Equation 5; they have the same recovery performance but
different runtimes.

For fairness, we cap the number of EM iterations for SBL-based methods (MSSBL, AM-KroSBL,
and SVD-KroSBL) to two hundred, for HTP based methods to one hundred, and for all IHT based
methods to two hundred. For HTP-based algorithms, we stop the iterations if the detected support
remains the same in two consecutive iterations (Foucart, 2011), while IHT-based algorithms are ter-
minated when the normalized difference between two consecutive estimations is smaller than 10−6.
For OMP-based algorithms, we stop when the norm of the residual is smaller than ϵ∥y∥2. Here, the
coefficient ϵ = 0.05 is fixed for all OMP-based algorithms, which is empirically determined. We
also prune small entries in hyperparameters for faster convergence for SBL-based algorithms.

In the recovery of s standard sparse vectors, compared to Figure 2a, Figure 7a includes both the se-
quential and parallel implementation of our MSSBL. Regardless of different runtimes as in Table 4,
sequential and parallel implementations provide identical NSE and SRR results. Regarding runtime,
MSSBL-Pl is only faster than MSSBL-Seq in low SNR cases. This is because in high SNR cases,
the parallel overhead dominates, including data transfer and communication cost. As we see in Fig-

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
Ratio

10-4

10-3

10-2

10-1

N
S

E

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
Ratio

0

0.2

0.4

0.6

0.8

1

S
R

R

MSOMP KroOMP MSSBL-Seq MSSBL-Pl

(a) s standard sparsity.

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
Ratio

10-4

10-3

10-2

10-1

N
S

E

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
Ratio

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
R

R

MSSBL-Seq MSSBL-Pl MSHTP HiHTP HTP MSIHT IHT w/o Sparsity w/ Sparsity

(b) s hierarchically sparsity.

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
Ratio

10-4

10-3

10-2

10-1

100

N
S

E

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
Ratio

0

0.2

0.4

0.6

0.8

1

S
R

R

MSOMP MSHTP MSSBL HTP AM-KroSBL SVD-KroSBL MSIHT IHT KSHTP w/o Sparsity w/ Sparsity

(c) s Kronecker-supported sparsity.

Figure 8: NSE and SRR as functions of the number of measurements.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 5: Average runtime in seconds. Bold: the best result.

Recovery of s sparse vectors
M 48 52 56 60 64 68 72

MSOMP-Seq 0.0735 0.0951 0.1265 0.1574 0.1937 0.2312 0.2918
KroOMP 0.7139 1.1941 2.1137 3.7952 7.4092 12.5439 22.4149
MSSBL-Seq 0.1726 0.1743 0.1439 0.1364 0.1332 0.1368 0.1321
MSSBL-Pl 0.1412 0.1464 0.1508 0.1517 0.1498 0.1527 0.3298

Recovery of s hierarchically sparse vectors
M 48 52 56 60 64 68 72

MSSBL-Seq 0.2978 0.2594 0.2031 0.1692 0.1552 0.1407 0.1274
MSSBL-Pl 0.1734 0.1614 0.1467 0.1363 0.1299 0.1248 0.1197
MSHTP-Seq 0.0204 0.0198 0.0190 0.0191 0.0178 0.0170 0.0168
HiHTP 0.3661 0.3622 0.3691 0.4189 0.4181 0.4599 0.5127
HTP 0.3071 0.3641 0.4753 0.4980 0.6407 0.6867 0.4566
MSIHT-Seq 0.0527 0.0502 0.0479 0.0457 0.0449 0.0421 0.0416
IHT 4.7097 5.4549 6.2188 7.1292 8.3298 9.1231 10.1874

Recovery of s Kronecker-supported sparse vectors
M 12 13 14 15 16

MSOMP 0.0017 0.0017 0.0019 0.0020 0.0023
MSHTP 0.0010 0.0010 0.0011 0.0011 0.0013
MSSBL 0.0187 0.0141 0.0118 0.0092 0.0083
SVD-KroSBL 5.3134 4.8928 4.7247 5.0780 5.3094
AM-KroSBL 52.0891 52.4779 49.6836 47.0243 42.6749
HTP 0.0715 0.1113 0.1658 0.2508 0.2745
MSIHT 0.0009 0.0008 0.0009 0.0007 0.0007
IHT 3.4581 4.0502 4.9489 6.0187 7.2859
KSHTP 0.1184 0.0908 0.1048 0.0885 0.0829

ure 3, when the computation cost dominates, there is a significant gain in computation time, as a
trade-off for memory usage. In the recovery of s hierarchical sparse vectors, compared to Figure 2b,
Figure 7b includes the performance of MSSBL. MSSBL exhibits a worse performance in low SNR
scenario because it does not require the true sparsity level s as an input, while for IHT/HTP-based
algorithms, this prior knowledge is necessary. However, MSSBL is still able to offer a comparable
performance in high SNR scenarios, making it a powerful candidate when the prior knowledge s is
absent. In the recovery of s Kronecker-supported sparse vectors, compared to Figure 2c, we include
IHT/HTP-based algorithms in Figure 7c. KSHTP is the algorithm we explained in Equation HTP.
Although the thresholding operator for Kronecker support is not optimal, KSHTP still offers the best
SRR performance, followed by MSHTP. MSIHT has the least runtime, which is four orders less than
its classic counterpart IHT. Overall, Figure 7 and Table 4 demonstrate that our MSR framework can
offer similar or better performance with significantly reduced runtime.

We next evaluate the performance of different algorithms by fixing the SNR and varying the number
of measurements. The setting is as follows. For the s standard sparsity, we opt for H = ⊗1

i=IHi

with I = 2, and set M = {48, 52, 56, · · · , 72} and N = 80. The entries of Hi and the nonzero
entries of x are drawn independently from the standard normal distribution. We set s = 15, and
the support is randomly drawn from a uniform distribution. For s hierarchically sparse vectors, we
also opt for I = 2, and set M = {48, 52, 56, · · · , 72}, N = 80, and s = 15. In the Kronecker-
supported sparsity model, we opt for I = 3, and set M = {12, 13, · · · , 16}, N = 18, and s = 4.
We adopt the additive white Gaussian noise with zero mean with SNR (dB) = 20. Ratio is defined
as M̄/N̄ =

∏I
i=1Mi/Ni = (M/N)I . We consider NSE, SRR, and runtime for performance

evaluation. We follow the same way to cap the number of iterations. Results in Figure 8 and Table 5
are obtained through two hundred independent trials. Overall, we observe similar trends as in Figure
7 and Table 4. Our MSR is able to provide comparable or better performance with reduced runtime,
demonstrating the efficacy of exploiting the Kronecker product structure in the recovery process.

H.2 COMPARISONS WITH TRADITIONAL COMPRESSED SENSING APPROACHES

In this section, we compare our MSR to traditional compressed sensing algorithms, including IHT,
HTP, SBL, OMP, and the ℓ1 norm-based basis pursuit denoising (BPDN) (Foucart & Rauhut, 2013)
(basisPursuit function in Matlab (Inc., 2024)).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25
SNR (dB)

10-5

10-4

10-3

10-2

10-1

100

101

102

N
SE

MSSBL MSOMP IHT HTP
OMP SBL BPDN

(a) Standard sparsity.

0 5 10 15 20 25
SNR (dB)

10-2

10-1

100

101

102

N
SE

MSSBL MSIHT MSHTP IHT HTP SBL
OMP BPDN MSOMP

(b) Hierarchical sparsity.

0 5 10 15 20 25
SNR (dB)

10-4

10-2

100

102

N
SE

MSOMP MSHTP MSSBL HTP MSIHT IHT
SBL OMP BPDN

(c) Kronecker-supported sparsity.

Figure 9: NSE as a function of SNR compared to traditional compressed sensing algorithms.

For all three models, we set Mi = M , Ni = N , and si = s for i ∈ [I]. For the s standard sparsity,
we opt for H = ⊗1

i=IHi with I = 3, M = 12, and N = 15. The entries of Hi and the nonzero
entries of x are drawn independently from the standard normal distribution. We set s = 8, and the
support is randomly drawn from a uniform distribution. For s hierarchically sparse vectors, we opt
for I = 2, M = 35, N = 40, and s = 8 per dimension. Here, supports are generated by first
selecting s blocks uniformly at random, then assigning support within each block uniformly. In the
s Kronecker-supported sparsity model, we opt for I = 3, M = 12, N = 15, and s = 4. In all
models, the measurement noise is zero mean white Gaussian noise whose variance is determined
by SNR (dB) = 10 log10 E{∥Hx∥22/∥n∥22} of {0, 5, 10, 15, 20, 25}. We follow the same condition
to cap the iterative algorithms, and for BPDN, we cap the number of iterations at fifty. Compared
to Section 5 and Appendix H.1, we downsize the measurement matrices mainly for computational
feasibility. With the same condition as in Appendix H.1, it is hard to evaluate traditional algorithms
such as BPDN and SBL. The NSE shown in Figure 9 are median and 25%/75% quartiles, while
Table 6 shows the average runtime, both over fifty independent trials.

As shown in Figure 9a, HTP achieves the lowest runtime and high accuracy but relies on prior
knowledge of the true sparsity level s, which is generally unavailable in practice. While SBL yields
higher reconstruction accuracy than MSSBL in the high SNR regime, it incurs a runtime two or-
ders of magnitude higher, limiting its scalability. MSSBL emerges as the most robust solution: it
outperforms traditional methods (IHT, OMP, BPDN) and has lower runtime than SBL, offering a
balance between reconstruction accuracy and computational efficiency, without requiring specific
prior knowledge.

We illustrate the hierarchical sparsity recovery against traditional compressed sensing algorithms
in Figure 9b. Compared to HTP, MSHTP achieves almost the same reconstruction accuracy but
with one to two orders of less runtime. This also happens to MSSBL compared to SBL. MSSBL,
in this case, is also a balanced option when the true sparsity level is unknown, without sacrificing
efficiency significantly. OMP and IHT are only slightly worse than their counterparts, i.e., MSOMP
and MSIHT, but the gain in runtime is significant by two orders of magnitude. Finally, Figure
9c contains the results for Kronecker-supported sparsity recovery against traditional benchmarks.
MSSBL constantly achieves the best performance, seconded by MSHTP and MSOMP (high SNR
case), with two to three orders less runtime than their counterparts.

H.3 SPARSE VECTOR RECOVERY PERFORMANCE WITH VARYING NUMBER OF
DIMENSIONS I

1 2 3 4
System Order I

10-1

100

N
SE

1 2 3 4
System Order I

10-3
10-2
10-1
100
101
102

Ti
m
e

MSSBL-Seq MSSBL-Pl MSHTP-Seq MSHTP-Pl MSIHT-Seq MSIHT-Pl

Figure 10: NSE and runtime of MSR as functions of system order I .

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 6: Average runtime for comparison with traditional compressed sensing algorithms. Bold: the
best result.

SNR 0 dB 5 dB 10 dB 15 dB 20 dB 25 dB

Recovery of s sparse vectors
MSOMP 0.0631 0.0607 0.0618 0.0578 0.0385 0.0095
MSSBL 0.4547 0.4096 0.3356 0.1929 0.0969 0.0583
HTP 0.0210 0.0129 0.0100 0.0098 0.0091 0.0109
IHT 2.2580 2.2627 2.2629 2.2577 2.2473 2.2425
OMP 22.4379 20.1685 15.7469 8.9826 2.3411 0.0363
SBL 37.9208 21.5275 13.2480 10.9864 10.0749 9.4921
BPDN 102.8134 102.0363 101.4731 99.6498 96.1337 85.2775

Recovery of s hierarchically sparse vectors
MSOMP 0.0246 0.0248 0.0232 0.0233 0.0173 0.0024
MSHTP 0.0047 0.0037 0.0031 0.0032 0.0033 0.0028
MSIHT 0.0066 0.0071 0.0069 0.0082 0.0088 0.0089
MSSBL 0.4694 0.3997 0.2533 0.1538 0.0424 0.0172
HTP 0.1965 0.1225 0.0777 0.0620 0.0363 0.0274
IHT 0.4816 0.4834 0.4842 0.4805 0.4814 0.4824
OMP 6.5235 5.7934 4.4745 2.6242 0.7864 0.0365
SBL 18.3118 16.1878 8.3721 3.2350 2.1724 1.8597
BPDN 20.9009 20.8322 20.3150 19.2756 17.5916 16.0579

Recovery of s Kronecker-supported sparse vectors
MSOMP 0.0031 0.0027 0.0027 0.0025 0.0023 0.0014
MSHTP 0.0012 0.0011 0.0010 0.0010 0.0011 0.0010
MSIHT 0.0010 0.0009 0.0010 0.0008 0.0010 0.0009
MSSBL 0.0540 0.0500 0.0451 0.0322 0.0183 0.0057
HTP 0.3165 0.2945 0.2105 0.0945 0.0678 0.0344
IHT 1.8995 1.9024 1.8995 1.8991 1.9152 1.8953
OMP 23.6829 21.5929 16.4708 9.4103 2.6839 0.1793
SBL 46.1748 42.6398 29.0591 15.0069 11.0725 9.5650
BPDN 108.0371 108.1285 108.0272 106.9569 102.1098 91.1148

Here we present results where we fix the size of each factor matrix Hi but vary I from 1 to 4, to
demonstrate the ability of our MSR to handle arbitrary system order I .

We consider Ni = N and Mi = M for i ∈ [I], opt for N = 50, and determine M and s through
M =

⌈
(0.6N̄)1/I

⌉
and s = ⌈0.4N⌉ as in Section 5. We fix SNR at 20dB and results in Figure

10 shows how the NSE and runtime (median with 25%/75% quartiles) of MSSBL, MSHTP, and
MSIHT scale with different I for Kronecker-supported sparsity model.

In Figure 10, we observe similar trends as in Figure 3. Parallel and sequential implementations have
identical recovery performance but different runtimes. Thus, for NSE, we only show the results
for parallel implementation. The only exception in Figure 10 compared to Figure 3 is that for
I = 2, parallel implementation for MSHTP and MSIHT requires more computation time than the
sequential implementation. This is because when the problem is computationally light, parallel
overhead dominates the time consumption, including data transfer and communication, rather than
computation itself.

H.4 APPLICATION: CHANNEL ESTIMATION FOR INTELLIGENT REFLECTING
SURFACE-AIDED WIRELESS SYSTEM

5 10 15 20 25 30
SNR (dB)

10-6

10-4

10-2

100

C
ha

nn
el

 E
st

im
at

io
n

N
SE

SVD-KroSBL
AM-KroSBL
MSSBL

Figure 11: NSE of different schemes.

SNR (dB) AM-KroSBL SVD-KroSBL MSSBL

5 138.9725 3.1272 0.0212

10 121.7270 2.8479 0.0147

15 77.7143 2.7911 0.0099

20 43.9860 2.7752 0.0066

25 26.3338 2.7479 0.0052

30 18.7202 2.7450 0.0052

Table 7: Average runtime in seconds.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

An intelligent reflecting surface (IRS) is a reconfigurable meta-surface consisting of a large num-
ber of adjustable reflecting elements. By changing the reflection coefficients of elements, IRS can
reflect the signal to a certain area to improve the coverage of the wireless communication systems
operating at millimeter-wave/terahertz frequency bands. But properly configuring the IRS requires
the channel state information. It is hence important to develop efficient and accurate channel esti-
mation algorithms for the IRS-aided system. In this section, we consider an uplink narrowband IRS-
aided MIMO system, consisting of a T half-wavelength spacing-antenna transmitter mobile station
(MS), an R half-wavelength spacing-antenna receiver base station (BS), and an L half-wavelength
spacing-element uniform linear array IRS. If the channel matrices of the MS-IRS, and the IRS-BS
channel are denoted as ΦMS ∈ CL×T and ΦBS ∈ CR×L, respectively, according to the geometric
channel model (You et al., 2022; Wang et al., 2020; Alkhateeb et al., 2014; He & Joseph, 2023),
ΦMS ∈ CL×T and ΦBS ∈ CR×L can be formulated as

ΦMS =

PMS∑
p=1

√
LT

PMS
βMS,paL(ϕMS,p)aT (αMS)

H, (8)

ΦBS =

PBS∑
p=1

√
RL

PBS
βBS,paR(αBS,p)aL(ϕBS)

H, (9)

where PMS and PBS are the number of paths between MS and IRS, and IRS and BS, respectively.
The angles ϕMS,p, αMS, αBS,p, and ϕBS represent the pth AoA of the IRS, and the pth AoD of
the MS, the pth AoA of the BS, and the AoD of the IRS, respectively, while βMS,p and βBS,p are
the complex path gains. Steering vector aQ(ψ) ∈ CQ for any integer Q and angle ψ is defined
as aQ(ψ) = 1/

√
Q[1, ejπ cosψ, · · · , ejπ(Q−1) cosψ]⊤. Then, the cascaded MS-IRS-BS channel is

given by ΦBS diag(θ)ΦMS for a given IRS configuration θ ∈ CL whose ith entry of θ models the
reflection of the ith IRS element. Channel estimation problem targets to estimate the cascaded chan-
nel ΦBS diag(θ)ΦMS given any θ, which is sufficient for subsequent tasks such as beamforming
(Wang et al., 2020).

Wireless channels operating on millimeter-wave/terahertz bands are intrinsically sparse due to se-
vere path loss. To reveal this sparsity, we adopt three sparsifying bases AR, AL, and AT , corre-
sponding to the angular domain of the array at BS, IRS, and MS, respectively. Such bases contain
steering vectors evaluated over N grid angles {ψn}Nn=1 such that cos(ψn) = 2n/N − 1 (Mao et al.,
2022), defined as AQ = [aQ(ψ1),aQ(ψ2), . . . ,aQ(ψN)] ∈ CQ×N for any integer Q > 0. Then,
Equation 8 and 9 reduce to

ΦBS = ARxRx
H
L,dA

H
L and ΦMS = ALxL,ax

H
TA

H
T , (10)

where vectors xR,xL,d,xL,a,xT ∈ CN are the unknown channel representations over the known
sparsifying bases. They are sparse due to the intrinsic sparsity of the channel.

Channel estimation is performed by processing the received pilot signals, given the knowledge of the
sent pilot signals and the training IRS configurations. Suppose we allocate K time slots for channel
estimation, over which the channel is considered to be constant. We vary IRS configurations for KI

times, and for each different configuration, we transmit the same set of pilot signal G ∈ CT×KP

over KP time slots such that K = KIKP. The received signal Yk ∈ CR×KP corresponding to the
kth training configuration θk is

Yk = ΦBS diag(θk)ΦMSG+Nk, (11)

where Nk ∈ CR×KP is the noise. Substituting Equation 10 into Equation 11, and vectorizing the
received signal {Yk}KI

k=1 followed by some algebraic operations (He & Joseph, 2023), we have

y = (HL ⊗HT ⊗HR) x+ n = Hx+ n ∈ CRK , (12)

where HL ∈ CKI×N is formed by the first N columns of Θ⊤(A⊤
L ⊙ AH

L)
⊤ whose N2 columns

are just N repetitions the columns of HL, HT = X⊤A∗
T , and HR = AR, with ⊙ being the

Khatri-Rao product. We collect KI IRS configurations {θk}KI

k=1 in matrix Θ ∈ CL×KI and define
x = xL ⊗ x∗

T ⊗ xR ∈ CN3

with xL ∈ CN being the scaled version of the first N entries of
xL,a ⊗ x∗

L,d, corresponding to the removal of redundant columns in Θ⊤(A⊤
L ⊙ AH

L)
⊤. Denoting

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

HL as H3 with KI as M3, HT as H2 with KP as M2, HR as H1 with R as M1, and N = N3 =
N2 = N1, the channel estimation problem is transformed into a KCS problem following the form of
Equation 1 with unknown s = (s3, s2, s1) = (PMS, 1, PBS) Kronecker-supported sparse vector x.
With the estimated x̂, the estimated channel for a given IRS configuration θ, i.e., Φ̂BS diag(θ)Φ̂MS,
is obtained by reshaping (Φ̂⊤

MS ⊙ Φ̂BS)θ with known size R × T , where Φ̂⊤
MS ⊙ Φ̂BS with known

size RT × L is reconstructed as vec(Φ̂⊤
MS ⊙ Φ̂BS) = (ΦA ⊗A∗

T ⊗AR)x̂ with ΦA being the first
N columns of (A⊤

L ⊙AH
L)

⊤.

We set T = 6, R = 16, and L = 256. To set up the sparsifying bases, we opt for N = 18. Pilot
signals contained in G are randomly generated quadrature phase shift keying symbols using a uni-
form distribution while the IRS training configuration is randomly drawn from uniform distribution
{±1/

√
L} (Lin et al., 2021). Regarding the pilot signals and training IRS configurations, we con-

sider KI = KP = 10, making H3 ∈ C10×18, H2 ∈ C10×18, and H1 ∈ C16×18. To model the
scatters, we set PMS = PBS = 3 and all angles ϕMS,p, αMS, αBS,p, and ϕBS are drawn uniformly
and independently from the grid points, while path gains βMS,p and βBS,p are drawn independently
from complex standard normal distribution (He & Joseph, 2023). We compare MSSBL with SVD-
/AM-KroSBL in He & Joseph (2023) with the same way to cap iterative algorithms. Metrics include
channel estimation NSE given by 1

KI

∑KI

k=1
∥Φ̂BS diag(θk)Φ̂MS−ΦBS diag(θk)ΦMS∥2

F

∥ΦBS diag(θk)ΦMS∥2
F

and runtime.

Figure 11 shows 25%/50%/75% quartiles of NSE, while Table 7 shows the average runtime, both
over fifty independent trials. We observe that all three algorithms provide comparable channel esti-
mation performance, while MSSBL has two orders less runtime than SVD-KroSBL and four orders
less runtime than AM-KroSBL, making it more efficient in this application scenario.

H.5 APPLICATION: FOREMAN VIDEO SEQUENCE RECOVERY

Ratio
0 0.1 0.2 0.3 0.4 0.5

PS
N
R

15

20

25

30

35
Traditional CS
MSR

Figure 12: PSNR of different schemes.

Ratio ζ Traditional CS MSR
0.05 77.5294 10.5590
0.10 91.2761 9.0006
0.15 70.1564 9.7536
0.20 75.8293 9.9201
0.25 67.9980 11.6894
0.30 99.2622 11.1384
0.35 79.0998 11.1111
0.40 109.8495 11.1645
0.45 92.8983 7.7705
0.50 66.3104 6.7719

Table 8: Runtime in seconds.

This section presents the recovery results for Foreman video sequence to demonstrate MSR’s ability
to deal with a real-world dataset and its superiority over the traditional compressed sensing algo-
rithm. In the experiment, we follow the settings in Duarte & Baraniuk (2011a;b) and to make this
paper self-contained, we provide a brief overview of these settings.

Tested frames are generated by cropping around the center to form a frame size of 128× 128 pixels
and there are in total eight frames used in the experiment. To spatially sparsify the image content
within a single frame, we vectorize each frame and adopt a 2D inverse discrete wavelet transform
basis W1 ∈ R16384×16384 applied to the sparse coefficients of each video frame. For the sparsity in
the temporal dimension, we turn to a 1D inverse discrete wavelet transform basis W2 ∈ R8×8. It
exploits the correlation between frames to sparsify the signal over time. Suppose the video sequence
is denoted by θ ∈ R131072 where 131072 = 8 (frames) × 128 (row pixels) × 128 (columns pixels),
then its relation to sparsifying bases and the sparse coefficient vector x ∈ R131072 is θ = (W2 ⊗
W1)x. To compress the video sequence, we use a measurement matrix as I ⊗ S, where I means
that there is no temporal compression while S ∈ RM×16384 from a subsampled permuted Hadamard
transform denotes the spatial compression. Here, M is the number of measurements taken in one
frame. This leads to the following measurement/sparsifying model

y = (W2 ⊗ SW1)x. (13)

The goal is to obtain sparse coefficient x using the compressed measurement y, and finally we
reconstruct the video sequence as θ = (W2 ⊗W1)x.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Figure 13: Comparison of reconstructed Foreman video frames. Row 1: ground truth. Row 2:
traditional CS with ζ = 0.1. Row 3: MSR with ζ = 0.1. Row 4: traditional CS with ζ = 0.5. Row
5: MSR with ζ = 0.5.

Denoting W2 as H2, SW1 as H1, and I = 2, we note that Equation 13 is mathematically equivalent
to Equation 1, hence can be solved using our MSR. The benchmark in this experiment is ℓ1-based
basis pursuit (Duarte & Baraniuk, 2011a), where Equation 13 is treated as a traditional compressed
sensing problem and the Kronecker structure of W2 ⊗ SW1 is ignored. For a fair comparison,
we adopt the same ℓ1 solver (van den Berg & Friedlander, 2008; 2019) in MSR as in Duarte &
Baraniuk (2011a) with the same stopping criterion. We determine the number of measurements
M as M = ⌊16384ζ⌉ with measurement ratio ζ ∈ {0.05, 0.10, · · · , 0.45, 0.50}. We use the peak
signal-to-noise ratio (PSNR) and runtime as evaluation metrics. Results are shown in Figure 12
and Table 8, where traditional CS refers to traditional compressed sensing algorithm. We observe
that MSR achieves the same PSNR as that of traditional CS with roughly one order of magnitude
less runtime, effectively demonstrating the efficacy of our MSR on a real-world dataset. We also
compare all used video frames in Figure 13.

30

	Introduction
	Hierarchical View of the Kronecker-Structured Measuring
	Multi-Stage Sparse Recovery Algorithm
	Unified Analysis for Structured Sparsity Models
	Numerical Evaluations
	Conclusion
	Reproducibility Statement
	Proof of Lemma 1
	Illustrations of Different Sparsity Patterns
	Proof of Lemma 2
	Proof of Theorem 1
	Complete Results on the Number of Measurements
	Complexity Comparison
	Proof of Theorem 2
	Additional Numerical Evaluations
	Comprehensive Structured Sparse Vector Recovery Performance
	Comparisons With Traditional Compressed Sensing Approaches
	Sparse Vector Recovery Performance With Varying Number of Dimensions ii
	Application: Channel Estimation for Intelligent Reflecting Surface-Aided Wireless System
	Application: Foreman Video Sequence Recovery

