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ABSTRACT

In this paper, we study the Kronecker compressed sensing problem, which focuses
on recovering sparse vectors using linear measurements obtained using the Kro-
necker product of two or more matrices. We first introduce the hierarchical view of
the Kronecker compressed sensing, showing that the Kronecker product measure-
ment matrix probes the sparse vector from different levels, following a block-wise
and hierarchical structure. Leveraging this insight, we develop a versatile multi-
stage sparse recovery algorithmic framework and tailor it to three different sparsity
models: standard, hierarchical, and Kronecker-supported. We further analyze the
restricted isometry property of Kronecker product matrices under different spar-
sity models, and provide theoretical recovery guarantees for our multi-stage al-
gorithm. Simulations demonstrate that our method achieves comparable recovery
performance to other state-of-the-art techniques while substantially reducing run
time owing to the hierarchical, multi-stage recovery process.

1 INTRODUCTION

Kronecker compressed sensing (KCS) is a measurement framework that employs the Kronecker
product of multiple factor matrices as a measurement matrix, capturing multidimensional signal
structure while reducing measurement complexity. It appears in many acquisition systems, such
as sensor arrays in communication systems (He & Joseph, [2025a) or separable filters in imaging
(Friedland et al., 2014). We focus on the general KCS problem with canonical form,

y:H:c—i—n:(H1®H171®-~-®H1):c+n:(®}:IHi)w+n. (D

Here, € RY is the unknown sparse vector and y € R is the noisy measurements via a known
measurement matrix H = ®!_, H;, where each factor matrix H; € RM:*N: has full row rank.

A key challenge in solving Equation [I]is the high dimensionality of the multidimensional signal .
It grows rapidly with both the number and size of factor matrices H;, e.g., O(NT) if N; = O(N).
Another challenge is exploiting sparsity patterns as prior knowledge. Beyond simple sparsity, the
nonzero elements in x often exhibit more complex but regulated patterns. We consider three preva-
lent models. The first model is the standard sparsity, where the nonzero entries can be positioned
arbitrarily. This model is ubiquitous and tied to various applications, such as image processing
(Duarte & Baraniuk| 2010; L1 & Bernal, 2017; |Zhao et al.,|2019), system identification (Sun et al.,
2022; |Yuan et al.| |2019), regression (Ament & Gomes, 2021)), and communications (Berger et al.,
2010; | Xiao et al.l [2024). The second model, hierarchical sparsity, considers a vector a partitioned
into blocks at multiple levels, and sparsity is structured across these levels. For example, in massive
machine-type communication (Wunder et al.,|2017;[Roth et al.|[2018;/2020)), only a subset of devices
are active (device-level sparsity), and each active device sends a sparse signal, forming a two-level
hierarchical structured sparsity pattern on x. The third model, Kronecker-supported sparsity (or
the block tensor sparsity) (He & Josephl 2025a; 2023} (Caiafa & Cichockil 2013} Zhao et al.| 2019
Boyer & Haardt, 2016), assumes the support of x is the Kronecker product of multiple binary sup-
port vectors. This pattern arises in radar imaging and wireless communications, where signals are
separable across dimensions (He & Josephl |[2023; Xu et al.| 2022} He & Joseph| [2025d)). Motivated
by varied sparsity patterns, we focus on efficient methods for KCS with structured sparsity.

This paper introduces a novel hierarchical view on KCS, showing how its dimension-wise measuring
structure can be used to design and analyze efficient recovery methods to exploit structured sparsity
efficiently. Our main contributions are as follows:
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* Hierarchical View: We establish that when measuring via Kronecker product matrices, each factor
matrix in the Kronecker product captures the vector at a distinct hierarchical level. It provides a
unified perspective for handling different sparsity models within a single framework.

* Unified Algorithm: We design a multi-stage sparse recovery algorithm using the hierarchical view.
By leveraging the Kronecker structure of H through tensor operation and investigating the un-
derlying structure, our method achieves a significant complexity reduction, e.g., reducing from
O((MN)!) (He & Josephl, 2025a) to O(M N') regarding Kronecker-supported sparse vector re-
covery, and accommodates the mentioned sparsity patterns within a single, flexible framework.

* Theoretical Guarantees: We establish a unified restricted isometry property (RIP) analysis for
KCS covering the standard, hierarchical, and Kronecker-supported sparsity. It proves that sparsity
at each hierarchical level, rather than total sparsity, drives the recovery. Our result improves
the RIP-based bound for KCS with standard sparsity and provides a cohesive understanding of
structured sparsity. We also provide a RIP-based recovery guarantee for our unified algorithm.

Related works: The Kronecker product measurement matrix is introduced for compressed imag-
ing in Rivenson & Stern| (2009). KCS is formalized in [Duarte & Baraniuk| (2011a) with an RIP
analysis for KCS with standard sparsity (Duarte & Baraniuk, [2011ajb). It bounds the restricted
isometry constant (RIC) of the Kronecker product using the RIC of factor matrices H;. However,
the recovery algorithm fails to leverage the Kronecker structure in H. To leverage this structure,
Kronecker orthogonal matching pursuit (KroOMP) (Caiafa & Cichockil [2013)) adopts tensor oper-
ations. Nonetheless, it still incurs a high complexity of O(N?), and lacks theoretical analysis. In
parallel, [Friedland et al.| (2014} |2015) presents two algorithms: one uses tensor unfolding for se-
quential recovery in dimension, and the other uses approximate Tucker decomposition to recover
along each dimension. Still, both approaches are limited to standard sparsity. Later, Li & Bernal
(2017) decomposes the unfolding-based approach into multiple independent subproblems. Yet, it
fails to exploit joint sparsity patterns and is not immediately extendable to other sparsity patterns.

Structured sparse recovery is also investigated in the literature, but seldom under the KCS frame-
work. For hierarchically sparse vectors, |Roth et al.| (2020) discusses the hierarchical hard thresh-
olding pursuit (HiHTP), adapting classic hard thresholding pursuit (HTP) with a tailored RIP and
coherence analysis. However, it fails to incorporate the Kronecker structure in H, leading to higher
computational costs. For Kronecker-supported sparsity, both greedy and Bayesian methods have
been explored. An orthogonal matching pursuit (OMP)-based algorithm offers reduced complexity
(Caiafa & Cichocki, 2012} (Caiafa & Cichocki, 2013)) but performs poorly in noisy settings (He &
Joseph| 2025a). Bayesian algorithms, designed for applications such as hyperspectral image pro-
cessing (Zhao et al., [2019) and wireless communication (He & Josephl [2025a; |Chang & Su, 2021}
Xu et al.| |2022), use a structured prior distribution. They suffer from poor generalization and high
complexity (He & Joseph, 2025b). Besides, both OMP-based and Bayesian algorithms lack theo-
retical guarantees. Recently, [He & Joseph! (2025c¢) provides an algorithm and RIP analysis for KCS
for the I = 2 case. However, the analysis is decoupled from the algorithm. Also, it relies heavily on
specific matrix properties, making the generalization to higher orders (I > 2) nontrivial.

To summarize, existing approaches reveal several literature gaps. First, KCS methods mostly ignore
the structures of H, relying on generic solvers, while our method is specifically designed to leverage
the Kronecker structure through tensor operations. Second, current methods are largely tailored to
a single sparsity pattern and cannot be generalized, whereas our work provides a unified framework
for multiple patterns. Third, many methods suffer from high computational complexity, while our
approach is efficient and low-complexity. Besides, no prior work offers a unified RIP analysis
of Kronecker-structured matrices across different sparsity patterns, nor a recovery framework for
different sparsity patterns with RIP-based guarantees, which are our central theoretical contributions.

Notation and tensor preliminaries: We use [/] to denote the set {1,2,--- , I'} for any scalar I and
Iy to denote the IV x N identity matrix. The symbols ® and x ; denote Kronecker and jth mode

product, respectively. The jth mode unfolding T(;) of tensor T € RN1*N2x-xNr jg [T, .|

nj,k -
Ty forj € (M with b = 14520y s (TI23 sy Ny ) (e = 1), with ny € [N]. Also,
[T(j)ln; & is (nj, k)th matrix entry, and [T],, n,,... n; is the (ny,--- ,np)th tensor entry. The ith

mode product of D; € RN:*Mi with Tis M = T x; D; € RMox - xXMiaXNixMip1x-xMr - The
ith mode unfolding of M is M(;) = D;T|;y (Kolda & Bader, 2009).
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2 HIERARCHICAL VIEW OF THE KRONECKER-STRUCTURED MEASURING

Our hierarchical view builds on the Kronecker structure in Equation [} interpreting the measure-
ment matrix as probing the signal’s sparsity across multiple block-wise and hierarchical levels. To

illustrate this, we first introduce the hierarchical block partition of a sparse vector = € RN,

Hierarchical partition: We first partition & in Equation[T]into N; equal-length blocks, denoting the
Ith level blocks as {z(,,)}27_; € RITZ Ni | Each X () is further partitioned into N;_; blocks,
denoted as (I — 1)th level blocks {as(mflm)}f:[[ff:l € RIL=INi. We continue until we reach

blocks of length N; at the second level. The first-level blocks are the individual entries of .

For brevity, we use x,,; to denote a block in the jth level with length Hf;ll N; and encapsulation
n; := (n4, -+ ,ny_1,nr). An encapsulation n; := (n;,--- ,ns_1,ny) can be viewed as a coordi-
nate for blocks in this hierarchical block structure. Also, set [z,,] contains all N; child blocks that
share the same parent block at the level j + 1 as that of @,,;. We illustrate a hierarchical partition for

x € R*in Figure where [z (1 3)] = [®(2,3)] = {Z(1,3), T(2,3)} as they share the parent x 3).
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Figure 1: (a) Hierarchical partition for & € R* with I = 3, N; = 5, Ny = 2, N; = 4, and N = 40.

(b) Reordered tensor X. (c) Mode unfolding X 5y and the relation between the n;_th row within

the nth column block and the (I — 1)th level child block @, , withn;_y = (2,1) and I = 3.

Hierarchical view: We first focus on the noiseless version of Equation|[T|reformulated using tensors,
TZZY:XX1H1“- X]H],

where the first mode unfolding satisfy vec(X (1)) = « and vec(T(1)) = vec(Y(1)) = y. Unfolding
T on the Ith mode leads to

Ty = Hi Xy (91, H]) = HUy € RMATera Mo,
Here, U; = X (®}_;_1H]") € RN TTizr 0 Mi gpg X € RN <TTi=r -1 Nt whose nth row
is the I'th level block «,,, with n; = (ny). Therefore, matrix H; acts on Uy, and a zero row in

U7 indicates that the corresponding /th level block is entirely zero. Hence, matrix H captures the
sparsity pattern of the Ith-level blocks.

For the (I — 1)th level, we fold Uy into a new tensor T, whose Ith mode unfolding T = Uy, as
T:X><1 H1 Xr-1 H[,1 X[INI.
Unfolding T along its (I — 1)th mode gives

I .
Tuyy=Hi1Xg 1 (In, ® (®11:I—2Hi—r)) = H; U, € RMi-0xNillicr o Ms

Here, X(;_1) € RN1-1XN/Ni-1 pag Nj column blocks, with nrth block corresponding to x,,, with
n; = (ny). Within the n;th column block, the n;_1th row is the (I — 1)th level child block @,,,_,
with ny_; = (n;_1,ny), as illustrated in Figure . The Kronecker product Iy, ® (®!_;_,H,")
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is a block matrix and preserves the column block structure in U;_;. Column blocks of Uy_; are
associated with I-level blocks, and the rows of a column block correspond to the (I —1) level blocks.
Hence, the zero rows in each column block of U;_; indicate that the corresponding (I — 1)th level
blocks are entirely zero. Therefore, H;_ captures the sparsity pattern at the (I — 1)th-level blocks.

For a general jth level, we define T = X x; Hy xo Hy -+ x; H; X411 In

i1 X1 Iy, and

T = H; X (IHmN ® (®1_;_ 1H)) e RMyxTHE} NI, &

is its jth unfolding. Similar to the column block structure at (I — 1)th level, we have the following.

Lemma 1. Consider a sparse tensor X reordered from a sparse vector x such that vec(X (1)) = .
For the jth mode unfolding of X, i.e., X ), and with full row rank H;'s, the matrix

.
Uj 1= X (I n, @ (91, Hy) ) € RIS MLy M

can be divided into Hz:} N; column blocks. Each block is indexed by an encapsulation nj, with
njy1 = (njq1,--- ,nr)forng € [Ng] fork = j+1,..., 1. The number of nonzero rows in a column
block indexed by nj 1 equals the number of nonzero blocks in [xy;] withnj = (nj,mj41,--- ,ny).

Lemma E] implies that matrix H; actually captures the sparsity at the jth level blocks, which we
refer to as the hierarchical view of KCS. The above perspective can also be interpreted directly
from Equation [I] The Kronecker product matrix H has a recursive column-block structure: each
block of columns is obtained by taking the Kronecker product of a column of H with ®;_, , H;,
which itself has a column block structure. This recursive structure aligns with the hierarchical
partition block of @. Hence, in this hierarchical framework, factor matrices {H;}!_; operate at
different levels: for any p, ¢ with p > ¢, H, first measures each qth level block of x, the resulting
measurements of all blocks are then processed by H),, which captures sparsity at a higher level.

3 MULTI-STAGE SPARSE RECOVERY ALGORITHM

We aim to recover x in Equation Ifrom noisy measurement y, given { H;}!_,. Guided by the hier-
archical view in Section[2] we next present a recovery framework that handles each H, sequentially.
We formally define the following three considered sparsity models.

Sparsity 1 (Standard sparsity). A vector x € RY is s sparse if x contains at most s nonzeros.

Sparsity 2 (Hierarchical sparsity). A vector * € RY s s hzerarchically sparse with s =
(81,81-1,+ ,81) if it has a hierarchical partition defined by {N;}!_,, and at each level j € [I,
every set [xy,] contains at most s; nonzero blocks.

Jj=r

Sparsity 3 (Kronecker-supported sparsity). A vector x € RY is s Kronecker supported sparse if its
support is the Kronecker product of s; sparse support vectors b; € {0,1}Vi for j € [I].

We note that the Kronecker-supported sparsity is a special case of hierarchical sparsity, where at
each level j € [I], the s; nonzero blocks @, share the same support.

Our framework first solves for Uy = X 1) (®11: Ilei) T from unfolding along Ith mode using
T =Yy =HU + Nqy. 2

Here, U7 exhibits a row sparsity pattern where a zero row in U corresponds to an all-zero Ith level
block @, . Thus, recovering U; from Equation [2is a multiple measurement vector (MMYV) problem
and solved using MMV algorithms such as simultaneous OMP (SOMP), simultaneous iterative hard
thresholding (SIHT), simultaneous HTP (SHTP), or MMV sparse Bayesian learning (MMV-SBL).

Let the estimate of U; be U 7 with error E; modeling the estimation error and residual noise, U =
U; + E;. In the second step, we treat f]; as the noisy measurement and E7 as noise, reorder them
into tensor T and N such that T(7) = U; and N = Er,toobtain T = X xy Hy -+~ xr1 Hy 1 X7
Iy, + N. Unfolding T along its (I — 1)th mode as

T;-1)y=H;1Ur1+ Ny €)]



Under review as a conference paper at ICLR 2026

For standard and hierarchical sparsity models, the supports of different (I — 1)th level blocks of «
are different. By Lemma zero (I —1)th level blocks leads to the zero rows in each column block in
U; 1, making it a concatenation of Ny row sparse matrices [Ur—1]n, = [X(7-1)]n, (®11:1_2H,;)T
for ny = (ns) and n; € [N;]. We thus partition Equation 3|into N; independent MMV problems as

(Tir-1)ln = Hr—1[Ur-1)n; + [N(7=1)Jny

and solve them (sequentially or in parallel) using MMV solvers. Concatenating estimates U, =
[[Ujflh, [U[,ﬂg, sy, [Ujfl]Nl] gives the final solution, where [Ujfl]nl = [Ujfl]nl + [Ejfl]m.
However, for the Kronecker-supported sparsity, Equation [3|is a single MMV problem because the
support is common across the (I — 1)th level blocks.

Generalizing, for jth mode unfolding step, with measurement ﬁj+1 from the previous step,

.
Uji1 = Usi1 + Ejp1 = Xy (I v, @ (91, H) ) + By, @

We unfold the measurement tensor formed from ﬁjH along its jth mode as
Ty) = H;U; + Ngj). ®)

Lemma [1|reduces Equation |5|to Hfi} N, independent MMV problems for standard and hierarchi-
cal sparsity. Sparsity varies across MMVs for the standard model (defined via the total sparsity,
not level-wise sparsity) but remains identical in the hierarchical model. For Kronecker-supported
sparsity, Equation[3]is a single MMV due to shared block support. While mixed models with single
and multiple MM Vs at different levels are possible, we focus on these three main cases for brevity,
leading to the Multi-Stage Recovery (MSR) algorithm, summarized in Algorithm|[I]

Algorithm 1 Multi-Stage Recovery (MSR)

Input: Measurement y, dictionaries { H; }/_, € RM:xNi

: Fold y to Y according to the dimensions of dictionaries { H;}!_;, and initialize T =Y

cforj=I1,I1—-1,--- ,1do
Obtain the jth mode unfolding of T, i.e., T(j)
Solve Equation for U; via a compressed sensing algorithm to get estimate U;;
Fold U. ;j back to T such that the jth mode unfolding of T, i.e., T{; is Uj

end for _

Output: Estimated sparse vector & = vec(Uy)

A A

Complexity: We compare the complexity of MSR variants with existing methods for each sparsity
model, assuming Equation [3]is solved sequentially, and M; = O(M), N; = O(N) for i € [I] with
I < M < N. For standard sparsity, MSR with OMP matches the time complexity of KroOMP (Ca-
iafa & Cichockil 2013), but reduces space complexity from O(N¥) to O(M!~1N). For hierarchical
sparsity, our MSR with HTP has time complexity O(M NT) and space complexity O(M*~1N), im-
proving over HIHTP (Roth et al.,[2020) with time and space complexities of O(M?2N?) for I = 2.
For Kronecker-supported sparsity, MSR with SBL lowers time complexity to O(M N') and space
complexity to O(N) compared to AM- and SVD-KroSBL (He & Joseph, 2025a) with both com-
plexities O(MTNT). The improvements are due to i) the exploitation of the Kronecker structure
through tensor operation, reducing the dimensionality; and i) leveraging the MMV structure from
Lemma|[T] We refer to Table[2]in Appendix [E]for a comprehensive comparison.

4 UNIFIED ANALYSIS FOR STRUCTURED SPARSITY MODELS

We establish a unified RIP analysis via a generalized notion of RIP called the (s, N)-RIP condition
with s := (s7,87-1, -+ ,s1) and N := (Ny,N;_1,---, Ny) defined by the dimension of factor
matrices in KCS. To this end, we introduce the generalized (s, N) sparsity model, tailored to the
KCS problem, which reflects a hierarchical view where sparsity at each level affects recovery.

Sparsity 4 (Generalized sparsity). Consider KCS with H; € RMi*Ni_ A vector x € RY is (s,N)
sparse if for tensor X € RNV XNI yeordered from x using N := (N7, N;_1,--- , Ny), the maxi-
mum number of nonzero rows of each of the column blocks of its jth mode unfolding X ;) is s;.
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Relation to other models: We relate the above model to the standard, hierarchical, Kronecker-
supported, and block sparsity models. The standard sparsity model is not a special case of (s, N)
sparsity, but the set of s sparse vectors is contained in a union of (s, N) sparse vectors.

Lemma 2. Let set S contains all s standard sparse vectors in RN, and S, contains all (s,N)
sparse vectors in RN for a given (s,N). Then, S C Uge p(s)Ss, where fx(s) = {s : ZZ 18 <
s+(I—-1),1<s; <s}.

Hierarchical sparsity is a special case of (s,N) sparsity when the hierarchical partition structure
matches the dimensions of factor matrices in the Kronecker measurement matrix. If, additionally,
all the column blocks of jth mode unfolding X ;) share the same support regarding nonzero rows,
then we arrive at the Kronecker-supported sparsity. Block sparsity can also be viewed as (s, N)
sparsity with I = 2 when the block boundary matches the hierarchical partition structure.

We next define the (s, N)-RIP condition for a Kronecker product matrix H.
Definition 1 ((s, N)-RIP). A Kronecker product matrix H = ®}_; H; with H; € RMixNi satisfies

(s,N) RIP if there exzsts § € (0, 1) such that for all (s,N) sparse & € RY, it satisfies (1—0)||x||3 <
Hcz|)? 14 6)||x||5. The smallest feasible 9, denoted as 6 xy(H ), is the (s,N)-RIC of H.
2 < 5 (s,N)

Under our models, (s, N)-RIP is defined over the unions of subspaces, thus can be used to guarantee
the success of recovery algorithms, such as iterative hard thresholding (IHT) and HTP (Blumensath),
2011). In general, such guarantees are established using the upper bound of the RICs. Therefore, we
first derive the upper bound of 0, n)(H ), then discuss its implications for different sparsity models,
and finally discuss the associated recovery algorithms and guarantees. Here, we denote the standard
s-RIC of matrix H as 05(H).

Theorem 1. The (s, N)-RIC of Kronecker product dictionary H = ®;_, H,, i.e., (s ny(H), satis-
fies b(sx) (H) < [T (1 + 05, (H)) — 1.

The above result immediately applies to hierarchical and Kronecker-supported sparsity, as both are
special cases of (s, N) sparsity. For Kronecker-supported sparsity, a tighter bound could be expected
due to its additional joint sparsity structure arising from the shared support across the nonzero block.
However, improving the RIC bound by exploiting this additional joint sparsity is difficult. As noted
in |Li & Petropulu| (2013)); [Eldar & Mishali| (2009), RIP analysis considers the worst-case perfor-
mance and does not guarantee that MMV outperforms the SMV case. So, our bound shows no
improvement, and deriving a stronger RIP-based condition for the MMV model is an open problem.

Theorem [I]can also be tailored to standard sparsity using Lemma 2}

Corollary 1. Consider the Kronecker product H = ®!_,H;. For any s, the s-RIC of H satisfies
I

0s(H) < maxXse p(s) O(s,N) (H) < maXoe po(s) [Tiz1 (1405, (Hi)) — 1.

The s-RIC bound corroborates that only the sparsity level at different level of blocks explicitly
affects the s-RIC of Kronecker-structured H. Also, a known upper RIC bound is ds(H) <

Hle (1+65(H;)) — 1 (Duarte & Baraniukl [2011a). Our bound slightly improves this bound:

I

I
max 1+, (H;) (14 64( -1,
sE€/n(s) i=1 ( ];[

because J, is a non-decreasing function of s (Foucart & Rauhut, |2013) and s} < s for all ¢ € [[]
and the equality cannot be achieved simultaneously.

Maximum sparsity level: Corollary [T]indicates that recovering s standard sparse vectors via KCS
with M; < Nj; is only guaranteed when s < min; IV;, as it is a worst-case analysis. When s =
min; N; with j = argmin; /V;, a worst-case scenario is s; = s = IN; and s; = 1 for all 7 # j.
Then, 0, = ||H ]T H; — Iy, |2 > 1, making Hj is a non-injective map and recovery impossible.
This also indicates that it is only possible to recover block-sparse vectors with block length smaller
than min; IV;. However, recovery is still possible for s > min; [V, in structured sparsity settings.

Measurement bounds for classical methods: We discuss the implications of Theorem [I|on mea-
surement bounds for recovering (s, N)-sparse vectors using classical iterative algorithms, namely
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IHT and HTP. For both algorithms, at iteration k, the support is updated via thresholding operator
Lsas T"™' = Lg (x"+ H' (y — Hx")). The thresholding operator depends on the sparsity
model. For standard s sparse, Ls returns the support of the s largest entries of  in amplitude (Fou-
cart & Rauhut, 2013)). For s hierarchically sparse, it selects the top s; entries within each first-level
block, then recursively picks top so, .. ., sy blocks at higher levels based on the ¢5 norm, as in Roth
et al.|(2020). However, finding the thresholding operator Ls for s Kronecker-supported sparse vec-
tors is NP-hard and not available in the literature. For example, when I = 2, it reduces to selecting
rows and columns whose intersection maximizes the squared sum, equivalent to the NP-hard max-
imum weight biclique problem. A practical alternative is to first select the top s; blocks at the Ith
level by £5 norm, then recursively sum norms across matching indices at each lower level and select

the top s;—1, ..., s1 blocks; this is the approach we use in simulations for comparison. Then, IHT
applies a simple projection while HTP solves a least-squares problem on the support,
$k+1 = (Cck + HT (y - Hwk))Tk+l ; (IHT)
" = arg min ||y — Hel|z, supp(x) € TFH, (HTP)
zeRN

where operator (-)7++1 only preserves the entries within the set 7**! and sets the others to zero.

We next discuss the implications for measurement bounds. It is known that for IHT and HTP to
recover a vector from a union of subspaces, tailoring the thresholding operator Ls to the union and
having an RIC below 1/+/3 over that union is sufficient to guarantee convergence to the ground
truth (Foucart & Rauhut, 2013} Roth et al., [2020). So, our results shows that max ¢ Ixn(3s) 5(37N) <

1/ /3 (for s standard sparsity) and & 3s,N) <1 / V/3 (for s hierarchical sparsity) are sufficient for the
success of IHT and HTP. However, it does not guarantee the recovery of the s Kronecker-supported
sparse vectors as the thresholding operator is suboptimal.

To compare the measurement bound for KCS, we consider the simplest case with / = 2 and s =
O(s1s2) for s € fx(s), and Gaussian factor matrices H;’s. For recovering s standard sparse vec-
tors, our Corollaryﬂ]implies that each H,; satisfies the s;-RIP, requiring M; = O(s; log N;) (Foucart
& Rauhut, 2013)). So, the total measurement bound scales as M = O(s152 log N log Ny) improv-
ing over the existing bound M = O(s?log Ny log N2) = O(s3s3log Ny log N) (Duarte & Bara-
niuk, [2011a)). In comparison, standard compressed sensing with fully unstructured Gaussian matrix
requires only O(s1 3 log N1 Ny) measurements, which is smaller due to greater flexibility and ran-
domness in measurement. However, KCS exploits the multidimensional structure to reduce the
computational complexity during recovery. For the recovery of s hierarchical sparse vectors, Corol-
lary |1| suggests a measurement bound O(s1s2 log N1 log No), while a fully unstructured Gaussian
matrix requires only O(s1s2log N1 + s2log Na) (Roth et al.l [2020).

Measurement bounds for our MSR: We now establish recovery guarantees for MSR with IHT and
HTP using the RICs of factor matrices.

Theorem 2. Consider the sparse recovery problem, y = (®11: H l) x +n. Define tensors X and N,
which are reshaped from x and n, respectively, using the dimensions of H;’s. If x is an s standard
sparse vector and the factor matrices H; for i € [I] satisfy 63, (H;) < 1/v/3 forVs € fx(s), then
the estimate & of x using k-iteration IHT or HTP in Algorithm([l} satisfies

I i—-1

1
&=l < mex 32 | 3 [Tl 0 e+ TL7INIr )
=1

no, N i=1 j=1

where [Uin,, = [X(5)]niss (®}:i_1Hl)T, and if  is an s hierarchically sparse vector, and the

factor matrices H; for i € [I] satisfy 035, (H;) < 1/+/3, then the estimate & of x using k-iteration
IHT or HTP in Algorithm[l} satisfies

I i—1 I
& — 2 < Z ZHTjafH[Ui]ni+1||F+HTi”N”F )
na,,np \ i=1 j=1 i=1

and if x is an s Kronecker-supported sparse vector, there is
I i1 I

I —ll2 < Y [ o 1Uillp + [ ] 7ilINIe,
1

i=1 j=1 i=
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-

where U; = X ;) (IHZ'Z} N ® (®11:i_1Hz)) , with a; < 1, and T; are

3(1 + 625, (H,))
1-— (67

V2(1 = 0g4, (H3)) + /1 + 6., (H,)
(1= 025, (Hi)) (1 — o)

i , and

MSHTP: a; = \/25531- (H:)/(1— 62, (H,)); 7 = (1— k)

(2

As the number of iterations k — oo, the error bound reduces to 7; Hf=2 7;N;||N||r for the stan-

dard and hierarchical sparsity, and Hle 7i||N||¢ for Kronecker-supported sparsity. So, MSIHT and
MSHTP approach the true value within a constant factor of measurement noise power. Although
factors 71 ]_L{:z 7;IN; and Hle T; suggest error propagation as the algorithm proceeds from j = I
till j = 1 and scale with the problem dimension, this amplification is not observed in practice (see
Figure[3). The bound for s Kronecker-supported sparsity is tighter than that for the other two mod-
els because it solves a single MMV problem, resulting a collective error bound, instead of a looser
bounds due to the sum of each individual MMV bound. While our MSR’s measurement bound scales
the same as classical methods due to a shared requirement on the s;-RIP of H;’s, it can have a larger
error from propagation, potentially requiring more iterations or H;’s with smaller s;-RICs. How-
ever, a key advantage of MSR is that it provides recovery guarantees for the Kronecker-supported
sparsity model, unlike classical IHT and HTP-based methods.

5 NUMERICAL EVALUATIONS

For numerical results, we combine MSR with MMV-SBL (Wipf & Raol [2007), SIHT (Blanchard
et al.| [2014), SHTP (Blanchard et al., |2014), and SOMP (Tropp et al., |2006)), and the resulting al-
gorithms are referred to as MSSBL, MSIHT, MSHTP, and MSOMP, respectively. Our benchmark
for the standard sparsity is KroOMP (Caiafa & Cichocki, |2013). Here, we omit computationally in-
tensive SBL and OMP whose results are identical to KroOMP. For hierarchical sparsity, our bench-
mark is the state-of-the-art HIHTP (Roth et al |2020). For Kronecker-structured support sparsity,
we benchmark with the state-of-the-art AM- and SVD-KroSBL (He & Josephl [2025a)). Unlike the
OMP/SBL-based algorithms, the IHT/HTP-based algorithms need the true sparsity level s as input.

For all three models, we set M; = M, N; = N, and s; = s for ¢ € [I]. For the s standard
sparsity, we opt for H = ®]_;H; with I = 2, M = 64, and N = 80. The entries of H;
and the nonzero entries of x are drawn independently from the standard normal distribution. We
set s = 15, and the support is randomly drawn from a uniform distribution. For s hierarchically
sparse vectors, we also opt for I = 2, M = 64, N = 80, and s = 15. Here, supports are
generated by first selecting s blocks uniformly at random, then assigning support within each block
uniformly. In the Kronecker-supported sparsity model, we opt for I = 3, M = 15, N = 18, and
s = 4. The measurement noise is zero mean white Gaussian noise whose variance is determined by
SNR (dB) = 10log,, E{[|Hz|3/||n3} of {3,5,--- ,23,25}.

Our metrics are run time and the normalized squared error NSE = ||z — 2||3/||x||3, where « is
the ground truth and & is the estimated vector. The results are shown in Figure[2]and Table [I] with
the figure showing median and 25%/75% quartiles, and the table showing averages. The NSE for
recovering an s standard sparse vector is shown in Figure Compared to KroOMP, MSOMP
provides similar performance regarding NSE but needs one to three orders less run time, as in Table
[l MSSBL outperforms KroOMP in all SNR cases with one or two orders less run time. The
NSE for hierarchical sparsity is shown in Figure 2busing only the HTP/IHT-based algorithms (full
comparison in Appendix [G). Our MSHTP/MSIHT offers similar performance as HTP and HiHTP,
and IHT. However, MSHTP requires two orders less run time than HTP and one order less run
time than HiHTP; and MSIHT requires two orders less run time than IHT. The NSE for Kronecker-
supported sparsity is shown in Figure[2c| Our MSSBL consistently achieves a comparable NSE and
is two or three orders faster than AM- and SVD-KroSBL. In summary, MSR variants achieve similar
or better accuracy than existing methods while drastically reducing computation time.

Figure [3|shows how the NSE and run time (median with 25%/75% quartiles) of MSSBL, MSHTP,
and MSIHT scale with the problem dimension, focusing on hierarchical sparsity. We choose I = 3
and SNR as 20dB and vary N = {50,60,--- ,110}, so that the problem dimension N = N! =
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Figure 2: NSE as a function of SNR.
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Table 1: Averaged runtime in seconds. Bold: the best result.

SNR [ 3B | 7dB [ 11dB [ 15dB [ 19dB | 23dB
Recovery of s sparse vectors
MSOMP-seq 0.4256 0.4119 0.3827 0.3329 0.2204 0.0568
KroOMP (Caiafa & Cichockil[2013) 130.5405 108.0526 | 76.6942 | 39.9844 11.5774 0.7525
MSSBL-Seq ) 1.8191 1.1016 0.5758 0.2218 0.1417 0.1141
Recovery of s hierarchically sparse vectors
MSHTP-Seq 0.0379 0.0305 0.0297 0.0247 0.0186 0.0168
HiHTP (Roth et al.|[2020) 0.6512 0.5493 0.5204 0.5444 0.4398 0.4574
HTP 2.2436 1.7170 1.3256 0.8450 0.8264 0.5311
MSIHT-Seq 0.0500 0.0510 0.0532 0.0509 0.0450 0.0434
IHT 8.2437 8.2412 8.2554 8.2917 8.2889 8.2789
Recovery of s Kronecker-supported sparse vectors
MSOMP 0.0042 0.0041 0.0040 0.0038 0.0026 0.0015
MSSBL 0.0728 0.0587 0.0447 0.0279 0.0119 0.0051
SVD-KroSBL (He & Joseph, |2025a) 37.1233 26.9816 14.2405 8.6036 5.4067 4.0681
AM-KroSBL (He & Joseph}|2025a) 55.9532 63.4676 759727 | 74.5840 | 51.7089 | 34.1331

125000, 216000, - - - , 1331000, where M = [(0.6N)*!]| and s = [(0.4N)Y/T]. As expected,
parallel implementation is faster than sequential. MSSBL has the best NSE but is slower than
MSIHT and MSHTP. The MSIHT is worse than MSHTP due to IHT’s slow convergence (Foucart
& Rauhut, 2013). Overall, our MSR efficiently handles large dimensional KCS problems.

MSSBL-PI
< MSHTP-PI
/MSIHT-P1

(OMSSBL-Seq [>MSHTP-Seq AAMSIHT-Seq
MSSBL-PI <|MSHTP-Pl {7MSIHT-P1

w [}
% E 10
10°,
L L L L 10-1
217 218 219 220 217 218 219 220
Problem Dimension Problem Dimension
Figure 3: NSE and run time of MSR as functions of problem dimension /V.

6 CONCLUSION

We investigated the Kronecker compressed sensing problem for signals with multiple sparsity struc-
tures. We presented a novel hierarchical view, comprehending that each factor matrix in the Kro-
necker product dictionary senses the sparse signal at a different level, obeying a hierarchical struc-
ture. This insight led to a computationally efficient, multi-stage recovery framework that achieved
performance comparable to state-of-the-art methods with one order or less run time. On the theo-
retical front, we unified the RIP analysis for Kronecker product matrices across various structured
sparsity models, and also established the recovery guarantee for our multi-stage recovery algorithm.
This hierarchical framework opens promising avenues for designing new algorithms to accommo-
date more structured patterns and provide efficient solutions to many applications.
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7 REPRODUCIBILITY STATEMENT

All conditions required to reproduce the results are included in Section [5] and Appendix [G} Our
implementation and data for reproducing figures and tables are available as supplementary material.
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A PROOF OF LEMMA[T]

Before diving into the details, we explain the notation in the Figure[d The arrow in Figure 4] means
the corresponding index runs through all its values in ascending order. For example, an arrow with
n; means n; = 1,2,..., N;. For two indices n, and n, with p # ¢, the ordering is hierarchical:
if p > g, then n,, is treated as the outer index, while n, is the inner index. Consequently, for each
fixed value of n, in 1,..., N, the index n, spans its entire range repeatedly. Hence, unfolding
a tensor along its jth dimension is reshaping the tensor to a matrix where rows are indexed by
n; = 1,2,..., N;, while columns are indexed by the remaining indices arranged according to this
hierarchical ordering.

nr
M+l
Tj—1
" X
X(j)
B : Nonzero entries -
L._____...i: Zero rows
M : Dense rows I
: Matrix

RN
Figure 4: An illustrating of the proof of Lemma

The proof proceeds in two parts: first, establishing the column block structure, and second, analyzing
the sparsity of each block.

.
For the first step, we observe that matrix (I i+ N, © (®11=j_1HZ-)) is a block-diagonal matrix.

It has Hfi} N, identical diagonal blocks, each equal to (®11:j7 L Hl-)T- To match this structure, we
partition the columns of the unfolded matrix X ;) into | 11 N; column blocks. The standard column

ordering in tensor unfolding places elements with higher-level indices (1,1, ..., nr) further apart.
Consequently, we can partition X;) into Hf: i+ N; column blocks, where each block corresponds
to a unique encapsulation nj41 = (njq1,...,M7) as

Xy =[Xo.0n 0 X ann] -

T
Since (I I+ N, ® (®}: j_lHi)) is block-diagonal, the multiplication with X ;) decouples and
operates on each of these blocks independently,

-
X0 (Il_lflzl n® (®11:j71Hi))

T T
= [X0r0m @ ) Xy (@, H)

I

This confirms that the resulting matrix is also composed of [ [,_ j+1 Vi column blocks, each indexed

. T
by nj;1 and given by Xy, (®1_, H;) .

13
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For the second step, consider a column block indexed by a fixed nj 41, i.e., X(jy n;,, (®il:j_1Hi) T

The rows of this block are indexed by n; € [N;]. The kth row of X(j) .., (®}:j,1Hi)T will be
nonzero if and only if the kth row of X;) ,, , contains nonzeros due to the full row rankness.
Moreover, the kth row of X;) ;. is the hierarchical block @,; where the encapsulation is n; =
(k,njt1,...,nr). This equivalence follows because the indices of the entries in the kth row of
X (j),n;4, align exactly with those of the hierarchical block x,,; with nj = (k,mjt+1,...,n5). Hence,

the kth row of X and the hierarchical block x,,; withnj = (k, 71, ...,nr) contain identical

. i . T
entries with identical order. Thus, the number of non-zero rows in X ;) ;.. , (®Zl j—1Hi ) is the

number of hierarchical blocks {z, } (within the parent block defined by n; 1) that contain at least
one non-zero element, which concludes the proof.

sNj41

B PROOF OF LEMMA [2]

Let x be an s sparse vector. We denote k; as the total number of nonzero blocks within all jth-
level blocks of x. Clearly, k; = s and k;41 = 1. Then, each nonzero block in the j + 1th level
can have at most k; — (k;41 — 1) number of nonzero jth level blocks. This occurs in the most
unbalanced case, where k;1 — 1 blocks have only one nonzero jth level block while the remaining
block has k; — (kj+1 — 1) nonzero jth level blocks. This observation leads to the upper bound for

the sparsity level, s; < k; — (k;j4+1 — 1), which yields Zz 18 < s+ (I —1). So, any s sparse
vector T € Uge fy (5)Ss-

C PROOF OF THEOREMII

For any , we note that Equation|[I]bounds || Hz||3. Following the hierarchical view, we note
|Hx|3 = X xy Hy - xp Hy|[} = |Hi X (91, H) |3
Using the RIC of H;, we have
.
(18| Xy (@, Hi) T |2 < [[Hz |3 < (1+ 0,1 X0y (912, H:) " |13

T T
We also note that | X ;) (®1_;_1H;) |3 = H-1X(-1) (In, @ (®}_;_oH;)) || due to the
tensor folding and unfolding. Therefore, using RIC of H;_;, we arrive at
T
(1= 05,)(1 = 05, DI X -1y (In, @ (®@i=2H)) I3
T
<|[Hz||3 < (1+65,)(1+ 65, ) Xn) (@icr 1 Hi) I

Repeating these steps recursively following the analysis in hierarchical view, we obtain

I
[T -l X0) (2 In,) 112 < 1H=ll < [TQ+ 61Xy (91 dn,) 1.
=1

i=1

Since X (1) (21, In,) " = X1y and | Xu) 2 = 3,

I I
[0 =s)ll=ll3 < [ Ha|s < [T+ 6]l
i=1 i
Hence, we derive
I I I
5(3,N)(H)§max{l—H ,H (1+ 6, H(1+5s7:)*1
i=1 i=1 i=1

which completes the proof.
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D COMPLETE RESULTS ON THE NUMBER OF MEASUREMENTS

In this section, we present the measurement bounds for unstructured H with different sparsity pat-
terns. Let H € RM>*¥ has independent and identically distributed standard Gaussian. For

=0 (s m(eiv))

where c is a positive constant, s sparse vectors can be recovered from the measurement of H with
high probability (Foucart & Rauhut, 2013)). Also, if

) I I N, I
M=0 ZHsjln( Sit)+il;[18i :

i=1 j=i

s hierarchical sparse vectors can be recovered from the measurement of H with high probability
(Roth et al., 2020).

E COMPLEXITY COMPARISON

We comprehensively analyze the complexity of our MSR algorithm to demonstrate the benefit of
exploiting the Kronecker structure of H via the hierarchical view. We consider MSR combined
with MMV-SBL (Wipf & Raol[2007), STHT (Blanchard et al.,[2014)), SHTP (Blanchard et al.,|2014),
and SOMP (Tropp et all [2006) as sparse recovery algorithms, referred to as MSSBL, MSIHT,
MSHTP, and MSOMP, respectively. We also use Seq and P 1 to represent the sequential and parallel
implementation of Equation |5} Assume M;’s are O(M), N;’s are O(N) for i € [I], and I <
M < N. We compare the time and space complexity of our algorithms with other state-of-the-art
algorithms. For the recovery of s sparse vectors, we include SBL (Wipf & Rao| 2004), OMP, and
KroOMP (Caiafa & Cichocki, |2013) as benchmarks. For the recovery of s hierarchically sparse
vectors, HIHTP (Roth et al., [2020), IHT, and HTP are used as benchmarks. We note that only the
exact implementation of HiHTP for / = 2 is given in (Roth et al., 2020). Regarding recovering s
Kronecker-supported sparse vectors, we consider AM- and SVD-KroSBL (He & Joseph, [2025a) for
benchmarking.

For the recovery of s standard sparse vectors, our MSSBL and MSOMP substantially reduce both the
time and space complexity compared to their traditional counterparts. In terms of time complexity,
our MSSBL (O(M?2NT) for seq and O(M?! N) for P1) is superior than SBL (O(M?! NT)), while
the time complexity of MSOMP (O(M NY) for Seq and O(M?! N) for P1) is also lower than OMP
with O(MTNT). Moreover, both MSSBL and MSOMP avoid O(M N)! in space complexity and
have O(M*=1N) for seq and O(M N') for P1. Compared to KroOMP with time complexity
O(MNY) and space complexity O(NT), MSOMP-Seq achieves the same time complexity but
with a much lower space complexity O(M?~1N). Alternatively, we can achieve a much lower time
complexity O(M! N) by parallel implementation, at the cost of a slightly higher space complexity
of O(MNT).

The computational gains are particularly significant regarding structured sparsity. For both hierarchi-
cally sparse and Kronecker-supported sparse vectors, classical methods like IHT and HTP exhibit a
time and space complexity of O(M?NT). Our MSIHT-Seq, MSHTP-Seq, and MSSBL-Seq have
time complexity O(MN?), O(MN?T), and O(M?N"'), respectively, and O(M!~1N) for space
complexity. Compared to HIHTP, our MSSBL-Seq has the same time complexity O(M?2N?) while
MSSBL-P1 has a lower space complexity (O(M N?) compared to O(M?N?) of HiHTP.

Similarly, for Kronecker-supported sparse recovery, when compared to AM-KroSBL and SVD-
KroSBL, MSSBL algorithm demonstrates lower time complexity from O(MIN') to O(M N') and
space complexity from O(M!NT) to O(N!). MSIHT and MSHTP exhibit the same or even lower
time and space complexity than MSSBL, hence lower than AM-KroSBL and SVD-KroSBL, demon-
strating the superiority of our multi-stage framework. We list all the time and space complexity of
the algorithms in Table @ We use Renm, Rovp, Rare, Rigr, and Ray to denote the number of
EM, OMP, HTP, IHT, and AM iterations. All these values can vary for different algorithms and
experiment settings.
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Table 2: Complexity of different algorithms in different sparse recovery problems.

Method [ Time Complexity [ Space Complexity
Recovery of s sparse vectors
MSSBL-Seq O(Rem(M2NT + MNT)) O(MT7IN)
MSSBL-P1 O(Rem(IM?N + MTN)) O(MNT)
MSOMP-Seq O(RompMNT + Ry NT-T + RE  p MNTTT) OMT~IN)
MSOMP-p 1 O(RompM'N + R3\(p M + RS\ (p M 1) O(MNT)
KroOMP O(RompMNT + R\ pMT + Ry (p MN + R3yp) | O(ND)
SBL O(RemM?'NT) O((MN)T)
OMP O(ROMT’(MN)I Jr1'?5(3)1»119 +R%)MPMI) O((MN)I)
Recovery of s hierarchically sparse vectors
MSSBL-Seq O(Rem(M?’NT + MNT)) O(MT-TN)
MSSBL-P1 O(Rem(IM?N + MTN)) O(MNT)
MSHTP-Seq O(Rutp(MNT + max; s2MN'™ 1)) O(MT-TN)
MSIHT-Seq O(RmurMNT) OM™N)
HiHTP Roth et al.|(2020) (I = 2) O(Rutp ((s152)°M? + (MN)?)) O((MN)?)
IHT O(Rmt(MN)") O((MN)T)
HTP O (Rure(MN)T + (TT7_, 5:)°M7T)) O(MN)T)
Recovery of s Kronecker-supported sparse vectors
MSSBL O(Rem(IM?N + MNT)) O(NT)
MSIHT O(RmurMNT) O(NT)
MSHTP O(Rurp MN' + Rurp M >.1_ 7)) O(NT)
MSOMP ] O(REypNT T+ REyp MNT"T 4+ Romp MNT) O(NT)
AM-KroSBL|He & Joseph/(20252) | O(Rem(RamINT + (MN)T)) O((MN)T)
SVD-KroSBL|He & Joseph|(20252) [ O(Rem(NTT! + (MN)T)) O((MN)T)
IHT O(Rmt(MN)") O((MN)T)
HTP O(Rure(MN)" + (IT7_, 5:)°M")) O((MN)T)

F PROOF OF THEOREM [2]

Before the proof of Theorem 2] we introduce four aiding lemmas.

Lemma 3. (Foucart & Rauhut| [2013, Lemma 6.16) Given a vector v € RY and an index set
T C [N], there is

I(In — H H)v)7|l2 < é[|v]|2,
if the cardinality of the union of T and the support set of v is not exceeding t.

Lemma 4. (Foucart & Rauhut, 2013, Lemma 6.20) Given vector n. € RY and set T C [N] with
cardinality not exceeding s, then

I(EH )7l < V14 0o

Lemma 5. For sparse matrix X with row support T with card(T) < s, and N € RM™*N the
sequence { X"} defined by SIHT or SHTP for solving an MMV problem Y = HX + N with
X0 =y, satisfies for any k > 0,

IX" = Xl < " X|lp + 7| e,

where
1—ak

1—
_ (\/2(1_628)+ \/1+6s)(1_ak)

[ 262
HTP: o = 3s =
Jor SHTP: a 1-02" (1—02s) (1 —a)

Proof. The proof closely follows the technique in [Foucart & Rauhut (2013, Theorem 6.18) and
Blanchard et al.| (2014). Here, we extend the SMV case in [Foucart & Rauhut| (2013) Theorem
6.18) to the MMV case. In the MMV case, the thresholding operator retains the rows of X* +
HT (Y — HXFk ) with the s largest row ¢ norms, and then we have

for SIHT: & = /3834, 7 = v/3(1 + da5) ; and

(X% BT (v~ X)) [ < (54 BT (v~ HXY)
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Removing the common rows from both sides, we arrive at

X+ HT (Y - HX®) o [ < (X +HT (Y - HXY) f IR

IHT proceeds with X*+! = (X*+ H" (Y — HX")) .. Since (X*™)p\ 7411 = 0 and
(X)TkJrl\T =0, we get

[(X -X"+X"-X+H' (Y- HX"))
< (XF-X+H'" (Y- HX"))

T\Tk+1 ||F

TEHI\T ||F

Applying reverse triangle inequality to the left-hand side and rearranging, we arrive at
H (X_Xk+1) SH (Xk_XJFHT (Y_HXk))Tk+1\7—HF
+ (X" -X+H' (Y - HX"))

T\Tk+1 ”F
T\TFk+1 ”F
<SV2 (X=X +HT (Y -HX")) ) riis |l

where TATHH = (T\ TF+1) U (T**+1 \ T) denoting the symmetric difference of the sets 7 and
Tk+1, Therefore, we obtain the error in the kth iteration as

X = X3 = (X = X) I+ (X = X) e [
= (X" + HT (Y = HX") = X) o |7+ | (X = X)
< (XF+HT (Y —HX") - X) 0 |2

2
T\Th+1 I

+2 (XF =X+ H' (Y - HX")) o I
3| (XF—X+H' (Y -HX")) e 7
Considering Y = HX + N, we then have
H)(k—i_1 - X”F < \/§|| (Xk - X+ H' (Y - HXk))TuTkJrl ||F
=V3|(I-H H)(X*-X)+H"N)_ .. lr

S V3T~ HTH) (X* = X)) r i e+ V31 (HTN) 7 [l
< V305 | X = Xlp + v/3(1+ 020) [ N[,
where the last step is the direct consequence of Lemma[3]and Lemmad] To see this, we note

(- H"H) (X"~ X)) o lf =D (I - H H) [X* - X],)

n

<05, X = X3 = 65,1 X% - X3,

2
TUT k+1 ”2

where [X* — X, is the nth column of matrix X* — X. We can derive similar argument for
V1 + 025|| N ||p. Conclusion for HTP has been given in Blanchard et al.| (2014, Theorem 3). This
concludes the proof.

O
Lemma 6. For the sparse recovery problem in the stage of unfolding jth (j < I — 1) mode of tensor
T:XX1H1 X2H2"’ XjHj Xj+1INj+1 X[INI+N,

where the sparse tensor X corresponds to s standard sparse x or s hierarchically sparse x. Its jth
mode unfolding leads to

-
Ty) = H;U; + N(j) = H; X ) (Ing;;; N @ (®3=j_1Hz')) + Ny (6)
Then the estimate of Uj, denoted as Uj and obtained through IHT or HTP, satisfies

||[Uj]nj+1 - [Uj]llj+1 ”F < O‘?”[Uj]nprl ||F + Tj“[Uj-i-l - Uj+1]ﬂj+2”Fa (N
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T ~
where [Ujly,., and [Ujln;, = [X(j)ln (®i=;_1H;) denote the nyy1th column block of Uy
and Uj, respectively. Here, encapsulation nj,, := (nj_H, -+ ny_1,ny) is the index for the column
block. The indices {ni}f:j+2 in encapsulation njyo := (nj49, -+ ,Ni_1,ny) have the same value

as the indices {ni}{zj+2 in encapsulation 111, i.e., the block indexed by nj,o should be a parent
block of the block indexed by nji1. Constants p; and T; depend on the iteration number k and
matrix Hj.

Proof. According to Lemma we solve EquationlEIby separating it into HZI} N; MMV problem,
where each MMV problem is indexed by an encapsulation nj; ;. Suppose we consider a fixed
encapsulation n, ; = (nj,,--- ,n}), and consider the MMV problem indexed by n},; as

(T()lnz,, = H;[Ujln:

.
s NGz, = HilX gl (@20 H:) + [Ngla

* * .
Dy 41

According to Lemmaand denoting the solution as [ﬁj}ngfﬂ with k£ IHT or HTP iterations, we have

11U

it+1

— [Ujlaz,, I < G IUjlas, e + 5[ [NGy o, e,

where 11; and 7; relate to the RICs of matrix Hj;. The only step left is to bound ||[N(;)]nr, , [[F using

[Ej—ﬂ—l]nj*+27 where Ej+1 = ﬁj+1 — Uj+1.

We recall that Equation [6]is obtained by unfolding the measurement tensor formed from the matrix
Uj;1 = Uj 1+ E; alongits jth mode. Hence, IN;y is simply reordered version of E; 1. Conse-
quently, the entries of the matrix [IN(;)|n- , are essentially entries of the n}_;th row of [E; ]
leading to

. «
j+1 Djya2’

I[NGnz,, Ie < NEj4lnr,, I,

;+1
and we arrive at the desired result.

To elaborate, we first investigate the indices of the entries of [IV (j)]nf+1~ The entries of the n;th row
of matrix [IN(;)]nr,, are obtained by i) fixing n; = n (row index) and nj41 = nj -+ ,ny =n]
(encapsulation), and ¢7) running nq, - - - ,mj_1 from one till Ny,---, N;_1, respectively. Thus, the
entries of matrix [IN(;)]nr,, can be obtained by i) fixing nj41 = nj .-+ ,nr = nj, ii) run-
ning nq,--- ,nj_1 from one till Ny,---, N,_4, respectively, and ¢i¢) running n; = 1,---, N;
(going over all rows). Given such knowledge, we start investigating the nj ;th row of matrix
[Ej+1]n;,,- The entries of this row are obtained by i) fixing 141 = nj,, (row index), i) fix-
ing njio = nj,,, -+ ,nr = nj (fixed encapsulation), and 4ii) running ny,---,n; from one
till Ny,---, N, respectively. By comparing how indices are arranged, we can see that the en-
tries of the matrix [N(j)}nj*+1 are essentially entries of the n7 th row of [Ej+1]nj*+2, inferring
I[Nz, 16 < [I[Nj]nz,, 6. O

*
it+1

As we have described before, Equation [6]is solved through multiple independent MMV problems.
Thus, the error bound is also given regarding each individual MMV problem. Further, not only the
jth step, but also the j + 1th step is solved through multiple independent MMV problems. Thus, we
do not have the upper bound for E;_; in Equation [Z_f] as a whole but only the upper bound for each
column block [Ej 1 1]y, ,. Fortunately, since all the noise entries in the jth step are contained as one
single row of the noise block in the previous step, having the upper bound for each column block
[Ejt1]n;,. is sufficient to derive the noise bound for the jth step, which is shown in Lemma@ and
Equation

Now, we proceed to the proof of Theorem[2] Generally speaking, Theorem [2]is obtained by recur-
sively applying Lemma [6] Particularly, focusing on the s hierarchical sparse vectors, for the last
step, i.e., the first mode unfolding, we solve

To) = Hi X1y + Ny,
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leading to HJI.:2 N; SMV problems. They are SMV because there is only one column in each
column block, and hence the MMV problem reduces to the SMV problem. Lemma [6]indicates that

10 -Uille < Y N0~ Wilnlle < ) afll[U]ns lle + 71l [B2ug I

na, - ,nyg na, - ,nyg
< Y olUiualle + 71 (05 1[Us)ng I + 2/l [ Eslu,lr)
n2,-,ny
I i—1 I
< Y DI e lidaly + [T 7l B a e
na,-,ny \ i=1 j=1 i=1

We note that I + 1th level contains only one block, leading to [Ef],,,, = Ej. Using the relation

U; =U; + E; and Lemmaleads to ||E;|lp < o§||Ur|lp + 77| N(1y||¢- This concludes the proof
for s hierarchical sparsity. For s standard sparsity, the upper bound for all s standard sparse vectors
is the worst upper bound among all possible s corresponding to the sparsity level s. Therefore,
taking the maximum over Vs € fx(s) concludes the proof.

For s Kronecker-supported sparsity, since the support is shared among different blocks in the same
level, it is unnecessary to introduce multiple MMV problems, but to solve only one MMV problem.
Thus, recursively applying Lemma 5]leads to the final result. For the last step, we solve

Ty = HiXq) + Nay,
which leads to the following relations,

|01 — Uil|r < of|UL|lp + 71| Nyllp

< o[ X1 llp + 71 (a5]|Uzllp + 72| N2y llr)
I -1 I

<> [ efrlUille + [ =IINIls-
1

i=1 j=1 i=

Thus, the proof is complete.

G ADDITIONAL NUMERICAL EVALUATIONS

This section presents a more comprehensive evaluation of our MSR framework, consisting of com-
plete results of Section[5]and a new set of results where we vary the number of measurements with
a fixed SNR. We also include a new metric named support recovery rate (SRR) defined as

_ |supp(2) Nsupp(z)|

SRR = - ,
| supp(2) U supp(x)|

where supp(-) returns the set of positions of the nonzero entries of the argument vector, | - | returns
the cardinality of the argument set, & is the estimated sparse vector, and « is the groundtruth.

We show a complete version of Figure Q] in Figure E} We use Tensorlab (Vervliet et al.| 2016) for
tensor operation and Seq and P1 to represent the sequential and parallel (parfor function in
Matlab (Inc., [2024)) implementation of Equation [5} they have the same recovery performance but
different run times. In the recovery of s standard sparse vectors, compared to Figure [2a] Figure [5a]
includes both the sequential and parallel implementation of our MSSBL. Regardless of different run
times as in Table 3] sequential and parallel implementations provide identical NSE and SRR results.
Regarding run time, only in low SNR cases, MSSBL-P 1 is faster than MSSBL-Seq. This is because
in high SNR cases, the parallel overhead dominates, including data transfer and communication
cost. As we see in Figure [3] when the computation cost dominates, there is a significant gain in
computation time, as a trade-off for memory usage. In the recovery of s hierarchical sparse vectors,
compared to Figure Figure [5b] includes the performance of MSSBL. MSSBL exhibits a worse
performance in low SNR scenario because it does not require the true sparsity level s as an input,
while for IHT/HTP-based algorithms, this prior knowledge is necessary. However, MSSBL is still
able to offer a comparable performance in high SNR scenarios, making it a powerful candidate
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Table 3: Averaged run time. A complete version of Table|1] Bold: the best result.

SNR [ 3 dB [ 7 dB [ 11dB [ 15dB [ 19 dB [ 23 dB
Recovery of s sparse vectors
MSOMP-seq 0.4256 0.4119 0.3827 0.3329 0.2204 0.0568
KroOMP 130.5405 108.0526 | 76.6942 | 39.9844 11.5774 0.7525
MSSBL-Seq 1.8191 1.1016 0.5758 0.2218 0.1417 0.1141
MSSBL-P1 0.4517 4.9263 0.2658 1.8292 0.1531 0.1281
Recovery of s hierarchically sparse vectors
MSSBL-Seq 2.4930 2.0134 1.2501 0.6102 0.1965 0.1112
MSSBL-P1 0.4962 0.4607 1.3664 0.2513 0.1447 0.1081
MSHTP-Seq 0.0379 0.0305 0.0297 0.0247 0.0186 0.0168
HiHTP 0.6512 0.5493 0.5204 0.5444 0.4398 0.4574
HTP 2.2436 1.7170 1.3256 0.8450 0.8264 0.5311
MSIHT-Seq 0.0500 0.0510 0.0532 0.0509 0.0450 0.0434
THT 8.2437 8.2412 8.2554 8.2917 8.2889 8.2789
Recovery of s Kronecker-supported sparse vectors
MSOMP 0.0042 0.0041 0.0040 0.0038 0.0026 0.0015
MSHTP 0.0011 0.0010 0.0011 0.0010 0.0010 0.0010
MSSBL 0.0728 0.0587 0.0447 0.0279 0.0119 0.0051
SVD-KroSBL 37.1233 26.9816 14.2405 8.6036 5.4067 4.0681
AM-KroSBL 55.9532 63.4676 75.9727 | 74.5840 | 51.7089 | 34.1331
HTP 0.9772 0.8347 0.4709 0.3465 0.2339 0.2323
MSIHT 0.0008 0.0007 0.0007 0.0007 0.0007 0.0007
THT 6.0771 6.0760 6.0763 6.0690 6.0677 6.0535
KSHTP 0.1018 0.0730 0.0665 0.0811 0.0865 0.0881

when the prior knowledge s is absent. In the recovery of s Kronecker-supported sparse vectors,
compared to Figure[2c| we include IHT/HTP-based algorithms in Figure[5c] KSHTP is the algorithm
we explained in Equation Although the thresholding operator for Kronecker support is not
optimal, KSHTP still offers the best SRR performance, followed by MSHTP. MSIHT has the least
run time, which is four orders less than its classic counterpart IHT. Overall, Figure E] and Table E]
demonstrate that our MSR framework can offer comparable or better performance with significantly
reduced run time.

We next evaluate the performance of different algorithms by fixing the SNR and varying the number
of measurements. The setting is as follows. For the s standard sparsity, we opt for H = ®@!_, H;
with 7 = 2, and set M = {48,52,56,--- ,72} and N = 80. The entries of H; and nonzero
entries of x are drawn independently from the standard normal distribution. We set s = 15, and
the support is randomly drawn from a uniform distribution. For s hierarchically sparse vectors, we
also opt for I = 2, and set M = {48,52,56,--- ,72}, N = 80, and s = 15. In the Kronecker-
supported sparsity model, we opt for I = 3, and set M = {12,13,--- ,16}, N = 18, and s = 4.
We adopt the additive white Gaussian noise with zero mean with SNR (dB) = 20. Ratio is defined
as M/N = Hle M;/N; = (M/N)!. We consider NSE, SRR, and run time for performance
evaluation. We follow the same way to cap the number of iterations. Results in Figure[6]and Table ]
are obtained through two hundred independent trials. Overall, we observe similar trends as in Figure
[5and Table[3] Our MSR is able to provide comparable or better performance with reduced run time,
demonstrating the efficacy of exploiting the Kronecker product structure in the recovery process.
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FMSOMP ¥¢KroOMP QMSSBL-Seq * MSSBL-P1

103 \ \ \ 1 \ \ \ j)'

=z

5 10 15 20 25 5 10 15 20 25
SNR (dB) SNR (dB)

(a) s standard sparsity.
O MSSBL-Seq % MSSBL-Pl [>MSHTP-Seq ¥g HiITP <] HTP /\ MSIHT-Seq Y7 THT —— /o Sparsity ===w/ Sparsity
T T T 1 T T T T

5 10 15 20 25
SNR (dB)

(b) s hierarchically sparsity.

% MSOMP [>MSHTP (O MSSBL <] HTP () AM-KroSBL [] SVD-KroSBL /\ MSIHT Y7 IHT X KSHTP —1w/o Sparsity —=-w/ Sparsity

10"

25

SNR (dB) SNR (dB)

(c) s Kronecker-supported sparsity.

Figure 5: NSE and SRR as functions of SNR.
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(a) s standard sparsity.
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(b) s hierarchically sparsity.

% MSOMP [>MSHTP ( MSSBL <] HTP ) AM-KroSBL [] SVD-KroSBL /\ MSIHT Y/ IHT X KSHTP —w/o Sparsity —--w/ Sparsity
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(c) s Kronecker-supported sparsity.

Figure 6: NSE and SRR as functions of the number of measurements.
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Table 4: Averaged runtime in seconds. Bold: the best result.

Recovery of s sparse vectors

M [ 48 52 56 60 64 68 72
MSOMP-Seq | 0.0735  0.0951  0.1265  0.1574  0.1937 0.2312 0.2918
KroOMP 0.7139 1.1941 2.1137  3.7952  7.4092 12.5439  22.4149
MSSBL-Seq 0.1726  0.1743  0.1439  0.1364  0.1332 0.1368 0.1321
MSSBL-P1 0.1412  0.1464  0.1508  0.1517  0.1498 0.1527 0.3298
Recovery of s hierarchically sparse vectors
M [ 48 52 56 60 64 68 72
MSSBL-Seq | 0.2978  0.2594  0.2031 0.1692  0.1552  0.1407 0.1274
MSSBL-P1 0.1734  0.1614  0.1467  0.1363  0.1299  0.1248 0.1197
MSHTP-seq | 0.0204  0.0198  0.0190 0.0191 0.0178  0.0170 0.0168
HiHTP 0.3661 03622  0.3691  0.4189  0.4181  0.4599 0.5127
HTP 03071  0.3641 04753  0.4980  0.6407  0.6867 0.4566
MSIHT-seq 0.0527  0.0502  0.0479  0.0457  0.0449  0.0421 0.0416
THT 47097 54549  6.2188  7.1292 83298  9.1231 10.1874
Recovery of s Kronecker-supported sparse vectors
M [ 12 13 14 15 16
MSOMP 0.0017 0.0017 0.0019 0.0020 0.0023
MSHTP 0.0010 0.0010 0.0011 0.0011 0.0013
MSSBL 0.0187 0.0141 0.0118 0.0092 0.0083
SVD-KroSBL 5.3134 4.8928 4.7247 5.0780 5.3094
AM-KroSBL 52.0891 524779  49.6836  47.0243  42.6749
HTP 0.0715 0.1113 0.1658 0.2508 0.2745
MSIHT 0.0009 0.0008 0.0009 0.0007 0.0007
IHT 3.4581 4.0502 4.9489 6.0187 7.2859
KSHTP 0.1184 0.0908 0.1048 0.0885 0.0829
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