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Abstract

We provide generalization bounds for matrix com-
pletion with Schatten p quasi-norm constraints,
which is equivalent to deep matrix factoriza-
tion with Frobenius constraints. In the uniform
sampling regime, the sample complexity scales
like O (rn) where n is the size of the matrix and
r is a constraint of the same order as the ground
truth rank in the isotropic case. In the distribution-
free setting, the bounds scale as O (rl_gn““% ),

which reduces to the familiar \/rn2 for p = 1.
Furthermore, we provide an analogue of the
weighted trace norm for this setting which brings
the sample complexity down to O(nr) in all cases.
We then present a non-linear model, Functionally
Rescaled Matrix Completion (FRMC) which ap-
plies a single trainable function from R — R to
each entry of a latent matrix, and prove that this
adds only negligible terms of the overall sample
complexity, whilst experiments demonstrate that
this simple model improvement already leads to
significant gains on real data. We also provide
extensions of our results to various neural archi-
tectures, thereby providing the first comprehens-
ive uniform convergence PAC analysis of neural
network matrix completion.

1. Introduction

Matrix Completion (MC), the problem which consists in
estimating a ground truth matrix G € R™*" from a small
number N « mn of observations, is an important machine
learning problem with applications in various fields such as
recommender systems (Mazumder et al., 2010; Hastie et al.,
2015; Zhang et al., 2018; Koren et al., 2009), community
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discovery (Qiaosheng et al., 2019) and drug interaction
prediction (Li et al., 2015). To recover a ground truth matrix
based on a small number of observations, it is necessary
to assume that it has some structure. Accordingly, there
are a wide set of constraints and regularizers which aim to
indirectly induce rank sparsity. One of the most well-known
examples is the nuclear norm |- |, which is defined as the
sum of the singular values (Mazumder et al., 2010).

The Schatten p quasi-norm (for p < 1) provides an alternat-
ive form of rank sparsity inducing constraint. The Schatten
p quasi-norm | Z|sc,,, of a matrix Z is defined as [}, p?j]%,
where the p,s are the singular values of Z. In particular,
when p approaches 0, | Z|%. , = >, pb approaches the rank
of Z. When p = % for some integer d, this is known to be
equivalent to the popular deep matrix factorization (DMF)
framework (De Handschutter et al., 2021; Arora et al., 2019;
Fan & Cheng, 2018), whose predictors take the form of a
product of matrices AD; ... D, 5BT, with a regularizer
of the form £(A, D, B) := Y| D, |3 + |AI3 + | BI3-
Indeed, the minimum

min£(A,D,B)  st.AD;...Dy oB" =27 (1)
is d| Z|»

B (see (Dai et al., 2021), or Theorem F.22). This
equivalence with Schatten p quasi-norm constrained MC is
gathering substantial interest in recent years (Arora et al.,
2019; Giampouras et al., 2020), and implications for sample
complexity are not fully explored. Indeed, the early literat-
ure on deep matrix factorization is mostly concerned with
algorithmic and optimization issues. It is also worth noting
the equivalence has intriguing implications beyond matrix
completion, to the study of the implicit regularization of
depth in neural networks, which seen explosion of recent in-
terest in the community (Jacot, 2022; Wang & Jacot, 2023).

The last few years have also witnessed a surge in the popular-
ity of non-linear matrix completion models. For instance,
a branch of the deep matrix factorization literature incor-
porates non-linear functions inside the product (Xue et al.,
2017; Fan & Cheng, 2018; Fan, 2021), leading to predict-
ors of the form 9o (Agl (D1 e gd_g(Dd_ggd_l(BT)) .. .),
where the gs are activation functions. Moreover, many mod-
els are simply neural network architectures which take a
(row, column) combination as input. Such models typically
incorporate learnable row and column embeddings. This
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idea appears to date back to the Neural Network Matrix
Factorisation model (NNMF) (Dziugaite & Roy, 2015). A
relevant variant is (He et al., 2017), which involves a concat-
enation of Hadamard products of user and item embeddings
and neural encodings followed by a linear layer.

Whilst existing research provides many new algorithms and
insights into the optimization landscape of various DMF
and NNMF methods, very few provide a sample complex-
ity analysis of the associated function classes: to the best
of our knowledge, most of the existing work in this dir-
ection is limited to MC without non-linearities and with
p = 1 (Shamir & Shalev-Shwartz, 2011), with the excep-
tion of (Fan et al., 2020). In this paper, we study sample
complexity of DMF with and without non-linear compon-
ents. Our programme is to study a broad class of predict-
ors: g(i,j) = ¢(Zi j, -, Zi 3, ¥(4, 7)), where ¢ and ¥ are
neural networks and the matrices Z!, ..., Z2 may be sub-
ject to various Schatten type constraints. We include a large
variety of results for many such models in the supplementary
material, but for the sake of simplicity, here, we focus our
exposition on the following two much simpler cases: (1)MC
with Schatten p Constraints: g; ; = Z;;, subject to
| Z||sc,p < M for some constant M; and (2) Functionally
Rescaled Matrix Completion (FRMC): g; ; = fy(Z; ;)
subject to || Z|sc,p < M, |Z]loo < By and | foup < Ly for
some constants M and L.

In addition, inspired by earlier work on the weighted
trace norm (Foygel et al., 2011; Srebro & Salakhutdinov,
2010), we study alternative constraints based on the
following weighted version of the Schatten quasi-norm:
| diag(p)2 Z diag(4)? ||sc.p» where the vectors p, § are es-
timates of the marginal row and column probabilities.
Throughout the paper, we use abbreviations such as FSd
(“functionally rescaled Schatten-d”) for the model with
Schatten % constraint and a rescaling function f, and other
similar acronyms, which we summarize in the table of nota-
tion in Section A. Our contributions are as follows:

* For MC with a Schatten quasi-norm constraint in the

uniform sampling regime, we show sample complexity
2

bounds of O ((m + n)r) where r = [\/%] " scales

like the rank of the ground truth.
* In the distribution-free setting, we show a sample com-
plexity bound of O (rk% (m + n)”%) . This reduces

to the classic rate of O (\/F(m + n)%) (cf. (Shamir &
Shalev-Shwartz, 2011; 2014)) for p = 1.

* By considering the weighted version of the Schat-
ten quasi-norm, we are able to bring the rate back to
O (r(m + n)), analogously to the case p = 1 in (Foy-
gel et al., 2011).

* As can be seen in Table 1 the Functionally Rescaled
model in all of the cases above, we show that learning
the function only brings a negligible cost to the sample
complexity (it merely adds a constant which depends
on the Lipschitz and boundedness parameters).

* We provide extensions of our results to the case of
multiple latent matrices and neural encodings in the
appendix. Cf. Subsection C.3 and Section G. In par-
ticular, some of our results apply to (Dziugaite & Roy,
2015; He et al., 2017), which we show (cf. Sec F.6)
involve implicit Schatten 2/3 regularization.

e Our proofs rely on low-level modifications of chain-
ing arguments which may be of independent interest.
In particular, we prove “multi-class chaining” Lem-
mas E.4 and E.3, which allow one to bound the
Rademacher complexity of combinations of function
classes without access to covering numbers for each
individual class.

* In extensive synthetic and real life experiments, we
evaluate the effects of the depth parameter d, the pres-
ence or absence of weights in the norm constraints,
and the presence or absence of additional neural em-
beddings. We find that p = 2 generally performs
significantly better than p = 1, and our proposed
weighted Schatten norm is slightly superior to their
non-weighted counterparts.

Our results and the comparison to the related works can also
be seen in Tables 1, 4 and 5. In all our results, we assume a
bounded and Lipschitz loss function.

2. Related Works

Approximate Recovery in Matrix Completion: There is
a substantial body of literature on the sample complexity
of matrix completion with bounded Lipschitz losses and
norm constraints. In particular, our work takes much in-
spiration from the pioneering works of (Foygel et al., 2011)
and (Shamir & Shalev-Shwartz, 2011; 2014), which proved
some particular cases of some of our results for MC, without
a learnable function, in the case p = 1. The explicitly
rank-restricted case was studied in classification settings
in (Srebro et al., 2004; Srebro & Shraibman, 2005; Srebro
& Jaakkola, 2005). Table 4 positions our work within the
approximate recovery literature.

Beyond the examples above, we are not aware of any
work on the approximate recovery for Schatten norm con-
strained matrix completion. However, similar problems
have been studied with different losses or sampling re-
gimes. In particular, (Fan et al., 2020; Fan, 2021) study
approximate tensor recovery with Schatten regularization
over the space Sin of order d tensors with orthogonal
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Table 1: Summary of our results for Functionally Rescaled Matrix completion (FRMC). The O notation hides logarithmic
factors, including N, m, n,r, £, B the failure probability ¢ and the constraint on By on the maximum entry.

f(Z) with Sampling Generalization bound Result

|72 8 <775 Gnitorm O (BEZ ¢35 \/T<m+"> n \/B”Bﬂ Li (B Thm 3.4
HfHLlp <Lp[Z]o < B N Y

H\/ﬁ”sw <rl=% : 1-2 2 [l =% ()t 8 B2+ BoLi (B
T Lf’ 121, < B Arbitrary B 242 ~ ~ Thm 3.5
JlLip & Lo, ©

”ZHsc,p < 7'1_% . ~ z%zf’ 2= \/'r(m+n) \/82 +BoLs 4B

A e G S R Thm 3.4

CP factors'. Since tensors are more general and gener-
ally more complex to study than matrices, the results go
well beyond the more restricted setting of matrix comple-
tion which we study here. However, in the case of a 2-way
tensor (i.e. a matrix), the results can be interpreted as a
Lagrangian formulation of the empirical risk minimization
problems we study. The loss function is the square loss
and sampling is uniformly at random without replacement,
which means the results are not quite directly comparable.
Nonetheless, the achieved L2 excess risk bounds scale like

{/(n% M7 )/(Np)(cf. (Fan et al., 2020), Theorem 4),

where M is an upper bound on the |||/, norm of the re-
covered matrix. Expressed in terms of our rank-like quantity

7, this turns into 4 (rnﬁ )/(Np). In contrast, our result

o~ 2-2p p 2p 2-3p
is O (B =p (27 \/(M 2=p 2P

)/(Np)> , which trans-

lates to O ( (rn)/(N p)) Firstly, note both results scale

like O(rn) when p — 0 (though the constant blows up like
1/p in both cases). Secondly, our rate is uniformly tighter
since 2/(2 — p) > 1. And lastly, the bound in (Fan et al.,
2020) is vacuous for p = 1, scaling like 5(rn2) in that case,
compared to O(rn) in our result.

Exact and perturbed recovery for matrix completion (and
inductive matrix completion) is a very well-studied prob-
lem (Recht, 2011; Candes & Plan, 2010; Candes & Tao,
2010). In general, using nuclear norm constraints or regu-
larization (which is equivalent to the case p = 1 from our
study) results in a sample complexity of O(rn). We refer
the reader to (Recht, 2011; Xu et al., 2013) for more details.
There is also a substantial amount of work on other soft
relaxations of the rank, such as the max norm. In particu-
lar, the early work of (Sr~ebro & Shraibman, 2005) shows
a sample complexity of O(nM?), where M is a constraint
on the max norm. A low-noise recovery result was achieved
for the max norm in the classic work of (Cai & Zhou, 2016),
which was further extended in (Wang et al., 2021) to provide

"This is a strict subset of the set of tensors of order d when
d > 2, but it coincides with the set of all matrices when d = 2.

bounds on the uniformly weighted Frobenius error of the re-
covered matrix in the non-uniform sampling regime (under
some approximate uniformity assumption on the sampling
probabilities). For Schatten constraints with p < 1, there
appears to be little to no existing work in the case of ran-
domly sampled entries. However, there are several works on
the sample complexity of compressed sensing for Schatten
quasi-norm MC (Zhang et al., 2013; Arora et al., 2019; Liu
et al., 2014; Recht et al., 2010). Nonetheless, compressed
sensing is not directly comparable to matrix completion,
especially in the arbitrary sampling regime we study. Cf
Section I for more details.

Earlier works on deep matrix factorization often focus on
the optimization and algorithmic aspects (Trigeorgis et al.,
2016; Zhao et al., 2017) without providing sample com-
plexity bounds, though some include non-linear compon-
ents (Xue et al., 2017; Fan & Cheng, 2018; Wang et al.,
2017; De Handschutter et al., 2021; Wei et al., 2020; Lara-
Cabrera et al., 2020). Note that the non-linear components
in those works are interspersed between each matrix in the
product which implies the models are different from both
our proposed FRMC and the analogous models we study.

The observation that deep matrix factorization is equivalent
to Schatten norm regularization was made in other works,
including (Arora et al., 2019), which studies the optimiz-
ation landscape of the problem in a compressed sensing
setting where the measurement matrices commute (which
does not apply to indicator measurements). The implica-
tions this has on the implicit rank-restriction which occurs
when training deep neural networks is currently the subject
of a large amount of interest in the community (Dai et al.,
2021; Jacot, 2022; Wang & Jacot, 2023). However, those
works typically do not study sample complexity, perhaps
it is only non trivial when the matrix is not flat, which im-
plies a multi-output scenario in the neural network context.
Nevertheless, the potential to generalize our results to that
situation is a tantalizing direction for future work which may
shed a different light on implicit rank-restriction in DNN
training.
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3. Main Results

Notation and Setting: In line with much of the literature
on approximate recovery in matrix completion (Shamir &
Shalev-Shwartz, 2011; 2014; Foygel et al., 2011), we as-
sume an i.i.d. sampling regime in a supervised learning
setting where the input space is the set of entries [m] x [n]:
each sample/observation consists in a pair (&, G ) sampled
i.i.d. from a joint distribution, where £ € [m] x [n], and G is
a real number. We try to learn a model g : [m] x [n] = R,
whose performance is to be evaluated by a loss function
1, which can depend on &, G and the prediction of the
model g¢. The loss function | is assumed to be /-Lipschitz
w.r.t. the prediction g(&) (for fixed &, G), and uniformly
bounded by a constant B. For each fixed £ = (¢,7), we
choose G¢ € argmin(1(ge, G, €)). The resulting matrix
G € R™*™ is referred to as the ground truth matrix. For
instance, if 1(g, G, £) = F(]g — G|) where F : RT — Ris
a strictly increasing function and for each (z, j) € [m] x [n]
we have CNJ(M) = R; ; + ¢ where ( is generated via i.i.d.
noise from a symmetric distribution with E(¢) = 0, then
G = R. The marginal distribution over £ is a doubly
stochastic matrix whose (i, j)th entry we denote by p; ;. We
also write p; and g; for the marginal probabilities of the ith
row and jth column, respectively. Our training set S consists

{(€,G0),....(€¥.Gn)} <
([m] x [n]) x R. By abuse of notation, we sometimes omit

the dependence of 1 on G and & by wrltlng the empmcal
expectation of a function F as E(F(§)) = ZO 11(F)

instead of + Zivzl 1(F,, Gy, &,) and sometimes use nota-
tions such as g; ; and g(4, j) interchangeably to denote the
prediction made by predictor g € R™*™ for entry (i, 7). In
addition, by further abuse of notation, we will often write
E(((Z)) and E(£(Z)) instead of the previous quantities. A
table of notations 3 is available in Appendix A.

of i.i.d. N samples: S =

* For a predictor g € R™*", the empirical loss is

~ ~

N
i(g) := BU(9(0), 6. ) = 3¢ D) g5y, G &)

In particular, if the ground truth matrix G € R™*"™ is
observed without noise, the /N observations are distinct
and the loss function 1 is the square loss, 1(g) =

*Zlgz]v 4,59 'L] *Zwi] i7j|2

(H) (IJ)

where Q < [m] x [n] is the set of observed entries.

* The population expected loss is

I(9) == E(l(g(¢), G, €)),

where the expectation runs over a random joint draw
of the entry £ € [m] x [n], and the observation G. In
particular, if the entries of the ground truth matrix G
are observed without noise and the loss function 1 is
the square loss, we have 1(g) =

2 ng gl]a z]) Z pi,j(gi,j _Gi,j)zv
[n:]i[en] (i.7)eQ
where p;; denotes the marginal probability of
sampling entry (4, 7). For uniform sampling, we fur-
ther have 1(g) = -1 |g — G |%,, where ||| s, denotes
the Frobenius norm.

* For a general predictor g € R"**", the generalization
erroris 1(g) — T(g) Given the class of matrices F <
R™*™ the empirical risk minimizer § € F is defined
by g € argmin ¢ =(1(g)). The excess risk is then

1(9) — minl(g). @)

0 and O Notations: For simplicity, some of our results
(e.g. Thms 3.4 and 3.5 and the results in the summary
tables) are expressed in terms of a O notation which hides
polylogarithmic factors in all variables, including By, L,
the failure probability J, the constants £, B relative to the loss
function, etc. Both the O and O notations also assume that
By, B = 1. The formal results including all polylogarithmic
terms are in the appendix.

3.1. Excess Risk Bounds for Matrix Completion with
the Schatten Quasi-norm

In this subsection, we present our results for matrix comple-
tion with Schatten quasi-norm constraints. A summary of
our results is available in Appendix B.

Notation for the Weighted Setting: In the weighted set-

N
o= Lgo); =i
N

ting, we require empirical estimates p; = and

N
. 1(coy,— . .
gj = % of the quantities p; and g; respectively.

Furthermore, similarly to the literature on the weighted trace
norm (Foygel et al., 2011; Srebro & Salakhutdinov, 2010),
we also work with the smoothed versions p; = % Di + 5
dj = 3¢; + 5 of the ground truth distribution as well as
the empirically evaluated analogues p; = 3 L1p; + 5L and
4; = 3q; + 5. By abuse of notation, we write dlag( )
and diag(q) for the diagonal matrices with diagonal ele-
ments p1,...,Pm and q, . .., g, respectively (and use sim-
ilar notations for p and ¢). For a matrix Z, we denote
by Z the matrix diag(p)z Z diag(§)2, so that | Z||, is the
(smoothed) weighted trace norm (Foygel et al., 2011). Sim-
ilarly, Z = diag(p)2 Z diag()?.

Remark on the Definition of the Rank-like Quantity 1:
To better illustrate the implicit ‘dimensional’ dependence of
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the bounds which arise from our norm-based constraints, we
typically express our constraints on the Schatten norms of

2
matrices in terms of the “rank-like” quantity r = | \/A%] 7,

where M is an upper bound constraint on | Z||sc . In the
case p = 1 this is a well-established convention in the liter-
ature (Foygel et al., 2011; Srebro & Salakhutdinov, 2010;
Ledent et al., 2021b; Foygel et al., 2012).

Let us briefly explain the rationale behind this notation in the
case of an arbitrary p. Suppose the entries of some matrix Z
are bounded above by some constant C: |Z; ;| < C (for all
i,7). Then we have || Z|%, = >}|Z; ;|* < C*mn. Writing
p1, - - -, pr for the singular values of Z in decreasing order,
we then have, by Holder’s inequality:

T

=D =1

o=1 o=1

121sc.p

Similarly, if we have |Z; ;| > Co for all 4, j, then | Z||p >
Co+/mn. If the spectrum is homogeneous, i.e., p1/p, :=
# = O(1), then we also have | Z|g. , =

> kPP R [C2mn]E = Q(Vmn i), (€))

Thus, if a matrix Z has Q(1) entries and an approxim-
ately umform spectrum, then its Schatten quasi-norm is

Q(y/mnr = ), which justifies that notation: enforcing the
2

P
1Z]sc.p |27
mn

constraint [ < r can be understood as a ‘soft’

analogue of restricting the rank to r or less with a tolerance
for additional singular values of very small magnitudes.
The tolerance is greater for larger values of p. A similar
argument can be easily derived for the weighted case by
substituting the estimates of the Frobenius norms by the
following: C3 < | Z|3, = Y. p:d;|Zi ;1> < C?. This leads
to the conclusion that HZHSC p S CPr'=% (and in the case

of a uniform spectrum, Cr'=% < || Z|?

This justifies

sc,p*

~ 2P
the use of the notation r for constraints imposed on || Z| s 5 .

We provide the following results in this subsection:

« A sample complexity result of O((m + n)rp~?) for
matrix completion with the Schatten norm p < 1

weighted with the smoothed ground truth marginals
(Theorem 3.1). In particular, this result applies to the
unweighted Schatten norm regularized matrix comple-
tion problem in the uniform sampling regime.

« A sample complexity result of O((m +
n)'*5r1=5p=1) for the unweighted Schatten
quasi-norm regularized matrix completion problem in
the distribution-free setting.

* An excess risk bound corresponding to a sample
complexity of O((m + n)r) for the empirically
weighted Schatten quasi-norm regularized problem in
the distribution-free setting under the assumption that
p= % for some integer d.

* Furthermore, the factors of p can be removed at the
cost of an additional factor of log(By), where By is an
upper bound imposed on the entries. See also Table 5.

Theorem 3.1 (cf. Theorems C.1 and C.2). As in the rest
of this paper, assume the loss function | is £-Lipschitz and
bounded by B. Let p > 0 be a fixed Schatten index and let
r > 0 be a fixed real number. Consider the class F{ of

2-p
matrices with Schatten Quasi-norm bounded by /mnr 2r :

scp\

FP = {Z e R™ " . | Z|P mnfri =% } 6))
If the sampling distribution over entries is uniform, then

forany § > 0, wp. = 1 — § over the draw of the training
set, every matrix Z € F} satisfies the generalization error

bound EN(Z¢, G, &) — E1(Ze, G, €) <
lln%
+B N],

where {, = ¢+ 1 and r, = r + 1. More generally, if the
sampling distribution is arbitrary with smoothed marginals
p and q, the result holds for the class .7-7’ = {Z e Rm>"

HZHSCP }whereZ diag(p)2 Z diag(§)?.

Furthermore, if one incorporates an enforced upper bound
on all the absolute values of the entries:

—<P p * Ng*
o| B=% 175 r(wjl\;n)lnrmg

Flp, ={ZeR™" |28, <75 | Z]w < Bo },

then we have instead (wp. > 1 — ), E1(Z) — E1(Z) <
220 p [r(m+mn) . mnNr.l, By In 5

O[B2 0z I In 5 + B - |

See Theorems C.1 and C.2 in the appendix for a full proof.

To illustrate the implications of Theorem 3.1, let us consider
the idealized situation where the ground truth matrix G is
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of low-rank 7, the loss function 1 is the truncated square loss
1(a, b, (i,5)) = min((a — b)?, 1), there is no noise in the
observations and the sampling distribution is uniform. By
Equation (3), we have | G [ p < \/%f%p Thus, if we
solve the following empirical risk minimization problem:

%1)

. 1 .
Mmlmlzezﬁ Z min(|Z; ; — Gy 4
(i,5)e

7
|Z)scp <777 /mn

for some I < r < O(T) where the set of observed entries
(2 is counted with multiplicity, Theorem 3.1 implies a high
probability error bound for the (global) minimizer Z:

1 2
— Z min [ ,1]
(G j)elm) x [n]

t(m+n) log (r*mnNE*) LB

subject to

~

Zij = Gij

<0

Np ) N

1og<3;>].

This matches the same sample complexity rate of O(n )
achieved by nuclear norm regularization. However, the
result is more general since it is not necessary impose I < 7,
only || G llscp < \/ﬁr%p: thus, the sample complexity
can adapt to the approximate low-rank ness of the ground
truth as expressed through its Schatten quasi-norm.

Sketch of proof of Theorem 3.1. The proof uses a novel
technique we refer to as “parametric interpolation”, which
consists in interpolating between the regimes where p ~ 0
and p ~ 1. Since we need to use the boundedness of the loss
function to get a tight bound on the parametric component,
the combination also requires the refined “multi-class chain-
ing” arguments from Lemma E.3, but we leave the details to
the Appendix and focus on the intuition in this proof sketch.
For simplicity, we treat B and £ as constants and absorb
all logarithmic factors of N, m,n,r into O notation. See
Theorems C.1 and C.2 (and the results they rely on, such as
Theorem D.2) for details.

At the left extreme (p — 0), it is known that the class of
matrices whose rank is explicitly restricted to some value rq
exhibits a sample complexity of O(r1(m + n)) (see (Srebro
& Shraibman, 2005; Srebro et al., 2004) for an early discus-
sion of a nearly identical problem where the target matrix
is assumed to be in {—1,1}"*™ and the distribution is uni-
form, see (Vandermeulen & Ledent, 2021) for a covering
number of the class of low rank matrices, see Lemma D.1).
This is in line with the fact that explicitly rank-restricted mat-
rix completion is a parametric model, leading to a sample
complexity of the same order as the number of parameters,
omitting logarithmic factors of the magnitude of them.

More precisely, by Lemma D.1, the sample complexity of
a bounded loss class associated to the set of matrices of

rank 7y is O(ry(m + n)log(By)), where the O notation
hides logarithmic factors of n,m, N and r. Similarly, the
sample complexity of matrices Z satisfying || Z |+ < /72 is
5((m + n)ry) by the more recent results of (Foygel et al.,
2011).

2 (and | Z] o <

By), we can write 7 = Z1 + Z2 where 21 is the sum of the
terms in the singular value decomposition of Z associated
with a singular value greater than 7 for some threshold
7. Writing pq, p2, ... for the singular values of Z, since
1Z|5., = 2205 < r1=%, by Markov’s inequality, we have

Next, for any matrix Z with HZ 5., <

rl=

(NS

r1 = rank(Z7) < (6)

TP
Furthermore, since all the singular values of Zg are bounded

above by 7, the nuclear norm || Z5 |, = Yo 41 Pv Can be

controlled as ry := HZ2H* =

n

Y )P(p)' P < |2, T

v=ri+1

_ 1—-2 1—
Pgr 5 P'

B

Thus, the function class F,. FP Bo is included in the function
class R, + T, where

R, = {Zl :rank(Z;) <

Tr:{Zz

Thus by Lemma D.1 (parameter counting bound of R;)
and Proposition F.5 (norm-based bound on the set of low
nuclear norm matrices), together with the sample complexity
of .7-' B, can be upper bounded by

N2l < mnzs’o}

) Zolle < ' E THJ}.

%) ((m +n) [T;pg log(Bo) + r2~7 T“PD .

Setting the threshold as rz yields a sample complex-

ity of O ((m + n)rlog(By)). as expected. When no sep-
arate upper bound is enforced on the entries, we can

still upper bound | Z|, by 2«/mn|\§HSC7p < 2w/mnr22;pp,
which implies the additional factor log(B;) becomes

Olog(r 7)) = O(2). 0

p

Next, we also control the sample complexity of learning
with the non-weighted trace norm under arbitrary sampling.

Theorem 3.2 (Cf. Theorem C.3). Consider the following
function class for 0 < p < 1:

{Z c Rmxn . HzH ep < Mp _ ?’LpTl 2}.



Generalization Analysis of Deep Non-linear Matrix Completion

1— 90, every Z in F{ satisfies E1(Z) — ]EI(Z) <

\/Tl—g(m +n) e
MP(m 4 n)'"2cy
J g

where ¢ = In(mnNr, £,) Co =
In(mnN[MP +1]4,) with £, = (+1  and
r« =_r + 1. Thus (fixing B,{) the sample complex-
ity is O(r'=% (m 4 n)'* % /p). For the class Fr gy =

(NS
NS

B2y +B

s

O|B"2¢

and

{ZeR™" | Z)cpy < M = Vimnlr] ', | 2], < By }

then we have instead (w.h.p.) E1(Z) — E 1(Z) <

o |ty e

In(%)
N )

S|

N +B

where ¢z = In(mnN[By +1][¢ +1]).

Remark: The above result reverts to the classic O((m +
n)2r2) whenp = 1. As p — 0, the first bound in (7) blows
up due to the factor of p_%, whilst the second yields a
complexity of O ((m + n) MP?), in line with the parameter

counting argument.

Finally, an excess risk bound can be shown in the more
realistic case where the function class restriction relies on
the empirical marginals instead of the true marginals.

Theorem 3.3 (Cf. Theorem C.4). Assume p = 2 for some
integer d and that the ground truth is realizable: || G |sc,p <
|22, < [2r]5).
We have the following excess risk bound w.h.p. (where
by=C+1landr, =7+ 1): E1(Z)) —E(1(G)) <

Let Z € argmin, (E( ):

sc,p

2=2p = r(m + n)
OlB 12 Np n 5

remnN/ In i
1 * * 76 .
B N]

The proof relies mostly on Lemma E.5, which is a generaliz-
ation of Lemma 4 in (Foygel et al., 2011) to the case p # 1.
This lemma shows that for large enough NV, the Schatten
quasi-norms of Zand Z (for any Z) are within a small ra-
tio of gach other (w.h.p.). This allows us to show that the
class F%_ contains the ground truth with high probability.
Note the constraint in our resultis | Z|[?, = < [2r]'~% rather

than HZ||SC » < —%. This is in contrast to the case p = 1
in (Foygel et al 2011) with the more natural constraint
| Z|« < r. However, for practical purposes, the presence of
the factor of 2 in our result is not an issue, since it merely

sc,p

slightly increases the cross-validation cost of the constraint
parameter. Also, the result only works for p = %, i.e., when
the optimization problem can be reformulated as

Z € argmin
z

<E(1(Z)) Z=A ﬁ D,BT :

v=1

d—2
| AR + 1Bl + X 1Dl <

v=1

d[2r]1—’5>. 8)

Remark: Interestingly, reformulating the condition
as above makes the factors of p disappear from the
bounds: if we reformulate that condition by writing
r = d7er, so that [2r']'~% is an upper bound on
|2, + 1B + X523 | Du[3,, the final sample complex-
ity is O((m + n)rp~!) = O ((m + n)r’d_%’“), ie.

0 ((m + n)r’diﬁ) = O((m + n)r’). Of course, this
applies to Theorems 3.1 and 3.2 as well.

3.2. Generalization Bounds for FRMC

We now move on to our results on a new class of models
we refer to as “Functionally Rescaled Matrix Completion”
(FRMC), where the predictors take the form fy(Z) where
fo is a trainable function and Z is a Schatten-constrained
matrix. Thus, these models can be seen as an analogue of
“generalized linear models” in Matrix Completion. In a nut-
shell, our results show that learning the rescaling function
f can be done at negligible cost to function class capacity
and generalization performance. Indeed, our generalization
error bounds take the form of a sum of two terms, one corres-
ponding to learning the complexity of the matrix class, and
another one corresponding to the function class Fiip 1.;.3 s of
bounded Lipschitz functions from [— By, By] — R, which
has very small function class capacity thanks to the low
dimensionality (see Proposition F.12 from (von Luxburg &
Bousquet, 2004) and (Tikhomirov, 1993)).

Theorem 3.4 (Cf. Theorem C.5). Let Fijpr.8, = {/[ :
[—Bo, Bo]l = R | flup <Lg; | flloo < B } Consider the
following function class for our learning algorithm:

x[n]—>R:
L 900,9) = f(Zij)}-

With probability greater than 1 — ¢ over the draw of the
training set, the following holds for all g € Fi 1, 5, © f,Bo :

‘/—-}ivavaf O]:f,BO = ‘{g 2 [m]
3f € Fipre,5;, Z € Fr

log(1/5)

E(l(9)) — E(l(g)) < O[B )

B (1] [r( m+n IB —&—BOLfEB]
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Furthermore, similarly to Theorem 3.3 above, an excess risk
result holds for the minimization problem over the empiric-
ally weighted class Fiip 1.;,5,; © fr’BO (cf. Thm C.7).

In the distribution-free unweighted setting, we have:
Theorem 3.5 (cf. Thm C.6). Consider the function class

Fiip,Le By © Fh g, 1= {g :[m] x [n] > R:

Hf € ‘EiP,Lf7Bf7 Z € ‘/—-;IZBO : g(imj) = f(ZiJ)}'
Wp. =1, foreach g € Fijp 1 5, © .7:580, one has

log (1/6)
Byl =+

1-2 1+Z 2
12 p T z(m+n)ttz B +ByL¢lB
e ki

Note that in all cases above, the incorporation of a learn-

able function f € Fip 1, 5 , only contributes an additional

B2 + BoLs 4B
N

E(l(g)) — E(l(g)) < O

term of to the generalization error bound:
there is no dependence on the architectural or norm-based
parameters such as m,n,r and the function f only needs
to be learned once for the whole dataset. The interaction
between this learning task and the learning of the low rank
latent matrix does not introduce any additional challenge:
the complexities of both tasks are disentanglable.

It is worth noting that the proofs are far from being a trivial
combination of the proofs from Subsection 3.1 above and
Proposition F.12. Indeed, no sufficiently tight covering
number bound is available for any of the function classes
discussed in Section 3.12, not even for p = 1: of course, it
is possible to obtain such a cover respect to the Frobenius or
L* norms via covering numbers for linear function classes
applied to the matrices A, B, D1, ..., Dg_o, but this leads
to loose covering number bounds that translate to vacuous
results in terms of sample complexity. For instance, the
error bound (applicable to a setting analogous to uniform
sampling) for higher order tensors of (Fan et al., 2020; Fan,
2021) is based on a Frobenius covering number bound, but
for the case of matrices and for p = 1, the log covering
number scales as O (r(m + n)2), which is vacuous. In fact,
since the Rademacher complexities involved in the proofs
of the results in Section 3.1 depend subtly on the sampling
distribution, it is clear that the metric used in the cover must
be carefully chosen. Moreover, the Frobenius norm doesn’t
seem to work well, not even in the uniform sampling case.

Zexcept the parametric class &, of matrices with explicitly

restricted rank

Our proof of the results of this section relies instead on
multi-class generalization of classic “chaining” arguments.
More specifically, in Section E, we establish two general-
izations of Dudley’s Entropy Theorem, Lemma E.4 and
Lemma E.3, which allow one to bound the Rademacher
complexity of the function class F'(Fj, F2), where F' is a
fixed function and the following two conditions are satisfied:
(1) A covering number is available for F'(Fy, f2), uniformly
over any choice of f, € F5 and (2) A Rademacher complex-
ity complexity bound is available for F'(f;, F3), uniformly
over any choice of f; € F7. Results with some similarities
can be traced back to (Golowich et al., 2018) (Thm. 4)
and (Ledent et al., 2021b) (Prop. A.4.).

3.3. Generalization Bounds with Neural Encodings

In this section, we briefly describe some of our extended
results for the Sd+NN setting, which includes an addi-
tional neural network encoding. Specifically, we consider
neural encodings of the form (i, j) = f(A%(u;,v;)")
where u; is the embedding for row ¢, v; is the em-
bedding for column j, f is the neural network given
by f(z) = or (A" Relu (Relu(...Relu (A'z)...))),
where the matrices R1*%i-1 5 AL Al are the weight
matrices. The predictors then take the form ¢; ; = Z; ; +
W, ; where U is the neural encoding and Z is a matrix to
which (potentially weighted) Schatten p quasi-norm regu-
larization is applied. In particular, for p = %, the model
corresponds to the one presented in (He et al., 2017).

Our results (cf. Thm C.8, Thm C.9) show that the generaliz-
ation error is bounded as a sum of terms corresponding to
the matrix class and the neural encoding class.

Extension to Multiple Latent Matrices: In the Appendix,
we extend our results to the case of models of the form
po(ZY,Z%, ..., Z™ U) where ¢ and ¥ are trainable net-
works (U a neural encoding) and the matrices Z?!,. .., Zm
are constrained via various Schatten p quasi-norms.

4. Experiments

Synthetic Data Experiments: We generated synthetic
square data matrices in R™*"™ with a specified rank r. We
varied the proportion of observed entries in the generated
matrices (%obs = E[ IV /n?]), with a non-uniform sampling
distribution. A summary of the results is provided in Fig-
ure 1. The results demonstrate, unsurprisingly, that FRMC
achieves better performance than methods which do not
incorporate a non-linearity. Going deeper, we observe that
with sufficiently many observations, the model is able to
recover the ground truth function nearly perfectly, together
with the low rank latent matrix. We provide an example of
the recovered functions in Figure 2 for %obs € {0.14, 0.20}.
Moreover, we observe that the weighted version of the
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Figure 1: Summary of the results of the synthetic data experiments. Ground-truth generated by considering f(z)
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Figure 2: Learned function f by our model (yellow curve).
Red curves represent the ground truth. Blue dots are the
predictions, which ideally should lie under the red curve.

regularizer works slightly better, especially with d =
Finally, an exponential performance improvement occurs
when d increases, especially from 2 to 3. This is in line
with the expectation that lower values of p induce more
and more rank-sparsity, and with our theoretical results in
the distribution-free case, which show much better sample
complexities when p is small (cf. our sample complexity
of O (r'=% (m + n)'*%)). For additional results, such as a
comparison with the identity function as ground truth, see
Figure 3. For detailed information, including the generation
procedure, parameter selection, and validation setup, refer
to the appendix in Section H.1.

Real Data Experiments: MC can be applied to a wide
range of domains, such as recommender systems, human
event dynamics, and chemical engineering. We chose three
standard datasets to evaluate our method in a real data scen-
ario: DOUBAN and MovieLens 25M (MVL25) from the
recommender systems domain, and LastFM, which stores
listening habits of users in a music streaming platform. For
descriptions of datasets and implementation details of the
real-world strand, refer to Section H.2 in the Appendix. In
Figure 2, we plot the functions learned by our model on real
data. Interestingly, we see that the chosen functions look
somewhat sigmoidal, probably to avoid out-of-range predic-
tions and model the vanishing significance of increments
between very high or very low ratings. Furthermore, we
observe that in 2 out of 3 datasets, our mildly non-linear

010 015 020 025 030 0.35 0.40

%0bs

010 015 020 025 0.30 035 0.40 010 015 0.20 025 030 035 040 010 015 020 025 030 035 0.40

=o(z).

Table 2: Test RMSE for the assessed methods. Notation:
Weighted (W) models use weighted-norm regularization in
the embeddings. Our methods learn a re-scaling function
(FS). Thus, S2 refers to the traditional nuclear norm regu-
larization, SW3 refers to weighted Schatten 2/3 norm regu-
larization and FRMC-FSW2 refers to the model f(Z) with
nuclear norm constraint on Z and a trainable component-
wise rescaling function f.

Model d W FS Douban LastFM MVL25
S2 X X 0.8042 2.5885 0.8047
SW2 ’ v X 0.7981 2.4980 0.7625
FRMC-FS2 x v 0.7627 1.0327 0.7795
FRMC-FSW2 v N 0.7626 1.0091 0.7776
S3 X X 0.8050 2.0512 0.7786
SW3 3 v X 0.8030 2.0417 0.7876
FRMC-FS3 x v 0.7674 0.9952 0.7711
FRMC-FSW3 v v 0.7616 0.9904 0.7799

model FRMC substantially outperforms traditional matrix
completion. Furthermore, p = 2/3 outperforms p = 1 and
the weighted version outperforms the unweighted version.

5. Conclusion

We studied matrix completion with Schatten p quasi-norm
constraints for 0 < p < 1 in the approximate recovery
setting. Ignoring the dependence on Lipschitz and bounded-
ness constants, we provided sample complexity bounds of
O(r(m + n)) and O(r'~%(m + n)'*%) in the uniform
and arbitrary sampling regimes respectively. The results
show the stronger rank-sparsity inducing properties of lower
order Schatten p quasi-norms, which we also observe in
our experiments. Moreover, we showed that the use of the
weighted Schatten p quasi-norm can bring both rates back
to O(r(m + n)). We introduced a parsimonious non-linear
model, Functionally Rescaled Matrix Completion (FRMC),
which consists in applying a trainable function from R — R
to the entries of a latent matrix. We show extensions of all
of our results to the FRMC setting, which demonstrate that
the addition of a learnable function from R to R negligibly
increases function class capacity.
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A. Table of Notations

Table 3: Table of notations for quick reference

Notation Meaning
Sampling setting
G e R™*» Ground truth matrix
N Number of samples
S ={(,GY), ..., (eN,GN)} Training set
Co Noise in oth observation
éo = Ggo +o oth observation
€ € [m] x [n] (resp. £°[m] x [n]) Observed entry (oth resp. observed entry)
1 Loss function
1(geo, Go, %) =1, (geo) Loss function at oth datapoint
Dij P(¢ = (4,7)), (marginal) probability of observing entry i, j
pi=2;DPij Row 7 marginal probability
Q4 = 2 Pij Column j marginal probability
E(F(¢,G)) = ~ Zi\;l F(e0,G,) Empirical expectation of F'
e; € R™ Indicator vector of ith row
e; € R Indicator vector of jth column

(Weighted) norms

Il Spectral norm
(R Frobenius norm
Nuclear norm
Schatten p quasi-norm (p < 1)

-1«

[ lse.p

1Z]2,1 Dj—1n/ Zit1 A%
pi = % ith empirical row marginal
4; = % jth empirical column marginal
Pi = 3pi + 7 Smoothed row marginal
4j = 59; + L Smoothed column marginal
Di = §1pi + % Smoothed empirical row marginal
4 = 59 + ﬁ Smoothed empirical column marginal
Z diag(p)® Z diag(q)>
7 diag(p)* Z diag(q)
M (in Fn Class definitions) Upper bound on |- sc.p
2p 2p 2p
r (in Fn Class definitions) Upper bound on | Z| 25, |Z||fcf§ or | Z|&p W—%
d Depth of deep matrix factorization A[[ D; BT
w=3)
(also d) width of 1st layer after embedding in ¥ € N/ 1,W
Definitions of r
Unweighted Setting = [\/%]
MP = =5 /mn?
Weighted Setting HZ||§C,I, <rl-%

Matrix Function Classes

&t {ReR™ " :|R|4 <t, rank(R) < 7}
F} {R™" 5 2|1 Z]5 < v/r}
Fls, {R™" 5 Z: | Z]w < V7| 2] < By }
Fr {ZeRm ;| 2]z, , <=8}
FP {ZeR™" | Z]|sepp < M}
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2—p
{ZeRmn 12y < M= 15 i, |20 < B}

JT:T,BO
75, (ZeRmn |2, <r'%; 2], < Bo )
7y {Zermn:|Zlz,, <[4}
F s, {ZeRm ™ |Z)E, <[r]'"%,|Z]w < Bo}
Other function classes
r Set of all loss functions bounded by B from R? x ([m] x [n]) to R,
¢ which are ¢-Lipschitz in the first argument
Flip,Ls B¢ Set of all B¢-bounded, L¢-Lipschitz functions
DNN classes
¢: R SR Neural Network with final output
U:[m] x[n] >R Encoder Net taking users and items as input
M ,w Networks satisfying conditions (261)
Now Networks satisfying conditions (265)
{g :[m] x [n] - RY|3f € M wl(a,s),
NO,W,C(G/7S>C) UeR ,VeR :

mc(av 5, C)

—_—

NO,W,C(av S, C)

Nl,W,id(a,S)i,j

Ul + IV [E < ¢® max(m, n),

| A% < s+ g(i,5) = F(A (ui,05) ) Vi,j}

{g : [m] x [n] —>R1‘3f e M,w(a,s),

UeR™ ™V eR™™ .,
| diag(p) 2 U3 + | diag(@)2 V|3, < ¢,

A% < s0 ¢ g(i,5) = F(A°(ui,v5) ") Vi, j

{g i [m] x [n] - R'|3f € M wl(a,s),

UeR™ ™V eR™™ .,
. 1 . 1
| diag(p)2 Ul + | diag(q)2 V[ < ¢, [A°] < so :

g(ivj) = f(AO(uif’Uj)T) VZ,]}

d(x¢) where ¢ is a network form (259)
satisfying Cond. (265) and x; ; := concat(e;, ¢;)

Composite function classes
(illustrative examples)

. P
]:hpaLﬁBf © ‘/TT,BQ
ZO

. P
‘7:11P,Lf73f © ‘Fr,Bo

p
‘FT,BO + NO,W,C

{g :[m] x[n] >R:3f € Flip,L¢, By » ZE}?BO :
9(i.4) = f(Zi;)}
Latent matrix in representation of
ground truth G as f o Z°
{g:[m] x [n] >R:3f € Fipre.5,, ZeFlg,:
9(i,5) = f(Zi )}
{g[m] X [n]—)RHZGfﬁBO
nWeNowe: g0 4) = Zij+ V(i j)}

IONQ,W(G/a S/)(-%7?7N2,W(aﬂ S))

Set of functions G written as
G(£,G) =U(41(Z + ¢2), G, £) for some
ZeFP, Now(d,s') 36, : R2 >R,
Now(a,s) 3¢y : [m] x [n] > R

Constants
{ Lipschitz constant of 1
B Bound on the loss function 1
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c Constant from (Latata, 2005)
Ch max(C, 1)
Ly Bound on the Lipschitz constant of f
B Bound on the values of f
m Number of latent matrices
Constants in Neural Networks
w Number of parameters (of DNN)
L Number of layers (of DNN)
Wy, ..., wp =1 Layer widths
S1y..+,8L Constraints on |Wq ||, ..., |W¢]
ai,...,ar (in N1 w) Constraints on ||(W1 — MY a1, ..., [(WE = M) T4,
ai,...,ar (in Now) Constraints on ||[W? — M| ... W — MY
wt ... owk Weight matrices (of DNN)
M. M Initialised weights (of DNN)
S0 Upper bound on | A?|

c? (with weights)
c? (without weights)

Rw

Upper bound on | diag(p) 2 U|f, + | diag(q)* V[,
Upper bound on [|U]%, + ||V |3, ] max(m,n)

2
L 23/2 L L ap 2/3
DI [Tz se | 2 Se

Constants in log terms

T~

6(m+n)N{ +1)(r+1)
)

FRe
Lz, 6N(m +n)(r+1)(£+1)
F;M;Ol 6N(m +n)(r+ 1)(€+1)(By+1)
I 3Nmn®[Bo +1][£ +1]+1
‘7:7{),80’[ o
FW,E 96Wso(m+n)e\/ﬁl_[f:1 ) +1
For multiple latent matrices
m Number of latent matrices
Do vth latent matrix Schatten index
Ty Constraint on | Z||
r et T
Ty 12N [T/ s+ mBo | | T/ st [TTEy se| (S 0l [Sead +1
T 3Nmn3[By +1][¢ +1] + 1
H Now(d,s') o (concatis | (FP” ), N1wala, s))
Model abbreviations Name and function class
Sd Schatten matrix completion (MC)
‘Ftp’ ]:7{),30
Swd Schatten weighted MC
f?f“}’ ‘7??]”07507 ‘7\:/.7?’ fﬁBo
FRMC-FSd Functionally rescaled Schatten MC
Fiip,Le,By © Fo s Fiip,Le.By © Fr 3,
FRMC-FSWd Functionally rescaled Schatten weighted MC
Fiip,Le,By © Fr > FlipLeBy © Fr s,
FRMC-Sd+NN Sum of Sd and NN
.Ftp +NQ,W,C, ‘7:71"),80 + NO,W,C
FRMC-SWd+NN Sum of SWd and NN

~ - —  ~,
.7'-7? +N07W,c» ]:f +N0)W)26, tho +N0,W7c , etc.
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B. Table summary of results

Table 4: Table of our results for the Schatten p constrained matrix completion without linear components as compared to
the previous works for p = 1,p < 1 and p = 0. For simplicity, we omit polylogarithmic factors in all relevant quantities
such as N, m,n, B, By, B¢, £ and the failure probability d.). NC stands for “Not comparable”, NDC stands for “Not directly
comparable”. The compressed sensing literature (Zhang et al., 2013; Recht et al., 2010; Liu et al., 2014) offers results which
can loosely be compared to an exact recovery sample complexity of O(m + n)r where r is the ground truth rank with
uniform RIP measurements (e.g. Gaussian measurements, loosely analogous to uniform sampling). (Fan, 2021) includes
somewhat different assumptions. The rank-restricted version (p = 0, c.f. Lemma D.1) is a simple consequence of parameter
counting (see (Long & Sedghi, 2020; Graf et al., 2022; Mohri et al., 2018; Ledent et al., 2021b; Giné & Guillou, 2001;
Platen, 1986; Talagrand, 1994; 1996)). There is also an analogous result for classification with uniform sampling (Srebro
et al., 2004; Srebro & Shraibman, 2005; Srebro & Jaakkola, 2005).

Constraint Sampling Our Bound Previous Work Comment
r(m+n) 1
HZ”* < Unit B \/Nl BM \/Nmin(m,n)
Jrmn = M futorm BM N min(m,n) B 7(77;\?—71)
(Thm 3.1) (Foygel et al., 2011)
\/B()(m-&]-vn)%ﬁ \/Bé(m-}-\?)%ﬁ
Z|x < .
\/eri“*f A | Arbitrary M 1/ BEMy/mEn M 4/ BEM YR
= N N
(Thm 3.2) (Shamir & Shalev-Shwartz, 2011)
| Z]« < VT Arbitrary B\/T(ml\;rn) B\/T(mi\;rn)
(Thm 3.1) (Foygel et al., 2011)
2220 e [r(m4n) @ [ rnTop
1Z|7. < MP Bzv £z Np \/ Npp B, ¢ constant;
sen Uniform 220 p | AT (man) T 2-2p  2p n=m
=75 /mn’ Bz £z (Np : R pN/;\;AZ - no replacement
(Thm 3.1) (Fan, 2021)
B=5 ¢k \/Tlg(mm)“z
Np
|Z|&. , < MP . NC to
= =5 /mn’ Arbitrary B—% y% W N/A Comp. sensing
p
(Thm 3.2)
N 2-2p , p_ r(m+n)
|Z|p.,, <r'~% | Arbitrary Bz e \/71\7[) N/A
’ (Thm 3.1)
B r(m+n) log(ﬂ BO) B \/MT-HI) IOg(g BQ)
1Z]lo < Bo Arbitrary ParameNt er countin Parameter counting
rank(Z) <r (Lemma D.1) & cf. also (Srebro, 2004)
’ (Mohri et al., 2018)
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Table 5: Very short summary of our results for Schatten quasi-norm matrix completion including dependence on p. For
simplicity, the O notation hides logarithmic factors of the relevant quantities, including of the failure probability  and the

constraint quantity By.

Main constraint | Sampling |Z| 5 unconstrained |1Z]s < Bo
9 222, p_  [r(m+n) ~ 2220 »_ [1(min)
|2t <ri=% | Uniform | ¢ (B=7 ¢ \/N:p) 9, (B ety [Tl >
' (Thm 3.1) (Thm 3.1)
5 (515 g% 4/ Emen)th N p1—2 2 [rl T3 (mtn)' T2
I \/%ch,p <r'=% | Arbitrary OB =6 \/ Np O (B 2 02 e
(Thm 3.2) (Thm 3.2)
7 £ O (B 175 M) 5 522 ety [rlmtn)
1 Z]|se.p < ri=z Arbitrary 0 (B : 2 \/Tp O (B 2—p (2 i
(Thm 3.1) (Thm 3.1)
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Table 6: detailed tabular summary of our results in the supplementary, expressed in terms of generalization error bounds.
The O notation hides polylogarithmic factors in all variables and constraints. Similar excess risk bounds hold for all function
classes under the condition p = % for some d. Similar excess risk bounds hold for the empirically weighted analogues (with
a multiple of the constraint r) under both realisability assumptions and the assumption p = %. See Thms C.4, C.7 and C.10.

Function class Generalization Bound Relevant Theorem

SdMC

1o F? O (BFF 35 | [rlnem) jog(mamalte) 4 B 10%6)) Thn €1
1077y, 0 <822_2pp 0755 Wlog(m”]\f? LBy 1 B log]\(]é)) Thm C.2

» _p 1+2 X og(+
loftp o (Blz E% \/rl 2 (m+n) +If[;og(mnN€* Ts) + B@) Thm C.3
p P 1-5 m+n)?t 5 mn T ogls

Loy 0<812£2 \/r (m+ )+211v°g( N, *Bo>+3\/l %530) Thm C.3
FRMC

0 ( BF7 [Lg £]757 1/ S Jog (V) log (i Bell Lo +11

LoFip,L¢,B; © Nf,zso Thm C.5

+\/Wlog(N) +B logl\([(ls)>
0(31’5[Lfe]5 P2t 4003 (Nmn Bo[¢ L +1])

LoFiip,Le,B; © f,BO Thm C.6

Bl BB 10y (V) 4 B 10%35))
SAMC+NN
10(‘7_17{)780 +mc) 6(822_2: eﬁ \/T(m]\;—n) + B\/d(m]\?—n) 1+ B Sof/%w> Thm C.8
5(51’2’ 0% M
Lo(F} 5, + Now.c) Thm C.9
4 B /d(m]\}&-n) + B SOC@R‘}V)

Multi-latent extension

o= Now () (3(3“0%/5)%”?4
= Now(a',s)o

(concat, -, (}N'p'” Bo)» , m? 7 (m+n) , e Thm G.5
v Ty, By Sl = +ByS'"lr/5 |,
N wiia(a, s)) ’ N ’ N
where &’ = [Hfﬂ sz]
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C. Generalization and Excess Risk Results

In this section, we prove our main results. Many of the key difficulties involved in the proofs have already been overcome in
the proofs of the relevant partial results in Sections D, which itself relies on lower level tools from Section E.

C.1. Generalization and Excess Risk Bounds Schatten Norm Matrix Completion (Sd and SWd)

In this subsection, we prove generalization and excess risk bounds for ordinary matrix completion (without a non-linear
component) with Schatten norm regularization.

Theorem C.1. Lerl € L, g be a loss function. We consider the function class FP = {Z e R™*" | Z]|e, » < rl=% } Let

7 = minZeﬁ,’? E(I(Zg, é)) With probability greater than 1 — §, we have the following excess risk bound:

o~ ~ log(4 24
E(1(Ze, Ge)) — E(I(Ge, Ge)) < 128 Og( /%) +44/7B + (10)
_p_ rim-+n m-+n
+4482 1’ 62 \/7 2F]f~ﬁé [1+ N ]a

In particular, if the sampling distribution is uniform, the same result holds for F¥. Furthermore, the same upper bound
holds for sup ;. z» E(1(Z, @) — E((Z,@)). (In fact, the generalization bound holds with a factor of 1/2 on the right with
probability > 1 —4.)

. 6(m+n)NL+1)(r+1)
where F]_”—fj = 5 .

Proof. This follows immediately from Theorem D.2, and Theorem F.11.

O
Very similarly, we have the following result which applies with an additional constraint on the maximum entry:
Theorem C.2. Letl e Ly 5 be a loss function. Consider the following function class:
Frg = {Z e R 5|21, <7 E | Z)0 < Bof (a1

Let Z = min e E (1(Ze, C:')) With probability greater than 1 — 0, we have the following excess risk bound:

LA ~ log(4/6 78%+1
E((Z¢. Ge)) — E((Ge. O) < 1284/ B0 4, [TE 1 (12
» [r(m+n) m+n
+ 446 p f T 10g(2r]:f,507€) ll + N ] B
3Nmn3[By +1][¢ +1]+1

where ' zp = 5 . In particular, in the case of a uniform distribution, the same result holds for F¥.
rBg>

The same result also holds for the generalization error supzn E(1(Z, Gf)) E(1(Ze, Gg))

Proof. This follows immediately from Theorem D.4, and Theorem F.11. O

Next, we consider the case of a non-uniform distribution with non-weighted trace norm constraints:

Theorem C.3. Consider the following function class:
i {Z R |2y < M =[] ) (13
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With probability > 1 — 6, excess risk bound for Z € arg min ze zp IAE(I(Z, é))

L~ ~ log(4
E((Z6, Ge)) ~ B((Ge, G)) < 1284 840 (14)
241 » |15 (m 4+ n)' 2 log (2T
Ly B +4(V18C +V2)B "5 0% ( ) 8 ( f”).
N Np
where I zv ¢ := 6N (m + n)(r + 1)(£ +1).
Furthermore, if we consider instead the optimization over the function class
Fro, = {2 e R | Zsey < M = [rymn] 5, 2] < Bo} (15)
then we have instead
L~ ~ log(4/d
E((Z6, Ge,€)) ~ EO(Ge, G ) < 1284251 (16)

1-Z 1+2
7B 41 . rim2(m+n) T log (20
+ 4 N’L 4(VISC + v/2) B =% ¢ - (oo, )

where Fff,so 0= 6(m +n)N[By +1][£ +1]. Furthermore,the same upper bounds hold for SUP ey, E((Z,G,¢€)) —
E((Z.G.9)).

Proof. This follows immediately from Theorems D.3, D.5 and F.11. O

Next, we provide an excess risk result for the empirically weighted version.

Theorem C.4. Assume that p = %for some integer d. Let Ze arg min (IAE(I(Zg7 é)) A ]f-;)_ If we assume that the

ground truth G belongs to ]T',?, we have the following excess risk bound, which holds with probability > 1 — 6 under the
condition that N = 140(m + n) log (W) .

5 ~ log(12/6) 7B +1 2w » [r(m+mn) )
E(1(Ze, G, €)) — E((G, G, €)) < 12 B4/ o Ty H100B7 ¢ Tplog(6F}.ﬁz). (17)

Furthermore, the upper bound also holds for the generalisation error (with the same error probability), and an analogous
result holds for the class ]-‘ By With T Fro replaced by I » FP gl and with the factor of p removed.

Proof. By lemma E.5 we have, with probability > 1 — §/3,

6(m + n)log (M)
120 < |1+ " ||z
sc,2/d N

sc 2/d (18)

In particular, as long as N = 24(m + n) log (M> [21’§ - 1] - (note that since p is at most 1, this is satisfied as long
as N = 140(m + n) log ((

)) we certainly have

D

HZOHSCp _7‘|Z0Hscp = [27“] R (19)
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This implies that

Ge FL. (20)
Similarly, by Lemma F.10, we also have with probability > 1 — §/3 (as long as N > 8(m + n) log(M), which is
already required by the stronger condition for (19)):
Di = bi and q; = l 2D
2 / 2

Under this condition, for any matrix Z € 7% |

s
IS

m

|Z|E. , = \/diag(p) diag(p)~1 Z+/diag(q) diag(q) 1)|%. , < 2P| Z|%. , < 2P[2r]' "% < 275 2r]' % < [4r]'"E
Hence, we certainly have:

FP R (22)
Now, by Theorem C.1 we have w.p. = 1 — 0/3 simultaneously over all Z € ]T'fr:

~ - ~ log(12/6 7B% +1
B(1(Ze, Ge)) ~ Bll(Ge, o)) < 68| B2 o) [TE2 23)

222 » [r(m+n) m+n
+ 448 2=p [2-»p Tp log(GF]N:ZIJNZ) ll + ‘| .

N

Thus after a union bound, equations (19), (22) an (23) hold simultaneously with probability 1 — ¢ and applying this to Z
and the ground truth G, we obtain:

E(1(Ze, G) E(I(Ge, G)) + E(1(Ge, @) — E(I(G, G))

(1(Ze, G (1(Ze, G (2, G
log(12/6) 241
<1284 28120 Og / 4/78 RERNPPYOt = N b L) BT 10g(6T 5 ) [ m]’\;”] (24)

as expected. O

C.2. Generalization and Excess Risk Bounds for Functionally Rescaled Schatten quasi-norm Matrix Completion
(FRMC-FSd and FRMC-FSWd)

We consider the following function class:
Fipes © Fg, + {9 [m] x [n] > R:3f € Fipos, 2 € P, + 9lind) = (Zi)} - (25)

Theorem C.5. With probability greater than 1 — 0 over the draw of the training set we have the following bound on the
empirical Rademacher complexity of the class Fip 1, 5, © FF:

50\/BOLfo+Bf +1

R(Fiip,Le.5; © Fp,) <1 log, (N) (26)

e / (m +n)
+ 118f 2 P Lf ZNF B ,KLf) l1+ N

N . 3Nmn®[Bo +1][L¢ +1]+1
where F}-f,BO LT 5 .

22



Generalization Analysis of Deep Non-linear Matrix Completion

In particular, for any fixed loss function 1 € L, g, with probability greater than 1 — § over the draw of the training set, we
have the following generalization bound for any f o Z € Fiip 1. 5, © FE:

~ 1Y log(4/8 BoLi ¢B+B%+1
B (7). — e 3 (5(Ze) < 65/ EHD g VLB LB @)
o=1
2-2p » rtm+n m-+n
+ 22 B2=p (Lf €) 2—p %10g2(4N1—‘]}£807£L£) ll + (]V)‘| .

Furthermore, we also have the following excess risk bound, which holds with probability greater than 1 — §:

~

E(¢(4(i, 5). G) — E(t(g* (i, ), G)

log(4/6) VBoLe 0B+ B2 +1
22—2P - T(m + n) 2 (m + n)
FAUB T (Le )77\ | S 08 (ANT 5 ) ll |

~ ~ ~

where g* and § denote min E(1(ge, G)) and min E(1(ge, G)) respectively.

i FP ) Zp
9E€Fiip, L B ¢ O]:r,Bo 9E€Fiip, L, B ¢ 0-7:7“,50

In particular, if the distribution is uniform, the same results hold for the function class F, 1., 8 ;0 ]-'f By

Proof. By Proposition F.13 with d = 1, for every € > 0, there exists a uniform cover C(€) of Fi;p 1, 5, With cardinality
satisfying

st <3 [280] 1] "

Note that since this is a cover of Fy;p 1, 5, With respect to the uniform norm, it satisfies the properties of Lemma E.4, to
wit, for any matrix Z € ﬁf,Bo’ (f = F)(Zi;)| < € (and therefore |1(f(Zi;), G, (i, 7)) — (F(Zi ), G, (i,))] < € holds
uniformly over any matrix Z and any input (4, ) (this is the condition from Lemma E.3 (cf. Eq. (174))), which is stronger
than that in Lemma E.4 (cf. Eq. (183))). Thus, we can apply our Lemma E.4 with © = Flip,L¢, 8, and O, = ]T'}Z.

N
~ ~ 1
R(loFy oFP . Y<E, sup — > o;fi(61,0 (30)
( lip,L¢, By ,Bo) 91,2616)1,2 N 1—21 ifi(01,02)
1 ~ B Nog(N(Fi e/l 5
< log, () sup R (Fo,) + da + 4\/1of \/ gN (Fiip.Less ¢/ ) o 1484/ 2" (31)
@/ 9,0, o N N
For the first term, note that by Theorem D.2, with probability > 1 — § over the draw of the training set, we actually have
sup Rg(lof o ffBO) < sup Rg(lof offBo) (32)
feC(e) ’ feFip,Le. 5, ’

|7B% +1 » [r(m+n) (m +n)
< N + 11 B P [Lf E:I P T log(rﬁﬁgo) 1 =+ T . (33)

Regarding the second term in Equation (31), we have the following simple calculation:

B B BoL¢l
4\@J q/bgw;\f)l’e))dpzhﬁof Hw& (34)

BoL¢ £ B B—a 158y L B B
< 8V15 2 [2 + 4410 <16y —/——= + 4/10— 35
N 2Vel. ~ <16 % ~ (35)
By Ls B+ B2
<128—————.
VN
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Plugging this back into Equations (31) and (32) we get 5‘{(1 OFlip,Ls, By © .7?7350) <

782 +1 2-2p o [r(m+n) (m+mn)
<\ g (N) + LB L €254 | S M0g(Tzy ) ogs (N) | 144/ 5
/By L £ 2
1 4By g g VB (BB o B+B (36)
N
2-2p sz [r(m+n) (m +mn) VBoLs (B + B2 +1
< 11B7r [Le £]2- Tbg(rfﬁso,t’m)bg?(N) ll + N} + 150 i log,(N),

where we have assumed w.l.o.g. that N > 2 (the Theorem statement is obvious for N = 1). Setting | = Id establishes the
first inequality (since in this case B = B; and £ = 1). The generalization bound then follows from Theorem F.11 and a
union bound over the two failure probabilities.

O
‘We now move on to prove a distribution-free result for the class Fip 1,5 ;0 fﬁ By
Theorem C.6. Consider the following function class:
Fipres, © Fhg, = {g: [m] x [n] = R:3f € Fiposys Z€ Flig, : 900:3) = f(Zi)}
We have the following excess risk bound, which holds with probability greater than 1 — §:
B(U(5(6). &) ~ E(U(g*(©), ) < 128 B a7

BoL¢ ¢ B+ B%+1 » 2. » |19C; MP(m +n)i—%
4logy(N) 150V 0 f\/ﬁ +B! 2£2Lf2\/ ! (N ) 4/1og<rffﬁovw)

where U'zr 4 1= 6(m+n)N[Bo +1][{+1], C1 = max(C, 1) (C being the constant from (Latala, 2005)) g* and § denote
? B’

mingefh_p‘Lf,Bf OFT 5 E(l(ge, G)) and mingeﬁmfﬁf OFT 5 E(1(ge, G)) respectively.

Proof. By the same arguments (cf. Equation (31)) as in the proof of Theorem C.5, we have the following bound on the
Rademacher complexity of £ oFj;, 1,5 ;0 F f By

R(CoFip s, 0 Flp,) <logy(N)  sup  R(lof o FPy ) +4B N T g Y POTHMETE

fE€Fiip,Lp .55

N/ Bo 0 Ls B+ B2
VN '

Next, by Theorem D.5, we can continue E)A%(l oFlip,L¢,B; © ffBo) <

7B% +1 _z p [2MP(m +n)—2
logy(N) \/T +8' 2(Lf€)2\/ o ) (3@ +/log (Fff,go,w)> (38)

N/ By Ls £ B+ B2
VN

4B 1282 —
+ N d

VBoLi Bl+ B +1 L BELE \/1901 MP(m +n)—%

< logy(N) | 150 N N log (ngso,w) ;

which holds for any training sample. In particular, we can apply Theorem F.11 to yield the result immediately. O
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We next turn our attention to the slightly more delicate case of results for the minimizer of the empirically weighted trace
norm.

Theorem C.7. Assume that p = %for some integer d. Let § € arg min (]E(l(gg, CNJ)) 29 € FlipLe,B; © }V"ZVBO), where
‘7:27" 5, 18 the data dependent function class {Z e R™xn . | Z|e, 2 < <2775, | Z]|0 < BO}.

If we assume that the ground truth G belongs to Fij 1. 5, © Nfi B, We have the following excess risk bound, which holds
with probability > 1 — § under the condition that N > 140(m + n) log (T"T“’)

[N ~ log(12/6) VBoLi B+ B2 +1
E —E i j < — 1 N
(g(g(l,j),G) (E(GZ,]aG) 68 IN + 600 \/N OgQ( )+
100857 (L £) 755 Mbg?(lzjvrm o) (39)
Bo
Proof. The proof is similar to the proof of Theorem C.4. Let us write the ground truth as
G=foZ° (40)

; 0. TP
with f € ‘Flip,Lf,Bf and Z" € ]:hBo

As in the proof of Theorem C.4, as long as N > 140(m + n) log (Z:) we certainly have w.p. > 1 —§/3

ya
2

1201z, < 2"~ | 20|, < [2r)E. (41)

This implies that

0¢ ]-'2T Bo- 42)

Similarly, by Lemma F.10, we also have with probability > 1 — ¢/3 (as long as N > 8(m + n) log(m) which is
already required by the stronger condition for (41)):

pi = % and q; = % (43)
Under this condition, we certainly have, by the same argument as in Equation (22) in the proof of Theorem C.4:
F o By C F A By 44)
This, together with equation (42), implies that
€ FipLeB; © Fh - (45)

Thus, we can apply Theorem C.5 (with 7 < 47, § < 39, £ < £ L) to obtain that an additional failure probability of J, we
have the following for every g € F}, 5 :

N 2
log(12/6 By L B-i—B
Bit(ae,G) — 57 3, folar) < 3B 5 LB g, ()

(m+mn)
B [L | T g 1anT 0 0n) l1+ | (46)
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In particular, by a union bound, equations (45), (44) an (46) hold simultaneously with probability 1 — ¢ and applying this to
¢ and the ground truth G, we obtain:

E(1(3e, G)) — E((G,G)) < E((Ge, G)) — E1(Ge, G)) + E(1(ge, @) — E((Ge, G)) + E(1(Ge, G)) — E(I(Ge, G))

[log(12/6) VBoLi (B+B?+1

(m+mn)
10g(12NF]?f,BO*ZLf) ll + T B

+ 88 B Ly (]2 77’(7”; n)

as expected. O

C.3. Generalization and Excess Risk Bounds for a Sum of a Latent Matrix and a Neural Encoding (Sd+NN)
Theorem C.8. Fix a loss functionl € Ly g and consider the following function class:
FP o + Now.e (48)

where we assume the output dimension in the class No w ¢ is K = 0. Assume that N = 8(m + n) log(w).

Let § € arg min (IAE(I(L(JZ-J7 Q) :ge ﬁﬁBo +WC) and g* € arg min (E(l(gi’j, Q) :ge '7?560 +WC>. Define

B BEZ g2 [T 1) +B\/d(m+") L g oocRw

N N VN
With probability greater than 1 — § over the draw of the training set, we have the following:
R(1o(FFy, + Now,e)) < O (B) (49)
~ ~ ~ ~ = log(1/6
s E((ge,0,6) ~ Bll(ge, G, ) < O (B) + 0 (B gjﬂ) 50)
g(t“]t-fyso +NO,W,<;
~ ~ ~ = log(1/6
E(l(3,G,€)) < E((g*, G, ) + O (B) + O <B Oggv/)> : (51)

where the O notation hides polylogarithmic factors of all relevant quantities (B, By, 1, N, m,n, c, so, Rw, ]_[f:l sy etc.). In
particular, if the distribution is uniform, the same result holds for the class F? By T No,w ¢ instead. Furthermore, the same

results hold for the class fff + -/\//:O\VV—/ « with B replaced by B where

222p  p  [r(m+n) d(m +n) socRw
B:=B2»r {27\, —= + B +B .
- Np N Vv N

Proof. We aim to use Lemma E.4 with ©; = W cand ©5 = ]-'p By Assume that equations (270) are satisfied (this

T

happens with probability > 1 — 5//3\as/long as N = 8(m + n) log(W), by Lemma F.10) ). Then we can let C be a
cover of granularity § of the class N wc, as guaranteed by Proposition E.6. By Proposition E.6, we have

1
log(|C]) < [2d(m +n) + 32s5c [62 + 1] RWQ] log (Dyw.e/¢) - (52)

P - ) ~) P )
Now, for any ¥ € No,w,c, we write U for the associated cover element. For any g € FT7BO + ./\/07W7C, we can write g as

g = Z + U. We define an associated cover element in fﬁgo + C as Z + 0. For any value of Z € Nf)BO, it is certainly the
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case that
N e o N
Z ((geo, Go) — U(geo, Go))? < Z (geo — Geo)?

N
(Zgo + o —[Zeo + Ugo])? = Z (Teo —Teo)? < €. (53)

Z\H

||M2

N 1
o — o :€27
ggg Geo) N -

Thus, the condition (183) is satisfied and we can apply Lemma (E.4) to obtain Z)A%(l o(]—"pB + No We)) <

1 BN /
log, < > sup R (Fy,) + da + 4V 1OJ L(C)de +4B 5—7T (54)
6,€0,
1 log(|C)) 5
= log, (a) sup %(IO(fTB +0)) + 4o+ 4V1 J A/ 0g| d —&-484/ T

‘PENO W,e

Now, we tackle both main terms in equation (54) separately.
For the first term, it is clear that by applying Theorem D.4, (with an additional failure probability of §/3)

sup E)A%(Z o (]t'f,tgo +U))

Wech
78% +1 2 . [r(m+mn) (m +n)
<\ LBER 7 N log(3l ) [+
7B*+1 2=2p p  [r(m+n)
< N 22B7 (7> N 1 g(grffgo,e) (55)

That is because Theorem D.4 explicitly holds uniformly over all loss functions in L, 5, which includes all the “loss functions
I: (y,G,€) = 1(y, G, &) =y + V¢, G, &) forany £ € Ly 5 and any ¥ : [m] x [n] — R. Note that at the third line, we
have used the condition N > 8(m + n) log(m)

. 1

For the second main term, we simply calculate the integral relying on Equation (52) (setting o = +):

4\Ff \/K 4ff \/2dm+n +32582[}V

dim+n 4socR
< 8V5 log(T'w,1/(w ¢)) [ ( N ) + i/ﬁw [log(BN) + B]

1] Rw?]log (Tw,e/¢) e

(56)

Plugging Equations (55) and (56) back into Equation (54), we obtain, with overall probability > 1—24/3, that 9‘%(1 o(]—' BT

NO,W,C)) <
d(m+n 4socR 4 )
8V, /log(Tw,1 /(v e)) l ( ~ )4 iﬁw [log(BN) +B]] - HABy

7B%+1
+ logy (N + v 22BTF 125 4| " m+”1g3rmog . (57)

The results then follow immediately from Theorem F.11. The proof for .7?}? + W ¢ 1s the same except we are using
O

Theorem D.2 instead of Theorem D.4.

We now turn our attention to the case of the non-weighted regularization in the arbitrary sampling case
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Theorem C.9. We now consider the following function class: }—560 + Mo.w.c We also let g €
arg min,, (IAE(I(gg, G,€):ge Frp, T No,w,c> and g* € arg min,, (E(l(gg, G,€):ge Flpe + No,w,c) . Let

2 =5 (m 4 n)ttE LB d(m +n) L gloevm+ nRw
N N VN '

With probability = 1 — §, we have

R1o(FF g, + Now,e)) <O (C) (58)

sup E(l(ge, %) <0 (C) +0 (3 bg(ﬁ””) (59)
gefﬁso +No,w,c

B(1(9,6,6)) < B((5",G,8) + 0 (C) +0 (B 1g<13/5)> , (60)

where the O notation hides polylogarithmic factors of all relevant quantities (B, Bo, 1, N, m,n, ¢, so, Rw, HeLzl Sy etc.).
Furthermore, if we consider instead the class F{ + Ny w c, then the same result holds with C replaced by

C = B5 4 =% (m +n)tts LB d(m +n) JrBsoc\/eran.
Np N VN

Proof. By the same arguments as in the proof of Theorem C.8, W.p. > 1 — 4/2, as long as N > 8(m + n) log(g(m5+"))

there exists a cover C of Ny w . satisfying condition (183) and

1
log(|C|) < [2d(m +n) + 32s2c2(m + n) [62 + 1] RWQ] log (Dywe/¢) - (61)
Furthermore,
R(1o(FF s, + Nowe)) <logy (N) sup  R(lo(FPy, + ¥))+ (62)
TeNow.e
~ d R
ol B (m+n)+soc\/m+n Wlog(BN) .
N VN
For the first term, we now have by Theorem D.5:
logy (N)  sup  R(1o(Fp, + Now.c)) (63)
TeNo w .o
7B% +1

< logy(N) +B 5y

e |19C; MP(m +n)'—%
N 2 \/ N log(Tzz, 0)

Plugging this back into Equation (62) yields the result.
O

Finally, we consider excess risk bounds for the empirically weighted version of our algorithm. In this case, the “doubling
argument”” must be used for both components of the model.

Theorem C.10. Assume that the ground truth G belongs to .7'v-f7 B, T ./\W c Let g €
arg ming (E(l(gg, G,6):ge For By +No,w,gc). Let

d(m + R
(m n)+soc W

N VN

2=2p  [r(m+n)

D:=B + (7> B2» N (64)
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With probability greater than 1 — & over the draw of the training set, we have

s B, G,6) ~ Blllge, 6.6) < O (D) + 0 (B e/ ‘”) 65)
gefrfr,so‘*/\/o,w,zc
B(1(9, €. €) ~ B((g*,0,€) < O (D) + 0 (B 1g<]5/5>> , (66)

where the O notation hides logarithmic factors of all relevant quantities (B, By, 1, N,m,n, c, so, Rw, Hngl Sy etc.).

Proof. Let us write the ground truth as

G=2"+9° (67)

Just as in the proof of theorem C.4, by lemma E.5 we have, with probability > 1 — 26/3, and as long as N > 140(m +

n)log (%J’”), that the following are all simultaneously satisfied:

70e 7P (68)
. Di ; qj
pi =5 and  g; = 5% (69)
and
FP c FP . (70)

Also, by the proof of Lemma F.10, on the same high probability event as above, we have (c.f. Equation 208) p; < 2p; and
dj < 2¢; (for all ¢, j). Thus since v e No,w ¢, we also have

U0 e Now2e © Now ac - (71)

Thus, we have
GeFh gy + Nowoe © Ffy s, + Now e (72)
And thus, the theorem follows by applying Theorem C.8 with § « §/3. O

Remarks about the Norm Based Bounds on Neural Encodings: The results in this Section comes with some caveats

d(m+n) ..
- N still

contains a parametric dependency on the dimension d of A% (u;, vj)T, so it cannot be said that the bounds in Theorems C.8
and C.9 capture any rank sparsity inducing properties of the regularizer on U, V. In fact, the weighting merely serves to
increase the uniformity of the input norms of the embeddings, which improves the behavior of norm-based bounds. However,
one can also control the complexity of the neural encoding with a parameter counting strategy, which would remove any
difference between the weighted and unweighted scenarios. This is what we do in the Section G, which deals with the case
where multiple hidden matrices are present.

regarding the improvements offered by the weighting || diag(5)2 U |2, + | diag(§)2 V|2, . Indeed, the term

D. Our Results on the Complexity of Matrix Classes with the Schatten quasi-Norms

This section compiles our first end-product results: Rademacher complexity bounds for classes of matrices with low Schatten
quasi-norms. This section is divided into two very similar sections where we treat the two cases where a separate upper
bound on the entries is enforced or not. Indeed, a such a separate condition is required to prevent the bounds from blowing
up as p — 0. This condition is very mild, but we still cover both cases since it may be interesting to study the dependence
on p. The proofs rely on the important tools developed in Section E.
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D.1. Without Constraints on Entries

First, we will need the following simple parameter-counting lemma (the proofs use standard techniques) for matrices of fixed
rank. Similar results hark back to (Srebro & Shraibman, 2005; Srebro et al., 2004; Vandermeulen & Ledent, 2021), but the
rest of our proofs will require the variation below, which is uniform over any draw of the sample set &1, ..., &N € [m] x [n].

Lemma D.1. Consider the following function class over matrices in R™*"™:
v ={ReR™" :|R|y < t, rank(R) <r}. (73)

Forallu < N letl, : R — R be {-Lipschitz functions which are bounded by B. The covering number of £, +, is bounded as
follows:

32t
log Ny (Ev ity €) < (m + n)rlog (e + 1> : (74)
Furthermore, we have the following parameter counting bound on the empirical Rademacher complexity of 10 &, 4.
3 m+n)r
10&y) 1= lo(Zeo) log (3N ¢V21+1) B. 7
Rlo&y) AP N Z ¢) N \/ og (3 + (75)

Proof. First, note that by Lemma F.18 for any R € &, ¢, we can find two matrices A € R"*° and B € R™*“ such that

AB" =R (76)
| A% + BIf < 2t. (77)

In particular, Equation (77) certainly implies that | A| gy, | B|r < v/2t.

Next, setting ¢ = ;. by Lemma F17, there exist covers C4 < {AeR™": |Alp < V2t} and Cp <

{BeR™": |B|n < \F} (with respect to the Frobenius norm) such that for all A € R™*" (resp. B € R™*"),
there exists a A € C4 (resp. B € Cp) such that [A — A|p,, ||B — Bl|p: < € and

ICal < (M + 1> and (78)
ICs| < <3\? + 1> . (79)

The cover C := {R eR™":R=ABT:A,€C4, By € CB} < R™*" is an (external) e/2-cover of &, ¢ with respect to
the Lo, norm. Indeed, for any R € &, ¢, we can write R = ABT for some A € Ca, B € Cp. Then, writing A (resp. B) for
the corresponding nearest cover elements in C4 (resp. C), and writing R = ABT we have for any i < m, j < n:

(R=R),, <|R- R, =|AB" = AB"| = [A(B" = B") + (A~ A) B[,
< HAHH HBT B BT”Fr + HA - AHFr HB”Fr (80)
<\/2‘t5+¢275:§ 81)
In particular (by Equations (78)), there must exist an internal e-cover C’' < &, ; with
'] < [c] < [cal[C] (82)
mr nr (m+n)r
< (3“? n 1) (3*? " 1) _ (3*?% " 1) . (83)

Next, we need a simple argument analogous to proofs of Dudley’s entropy integrals (however, since the covering number
has mild dependence on e, it is not necessary to use a full chaining argument via Lemma E.4, E.3 or E.1). Forany R € &, ¢
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let R be the closest cover element in C’, we have, for any sample set ¢*, ..., &N € [m] x [n];
E, sup — 0y lu(Reu (84)
RESH uzzl £
1Y 1Y _
<E, sup — w(Rew) — 1y (Rew)) + E, sup — 0y Ly (Regu
RGSHNE ¢ ( 5)) REgrcNgl ( g)
1Y 1 _
< Usup— w(Rew) — 1y (Rew)) + Ey sup — 0yl (Reu
Sy g ¢ (Rew)) ReC/Nu; (Rex)
< el4+/2Tog(0] -2 (85)
VN
2 2t
< 6€+\/ (m +n)r log <3\F + 1) B,
N €
where the fifth line (85) follows from Proposition F.14. Setting € = ﬁ yields the result. O
Theorem D.2. Consider the following function class:
Fr.— {Z eR™" | ZIP, < rlfg} . (86)

With probability = 1 — § over the draw of the training set, the following bound holds on the Rademacher complexity of

10.%15’ holds simultaneously over all choices of 1 € Ly  :
522 g2 [T - l1+ m;”]

/762 +1
Ubup—ZoooZgo + 118
ZeJTp

_ 6(m+n)N(€ +1)( r+1)

where T’ Fr

Proof. Letus write t fort = r1=%. Then we have
Fr={zermn |25, <t}.
For any matrix X of rank k, let us write p1(X), ..., px(X) for the singular values of X, ordered from largest to smallest.

We can also define, for any 7 > 0, the quantity U(X) := |{x < k : p, = 7}|. By Markov’s inequality, we certainly have
for any X:

1XI2p .

TP

U(X) <

Note also that for if p,, < 7 forall kK = U + 1, then we certainly have

k k
D o= Z Loy P <P Y b, (88)
r=U+1 r=U+1 rk=U+1

Thus, applying the decomposition to X = Z we have the following super-decomposition of the function class .%}?:
FP R+ T, (89)

where R, consists in the contribution from singular values greater than 7 and 7 consists in the contribution from singular
values less than 7. Thus, recalling Equation (73),

R, = {Re R™" ;| R|l < 7, rank(R) < U} (90)
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where R = diag(y/p) R diag(1/§) and

re | and f=tYPp = m"z?;pp, 1)

where the expression for U follows from Equation (87) and the expression for  follows from the fact that for any matrix
X e R™" | X |se,pn = | X |sc,prank(X) > rank(X)|X| = || X|«. Note that we upper bound the rank by n rather than
min(m, n) for cosmetic reasons only: the corresponding terms will only give rise to logarithmic factors in any case.

For 7., we have

T o= Fli= {ZeRW"-\|Z|\*<Z}, 92)

where from Equation (88) we obtain the suitable expression for £ as
ti=tri P =p2 7177, (93)

Since Equation (89) holds with the prescribed values of U, f and { we can upper bound the Rademacher complexity via
Lemma E.3 for F = {(10((Z1 + Z2)5°))0<N 2V eR,, Z%€ TT} O1=R,and Oy = T,:

E, sup — 0oly(Zew) < E, — 0o lu(ZE. + Z2. (94)
Zefp Z &) Z1 ’R ZzeTT Z‘ : ¢ )
1
<e+ sup m(le)JrB«/ +B w, (95)
Z1eC(e) N N

where C(€) is an e-uniform cover of ©; = R in the sense of Lemma E.3, and for the avoidance of doubt,
Fp = {(10((21 +22)e)),y: ZPe TT} .

The above equation (95) holds for any ¢, and since the loss function is uniformly Lipschitz, it is certainly true that if Z is a
cover element such that ‘ (Z L 1) ¢o

< e for any o, then we also have that

L((Z' + Z%)¢o) — 1((Z' + Z2)¢0)| <

el (96)

holds uniformly over all Z2 € 7T, all os and all loss functions ls satisfying the required conditions.

Thus

N(Fi,e) < Noo (RT, %) . 97)

Note also that since p; > 51~ and §; > 5, for any matrix X with IX |« <t wehave | X < v/n|X|m2ymn < 2vVmn?2t.
Thus we have R, < {R € Rmxn D|R[« < 2vmn2t, rank(R) < U}. Thus, using Lemma (D.1) and plugging the result
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back into Equation (95) above, we obtain:

o’ sup ——= Z Uo u Z{“ (98)
Ze]—'p
N
<e+ sup E, sup — Z 0olo(Z3 + Z4o) (99)

ZleC(e)  Z2€T,

5 U(m + n)log (34 ‘Emm + 1)
+By[ 5 +B ¥

/ 2-p
U(m + n)log (6 Vmninr 2 £ 1)

€

E — Leu 1
<e+/LE, sup Zao ¢ —&—B\/ —I—B N (100)

Z2<5’7'T _

1
— +/E, sup — Z 0o Zgu (101)

N Z2<5’7'T _
LB /27r \/27"1_ m + n)log (6(m +n)N({+1)(r + 1))

Nprp

where the second line (99) we used Lemma D.1, at the next line (100) we have used the Talagrand contraction Lemma (once
_P
used the fact that U < & = ";Q and the fact that

for each value of Z1), and at the final line (101), we have set ¢ =
p <1

N’

Next, by applying Theorem E.5 (with r < £2) we know that with probability > 1 — & over the draw of the training set we
have

262(m +n) m+n 16/mnt m+n
E, — 0 Lgu 1 1 102
sy ¢ o () + H s (7 (102
_ 2r2=P(m + n) m+n 16 717 \/mnr 2" m+n
<4707 1 1 1
T \/ SN 0g< 5 ) + 3N og 5 (103)

where at line (103) we used the definition of f(cf. Equation (93~)). Plugging Equation (103) back into Equation (101) we
obtain the following bound for the Rademacher complexity of F?, which holds with probability > 1 — ¢ over the draw of
the training set:

E, sup — Z Oolu(Zeu) (104)
Ze]—‘”

7B%+1 16€Tl’p\/mm’2%p m+n
< I _— 1
Al N + 3N og < 5 > (105)

+ B\/erg(m +n)log (6(m +n)N({+ 1)(r + 1))

NpTP
_ 2r2=P(m + n) m+n
4¢70-P) 1 .
+ T 3N og 5

Ignoring logarithmic factors, the dominant terms scale as follows:

5. + +
E, sup — Z 00 lu(Zen) < Nmp n) + rtPpleE mrny (106)
Ze]—‘p pT
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Thus, optimizing over the choice of 7, we select

1

T=B% Eiﬁ r_%pfﬁ. (107)

Substituting this back into Equation (105) we obtain SR(F?) <

TB>+1  16071P mnr 2t m+n 2r2=P(m +n) m+n
< 1 4070-p) (22 VTP
N 3N Og( 5 ) Al 3N °g< 5 )

. B\/2r1’£(m +n)log (6(m +n)N(¢+ 1)(r + 1))

NpTP

7B +1 N 16@[8% = r*%p_ﬁ]lfpmﬁ%p 1 m+n
N 3N 8\ 75
B 2r'=% (m + n) log (6(m + n)N(£ + 1)(r + 1))
Np[BT# 75 r—3p 75 ]p

29—
+ 4B rép—aip]ﬂp)\/% PmEn) o, <m i ”)

3N

_ TB%+1 N 168%8% r3/mn log <m+n)

N 3Np=» )
L BEE 2r(m + n) log (6(m —E_?ZP)N(K +1)(r+1)) L4 2r(m2—&:27:) log (m + n)
Npz=» 3Npz>» o
2 % Pl m+n
< 7B +1 N 16 B2» (2 rz«l/zﬂmlog (75 ) (108)
N 3Np=»
vo | r(m+n)log (6(m+n)N§€+l)(r+l))
+ 5B (75 e
Npz=>r

78%+1 BE7 175 pICD r(m+n) m+n
<)+ 5 P 10g(T ) | 144/ (109)
7B% +1 B>7 (75 r(m +n) m+n
11 A/ log(T'2) |1+ 4/ : 110
Nt ” v log(lzy) [1+4/— (110)

as expected. O

N

Next, we consider the situation where the distribution is arbitrary, but the Schatten quasi norm is not weighted:

Theorem D.3. Consider the following function class:

Fo={ZeR™" | Z|sep < M}. (111)

With probability > 1 — 6, we have the following bound on the Rademacher complexity of 1o FY, where 1 is any set of N
{-Lipschitz functions uniformly bounded by B:

o~ 241 b b 1=5(m 4 n)*% log (T z»
m(ff):q/mN“L +(\/180+\@)Bl—262\/r ( ”)Np g (Lrpe) (112)

where I'zp g := 6N (m +n)(r + 1)(£ +1).
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Proof. Similarly to the above proofs we can write

FreRr, +T. (13)
where
Ry = {ReR™": |R|, <, rank(R) < U} (114)
with
-2 P b
U= lWJ and 7= . (115)
-
And similarly
T ={ZeR™" | Z|, <1} (116)
with
T =775 /mn’ 7P (117)

Thus, by the same argument as in the proof of Theorem D.2 we have

E, sup e D00 lo(Zeo) (118)
ZeFr o=1
1 R o U(m + n)log (3N\/mf +1)
< N—k@gs&gmﬂi(]:zl)—i—l? N-ﬁ-B I (119)
where
Fp = {(10((21 +2%e)),_y: 22 7;} . (120)

with the values for 77, U,t,1 defined as per Equations (116), (115) and (117) respectively. Replacing the appropriate values
for U and ¢, we have the following

U(m +n)log (3N\/ AN'mn2tl +1)

B N (121)
rl_g«/mnp(m + n)log (3N\/4\/mn2«/mnr22?n€ +1)

< B\ N oo (122)
=% (m 4 n)P+1log (3N\/4\/mn2\/mnr22‘_zfn€ +1)

<B N7 (123)

1-% +1
<B o (m+n)p log(6N(m+n)(r+1)(€+1)). (124)
Nprp

For any Z' € C(¢) we can apply Proposition F.3 from (Shamir & Shalev-Shwartz, 2011) to obtain the following inequality,
which is valid for any training set:

o = T 1-Z P _1—
E, sup iZlo(Z1+Z2)< 9C BLt(y/m + y/n) _ 9C'Blr N P(m+\/ﬁ)
22€T: No:l N N
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Taking a suprememum over Z! we certainly have

1 N B 1-% P _1-p
sup Ea’ sup Zlo(Zl+Z2)<\/QCB€T A/Jmn. T (W+ﬁ)

2iec(e)  zzeT; N 4 N

Plugging Equations (125) and (124) back into Equation (119) we obtain:

E, sup — Z 0016(Z¢o)
ZeFP

\/782 +1 \/1cher1—‘z’ T1=P(y/m + n)L+2p
< N " N

NpTP

N B\/zrlg(m +n)Ptlog (6N (m +n)(r + 1)(¢ +1)).

this motivates the following choice of threshold
=By m +n,
which yields:

E, sup — Z 0010(Z¢o)
Ze]—"’

7B2+1 18C B> P (P r1=% (m +n)'ts
Npl—p

LB 2r1_g(m+n)1+%10g(6N(m+n)(r+1)(€+1))
Npt-p

TE L | (WISC + V3) B £ wl’ﬂm n)its 6l 4 )+ D),

as expected.

D.2. With Constraints on Entries

Theorem D.4. Consider the following function class:

Frpy = {Z eR™ 28, <778 2] < Bof.

(125)

(126)

(127)

(128)

(129)

(130)

(131)

With probability = 1 — 6, we have the following bound on the Rademacher complexity of 1 ofp where | a Lipschitz function

of £€° and éo but is (-Lipschitz with respect to the first argument and uniformly bounded by B:

921(]?’) ,) =Eq sup — Z 00lo(Zeo)
ZeFF

| 2 /
78 +1 1182 p 62 IOg ﬁ l1+ W]

Proof. Let us write t for t = r1=%. Then we have

. {ZERan 1212, <t Z]0 < B }
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As before, we decompose our function class into two parts

Flp, © Re+Tr, (133)

where R, is a class of rank U matrices where the contribution from singular values greater than 7 belong and 7 contains in
the contribution from singular values less than 7.

More precisely,

= {ReR™":|R|, <t rank(R) < U} (134)
where R = diag(y/p) R diag(1/) and
U= rp| and T =~/mnnBo, (135)
T

where the expression for U comes from Markov’s inequality (as before) and (differently from before) the expression for
comes from the fact that for any matrix R,

2 piut(v)) T < | Z|rank(Z) < v/mn Byrank(Z) < /mnn By . (136)

pi=T

Note also that exactly as before, for if p,, < 7 for all K = U + 1, then we certainly have

k k k
Dlope= D, pher < Y PR (137)
k=U+1 k=U+1 r=U+1
Thus, for 7., we have
T, = Flim {Z eR™™ . | Z]4 < Z} (138)

where from equation (137) we obtain the suitable expression for t as

e
Il
~
9
[
iS]
Il
<
1
9
T
iS]

(139)

Since Equation (133) holds with the prescribed values of U, # and £ we can upper bound the Rademacher complexity via
Lemma E.3 for F = {(10((Z1 + Zz)go))0<N ZYeR,, Z%€ 'T} ©1=R,;and Oy = T;:

E, sup — 0oly(Zew) < E, sup — 0oy Z v+ Z2, (140)
ZG]:P Z 5 ZeR ZZETT Z ¢ ¢ )
~ 2 1
<ot sup R(Fp) 4By T4 gy eV FLe) (141)
Z1eC(e) N N

By the same arguments as in the proof of Theorem D.2,

N(Fi,e) < Noo (RT, %) (142)
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Thus, using Lemma D.1 and plugging the result back into Equation (141) above, we obtain:

E, sup — Z Oolu(Zeu) (143)
ZeFP =
<e+ sup E, sup — Z 0olo(ZEs + Zo) (Fz1) (144)
ziece  zeT. NV 5
U(m +n)log (3” W + 1)
+B«/ " +B ~
1 /2 =% (m + n) log (3Nmn3[By +1][£ +1] + 1)
N +(E, 282217); — Z 0oZgw + B —l— B\/ Nor (145)

1—

(NS}

used the fact that U < & = =~

P TP

at the final line (145), we have set € =

N’
Next, the application of Theorem F.5 (with r < ¢2) to 7 is unchanged from the proof of Theorem D.2, thus we know as
before that with probability > 1 — § over the draw of the training set we have

262(m + n) m+n 16y/mnt m+n
E, — olgu < 4 1 1 146
sy N Z:: ot \/ 3N 8 ( 5 ) ST VA N (146)
_ 2r2=P(m + n) m+n 16 717 /mnr 2" m+n
<4707 1 1 147
7 \/ 3N 8 ( 5 > * 3N %%\ 75 (147)

where at line (147) we used the definition of # (cf. Equation (139)). Plugging Equation (147) back into Equation (145) we
obtain the following bound for the Rademacher complexity of 7, which holds with probability > 1 — ¢ over the draw of
the training set:

E, sup — Z 00 u(Zgu) (148)
Ze]—'"

7B%+1 16671_p«/mnr2%? m+n
<
\ + N log ( 5 ) (149)

1-2 3 2—
+B\/r (m 4+ n)log BNmn3[By +1][¢+1] + 1) 400D \/2r P(m +n) log <m+n)

N TP 3N 1)

Thus, optimizing over the choice of 7 (ignoring logarithmic factors), we select

2

2 1
T=BTpr TPy 2, (150)

Substituting this back into Equation (149) and writing I'z, , for 3Nmn”[Bo ;1][5 HUHL > 3Nmnd[By +1][£ +1] + 1 we
™50 ’
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obtain R(FP) <

7B%+1 16€Tl_pq/mnr2‘77p m+n
< I 151
A 3N Og( 5 ) (15D

1—2
rimz(m+n)log Lz, 2= p
B ( T By ) g D) 2r2=P(m + n) log <m+n>.

N 7P 3N )

B 75’2+1+16€[Bﬁﬂ_%r*%]1*pq/7mnr2%pl m+n
TN 3N AN

1-£ log (T % _
s rt=2(m +n) og( ;TYBO,@) 1 4B 75 -0 22 (m + n) log <m+n)
N[B=7 75 =3 ]p 3N g

_ 782+1+168%€ﬁréx/mn1 m+n
W 3N B\ 7%

r(m+n) log 2 (
2-2p _p 7” m + n m+n
= (TP 4

+8B - ), og (")

- 782+1+16B%€ﬁrémlog(m;”) B m+n)log( 7305)

< P P 5

N 3N
7B% +1 22 p 1 [r(m+n) (

<\ +11[sz£2 ] S log(Tyy ) |1+
as expected. O
Theorem D.5. Consider the following function class:

Fos, = {2 eR™" | Z]sey < M= [ry/mn] 5, 2] < Bo} (152)

With probability = 1 — §, we have the following bound on the Rademacher complexity of 1o F{, where 1 is any set of N
£-Lipschitz functions uniformly bounded by B:

R(FLp,) = Es sup — Z 0o lo(Zeo) (153)
Ze]—“)

2 P(m +n)t—%
7BN“ +B5 ek \/2M ( N* ) (3\/5-}-\/1og(6(m+n)N[BO+1][€+1])),

N

where C'is the absolute constant from (Latata, 2005).

Note that similarly to Theorem D.3, the sample complexity is

O (MP(m + n)P) = 5<T1_5n1+5>, (154)

where r is the rank-like quantity [ W
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Proof. Similarly to the above proofs we can write

FPcR+Ts, (155)
where
= {ReR™" :|R|s <t rank(R) < U} (156)
with
_ MP _
{pJ and t = By v/mnn. (157)
pu
And similarly
T ={ZeR™":|Z|, <t} (158)
with
t=MPriP, (159)

Thus, by the same argument as in the proof of Theorem D.2 we have

E, sup — Z 0o ly Zgo (160)
Ze]—'"
1 . o U(m +n)log (3N@€+1)
<=+ sup R(Fz)+Br/—=+B (161)
N Z'eC(1/N) z N N
where
Fp = {(10((21 +20e)), oy Z0€ TT}. (162)

with the values for 7, U, t, t defined as per Equations (158), (157) and (159) respectively. For any Zle C(€) we can apply
Proposition F.3 from (Shamir & Shalev-Shwartz, 2011) to obtain the following inequality, which is valid for any training set:

E, sup 721 L2 < \/9066t(ﬁ+\/ﬁ) =\/9CBeMprl—p(m+ Vi) 163)

zeeT. N = N

Taking a suprememum over Z' we certainly have

P -1—
sup E, sup 721 (Z' + 7%) < \/908“\4 T rm 4 V) (164)

ZleC(e) z2eT. N N

where C is the absolute constant in (Latata, 2005). Furthermore, replacing the appropriate values for U and £, we have the
following

B

U(m +n)log (3N\/277+1) <B\/QMp(m+n)log(6(m+n)N[Bo+1][€+1]). (165)

N - N 7P
Plugging Equations (164) and (165) back into Equation (161) we get:
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E, sup — Z 00 lo(Zeo) (166)
Ze]—‘p

2
\/ﬁ \/1808€M”r1 P(v/m +n) (167)

N B\/z MP(m + n)log (65(;17——; n)N[Bo +1][¢ +1])

This motivates the following choice of threshold:

r=0"'B'vVm+n, (168)
which yields

E, sup — Z 0o lo(Zeo) (169)
Ze]—'”

/ 1 \/wcszw’fl P(v/m + n) +B\/ MP(m + n)log (6(m + n)N[By +1][¢ +1])
N 7P

762+
\/782 1, \/180 B> P " MP(\/m +n)'—%

<

N N

\/ MP(m +n)' =% B2 (7 log (6(m + n)N[Bo +1][£ +1])
+4/2 N

P
2

B4+l e o» [ MP(m4n)—
v B

where as usual at the second line we have used the fact that % + B4/ %T <4/ WTH.

(\/180 +/2log (6(m + n)N[By +1][¢ +1])) )

E. Important Tools

In this section, we collect some of the main building blocks of our proofs, which include estimates of perturbations of
Schatten quasi-norms in the estimation of the marginals, various tailor-made generalizations of chaining arguments, and
generalization bounds for classes of neural embeddings.

E.1. Generalizations of Dudley’s Entropy Theorem

This subsection details some of our results on how to calculate Rademacher complexities of composite function classes
when a covering number is only available for one of the classes.

Recall the following standard form of Dudley’s entropy integral:

Lemma E.1. Let F be a real-valued function class taking values in [0, 1), and assume that 0 € F. Let S be a finite sample
of size n. We have the following relationship between the Rademacher complexity R(F|s) and the L* covering number
N(FIS, € [-l2).

, 12 !
R(Fls) < inf (10 + 2 [ Vg NS e [T ) de
where the norm ||-|2 on RY is defined by |x|3 = %(Zfil |z:]?).
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We will also to extend the above Lemma to various settings where several a function class over two parameters. For this, we
will first need to establish the following slight extension of Lemma F.19:

Lemma E.2 (Scale sensitive concentration of Rademacher complexity). For any fixed x1, ...,z and any function class
F < RWI. Assume that there are N numbers s1, sa, . .., sy > 0 such that for all f € F we have

|fil < si (170)
with

1 J 2 2
N;Si—C

for some ¢ > 0. We have with probability = 1 — § over the draw of the Rademacher variables o1, . . . ,on,
N N
1 1 21og(2/9)
sup — oifi — Eysup — oifil <o ————=. (171)
fer N ; rer N ; N
Proof. This is a direct application of the Mc Diarmid inequality with the variables being the o1,...,0n. Indeed, if

0,0 € {—1,1} differ only in the ith component o;, then we certainly have

N N

supiZUifi—sup%ZEifi

< 2s;, (172)
fer N 4 rer N 4

which means that Mc Diarmid’s inequality implies

1Y 1Y 2¢? e
P < ?}EIJP-N iglaifi —E, ?EE'N ;Uifi > e) < 2exp (—462> = 2exp <_2c2> . (173)
The lemma follows upon rearranging. O

The two Lemmas below perform a generalized “chaining argument” (Guermeur, 2018; Vershynin, 2018; Boucheron et al.,
2004) with multiple component function classes. They are extensions of Proposition A.4. (page 3 of the supplementary)
of (Ledent et al., 2021b) and allow one to bound the Rademacher complexity of a composition of two function classes in
terms of the uniform covering number of the second class and the Rademacher complexity of the first one.

Lemma E.3 (Multi-class chaining: simple compositional extension of Dudley’s entropy theorem). Let F :=
{£i(01,603) : 0, € O1,05 € ©2} be a class of functions on {1,2,...,n} with values in [— B, B] and dependent on two
parameters 0, € ©1 and 05 € Os.

Let € = 0 and assume that ©1 admits an e-uniform cover C(¢) < Oy (of size N'(F, €), dependent on €) in the following
sense: For any 01 € O there exists a 0 € C(e) such that for all 03 € ©2 and for all i < n we have

|fi(91792) — fl‘(é, 92)| < €. (174)

Then we have the following result on the Rademacher complexity of the function class F:

R(F) =E, sup lzaif,-(al,oz)sﬁ sup 5%(?9—)+B«/2ﬁ”+8 log(,/\/'(%,e)). (175)

01,2€01 2 TV i3 feC(e)

where for all § € ©, we define Fg = {f (@, 02) : 03 € O4 }, and as usual the o;s are i.i.d. Rademacher variables.

Proof. Without loss of generality, we can assume 5B = 1.
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For any 6, € O, let us denote by 6 the cover element associated to #; as in equation (174), by the assumption on the cover
we have

n

R(F) =Es sup lz:Uifi(ehez)

01,2601, TV [T

n

<E; sup = > 0ifi(61,62) + [fi(61,02) — fi(61,65)]

01,2601 T i-1

n

1 _
<e+E, sup — Z o fi(01,02)

01,2601, T i1
n

<e+E, sup sup — Z oifi(0,05). (176)
G_EC(e) 02€02 n i=1

By Lemma F.19 we have, for any choice of § € ©1, that with probability > 1 — & over the draw of the Rademacher variables
01y..--,0N,

1 ¢ ~ 1 ¢ - 2log(2/6)
sup — g;Ji 9,0 —EU sup — g;Ji 9,9 < —_—. (177)
egegzn; fi(6,62) 9268271; fi(6,62) N
Thus, by a union bound we have that with probability > 1 — ¢ over the draw of the Rademacher variables:
1 ¢ _ <
sup sup — » 0y f;(6,62) — sup R (Fp)
feC(e) 02602 T [} GeC(e)
1 & ~ 1 & -
< |sup sup — Z 0:fi(0,02) — sup E, sup — 2 oifi(0,62)
feC(c) 02€02 n i=1 feC(e) 0205 T i=1
1 & . 1 & -
< sup |sup — Y 0ifi(0,02) —E, sup — » o;fi(0,02)
0eC(c) |02602 T ; 02602 T ;
2log(2/9) \/ log(N'(F1,€))
< . 178
\/ N N (178)
Let X denote the random variable
- - 1 F
RF) —c— sup § (Fy) — o) BN 1) (179)
0eC(e) N
(with the randomness arising from the Rademacher variables o;s).
By equations (178) and (176) we have for all e > 0
N
P(X >¢) < 2exp <—€2> . (180)
Integrating over € we obtain
o0 2N
E(X) < J 2 exp (—52) de (181)
0
2V2 (* 5 2m
= — exp(—6)dl = A | —, 182
ol ! p(—0%) ~ (182)
which, plugged back into the definition of X (i.e. Equation (179)) gives the result.
O
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Whilst Lemma E.3 above works well when the function class ©; enjoys a log covering number with very mild dependence
on the granularity € (e.g. log(1/€)), it is insufficient to handle the typical 1/e? dependency of norm-based bounds. The
generalization below is more suitable in this case.

Lemma E.4 (Multi-class chaining: full compositional generalization of Dudley’s entropy theorem). Let F :=
{£i(01,63) : 0, € ©1,05 € O©s} be a class of functions on {1,2,...,n} with values in [— B, B] and dependent on two
parameters 01 € ©1 and 05 € ©o. Assume that there exists a 0, € ©1 such that f;(0y,02) = 0 for all i and for all 05 € Os.
Assume that for all € > 0, ©1 admits an e-uniform cover C(€) < ©1 (of minimum size N'(01, €), dependent on ¢€) in the
following sense: For any 6, € ©O1 there exists a e C(¢€) such that for all 63 € ©5 we have

N
1 = 2
— (01,05) — £:(0,05))” < €2 183
N;(f(l, 2) — fi(8,62))" < e (183)
The Rademacher complexity of the function class F is bounded as follows:
N
5 1
R(F):=E, sup — ) oifi(01,02) (184)
01,2€01,2 N Z‘i

1 1
<10g2< )asug 9‘{(.7:91)-!-404-6-4\/ J A o\ @1’ d +4Bq/
1€01

where for any fixed 61 € ©1, Fy, is the function class {f(01,02) : 02 € O3}.

Proof. W.l.o.g. we assume B = 1. Let H be arbitrary, and let ¢, = 2=(h=1) for h = 1,2,...,H. Forall h,let V}, ¢ ©,
denote the cover achieving (183), where we can choose v; = {0y }. For each 6; € ©1 let us also write vh[el] for the cover
element n V}, which achieves (183). Using a similar decomposition to classic proofs of the standard Dudley entropy theorem,
we have for any value of the Rademacher variables o1, ...,0N:

N

1
sup  — > 0ifi(61,062)

01,2601 2 i=1
N N

1 1
S sup Z o fi(v'[61],02) + sup Z il fi(61,02) — fi(v™[61],62)]
01,2€01 2 i1 01,2€01 2 im1
| N H-
+ sup NE Z i[fi(0"[01],02) — fi ("1 [61], 62)].
01,2601 2 i—1 h—1

=1

N
1
< sup Nzazfz( [01],02) + en
i=1

01,2€01 2

+ sup ! Z oi[fi(v"[01],02) — fi(v" T [6:1],02)]

<ew+ sup 2 2 01],02) — f; (" T1[0:1],02)], (185)

012012 N 2 /2

where the second inequality follows from the definition of the cover and the Cauchy-Schwartz inequality, and the last
inequality follows from v, = {fp}. Next let us define the function class

Wy = {w e RIVI®®:2 . 39, ¢ O, s.t.w;(62) = fi(v"[01],02) — fi(v"T1[01],602)}.
Then note that we have

Wil < [VallVig1] < [Viga]? = N(O1, en41)*. (186)
Note that for all h < H we have

X
E, sup —Z [fi (0011, 02) — fi(v"T1[01],02)] < E, sup  sup Zalwl. (187)

02605 wEW}L,QQ i=1
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LetW = Uth W By definition of the cover (cf. Equation (183)), we have, for any 65 € O,:

(V" [61],02) — fi(v"TH61],602)]? (188)

|-
1=
§

-
Il
—

[fz( M[01],02) — fi(61,02) + fi(61,02) — fi(v" T [61],62)]°

zl= \

WMZ WMZ

N
[0 [81).02) = 501, 0 4 % 3 [Fulbn,00) — 0" [01], 0]
z=l

Z\N

N
l\J
Do

2%1 1067 4. (189)

Hence, we can apply Lemma E.2 to conclude that, for any choice of w € W, with probability > 1 — § over the draw of the

Rademacher variables o1, . .., o, we have (simultaneously over all 65):
21og(2/6
<1 ehm/% (190)

Thus, by a union bound running over w € W together with equation (186) we have that with probability > 1 — ¢ over the
draw of the Rademacher variables, the following holds for all values of w € W}, simultaneously:

< ViOenss Nmog@/a) . ¢4logw<eheh+1>>] O aen

sup — Z o;w;(02) — E, sup — Z o;w;(02)

0260, i1 02€02 i=1

N

supZN( abupz

926@2 i=1 926@2 i= 1

N N

Furthermore, for any w € W, we certainly have:

N

o
E, sup —w;(6) <2 sup E, sup = £i(01,09) =2 sup R Fo,) . (192)
926@2 7; N ( 2) 016@1 026@2 74211 N ! 2) 91601 ( 1)

Plugging equations (191) and (192) back into equations (187) and (185), we have with probability > 1 — § over the draw of
the Rademacher variables o, ...,0N:

1
su - 0;Ji 0 ,9 (193)
91,2619)1,2 N 211 f( ' 2)
~ N H-1
<em+2(H —1) sup R(Fp,) + sup Z Z Nl[fi(vh[el],%) — fi(@" 61, 02)]
0.€0, 0126012, ,—1

H-1
<em +2(H — 1) sup R(Fp,) + Z V10 [eh“\/ 210g(2/0) + 6h+1\/410g(N(@1’6h+1))]
01661 h=1 N N

- 5log(2/6 ul 1 e
<eg+2(H—1) sup R (Fp,) +4 #4—4\/102[%—6;&1] M.
6,€0, _

Finally, take H to be the largest integer such that €711 > «, then ey = 4ey 2 < 4a and we can continue to show that
(w.p. = 1 — d over the draw of o):

LN
sup Nzaifi(ela‘%)
i—1

01,2€01 2

3 5log(2/6 1 @ P
<en 4+ 2H—1) sup R(Fp,) + 44 218E20) log(N (O1,¢))
01€0; N _—

1 s ! log(2/6
< 2log, <a) sup R (Fy,) +4a+4\/10J «/ng#dﬁm%(/). (194)
1€01 «
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Next, let X denote the random variable

! LS ' Nlog(NV(©1,6)) 1
m 91216181,2 ~ ;10'ifi(91792) — 4o — 4\/EL ﬁde — 2log, <a> , (195)

with the randomness arising from the Rademacher variables o;s.

By Equation (194) we have

P(X >¢) < 2exp (—€N) . (196)
Integrating over € we obtain
o
E(X) < J 2exp (—e°N) de (197)
0
J e 240 = | = (198)
\/7 xp(— =N
Plugging this back into the definition of X (eq (179)) after taking expectations with respect to o1, ..., 0N, we get:
~ 1 Y
Dfi(]-") =E, sup — Z Uifi(917 02) (199)

01,2601 2 i—1

1 1
< log, (a> s R (Fo,) + da + 410 J |/ 28NV (©1,9)) @1’ (200)
1€01

as expected.

E.2. On the Impact of the Estimation of the Marginals on the Schatten quasi-norms of Z

In this subsection, we present the following result, which is useful when proving our excess risk bounds.

Lemma E.5 (Generalization of Lemma 4 in (Foygel et al., 2011)). Let d = 2 be an integer. For any N > 6(m +
n) log(™F™)) we have the following inequality with probability greater than 1 — & over the draw of the training set:

6(m + n) log (742)
2/d 5
12125, < |1 +\/ ~ 1212 2/d (201)
Proof. Let A, B, D1,...,Dy_1 be such that
d—2
d|Z|% 2/d = Z |Dill%, + | diag(P)? Al + | diag(d)? B3, (202)
d—2 B
A 1_[ D,B" = Z. (203)
i=1
By Corollary (F.23) we have:
| Z)2" D; d A d B 204
120 < Z | D33, + | diag(5/p) Allf + | diag(/d) B (204)

i=1

where A := diag(p)2 A and B := diag(p)z B.
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By a Bernstein bound, for any € < 1,

and similarly

Thus we have for any € < 1, using a union bound:

2m

Pi—pi d;—aq; 2N
P EIi:ﬁZevElj:iique <(m+n)exp(>_
2

=+ 4 6(n +m)

Thus, we know that with probability greater than 1 — § we have simultaneously over all 7, 5:

and

mtE g, \/6(m+”)]i;’g (=5)

% <14 \/6(m+n)]1;)g(m;")’

Plugging this back into Equation (204) we obtain (w.p. 1 — §):

d—2
~i2/d . LN X . NS
d| 2|25, < Y. |Dill3, + || diag(p/5) A3, + | diag(q/d) B3,
=1
6(m + n) log (2t ~ ~ d=2
1+\/ ~ (5%) [nAu%ﬁuBn%r]+Z_=21|\Diu%r

6(m + n) log (2t ~ ~ d=2
1+\/ ~ () |AlE: + IBlE: + D) 1Dillf

i=1
6(m + n)log (™42) L 2
=1+ d|Z| 2

VAN

N

N sc,2/d’

as expected.

E.3. Covering Number Bounds for Neural Embeddings

(205)

(206)

(207)

(208)

(209)

(210)

@211)

212)

In this section, we provide covering number bounds for neural embeddings, including both with weighted and un-weighted
versions of the constraints on the zeroth layer learnable embeddings. This section relies on results from subsection F.3 such

as Proposition E.8.

We consider the following function classes.

47



Generalization Analysis of Deep Non-linear Matrix Completion

Now.ela, s, c) = {g :[m] x [n] > R'3f e M w(a,s),U e R™™ VeRV™: (213)
| diag()2 U3, + || diag(@)2 V& < ¢, |A°] < s0: g(i,5) = F(A*(ui,v;)") vm},
mc(a,s,c) = {g :[m] x [n] > R'3f e M w(a,s),U e R™™ Ve RV™ (214)
| diag(¥)2 U5 + || diag()2 V3, < ¢, [A°] < s0: g(i,5) = F(A (w5, 05)7) w,j},
Mow.c(a, s, c) = {g :[m] x [n] > RY3f e Niw(a,s), U e R™™ Ve RMV™ (215)
U % + [VIE < @ max(m,n), |A°] < so: g(i,5) = f(A% (ui,v5) ") \ﬁ,j},

where u; and v; denote the ith and jth rows of U and V' respectively and AC e RIx(m),

Proposition E.6 (L? covers of No,w,c,m o). Assume as usual that s; > 1 for all | and x> > 1. For any sample
&L, &N € [m] x [n] such that Vi, j, p; < 2p; and §; < 2q;, any € > 0, there exists a cover C(€) = Ny wc(a, s, c) (resp.
No,w c(a, s, ¢)) with the following properties.

1. For g € Now c(a,s,c) (resp. ./\70,\\;\7,0) there exists a g in C(¢) such that

1 N
=D, (g9 <€ 216)
p3
2.
log(|C(€)]) < [Qd(m +n) + 3252¢° [612 + 1] sz] log (Tw.e) for Now. (217)
[Qd(m +n) 4 32s2c*(m 4+ n) [612 + 1] RWQ] log (Tw.e) for Now.e (218)

L
where 'y, . = HWso(mtn)ymnllie se 4 .

€

Proof. We write a single proof for both cases as they are very similar.
Step 1: Uniform cover C; of the embeddings A°(u;,v;) "

For any A°, U, V, we write U(A°, U, V') for the tensor in R**™*" such that U(A°, U,V )y ,; = [A%(u;, v;) "], for any
i<m,j<nu<d Letld := {Ue R :3(A°, U, V) € A, s} where A, ; is the set of admissible U, V, A® defined
according_tg}l}e corresponding equations (213), (214) depending on whether we are proving the Theorem for the class
NO,W,C’ NO,W,(:-

T

Note that for any A%, we can always write A% (u;,v;)"T = A%u + Agvj where AY and A represent the first and last i
columns of A respectively. Thus, we have U < U; + Uy where U, := {AlUTHV, As i ((A1,42),U, V) € Aa,s} and

Us = {AsVT|3U, Ay : (A1, A2),U,V) € Aus).

1
For each admissible U, V, A°, it is certainly the case that | A%u] ||, | A% | < [|[A°| (|U[§, + [V]§)? < 2s0c(m + n) for
any i, j, where we have used the fact that p; > 5= and g; > 5-.
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Thus, we have Uy < U = {UeR>™: |U|p < 2s0(m +n)y/m} and U, < Uy =
{Ue R : U < 2s0(m + n)y/n}.

Thus, by Lemma F.17 applied to ﬁl and LN{Q, we can obtain internal covers 511 and 512 of L~{1 and Z/ng with respect to the
|- |7 norm with granularity €/(8 ]_[éLzl s¢) such that

log (min Hg“ |G H) (219)
— L
< (m+n)d (Gso(m —:n)\/ﬁ + 1) = (m+n)d (4830(m trvmn ]l se + 1) )
BTI¢y se) €

which immediately yields an external cover of I with granularity €/(4 H£L=1 s¢), and finally an internal cover C; of the
. . L . .
same, with granularity e/(2] [,_, s¢) and cardinality

—— 1L
log (IC1]) < 2d(m + n) log (4830(m ha n)e mn ]l se + 1> . (220)

Step 2: L? covers of the network class 1,w relative to the cover elements in C;

First, note that for any admissible U, V, A?, we certainly have

N
i 2 A% (ugp, veg) TI < Z lueg® + [veg|1*] = 55 Y dilluill® + 55 Y dsllos |
o=1 o=1 i J
< 2sf min (ZﬁiHUHQ + Z%H%HQ’IDZ&X Juui]* + max |Uj2>
i J
<4s(2)02, for J\T(J,\vvd, o and (221)
4s2c? (max(m, n)) for Now,c- (222)

Thus, for each cover element U = (A%, U, V) € Ci, there we can apply Proposition F.8 to show that there is a cover
Co(U) c My -w such that the following properties are satisfied:

1. Forany f € Nj w there exists f € Co(U) such that

N
Z A0 (s, o) TP < €2/4, (223)

2 \

and

1
log (C2) < 32s3¢? [62 + 1] Rw?log(2W), (224)
where as usual Ryy is defined by Equation (264).

Step 3: L? cover of N w . and mc

We now finally define the cover C — ./\/'07\;\/7C via
C={foUlUeC, feC(U)}, (225)

where by abuse of notation, f o U denotes the function g : [m] x [n] — R! such that g(i, ) = f(U..;) = f(A%(us,v5)7)
(where A®, U, V realise the element U of I/ and as usual u; and v; denote the ith and jth rows of U and V respectively).
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We now have that C is an e cover with respect to the L? norm and the sample ¢',. .. ¢V, Indeed, forg = fo U € No,Wcs
let § = f o U be the associated cover element in C, we have

1 & 2 1 & _ . 9 1Y, L =2
7 2o @6 <25 2 ([ = Fle0)e +25 3, (fo [U—U])go (226)
o=1 o=1 o=1
<2, +2 [ ]se s =€ (227)
=1 4[1_[5:152]

where at the first line (226) we have used the AM-GM inequality and at the last line (227) we have used the properties of
both covers. This established the validity of the cover (Equation (216)). We now only have to estimate the cardinality to
establish Equation (217):

log (IC(e)]) < Y. [C2(D)] (228)
UeC,
L
< 2d(m +n) log (4850(7" * ")! mn Loy se 1) + 32522 [:2 + 1] Ry log(2W) (229)

L
96W so(m +n)y/mn ][, se + 1) , (230)

€

1
< [2d(m +n) + 32s5¢? [2 + 1} ng] log (
€

where c stands for c if we are covering J\’/_o\w/ < and cy/max(m, n) if we are covering J\fo,w,c, and (at Equation (229)) we
have used Equations (224) and (220). The result follows. O]
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F. Variations on Known Results

This section compiles some minor variations of known results. We include some proofs both for completeness and because
the precise results we need sometimes deviate slightly from the known version. For instance, we often require high
probability versions of results which were previously presented in expectation over the training set.

Remark: The modification is necessary for incorporation with the neural network bounds of Section E.3 and even for
incorporation with the Lipschitz constant bounds of Section C.2 via Lemma E.4 and Lemma E.3. Indeed, although the fact
that the construction of the L2 cover of the class AV v is non constructive and dependent on the sample ¢!, ..., €Y may not
be a strong obstacle to applying an expectation version of Lemma E.4 or Lemma E.3, the supremum over 6, is a bigger
issue. Taking the example of Lemma F.1, we need to know that with high probability over the draw of the training set,
Equation (231) will be satisfied, allowing us to show that for this particular training set, the inequality in Theorem D.2 holds
uniformly over all bounded Lipschitz functions £.

F.1. On the Complexity of Classes of Matrices with Nuclear Norm Constraints

We will need the following classic Lemma:

Lemma F.1 (Cf. (Foygel et al., 2011), proof of Theorem 1, (Tropp, 2012), Remarks 6.4 and 6.5, cf. also (Ledent et al.,
2021b)). Consider the matrix Ry = % le\il oiec; where the o;s are Rademacher variables and for all i, j, e(; ;) is the
matrix with a 1 in the entry (i, j) and zeros in all other entries and the entries are selected i.i.d from a distribution with
uniform marginals. With probability greater than 1 — § over the draw of the training set and the draw of the Rademacher
variables o1, ...,0N, we have

1 m+n 8 m+n
|RN||<’V8/3\/]\mm(W\/1Og< 5 >+3N10g< 5 ) (231)

Proof. Ry is an average of NV i.i.d. matrices X; = o;e¢,. Thus, we can apply the non commutative Bernstein inequality

(Proposition F.20). We have || X;| < 1/N with probability 1 for all 4, thus "M” is 1/N. Furthermore, we can compute the
2

p- as follows:

1, 1
[E(X:iX[)| = 55l diag(pr,pa, o om)| = — (232)
and
. 1, 1
[ (X X0)] = 52| ding(ar a2, an) | = —o5, (233)

where the p;s (resp. ¢;s) denote the marginal probabilities for each row (column), which are uniform by our assumption.

Hence p? is NZmin(rn) and 02 = m From this, it follows by applying Proposition F.21 that with probability
> 1 — ¢ over the draw of the training set, we have
8SM
IRy < +/3/304 [log (m;”) + =5 log (m;") (234)
1 m+n 8 m+n
<A8/3) | ————F—1 /1 _— —1 , 235
/\/Nmin(m,n)\/0g< 4] >+3N 0g< 4] > (239

as expected.
O

Lemma F.2 (Cf. (Foygel et al., 2011), proof of Theorem 1 cf. also (Ledent et al., 2021b)). Consider the matrix Ry =
% Zi\;l oo \/;507& where the 0,s are Rademacher variables, for all i, j, e; ;) is the matrix with a 1 in the entry (i, j) and
S ’

zeros in all other entries, and as usual. With probability greater than 1 — § over the draw of the training set and the draw of
the Rademacher variables o+, . ..,o0N, we have

IRy < 4 /7 m+n l m+n 16«/ (m;n) 236)
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650

\/Peg.eg”

(Proposition F.20). Since p; > 5~ and §; > 5 for all ¢, j, we have | X, || < ZV™Mn with probability 1 for all o, thus “M” is
p 2n N p y

Q—VNm" Furthermore, we can compute the p? as follows. for any i < m, we have

Proof. Ry is a sum of N i.i.d. matrices X, = Thus, we can apply the non commutative Bernstein inequality

1 & 1 2n Di
NE (X, X)), == Y, Pij= < = Y pij =2n= <4n, 237
( )7,,1 Ds ;p 3J d; Di j;p »J npz n ( )

where as usual the p;s (resp. ¢;s) denote the marginal probabilities for each row (column), which are uniform by our
assumption. Similarly,

N’E (X] X,), ,_Ti Wy <% me= ;\4 (238)
i=1

311

Hence p3 can be taken as W and o2 can be taken as = W. From this, it follows by applying Proposition F.21 that

with probability > 1 — § over the draw of the training set, we have

IRx| < \/3/304 [log <m;") + % log (m;") (239)
4\/— /m+n l m+n 16«/ <m(—;n), (240)

as expected.

O
For the distribution-free case with the nuclear norm, recall the following theorem:
Proposition F.3 (Theorem 2 page 3405 in (Shamir & Shalev-Shwartz, 2011)). Consider the following function class:
FL={R™" 57 :||Z||. <t}. (241)

Let]1: R x R — R be a function which is uniformly bounded by B and {-Lipschitz w.r.t. the second argument, for any
training set 1, ... &N € [m] x [n] we have the following bound on the empirical Rademacher complexity of 10 F}:

E, sup —ZJO (Zeo, G)<\/9CB“(W+\/E), (242)
Ze]»‘1 N

where C' is the (absolute) constant in (Latata, 2005).

Proposition F.4 (High probability version of Theorem 1 in (Foygel et al., 2011)). Consider the following function class:

F={R™" 57 :||Z|. <t}. (243)

Assume that the sampling distribution has uniform marginals. For any 6 > 0 we have the following bound on the empirical
Rademacher complexity of F} with probability = 1 — § over the draw of the dataset:

t2 m+n 16t m+n
E, oZgo <84 | =———1log | —— | + 1 244
Zsél]l:jl N Z o \/3N min(m, n) °8 ( 0 ) * 3N 8 ( 0 ) (244)

Proof. This follows immediately (as a particular case) from Proposition F.5 below. O
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Proposition F.5 (High probability version of Theorem 3 in (Foygel et al., 2011)). Consider the following function class:
Fl.= {RW” 57| 2] < \/?}, (245)

where as usual Z = diag(p)Z diag(q)). For any & > 0 we have the following bound on the empirical Rademacher
complexity of F} with probability > 1 — § over the draw of the dataset:

2r(m+n m+n 16/ mnr m-+n
E, sup — Zaozgo \/(3N )log< 5 )+ N 1og< 5 ) (246)

ZEJT1

Proof. Similarly to the original proof, expanding the definition of the Rademacher complexity, we have

1 ~ . p
E, sup N Z 0o L¢o = Eq sup N <RN,diag(\/;7)Zd1ag(\/6)>

ZeF} o=1 ZeF}
< Eo sup |Ry ||| diag(v/p)Z diag(+/q) |« (247)
ZeF}
< Eo| Ry sup [ Z]« = v7Eq| Ry|
ZeF}
2r(m +n) m+n 164/mnr m+n
<4 1 1 24
\/3N °g<5>+ 3N Og((s)’ (248)

where at the second line (247) we have used the duality between the nuclear norm and the spectral norm, and at the last
line (248), we have used Lemma F.2. O]

F.2. Computational Lemmas
This subsection compiles basic calculations which are useful when translating a high-probability bound into a bound in
expectation.
Lemma F.6. Let F' be a random variable that depends only on the draw of the training set. Assume that with probability
>1-4,

E(F) < f(9), (249)

for some given monotone increasing function f. Then we have, in expectation over the training set:

o0

T2, (250)

=1

=
!
)

In particular, if f(§) = Cy log(%) + Cy, then we have in expectation over the draw of the training set:

E(F) < ﬁcil +Cy < gcl+02. (251)
Further, if f(8) = Cslog(3), then we have
E(F) < 6Cs. (252)
Proof. By assumption we have for any ¢:
P(X > f(0) <0 (253)

Let us write A; for the event A; = {F < f(d;)} where we set §; = 2~ fori=1,2,.... Wealso set A; = A\A;_ for
i =1,2,... with the convention that Ay = J so that A; = A;.
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We have, fori > 2, IP’(/L) <P(AS ;) < d;—1,and fori =1, P(/Nll) < 1 = §;_;. Thus we can write

i E(X|A;)P giKiEX\A < (0651, (254)
i=1

i=1 i=1

yielding identity (250) as expected.

Next, assuming f () = C14/log( %) + Cs, we can continue as follows:

e} o0
E(F —C3) < Y. f(0:)dim1 < D [Cry/log(27)]2" (255)
’L;l =1 .
;[Cl\[ 21 i < g \/> \/5 . (256)
where at the second line we have used the fact that for any natural number 7, Vi < \/Ei_l.
If we assume that f(6) = C;3log(%) we have instead
0 e}
<D f(6 < ) [C3log(2)]2! " (257)
=1 i=1
0 0 .
; 27 < Cgi; 25%\/5“121—1' < 23_0\3/5 < 6Cs (258)
O]

Lemma F.7. Let a,b, s > 0 be three positive real numbers: we have

log(1 + ab®) < log((1 + a)(1+ b)) <log(l+a) +log(l + (1 +b)%) <log(l + a) + log(2(1 + b)®)
<log(2(1 +a)) + slog(l +b).

F.3. Covering Numbers for Neural Networks

In this subsection, we collect variations of known results on covering numbers of classes of neural networks. These results
are useful in Subsection E.3, where apply them to construct covers of the space of neural embeddings over elements of

[m] x [n].
In line with much of the literature, we consider fully-connected neural networks of the following form:

f(z)=0r (ALUL_1 (UL_Q...O'l (Alm) )) , (259)
where the input x € R? and the output f(z) € R and the activations ¢ (for ¢ < L) are assumed to be 1-Lipschitz. We
write W for the total number of parameters of the network.

For a fixed architecture defined by the intermediary widths wq,...,wr = 1 (so that W = Zszl wr,Wr,_1), and for a fixed
set of constants ay,...,az, and s1, Sa, . .., 51, and initialization matrices M, M2, ... M we consider the N7 w(s,a)
class of networks f that satisfy the following conditions:

N

H (AL = m*) " ag  YE<L  and (260)

"
|AY| <se  VE<L. (261)

The following is a particular case of (Graf et al., 2022), Theorem C.15 (cf also (Bartlett et al., 2017; Ledent et al., 2021c))
applied to fully-connected neural networks.
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Proposition F.8 (L? covering number for Ny w). Assume that x> = & SN 2,2 = 1 and ¥l,s; > 1. For any ¢ > 0,
there is an L* cover C(€) of N1.w with the following properties:

1. For any f € Ny w there exists a f in C(€) such that

- i |f( )| < (262)
N o=1
2.
() < | 5| 1* R o2, 63

where

L a1 3/2 LN
_ ae 2 1 2
Rw =2 [ [Z LJ 1 and X = NO;H%H : (264)

Notes: We omit the improved dependency on the output dimension which can be derived from the techniques of (Ledent
etal., 2021c; Wu et al., 2021; Mustafa et al., 2021) since the output of our network is one dimensional. Such techniques can
also be easily used to make the above cover uniform over the samples at the cost of additional logarithmic factors.

Proposition F.9 (Uniform L* covering number for Ny ). Consider the class Now (s, a) of fully connected neural
networks with the same architecture as those in N1 v, but where the weight matrices only need satisfy the following
constraints:

A < se AT = MY < a (265)

We further assume that s; > 1 for all £ < L. For any 1 > ¢ > 0, and any ! Lipschitz loss function 1 there is an L? cover
C(e) of Na,w with the following properties:

1. Forany f € Ny there exists a f in C(e) such that for any x € R% with |z| < x, we have:

lof(z) —lof(z)| <e (266)

6 ¢ |TT7_y ] [ a]

€

log(IC|) < Wlog

+1]. (267)

Remark: This result and its proof are very similar to analogous results in (Long & Sedghi, 2020; Graf et al., 2022) (no
claim of originality is made here), but the requirement on the cover is stricter than in the Theorem statement in (Graf et al.,
2022). The control on the bounds is also looser, but we do not invest too much into the technicalities of obtaining tighter
logarithmic factors, since the aim of this section is merely to illustrate how to combine our bounds on Schatten quasi-norm
regularized matrices with neural network bounds.

Proof. For the sake of completeness, we repeat the main parts of the proof here, which mostly follow (Long & Sedghi,
2020).

Note that by a standard argument (see, e.g. pages 4,5 in (Long & Sedghi, 2020)), we have for any sets of matrices A, ..., A"
and A', ..., AL satisfying the conditions (261) and corresponding networks f and f:

|47 - A AEH T

|f(z) = f(@)] < =] 1_[8 Z < [« l_[s Z |A" =AY (268)

(=1 £=1
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with the inequality holding uniformly over any = € R<.

Thus, as long as C(e) is a cover of the space {A = (A',..., AF): |[A* — M*| < a, V{} with respect to the norm
N\ £ : : — €

[A[ == >, | A%] with granularity € := T

Furthermore, by Lemma F.17 and a doubling argument (to ensure the condition || A;| < s, is also satisfied by each element
of the cover) such a cover exists with cardinality <

, the associated cover C(€) < Ny gives a uniform e-cover of 1oN3 yy.

<6 S, 1>W (et s el o6

€

and the result follows.

F.4. A Result on the Estimation of the Marginals

Lemma F.10 (Variation on Lemma 2 in (Foygel et al., 2011) and Lemma E.1 in (Ledent et al., 2021b)). For any § > 0, if

N = 8(m +n) log(W) then with probability > 1 — 0, the following holds for all i < m and j < n.:

Di

and d;

WV
o | B

WV
Do ‘knl

(270)

Proof. The proof is almost identical to that of Lemma 2 in (Foygel et al., 2011) but we repeat it for completeness as we
need our variant with arbitrarily high probability. Note that this lemma is also a particular case of the inductive case from
Lemma E.1 in (Ledent et al., 2021b) with identity side information matrices.

If p; < L (resp. ¢; < 1), then p; < - and pp; > 5 (resp. ¢; < = and §; > 5-). On the other hand, if p; > L then by a
multiplicative Chernoff bound (Lemma F.15), we have for any ¢ < m:

I Np; N 5
P(p <Z) < _ < _— )< —, 271
(pl = 2) P ( 8 > P ( Sm) (m+n) @71

where at the last inequality we have used the fact that N > 8(m + n) log(@).

Similarly, for all j < n:

] _Ng; Ny 0
P<q1< 2)<exp< 3 ><exp< 8n><(m+n)' (272)

The result then follows immediately from a union bound. O

F.5. Basic Covering Numbers, Concentration Inequalities and Classic Results in Learning Theory

In this section, we summarize some existing results which are useful to our study.

Theorem F.11 (Generalization bound from Rademacher complexity, cf. e.g., (Bartlett & Mendelson, 2001), (Scott, 2014),
(Guermeur, 2020) etc.). Let Z, Z1, ..., ZnN be iid random variables taking values in a set Z. Consider a set of functions
F e [0,1]%. V8§ > 0, we have with probability = 1 — § over the draw of the sample S that

log(2/0)

N
VfeF, E(f(Z))éjb;f(zi)er%s(}")Jri% 2R)

where Rg(F) can be either the empirical or expected Rademacher complexity. In particular, if f* € argmin .z E(f(Z))

and f € arg min . r Zfil f(zi), then

log(2/6)

E(f(2)) < B(f*(2)) + 4%s(F) + 64 25 L.
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Recall the following theorem on the covering number of classes of Lipschitz functions.

Proposition F.12 (Covering number of Lipschitz function balls, see (von Luxburg & Bousquet, 2004), Theorem 17 page
684, see also (Tikhomirov, 1993)). Let X be a connected and centred metric space (i.e. for all A < X with diam(A) < 2r
there exists an x € X such that d(x,a) < r for all a € A). Let B denote the set of 1-Lipschitz functions from X to R which
are uniformly bounded by diam(X). For any ¢ > 0 we have the following bound on the covering number of the class B as a
function of the covering number of X :

N (B¢ ||-]lo) < GWW + 1) x 2N 5.d), (273)

Applying the above to the d dimensional euclidean space, we immediately obtain:

Proposition F.13. Let |- |max denote max norm on R, ie. |x|q = max; |x;|. Let Fip,1,,8, denote the set of Lg-Lipschitz
functions from [— By, Bo]? to R. We have the following bound on the covering number of Flip,L¢,B; With respect to the L™
(uniform) norm on functions:

d
log (N (Fiip,Le,5,)) < log ([45’60&} + 1) + Hﬂi‘)ﬂ + 1] log(2) (274)

d
<3 H2 Bg Lﬂ . 1] (275)

Proof. W.lo.g, let Ly = 1. Then, take the following €/2 cover of [— By, Bo]%: [[— Bo, Bo] n €Z]%, which has cardinality
less than [[280] + 1]d. O

Proposition F.14 (Massart’s finite class lemma). Let A = R be a finite class of functions from [N] to R. Letr =
maxye 4 ||u]2. We have the following bound on the Rademacher complexity of A over the sample [N]:

N S T AN
E, <1 sup Z aiui> < %&‘;#(A). (276)
1

N ueA im
Lemma F.15 (Multiplicative Chernoff bound, well known, Cf e.g. Corollary 13.3 (pp. 13-3 and 13-4) in (Sinclair). i.i.d.
case originally from (Angluin & Valiant, 1979), Proposition 2.4 p 158, cf. also (Boucheron et al., 2004) (exercise 2.10 on
p- 48) and (Hagerup & Riib, 1990)). Suppose X1,..., Xy are independent random variables taking values in {0, 1}. Let
X = Zfil X; denote their sum. For any § > 0 we have

2
P(X > (1 + 6)E(X)) < exp (—5 ]E<X)> . @77)
2+9
In addition, for all 0 < 6 < 1 we have
2
P(X < (1 - §)E(X)) < exp (—(S]E;X)> . 278)

We will need the following further consequence in our analysis:

Corollary F.16. Let m € N and n); be independent categorical variables on the domain {1,2, ... m}. Forall j < m let us
write X7 := Ziv=1 1(n; = j) for the number of n;s which assume the value j. For any 0 < § < 1 have

2
P (3j, s.t. X7 < (1 - 6)E(X7)) < mexp (— N‘; “) , (279)

where pmin; E(X7).
Lemma F.17 (Lemma 8 in (Long & Sedghi, 2020)). The (internal) covering number N of the ball of radius r in dimension
d (with respect to any norm ||-||) can be bounded by:

d d
N < Fm] < <3/€ + 1> (280)

€ €
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Recall the following result from (Mazumder et al., 2010):
Lemma F.18 (Lemma 6 in (Mazumder et al., 2010)). For any matrix X € R™*", the following holds:

1
X4 = i Z 1143 B|3.1. 281
Xl =, jmin o (1A% + IBIR] (281)

Recall the following useful result, which is an immediate consequence of the McDiarmid inequality. A similar result was
presented in (Bartlett & Mendelson, 2001) (cf. Theorem 11 page 469) for the expected Rademacher complexity. See
also (Ledent et al., 2021b) for the exact result.

Lemma F.19. 1 or any ﬁxed T1y..-3 TN and an Vf)/inctlon Class .; mappl}’lg to [71, 1 we have Wlth Plobabllllv 2 1 - 5
over the draw O_fthe Rademacher Variables 01y...,0N,

sup 2 0 J (T4 T1,..,Tp = . 8

e F N : (T15eesZn) N

Proposition F.20 (Non commutative Bernstein inequality, Cf. (Recht, 2011)). Let X1,..., Xg be independent, zero
mean random matrices of dimension m x n. For all k, assume |Xy| < M almost surely, and denote p; =
max(|[E(X, X, [E(X] Xy)|) and v? =3, p2. Forany T > 0,

s 2
T4/2
P 2 Xi| = T) < (m 4+ n)exp (— S ) . (283)
( k=1 Yo Pp+ M3
Proposition F.21 (High probability version of Bernstein inequality). Let Xi,...,Xg be independent, zero mean

random matrices of dimension m x n. For all k, assume |Xy| < M almost surely, and denote pi =
max(|E(Xe XD, IE(X,] Xk)|). Writing 0® = Zle p2, for any § > 0, we have, with probability greater than 1 — §:

< /8304 |log <m;”> +%log <m;”> (284)

Proof. From Proposition F.20, we can make the following conclusions splitting into two cases depending on whether
Mt <o?or Mt > 0

S

S x

k=1

If M7 < 02, we have, with probability > 1 — ¢:

S
> X
k=1

< /87304 |log (m ; ") (285)

Similarly, if M7 > o2, we have, with probability > 1 — §:

8M m+n
< —1 . 2
3 0g< N ) (286)

S

> %

k=1

Thus, in all cases, we certainly have, with probability greater than 1 — §:

< /8304 |log (m;"> —l—%log (m;”> (287)

as expected. O

S

> %

k=1

F.6. Deterministic Results

In this subsection, we show how some of the most popular recent neural network models indirectly contain Schatten norm
regularized matrix components.
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One of the first descriptions of non-linear matrix factorization methods appears in (Dziugaite & Roy, 2015), which describes
the following very general class of models:

. 1,1 .2 2 m _m
g(zaj):fg(uiavjvuiOvja"'aui Ol}j), (288)
where o denotes an element wise product, fy is a trainable neural network and u!, ..., w2 (resp. v',...,v2) are low

dimensional row (resp. column) embeddings. A particularly famous example of a more specific architectural variation is
the model presented in (He et al., 2017), which has achieved state of the art performance in various recommender systems
datasets. From an architectural perspective, the model can be described as follows.

g(i, j) = (concat(uj o v, f1(ui, v;)), concat(d,d") ), (289)

where f is a neural network with a mutli-dimensional output, and concat(d, d’) is a vector representing the last linear layer.
Since then, further models have been proposed which rely on expressing the set of observed entries as a graph through
which one can propagate the embeddings (He et al., 2020; Zhang & Chen, 2020; Mao et al., 2021), to cite but a few.

In Corollary F.23 below, we show that a global minimum of (1) can always be attained with the additional constraint that
Dy, ... Dgi_o be diagonal matrices. In particular, this further cements the validity of the Schatten norm as a regularizer: the
models (288) and (1) also hide implicit Schatten norm regularized components. For instance, the model in (He et al., 2017)
is in fact equivalent to

9(27]) = Zi7j + \II(ZaJ)a (290)

where U (i, j) = (D', fa(u;, v;)) is a neural network encoding derived from f; with an additional linear layer, and the
matrix Z satisfies Z; ; = {(u; o vj),dy = u; diag(d)vjT sothat Z = UDV'T for D = diag(d) where the rows of U (resp.
V') collect the row (resp. column) embeddings. Thus, imposing L2 regularization (which is arguably implicitly present in
popular optimization schemes such as gradient descent) on the parameters d, U, V' is equivalent to imposing regularization
on the Schatten quasi-norm of Z with p = %

We first recall the following reformulation of Theorem 1 in (Dai et al., 2021), which can be interpreted as a generalization of
Lemma F.18 (i.e. Lemma 6 in (Mazumder et al., 2010)):

Theorem F.22 (Theorem 1 in (Dai et al., 2021)). Let Z € R™*", for any integers d € N and o € N with 0 > min(m, n) we
have

d d r
. 2/d
R DA \ [[Wi=2)=a o2 =azPe, 1)
WaeRoX ™ WieRm e\ () k=1 =1
W, eROXOVL£1,d
where r = rank(Z), the os are the singular values of Z and |+ |sc p is the p-Schatten quasi-norm.

From this, we obtain the following result:

Corollary F.23. Let Z € R™*™, for any integers d € N and o € N with 0 > min(m,n) and d = 2 we have

BT:Z>

d—2 d—2
L min I + 1513+ X 10wl | 4| [T
AER™M X0 BeRN X0 = 14

Vk<d—2, D =diag(d¥), djeRr°

-
d
=d Y, o) =d|z|5, (292)
k=1
where the minimum runs over all matrices A € R™*°, B e R"*° and D+, ...,Dy_o € Q where Q is either the set of all

matrices in R°*° or the set of all diagonal matrices in R°*°. (As in Theorem F.22 r = rank(Z), the oys are the singular
values of Z and |- |scp is the p-Schatten quasi-norm.)

In particular, for d = 3, we have

. < 2/3 2/3
omin <A|%r +|BI3, + | D|3|ADBT = Z) =3 07" =31212%,. (293)
ROXUD:d;ag(d),deLéU k=1
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Proof. We prove the theorem in two directions.
LHS > RHS:

This follows immediately from Theorem F.22, since our set of admissible factor matrices (A4, Dy, ...,dq_2,B") is a
subset of the set of admissible (W7, Wa, ..., W) in Theorem F.22 (as a result of the additional constraint that the matrices
Dy,...,D4_5 mustbein Q).

LHS < RHS:

This follows by constructing a set of matrices A, B, D1, ..., Dg_o which achieves the minimum whilst satisfying the
strictest constraint that D1, . .., Dg_o are diagonal matrices. For this, let Z = UXV T be the singular value decomposition
of Z with additional dimensions chosen such that U € R™*° 3 € R°*° V e R™*°. We now choose:

A=Ux?
B=vxld
Dy =Y (Vk<d-2). (294)

It is clear that s
A l]_[ Dk] BT = yxVdyld=2)/dy1/dyT _ gyy T = 7.
k=1

In addition, we by the invariance of the Frobenius norm to rotations, we also have

d—2 d—2
|AIZ + IBlZ + D) IDely = [USYR + [VEYIR + Y 1595
k=1 k=1
d—2
= =Y+ U=V Y 1=V R = dIVR,
k=1
=d ) o' = d| 2|55 = RHS, (295)
k=1
as expected. The result follows. O

We have the following immediate variant of Corollary F.23, which shows how we can add the weights to our regularizers in
our practical experiments.

Corollary F.24. Let p € R™ and § € R"™ be arbitrary vectors and let Z € R™*™, for any integers d € N and o € N with

0 = min(m,n) and d = 2 we have
d—2
[[Dx|B" = Z)
k=1

=d Y, o =d|Z|55, (296)
k=1

d—2

i <A||%r+|B%r+Z|Dk|%r ' A

AERM X0 BeRMXo0
Vk<d—2, DjeQ k=1

where A = diag(/p)A, B = diag(1/q)B, 7 = diag(+/p)Z diag(~/q) and the minimum runs over all matrices A €
R™*° B € R"°and D1,...,Dq_2 € Q where Q is either the set of all matrices in R°*° or the set of all diagonal
matrices in R°*°,
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G. Extention: Multiple Latent Matrices

In this section, we develop tools to extend some of our results to situations where there are multiple latent matrices, possibly
with different Schatten indices. This section is mostly illustrative: the models themselves are quite complicated, making the
bounds less meaningful than in other sections. In addition, the dependence on the number of latent factors obtainable with
the techniques below is quite strong. However, the tools developed show a general strategy which could be used for a broad
class of similar models.

G.1. Extension: Multi-latent Lipschitz Decomposition Lemmas

In this subsection, we prove some new results, analogous both Talagrand’s concentration lemma and Dudley’s entropy
theorem, aimed at bounding the Rademacher complexity of ¢(Fy, ..., F,,) where F,, (for v < m) are function classes and
¢ is Lipschitz. The aim is to be able to bound the Rademacher complexity of F even if a covering number is not available
for any of the F,,.

We begin by remind the reader of the following classic.

Lemma G.1 (Talagrand contraction lemma (cf. (Ledoux & Talagrand, 1991) see also (Meir & Zhang, 2003) page 846)).
Let g : R — R be I-Lipschitz. Consider the set of functions {f;(0),i < N} (on {1,2,..., N}) depending on a parameter
feO.

For any function c(x,0) where x € X and any probability distribution on X, we have

N N
E,Ex sup {c(x 0) + aig(fiw))} < E,E,Ex sup {c(X, 0) + o—ifiw)} , (297)
i=1 i=1

6O 0O

where the o;s are i.i.d. Rademacher variables.

We then present our first extension of the above:

Lemma G.2. Let g : R™ — R be a function satisfying the following Lipschitz condition:

l9(w®) — g < D w7 — k| M (298)

kE<m

with Y5 Ae = L. Consider {f}(0)},{f2(0)},....{f"(0)}, i < N functions (on {1,2,...,N}) depending on a
parameter 0 € ©.

Define the function g on {1,2..., N} by g;(0) = g(f}(0), f2(0), ..., fm™(0)) foralli < N.

For any function c(x,0) where x € X and any probability distribution on X, we have

N N
E,Ex sup {C(X, 0) + Z aigi(ﬁ)} < E,E,Ex sup {C(X7 0) +¢ Z ai fi" (9)} , (299)
0c® i=1 0e© i1
where the o;s are i.i.d. Rademacher variables and the n; are i.i.d. categorical variables on the domain {1,2, ... ,m} with

corresponding probabilities A1/ L, ..., A/ L.

N.B.: The case m = 1 is the standard Talagrand concentration Lemma.

Proof. W.l.o.g., we assume ¢ = 1. The proof is by induction over N. The initial case N = 1 certainly holds. Assume it
holds for IV, we will show it holds for N + 1.
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N+1
]Ea'l,...,aN+1EX sup {C( 30) + Z 0—191(9)}

0O

ey
>
%
+

< Eal,...,aNEX sup

c(X, 02) N i O’igi(al) + gi(02) N gn1(61) — 9N+1(92)}
91,926@

2 2

[\

i=1

2 2 2

i=1

e(X,01) + ¢(X,02)

X
{c(X, 01) + (X, 02) N i aigi(al) + gi(62) . lgn+1(01) — gn41(02)] }

b3, GO0+ 03] Nl (00) = ff‘v+1<92>|}

i=1 2 j=1 2
i Aje(X,01) + Aje(X, 02)
<E, - E su J J
PN Xj;(al,ef;@{ 2/
n 20’1/\ gi(61) +gl(92) n Ajlfr 41 (01) _ffv+1(92)|}
2
= )\C(X 91)+/\C(X 92)
:]Ea O E sup J ’ J ’
P Xgel,ege@{ 2¢

i Z A gi(61) +Qz(92) i Aj [fl{f-s-l(ol) - fJJQ-s-l(e?)] }
2

S (X, 0) v Agi(6 .
<]E0'1 ..... G'NEXEG'N+1 Zsup{](£)+ZUZ'].9€()+UN+1)\jf]jv+1(9)}

j=10€@ i=1
< Egl ,,,,, UNEngNH]E,,E[m;N (Sgu(lj)){ (X 9 +€201f771 2 O'N+1)\ fNJrl( )} (300)
m € i=1 j=1

N+1
=Eo,, . ononii ExE cpmv+1 sup {C(X, 0)+¢ Z glflm(ﬁ)} ,
00

~A :
K 1=1

where the line (300) follows from the induction hypothesis. This completes the proof.

O
Using this, we then obtain the following result.
Proposition G.3. Let g : R™ — R be a function satisfying the following condition:
l9(y®) = gwh)| < D] w7 — k| M (301)
kE<m
with Y A\, = (. Consider m function classes Fi,...,Fn from [N| to [—B,B] and define G :=

{5:2— g(2) = g(f*(x), f2(2),..., [™(@)) : fr € F1,..., fm € Fu}. We have the following bound on the Rademacher
complexity of G:
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R(G) = s Z oo9(f1(0), F2(0), ..., f™(0)) (302)
13mlog(2mN by
< Bé% +ej§l 7 Ijlax R (F)), (303)

where Ry i (Fj) := Elccc‘gj Eoe(—1,130 SUpP ez % Docc 0o f(0).

Proof. By Lemma G.2 we have

1 & ;
R(G) <LE,E, sup — > 0of" (o) (304)
f17'~~yf7n N o=1
—(E,E, sup E,o,f" (o), (305)

flv“'afrn

where the expectation over o runs over the uniform distribution over [N]. Now, let C; = {i : ; = j}. By Corollary F.16,
we have that with probability greater than 1 — §/2 over the draw of the variables 71, ..., N,

Aj ) 8¢ log (%)
1Cy| = ?2 forall j st A== T‘S (306)
Similarly, by a Chernoff bound (see Lemma F.15), w.p. = 1 — §/2, the following holds for all j < m
Cil _ As A 3los (%)
LA Y R RS I 7
N 7 + 7 (307)

Thus, with overall probability greater than 1 — § over the draw of the n’s, both Equations (306) and (307) hold under their
respective constraints, which implies that we can continue the calculation from Equation (305) as follows, where we write
J1 (resp. J) for the sets of indices satisfying (resp. not satisfying) the second equation in Equation (306)

R(G) < (E,E, sup Eooof" (0)

fl: 7fm
<(E,E, sup Z' Cil e, 00/ (0)
Jroofm 5
</(E,E, sup Z |f\]| Eoec, 0of1(0) + LE,E, sup Z ]\?| Eoec, o017 (0)
froefm jeg, fioeofm e,
|C5] (& j
</ Z E,E, sup ——Ecec, O'Of Z (EgE, sup ——Eocc,00f7(0)
o N o N
Jj€J1 JjEJ2
. 3log (2 . ,
<oB{+ BY Z QM +/ Z ) max E ¢;; E,supEoec.0,f7(0) (308)
, 1 A LY M !
Jj€J2 Jj€J1 =37 7
_ B¢ 8log(2mN) \/ 8log(2mN) 3log (2mN) A
<V Bél N + N ~ +0) 7 max R i (Fj) (309)
Jje€J1 = 22
1 log(2 N
< IMBEIN) 5 e S (R (310)
N s VA
J€J1 Z 27

where at line (309), we have simply set § = N and replaced the definition of Ry 1 (F;). The result follows.
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Finally, the next corollary is the result we need for our analysis of NNmSd(+NN).

Corollary G4. Let g : R™ — R satisfy the conditions of Proposition G.3 and consider
m  functions classes Fi,...,Fm from X to [—B,B]. As in Proposition G.3, define G =
{g:2 > g(x) =g(f* (@), f2(@),....["(@): freF1,..., fm € Fm}. Assume that the Rademacher complexit-
ies of the individual function classes F; satisfy the following inequality for any k < N:

k
R; (k)
R(F;) = ExE, fﬁ}’kg (z,) < s (311)

where R; (k) is an increasing function of k for all j < m. We have the following bound on the Rademacher complexity of
the function class G:

13mlog(2mN) 2> ., Ri(N)
R(G ExE, su oo9(x,) < BY + £ IS .
(9) = ExEysup g 2 g(zo) . x
Proof. By Proposition G.3 for any sample z;, ...,z N we have
- 13mlog(2mN A
R(g) < g R2mioe?mN) >, 7 max S%N *(F)- (312)
N : 14
Jj€J1 =
Taking expectations with respect to the sample x1, ..., 2y on both sides we obtain:
13mlog(2mN Aj
R(g) < prmosmN) 3 max ExRyi(F). (313)
N : [ANGSY
Jj€J1 =22
Since the distribution of a uniformly random subset of size k of {z1,...,zn} where the x,s are drawn i.i.d. from X is
distributed as k i.i.d. samples from X, we have
~ o R;(k R;(N
ExORnk(F;) = ExRi(F) <\/ JIE ) <\/ J; ), (314)
Plugging this back into Equation (313) we obtain:
13mlog(2mN Aj R;(N
R(g) < g 2mioemN) M 2 max 5(N) (315)
N ol N k
JjeJ1 =27
13mlog(2mN) N)Y
<B gw ¢ Z > (316)
jeJ1
13mlog(2mN) 2
< gp22Os\ A Smog mn 624/ N ek A R (317)
jsm
13mlog(2mN 22 <m BRi(N
< p3mios@mN) | [22<n By (V) (318)

N N ’

where at Line (317) we have used the fact that v := w (cf. Equation (306) with 6 = 1/N, or the end of the

statement of Proposition G.3) and at the last line (318), we have used the Cauchy-Schwarz inequality. O

G.2. Extension: an Example Generalization and Excess Risk Bound for a Composite Model with Multiple Latent
Matrices

In this subsection, we prove an additional result for a model which takes several latent matrices as input. In this preliminary
version, we allow a factor of the embedding size of the neural network embeddings in the final bounds and reserve removing
this factor to future work. We consider the following function class:

H = MNow(d,s')o (concatil(}"p By)» N1wiia(a, 8)) (319)
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where the input of the network ¥ e ./\/'1,V[/7id(a7 s) is a concatenation of a user ID and an item ID: N 1,w,id being the class
of matrices in R™*™ which can be represented as ¢(z¢) where ¢ is a network form (259) satisfying Conditions (265) and
x;,j := concat(e;, ;). In this subsection, we assume that s;, as, s}, aj, Bo, B = 1.

Theorem G.5. Define § € argmin (I@(l(gf,é,g)) ‘g€ 7—[) and g* € argmin (E(l(gf,é, £):g€ 7—[). Define 7 =

vm=1 r, and assume that sy, ay, .92, az, By, B = 1. With probability greater than 1 — & over the draw of the training set we
have

R(H), sup E(l(g, G,€)) —E(l(g,G.9),E((3, G, €)) — E(l(g*,G,€)) < R, (320)

S X log(1/6) W+ W , o (m27(m +n) ,  |/m?3
RO<BWN+BVN+BO‘S£VN+808£\/N (321)

where S' = H{;‘:l sy, and the O notation hides polylogarithmic factors of m,n, N,m, Bo, B, ¢, [ [, s¢, ] [, 4 [ [, ae, 1 [, @}
(in particular, the depth L is considered constant).

where

Remark: Note that the dependence on 1 is very strong. In particular, the last term alone contributes a sample complexity of
O(m?). This is due to the need to bound the Lipschitz constant of the network ¥ in each dimension individually, resulting
in an additional factor of m outside the square root in the last two terms. We leave the delicate question of mitigating this
dependence, perhaps via an improved version of Corollary G.4, to future work.

Proof. Similarly to the proof of Theorem C.8, we use Lemma E.3 to join the Rademacher complexities of ]T"f1 ", forall
values of v with the covering numbers of the classes N7 w.a(a, s) and N2 w (a’, 8).

To that aim, we begin by using Proposition F.9 with1 = Id, { = 1 and x = HL 1 8¢ + m By, and € < 5 to obtain a cover
of C; « Naw(d, s') such that for any ¢ € Na v there exists a ¢ € C1 such that for any y € R! with ||y < x we have

(¢ —9)(y)| < % (322)
and
12|[15 se+ Bom| [Ty | [0 o]
log(|C1]) < W' log - +1 (323)
< Wlog(Twm), (324)

after setting e = 1/N and I'yy,, 1= 12N []_[Ll Se+ mBo] [HLI 8’5] []_[2—“:1 54] > ap] [>pae]l + 1. Next we can

invoke Proposition F.9 again to construct a cover Ca of Ny (a, s) such that for any ¥ € N - (a, s) there exists a ¥ € Ca
such that

€

V) -V < (325)
2 [HZ:I Sz]
and
L L
, 12] [y se [Hézl 52] [>2 ac] ,
log(|C2|) < W'log ; +1|<Wlog(Twm), (326)
where we set € = % Note that for any fixed set of matrices Z,, € ]T'f " B, (v < m), we have
6(Z1,. . 20, 0) = O(Z1, .. Zm, D)) (327)
<[o(Z1s o 2y O) = (21, 2, O) |+ (21 2, ) = G20,y Zin, )
<e (328)
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where at the last line we have used Equations (322) and (325).

. ., . . _ 1 .
Thus, we are in a position to apply Lemma E.3 with ¢ = & to obtain:

Zp, 2 log(|C1(1/N)[IC2(1/N)])
q}})iﬁ (QS o(concat(F;" ), \IJ)) + B\/; + B\/ N . (329)

R(H) <

1
— 4+ S
N,

Note that by Theorem D.4, and Lemma F.6, we have for any N’ > 9(m + n),

[75,% +1 T
BeFn (P2 ,) <\ oo + 88 By | (m + n) (330)

where I' =: 6 Nmn3[By +1] + 1, and thus for any N,
R, <2 x 88%1og”(T) [Bo® ro(m + n) + (Bo® +1)]. (331)

Thus by Corollary G.4 we have, for any ¢ []_[5:1 s’[] -Lipschitz function G : R® — R:

L 2m2 Zv<m RU(N)
e

L L _
13m?log(2m N I 2 B> 3(Bo® +1
ll—[ ] 3m’ og m )+17610g(r)€l 52] \/m Bo T(m+r;\;+m (Bo” +1)
/=1 =1

_. R (332)

L
m 13m?log(2m N)
WG@oncatu1<ff;:30>>><l’5‘oﬂlnszl e
=1

and therefore, for any §, with probability greater than 1 — ¢ we have

R (G(concats  (FP* 5 ) <R + O (B log(i/é)> . (333)

By a union bound, inequality (334) below holds with probability > 1 — § over all the choices of G given by G (z) = ¢(z, ¥)
forg e Cyand ¥ € Cy:

S m - log(2/6 log(|C11|1C
R (G(concatiey (Fr: ) <R +0 (zs g§v“> vopy[el@lG]

Plugging this back into Equation (329) (after setting € = %) we obtain (w.p. = 1 — 0)

R(H) < —+7z+2zs’«/°g2/(S \FJFO( 1°g<cl|62|)> (335)

<0 (B bg(;/‘”) ) B\/(W * W/)]\lfog Cwm) ), 5 _. R, (336)

as expected. O

H. Additional Experimental Details

To assess the proposed methodology in this paper and compare it with related matrix completion approaches, we conducted
experiments using both synthetic and real-world datasets. On the one hand, the synthetic experiments were designed
to evaluate the performance of the methods and related mechanisms by varying proportions of observed entries in the
incomplete matrix targeted for completion. On the other hand, the real-world datasets were employed in practical scenarios
to gain insights into the methods’ behavior in real-world applications of matrix completion.
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Figure 3: Summary of the results from the synthetic data experiments with ground truth was generated by considering

flx) ==

H.1. Experiments on Synthetic Data

As described in the main paper, we generate synthetic square data matrices in R™*"™ with a given rank r. For each matrix,
we vary the proportion of observed entries (%obs=E[N /n?]) as well as performed non-uniform sampling distribution.
Regarding the proportion of observed entries %obs, we explore values in the set {0.08,0.10,...,0.20,0.25,...,0.40}.
Concerning the sampling distribution, we divide the matrix into four equal-sized regions of size n/2 x n/2. In the first
region, the probability of entry sampling equals «. In regions 2 and 3, it is 2« and in region 4, it is 4«.. For a given function
f or generation procedure, it is described as follows:

1. Randomly generate matrices U € R™*" and V' € R"™*" with each entry (¢, j) sampled from a normal distribution

N(0,1).
2. Make R = UV'T and rescale the product as R = n x R/|R||p.

3. Apply the function f element-wise to R and obtain R. Return the ground truth generation as R.

We generated 25 independent instances by considering the aforementioned generation procedure. For each matrix, we varied
the observations accordingly.

Remark: We observe that the number of degrees of freedom for an n x n matrix of rank r is nr, which (up to logarithmic
terms) is loosely connected to the sample complexity. Consequently, the proportion of observed entries necessary for
the prediction task to be (statistically) feasible is linked to the choice of n and r. In our synthetic experiments, we opt
for smaller matrices due to the high number of simulations. Therefore, we set n = 100 and » = 3 in line with the
aforementioned observation strategy. As a choice for f, we considered the identity function g(z) = x and the sigmoid
function o(z) = 1/(1 + 7).

Further Results: Figures 3 provide detailed results of our synthetic data experiments when the ground truth function is the
identity. In this case traditional matrix completion methods perform similarly to ours: the unneeded additional representative

power doesn’t hurt the performance, since it is small enough to come with negligible additional sample complexity as per
Thm C.6 and C.6.

Validation, Optimization and Hardware Specifications: For all synthetic data experiments, we employed a %obs of the
data for training (specified in each case), allocating 10% for validation, and utilizing the remaining portion as the test set. In
the validation procedure, we selected the regularization parameter from the set A € {10=7,107° ... 102} and fixed the size
of the embeddings to 20. We optimize all models with ADAM using Nesterov optimization through TensorFlow 2. We
consider a maximum of 100 epochs with early stopping and a patience of 5 in the validation loss, returning the best weights.

Regarding hardware specifications, all synthetic experiments were executed on a CPU cluster with 128 threads and 512GB
of RAM.

H.2. Experiments on Real-world Data

Validation, Optimization and Hardware Specifications: Similar to the synthetic data experiments, we optimized the
models using ADAM with Nesterov optimization in TensorFlow 2. We set a maximum of 100 epochs with early stopping,
employing a patience of 15 based on the validation loss for all models. The best weights were selected during training.
Real-world experiments were conducted on Nvidia DGX-A100 graphics cards with 40GB of GPU RAM.
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Regarding our validation procedure, we randomly split the observed entries uniformly, resulting in 90% for training and 5%
for each validation and test set. The parameter \ was selected from a sequence exponentially distributed between 107 and
102. For DOUBAN and LASTFM, this sequence has a size of 50, and for MVL25, it has a size of 15. For all datasets and
methods, we fixed the embeddings to have a size of 128.

H.3. Datasets

DOUBAN [m = 2718, n = 34893 and %obs= 1.2%]: Douban serves as a platform for users to curate movies. Within this
matrix, users are interconnected within the social network, and the items represent movies. User ratings, ranging from 0.5 to
5 (in intervals of 0.5), are denoted by the entry (4, j), corresponding to the rating of user ¢ for movie j.

LASTFM [m = 1892, n = 17632 and %obs= 0.27%]:: Last.fm, profiles users’ musical preferences and habits. In contrast
to other datasets, entries (4, j) in this matrix signify the log-scaled number of views user ¢ has for band/artist ;.

MVL25 [m = 162541,n = 57971 and %obs= 0.27%]: The MovieLens 25M dataset, a widely adopted and stable
benchmark dataset, originates from a non-commercial movie recommendation website. Similar to Douban, entries (i, j)
here indicate the rating of user ¢ for movie j, but on a scale from 1 to 5.

I. More Detailed Related Works

Note: in Matrix Completion, by “approximate recovery”, we mean results which bound the excess risk in the form of a
function of architectural parameters and the number of samples, with decay rate typically of the form 1/ V/N (but sometimes
1/N,or1/ VN if expressing the bound in terms of the Frobenius norm error rather than the square loss). For instance, in the
realisable case, if the noise is independent of the entries and has standard deviation ¢ and the loss function is the square loss,

this means that the normalized Frobenius norm of the error scales like £2 + 4/ % where R is some architectural quantity. By

“exact recovery”, we mean results which guarantee that the ground truth matrix is recovered exactly with high probability
when the number of samples IV is large enough as long as there is no noise in the observations. By “perturbed recovery”,

we mean results which guarantee that for large enough N, an error of the type €4/ % is achievable for with high probability

for some other architectural quantity R. The quantity R typically has much worse dependence on architectural parameters
than the quantity R, and as long as that is the case, approximate recovery and perturbed/exact recovery are not subordinate
to each other, even if we ignore the minor difference in the optimization problem and sampling regime. To the best of our
knowledge: the only existing result which achieves the extremely impressive task of providing a perturbed recovery result
where the architectural dependence of R is as tight as that of R in competing approximate recovery results is (Chen et al.,
2020), which only deals with the nuclear norm (p = 1) and does not include non-linearities. In addition, like all exact and
perturbed recovery results we are aware of, the results in (Chen et al., 2020) are limited to the uniform sampling case. Our
results concern approximate recovery with the Schatten (quasi) norm, but we still compare to some exact and noisy recovery
results for illustrative purposes.

Approximate Recovery in Matrix Completion: There is a lot of literature on the sample complexity of matrix completion
with bounded Lipschitz losses and norm constraints. In particular, our work takes much inspiration from the pioneering
works of (Foygel et al., 2011) and (Shamir & Shalev-Shwartz, 2011; 2014), which proved analogues of our results (without
a learnable function) in the case p = 1. The explicitly rank-restricted case was studied in classification settings in (Srebro
et al., 2004; Srebro & Shraibman, 2005; Srebro & Jaakkola, 2005). In general, the sample complexity is O(rn).

Alternative Learning Settings and Models: There is also a substantial amount of work on other soft relaxations of the
rank, such as the max norm. In particular, the early work of (Srebro & Shraibman, 2005) shows a sample complexity of
O(nM?), where M is a constraint on the max norm. A perturbed recovery result was achieved for the max norm in the
classic work of (Cai & Zhou, 2016), which was further extended in (Wang et al., 2021) to provide bounds on the uniformly
weighted Frobenius error of the recovered matrix in the non-uniform sampling regime (under some approximate uniformity
assumption on the sampling probabilities). With nuclear norm regularizers, other works which provide uniform Frobenius
error bounds without uniform sampling include the “missing not at random” setting (Ma & Chen, 2019; Sportisse et al.,
2020), which adopts a Bayesian approach. Further, the pioneering work of (Gui et al., 2023) computes entry-wise confidence
intervals in low-rank matrix completion with an arbirary backbone model, substantially extending the entry-wise guarantees
provided in the known rank case in (Chen et al., 2021).

Exact Recovery in Matrix Completion: The problem of exactly recovering the entries of a uniformly sampled matrix
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can be traced back to the work of Tao (Candes & Tao, 2010) and has been widely studied since (Recht, 2011; Gross, 2011;
Candes & Recht, 2009; Chen, 2013): by minimizing the nuclear norm, the matrix can be recovered with high probability
after sampling O(nr) entries where r is the rank of the ground truth matrix.

Perturbed Recovery in Matrix Completion: The first bounds with a refined dependence on the variance of the noise can
be traced back to the early work of (Candes & Plan, 2010), which roughly speaking shows an excess risk bound of order

N
Thus, the architectural dependence on the matrix size n is very strong inside the term which involves the variance parameter

0. Much later, a nearly optimal bound of 5(0 %)) (also for sampling without replacement) was achieved in (Chen et al.,
2020).

O([1 + 4/ %]o) where o is the standard deviation of the perturbation, sampling is without replacement and n » O(nr).

Inductive Matrix Completion: Inductive Matrix Completion studies predictors of the form AD; D, BT where A and B
are fixed matrices which collect “side information” about the rows and columns. Thus, this can be viewed as an analogue
of deep matrix factorization with d = 4 with A and B fixed. However, since A, B are fixed, the problem behaves more
similarly to matrix completion with nuclear norm constraints. To the best of our knowledge, the first bounds for this model in

the approximate recovery setting are from (Chiang et al., 2018; 2015), giving bounds of order M 4 / % where M is a bound

on the nuclear norm of D; Dy. Expressed in terms of rank-like quantities, this yields 6(\/% ) where a is the number of
columns of A and B. Later, stronger results were provided in (Ledent et al., 2021b) which match the non-inductive literature
with a playing the role of n in standard MC. For instance, the distribution-free sample complexity rate is a(a% /7). For
exact recovery, a sample complexity rate of 5(@7") was provided in (Xu et al., 2013). Later, (Ledent et al., 2023) provided

a perturbed recovery bound of 0 o/ % . Furthermore, several works study more specific settings where the rows ans

columns have implicit cluster structure (Qiaosheng et al., 2019; Zhang et al., 2022; Ledent et al., 2021a; Alves et al., 2021).
Such assumptions are also becoming common in the field of low rank bandits (Pal & Jain, 2022; Pal et al., 2023). However,
none of these works consider the situation where the matrices A and B are trainable (which corresponds to the case d = 4 in
our setting).

Orthogonal Tensor Recovery with the Schatten Quasi-Norm Beyond the examples above, we are not aware of any
work on the approximate recovery for Schatten norm constrained matrix completion. However, similar problems have
been studied with different losses or sampling regimes. In particular, (Fan et al., 2020; Fan, 2021) studies approximate
tensor recovery with Schatten regularization. The results are far reaching and go well beyond the more restricted setting
of matrix completion which we study here. However, in the case of a 2-way tensor (i.e. a matrix), the results can be
interpreted as a Lagrangian formulation of the empirical risk minimization problems we study. The loss function is the
square loss and sampling is uniformly at random without replacement, which means the results are not directly comparable.

[ 2=2p  2p
The achieved excess Frobenius norm bounds scale like A %(cf. (Fan, 2021), Theorem 4), where M is an upper

-2
bound on the |- |4, > Expressed in terms of our rank-like quantity 7, this turns into | 7’"}5;” . In contrast, our result is

2p  2-3p

O ( = 1755 W) , which translates to O (, /]T\;;). Firstly, note both results scale like 5(7“71) when p — 0

Np

(though the constant blows up like 1/p in both cases). Secondly, our rate is uniformly tighter since % > 1. And lastly, the

bound in (Fan, 2021) is vacuous for p = 1, scaling like 5(7%2) in that case, compared to 6(rn) in our result.

Matrix sensing with Schatten Quasi-Norm: While exact and perturbed recovery for matrix completion with the nuclear
norm (and inductive matrix completion) is a very well-studied problem, for p < 1, there appears to be little to no existing
work in the case of randomly sampled entries. However, there is a lot of work on the sample complexity of compressed
sensing for matrix completion, including with Schatten norm minimization (Zhang et al., 2013; Arora et al., 2019; Liu
et al., 2014; Recht et al., 2010). In compressed sensing, instead of observing entries, we observe measurements in the
form of Frobenius inner products of the ground truth with certain matrices Although MC can be expressed in the language
of compressed sensing by saying that the measurement matrices are indicator function of entries (and inductive matrix
completion can be expressed by saying that the measurement matrices are all the possible outer products of row and column

3We express our bounds in terms of excess risk with a bounded loss (which could be the truncated square loss), so the decay rate in N
can be understood as comparable: the main difference lies in the architectural sample complexity.
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side information vectors), it is not easy to deduce even existing results for matrix completion or IMC from their compressed
sensing analogues: indeed, the conditions on the measurement matrices are typically expressed deterministically via the
Restricted Isometry Property, which cannot be easily checked for indicator measurement matrices, though it holds with high
probability for certain classes of measurement matrices. For instance, (Zhang et al., 2013; Liu et al., 2014) show a sample
complexity of nr for perturbed recovery with the Schatten norm for a broad class of measurement matrices called “nearly
isometric families” (cf. (Recht et al., 2010)), which includes measurement matrices with i.i.d. Gaussian entries but not
indicator measurements: in that case, Property 4.3 from (Recht et al., 2010) only holds for uniform sampling, and property
4.1 only holds for bounded X, which violates the definition (which requires the property to be satisfied for all X), though
the fact it does hold for bounded X_may offer insights on the relationship between the proof techniques. It is clear from the
uniform sampling complexity of O(nr) that this setting, although much more general in many ways, cannot capture the
detailed effects of the sampling distribution on the function class capacity of matrices with constrained norms offered by
(Shamir & Shalev-Shwartz, 2011; 2014; Ledent et al., 2021b) and the present work.

Earlier works on deep matrix factorization often focus on the optimization and algorithmic aspects (Trigeorgis et al., 2016;
Zhao et al., 2017) without providing sample complexity bounds, though some include non-linear components (Xue et al.,
2017; Fan & Cheng, 2018; Wang et al., 2017; De Handschutter et al., 2021; Wei et al., 2020; Lara-Cabrera et al., 2020).
Note also that the non-linear components in those works are interpsersed between each matrix in the product (by analogy
with the activation functions in feedforward neural netowrks), rather than entry-wise and after the matrix multiplication (as
in FRMC), which implies the models are also different.

The observation that deep matrix factorization is equivalent to Schatten norm regularization was made in other works,
including (Arora et al., 2019), which studies the optimization landscape of the problem in a compressed sensing setting
where the measurement matrices commute (which does not apply to indicator measurements). The implications this has on
the implicit rank-restriction in which occurs when training deep neural networks is currently the subject of a large amount of
interest in the community (Dai et al., 2021; Jacot, 2022; Wang & Jacot, 2023). However, those works typically do not study
sample complexity, perhaps because it is only non trivial when the matrix is not flat, which implies a multi-output scenario
in the neural network context. Nevertheless, the potential to generalize our results to that situation is a tantalizing direction
for future work which may shed a different light on implicit rank-restriction in DNN training.

J. Future Directions

There are plenty of unanswered questions which can be studied in future work. For instance:

1. Can the strong dependence on m in the results in Section G be improved through a more refined handling of the L1
Lipschtiz constant in Proposition G.3?

2. Our results concern matrix completion. However, the equivalence between Schatten quasi-norm regularization and
L2 regularization of factor matrices is valid in the case of neural networks as well: in fact, there is a large amount of
renewed enthusiasm for this problem in the community in recent years from the optimization perspective (Dai et al.,
2021; Wang & Jacot, 2023; Giampouras et al., 2020; Arora et al., 2019). Do our results extend to this case? A simple
question is how the sample complexity of linear networks of the form

R™ 5 f(z) = AF ... Alx (r e R™) (337)

behaves similarly to our bounds where the quantity M would be replaced by an upper bound on Y | A*|2 . The two
problems are still technically distinct, and adaptations of the techniques would be necessary. The question can also
be extended to non zero reference matrices, which appears to be a highly non trivial problem. more generally, the
relationship between our results and those of (Dai et al., 2021) could be investigated further in this context.

3. Perhaps a unifying question regarding both points above is whether the results of Section C.2 can be obtained through a
covering number approach.

4. Can our chaining and Talagrand type arguments in Lemmas E.4 and E.3, as well as proposition G.3 be used to improve
existing generalization bounds for neural networks (with activations), at least by removing certain logarithmic terms?

5. Do our results extend unbounded losses?
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6. What can be said in the transductive case? Since has been studied in the case of nuclear norm regularization
before (Shamir & Shalev-Shwartz, 2011), it is not unreasonable to assume that similar results could hold for our setting.

7. Our results concern excess risk bounds which correspond to traditional performance measures (e.g. RMSE). However,
Recommendation Systems typically rely on measures more sensitive to higher predictions than lower ones (e.g. recall,
NDCG). Can generalization bounds be proved in those settings?

8. In recommendation systems settings, do our results extend to Graph neural networks such as LightGCN (He et al.,
2020)?
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