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Abstract
We provide generalization bounds for matrix com-
pletion with Schatten p quasi-norm constraints,
which is equivalent to deep matrix factoriza-
tion with Frobenius constraints. In the uniform
sampling regime, the sample complexity scales
like rO prnq where n is the size of the matrix and
r is a constraint of the same order as the ground
truth rank in the isotropic case. In the distribution-
free setting, the bounds scale as rO

`

r1´
p
2 n1`

p
2

˘

,
which reduces to the familiar

?
rn

3
2 for p “ 1.

Furthermore, we provide an analogue of the
weighted trace norm for this setting which brings
the sample complexity down to rOpnrq in all cases.
We then present a non-linear model, Functionally
Rescaled Matrix Completion (FRMC) which ap-
plies a single trainable function from R Ñ R to
each entry of a latent matrix, and prove that this
adds only negligible terms of the overall sample
complexity, whilst experiments demonstrate that
this simple model improvement already leads to
significant gains on real data. We also provide
extensions of our results to various neural archi-
tectures, thereby providing the first comprehens-
ive uniform convergence PAC analysis of neural
network matrix completion.

1. Introduction
Matrix Completion (MC), the problem which consists in
estimating a ground truth matrix G P Rmˆn from a small
number N ! mn of observations, is an important machine
learning problem with applications in various fields such as
recommender systems (Mazumder et al., 2010; Hastie et al.,
2015; Zhang et al., 2018; Koren et al., 2009), community
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discovery (Qiaosheng et al., 2019) and drug interaction
prediction (Li et al., 2015). To recover a ground truth matrix
based on a small number of observations, it is necessary
to assume that it has some structure. Accordingly, there
are a wide set of constraints and regularizers which aim to
indirectly induce rank sparsity. One of the most well-known
examples is the nuclear norm } .}˚, which is defined as the
sum of the singular values (Mazumder et al., 2010).

The Schatten p quasi-norm (for p ă 1) provides an alternat-
ive form of rank sparsity inducing constraint. The Schatten
p quasi-norm }Z}sc,p of a matrix Z is defined as r

ř

v ρ
p
vs

1
p ,

where the ρvs are the singular values of Z. In particular,
when p approaches 0, }Z}psc,p “

ř

v ρ
p
v approaches the rank

of Z. When p “ 2
d for some integer d, this is known to be

equivalent to the popular deep matrix factorization (DMF)
framework (De Handschutter et al., 2021; Arora et al., 2019;
Fan & Cheng, 2018), whose predictors take the form of a
product of matrices AD1 . . . Dd´2B

J, with a regularizer
of the form LpA,D,Bq :“

ř

}Dv}2Fr ` }A}2Fr ` }B}2Fr.
Indeed, the minimum

minLpA,D,Bq s.t. AD1 . . . Dd´2B
J “ Z (1)

is d}Z}psc,p (see (Dai et al., 2021), or Theorem F.22). This
equivalence with Schatten p quasi-norm constrained MC is
gathering substantial interest in recent years (Arora et al.,
2019; Giampouras et al., 2020), and implications for sample
complexity are not fully explored. Indeed, the early literat-
ure on deep matrix factorization is mostly concerned with
algorithmic and optimization issues. It is also worth noting
the equivalence has intriguing implications beyond matrix
completion, to the study of the implicit regularization of
depth in neural networks, which seen explosion of recent in-
terest in the community (Jacot, 2022; Wang & Jacot, 2023).

The last few years have also witnessed a surge in the popular-
ity of non-linear matrix completion models. For instance,
a branch of the deep matrix factorization literature incor-
porates non-linear functions inside the product (Xue et al.,
2017; Fan & Cheng, 2018; Fan, 2021), leading to predict-
ors of the form g0pAg1pD1 . . . gd´2pDd´2gd´1pBJqq . . .q,
where the gs are activation functions. Moreover, many mod-
els are simply neural network architectures which take a
(row, column) combination as input. Such models typically
incorporate learnable row and column embeddings. This
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idea appears to date back to the Neural Network Matrix
Factorisation model (NNMF) (Dziugaite & Roy, 2015). A
relevant variant is (He et al., 2017), which involves a concat-
enation of Hadamard products of user and item embeddings
and neural encodings followed by a linear layer.

Whilst existing research provides many new algorithms and
insights into the optimization landscape of various DMF
and NNMF methods, very few provide a sample complex-
ity analysis of the associated function classes: to the best
of our knowledge, most of the existing work in this dir-
ection is limited to MC without non-linearities and with
p “ 1 (Shamir & Shalev-Shwartz, 2011), with the excep-
tion of (Fan et al., 2020). In this paper, we study sample
complexity of DMF with and without non-linear compon-
ents. Our programme is to study a broad class of predict-
ors: gpi, jq “ ϕpZ1

i,j , . . . , Z
m
i,j ,Ψpi, jqq, where ϕ and Ψ are

neural networks and the matrices Z1, . . . , Zm may be sub-
ject to various Schatten type constraints. We include a large
variety of results for many such models in the supplementary
material, but for the sake of simplicity, here, we focus our
exposition on the following two much simpler cases: (1)MC
with Schatten p Constraints: gi,j “ Zi,j , subject to
}Z}sc,p ď M for some constant M; and (2) Functionally
Rescaled Matrix Completion (FRMC): gi,j “ fθpZi,jq

subject to }Z}sc,p ď M, }Z}8 ď B0 and }fθ}lip ď Lf for
some constants M and Lf .

In addition, inspired by earlier work on the weighted
trace norm (Foygel et al., 2011; Srebro & Salakhutdinov,
2010), we study alternative constraints based on the
following weighted version of the Schatten quasi-norm:
} diagpp̌q

1
2Z diagpq̌q

1
2 }sc,p, where the vectors p̌, q̌ are es-

timates of the marginal row and column probabilities.
Throughout the paper, we use abbreviations such as FSd
(“functionally rescaled Schatten-d”) for the model with
Schatten 2

d constraint and a rescaling function f , and other
similar acronyms, which we summarize in the table of nota-
tion in Section A. Our contributions are as follows:

• For MC with a Schatten quasi-norm constraint in the
uniform sampling regime, we show sample complexity

bounds of rO ppm ` nqrq where r “

”

M?
mn

ı

2p
2´p

scales
like the rank of the ground truth.

• In the distribution-free setting, we show a sample com-
plexity bound of rO

´

r1´ 1
p pm ` nq

1` 1
p

¯

. This reduces

to the classic rate of rO
´?

rpm ` nq
3
2

¯

(cf. (Shamir &
Shalev-Shwartz, 2011; 2014)) for p “ 1.

• By considering the weighted version of the Schat-
ten quasi-norm, we are able to bring the rate back to
rO prpm ` nqq, analogously to the case p “ 1 in (Foy-
gel et al., 2011).

• As can be seen in Table 1 the Functionally Rescaled
model in all of the cases above, we show that learning
the function only brings a negligible cost to the sample
complexity (it merely adds a constant which depends
on the Lipschitz and boundedness parameters).

• We provide extensions of our results to the case of
multiple latent matrices and neural encodings in the
appendix. Cf. Subsection C.3 and Section G. In par-
ticular, some of our results apply to (Dziugaite & Roy,
2015; He et al., 2017), which we show (cf. Sec F.6)
involve implicit Schatten 2{3 regularization.

• Our proofs rely on low-level modifications of chain-
ing arguments which may be of independent interest.
In particular, we prove “multi-class chaining” Lem-
mas E.4 and E.3, which allow one to bound the
Rademacher complexity of combinations of function
classes without access to covering numbers for each
individual class.

• In extensive synthetic and real life experiments, we
evaluate the effects of the depth parameter d, the pres-
ence or absence of weights in the norm constraints,
and the presence or absence of additional neural em-
beddings. We find that p “ 2

3 generally performs
significantly better than p “ 1, and our proposed
weighted Schatten norm is slightly superior to their
non-weighted counterparts.

Our results and the comparison to the related works can also
be seen in Tables 1, 4 and 5. In all our results, we assume a
bounded and Lipschitz loss function.

2. Related Works
Approximate Recovery in Matrix Completion: There is
a substantial body of literature on the sample complexity
of matrix completion with bounded Lipschitz losses and
norm constraints. In particular, our work takes much in-
spiration from the pioneering works of (Foygel et al., 2011)
and (Shamir & Shalev-Shwartz, 2011; 2014), which proved
some particular cases of some of our results for MC, without
a learnable function, in the case p “ 1. The explicitly
rank-restricted case was studied in classification settings
in (Srebro et al., 2004; Srebro & Shraibman, 2005; Srebro
& Jaakkola, 2005). Table 4 positions our work within the
approximate recovery literature.

Beyond the examples above, we are not aware of any
work on the approximate recovery for Schatten norm con-
strained matrix completion. However, similar problems
have been studied with different losses or sampling re-
gimes. In particular, (Fan et al., 2020; Fan, 2021) study
approximate tensor recovery with Schatten regularization
over the space SK

d,n of order d tensors with orthogonal
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Table 1: Summary of our results for Functionally Rescaled Matrix completion (FRMC). The rO notation hides logarithmic
factors, including N,m, n, r, ℓ,B the failure probability δ and the constraint on B0 on the maximum entry.

fpZq with Sampling Generalization bound Result

} Z?
mn

}psc,p ď r1´
p
2

Uniform rO

ˆ

B
2´2p
2´p ℓ

p
2´p

b

rpm`nq

N `

b

B2 ` B0 Lf ℓB
N

˙

Thm 3.4
}f}Lip ď Lf , }Z}8 ď B0

} Z?
mn

}psc,p ď r1´
p
2

Arbitrary rO

ˆ

B1´
p
2 ℓ

p
2

b

r1´
p
2 pm`nq

1`
p
2

N `

b

B2 ` B0 Lf ℓB
N

˙

Thm 3.5
}f}Lip ď Lf , }Z}8 ď B0

} rZ}sc,p ď r1´
p
2

Arbitrary rO

ˆ

B
2´2p
2´p ℓ

p
2´p

b

rpm`nq

N `

b

B2 ` B0 Lf ℓB
N

˙

Thm 3.4
}f}Lip ď Lf , }Z}8 ď B0

CP factors1. Since tensors are more general and gener-
ally more complex to study than matrices, the results go
well beyond the more restricted setting of matrix comple-
tion which we study here. However, in the case of a 2-way
tensor (i.e. a matrix), the results can be interpreted as a
Lagrangian formulation of the empirical risk minimization
problems we study. The loss function is the square loss
and sampling is uniformly at random without replacement,
which means the results are not quite directly comparable.
Nonetheless, the achieved L2 excess risk bounds scale like
4

b

pn
2´2p
2´p M

2p
2´p q{pNpq(cf. (Fan et al., 2020), Theorem 4),

where M is an upper bound on the } .}sc,p norm of the re-
covered matrix. Expressed in terms of our rank-like quantity

r, this turns into 4

b

prn
2

2´p q{pNpq. In contrast, our result

is rO

ˆ

B
2´2p
2´p ℓ

p
2´p

b

pM
2p

2´p n
2´3p
2´p q{pNpq

˙

, which trans-

lates to rO
´

a

prnq{pNpq

¯

. Firstly, note both results scale

like rOprnq when p Ñ 0 (though the constant blows up like
1{p in both cases). Secondly, our rate is uniformly tighter
since 2{p2 ´ pq ą 1. And lastly, the bound in (Fan et al.,
2020) is vacuous for p “ 1, scaling like rOprn2q in that case,
compared to rOprnq in our result.

Exact and perturbed recovery for matrix completion (and
inductive matrix completion) is a very well-studied prob-
lem (Recht, 2011; Candes & Plan, 2010; Candès & Tao,
2010). In general, using nuclear norm constraints or regu-
larization (which is equivalent to the case p “ 1 from our
study) results in a sample complexity of rOprnq. We refer
the reader to (Recht, 2011; Xu et al., 2013) for more details.
There is also a substantial amount of work on other soft
relaxations of the rank, such as the max norm. In particu-
lar, the early work of (Srebro & Shraibman, 2005) shows
a sample complexity of rOpnM2q, where M is a constraint
on the max norm. A low-noise recovery result was achieved
for the max norm in the classic work of (Cai & Zhou, 2016),
which was further extended in (Wang et al., 2021) to provide

1This is a strict subset of the set of tensors of order d when
d ą 2, but it coincides with the set of all matrices when d “ 2.

bounds on the uniformly weighted Frobenius error of the re-
covered matrix in the non-uniform sampling regime (under
some approximate uniformity assumption on the sampling
probabilities). For Schatten constraints with p ă 1, there
appears to be little to no existing work in the case of ran-
domly sampled entries. However, there are several works on
the sample complexity of compressed sensing for Schatten
quasi-norm MC (Zhang et al., 2013; Arora et al., 2019; Liu
et al., 2014; Recht et al., 2010). Nonetheless, compressed
sensing is not directly comparable to matrix completion,
especially in the arbitrary sampling regime we study. Cf
Section I for more details.

Earlier works on deep matrix factorization often focus on
the optimization and algorithmic aspects (Trigeorgis et al.,
2016; Zhao et al., 2017) without providing sample com-
plexity bounds, though some include non-linear compon-
ents (Xue et al., 2017; Fan & Cheng, 2018; Wang et al.,
2017; De Handschutter et al., 2021; Wei et al., 2020; Lara-
Cabrera et al., 2020). Note that the non-linear components
in those works are interspersed between each matrix in the
product which implies the models are different from both
our proposed FRMC and the analogous models we study.

The observation that deep matrix factorization is equivalent
to Schatten norm regularization was made in other works,
including (Arora et al., 2019), which studies the optimiz-
ation landscape of the problem in a compressed sensing
setting where the measurement matrices commute (which
does not apply to indicator measurements). The implica-
tions this has on the implicit rank-restriction which occurs
when training deep neural networks is currently the subject
of a large amount of interest in the community (Dai et al.,
2021; Jacot, 2022; Wang & Jacot, 2023). However, those
works typically do not study sample complexity, perhaps
it is only non trivial when the matrix is not flat, which im-
plies a multi-output scenario in the neural network context.
Nevertheless, the potential to generalize our results to that
situation is a tantalizing direction for future work which may
shed a different light on implicit rank-restriction in DNN
training.
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3. Main Results
Notation and Setting: In line with much of the literature
on approximate recovery in matrix completion (Shamir &
Shalev-Shwartz, 2011; 2014; Foygel et al., 2011), we as-
sume an i.i.d. sampling regime in a supervised learning
setting where the input space is the set of entries rms ˆ rns:
each sample/observation consists in a pair pξ, rGq sampled
i.i.d. from a joint distribution, where ξ P rmsˆrns, and rG is
a real number. We try to learn a model g : rms ˆ rns Ñ R,
whose performance is to be evaluated by a loss function
l, which can depend on ξ, rG and the prediction of the
model gξ. The loss function l is assumed to be ℓ-Lipschitz
w.r.t. the prediction gpξq (for fixed ξ, rG), and uniformly
bounded by a constant B. For each fixed ξ “ pi, jq, we
choose Gξ P argminplpgξ, rGξ, ξqq. The resulting matrix
G P Rmˆn is referred to as the ground truth matrix. For
instance, if lpg, rG, ξq “ F p|g ´ rG|q where F : R` Ñ R is
a strictly increasing function and for each pi, jq P rms ˆ rns

we have rGpi,jq “ Ri,j ` ζ where ζ is generated via i.i.d.
noise from a symmetric distribution with Epζq “ 0, then
G “ R. The marginal distribution over ξ is a doubly
stochastic matrix whose pi, jqth entry we denote by pi,j . We
also write pi and qj for the marginal probabilities of the ith
row and jth column, respectively. Our training set S consists
of i.i.d. N samples: S “

!

pξ1, rG1q, . . . , pξN , rGN q

)

Ă

prms ˆ rnsq ˆ R. By abuse of notation, we sometimes omit
the dependence of l on rG and ξ by writing the empirical
expectation of a function F as pEpF pξqq “ 1

N

řN
o“1 lopF q

instead of 1
N

řN
o“1 lpFo, rGo, ξoq and sometimes use nota-

tions such as gi,j and gpi, jq interchangeably to denote the
prediction made by predictor g P Rmˆn for entry pi, jq. In
addition, by further abuse of notation, we will often write
EpℓpZqq and pEpℓpZqq instead of the previous quantities. A
table of notations 3 is available in Appendix A.

• For a predictor g P Rmˆn, the empirical loss is

l̂pgq :“ pEplpgpξq, rG, ξqq “
1

N

N
ÿ

o“1

lpgξ0 ,
rGo, ξoq.

In particular, if the ground truth matrix G P Rmˆn is
observed without noise, the N observations are distinct
and the loss function l is the square loss, l̂pgq “

1

N

ÿ

pi,jq
PΩ

lpgi,j ,Gi,j , pi, jqqq “
1

N

ÿ

pi,jq
PΩ

|gi,j ´ Gi,j |
2

where Ω Ă rms ˆ rns is the set of observed entries.

• The population expected loss is

lpgq :“ Eplpgpξq, rG, ξqq,

where the expectation runs over a random joint draw
of the entry ξ P rms ˆ rns, and the observation rG. In
particular, if the entries of the ground truth matrix G
are observed without noise and the loss function l is
the square loss, we have lpgq “

ÿ

pi,jqP

rmsˆrns

pi,j lpgi,j ,Gi,jq “
ÿ

pi,jqPΩ

pi,jpgi,j ´ Gi,jq2,

where pi,j denotes the marginal probability of
sampling entry pi, jq. For uniform sampling, we fur-
ther have lpgq “ 1

mn}g ´ G }2Fr, where } .}Fr denotes
the Frobenius norm.

• For a general predictor g P Rmˆn, the generalization
error is lpgq ´plpgq. Given the class of matrices F Ă

Rmˆn, the empirical risk minimizer ĝ P F is defined
by ĝ P argmingPF plpgqq. The excess risk is then

lpĝq ´ min
gPF

lpgq. (2)

O and rO Notations: For simplicity, some of our results
(e.g. Thms 3.4 and 3.5 and the results in the summary
tables) are expressed in terms of a rO notation which hides
polylogarithmic factors in all variables, including B0,Lf ,
the failure probability δ, the constants ℓ,B relative to the loss
function, etc. Both the O and rO notations also assume that
B0,B ě 1. The formal results including all polylogarithmic
terms are in the appendix.

3.1. Excess Risk Bounds for Matrix Completion with
the Schatten Quasi-norm

In this subsection, we present our results for matrix comple-
tion with Schatten quasi-norm constraints. A summary of
our results is available in Appendix B.

Notation for the Weighted Setting: In the weighted set-

ting, we require empirical estimates p̂i “

řN
o“1 1pξoq1“i

N and

q̂j “

řN
o“1 1pξoq2“j

N of the quantities pi and qj respectively.
Furthermore, similarly to the literature on the weighted trace
norm (Foygel et al., 2011; Srebro & Salakhutdinov, 2010),
we also work with the smoothed versions p̃i “ 1

2pi ` 1
2m

q̃j “ 1
2qj ` 1

2n of the ground truth distribution, as well as
the empirically evaluated analogues p̌i “ 1

2pi ` 1
2m and

q̌j “ 1
2qj ` 1

2n . By abuse of notation, we write diagppq

and diagpqq for the diagonal matrices with diagonal ele-
ments p1, . . . , pm and q1, . . . , qn respectively (and use sim-
ilar notations for p̃ and q̃). For a matrix Z, we denote
by rZ the matrix diagpp̃q

1
2Z diagpq̃q

1
2 , so that } rZ}˚ is the

(smoothed) weighted trace norm (Foygel et al., 2011). Sim-
ilarly, qZ “ diagpp̌q

1
2Z diagpq̌q

1
2 .

Remark on the Definition of the Rank-like Quantity r:
To better illustrate the implicit ‘dimensional’ dependence of
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the bounds which arise from our norm-based constraints, we
typically express our constraints on the Schatten norms of
matrices in terms of the “rank-like” quantity r “ r M?

mn
s

2p
2´p ,

where M is an upper bound constraint on }Z}sc,p. In the
case p “ 1 this is a well-established convention in the liter-
ature (Foygel et al., 2011; Srebro & Salakhutdinov, 2010;
Ledent et al., 2021b; Foygel et al., 2012).

Let us briefly explain the rationale behind this notation in the
case of an arbitrary p. Suppose the entries of some matrix Z
are bounded above by some constant C: |Zi,j | ď C (for all
i, j). Then we have }Z}2Fr “

ř

|Zi,j |2 ď C2mn. Writing
ρ1, . . . , ρr for the singular values of Z in decreasing order,
we then have, by Holder’s inequality:

}Z}
p
SC,p “

r
ÿ

o“1

ρpo “

r
ÿ

o“1

ρpo.1

ď

«

r
ÿ

o“1

rρpos
2
p

ff

p
2
«

r
ÿ

o“1

1
1

1´
p
2

ff1´
p
2

ď rmnC2s
p
2 r1´

p
2 “ Op

?
mn

p
r1´

p
2 q. (3)

Similarly, if we have |Zi,j | ě C0 for all i, j, then }Z}Fr ě

C0

?
mn. If the spectrum is homogeneous, i.e., ρ1{ρr :“

κ “ Op1q, then we also have }Z}
p
SC,p “

r
ÿ

o“1

ρpo ě rρpr “ rrρ2rs
p
2 r1´

p
2

ě

«

r
ÿ

o“1

ρ2o
κ2

ff

p
2

r1´
p
2 ě κ´p}Z}

p
2

Frr
1´

p
2

ě κ´pr1´
p
2 rC2

0mns
p
2 “ Ωp

?
mn

p
r1´

p
2 q. (4)

Thus, if a matrix Z has Ωp1q entries and an approxim-
ately uniform spectrum, then its Schatten quasi-norm is
Ωp

?
mnr

2´p
2p q, which justifies that notation: enforcing the

constraint
”

}Z}SC,p?
mn

ı

2p
2´p

ď r can be understood as a ‘soft’
analogue of restricting the rank to r or less with a tolerance
for additional singular values of very small magnitudes.
The tolerance is greater for larger values of p. A similar
argument can be easily derived for the weighted case by
substituting the estimates of the Frobenius norms by the
following: C2

0 ď }Z̃}2Fr “
ř

p̃iq̃j |Zi,j |2 ď C2. This leads
to the conclusion that } rZ}psc,p ď Cpr1´

p
2 (and in the case

of a uniform spectrum, Cp
0r

1´
p
2 ď } rZ}psc,p. This justifies

the use of the notation r for constraints imposed on } rZ}
2p

2´p
sc,p .

We provide the following results in this subsection:

• A sample complexity result of rOppm ` nqrp´1q for
matrix completion with the Schatten norm p ď 1

weighted with the smoothed ground truth marginals
(Theorem 3.1). In particular, this result applies to the
unweighted Schatten norm regularized matrix comple-
tion problem in the uniform sampling regime.

• A sample complexity result of rOppm `

nq1`
p
2 r1´

p
2 p´1q for the unweighted Schatten

quasi-norm regularized matrix completion problem in
the distribution-free setting.

• An excess risk bound corresponding to a sample
complexity of rOppm ` nqrq for the empirically
weighted Schatten quasi-norm regularized problem in
the distribution-free setting under the assumption that
p “ 2

d for some integer d.

• Furthermore, the factors of p can be removed at the
cost of an additional factor of logpB0q, where B0 is an
upper bound imposed on the entries. See also Table 5.

Theorem 3.1 (cf. Theorems C.1 and C.2). As in the rest
of this paper, assume the loss function l is ℓ-Lipschitz and
bounded by B. Let p ą 0 be a fixed Schatten index and let
r ą 0 be a fixed real number. Consider the class Fp

t of
matrices with Schatten Quasi-norm bounded by

?
mnr

2´p
2p :

Fp
t “

#

Z P Rmˆn : }Z}psc,p ď
?
mn

p
r1´

p
2

+

. (5)

If the sampling distribution over entries is uniform, then
for any δ ą 0, w.p. ě 1 ´ δ over the draw of the training
set, every matrix Z P Fp

t satisfies the generalization error
bound E lpZξ, rG, ξq ´ pE lpZξ, rG, ξq ď

O

«

B
2´2p
2´p ℓ

p
2´p

d

rpm ` nq

Np
ln

r‹mnNℓ‹

δ
` B

d

ln 1
δ

N

ff

,

where ℓ‹ “ ℓ ` 1 and r‹ “ r ` 1. More generally, if the
sampling distribution is arbitrary with smoothed marginals
p̃ and q̃, the result holds for the class rFp

r “
␣

Z P Rmˆn :

} rZ}psc,p ď r1´
p
2

(

where rZ “ diagpp̃q
1
2Z diagpq̃q

1
2 .

Furthermore, if one incorporates an enforced upper bound
on all the absolute values of the entries:

rFp
r,B0

“
␣

Z P Rmˆn : } rZ}psc,p ď r1´
p
2 ; }Z}8 ď B0

(

,

then we have instead (w.p. ě 1 ´ δ), E lpZq ´ pE lpZq ď

O

«

B
2´2p
2´p ℓ

p
2´p

c

rpm ` nq

N
ln

mnNr‹ ℓ‹ B0

δ
` B

d

ln 1
δ

N

ff

.

See Theorems C.1 and C.2 in the appendix for a full proof.

To illustrate the implications of Theorem 3.1, let us consider
the idealized situation where the ground truth matrix G is
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of low-rank r̃, the loss function l is the truncated square loss
lpa, b, pi, jqq “ minppa ´ bq2, 1q, there is no noise in the
observations and the sampling distribution is uniform. By
Equation (3), we have }G }sc,p ď

?
mn r̃

2´p
2p . Thus, if we

solve the following empirical risk minimization problem:

MinimizeZ
1

N

ÿ

pi,jqPΩ

minp|Zi,j ´ Gi,j |2, 1q

subject to }Z}sc,p ď r
2´p
p

?
mn

for some r̃ ď r ď Opr̃q where the set of observed entries
Ω is counted with multiplicity, Theorem 3.1 implies a high
probability error bound for the (global) minimizer pZ:

1

mn

ÿ

pi,jqPrmsˆrns

min

„

ˇ

ˇ

ˇ

pZi,j ´ Gi,j

ˇ

ˇ

ˇ

2

, 1

ȷ

ď O

«

d

r̃pm ` nq

Np
log

ˆ

r‹mnNℓ‹

δ

˙

` B

d

logp 1
δ q

N

ff

.

This matches the same sample complexity rate of rOpn r̃q
achieved by nuclear norm regularization. However, the
result is more general since it is not necessary impose r̃ ď r,
only }G }sc,p ď

?
mnr

2´p
2p : thus, the sample complexity

can adapt to the approximate low-rank ness of the ground
truth as expressed through its Schatten quasi-norm.

Sketch of proof of Theorem 3.1. The proof uses a novel
technique we refer to as “parametric interpolation”, which
consists in interpolating between the regimes where p „ 0
and p „ 1. Since we need to use the boundedness of the loss
function to get a tight bound on the parametric component,
the combination also requires the refined “multi-class chain-
ing” arguments from Lemma E.3, but we leave the details to
the Appendix and focus on the intuition in this proof sketch.
For simplicity, we treat B and ℓ as constants and absorb
all logarithmic factors of N,m, n, r into rO notation. See
Theorems C.1 and C.2 (and the results they rely on, such as
Theorem D.2) for details.

At the left extreme (p Ñ 0), it is known that the class of
matrices whose rank is explicitly restricted to some value r1
exhibits a sample complexity of rOpr1pm`nqq (see (Srebro
& Shraibman, 2005; Srebro et al., 2004) for an early discus-
sion of a nearly identical problem where the target matrix
is assumed to be in t´1, 1umˆn and the distribution is uni-
form, see (Vandermeulen & Ledent, 2021) for a covering
number of the class of low rank matrices, see Lemma D.1).
This is in line with the fact that explicitly rank-restricted mat-
rix completion is a parametric model, leading to a sample
complexity of the same order as the number of parameters,
omitting logarithmic factors of the magnitude of them.

More precisely, by Lemma D.1, the sample complexity of
a bounded loss class associated to the set of matrices of

rank r1 is rOpr1pm ` nq logpB0qq, where the rO notation
hides logarithmic factors of n,m,N and r. Similarly, the
sample complexity of matrices Z satisfying } rZ}˚ ď

?
r2 is

rOppm ` nqr2q by the more recent results of (Foygel et al.,
2011).

Next, for any matrix Z with } rZ}psc,p ď r1´
p
2 (and }Z}8 ď

B0), we can write rZ “ rZ1 ` rZ2 where rZ1 is the sum of the
terms in the singular value decomposition of rZ associated
with a singular value greater than τ for some threshold
τ . Writing ρ1, ρ2, . . . for the singular values of rZ, since
} rZ}psc,p “

ř

ρpv ď r1´
p
2 , by Markov’s inequality, we have

r1 “ rankpZ1q ď
r1´

p
2

τp
. (6)

Furthermore, since all the singular values of rZ2 are bounded
above by τ , the nuclear norm } rZ2}˚ “

řn
v“r1`1 ρv can be

controlled as r2 :“ } rZ2}˚ “

n
ÿ

v“r1`1

pρvqppρvq1´p ď } rZ2}psc,p τ
1´p ď r1´

p
2 τ1´p .

Thus, the function class rFp
r,B0

is included in the function
class Rτ ` Tτ , where

Rτ “

"

Z1 : rankpZ1q ď
r1´

p
2

τp
, }Z1}˚ ď

?
mnB0

*

Tτ “

!

Z2 : } rZ2}˚ ď r1´
p
2 τ1´p

)

.

Thus by Lemma D.1 (parameter counting bound of Rτ )
and Proposition F.5 (norm-based bound on the set of low
nuclear norm matrices), together with the sample complexity
of rFp

r,B0
can be upper bounded by

rO

ˆ

pm ` nq

„

r1´
p
2

τp
logpB0q ` r2´p τ2´2p

ȷ˙

.

Setting the threshold as r´ 1
2 yields a sample complex-

ity of rO ppm ` nqr logpB0qq, as expected. When no sep-
arate upper bound is enforced on the entries, we can
still upper bound }Z}8 by 2

?
mn} rZ}sc,p ď 2

?
mnr

2´p
2p ,

which implies the additional factor logpB0q becomes
rOplogpr

2´p
2p qq “ rOp 1

p q.

Next, we also control the sample complexity of learning
with the non-weighted trace norm under arbitrary sampling.

Theorem 3.2 (Cf. Theorem C.3). Consider the following
function class for 0 ă p ď 1:

Fp
t “

␣

Z P Rmˆn : }Z}psc,p ď Mp
“

?
mn

p
r1´

p
2

(

.

6
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W.p. ě 1 ´ δ, every Z in Fp
t satisfies E lpZq ´ pE lpZq ď

O

»

–B1´
p
2 ℓ

p
2

d

r1´
p
2 pm ` nq1`

p
2 c1

Np
` B

d

lnp 1
δ q

N

fi

fl (7)

“ O

»

–B1´
p
2 ℓ

p
2

d

Mp
pm ` nq1´

p
2 c2

Np
` B

d

lnp 1
δ q

N

fi

fl ,

where c1 “ lnpmnNr‹ ℓ‹q and c2 “

lnpmnN rMp
`1s ℓ‹q with ℓ‹ “ ℓ`1 and

r‹ “ r ` 1. Thus (fixing B, ℓ) the sample complex-
ity is rOpr1´

p
2 pm ` nq1`

p
2 {pq. For the class Fp

r,B0
:“

!

Z P Rmˆn : }Z}sc,p ď M “
?
mnrrs

2´p
2p , }Z}8 ď B0

)

,

then we have instead (w.h.p.) E lpZq ´ pE lpZq ď

O

»

–B1´
p
2 ℓ

p
2

d

r1´
p
2 pm ` nq1`

p
2 c3

N
` B

d

lnp 1
δ q

N

fi

fl ,

where c3 “ lnpmnN rB0 `1srℓ`1sq.

Remark: The above result reverts to the classic rOppm `

nq
3
2 r

1
2 q when p “ 1. As p Ñ 0, the first bound in (7) blows

up due to the factor of p´ 1
2 , whilst the second yields a

complexity of rO ppm ` nqMp
q, in line with the parameter

counting argument.

Finally, an excess risk bound can be shown in the more
realistic case where the function class restriction relies on
the empirical marginals instead of the true marginals.

Theorem 3.3 (Cf. Theorem C.4). Assume p “ 2
d for some

integer d and that the ground truth is realizable: }G }sc,p ď

r1´
p
2 . Let pZ P argminZ

´

pEpZq : } qZ}psc,p ď r2rs1´
p
2

¯

.
We have the following excess risk bound w.h.p. (where
ℓ‹ “ ℓ`1 and r‹ “ r ` 1): Eplp pZqq ´ EplpGqq ď

O

«

B
2´2p
2´p ℓ

p
2´p

d

rpm ` nq

Np
ln

r‹mnNℓ‹

δ
` B

d

ln 1
δ

N

ff

.

The proof relies mostly on Lemma E.5, which is a generaliz-
ation of Lemma 4 in (Foygel et al., 2011) to the case p ‰ 1.
This lemma shows that for large enough N , the Schatten
quasi-norms of qZ and rZ (for any Z) are within a small ra-
tio of each other (w.h.p.). This allows us to show that the
class qFp

2r contains the ground truth with high probability.
Note the constraint in our result is } qZ}psc,p ď r2rs1´

p
2 rather

than } qZ}psc,p ď r1´
p
2 . This is in contrast to the case p “ 1

in (Foygel et al., 2011) with the more natural constraint
} qZ}˚ ď r. However, for practical purposes, the presence of
the factor of 2 in our result is not an issue, since it merely

slightly increases the cross-validation cost of the constraint
parameter. Also, the result only works for p “ 2

d , i.e., when
the optimization problem can be reformulated as

pZ P argmin
Z

˜

EplpZqq : qZ “ A
d´2
ź

v“1

DvB
J :

}A}2Fr ` }B}2Fr `

d´2
ÿ

v“1

}Dv}2Fr ď dr2rs1´
p
2

¸

. (8)

Remark: Interestingly, reformulating the condition
as above makes the factors of p disappear from the
bounds: if we reformulate that condition by writing
r1 “ d

2
2´p r, so that r2r1s1´

p
2 is an upper bound on

}A}2Fr ` }B}2Fr `
řd´2

v“1 }Dv}2Fr, the final sample complex-

ity is rOppm ` nqrp´1q “ rO
´

pm ` nqr1d´ 2
2´p `1

¯

, i.e.

rO
´

pm ` nqr1d´ 1
d´1

¯

“ rO ppm ` nqr1q. Of course, this
applies to Theorems 3.1 and 3.2 as well.

3.2. Generalization Bounds for FRMC

We now move on to our results on a new class of models
we refer to as “Functionally Rescaled Matrix Completion”
(FRMC), where the predictors take the form fθpZq where
fθ is a trainable function and Z is a Schatten-constrained
matrix. Thus, these models can be seen as an analogue of
“generalized linear models” in Matrix Completion. In a nut-
shell, our results show that learning the rescaling function
f can be done at negligible cost to function class capacity
and generalization performance. Indeed, our generalization
error bounds take the form of a sum of two terms, one corres-
ponding to learning the complexity of the matrix class, and
another one corresponding to the function class Flip,Lf ,Bf

of
bounded Lipschitz functions from r´B0,B0s Ñ R, which
has very small function class capacity thanks to the low
dimensionality (see Proposition F.12 from (von Luxburg &
Bousquet, 2004) and (Tikhomirov, 1993)).

Theorem 3.4 (Cf. Theorem C.5). Let Flip,Lf ,Bf
“

␣

f :

r´B0,B0s Ñ R : }f}lip ď Lf ; }f}8 ď Bf

(

. Consider the
following function class for our learning algorithm:

Flip,Lf ,Bf
˝ rFp

r,B0
:“

␣

g : rms ˆ rns Ñ R :

Df P Flip,Lf ,Bf
, Z P rFp

r,B0
: gpi, jq “ fpZi,jq

(

.

With probability greater than 1 ´ δ over the draw of the
training set, the following holds for all g P Flip,Lf ,Bf

˝ rFp
r,B0

:

Eplpgqq ´ pEplpgqq ď rO

«

B
c

logp1{δq

N
(9)

B
2´2p
2´p rℓLf s

p
2´p

c

rpm ` nq

N
`

d

B2
`B0 Lf ℓB

N

ff

.
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Furthermore, similarly to Theorem 3.3 above, an excess risk
result holds for the minimization problem over the empiric-
ally weighted class Flip,Lf ,Bf

˝ qFp
2r,B0

(cf. Thm C.7).

In the distribution-free unweighted setting, we have:

Theorem 3.5 (cf. Thm C.6). Consider the function class

Flip,Lf ,Bf
˝ Fp

r,B0
:“

#

g : rms ˆ rns Ñ R :

Df P Flip,Lf ,Bf
, Z P Fp

r,B0
: gpi, jq “ fpZi,jq

+

.

W.p. ě 1 ´ δ, for each g P Flip,Lf ,Bf
˝ Fp

r,B0
, one has

Eplpgqq ´ pEplpgqq ď rO

«

B
c

logp1{δq

N
`

B1´
p
2 rℓLf s

p
2

d

r1´
p
2 pm ` nq1`

p
2

N
`

d

B2
`B0 Lf ℓB

N

ff

.

Note that in all cases above, the incorporation of a learn-
able function f P Flip,Lf ,Bf

only contributes an additional

term of
b

B2 ` B0 Lf ℓB
N to the generalization error bound:

there is no dependence on the architectural or norm-based
parameters such as m,n, r and the function f only needs
to be learned once for the whole dataset. The interaction
between this learning task and the learning of the low rank
latent matrix does not introduce any additional challenge:
the complexities of both tasks are disentanglable.

It is worth noting that the proofs are far from being a trivial
combination of the proofs from Subsection 3.1 above and
Proposition F.12. Indeed, no sufficiently tight covering
number bound is available for any of the function classes
discussed in Section 3.12, not even for p “ 1: of course, it
is possible to obtain such a cover respect to the Frobenius or
L8 norms via covering numbers for linear function classes
applied to the matrices A,B,D1, . . . , Dd´2, but this leads
to loose covering number bounds that translate to vacuous
results in terms of sample complexity. For instance, the
error bound (applicable to a setting analogous to uniform
sampling) for higher order tensors of (Fan et al., 2020; Fan,
2021) is based on a Frobenius covering number bound, but
for the case of matrices and for p “ 1, the log covering
number scales as rO

`

rpm ` nq2
˘

, which is vacuous. In fact,
since the Rademacher complexities involved in the proofs
of the results in Section 3.1 depend subtly on the sampling
distribution, it is clear that the metric used in the cover must
be carefully chosen. Moreover, the Frobenius norm doesn’t
seem to work well, not even in the uniform sampling case.

2except the parametric class Er,t of matrices with explicitly
restricted rank

Our proof of the results of this section relies instead on
multi-class generalization of classic “chaining” arguments.
More specifically, in Section E, we establish two general-
izations of Dudley’s Entropy Theorem, Lemma E.4 and
Lemma E.3, which allow one to bound the Rademacher
complexity of the function class F pF1,F2q, where F is a
fixed function and the following two conditions are satisfied:
(1) A covering number is available for F pF1, f2q, uniformly
over any choice of f2 P F2 and (2) A Rademacher complex-
ity complexity bound is available for F pf1,F2q, uniformly
over any choice of f1 P F1. Results with some similarities
can be traced back to (Golowich et al., 2018) (Thm. 4)
and (Ledent et al., 2021b) (Prop. A.4.).

3.3. Generalization Bounds with Neural Encodings

In this section, we briefly describe some of our extended
results for the Sd+NN setting, which includes an addi-
tional neural network encoding. Specifically, we consider
neural encodings of the form Ψpi, jq “ fpA0pui, vjqJq

where ui is the embedding for row i, vj is the em-
bedding for column j, f is the neural network given
by fpxq “ σL

`

AL Relu
`

Relu
`

. . .Relu
`

A1x
˘

. . .
˘˘˘

,
where the matrices R1ˆwl´1 Q AL, . . . , A1 are the weight
matrices. The predictors then take the form gi,j “ Zi,j `

Ψi,j where Ψ is the neural encoding and Z is a matrix to
which (potentially weighted) Schatten p quasi-norm regu-
larization is applied. In particular, for p “ 2

3 , the model
corresponds to the one presented in (He et al., 2017).

Our results (cf. Thm C.8, Thm C.9) show that the generaliz-
ation error is bounded as a sum of terms corresponding to
the matrix class and the neural encoding class.

Extension to Multiple Latent Matrices: In the Appendix,
we extend our results to the case of models of the form
ϕ ˝pZ1, Z2, . . . , Zm,Ψq where ϕ and Ψ are trainable net-
works (Ψ a neural encoding) and the matrices Z1, . . . , Zm

are constrained via various Schatten p quasi-norms.

4. Experiments
Synthetic Data Experiments: We generated synthetic
square data matrices in Rnˆn with a specified rank r. We
varied the proportion of observed entries in the generated
matrices (%obs = ErN{n2s), with a non-uniform sampling
distribution. A summary of the results is provided in Fig-
ure 1. The results demonstrate, unsurprisingly, that FRMC
achieves better performance than methods which do not
incorporate a non-linearity. Going deeper, we observe that
with sufficiently many observations, the model is able to
recover the ground truth function nearly perfectly, together
with the low rank latent matrix. We provide an example of
the recovered functions in Figure 2 for %obs P t0.14, 0.20u.
Moreover, we observe that the weighted version of the

8
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Figure 1: Summary of the results of the synthetic data experiments. Ground-truth generated by considering fpxq “ σpxq.

Figure 2: Learned function f by our model (yellow curve).
Red curves represent the ground truth. Blue dots are the
predictions, which ideally should lie under the red curve.

regularizer works slightly better, especially with d “ 2.
Finally, an exponential performance improvement occurs
when d increases, especially from 2 to 3. This is in line
with the expectation that lower values of p induce more
and more rank-sparsity, and with our theoretical results in
the distribution-free case, which show much better sample
complexities when p is small (cf. our sample complexity
of rO

`

r1´
p
2 pm ` nq1`

p
2

˘

). For additional results, such as a
comparison with the identity function as ground truth, see
Figure 3. For detailed information, including the generation
procedure, parameter selection, and validation setup, refer
to the appendix in Section H.1.

Real Data Experiments: MC can be applied to a wide
range of domains, such as recommender systems, human
event dynamics, and chemical engineering. We chose three
standard datasets to evaluate our method in a real data scen-
ario: DOUBAN and MovieLens 25M (MVL25) from the
recommender systems domain, and LastFM, which stores
listening habits of users in a music streaming platform. For
descriptions of datasets and implementation details of the
real-world strand, refer to Section H.2 in the Appendix. In
Figure 2, we plot the functions learned by our model on real
data. Interestingly, we see that the chosen functions look
somewhat sigmoidal, probably to avoid out-of-range predic-
tions and model the vanishing significance of increments
between very high or very low ratings. Furthermore, we
observe that in 2 out of 3 datasets, our mildly non-linear

Table 2: Test RMSE for the assessed methods. Notation:
Weighted (W) models use weighted-norm regularization in
the embeddings. Our methods learn a re-scaling function
(FS). Thus, S2 refers to the traditional nuclear norm regu-
larization, SW3 refers to weighted Schatten 2{3 norm regu-
larization and FRMC-FSW2 refers to the model fpZq with
nuclear norm constraint on Z and a trainable component-
wise rescaling function f .

Model d W FS Douban LastFM MVL25

S2

2

ˆ ˆ 0.8042 2.5885 0.8047
SW2 ✓ ˆ 0.7981 2.4980 0.7625
FRMC-FS2 ˆ ✓ 0.7627 1.0327 0.7795
FRMC-FSW2 ✓ ✓ 0.7626 1.0091 0.7776

S3

3

ˆ ˆ 0.8050 2.0512 0.7786
SW3 ✓ ˆ 0.8030 2.0417 0.7876
FRMC-FS3 ˆ ✓ 0.7674 0.9952 0.7711
FRMC-FSW3 ✓ ✓ 0.7616 0.9904 0.7799

model FRMC substantially outperforms traditional matrix
completion. Furthermore, p “ 2{3 outperforms p “ 1 and
the weighted version outperforms the unweighted version.

5. Conclusion
We studied matrix completion with Schatten p quasi-norm
constraints for 0 ď p ď 1 in the approximate recovery
setting. Ignoring the dependence on Lipschitz and bounded-
ness constants, we provided sample complexity bounds of
rOprpm ` nqq and rOpr1´

p
2 pm ` nq1`

p
2 q in the uniform

and arbitrary sampling regimes respectively. The results
show the stronger rank-sparsity inducing properties of lower
order Schatten p quasi-norms, which we also observe in
our experiments. Moreover, we showed that the use of the
weighted Schatten p quasi-norm can bring both rates back
to rOprpm ` nqq. We introduced a parsimonious non-linear
model, Functionally Rescaled Matrix Completion (FRMC),
which consists in applying a trainable function from R Ñ R
to the entries of a latent matrix. We show extensions of all
of our results to the FRMC setting, which demonstrate that
the addition of a learnable function from R to R negligibly
increases function class capacity.
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A. Table of Notations

Table 3: Table of notations for quick reference

Notation Meaning
Sampling setting

G P Rmˆn Ground truth matrix
N Number of samples

S “ tpξ1, rG1q, . . . , pξN , rGN qu Training set
ζo Noise in oth observation

rGo “ Gξo `ζo oth observation
ξ P rms ˆ rns (resp. ξorms ˆ rns) Observed entry (oth resp. observed entry)

l Loss function
lpgξ0 , rGo, ξ

oq “ lopgξoq Loss function at oth datapoint
pi,j Ppξ “ pi, jqq, (marginal) probability of observing entry i, j

pi “
ř

j pi,j Row i marginal probability
qj “

ř

i pi,j Column j marginal probability
pEpF pξ, rGqq “ 1

N

řN
o“1 F pξo, rGoq Empirical expectation of F

ei P Rm Indicator vector of ith row
ej P Rn Indicator vector of jth column

(Weighted) norms
} .} Spectral norm

} .}Fr Frobenius norm
} .}˚ Nuclear norm

} .}sc,p Schatten p quasi-norm (p ď 1)

}Z}2,1
řn

j“1

b

řm
i“1 A

2
i,j

p̂i “

řN
o“1 1pξoq1“i

N ith empirical row marginal

q̂j “

řN
o“1 1pξoq2“j

N jth empirical column marginal
p̃i “ 1

2pi ` 1
2m Smoothed row marginal

q̃j “ 1
2qj ` 1

2n Smoothed column marginal
p̌i “ 1

2pi ` 1
2m Smoothed empirical row marginal

q̌j “ 1
2qj ` 1

2n Smoothed empirical column marginal
rZ diagpp̃q

1
2Z diagpq̃q

1
2

qZ diagpp̌q
1
2Z diagpq̌q

1
2

M (in Fn Class definitions) Upper bound on } .}sc,p

r (in Fn Class definitions) Upper bound on } rZ}
2p

2´p
sc,p , } qZ}

2p
2´p
sc,p or }Z}

2p
2´p
sc,p

?
mn

´
2p

2´p

d Depth of deep matrix factorization A
ś

DiB
J

(p “ 2
d )

(also d) width of 1st layer after embedding in Ψ P N1,W

Definitions of r

Unweighted Setting r “

”

M?
mn

ı

2p
2´p

Mp
“ r1´

p
2

?
mn

p

Weighted Setting } rZ}psc,p ď r1´
p
2

r ě } rZ}
2p

2´p
sc,p

Matrix Function Classes
Er,t tR P Rmˆn : }R}˚ ď t, rankpRq ď ru

rF1
r

␣

Rmˆn Q Z : } rZ}˚ ď
?
r
(

rF1
r,B0

␣

Rmˆn Q Z : } rZ}˚ ď
?
r, }Z}8 ď B0

(

rFp
r

␣

Z P Rmˆn : } rZ}psc,p ď r1´
p
2

(

Fp
t

␣

Z P Rmˆn : }Z}sc,p ď M
(
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Fp
r,B0

!

Z P Rmˆn : }Z}sc,p ď M “ rrs
2´p
2p

?
mn, }Z}8 ď B0

)

rFp
r,B0

␣

Z P Rmˆn : } rZ}psc,p ď r1´
p
2 ; }Z}8 ď B0

(

qFp
r

␣

Z P Rmˆn : } qZ}psc,p ď rrs1´
p
2

(

qFp
r,B0

␣

Z P Rmˆn : } qZ}psc,p ď rrs1´
p
2 , }Z}8 ď B0

(

Other function classes

Lℓ,B
Set of all loss functions bounded by B from R2 ˆ prms ˆ rnsq to R,

which are ℓ-Lipschitz in the first argument
Flip,Lf ,Bf

Set of all Bf -bounded, Lf -Lipschitz functions
DNN classes
ϕ : Rm`1 Ñ R Neural Network with final output

Ψ : rms ˆ rns Ñ R Encoder Net taking users and items as input
N1,W Networks satisfying conditions (261)
N2,W Networks satisfying conditions (265)

N0,W,cpa, s, cq

#

g : rms ˆ rns Ñ R1
ˇ

ˇDf P N1,Wpa, sq,

U P Rmˆm̄, V P Rnˆm̄ :

}U}
2
Fr ` }V }

2
Fr ď c2 maxpm,nq,

}A0
} ď s0 : gpi, jq “ fpA0

pui, vjq
J

q @i, j

+

ČN0,W,cpa, s, cq

#

g : rms ˆ rns Ñ R1
ˇ

ˇDf P N1,Wpa, sq,

U P Rmˆm̄, V P Rnˆm̄ :

}diagprpq
1
2U}

2
Fr ` } diagprqq

1
2 V }

2
Fr ď c2,

}A0
} ď s0 : gpi, jq “ fpA0

pui, vjq
J

q @i, j

+

­N0,W,cpa, s, cq

#

g : rms ˆ rns Ñ R1
ˇ

ˇDf P N1,Wpa, sq,

U P Rmˆm̄, V P Rnˆm̄ :

} diagpqpq
1
2U}

2
Fr ` } diagpqqq

1
2 V }

2
Fr ď c, }A0

} ď s0 :

gpi, jq “ fpA0
pui, vjq

J
q @i, j

+

N1,W,idpa, sqi,j
ϕ̃pxξq where ϕ̃ is a network form (259)

satisfying Cond. (265) and xi,j :“ concatpei, ejq

Composite function classes
(illustrative examples)

Flip,Lf ,Bf
˝ Fp

r,B0

␣

g : rms ˆ rns Ñ R : Df P Flip,Lf ,Bf
, Z P Fp

r,B0
:

gpi, jq “ fpZi,jq
(

Z0 Latent matrix in representation of
ground truth G as f ˝ Z0

Flip,Lf ,Bf
˝ rFp

r,B0

␣

g : rms ˆ rns Ñ R : Df P Flip,Lf ,Bf
, Z P rFp

r,B0
:

gpi, jq “ fpZi,jq
(

rFp
r,B0

` N0,W,c

␣

g : rms ˆ rns Ñ R : DZ P rFp
r,B0

^ Ψ P N0,W,c : gpi, jq “ Zi,j ` Ψpi, jq
(

l ˝N2,W pa1, s1qp rFp
r ,N2,W pa, sqq

Set of functions G written as
Gpξ, rGq “ lpϕ1pZ ` ϕ2q, rG, ξq for some
Z P rFp

r , N2,W pa1, s1q Q ϕ1 : R2 Ñ R,
N2,W pa, sq Q ϕ2 : rms ˆ rns Ñ R

Constants
ℓ Lipschitz constant of l
B Bound on the loss function l
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C Constant from (Latała, 2005)
C1 maxpC, 1q

Lf Bound on the Lipschitz constant of f
Bf Bound on the values of f
m Number of latent matrices

Constants in Neural Networks
W Number of parameters (of DNN)
L Number of layers (of DNN)

w1, . . . , wL “ 1 Layer widths
s1, . . . , sL Constraints on }W1}, . . . , }WL}

a1, . . . , aL (in N1,W) Constraints on }pW 1 ´ M1qJ}2,1, . . . , }pW 1 ´ M1qJ}2,1

a1, . . . , aL (in N2,W ) Constraints on }W 1 ´ M1}, . . . , }W 1 ´ M1}

W 1, . . . ,WL Weight matrices (of DNN)
M1, . . . ,ML Initialised weights (of DNN)

s0 Upper bound on }A0}

c2 (with weights) Upper bound on } diagprpq
1
2U}2Fr ` } diagprqq

1
2V }2Fr

c2 (without weights) Upper bound on
“

}U}2Fr ` }V }2Fr

‰

maxpm,nq

RW

řL
ℓ“1 2

3{2
śL

ℓ“1 sℓ

„

řL
ℓ“1

Q

aℓ

sℓ

U2{3
ȷ3{2

Constants in log terms
Γ

rFp
r ,ℓ

6pm`nqNpℓ `1qpr`1q

δ

ΓFp
t ,ℓ

6Npm ` nqpr ` 1qpℓ`1q

ΓFp
r,B0

,ℓ 6Npm ` nqpr ` 1qpℓ`1qpB0 `1q

Γ
rFp
r,B0

,ℓ
3Nmn3

rB0 `1srℓ `1s`1
δ

ΓW,ϵ
96Ws0pm`nq

?
mn

śL
ℓ“1 sℓ

ϵ ` 1
For multiple latent matrices

m Number of latent matrices
pv vth latent matrix Schatten index
rv Constraint on }Z}

sr
řm

v“1 rv

ΓW,m 12N
”

śL
ℓ“1 sℓ ` mB0

ı ”

śL
ℓ“1 s

1
ℓ

ı ”

śL
ℓ“1 sℓ

ı

r
ř

ℓ a
1
ℓs r

ř

ℓ aℓs ` 1

Γ 3Nmn3rB0 `1srℓ`1s ` 1

H N2,W pa1, s1q ˝ pconcatmv“1p rFpv

rv,B0
q,N1,W,idpa, sqq

Model abbreviations Name and function class
Sd Schatten matrix completion (MC)

Fp
t ,F

p
r,B0

SWd Schatten weighted MC
rFp
r ,

rFp
r,B0

, qFp
r ,

qFp
r,B0

FRMC-FSd Functionally rescaled Schatten MC
Flip,Lf ,Bf

˝ Fp
t , Flip,Lf ,Bf

˝ Fp
r,B0

FRMC-FSWd Functionally rescaled Schatten weighted MC
Flip,Lf ,Bf

˝ qFp
r,B0

, Flip,Lf ,Bf
˝ qFp

r,B0

FRMC-Sd+NN Sum of Sd and NN
Fp

t `N0,W,c, Fp
r,B0

` N0,W,c

FRMC-SWd+NN Sum of SWd and NN
rFp
r ` N0,W,c, qFp

r ` ­N0,W,2c, rFp
r,B0

` N0,W,c , etc.
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B. Table summary of results

Table 4: Table of our results for the Schatten p constrained matrix completion without linear components as compared to
the previous works for p “ 1, p ă 1 and p “ 0. For simplicity, we omit polylogarithmic factors in all relevant quantities
such as N,m, n,B,B0,Bf , ℓ and the failure probability δ.). NC stands for “Not comparable”, NDC stands for “Not directly
comparable”. The compressed sensing literature (Zhang et al., 2013; Recht et al., 2010; Liu et al., 2014) offers results which
can loosely be compared to an exact recovery sample complexity of rOpm ` nqr where r is the ground truth rank with
uniform RIP measurements (e.g. Gaussian measurements, loosely analogous to uniform sampling). (Fan, 2021) includes
somewhat different assumptions. The rank-restricted version (p “ 0, c.f. Lemma D.1) is a simple consequence of parameter
counting (see (Long & Sedghi, 2020; Graf et al., 2022; Mohri et al., 2018; Ledent et al., 2021b; Giné & Guillou, 2001;
Platen, 1986; Talagrand, 1994; 1996)). There is also an analogous result for classification with uniform sampling (Srebro
et al., 2004; Srebro & Shraibman, 2005; Srebro & Jaakkola, 2005).

Constraint Sampling Our Bound Previous Work Comment

}Z}˚ ď
?
rmn “ M Uniform

B
b

rpm`nq

N

BM
b

1
N minpm,nq

(Thm 3.1)

BM
b

1
N minpm,nq

B
b

rpm`nq

N

(Foygel et al., 2011)

}Z}˚ ď
?
rmn “ M Arbitrary

b

B ℓpm`nq
3
2

?
r

N

M
b

B ℓM
?
m`n

N

(Thm 3.2)

b

B ℓpm`nq
3
2

?
r

N

M
b

B ℓM
?
m`n

N

(Shamir & Shalev-Shwartz, 2011)

} rZ}˚ ď
?
r Arbitrary B

b

rpm`nq

N

(Thm 3.1)
B
b

rpm`nq

N

(Foygel et al., 2011)

}Z}psc,p ď Mp

“ r1´
p
2

?
mn

p Uniform

B
2´2p
2´p ℓ

p
2´p

b

rpm`nq

Np

B
2´2p
2´p ℓ

p
2´p

c

M
2p

2´p pm`nq
2´3p
2´p

Np

(Thm 3.1)

p4q

c

rn
2

2´p

Np

p4q

c

n
2´2p
2´p M

2p
2´p

Np

(Fan, 2021)

B, ℓ constant;
n “ m

no replacement

}Z}psc,p ď Mp

“ r1´
p
2

?
mn

p Arbitrary

B1´
p
2 ℓ

p
2

c

r1´
p
2 pm`nq

1`
p
2

Np

B1´
p
2 ℓ

p
2

c

Mppm`nq
1´

p
2

Np

(Thm 3.2)

N/A
NC to

Comp. sensing

} rZ}psc,p ď r1´
p
2 Arbitrary B

2´2p
2´p ℓ

p
2´p

b

rpm`nq

Np

(Thm 3.1)
N/A

}Z}8 ď B0

rankpZq ď r
Arbitrary

B
b

rpm`nq

N logpℓB0q

Parameter counting
(Lemma D.1)

B
b

rpm`nq

N logpℓB0q

Parameter counting
cf. also (Srebro, 2004)

(Mohri et al., 2018)
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Table 5: Very short summary of our results for Schatten quasi-norm matrix completion including dependence on p. For
simplicity, the rO notation hides logarithmic factors of the relevant quantities, including of the failure probability δ and the
constraint quantity B0.

Main constraint Sampling }Z}8 unconstrained }Z}8 ď B0

} Z?
mn

}psc,p ď r1´
p
2 Uniform

rO
´

B
2´2p
2´p ℓ

p
2´p

b

rpm`nq

Np

¯

(Thm 3.1)

rO

ˆ

B
2´2p
2´p ℓ

p
2´p

b

rpm`nq

N

˙

(Thm 3.1)

} Z?
mn

}psc,p ď r1´
p
2 Arbitrary

rO

˜

B1´
p
2 ℓ

p
2

c

r1´
p
2 pm`nq

1`
p
2

Np

¸

(Thm 3.2)

rO

ˆ

B1´
p
2 ℓ

p
2

b

r1´
p
2 pm`nq

1`
p
2

N

˙

(Thm 3.2)

} rZ}sc,p ď r1´
p
2 Arbitrary

rO
´

B
2´2p
2´p ℓ

p
2´p

b

rpm`nq

Np

¯

(Thm 3.1)

rO

ˆ

B
2´2p
2´p ℓ

p
2´p

b

rpm`nq

N

˙

(Thm 3.1)
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Table 6: detailed tabular summary of our results in the supplementary, expressed in terms of generalization error bounds.
The rO notation hides polylogarithmic factors in all variables and constraints. Similar excess risk bounds hold for all function
classes under the condition p “ 2

d for some d. Similar excess risk bounds hold for the empirically weighted analogues (with
a multiple of the constraint r) under both realisability assumptions and the assumption p “ 2

d . See Thms C.4, C.7 and C.10.

Function class Generalization Bound Relevant Theorem
SdMC

l ˝ rFp
r O

ˆ

B
2´2p
2´p ℓ

p
2´p

b

rpm`nq

Np logp r‹mnNℓ‹

δ q ` B
b

logp 1
δ q

N

˙

Thm C.1

l ˝ rFp
r,B0

O

ˆ

B
2´2p
2´p ℓ

p
2´p

b

rpm`nq

N logpmnNr‹ ℓ‹ B0

δ q ` B
b

logp 1
δ q

N

˙

Thm C.2

l ˝Fp
t O

˜

B1´
p
2 ℓ

p
2

c

r1´
p
2 pm`nq

1`
p
2 logpmnN ℓ‹ r‹q

Np ` B
b

logp 1
δ q

N

¸

Thm C.3

l ˝Fp
r,B0

O

ˆ

B1´
p
2 ℓ

p
2

b

r1´
p
2 pm`nq

1`
p
2 logpmnN ℓ‹ r‹ B0q

N ` B
b

logp 1
δ q

N

˙

Thm C.3

FRMC

l ˝Flip,Lf ,Bf
˝ rFp

r,B0

O

˜

B
2´2p
2´p rLf ℓs

p
2´p

b

rpm`nq

N logpNq logp
mnB0rℓLf `1s

δ q

`

b

B0 Lf ℓB ` B2

N logpNq ` B
b

logp 1
δ q

N

¸ Thm C.5

l ˝Flip,Lf ,Bf
˝ Fp

r,B0

O

˜

B1´
p
2 rLf ℓs

p
2

b

r1´
p
2 pm`nq

1`
p
2

N log
3
2 pNmnB0rℓLf `1sq

`

b

B0 Lf ℓB ` B2

N logpNq ` B
b

logp 1
δ q

N

¸ Thm C.6

SdMC+NN

l ˝p rFp
r,B0

` ČN0,W,cq rO

˜

B
2´2p
2´p ℓ

p
2´p

b

rpm`nq

N ` B
b

dpm`nq

N ` B s0cRW?
N

¸

Thm C.8

l ˝pFp
r,B0

` N0,W,cq

rO

˜

B1´
p
2 ℓ

p
2

b

r1´
p
2 pm`nq

1`
p
2

N

`B
b

dpm`nq

N ` B s0c
?
m`nRW?

N

¸ Thm C.9

Multi-latent extension

H :“ N2,W pa1, s1q˝

pconcatmv“1p rFpv

rv,B0
q,

N1,W,idpa, sqq

rO

˜

B
b

logp1{δq

N ` B
b

W`W 1

N `

B0 S 1 ℓ
b

m2
srpm`nq

N ` B0 S 1 ℓ
b

m3

N

¸

,

where S 1 “

”

śL
ℓ“1 s

1
ℓ

ı

Thm G.5
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C. Generalization and Excess Risk Results
In this section, we prove our main results. Many of the key difficulties involved in the proofs have already been overcome in
the proofs of the relevant partial results in Sections D, which itself relies on lower level tools from Section E.

C.1. Generalization and Excess Risk Bounds Schatten Norm Matrix Completion (Sd and SWd)

In this subsection, we prove generalization and excess risk bounds for ordinary matrix completion (without a non-linear
component) with Schatten norm regularization.

Theorem C.1. Let l P Lℓ,B be a loss function. We consider the function class rFp
r :“

!

Z P Rmˆn : } rZ}psc,p ď r1´
p
2

)

. Let

Ẑ :“ minZP rFp
r

pEplpZξ, rGqq. With probability greater than 1 ´ δ, we have the following excess risk bound:

EplpẐξ, rGξqq ´ EplpGξ, rGξqq ď 12B
c

logp4{δq

2N
` 4

d

7B2
`1

N
(10)

` 44B
2´2p
2´p ℓ

p
2´p

d

rpm ` nq

Np
logp2Γ

rFp
r ,ℓ

q

«

1 `

c

m ` n

N

ff

,

where Γ
rFp
r ,ℓ

:“ 6pm`nqNpℓ `1qpr`1q

δ .

In particular, if the sampling distribution is uniform, the same result holds for Fp
t . Furthermore, the same upper bound

holds for supZP rFp
r
EplpZ, rGqq ´ pEplpZ, rGqq. (In fact, the generalization bound holds with a factor of 1{2 on the right with

probability ě 1 ´ δ.)

Proof. This follows immediately from Theorem D.2, and Theorem F.11.

Very similarly, we have the following result which applies with an additional constraint on the maximum entry:

Theorem C.2. Let l P Lℓ,B be a loss function. Consider the following function class:

rFp
r,B0

:“
!

Z P Rmˆn : } rZ}psc,p ď r1´
p
2 ; }Z}8 ď B0

)

. (11)

Let Ẑ :“ minZP rFp
r

pEplpZξ, rGqq. With probability greater than 1 ´ δ, we have the following excess risk bound:

EplpẐξ, rGξqq ´ EplpGξ, rGξqq ď 12B
c

logp4{δq

2N
` 4

d

7B2
`1

N
(12)

` 44B
2´2p
2´p ℓ

p
2´p

c

rpm ` nq

N
logp2Γ

rFp
r,B0

,ℓq

«

1 `

c

m ` n

N

ff

,

where Γ
rFp
r,B0

,ℓ :“
3Nmn3

rB0 `1srℓ `1s`1
δ . In particular, in the case of a uniform distribution, the same result holds for Fp

t .

The same result also holds for the generalization error supZ rFp
r,B0

EplpZξ, rGξqq ´ sEplpZξ, rGξqq.

Proof. This follows immediately from Theorem D.4, and Theorem F.11.

Next, we consider the case of a non-uniform distribution with non-weighted trace norm constraints:

Theorem C.3. Consider the following function class:

Fp
t :“

!

Z P Rmˆn : }Z}sc,p ď M “ rr
?
mns

2´p
2p

)

(13)
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With probability ě 1 ´ δ, excess risk bound for Ẑ P argminZPFp
t

pEplpZ, rGqq:

EplpẐξ, rGξqq ´ EplpGξ, rGξqq ď 12B
c

logp4{δq

2N
(14)

` 4

d

7B2
`1

N
` 4p

?
18C `

?
2qB1´

p
2 ℓ

p
2

d

r1´
p
2 pm ` nq1`

p
2 log

`

2ΓFp
t ,ℓ

˘

Np
.

where ΓFp
t ,ℓ

:“ 6Npm ` nqpr ` 1qpℓ`1q.

Furthermore, if we consider instead the optimization over the function class

Fp
r,B0

:“
!

Z P Rmˆn : }Z}sc,p ď M “ rr
?
mns

2´p
2p , }Z}8 ď B0

)

(15)

then we have instead

EplpẐξ, rGξ, ξqq ´ EplpGξ, rGξ, ξqq ď 12B
c

logp4{δq

2N
(16)

` 4

d

7B2
`1

N
` 4p

?
18C `

?
2qB1´

p
2 ℓ

p
2

g

f

f

e

r1´
p
2 pm ` nq1`

p
2 log

´

2ΓFp
r,B0

,ℓ

¯

N
.

where ΓFp
r,B0

,ℓ :“ 6pm ` nqN rB0 `1srℓ`1s. Furthermore,the same upper bounds hold for supZP rFp
r,B0

EplpZ, rG, ξqq ´

pEplpZ, rG, ξqq.

Proof. This follows immediately from Theorems D.3, D.5 and F.11.

Next, we provide an excess risk result for the empirically weighted version.

Theorem C.4. Assume that p “ 2
d for some integer d. Let pZ P argmin

´

pEplpZξ, rGqq : Z P qFp
2r

¯

. If we assume that the

ground truth G belongs to rFp
r , we have the following excess risk bound, which holds with probability ě 1 ´ δ under the

condition that N ě 140pm ` nq log
´

3pm`nq

δ

¯

:

Eplp pZξ, rG, ξqq ´ EplpG, rG, ξqq ď 12B
c

logp12{δq

2N
` 4

d

7B2
`1

N
` 100B

2´2p
2´p ℓ

p
2´p

d

rpm ` nq

Np
logp6Γ

rFp
r ,ℓ

q. (17)

Furthermore, the upper bound also holds for the generalisation error (with the same error probability), and an analogous
result holds for the class qFp

r,B0
, with Γ

rFp
r ,ℓ

replaced by Γ
rFp
r,B0

,ℓ and with the factor of p removed.

Proof. By lemma E.5 we have, with probability ě 1 ´ δ{3,

}|Z0}
2{d
sc,2{d ď

¨

˚

˚

˝

1 `

g

f

f

e

6pm ` nq log
´

3pm`nq

δ

¯

N

˛

‹

‹

‚

}ĂZ0}
2
d

sc,2{d. (18)

In particular, as long as N ě 24pm`nq log
´

3pm`nq

δ

¯

“

21´
p
2 ´ 1

‰´2
(note that since p is at most 1, this is satisfied as long

as N ě 140pm ` nq log
´

pm`nq

δ

¯

) we certainly have

}|Z0}psc,p ď 21´
p
2 }ĂZ0}psc,p ď r2rs1´

p
2 . (19)
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This implies that

G P qFp
2r. (20)

Similarly, by Lemma F.10, we also have with probability ě 1 ´ δ{3 (as long as N ě 8pm ` nq logp
3pm`nq

δ q, which is
already required by the stronger condition for (19)):

p̌i ě
p̃i
2

and q̌j ě
q̃j
2
. (21)

Under this condition, for any matrix Z P qFp
2r,

} rZ}psc,p “ }
a

diagpp̃qdiagpp̌q´1
qZ
a

diagpq̃qdiagpq̌q´1q}psc,p ď 2p} qZ}psc,p ď 2pr2rs1´
p
2 ď r2

2p
2´p 2rs1´

p
2 ď r4rs1´

p
2 .

Hence, we certainly have:

qFp
2r Ă rFp

4r. (22)

Now, by Theorem C.1 we have w.p. ě 1 ´ δ{3 simultaneously over all Z P rFp
4r:

EplpZξ, rGξqq ´ pEplpGξ, rGξqq ď 6B
c

logp12{δq

2N
` 2

d

7B2
`1

N
(23)

` 44B
2´2p
2´p ℓ

p
2´p

d

rpm ` nq

Np
logp6Γ

rFp
4r,ℓ

q

«

1 `

c

m ` n

N

ff

.

Thus after a union bound, equations (19), (22) an (23) hold simultaneously with probability 1 ´ δ and applying this to pZ
and the ground truth G, we obtain:

Eplp pZξ, rGqq ´ EplpG, rGqq ď Eplp pZξ, rGqq ´ pEplp pZξ, rGqq ` pEplp pZξ, rGqq ´ pEplpGξ, rGqq ` pEplpGξ, rGqq ´ EplpG, rGqq

ď 12B
c

logp12{δq

2N
` 4

d

7B2
`1

N
` 88B

2´2p
2´p ℓ

p
2´p

d

rpm ` nq

Np
logp6Γ

rFp
r ,ℓ

q

«

1 `

c

m ` n

N

ff

, (24)

as expected.

C.2. Generalization and Excess Risk Bounds for Functionally Rescaled Schatten quasi-norm Matrix Completion
(FRMC-FSd and FRMC-FSWd)

We consider the following function class:

Flip,Lf ,Bf
˝ rFp

r,B0
:
!

g : rms ˆ rns Ñ R : Df P Flip,Lf ,Bf
, Z P rFp

r,B0
: gpi, jq “ fpZi,jq

)

. (25)

Theorem C.5. With probability greater than 1 ´ δ over the draw of the training set we have the following bound on the
empirical Rademacher complexity of the class Flip,Lf ,Bf

˝ rFp
r :

pRpFlip,Lf ,Bf
˝ rFp

r,B0
q ď 150

a

B0 Lf Bf `Bf
2

`1
?
N

log2pNq (26)

` 11Bf

2´2p
2´p Lf

p
2´p

c

rpm ` nq

N
log2p2NΓ

rFp
r,B0

,ℓLf
q

«

1 `

c

pm ` nq

N

ff

where Γ
rFp
r,B0

,Lf
:“ 3Nmn3

rB0 `1srLf `1s`1
δ .
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In particular, for any fixed loss function l P Lℓ,B, with probability greater than 1 ´ δ over the draw of the training set, we
have the following generalization bound for any f ˝ Z P Flip,Lf ,Bf

˝ rFp
r :

EpℓpfpZξq, rGqq ´
1

N

N
ÿ

o“1

ℓopfpZξoqq ď 6B
c

logp4{δq

2N
` 300

a

B0 Lf ℓB `B2
`1

?
N

log2pNq (27)

` 22B
2´2p
2´p pLf ℓq

p
2´p

c

rpm ` nq

N
log2p4NΓ

rFp
r,B0

,ℓLf
q

«

1 `

c

pm ` nq

N

ff

.

Furthermore, we also have the following excess risk bound, which holds with probability greater than 1 ´ δ:

Epℓpĝpi, jq, rGq ´ Epℓpg˚pi, jq, rGq

ď 12B
c

logp4{δq

2N
` 600

a

B0 Lf ℓB `B2
`1

?
N

log2pNq (28)

` 44B
2´2p
2´p pLf ℓq

p
2´p

c

rpm ` nq

N
log2p4NΓ

rFp
r,B0

,ℓLf
q

«

1 `

c

pm ` nq

N

ff

,

where g˚ and ĝ denote mingPFlip,Lf ,Bf
˝ rFp

r,B0

Eplpgξ, rGqq and mingPFlip,Lf ,Bf
˝ rFp

r,B0

pEplpgξ, rGqq respectively.

In particular, if the distribution is uniform, the same results hold for the function class Flip,Lf ,Bf
˝ Fp

r,B0
.

Proof. By Proposition F.13 with d “ 1, for every ϵ ą 0, there exists a uniform cover Cpϵq of Flip,Lf ,Bf
with cardinality

satisfying

log p| Cpϵq |q ď 3

„R

2B0 Lf

ϵ

V

` 1

ȷ

. (29)

Note that since this is a cover of Flip,Lf ,Bf
with respect to the uniform norm, it satisfies the properties of Lemma E.4, to

wit, for any matrix Z P rFp
r,B0

, |pf ´ f̄qpZi,jq| ď ϵ (and therefore | lpfpZi,jq, rG, pi, jqq ´ lpf̄pZi,jq, rG, pi, jqq| ď ϵ ℓ holds
uniformly over any matrix Z and any input pi, jq (this is the condition from Lemma E.3 (cf. Eq. (174))), which is stronger
than that in Lemma E.4 (cf. Eq. (183))). Thus, we can apply our Lemma E.4 with Θ1 “ Flip,Lf ,Bf

and Θ2 “ rFp
r .

pRpl ˝Flip,Lf ,Bf
˝ rFp

r,B0
q ď Eσ sup

θ1,2PΘ1,2

1

N

N
ÿ

i“1

σifipθ1, θ2q (30)

ď log2

ˆ

1

α

˙

sup
θ1PΘ1

pR pFθ1q ` 4α ` 4
?
10

ż B

α

c

logpN pFlip,Lf ,Bf
, ϵ{ ℓqq

N
dϵ ` 4B

c

5π

N
. (31)

For the first term, note that by Theorem D.2, with probability ě 1 ´ δ over the draw of the training set, we actually have

sup
f̄PCpϵq

pRSpl ˝f̄ ˝ rFp
r,B0

q ď sup
fPFlip,Lf ,Bf

pRSpl ˝ f ˝ rFp
r,B0

q (32)

ď

d

7B2
`1

N
` 11B

2´2p
2´p rLf ℓs

p
2´p

c

rpm ` nq

N
logpΓ

rFp
r,B0

q

«

1 `

c

pm ` nq

N

ff

. (33)

Regarding the second term in Equation (31), we have the following simple calculation:

4
?
10

ż B

α

c

logpN pΘ1, ϵqq

N
dϵ “ 4

?
10

ż B

α

d

6
“B0 Lf ℓ

ϵ ` 1
‰

N
dϵ (34)

ď 8
?
15

c

B0 Lf ℓ

N

“

2
?
ϵ
‰B
α

` 4
?
10

B ´α
?
N

ď 16

c

15B0 Lf ℓB
N

` 4
?
10

B
?
N

(35)

ď 128

a

B0 Lf ℓB `B2

?
N

.
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Plugging this back into Equations (31) and (32) we get pRpl ˝Flip,Lf ,Bf
˝ rFp

r,B0
q ď

ď

d

7B2
`1

N
log2pNq ` 11B

2´2p
2´p rLf ℓs

p
2´p

c

rpm ` nq

N
logpΓ

rFp
r,B0

,ℓLf
q log2pNq

«

1 `

c

pm ` nq

N

ff

` 4B
c

5π

N
` 128

a

B0 Lf ℓB `B2

?
N

(36)

ď 11B
2´2p
2´p rLf ℓs

p
2´p

c

rpm ` nq

N
logpΓ

rFp
r,B0

,ℓLf
q log2pNq

«

1 `

c

pm ` nq

N

ff

` 150

a

B0 Lf ℓB `B2
`1

?
N

log2pNq,

where we have assumed w.l.o.g. that N ě 2 (the Theorem statement is obvious for N “ 1). Setting l “ Id establishes the
first inequality (since in this case B “ Bf and ℓ “ 1). The generalization bound then follows from Theorem F.11 and a
union bound over the two failure probabilities.

We now move on to prove a distribution-free result for the class Flip,Lf ,Bf
˝ Fp

r,B0
.

Theorem C.6. Consider the following function class:

Flip,Lf ,Bf
˝ Fp

r,B0
:“

!

g : rms ˆ rns Ñ R : Df P Flip,Lf ,Bf
, Z P Fp

r,B0
: gpi, jq “ fpZi,jq

)

.

We have the following excess risk bound, which holds with probability greater than 1 ´ δ:

Epℓpĝpξq, rGq ´ Epℓpg˚pξq, rGq ď 12B
c

logp2{δq

2N
` (37)

4 log2pNq

»

–150

a

B0 Lf ℓB `B2
`1

?
N

` B1´
p
2 ℓ

p
2 Lf

p
2

d

19C1 Mp
pm ` nq1´

p
2

N

c

log
´

ΓFp
r,B0

,Lf ℓ

¯

fi

fl

where ΓFp
r,B0

,ℓ :“ 6pm`nqN rB0 `1srℓ`1s, C1 “ maxpC, 1q (C being the constant from (Latała, 2005)) g˚ and ĝ denote

mingPFlip,Lf ,Bf
˝Fp

r,B0
Eplpgξ, rGqq and mingPFlip,Lf ,Bf

˝Fp
r,B0

pEplpgξ, rGqq respectively.

Proof. By the same arguments (cf. Equation (31)) as in the proof of Theorem C.5, we have the following bound on the
Rademacher complexity of ℓ ˝Flip,Lf ,Bf

˝ Fp
r,B0

:

pRpℓ ˝Flip,Lf ,Bf
˝ Fp

r,B0
q ď log2pNq sup

fPFlip,Lf ,Bf

pRpl ˝f ˝ Fp
r,B0

q ` 4B
c

5π

N
` 128

a

B0 ℓLf B `B2

?
N

.

Next, by Theorem D.5, we can continue pRpl ˝Flip,Lf ,Bf
˝ Fp

r,B0
q ď

log2pNq

»

–

d

7B2
`1

N
` B1´

p
2 pLf ℓq

p
2

d

2Mp
pm ` nq1´

p
2

N

ˆ

3
?
C `

c

log
´

ΓFp
r,B0

,Lf ℓ

¯

˙

fi

fl (38)

` 4B
c

5π

N
` 128

a

B0 Lf ℓB `B2

?
N

ď log2pNq

»

–150

a

B0 Lf B ℓ`B2
`1

?
N

` B1´
p
2 Lf

p
2 ℓ

p
2

d

19C1 Mp
pm ` nq1´

p
2

N

c

log
´

ΓFp
r,B0

,Lf ℓ

¯

fi

fl ,

which holds for any training sample. In particular, we can apply Theorem F.11 to yield the result immediately.
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We next turn our attention to the slightly more delicate case of results for the minimizer of the empirically weighted trace
norm.

Theorem C.7. Assume that p “ 2
d for some integer d. Let pg P argmin

´

pEplpgξ, rGqq : g P Flip,Lf ,Bf
˝ qFp

2r,B0

¯

, where

qFp
2r,B0

is the data dependent function class
!

Z P Rmˆn : } qZ}psc,p ď r2rs1´
p
2 , }Z}8 ď B0

)

.

If we assume that the ground truth G belongs to Flip,Lf ,Bf
˝ rFp

r,B0
, we have the following excess risk bound, which holds

with probability ě 1 ´ δ under the condition that N ě 140pm ` nq log
`

m`n
δ

˘

:

Epℓpĝpi, jq, rGq ´ EpℓpGi,j , rGq ď 6B
c

logp12{δq

2N
` 600

a

B0 Lf ℓB `B2
`1

?
N

log2pNq`

` 100B
2´2p
2´p pLf ℓq

p
2´p

c

rpm ` nq

N
log2p12NΓ

rFp
r,B0

,ℓLf
q. (39)

Proof. The proof is similar to the proof of Theorem C.4. Let us write the ground truth as

G “ f ˝ Z0 (40)

with f P Flip,Lf ,Bf
and Z0 P rFp

r,B0
.

As in the proof of Theorem C.4, as long as N ě 140pm ` nq log
`

m`n
δ

˘

we certainly have w.p. ě 1 ´ δ{3

}|Z0}psc,p ď 21´
p
2 }ĂZ0}psc,p ď r2rs1´

p
2 . (41)

This implies that

Z0 P qFp
2r,B0

. (42)

Similarly, by Lemma F.10, we also have with probability ě 1 ´ δ{3 (as long as N ě 8pm ` nq logp
3pm`nq

δ q, which is
already required by the stronger condition for (41)):

p̌i ě
p̃i
2

and q̌j ě
q̃j
2
. (43)

Under this condition, we certainly have, by the same argument as in Equation (22) in the proof of Theorem C.4:

qFp
2r,B0

Ă rFp
4r,B0

. (44)

This, together with equation (42), implies that

ĝ P Flip,Lf ,Bf
˝ rFp

4r,B0
. (45)

Thus, we can apply Theorem C.5 (with r Ð 4r, δ Ð 3δ, ℓ Ð ℓLf ) to obtain that an additional failure probability of δ, we
have the following for every g P rFp

4r,B0
:

Epℓpgξ, rGqq ´
1

N

N
ÿ

o“1

ℓopgξoq ď 3B
c

logp12{δq

2N
` 300

a

B0 Lf B `B2
`1

?
N

log2pNq

` 44B
2´2p
2´p rLf ℓs

p
2´p

c

rpm ` nq

N
logp12NΓ

rFp
r,B0

,ℓLf
q

«

1 `

c

pm ` nq

N

ff

. (46)
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In particular, by a union bound, equations (45), (44) an (46) hold simultaneously with probability 1 ´ δ and applying this to
ĝ and the ground truth G, we obtain:

Eplpĝξ, rGqq ´ EplpG, rGqq ď Eplppgξ, rGqq ´ pEplppgξ, rGqq ` pEplppgξ, rGqq ´ pEplpGξ, rGqq ` pEplpGξ, rGqq ´ EplpGξ, rGqq

ď 6B
c

logp12{δq

2N
` 600

a

B0 Lf ℓB `B2
`1

?
N

log2pNq` (47)

` 88B
2´2p
2´p rLf ℓs

p
2´p

c

rpm ` nq

N
logp12NΓ

rFp
r,B0

,ℓLf
q

«

1 `

c

pm ` nq

N

ff

,

as expected.

C.3. Generalization and Excess Risk Bounds for a Sum of a Latent Matrix and a Neural Encoding (Sd+NN)

Theorem C.8. Fix a loss function l P Lℓ,B and consider the following function class:

rFp
r,B0

` ČN0,W,c (48)

where we assume the output dimension in the class N0,W,c is K “ 0. Assume that N ě 8pm ` nq logp
3pm`nq

δ q.

Let pg P argmin
´

pEplpgi,j , rGqq : g P rFp
r,B0

` ČN0,W,c

¯

and g˚ P argmin
´

Eplpgi,j , rGqq : g P rFp
r,B0

` ČN0,W,c

¯

. Define

sB :“ B
2´2p
2´p ℓ

p
2´p

c

rpm ` nq

N
` B

c

dpm ` nq

N
` B s0cRW

?
N

.

With probability greater than 1 ´ δ over the draw of the training set, we have the following:

pRpl ˝p rFp
r,B0

` N0,W,cqq ď rO
`

sB
˘

(49)

sup
gP rFp

r,B0
` ČN0,W,c

Eplpgξ, rG, ξqq ´ pEplpgξ, rG, ξqq ď rO
`

sB
˘

` O

˜

B
c

logp1{δq

N

¸

(50)

Eplpĝ, rG, ξqq ď Eplpg˚, rG, ξqq ` rO
`

sB
˘

` O

˜

B
c

logp1{δq

N

¸

, (51)

where the rO notation hides polylogarithmic factors of all relevant quantities (B, B0, l, N,m, n, c, s0,RW,
śL

ℓ“1 sℓ etc.). In
particular, if the distribution is uniform, the same result holds for the class Fp

r,B0
` N0,W,c instead. Furthermore, the same

results hold for the class rFp
r ` ČN0,W,c with sB replaced by B where

B :“ B
2´2p
2´p ℓ

p
2´p

d

rpm ` nq

Np
` B

c

dpm ` nq

N
` B s0cRW

?
N

.

Proof. We aim to use Lemma E.4 with Θ1 “ ČN0,W,c and Θ2 “ rFp
r,B0

. Assume that equations (270) are satisfied (this

happens with probability ě 1 ´ δ{3 as long as N ě 8pm ` nq logp
3pm`nq

δ q, by Lemma F.10) ). Then we can let C be a
cover of granularity ϵ

ℓ of the class ČN0,W,c, as guaranteed by Proposition E.6. By Proposition E.6, we have

logp|C|q ď

„

2dpm ` nq ` 32s20c
2

„

1

ϵ2
` 1

ȷ

RW
2

ȷ

log
`

ΓW,ϵ{ ℓ

˘

. (52)

Now, for any Ψ P ČN0,W,c, we write sΨ for the associated cover element. For any g P rFp
r,B0

` ČN0,W,c, we can write g as
g “ Z ` Ψ. We define an associated cover element in rFp

r,B0
` C as Z ` sΨ. For any value of Z P rFp

r,B0
, it is certainly the
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case that

1

N

N
ÿ

o“1

plpgξo , rGoq ´ lpsgξo , rGoqq2 ď ℓ2
1

N

N
ÿ

o“1

pgξo ´ sgξoq2

“ ℓ2
1

N

N
ÿ

o“1

pgξo ´ sgξoq2 “ ℓ2
1

N

N
ÿ

o“1

pZξo ` Ψξo ´rZξo ` sΨξosq2 “ ℓ2
1

N

N
ÿ

o“1

pΨξo ´sΨξoq2 ď ϵ2. (53)

Thus, the condition (183) is satisfied and we can apply Lemma (E.4) to obtain pRpl ˝p rFp
r,B0

` ČN0,W,cqq ď

log2

ˆ

1

α

˙

sup
θ1PΘ1

pR pFθ1q ` 4α ` 4
?
10

ż B

α

c

logpCq

N
dϵ ` 4B

c

5π

N
(54)

“ log2

ˆ

1

α

˙

sup
ΨP ČN0,W,c

pRpl ˝p rFp
r,B0

` Ψqq ` 4α ` 4
?
10

ż B

α

c

logp|C|q

N
dϵ ` 4B

c

5π

N
.

Now, we tackle both main terms in equation (54) separately.

For the first term, it is clear that by applying Theorem D.4, (with an additional failure probability of δ{3):

sup
ΨP ČN0,W,c

pRpℓ ˝ p rFp
r,B0

` Ψqq

ď

d

7B2
`1

N
` 11B

2´2p
2´p ℓ

p
2´p

c

rpm ` nq

N
logp3Γ

rFp
r,B0

,ℓq

«

1 `

c

pm ` nq

N

ff

ď

d

7B2
`1

N
` 22B

2´2p
2´p ℓ

p
2´p

c

rpm ` nq

N
logp3Γ

rFp
r,B0

,ℓq. (55)

That is because Theorem D.4 explicitly holds uniformly over all loss functions in Lℓ,B, which includes all the “loss functions”
l1 : py, rG, ξq ÞÑ l1py, rG, ξq “ lpy ` Ψξ, rG, ξq for any ℓ P Lℓ,B and any Ψ : rms ˆ rns Ñ R. Note that at the third line, we
have used the condition N ě 8pm ` nq logp

3pm`nq

δ q.

For the second main term, we simply calculate the integral relying on Equation (52) (setting α “ 1
N ):

4
?
10

ż B

α

c

logpCq

N
dϵ ď 4

?
10

ż B

α

d

“

2dpm ` nq ` 32s20c
2
“

1
ϵ2 ` 1

‰

RW
2
‰

log
`

ΓW,ϵ{ ℓ

˘

N
dϵ

ď 8
?
5
b

logpΓW,1{pN ℓqq

«

c

dpm ` nq

N
`

4s0cRW
?
N

rlogpBNq ` Bs

ff

. (56)

Plugging Equations (55) and (56) back into Equation (54), we obtain, with overall probability ě 1´2δ{3, that pRpl ˝p rFp
r,B0

`

ČN0,W,cqq ď

8
?
5
b

logpΓW,1{pN ℓqq

«

c

dpm ` nq

N
`

4s0cRW
?
N

rlogpBNq ` Bs

ff

`
4

N
` 4B

c

5π

N

` log2pNq

»

–

d

7B2
`1

N
` 22B

2´2p
2´p ℓ

p
2´p

c

rpm ` nq

N
logp3Γ

rFp
r,B0

,ℓq

fi

fl . (57)

The results then follow immediately from Theorem F.11. The proof for rFp
r ` ČN0,W,c is the same except we are using

Theorem D.2 instead of Theorem D.4.

We now turn our attention to the case of the non-weighted regularization in the arbitrary sampling case:
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Theorem C.9. We now consider the following function class: Fp
r,B0

` N0,W,c. We also let ĝ P

argming

´

pEplpgξ, rG, ξqq : g P Fp
r,B0

` N0,W,c

¯

and g˚ P argming

´

Eplpgξ, rG, ξqq : g P Fp
r,B0

` N0,W,c

¯

. Let

C :“ B1´
p
2 ℓ

p
2

d

r1´
p
2 pm ` nq1`

p
2

N
` B

c

dpm ` nq

N
` B s0c

?
m ` nRW
?
N

.

With probability ě 1 ´ δ, we have

pRpl ˝pFp
r,B0

` N0,W,cqq ď rO
`

sC
˘

(58)

sup
gP rFp

r,B0
`N0,W,c

Eplpgξ, rG, ξqq ď rO
`

sC
˘

` O

˜

B
c

logp4{δq

N

¸

(59)

Eplpĝ, rG, ξqq ď Eplpg˚, rG, ξqq ` rO
`

sC
˘

` O

˜

B
c

logp4{δq

N

¸

, (60)

where the rO notation hides polylogarithmic factors of all relevant quantities (B, B0, l, N,m, n, c, s0,RW,
śL

ℓ“1 sℓ etc.).
Furthermore, if we consider instead the class Fp

t `N0,W,c, then the same result holds with sC replaced by

C :“ B1´
p
2 ℓ

p
2

d

r1´
p
2 pm ` nq1`

p
2

Np
` B

c

dpm ` nq

N
` B s0c

?
m ` nRW
?
N

.

Proof. By the same arguments as in the proof of Theorem C.8, W.p. ě 1 ´ δ{2, as long as N ě 8pm ` nq logp
3pm`nq

δ q

there exists a cover C of N0,W,c satisfying condition (183) and

logp|C|q ď

„

2dpm ` nq ` 32s20c
2pm ` nq

„

1

ϵ2
` 1

ȷ

RW
2

ȷ

log
`

ΓW,ϵ{ ℓ

˘

. (61)

Furthermore,

pRpl ˝p rFp
r,B0

` N0,W,cqq ď log2 pNq sup
ΨP ČN0,W,c

pRpl ˝p rFp
r,B0

` Ψqq` (62)

rO

˜

B
c

dpm ` nq

N
`

s0c
?
m ` nRW
?
N

logpBNq

¸

.

For the first term, we now have by Theorem D.5:

log2 pNq sup
ΨP ČN0,W,c

pRpl ˝p rFp
r,B0

` N0,W,cqq (63)

ď log2pNq

»

–

d

7B2
`1

N
` B1´

p
2 ℓ

p
2

d

19C1 Mp
pm ` nq1´

p
2

N
logpΓFp

r,B0
,ℓq

fi

fl .

Plugging this back into Equation (62) yields the result.

Finally, we consider excess risk bounds for the empirically weighted version of our algorithm. In this case, the “doubling
argument” must be used for both components of the model.

Theorem C.10. Assume that the ground truth G belongs to qFp
r,B0

` ČN0,W,c. Let ĝ P

argming

´

pEplpgξ, rG, ξqq : g P qFp
2r,B0

` ­N0,W,2c

¯

. Let

D :“ B

«

c

dpm ` nq

N
`

s0cRW
?
N

ff

` ℓ
p

2´p B
2´2p
2´p

c

rpm ` nq

N
(64)
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With probability greater than 1 ´ δ over the draw of the training set, we have

sup
gP qFp

2r,B0
` ­N0,W,2c

Eplpgξ, rG, ξqq ´ pEplpgξ, rG, ξqq ď rO pDq ` O

˜

B
c

logp1{δq

N

¸

(65)

Eplpĝ, rG, ξqq ´ Eplpg˚, rG, ξqq ď rO pDq ` O

˜

B
c

logp6{δq

N

¸

, (66)

where the rO notation hides logarithmic factors of all relevant quantities (B, B0, l, N,m, n, c, s0,RW,
śL

ℓ“1 sℓ etc.).

Proof. Let us write the ground truth as

G “ Z0 `Ψ0 (67)

Just as in the proof of theorem C.4, by lemma E.5 we have, with probability ě 1 ´ 2δ{3, and as long as N ě 140pm `

nq log
`

m`n
δ

˘

, that the following are all simultaneously satisfied:

Z0 P qFp
2r. (68)

p̌i ě
p̃i
2

and q̌j ě
q̃j
2
, (69)

and

qFp
2r Ă rFp

4r. (70)

Also, by the proof of Lemma F.10, on the same high probability event as above, we have (c.f. Equation 208) p̌i ď 2p̃i and
q̌j ď 2q̃j (for all i, j). Thus since Ψ0

P ČN0,W,c, we also have

Ψ0
P ­N0,W,2c Ă N0,W,4c . (71)

Thus, we have

G P qFp
2r,B0

` ­N0,W,2c Ă rFp
4r,B0

` ČN0,W,4c (72)

And thus, the theorem follows by applying Theorem C.8 with δ Ð δ{3.

Remarks about the Norm Based Bounds on Neural Encodings: The results in this Section comes with some caveats

regarding the improvements offered by the weighting }diagpp̃q
1
2U}2Fr ` }diagpq̃q

1
2V }2Fr . Indeed, the term

b

dpm`nq

N still
contains a parametric dependency on the dimension d of A0pui, vjqJ, so it cannot be said that the bounds in Theorems C.8
and C.9 capture any rank sparsity inducing properties of the regularizer on U, V . In fact, the weighting merely serves to
increase the uniformity of the input norms of the embeddings, which improves the behavior of norm-based bounds. However,
one can also control the complexity of the neural encoding with a parameter counting strategy, which would remove any
difference between the weighted and unweighted scenarios. This is what we do in the Section G, which deals with the case
where multiple hidden matrices are present.

D. Our Results on the Complexity of Matrix Classes with the Schatten quasi-Norms
This section compiles our first end-product results: Rademacher complexity bounds for classes of matrices with low Schatten
quasi-norms. This section is divided into two very similar sections where we treat the two cases where a separate upper
bound on the entries is enforced or not. Indeed, a such a separate condition is required to prevent the bounds from blowing
up as p Ñ 0. This condition is very mild, but we still cover both cases since it may be interesting to study the dependence
on p. The proofs rely on the important tools developed in Section E.
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D.1. Without Constraints on Entries

First, we will need the following simple parameter-counting lemma (the proofs use standard techniques) for matrices of fixed
rank. Similar results hark back to (Srebro & Shraibman, 2005; Srebro et al., 2004; Vandermeulen & Ledent, 2021), but the
rest of our proofs will require the variation below, which is uniform over any draw of the sample set ξ1, . . . , ξN P rms ˆ rns.

Lemma D.1. Consider the following function class over matrices in Rmˆn:

Er,t : “
␣

R P Rmˆn : }R}˚ ď t, rankpRq ď r
(

. (73)

For all u ď N let lu : R Ñ R be ℓ-Lipschitz functions which are bounded by B. The covering number of Er,t is bounded as
follows:

logN8 pEr,t, ϵq ď pm ` nqr log

ˆ

3
?
2t

ϵ
` 1

˙

. (74)

Furthermore, we have the following parameter counting bound on the empirical Rademacher complexity of l ˝ Er,t.

pRpl ˝ Er,tq :“ sup
ZPEr,t

1

N

N
ÿ

o“1

lopZξoq ď
1

N
`

c

2pm ` nqr

N
log

´

3N ℓ
?
2t ` 1

¯

B . (75)

Proof. First, note that by Lemma F.18 for any R P Er,t, we can find two matrices A P Rmˆo and B P Rnˆo such that

ABJ “ R (76)

}A}2Fr ` }B}2Fr ď 2t. (77)

In particular, Equation (77) certainly implies that }A}Fr, }B}Fr ď
?
2t.

Next, setting ε “ ϵ
4

?
2t

, by Lemma F.17, there exist covers CA Ă
␣

A P Rmˆr : }A}Fr ď
?
2t
(

and CB Ă
␣

B P Rnˆr : }B}Fr ď
?
2t
(

(with respect to the Frobenius norm) such that for all A P Rmˆr (resp. B P Rmˆr),
there exists a sA P CA (resp. sB P CB) such that }A ´ sA}Fr, }B ´ sB}Fr ď ε and

|CA| ď

ˆ

3
?
2t

ϵ
` 1

˙mr

and (78)

|CB | ď

ˆ

3
?
2t

ϵ
` 1

˙nr

. (79)

The cover C :“
␣

R P Rmˆn : R “ ABJ : A1 P CA, B1 P CB
(

Ă Rmˆn is an (external) ϵ{2-cover of Er,t with respect to
the L8 norm. Indeed, for any R P Er,t, we can write R “ ABJ for some A P CA, B P CB . Then, writing sA (resp. sB) for
the corresponding nearest cover elements in CA (resp. CB), and writing sR “ sA sBJ we have for any i ď m, j ď n:

`

sR ´ R
˘

i,j
ď
›

› sR ´ R
›

›

Fr
“
›

› sA sBJ ´ ABJ
›

›

Fr
“
›

› sA
`

sBJ ´ BJ
˘

`
`

sA ´ A
˘

BJ
›

›

Fr

ď
›

› sA
›

›

Fr

›

› sBJ ´ BJ
›

›

Fr
`
›

› sA ´ A
›

›

Fr

›

› sB
›

›

Fr
(80)

ď
?
2tε `

?
2tε “

ϵ

2
. (81)

In particular (by Equations (78)), there must exist an internal ϵ-cover C1 Ă Er,t with
ˇ

ˇC1
ˇ

ˇ ď |C| ď |CA| |CB | (82)

ď

ˆ

3
?
2t

ϵ
` 1

˙mr ˆ
3
?
2t

ϵ
` 1

˙nr

“

ˆ

3
?
2t

ϵ
` 1

˙pm`nqr

. (83)

Next, we need a simple argument analogous to proofs of Dudley’s entropy integrals (however, since the covering number
has mild dependence on ϵ, it is not necessary to use a full chaining argument via Lemma E.4, E.3 or E.1). For any R P Er,t
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let sR be the closest cover element in C1, we have, for any sample set ξ1, . . . , ξN P rms ˆ rns;

Eσ sup
RPEr,t

1

N

N
ÿ

u“1

σu lupRξuq (84)

ď Eσ sup
RPEr,t

1

N

N
ÿ

u“1

σuplupRξuq ´ lup sRξuqq ` Eσ sup
RPEr,t

1

N

N
ÿ

u“1

σu lup sRξuq

ď Eσ sup
RPEr,t

1

N

N
ÿ

u“1

σuplupRξuq ´ lup sRξuqq ` Eσ sup
RPC1

1

N

N
ÿ

u“1

σu lup sRξuq

ď ϵ ℓ`
a

2 logp|C1|q
B

?
N

(85)

ď ϵ ℓ`

d

2pm ` nqr

N
log

ˆ

3
?
2t

ϵ
` 1

˙

B,

where the fifth line (85) follows from Proposition F.14. Setting ϵ “ 1
N ℓ yields the result.

Theorem D.2. Consider the following function class:

rFp
r :“

!

Z P Rmˆn : } rZ}psc,p ď r1´
p
2

)

. (86)

With probability ě 1 ´ δ over the draw of the training set, the following bound holds on the Rademacher complexity of
l ˝ rFp

r holds simultaneously over all choices of l P Lℓ,B :

Eσ sup
ZP rFp

r

1

N

N
ÿ

o“1

σo lopZξoq ď

d

7B2
`1

N
` 11B

2´2p
2´p ℓ

p
2´p

d

rpm ` nq

Np
logpΓ

rFp
r

q

«

1 `

c

m ` n

N

ff

,

where Γ
rFp
r
:“ 6pm`nqNpℓ `1qpr`1q

δ .

Proof. Let us write t for t “ r1´
p
2 . Then we have

rFp
r “

!

Z P Rmˆn, } rZ}psc,p ď t
)

.

For any matrix X of rank k, let us write ρ1pXq, . . . , ρkpXq for the singular values of X , ordered from largest to smallest.
We can also define, for any τ ě 0, the quantity UpXq :“ |tκ ď k : ρκ ě τu|. By Markov’s inequality, we certainly have
for any X:

UpXq ď
}X}psc,p

τp
. (87)

Note also that for if ρκ ď τ for all κ ě U ` 1, then we certainly have

k
ÿ

κ“U`1

ρκ “

k
ÿ

κ“U`1

ρpκρ
1´p
κ ď τ1´p

k
ÿ

κ“U`1

ρpκ. (88)

Thus, applying the decomposition to X “ rZ we have the following super-decomposition of the function class rFp
r :

rFp
r Ă Rτ ` Tτ , (89)

where Rτ consists in the contribution from singular values greater than τ and Tτ consists in the contribution from singular
values less than τ . Thus, recalling Equation (73),

Rτ :“
!

R P Rmˆn : } rR}˚ ď st, rankpRq ď sU
)

(90)
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where rR “ diagp
?
p̃qR diagp

?
q̃q and

sU :“

[

r
2´p
2

τp

_

and st “ t1{pn “ nr
2´p
2p , (91)

where the expression for sU follows from Equation (87) and the expression for st follows from the fact that for any matrix
X P Rmˆn, }X}sc,pn ě }X}sc,prankpXq ě rankpXq}X} ě }X}˚. Note that we upper bound the rank by n rather than
minpm,nq for cosmetic reasons only: the corresponding terms will only give rise to logarithmic factors in any case.

For Tτ , we have

Tτ :“ rF1
rt
:“

!

Z P Rmˆn : } rZ}˚ ď rt
)

, (92)

where from Equation (88) we obtain the suitable expression for rt as

rt :“ t τ1´p “ r
2´p
2 τ1´p . (93)

Since Equation (89) holds with the prescribed values of sU,st and rt we can upper bound the Rademacher complexity via
Lemma E.3 for F “

!

`

loppZ1 ` Z2qξoq
˘

oďN
: Z1 P Rτ , Z

2 P Tτ
)

, Θ1 “ Rτ and Θ2 “ Tτ :

Eσ sup
ZP rFp

r

1

N

N
ÿ

o“1

σo lupZξuq ď Eσ sup
Z1PRτ ,Z2PTτ

1

N

N
ÿ

o“1

σo lupZ1
ξu ` Z2

ξuq (94)

ď ϵ ` sup
sZ1PCpϵq

pR pF
sZ1q ` B

c

2π

N
` B

c

logpN pF1, ϵqq

N
, (95)

where Cpϵq is an ϵ-uniform cover of Θ1 “ Rτ in the sense of Lemma E.3, and for the avoidance of doubt,

F
sZ1 “

!

`

lopp sZ1 ` Z2qξoq
˘

oďN
: Z2 P Tτ

)

.

The above equation (95) holds for any ϵ, and since the loss function is uniformly Lipschitz, it is certainly true that if Z̄1 is a
cover element such that

ˇ

ˇ

ˇ

`

Z̄1 ´ Z1
˘

ξo

ˇ

ˇ

ˇ
ď ϵ for any o, then we also have that

ˇ

ˇloppZ1 ` Z2qξoq ´ loppZ̄1 ` Z2qξoq
ˇ

ˇ ď ϵ ℓ (96)

holds uniformly over all Z2 P Tτ , all os and all loss functions ls satisfying the required conditions.

Thus

N pF1, ϵq ď N8

´

Rτ ,
ϵ

ℓ

¯

. (97)

Note also that since p̃i ě 1
2m and q̃j ě 1

2n , for any matrix X with } rX}˚ ď st, we have }X}˚ ď
?
n} rX}Fr2

?
mn ď 2

?
mn2

st.

Thus we have Rτ Ă

!

R P Rmˆn : }R}˚ ď 2
?
mn2

st, rankpRq ď sU
)

. Thus, using Lemma (D.1) and plugging the result
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back into Equation (95) above, we obtain:

Eσ sup
ZP rFp

r

1

N

N
ÿ

o“1

σo lupZξuq (98)

ď ϵ ` sup
sZ1PCpϵq

Eσ sup
Z2PTτ

1

N

N
ÿ

o“1

σo lopZ2
ξo ` sZ1

ξoq (99)

` B
c

2π

N
` B

g

f

f

f

e

sUpm ` nq log

ˆ

3
?

4
?
mn2

st ℓ
ϵ ` 1

˙

N

ď ϵ ` ℓEσ sup
Z2PTτ

1

N

N
ÿ

o“1

σoZξu ` B
c

2π

N
` B

g

f

f

f

f

e

sUpm ` nq log

˜

6

b

?
mn2nr

2´p
2p ℓ

ϵ ` 1

¸

N
(100)

ď
1

N
` ℓEσ sup

Z2PTτ

1

N

N
ÿ

o“1

σoZξu (101)

` B
c

2π

N
` B

d

2r1´
p
2 pm ` nq log p6pm ` nqNpℓ ` 1qpr ` 1qq

Np τp

where the second line (99) we used Lemma D.1, at the next line (100) we have used the Talagrand contraction Lemma (once

for each value of sZ1), and at the final line (101), we have set ϵ “ 1
N , used the fact that sU ď tp

τp “ r1´
p
2

τp and the fact that
p ď 1.

Next, by applying Theorem F.5 (with r Ð rt2) we know that with probability ě 1 ´ δ over the draw of the training set we
have

Eσ sup
Z2PTτ

1

N

N
ÿ

o“1

σoZξu ď 4

d

2rt2pm ` nq

3N
log

ˆ

m ` n

δ

˙

`
16

?
mnrt

3N
log

ˆ

m ` n

δ

˙

(102)

ď 4 τ p1´pq

d

2r2´ppm ` nq

3N
log

ˆ

m ` n

δ

˙

`
16 τ1´p

?
mnr

2´p
2

3N
log

ˆ

m ` n

δ

˙

(103)

where at line (103) we used the definition of rt (cf. Equation (93)). Plugging Equation (103) back into Equation (101) we
obtain the following bound for the Rademacher complexity of rFp

r , which holds with probability ě 1 ´ δ over the draw of
the training set:

Eσ sup
ZP rFp

r

1

N

N
ÿ

o“1

σo lupZξuq (104)

ď

d

7B2
`1

N
`

16 ℓ τ1´p
?
mnr

2´p
2

3N
log

ˆ

m ` n

δ

˙

(105)

` B

d

2
r1´

p
2 pm ` nq log p6pm ` nqNpℓ ` 1qpr ` 1qq

Np τp

` 4 ℓ τ p1´pq

d

2r2´ppm ` nq

3N
log

ˆ

m ` n

δ

˙

.

Ignoring logarithmic factors, the dominant terms scale as follows:

Eσ sup
ZP rFp

r

1

N

N
ÿ

o“1

σo lupZξuq ď rO

¨

˝B

d

r1´
p
2 pm ` nq

Np τp
` ℓ τ1´pr1´

p
2

c

m ` n

N

˛

‚. (106)
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Thus, optimizing over the choice of τ , we select

τ “ B
2

2´p ℓ´ 2
2´p r´ 1

2 p´ 1
2´p . (107)

Substituting this back into Equation (105) we obtain Rp rFp
r q ď

ď

d

7B2
`1

N
`

16 ℓ τ1´p
?
mnr

2´p
2

3N
log

ˆ

m ` n

δ

˙

` 4 ℓ τ p1´pq

d

2r2´ppm ` nq

3N
log

ˆ

m ` n

δ

˙

` B

d

2r1´
p
2 pm ` nq log p6pm ` nqNpℓ ` 1qpr ` 1qq

Np τp
.

“

d

7B2
`1

N
`

16 ℓrB
2

2´p ℓ´ 2
2´p r´ 1

2 p´ 1
2´p s1´p

?
mnr

2´p
2

3N
log

ˆ

m ` n

δ

˙

` B

d

2r1´
p
2 pm ` nq log p6pm ` nqNpℓ ` 1qpr ` 1qq

NprB
2

2´p ℓ´ 2
2´p r´ 1

2 p´ 1
2´p sp

` 4 ℓrB
2

2´p ℓ´ 2
2´p r´ 1

2 p´ 1
2´p sp1´pq

d

2r2´ppm ` nq

3N
log

ˆ

m ` n

δ

˙

“

d

7B2
`1

N
`

16B
2´2p
2´p ℓ

p
2´p r

1
2

?
mn

3Np
1´p
2´p

log

ˆ

m ` n

δ

˙

` B
2´2p
2´p ℓ

p
2´p

˜
d

2rpm ` nq log p6pm ` nqNpℓ ` 1qpr ` 1qq

Np
2´2p
2´p

` 4

d

2rpm ` nq

3Np
2´2p
2´p

log

ˆ

m ` n

δ

˙

¸

ď

d

7B2
`1

N
`

16B
2´2p
2´p ℓ

p
2´p r

1
2

?
mn log

`

m`n
δ

˘

3Np
1´p
2´p

(108)

` 5B
2´2p
2´p ℓ

p
2´p

g

f

f

e

rpm ` nq log
´

6pm`nqNpℓ`1qpr`1q

δ

¯

Np
2´2p
2´p

ď

d

7B2
`1

N
` 11

B
2´2p
2´p ℓ

p
2´p p

p
2p2´pq

p
1
2

c

rpm ` nq

N
logpΓ

rFp
r

q

«

1 `

c

m ` n

N

ff

(109)

ď

d

7B2
`1

N
` 11

B
2´2p
2´p ℓ

p
2´p

p
1
2

c

rpm ` nq

N
logpΓ

rFp
r

q

«

1 `

c

m ` n

N

ff

, (110)

as expected.

Next, we consider the situation where the distribution is arbitrary, but the Schatten quasi norm is not weighted:

Theorem D.3. Consider the following function class:

Fp
t :“

␣

Z P Rmˆn : }Z}sc,p ď M
(

. (111)

With probability ě 1 ´ δ, we have the following bound on the Rademacher complexity of l ˝Fp
t , where l is any set of N

ℓ-Lipschitz functions uniformly bounded by B:

pRp rFp
r q “

d

7B2
`1

N
` p

?
18C `

?
2qB1´

p
2 ℓ

p
2

d

r1´
p
2 pm ` nq1`

p
2 log

`

ΓFp
t ,ℓ

˘

Np
. (112)

where ΓFp
t ,ℓ

:“ 6Npm ` nqpr ` 1qpℓ`1q.
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Proof. Similarly to the above proofs we can write

rFp
r Ă Rτ ` Tτ , (113)

where

Rτ :“
␣

R P Rmˆn : }R}˚ ď st, rankpRq ď sU
(

(114)

with

sU “

Z

r1´
p
2

?
mn

p

τp

^

and st “
?
mnr

2´p
2p n. (115)

And similarly

Tτ :“
␣

Z P Rmˆn : }Z}˚ ď rt
(

(116)

with

rt “ r1´
p
2

?
mn

p
τ1´p . (117)

Thus, by the same argument as in the proof of Theorem D.2 we have

Eσ sup
ZP rFp

r

1

N

N
ÿ

o“1

σo lopZξoq (118)

ď
1

N
` sup

sZ1PCp1{Nq

pR pF
sZ1q ` B

c

2π

N
` B

g

f

f

e

sUpm ` nq log
´

3N
a

4
?
mn2

st ℓ`1
¯

N
(119)

where

F
sZ1 “

!

`

lopp sZ1 ` Z2qξoq
˘

oďN
: Z2 P Tτ

)

. (120)

with the values for Tτ , sU,st,rt defined as per Equations (116), (115) and (117) respectively. Replacing the appropriate values
for sU and st, we have the following

B

g

f

f

e

sUpm ` nq log
´

3N
a

4
?
mn2

st ℓ`1
¯

N
(121)

ď B

g

f

f

f

e

r1´
p
2

?
mn

p
pm ` nq log

ˆ

3N

b

4
?
mn2

?
mnr

2´p
2p n ℓ`1

˙

N τp
(122)

ď B

g

f

f

f

e

r1´
p
2 pm ` nqp`1 log

ˆ

3N

b

4
?
mn2

?
mnr

2´p
2p n ℓ`1

˙

N τp
(123)

ď B

d

2
r1´

p
2 pm ` nqp`1 log p6Npm ` nqpr ` 1qpℓ`1qq

Np τp
. (124)

For any sZ1 P Cpϵq we can apply Proposition F.3 from (Shamir & Shalev-Shwartz, 2011) to obtain the following inequality,
which is valid for any training set:

Eσ sup
Z2PTτ

1

N

N
ÿ

o“1

lop sZ1 ` Z2q ď

d

9C B ℓrtp
?
m `

?
nq

N
“

d

9C B ℓ r1´
p
2

?
mn

p
τ1´pp

?
m `

?
nq

N
.

35



Generalization Analysis of Deep Non-linear Matrix Completion

Taking a suprememum over sZ1 we certainly have

sup
sZ1PCpϵq

Eσ sup
Z2PTτ

1

N

N
ÿ

o“1

lop sZ1 ` Z2q ď

d

9C B ℓ r1´
p
2

?
mn

p
τ1´pp

?
m `

?
nq

N
. (125)

Plugging Equations (125) and (124) back into Equation (119) we obtain:

Eσ sup
ZP rFp

r

1

N

N
ÿ

o“1

σo lopZξoq (126)

ď

d

7B2
`1

N
`

d

18C B ℓ r1´
p
2 τ1´pp

?
m ` nq1`2p

N
(127)

` B

d

2
r1´

p
2 pm ` nqp`1 log p6Npm ` nqpr ` 1qpℓ`1qq

Np τp
.

this motivates the following choice of threshold

τ :“ B ℓ´1 p´1
?
m ` n, (128)

which yields:

Eσ sup
ZP rFp

r

1

N

N
ÿ

o“1

σo lopZξoq (129)

ď

d

7B2
`1

N
`

d

18C B2´p ℓp r1´
p
2 pm ` nq1`

p
2

Np1´p
(130)

` B1´
p
2 ℓ

p
2

d

2
r1´

p
2 pm ` nq1`

p
2 log p6Npm ` nqpr ` 1qpℓ`1qq

Np1´p

ď

d

7B2
`1

N
` p

?
18C `

?
2qB1´

p
2 ℓ

p
2

d

r1´
p
2 pm ` nq1`

p
2 p6Npm ` nqpr ` 1qpℓ`1qq

Np
,

as expected.

D.2. With Constraints on Entries

Theorem D.4. Consider the following function class:

rFp
r,B0

:“
!

Z P Rmˆn : } rZ}psc,p ď r1´
p
2 ; }Z}8 ď B0

)

. (131)

With probability ě 1 ´ δ, we have the following bound on the Rademacher complexity of l ˝ rFp
r , where l a Lipschitz function

of ξo and rGo but is ℓ-Lipschitz with respect to the first argument and uniformly bounded by B:

R̂p rFp
r,B0

q “ Eσ sup
ZP rFp

r

1

N

N
ÿ

o“1

σo lopZξoq (132)

ď

d

7B2
`1

N
` 11B

2´2p
2´p ℓ

p
2´p

c

rpm ` nq

N
logpΓ

rFp
r,B0

,ℓq

«

1 `

c

pm ` nq

N

ff

.

Proof. Let us write t for t “ r1´
p
2 . Then we have

rFp
r,B0

“

!

Z P Rmˆn, } rZ}psc,p ď t, }Z}8 ď B0

)

.
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As before, we decompose our function class into two parts

rFp
r,B0

Ă Rτ ` Tτ , (133)

where Rτ is a class of rank U matrices where the contribution from singular values greater than τ belong and Tτ contains in
the contribution from singular values less than τ .

More precisely,

Rτ :“
␣

R P Rmˆn : }R}˚ ď st, rankpRq ď sU
(

(134)

where rR “ diagp
?
p̃qR diagp

?
q̃q and

sU :“

[

r
2´p
2

τp

_

and st “
?
mnnB0, (135)

where the expression for sU comes from Markov’s inequality (as before) and (differently from before) the expression for st
comes from the fact that for any matrix R,

ÿ

ρiěτ

ρiuipviqJ ď }Z}rankpZq ď
?
mnB0 rankpZq ď

?
mnnB0 . (136)

Note also that exactly as before, for if ρκ ď τ for all κ ě U ` 1, then we certainly have

k
ÿ

κ“U`1

ρκ “

k
ÿ

κ“U`1

ρpκρ
1´p
κ ď τ1´p

k
ÿ

κ“U`1

ρpκ. (137)

Thus, for Tτ , we have

Tτ :“ rF1
rt
:“

!

Z P Rmˆn : } rZ}˚ ď rt
)

, (138)

where from equation (137) we obtain the suitable expression for rt as

rt :“ t τ1´p “ r
2´p
2 τ1´p . (139)

Since Equation (133) holds with the prescribed values of sU,st and rt we can upper bound the Rademacher complexity via
Lemma E.3 for F “

!

`

loppZ1 ` Z2qξoq
˘

oďN
: Z1 P Rτ , Z

2 P Tτ
)

, Θ1 “ Rτ and Θ2 “ Tτ :

Eσ sup
ZP rFp

r

1

N

N
ÿ

o“1

σo lupZξuq ď Eσ sup
Z1PRτ ,Z2PTτ

1

N

N
ÿ

o“1

σo lupZ1
ξu ` Z2

ξuq (140)

ď ϵ ` sup
sZ1PCpϵq

pR pF
sZ1q ` B

c

2π

N
` B

c

logpN pF1, ϵqq

N
. (141)

By the same arguments as in the proof of Theorem D.2,

N pF1, ϵq ď N8

´

Rτ ,
ϵ

ℓ

¯

. (142)
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Thus, using Lemma D.1 and plugging the result back into Equation (141) above, we obtain:

Eσ sup
ZP rFp

r

1

N

N
ÿ

o“1

σo lupZξuq (143)

ď ϵ ` sup
sZ1PCpϵq

Eσ sup
Z2PTτ

1

N

N
ÿ

o“1

σo lopZ2
ξo ` sZ1

ξoq pF
sZ1q (144)

` B
c

2π

N
` B

g

f

f

f

e

sUpm ` nq log

ˆ

3
??

mn3 B0 ℓ
ϵ ` 1

˙

N

ď
1

N
` ℓEσ sup

Z2PTτ

1

N

N
ÿ

o“1

σoZξu ` B
c

2π

N
` B

d

r1´
p
2 pm ` nq log p3Nmn3rB0 `1srℓ`1s ` 1q

N τp
(145)

at the final line (145), we have set ϵ “ 1
N , used the fact that sU ď tp

τp “ r1´
p
2

τp .

Next, the application of Theorem F.5 (with r Ð rt2) to Tτ is unchanged from the proof of Theorem D.2, thus we know as
before that with probability ě 1 ´ δ over the draw of the training set we have

Eσ sup
Z2PTτ

1

N

N
ÿ

o“1

σoZξu ď 4

d

2rt2pm ` nq

3N
log

ˆ

m ` n

δ

˙

`
16

?
mnrt

3N
log

ˆ

m ` n

δ

˙

(146)

ď 4 τ p1´pq

d

2r2´ppm ` nq

3N
log

ˆ

m ` n

δ

˙

`
16 τ1´p

?
mnr

2´p
2

3N
log

ˆ

m ` n

δ

˙

(147)

where at line (147) we used the definition of rt (cf. Equation (139)). Plugging Equation (147) back into Equation (145) we
obtain the following bound for the Rademacher complexity of rFp

r , which holds with probability ě 1 ´ δ over the draw of
the training set:

Eσ sup
ZP rFp

r

1

N

N
ÿ

o“1

σo lupZξuq (148)

ď

d

7B2
`1

N
`

16 ℓ τ1´p
?
mnr

2´p
2

3N
log

ˆ

m ` n

δ

˙

(149)

` B

d

r1´
p
2 pm ` nq log p3Nmn3rB0 `1srℓ`1s ` 1q

N τp
` 4 ℓ τ p1´pq

d

2r2´ppm ` nq

3N
log

ˆ

m ` n

δ

˙

.

Thus, optimizing over the choice of τ (ignoring logarithmic factors), we select

τ “ B
2

2´p ℓ´ 2
2´p r´ 1

2 . (150)

Substituting this back into Equation (149) and writing Γ
rFp
r,B0

,ℓ for 3Nmn3
rB0 `1srℓ `1s`1

δ ě 3Nmn3rB0 `1srℓ`1s ` 1 we
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obtain Rp rFp
r q ď

ď

d

7B2
`1

N
`

16 ℓ τ1´p
?
mnr

2´p
2

3N
log

ˆ

m ` n

δ

˙

(151)

` B

g

f

f

e

r1´
p
2 pm ` nq log

´

Γ
rFp
r,B0

,ℓ

¯

N τp
` 4 ℓ τ p1´pq

d

2r2´ppm ` nq

3N
log

ˆ

m ` n

δ

˙

.

“

d

7B2
`1

N
`

16 ℓrB
2

2´p ℓ´ 2
2´p r´ 1

2 s1´p
?
mnr

2´p
2

3N
log

ˆ

m ` n

δ

˙

` B

g

f

f

f

e

r1´
p
2 pm ` nq log

´

Γ
rFp
r,B0

,ℓ

¯

N rB
2

2´p ℓ´ 2
2´p r´ 1

2 sp
` 4 ℓrB

2
2´p ℓ´ 2

2´p r´ 1
2 sp1´pq

d

2r2´ppm ` nq

3N
log

ˆ

m ` n

δ

˙

“

d

7B2
`1

N
`

16B
2´2p
2´p ℓ

p
2´p r

1
2

?
mn

3N
log

ˆ

m ` n

δ

˙

` B
2´2p
2´p ℓ

p
2´p

¨

˚

˚

˝

g

f

f

e

rpm ` nq log
´

Γ
rFp
r,B0

,ℓ

¯

N
` 4

d

2rpm ` nq

3N
log

ˆ

m ` n

δ

˙

˛

‹

‹

‚

ď

d

7B2
`1

N
`

16B
2´2p
2´p ℓ

p
2´p r

1
2

?
mn log

`

m`n
δ

˘

3N
` 5B

2´2p
2´p ℓ

p
2´p

g

f

f

e

rpm ` nq log
´

Γ
rFp
r,B0

,ℓ

¯

N
,

ď

d

7B2
`1

N
` 11

”

B
2´2p
2´p ℓ

p
2´p

ı

c

rpm ` nq

N
logpΓ

rFp
r,B0

,ℓq

«

1 `

c

pm ` nq

N

ff

as expected.

Theorem D.5. Consider the following function class:

Fp
r,B0

:“
!

Z P Rmˆn : }Z}sc,p ď M “ rr
?
mns

2´p
2p , }Z}8 ď B0

)

(152)

With probability ě 1 ´ δ, we have the following bound on the Rademacher complexity of l ˝Fp
t , where l is any set of N

ℓ-Lipschitz functions uniformly bounded by B:

R̂pFp
r,B0

q “ Eσ sup
ZPFp

t

1

N

N
ÿ

o“1

σo lopZξoq (153)

ď

d

7B2
`1

N
` B1´

p
2 ℓ

p
2

d

2Mp
pm ` nq1´

p
2

N

´

3
?
C `

a

log p6pm ` nqN rB0 `1srℓ`1sq

¯

,

where C is the absolute constant from (Latała, 2005).

Note that similarly to Theorem D.3, the sample complexity is

rO pMp
pm ` nqpq “ rO

´

r1´
p
2 n1`

p
2

¯

, (154)

where r is the rank-like quantity
”

M?
mn

ı

2p
2´p

.
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Proof. Similarly to the above proofs we can write

rFp
r Ă Rτ ` Tτ , (155)

where

Rτ :“
␣

R P Rmˆn : }R}˚ ď st, rankpRq ď sU
(

(156)

with

sU “

Z

Mp

τp

^

and st “ B0

?
mnn. (157)

And similarly

Tτ :“
␣

Z P Rmˆn : }Z}˚ ď rt
(

(158)

with

rt “ Mp τ1´p . (159)

Thus, by the same argument as in the proof of Theorem D.2 we have

Eσ sup
ZP rFp

r

1

N

N
ÿ

o“1

σo lopZξoq (160)

ď
1

N
` sup

sZ1PCp1{Nq

pR pF
sZ1q ` B

c

2π

N
` B

g

f

f

e

sUpm ` nq log
´

3N
?
2st ℓ`1

¯

N
(161)

where

F
sZ1 “

!

`

lopp sZ1 ` Z2qξoq
˘

oďN
: Z2 P Tτ

)

. (162)

with the values for Tτ , sU,st,rt defined as per Equations (158), (157) and (159) respectively. For any sZ1 P Cpϵq we can apply
Proposition F.3 from (Shamir & Shalev-Shwartz, 2011) to obtain the following inequality, which is valid for any training set:

Eσ sup
Z2PTτ

1

N

N
ÿ

o“1

lop sZ1 ` Z2q ď

d

9C B ℓrtp
?
m `

?
nq

N
“

c

9C B ℓMp τ1´pp
?
m `

?
nq

N
. (163)

Taking a suprememum over sZ1 we certainly have

sup
sZ1PCpϵq

Eσ sup
Z2PTτ

1

N

N
ÿ

o“1

lop sZ1 ` Z2q ď

c

9C B ℓMp τ1´pp
?
m `

?
nq

N
(164)

where C is the absolute constant in (Latała, 2005). Furthermore, replacing the appropriate values for sU and st, we have the
following

B

g

f

f

e

sUpm ` nq log
´

3N
?
2st ℓ`1

¯

N
ď B

c

2Mp
pm ` nq log p6pm ` nqN rB0 `1srℓ`1sq

N τp
. (165)

Plugging Equations (164) and (165) back into Equation (161) we get:
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Eσ sup
ZP rFp

r

1

N

N
ÿ

o“1

σo lopZξoq (166)

ď

d

7B2
`1

N
`

c

18C B ℓMp τ1´pp
?
m ` nq

N
(167)

` B
c

2Mp
pm ` nq log p6pm ` nqN rB0 `1srℓ`1sq

N τp
.

This motivates the following choice of threshold:

τ “ ℓ´1 B1
?
m ` n, (168)

which yields

Eσ sup
ZP rFp

r

1

N

N
ÿ

o“1

σo lopZξoq (169)

ď

d

7B2
`1

N
`

c

18C B ℓMp τ1´pp
?
m ` nq

N
` B

c

2
Mp

pm ` nq log p6pm ` nqN rB0 `1srℓ`1sq

N τp

ď

d

7B2
`1

N
`

d

18C B2´p ℓp Mp
p
?
m ` nq1´

p
2

N

`

d

2
Mp

pm ` nq1´
p
2 B2´p ℓp log p6pm ` nqN rB0 `1srℓ`1sq

N

ď

d

7B2
`1

N
` B1´

p
2 ℓ

p
2

d

Mp
pm ` nq1´

p
2

N

´?
18C `

a

2 log p6pm ` nqN rB0 `1srℓ`1sq

¯

,

where as usual at the second line we have used the fact that 1
N ` B

b

2π
N ď

b

7B2 `1
N .

E. Important Tools
In this section, we collect some of the main building blocks of our proofs, which include estimates of perturbations of
Schatten quasi-norms in the estimation of the marginals, various tailor-made generalizations of chaining arguments, and
generalization bounds for classes of neural embeddings.

E.1. Generalizations of Dudley’s Entropy Theorem

This subsection details some of our results on how to calculate Rademacher complexities of composite function classes
when a covering number is only available for one of the classes.

Recall the following standard form of Dudley’s entropy integral:

Lemma E.1. Let F be a real-valued function class taking values in r0, 1s, and assume that 0 P F . Let S be a finite sample
of size n. We have the following relationship between the Rademacher complexity RpF |Sq and the L2 covering number
N pF |S, ϵ, } .}2q.

RpF |Sq ď inf
αą0

ˆ

4α `
12

?
N

ż 1

α

a

logN pF |S, ϵ, } .}2q

˙

dϵ,

where the norm } .}2 on RN is defined by }x}22 “ 1
N p

řN
i“1 |xi|

2q.
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We will also to extend the above Lemma to various settings where several a function class over two parameters. For this, we
will first need to establish the following slight extension of Lemma F.19:

Lemma E.2 (Scale sensitive concentration of Rademacher complexity). For any fixed x1, . . . , xN and any function class
F Ă RrNs. Assume that there are N numbers s1, s2, . . . , sN ą 0 such that for all f P F we have

|fi| ď si (170)

with
1

N

N
ÿ

i“1

s2i “ c2

for some c ą 0. We have with probability ě 1 ´ δ over the draw of the Rademacher variables σ1, . . . , σN ,

ˇ

ˇ

ˇ

ˇ

ˇ

sup
fPF

1

N

N
ÿ

i“1

σifi ´ Eσ sup
fPF

1

N

N
ÿ

i“1

σifi

ˇ

ˇ

ˇ

ˇ

ˇ

ă c

c

2 logp2{δq

N
. (171)

Proof. This is a direct application of the Mc Diarmid inequality with the variables being the σ1, . . . , σN . Indeed, if
σ, sσ P t´1, 1uN differ only in the ith component σi, then we certainly have

ˇ

ˇ

ˇ

ˇ

ˇ

sup
fPF

1

N

N
ÿ

i“1

σifi ´ sup
fPF

1

N

N
ÿ

i“1

sσifi

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2si, (172)

which means that Mc Diarmid’s inequality implies

P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

sup
fPF

1

N

N
ÿ

i“1

σifi ´ Eσ sup
fPF

1

N

N
ÿ

i“1

σifi

ˇ

ˇ

ˇ

ˇ

ˇ

ě ϵ

¸

ď 2 exp

ˆ

´
2ϵ2

4c2

˙

“ 2 exp

ˆ

´
ϵ2

2c2

˙

. (173)

The lemma follows upon rearranging.

The two Lemmas below perform a generalized “chaining argument” (Guermeur, 2018; Vershynin, 2018; Boucheron et al.,
2004) with multiple component function classes. They are extensions of Proposition A.4. (page 3 of the supplementary)
of (Ledent et al., 2021b) and allow one to bound the Rademacher complexity of a composition of two function classes in
terms of the uniform covering number of the second class and the Rademacher complexity of the first one.

Lemma E.3 (Multi-class chaining: simple compositional extension of Dudley’s entropy theorem). Let F :“
tfipθ1, θ2q : θa P Θ1, θ2 P Θ2u be a class of functions on t1, 2, . . . , nu with values in r´B,Bs and dependent on two
parameters θ1 P Θ1 and θ2 P Θ2.

Let ϵ ě 0 and assume that Θ1 admits an ϵ-uniform cover Cpϵq Ă Θ1 (of size N pF1, ϵq, dependent on ϵ) in the following
sense: For any θ1 P Θ1 there exists a θ̄ P Cpϵq such that for all θ2 P Θ2 and for all i ď n we have

ˇ

ˇfipθ1, θ2q ´ fipθ̄, θ2q
ˇ

ˇ ď ϵ. (174)

Then we have the following result on the Rademacher complexity of the function class F:

pRpFq “ Eσ sup
θ1,2PΘ1,2

1

n

n
ÿ

i“1

σifipθ1, θ2q ď ϵ ` sup
θ̄PCpϵq

pR pFθ̄q ` B
c

2π

N
` B

c

logpN pF1, ϵqq

N
. (175)

where for all θ̄ P Θ1 we define Fθ̄ :“
␣

f . pθ̄, θ2q : θ2 P Θ2

(

, and as usual the σis are i.i.d. Rademacher variables.

Proof. Without loss of generality, we can assume B “ 1.
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For any θ1 P Θ1 let us denote by sθ1 the cover element associated to θ1 as in equation (174), by the assumption on the cover
we have

pRpFq “ Eσ sup
θ1,2PΘ1,2

1

n

n
ÿ

i“1

σifipθ1, θ2q

ď Eσ sup
θ1,2PΘ1,2

1

n

n
ÿ

i“1

σifipsθ1, θ2q ` rfipθ1, θ2q ´ fipsθ1, θ2qs

ď ϵ ` Eσ sup
θ1,2PΘ1,2

1

n

n
ÿ

i“1

σifipsθ1, θ2q

ď ϵ ` Eσ sup
θ̄PCpϵq

sup
θ2PΘ2

1

n

n
ÿ

i“1

σifipθ̄, θ2q. (176)

By Lemma F.19 we have, for any choice of θ̄ P Θ1, that with probability ě 1´ δ over the draw of the Rademacher variables
σ1, . . . , σN ,

ˇ

ˇ

ˇ

ˇ

ˇ

sup
θ2PΘ2

1

n

n
ÿ

i“1

σifipθ̄, θ2q ´ Eσ sup
θ2PΘ2

1

n

n
ÿ

i“1

σifipθ̄, θ2q

ˇ

ˇ

ˇ

ˇ

ˇ

ď

c

2 logp2{δq

N
. (177)

Thus, by a union bound we have that with probability ě 1 ´ δ over the draw of the Rademacher variables:

sup
θ̄PCpϵq

sup
θ2PΘ2

1

n

n
ÿ

i“1

σifipθ̄, θ2q ´ sup
θ̄PCpϵq

pR pFθ̄q

ď

ˇ

ˇ

ˇ

ˇ

ˇ

sup
θ̄PCpϵq

sup
θ2PΘ2

1

n

n
ÿ

i“1

σifipθ̄, θ2q ´ sup
θ̄PCpϵq

Eσ sup
θ2PΘ2

1

n

n
ÿ

i“1

σifipθ̄, θ2q

ˇ

ˇ

ˇ

ˇ

ˇ

ď sup
θ̄PCpϵq

ˇ

ˇ

ˇ

ˇ

ˇ

sup
θ2PΘ2

1

n

n
ÿ

i“1

σifipθ̄, θ2q ´ Eσ sup
θ2PΘ2

1

n

n
ÿ

i“1

σifipθ̄, θ2q

ˇ

ˇ

ˇ

ˇ

ˇ

ď

c

2 logp2{δq

N
`

c

logpN pF1, ϵqq

N
. (178)

Let X denote the random variable

pRpFq ´ ϵ ´ sup
θ̄PCpϵq

pR pFθ̄q ´

c

logpN pF1, ϵqq

N
(179)

(with the randomness arising from the Rademacher variables σis).

By equations (178) and (176) we have for all ε ą 0

PpX ě εq ď 2 exp

ˆ

´
ε2N

2

˙

. (180)

Integrating over ε we obtain

EpXq ď

ż 8

0

2 exp

ˆ

´
ε2N

2

˙

dε (181)

“
2

?
2

?
N

ż 8

0

expp´θ2qdθ “

c

2π

N
, (182)

which, plugged back into the definition of X (i.e. Equation (179)) gives the result.
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Whilst Lemma E.3 above works well when the function class Θ1 enjoys a log covering number with very mild dependence
on the granularity ϵ (e.g. logp1{ϵq), it is insufficient to handle the typical 1{ϵ2 dependency of norm-based bounds. The
generalization below is more suitable in this case.
Lemma E.4 (Multi-class chaining: full compositional generalization of Dudley’s entropy theorem). Let F :“
tfipθ1, θ2q : θa P Θ1, θ2 P Θ2u be a class of functions on t1, 2, . . . , nu with values in r´B,Bs and dependent on two
parameters θ1 P Θ1 and θ2 P Θ2. Assume that there exists a θo P Θ1 such that fipθ0, θ2q “ 0 for all i and for all θ2 P Θ2.
Assume that for all ϵ ą 0, Θ1 admits an ϵ-uniform cover Cpϵq Ă Θ1 (of minimum size N pΘ1, ϵq, dependent on ϵ) in the
following sense: For any θ1 P Θ1 there exists a θ̄ P Cpϵq such that for all θ2 P Θ2 we have

1

N

N
ÿ

i“1

`

fipθ1, θ2q ´ fipθ̄, θ2q
˘2

ď ϵ2. (183)

The Rademacher complexity of the function class F is bounded as follows:

pRpFq :“ Eσ sup
θ1,2PΘ1,2

1

N

N
ÿ

i“1

σifipθ1, θ2q (184)

ď log2

ˆ

1

α

˙

sup
θ1PΘ1

pR pFθ1q ` 4α ` 4
?
10

ż B

α

c

logpN pΘ1, ϵqq

N
dϵ ` 4B

c

5π

N
,

where for any fixed θ1 P Θ1, Fθ1 is the function class tfpθ1, θ2q : θ2 P Θ2u.

Proof. W.l.o.g. we assume B “ 1. Let H be arbitrary, and let ϵh “ 2´ph´1q for h “ 1, 2, . . . ,H . For all h, let Vh Ă Θ1

denote the cover achieving (183), where we can choose v1 “ tθ0u. For each θ1 P Θ1 let us also write vhrθ1s for the cover
element n Vh which achieves (183). Using a similar decomposition to classic proofs of the standard Dudley entropy theorem,
we have for any value of the Rademacher variables σ1, . . . , σN :

sup
θ1,2PΘ1,2

1

N

N
ÿ

i“1

σifipθ1, θ2q

ď sup
θ1,2PΘ1,2

1

N

N
ÿ

i“1

σifipv
1rθ1s, θ2q ` sup

θ1,2PΘ1,2

1

N

N
ÿ

i“1

σirfipθ1, θ2q ´ fipv
H rθ1s, θ2qs

` sup
θ1,2PΘ1,2

1

N

N
ÿ

i“1

H´1
ÿ

h“1

σirfipv
hrθ1s, θ2q ´ fipv

h`1rθ1s, θ2qs.

ď sup
θ1,2PΘ1,2

1

N

N
ÿ

i“1

σifipv
1rθ1s, θ2q ` ϵH

` sup
θ1,2PΘ1,2

1

N

N
ÿ

i“1

H´1
ÿ

h“1

σirfipv
hrθ1s, θ2q ´ fipv

h`1rθ1s, θ2qs

ď ϵH ` sup
θ1,2PΘ1,2

1

N

N
ÿ

i“1

H´1
ÿ

h“1

σirfipv
hrθ1s, θ2q ´ fipv

h`1rθ1s, θ2qs, (185)

where the second inequality follows from the definition of the cover and the Cauchy-Schwartz inequality, and the last
inequality follows from v1 “ tθ0u. Next let us define the function class

Wh “ tw P RrNsbΘ2 : Dθ1 P Θ1 s.t. wipθ2q “ fipv
hrθ1s, θ2q ´ fipv

h`1rθ1s, θ2qu.

Then note that we have

|Wh| ď |Vh||Vh`1| ď |Vh`1|2 “ N pΘ1, ϵh`1q2. (186)

Note that for all h ď H we have

Eσ sup
θ1,2PΘ1,2

1

N

N
ÿ

i“1

σirfipv
hrθ1s, θ2q ´ fipv

h`1rθ1s, θ2qs ď Eσ sup
θ2PΘ2

sup
wPWh,θ2

1

N

N
ÿ

i“1

σiwi. (187)
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Let W “
Ť

hďH Wh. By definition of the cover (cf. Equation (183)), we have, for any θ2 P Θ2:

1

N

N
ÿ

i“1

rfipv
hrθ1s, θ2q ´ fipv

h`1rθ1s, θ2qs2 (188)

“
1

N

N
ÿ

i“1

rfipv
hrθ1s, θ2q ´ fipθ1, θ2q ` fipθ1, θ2q ´ fipv

h`1rθ1s, θ2qs2

ď
2

N

N
ÿ

i“1

“

fipv
hrθ1s, θ2q ´ fipθ1, θ2q

‰2
`

2

N

N
ÿ

i“1

“

fipθ1, θ2q ´ fipv
h`1rθ1s, θ2q

‰2

ď 2ϵ2h ` 2ϵ2h`1 ď 10ϵ2h`1. (189)

Hence, we can apply Lemma E.2 to conclude that, for any choice of w P W , with probability ě 1 ´ δ over the draw of the
Rademacher variables σ1, . . . , σN , we have (simultaneously over all θ2):

ˇ

ˇ

ˇ

ˇ

ˇ

sup
θ2PΘ2

1

N

N
ÿ

i“1

σiwipθ2q ´ Eσ sup
θ2PΘ2

1

N

N
ÿ

i“1

σiwipθ2q

ˇ

ˇ

ˇ

ˇ

ˇ

ă
?
10ϵh`1

c

2 logp2{δq

N
. (190)

Thus, by a union bound running over w P W together with equation (186) we have that with probability ě 1 ´ δ over the
draw of the Rademacher variables, the following holds for all values of w P Wh simultaneously:

ˇ

ˇ

ˇ

ˇ

ˇ

sup
θ2PΘ2

N
ÿ

i“1

σi

N
wipθ2q ´ Eσ sup

θ2PΘ2

N
ÿ

i“1

σi

N
wipθ2q

ˇ

ˇ

ˇ

ˇ

ˇ

ď
?
10ϵh`1

«

c

2 logp2{δq

N
`

c

4 logpN pΘ1, ϵh`1qq

N

ff

. (191)

Furthermore, for any w P W , we certainly have:

Eσ sup
θ2PΘ2

N
ÿ

i“1

σi

N
wipθ2q ď 2 sup

θ1PΘ1

Eσ sup
θ2PΘ2

N
ÿ

i“1

σi

N
fipθ1, θ2q “ 2 sup

θ1PΘ1

pR pFθ1q . (192)

Plugging equations (191) and (192) back into equations (187) and (185), we have with probability ě 1 ´ δ over the draw of
the Rademacher variables σ1, . . . , σN :

sup
θ1,2PΘ1,2

1

N

N
ÿ

i“1

σifipθ1, θ2q (193)

ď ϵH ` 2pH ´ 1q sup
θ1PΘ1

pR pFθ1q ` sup
θ1,2PΘ1,2

N
ÿ

i“1

H´1
ÿ

h“1

σi

N
rfipv

hrθ1s, θ2q ´ fipv
h`1rθ1s, θ2qs

ď ϵH ` 2pH ´ 1q sup
θ1PΘ1

pR pFθ1q `

H´1
ÿ

h“1

?
10

«

ϵh`1

c

2 logp2{δq

N
` ϵh`1

c

4 logpN pΘ1, ϵh`1qq

N

ff

ď ϵH ` 2pH ´ 1q sup
θ1PΘ1

pR pFθ1q ` 4

c

5 logp2{δq

N
` 4

?
10

H
ÿ

h“1

rϵh ´ ϵh`1s

c

logpN pΘ1, ϵhqq

N
.

Finally, take H to be the largest integer such that ϵH`1 ą α, then ϵH “ 4ϵH`2 ď 4α and we can continue to show that
(w.p. ě 1 ´ δ over the draw of σ):

sup
θ1,2PΘ1,2

1

N

N
ÿ

i“1

σifipθ1, θ2q

ď ϵH ` 2pH ´ 1q sup
θ1PΘ1

pR pFθ1q ` 4

c

5 logp2{δq

N
` 4

?
10

ż 1

ϵH`1

c

logpN pΘ1, ϵqq

N
dϵ

ď 2 log2

ˆ

1

α

˙

sup
θ1PΘ1

pR pFθ1q ` 4α ` 4
?
10

ż 1

α

c

logpN pΘ1, ϵqq

N
dϵ ` 4

c

5 logp2{δq

N
. (194)
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Next, let X denote the random variable

1

4
?
5

«

sup
θ1,2PΘ1,2

1

N

N
ÿ

i“1

σifipθ1, θ2q ´ 4α ´ 4
?
10

ż 1

α

c

logpN pΘ1, ϵqq

N
dϵ ´ 2 log2

ˆ

1

α

˙

ff

, (195)

with the randomness arising from the Rademacher variables σis.

By Equation (194) we have

PpX ě εq ď 2 exp
`

´ε2N
˘

. (196)

Integrating over ε we obtain

EpXq ď

ż 8

0

2 exp
`

´ε2N
˘

dε (197)

“
2

?
N

ż 8

0

expp´θ2qdθ “

c

π

N
. (198)

Plugging this back into the definition of X (eq (179)) after taking expectations with respect to σ1, . . . , σN , we get:

pRpFq “ Eσ sup
θ1,2PΘ1,2

1

N

N
ÿ

i“1

σifipθ1, θ2q (199)

ď log2

ˆ

1

α

˙

sup
θ1PΘ1

pR pFθ1q ` 4α ` 4
?
10

ż 1

α

c

logpN pΘ1, ϵqq

N
dϵ ` 4

c

5π

N
, (200)

as expected.

E.2. On the Impact of the Estimation of the Marginals on the Schatten quasi-norms of rZ

In this subsection, we present the following result, which is useful when proving our excess risk bounds.

Lemma E.5 (Generalization of Lemma 4 in (Foygel et al., 2011)). Let d ě 2 be an integer. For any N ě 6pm `

nq logpm`n
δ qq we have the following inequality with probability greater than 1 ´ δ over the draw of the training set:

} qZ}
2{d
sc,2{d ď

¨

˝1 `

d

6pm ` nq log
`

m`n
δ

˘

N

˛

‚} rZ}
2
d

sc,2{d (201)

Proof. Let A,B,D1, . . . , Dd´1 be such that

d} rZ}
2
d

sc,2{d “

d´2
ÿ

i“1

}Di}
2
Fr ` } diagprpq

1
2A}2Fr ` } diagprqq

1
2B}2Fr (202)

A
d´2
ź

i“1

DiB
J “ Z. (203)

By Corollary (F.23) we have:

d} qZ}
2{d
sc,2{d ď

d´2
ÿ

i“1

}Di}
2
Fr ` } diagpp̌{p̃q rA}2Fr ` } diagpq̌{q̃q rB}2Fr (204)

where rA :“ diagpp̃q
1
2A and rB :“ diagpp̃q

1
2B.
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By a Bernstein bound, for any ϵ ď 1,

P

˜

p̂i´pi

2
1

2m `
pi

2

ě ϵ

¸

ď exp

ˆ

´
ϵ2N

6m

˙

(205)

and similarly

P

˜

q̂j´qj
2

1
2n `

qj
2

ě ϵ

¸

ď exp

ˆ

´
ϵ2N

6n

˙

. (206)

Thus we have for any ϵ ď 1, using a union bound:

P

˜

Di :
p̂i´pi

2
1

2m `
pi

2

ě ϵ _ Dj :
q̂j´qj

2
1
2n `

qj
2

ě ϵ

¸

ď pm ` nq exp

ˆ

´
ϵ2N

6pn ` mq

˙

. (207)

Thus, we know that with probability greater than 1 ´ δ we have simultaneously over all i, j:

1
2m `

p̂i

2
1

2m `
pi

2

ď 1 `

d

6pm ` nq log
`

m`n
δ

˘

N
and

1
2n `

q̂i
2

1
2n `

qi
2

ď 1 `

d

6pm ` nq log
`

m`n
δ

˘

N
. (208)

Plugging this back into Equation (204) we obtain (w.p. 1 ´ δ):

d} qZ}
2{d
sc,2{d ď

d´2
ÿ

i“1

}Di}
2
Fr ` } diagpp̌{p̃q rA}2Fr ` } diagpq̌{q̃q rB}2Fr (209)

ď

¨

˝1 `

d

6pm ` nq log
`

m`n
δ

˘

N

˛

‚

”

} rA}2Fr ` } rB}2Fr

ı

`

d´2
ÿ

i“1

}Di}
2
Fr (210)

ď

¨

˝1 `

d

6pm ` nq log
`

m`n
δ

˘

N

˛

‚

«

} rA}2Fr ` } rB}2Fr `

d´2
ÿ

i“1

}Di}
2
Fr

ff

(211)

“

¨

˝1 `

d

6pm ` nq log
`

m`n
δ

˘

N

˛

‚d} qZ}
2
d

sc,2{d, (212)

as expected.

E.3. Covering Number Bounds for Neural Embeddings

In this section, we provide covering number bounds for neural embeddings, including both with weighted and un-weighted
versions of the constraints on the zeroth layer learnable embeddings. This section relies on results from subsection F.3 such
as Proposition F.8.

We consider the following function classes.
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ČN0,W,cpa, s, cq :“

#

g : rms ˆ rns Ñ R1
ˇ

ˇDf P N1,Wpa, sq, U P Rmˆm̄, V P Rnˆm̄ : (213)

}diagprpq
1
2U}2Fr ` } diagprqq

1
2V }2Fr ď c, }A0} ď s0 : gpi, jq “ fpA0pui, vjqJq @i, j

+

,

­N0,W,cpa, s, cq :“

#

g : rms ˆ rns Ñ R1
ˇ

ˇDf P N1,Wpa, sq, U P Rmˆm̄, V P Rnˆm̄ : (214)

}diagpqpq
1
2U}2Fr ` } diagpqqq

1
2V }2Fr ď c, }A0} ď s0 : gpi, jq “ fpA0pui, vjqJq @i, j

+

,

N0,W,cpa, s, cq :“

#

g : rms ˆ rns Ñ R1
ˇ

ˇDf P N1,Wpa, sq, U P Rmˆm̄, V P Rnˆm̄ : (215)

}U}2Fr ` }V }2Fr ď c2 maxpm,nq, }A0} ď s0 : gpi, jq “ fpA0pui, vjqJq @i, j

+

,

where ui and vj denote the ith and jth rows of U and V respectively and A0 P Rdˆp2 m̄q.

Proposition E.6 (L2 covers of N0,W,c, ČN0,W,c). Assume as usual that sl ě 1 for all l and χ2 ě 1. For any sample
ξ1, . . . , ξN P rms ˆ rns such that @i, j, p̂i ď 2pi and q̂j ď 2qj , any ϵ ą 0, there exists a cover Cpϵq Ă N0,W,cpa, s, cq (resp.
ČN0,W,cpa, s, cq) with the following properties.

1. For g P N0,W,cpa, s, cq (resp. ČN0,W,c) there exists a ḡ in Cpϵq such that

1

N

N
ÿ

o“1

pg ´ ḡqξo ď ϵ2. (216)

2.

logp|Cpϵq|q ď

„

2dpm ` nq ` 32s20c
2

„

1

ϵ2
` 1

ȷ

RW
2

ȷ

log pΓW,ϵq for ČN0,W,c (217)
„

2dpm ` nq ` 32s20c
2pm ` nq

„

1

ϵ2
` 1

ȷ

RW
2

ȷ

log pΓW,ϵq for N0,W,c (218)

where ΓW,ϵ “
96Ws0pm`nq

?
mn

śL
ℓ“1 sℓ

ϵ ` 1.

Proof. We write a single proof for both cases as they are very similar.

Step 1: Uniform cover C1 of the embeddings A0pui, vjqJ

For any A0, U, V , we write sUpA0, U, V q for the tensor in Rdˆmˆn such that sUpA0, U, V qu,i,j “
“

A0pui, vjqJ
‰

u
for any

i ď m, j ď n, u ď d. Let U :“
␣

Ū P Rdˆmn : DpA0, U, V q P Aa,s

(

where Aa,s is the set of admissible U, V,A0 defined
according to the corresponding equations (213), (214) depending on whether we are proving the Theorem for the class
N0,W,c, ČN0,W,c.

Note that for any A0, we can always write A0pui, vjqJ “ A0
1u

J
i ` A0

2v
J
j where A0

1 and A0
2 represent the first and last m̄

columns of A0 respectively. Thus, we have U Ă U1 ` U2 where U1 :“
␣

A1U
J
ˇ

ˇDV,A2 : ppA1, A2q, U, V q P Aa,s

(

and
U2 :“

␣

A2V
J
ˇ

ˇDU,A1 : ppA1, A2q, U, V q P Aa,s

(

.

For each admissible U, V,A0, it is certainly the case that }A0uJ
i }, }A0vJ

j } ď }A0}
`

}U}2Fr ` }V }2Fr

˘
1
2 ď 2s0cpm ` nq for

any i, j, where we have used the fact that p̃i ě 1
2m and q̃j ě 1

2n .

48



Generalization Analysis of Deep Non-linear Matrix Completion

Thus, we have U1 Ă rU1 :“
␣

Ū P Rdˆm : }Ū}Fr ď 2s0pm ` nq
?
m
(

and U2 Ă rU2 :“
␣

sU P Rdˆn : }sU}Fr ď 2s0pm ` nq
?
n
(

.

Thus, by Lemma F.17 applied to rU1 and rU2, we can obtain internal covers rC11 and rC12 of rU1 and rU2 with respect to the
} .}Fr norm with granularity ϵ{p8

śL
ℓ“1 sℓq such that

log
´

min
”ˇ

ˇ

ˇ

rC11
ˇ

ˇ

ˇ
,
ˇ

ˇ

ˇ

rC12
ˇ

ˇ

ˇ

ı¯

(219)

ď pm ` nqd

˜

6s0pm ` nq
?
mn

ϵ
p8

śL
ℓ“1 sℓq

` 1

¸

“ pm ` nqd

˜

48s0pm ` nq
?
mn

śL
ℓ“1 sℓ

ϵ
` 1

¸

,

which immediately yields an external cover of U with granularity ϵ{p4
śL

ℓ“1 sℓq, and finally an internal cover C1 of the
same, with granularity ϵ{p2

śL
ℓ“1 sℓq and cardinality

log p|C1|q ď 2dpm ` nq log

˜

48s0pm ` nq
?
mn

śL
ℓ“1 sℓ

ϵ
` 1

¸

. (220)

Step 2: L2 covers of the network class N1,W relative to the cover elements in C1
First, note that for any admissible U, V,A0, we certainly have

1

N

N
ÿ

o“1

}A0puξo1
, vξo2 qJ}2 ď s20

1

N

N
ÿ

o“1

“

}uξo1
}2 ` }vξo2 }2

‰

“ s20
ÿ

i

p̂i}ui}
2 ` s20

ÿ

j

q̂j}vj}2

ď 2s20 min

˜

ÿ

i

p̃i}ui}
2 `

ÿ

j

q̃j}vj}2,max
i

}ui}
2 ` max

j
}vj}2

¸

ď4s20c
2, for ČN0,W,c, and (221)

4s20c
2pmaxpm,nqq for N0,W,c . (222)

Thus, for each cover element sU “ pA0, U, V q P C1, there we can apply Proposition F.8 to show that there is a cover
C2psUq Ă N1,W such that the following properties are satisfied:

1. For any f P N1,W there exists f̄ P C2psUq such that

1

N

N
ÿ

o“1

›

›rf ´ f̄ spA0pui, vjqJq
›

›

2
ď ϵ2{4, (223)

and

2.

log pC2q ď 32s20c
2

„

1

ϵ2
` 1

ȷ

RW
2 logp2W q, (224)

where as usual RW is defined by Equation (264).

Step 3: L2 cover of N0,W,c and ČN0,W,c

We now finally define the cover C Ă N0,W,c via

C “
␣

f ˝ sU
ˇ

ˇ sU P C1, f P C2psUq
(

, (225)

where by abuse of notation, f ˝ sU denotes the function g : rms ˆ rns Ñ R1 such that gpi, jq “ fpsU . ,i,jq “ fpA0pui, vjqJq

(where A0, U, V realise the element sU of U and as usual ui and vj denote the ith and jth rows of U and V respectively).
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We now have that C is an ϵ cover with respect to the L2 norm and the sample ξ1, . . . , ξN . Indeed, for g “ f ˝ sU P N0,W,c,
let ḡ “ f̄ ˝ s

sU be the associated cover element in C, we have

1

N

N
ÿ

o“1

pg ´ ḡq
2
ξo ď 2

1

N

N
ÿ

o“1

`“

f ´ f̄
‰

˝ sU
˘2

ξo
` 2

1

N

N
ÿ

o“1

´

f̄ ˝

”

sU ´ s

sU
ı¯2

ξo
(226)

ď 2
ϵ2

4
` 2

«

L
ź

ℓ“1

sℓ

ff2
ϵ2

4
”

śL
ℓ“1 sℓ

ı2 “ ϵ2 (227)

where at the first line (226) we have used the AM-GM inequality and at the last line (227) we have used the properties of
both covers. This established the validity of the cover (Equation (216)). We now only have to estimate the cardinality to
establish Equation (217):

log p|Cpϵq|q ď
ÿ

sUPC1

ˇ

ˇC2psUq
ˇ

ˇ (228)

ď 2dpm ` nq log

˜

48s0pm ` nq
?
mn

śL
ℓ“1 sℓ

ϵ
` 1

¸

` 32s20c
2

„

1

ϵ2
` 1

ȷ

RW
2 logp2W q (229)

ď

„

2dpm ` nq ` 32s20c
2

„

1

ϵ2
` 1

ȷ

RW
2

ȷ

log

˜

96Ws0pm ` nq
?
mn

śL
ℓ“1 sℓ

ϵ
` 1

¸

, (230)

where c stands for c if we are covering ČN0,W,c and c
a

maxpm,nq if we are covering N0,W,c, and (at Equation (229)) we
have used Equations (224) and (220). The result follows.
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F. Variations on Known Results
This section compiles some minor variations of known results. We include some proofs both for completeness and because
the precise results we need sometimes deviate slightly from the known version. For instance, we often require high
probability versions of results which were previously presented in expectation over the training set.

Remark: The modification is necessary for incorporation with the neural network bounds of Section E.3 and even for
incorporation with the Lipschitz constant bounds of Section C.2 via Lemma E.4 and Lemma E.3. Indeed, although the fact
that the construction of the L2 cover of the class N1,W is non constructive and dependent on the sample ξ1, . . . , ξN may not
be a strong obstacle to applying an expectation version of Lemma E.4 or Lemma E.3, the supremum over θ1 is a bigger
issue. Taking the example of Lemma F.1, we need to know that with high probability over the draw of the training set,
Equation (231) will be satisfied, allowing us to show that for this particular training set, the inequality in Theorem D.2 holds
uniformly over all bounded Lipschitz functions ℓ.

F.1. On the Complexity of Classes of Matrices with Nuclear Norm Constraints

We will need the following classic Lemma:
Lemma F.1 (Cf. (Foygel et al., 2011), proof of Theorem 1, (Tropp, 2012), Remarks 6.4 and 6.5, cf. also (Ledent et al.,
2021b)). Consider the matrix RN “ 1

N

řN
i“1 σieζi where the σis are Rademacher variables and for all i, j, epi,jq is the

matrix with a 1 in the entry pi, jq and zeros in all other entries and the entries are selected i.i.d from a distribution with
uniform marginals. With probability greater than 1 ´ δ over the draw of the training set and the draw of the Rademacher
variables σ1, . . . , σN , we have

}RN } ď
a

8{3

d

1

N minpm,nq

d

log

ˆ

m ` n

δ

˙

`
8

3N
log

ˆ

m ` n

δ

˙

. (231)

Proof. RN is an average of N i.i.d. matrices Xi “ σieζi . Thus, we can apply the non commutative Bernstein inequality
(Proposition F.20). We have }Xi} ď 1{N with probability 1 for all i, thus ”M” is 1{N . Furthermore, we can compute the
ρ2 as follows:

›

›E
`

XiX
J
i

˘
›

› “
1

N2
} diagpp1, p2, . . . , pmq} “

1

mN2
(232)

and
›

›E
`

XJ
i Xi

˘
›

› “
1

N2
}diagpq1, q2, . . . , qnq} “

1

nN2
, (233)

where the pis (resp. qjs) denote the marginal probabilities for each row (column), which are uniform by our assumption.
Hence ρ2k is 1

N2 minpm,nq
and σ2 “ 1

N minpm.nq
. From this, it follows by applying Proposition F.21 that with probability

ě 1 ´ δ over the draw of the training set, we have

}RN } ď
a

8{3σ

d

log

ˆ

m ` n

δ

˙

`
8M

3
log

ˆ

m ` n

δ

˙

(234)

ď
a

8{3

d

1

N minpm,nq

d

log

ˆ

m ` n

δ

˙

`
8

3N
log

ˆ

m ` n

δ

˙

, (235)

as expected.

Lemma F.2 (Cf. (Foygel et al., 2011), proof of Theorem 1 cf. also (Ledent et al., 2021b)). Consider the matrix RN “
1
N

řN
o“1 σo

eξo?
rpξo1

rqξo2
where the σos are Rademacher variables, for all i, j, epi,jq is the matrix with a 1 in the entry pi, jq and

zeros in all other entries, and as usual. With probability greater than 1 ´ δ over the draw of the training set and the draw of
the Rademacher variables σ1, . . . , σN , we have

}RN } ď 4
a

2{3

c

m ` n

N

d

log

ˆ

m ` n

δ

˙

`
16

?
mn

3N
log

ˆ

m ` n

δ

˙

. (236)
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Proof. RN is a sum of N i.i.d. matrices Xo “
eξo?
pξo1 ,ξo2

. Thus, we can apply the non commutative Bernstein inequality

(Proposition F.20). Since rpi ě 1
2m and rqi ě 1

2n for all i, j, we have }Xo} ď
2

?
mn
N with probability 1 for all o, thus “M” is

2
?
mn
N . Furthermore, we can compute the ρ2 as follows. for any i ď m, we have

N2E
`

XoX
J
o

˘

i,i
“

1

rpi

n
ÿ

j“1

pi,j
1

rqj
ď

2n

rpi

n
ÿ

j“1

pi,j “ 2n
pi
rpi

ď 4n, (237)

where as usual the pis (resp. qjs) denote the marginal probabilities for each row (column), which are uniform by our
assumption. Similarly,

N2E
`

XJ
o Xo

˘

j,j
“

1

rqj

m
ÿ

i“1

pi,j
1

rpi
ď

2m

rqj

m
ÿ

i“1

pi,j “ 2
qj
rqj

ď 4m (238)

Hence ρ2k can be taken as 4pm`nq

N2 and σ2 can be taken as “
4pm`nq

N . From this, it follows by applying Proposition F.21 that
with probability ě 1 ´ δ over the draw of the training set, we have

}RN } ď
a

8{3σ

d

log

ˆ

m ` n

δ

˙

`
8M

3
log

ˆ

m ` n

δ

˙

(239)

ď 4
a

2{3

c

pm ` nq

N

d

log

ˆ

m ` n

δ

˙

`
16

?
mn

3N
log

ˆ

m ` n

δ

˙

, (240)

as expected.

For the distribution-free case with the nuclear norm, recall the following theorem:

Proposition F.3 (Theorem 2 page 3405 in (Shamir & Shalev-Shwartz, 2011)). Consider the following function class:

F1
t :“

␣

Rmˆn Q Z : }Z}˚ ď t
(

. (241)

Let l : R ˆ R Ñ R be a function which is uniformly bounded by B and ℓ-Lipschitz w.r.t. the second argument, for any
training set ξ1, . . . , ξN P rms ˆ rns we have the following bound on the empirical Rademacher complexity of l ˝F1

t :

Eσ sup
ZPF1

t

1

N

N
ÿ

o“1

σo lpZξo , rGoq ď

c

9C B ℓ tp
?
m `

?
nq

N
, (242)

where C is the (absolute) constant in (Latała, 2005).

Proposition F.4 (High probability version of Theorem 1 in (Foygel et al., 2011)). Consider the following function class:

F1
t :“

␣

Rmˆn Q Z : }Z}˚ ď t
(

. (243)

Assume that the sampling distribution has uniform marginals. For any δ ą 0 we have the following bound on the empirical
Rademacher complexity of F1

t with probability ě 1 ´ δ over the draw of the dataset:

Eσ sup
ZPF1

t

1

N

N
ÿ

o“1

σoZξo ď 8

d

t2

3N minpm,nq
log

ˆ

m ` n

δ

˙

`
16t

3N
log

ˆ

m ` n

δ

˙

(244)

Proof. This follows immediately (as a particular case) from Proposition F.5 below.

52



Generalization Analysis of Deep Non-linear Matrix Completion

Proposition F.5 (High probability version of Theorem 3 in (Foygel et al., 2011)). Consider the following function class:

rF1
r :“

!

Rmˆn Q Z : } rZ}˚ ď
?
r
)

, (245)

where as usual rZ “ diagpp̃qZ diagpqqq. For any δ ą 0 we have the following bound on the empirical Rademacher
complexity of F1

t with probability ě 1 ´ δ over the draw of the dataset:

Eσ sup
ZP rF1

r

1

N

N
ÿ

o“1

σoZξo ď 4

d

2rpm ` nq

3N
log

ˆ

m ` n

δ

˙

`
16

?
mnr

3N
log

ˆ

m ` n

δ

˙

(246)

Proof. Similarly to the original proof, expanding the definition of the Rademacher complexity, we have

Eσ sup
ZP rF1

r

1

N

N
ÿ

o“1

σo Zξo “ Eσ sup
ZP rF1

r

1

N

A

RN ,diagp
a

p̃qZ diagp
a

q̃q

E

ď Eσ sup
ZP rF1

r

}RN }}diagp
a

p̃qZ diagp
a

q̃q}˚ (247)

ď Eσ}RN } sup
ZP rF1

r

} rZ}˚ “
?
rEσ}RN }

ď 4

d

2rpm ` nq

3N
log

ˆ

m ` n

δ

˙

`
16

?
mnr

3N
log

ˆ

m ` n

δ

˙

, (248)

where at the second line (247) we have used the duality between the nuclear norm and the spectral norm, and at the last
line (248), we have used Lemma F.2.

F.2. Computational Lemmas

This subsection compiles basic calculations which are useful when translating a high-probability bound into a bound in
expectation.

Lemma F.6. Let F be a random variable that depends only on the draw of the training set. Assume that with probability
ě 1 ´ δ,

EpF q ď fpδq, (249)

for some given monotone increasing function f . Then we have, in expectation over the training set:

EpF q ď

8
ÿ

i“1

fp2´iq21´i, (250)

In particular, if fpδq “ C1

b

logp 1
δ q ` C2, then we have in expectation over the draw of the training set:

EpF q ď
C1

?
2 ´ 1

` C2 ď
5

2
C1 ` C2. (251)

Further, if fpδq “ C3 logp 1
δ q, then we have

EpF q ď 6C3. (252)

Proof. By assumption we have for any δ:

P pX ě fpδqq ď δ (253)

Let us write Ai for the event Ai “ tF ď fpδiqu where we set δi “ 2´i for i “ 1, 2, ... . We also set Ãi “ AizAi´1 for
i “ 1, 2, ... with the convention that A0 “ H so that Ã1 “ A1.
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We have, for i ě 2, Pp rAiq ď PpAc
i´1q ď δi´1, and for i “ 1, Pp rA1q ď 1 “ δi´1. Thus we can write

EpF q ď

8
ÿ

i“1

EpX| rAiqPp rAiq ď

8
ÿ

i“1

EpX| rAiqδi´1 ď

8
ÿ

i“1

fpδiqδi´1, (254)

yielding identity (250) as expected.

Next, assuming fpδq “ C1

b

logp 1
δ q ` C2, we can continue as follows:

EpF ´ C2q ď

8
ÿ

i“1

fpδiqδi´1 ď

8
ÿ

i“1

rC1

a

logp2iqs21´i (255)

ď

8
ÿ

i“1

rC1

?
is21´i ď C1

8
ÿ

i“1

?
2
1´i

“
C1

?
2 ´ 1

(256)

where at the second line we have used the fact that for any natural number i,
?
i ď

?
2
i´1

.

If we assume that fpδq “ C3 logp 1
δ q we have instead

Epfpδqq ď

8
ÿ

i“1

fpδiqδi´1 ď

8
ÿ

i“1

rC3 logp2iqs21´i (257)

ď C3

8
ÿ

i“1

i21´i ď C3

8
ÿ

i“1

3

25{6

?
2
i´1

21´i ď
3C3

2 ´
?
2

ď 6C3 (258)

Lemma F.7. Let a, b, s ą 0 be three positive real numbers: we have

logp1 ` absq ď logpp1 ` aqp1 ` bsqq ď logp1 ` aq ` logp1 ` p1 ` bqsq ď logp1 ` aq ` logp2p1 ` bqsq

ď logp2p1 ` aqq ` s logp1 ` bq.

F.3. Covering Numbers for Neural Networks

In this subsection, we collect variations of known results on covering numbers of classes of neural networks. These results
are useful in Subsection E.3, where apply them to construct covers of the space of neural embeddings over elements of
rms ˆ rns.

In line with much of the literature, we consider fully-connected neural networks of the following form:

fpxq “ σL

`

ALσL´1
`

σL´2 . . . σ1
`

A1x
˘

. . .
˘˘

, (259)

where the input x P Rd and the output fpxq P R1 and the activations σℓ (for ℓ ď L) are assumed to be 1-Lipschitz. We
write W for the total number of parameters of the network.

For a fixed architecture defined by the intermediary widths w1, . . . , wL “ 1 (so that W “
řL

ℓ“1 wLWL´1), and for a fixed
set of constants a1, . . . , aL and s1, s2, . . . , sL and initialization matrices M1,M2, . . . ,ML we consider the N1,Wps, aq

class of networks f that satisfy the following conditions:
›

›

›

`

Aℓ ´ M ℓ
˘J

›

›

›

2,1
ď aℓ @ℓ ď L and (260)

›

›Aℓ
›

› ď sℓ @ℓ ď L. (261)

The following is a particular case of (Graf et al., 2022), Theorem C.15 (cf also (Bartlett et al., 2017; Ledent et al., 2021c))
applied to fully-connected neural networks.
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Proposition F.8 (L2 covering number for N1,W). Assume that χ2 “ 1
N

řN
o“1 }xo}2 ě 1 and @l, sl ě 1. For any ϵ ą 0,

there is an L2 cover Cpϵq of N1,W with the following properties:

1. For any f P N1,W there exists a f̄ in Cpϵq such that

1

N

N
ÿ

o“1

ˇ

ˇfpxoq ´ f̄pxoq
ˇ

ˇ

2
ď ϵ2. (262)

2.

logp|C|q ď

R

1

ϵ2

V

χ2 RW
2 logp2W q, (263)

where

RW “ 2
L
ź

ℓ“1

sℓ

«

L
ÿ

ℓ“1

R

aℓ
sℓ

V2{3
ff3{2

and χ2 “
1

N

N
ÿ

o“1

}xo}2. (264)

Notes: We omit the improved dependency on the output dimension which can be derived from the techniques of (Ledent
et al., 2021c; Wu et al., 2021; Mustafa et al., 2021) since the output of our network is one dimensional. Such techniques can
also be easily used to make the above cover uniform over the samples at the cost of additional logarithmic factors.

Proposition F.9 (Uniform L8 covering number for N2,W ). Consider the class N2,W ps, aq of fully connected neural
networks with the same architecture as those in N1,W, but where the weight matrices only need satisfy the following
constraints:

}Aℓ} ď sℓ }Aℓ ´ M ℓ} ď al. (265)

We further assume that sℓ ě 1 for all ℓ ď L. For any 1 ą ϵ ą 0, and any ℓ Lipschitz loss function l there is an L2 cover
Cpϵq of N2,W with the following properties:

1. For any f P N1,W there exists a f̄ in Cpϵq such that for any x P Rd with }x} ď χ, we have:
ˇ

ˇl ˝fpxq ´ l ˝f̄pxq
ˇ

ˇ ď ϵ (266)

2.

logp|C|q ď W log

¨

˝

6χ ℓ
”

śL
ℓ“1 sℓ

ı

r
ř

ℓ aℓs

ϵ
` 1

˛

‚. (267)

Remark: This result and its proof are very similar to analogous results in (Long & Sedghi, 2020; Graf et al., 2022) (no
claim of originality is made here), but the requirement on the cover is stricter than in the Theorem statement in (Graf et al.,
2022). The control on the bounds is also looser, but we do not invest too much into the technicalities of obtaining tighter
logarithmic factors, since the aim of this section is merely to illustrate how to combine our bounds on Schatten quasi-norm
regularized matrices with neural network bounds.

Proof. For the sake of completeness, we repeat the main parts of the proof here, which mostly follow (Long & Sedghi,
2020).

Note that by a standard argument (see, e.g. pages 4,5 in (Long & Sedghi, 2020)), we have for any sets of matrices A1, . . . , AL

and sA1, . . . , sAL satisfying the conditions (261) and corresponding networks f and f̄ :

ˇ

ˇfpxq ´ f̄pxq
ˇ

ˇ ď }x}

«

L
ź

ℓ“1

sℓ

ff

L
ÿ

ℓ“1

›

›Aℓ ´ sAℓ
›

›

sℓ
ď }x}

«

L
ź

ℓ“1

sℓ

ff

L
ÿ

ℓ“1

›

›Aℓ ´ sAℓ
›

› (268)
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with the inequality holding uniformly over any x P Rd.

Thus, as long as sCpϵq is a cover of the space
␣

A “ pA1, . . . , ALq : }Aℓ ´ M ℓ} ď aℓ @ℓ
(

with respect to the norm
}A} :“

řL
ℓ“1 }Aℓ} with granularity ε :“ ϵ

χ ℓ
śL

ℓ“1 sℓ
, the associated cover Cpϵq Ă N2,W gives a uniform ϵ-cover of l ˝N2,W .

Furthermore, by Lemma F.17 and a doubling argument (to ensure the condition }Aℓ} ď sℓ is also satisfied by each element
of the cover) such a cover exists with cardinality ď

ˆ

6
ř

ℓ aℓ
ε

` 1

˙W

“

¨

˝

6χ ℓ
”

śL
ℓ“1 sℓ

ı

r
ř

ℓ aℓs

ϵ
` 1

˛

‚

W

(269)

and the result follows.

F.4. A Result on the Estimation of the Marginals

Lemma F.10 (Variation on Lemma 2 in (Foygel et al., 2011) and Lemma E.1 in (Ledent et al., 2021b)). For any δ ą 0, if
N ě 8pm ` nq logp

pm`nq

δ q then with probability ě 1 ´ δ, the following holds for all i ď m and j ď n:

p̌i ě
p̃i
2

and q̌j ě
q̃j
2
. (270)

Proof. The proof is almost identical to that of Lemma 2 in (Foygel et al., 2011) but we repeat it for completeness as we
need our variant with arbitrarily high probability. Note that this lemma is also a particular case of the inductive case from
Lemma E.1 in (Ledent et al., 2021b) with identity side information matrices.

If pi ď 1
m (resp. qj ď 1

n ), then p̃i ď 1
m and p̌i ě 1

2m (resp. q̃j ď 1
n and q̌j ě 1

2n ). On the other hand, if pi ą 1
n then by a

multiplicative Chernoff bound (Lemma F.15), we have for any i ď m:

P
´

p̂i ă
pi
2

¯

ď exp

ˆ

´
Npi
8

˙

ď exp

ˆ

´
N

8m

˙

ď
δ

pm ` nq
, (271)

where at the last inequality we have used the fact that N ě 8pm ` nq logp
pm`nq

δ q.

Similarly, for all j ď n:

P
´

q̂i ă
qj
2

¯

ď exp

ˆ

´
Nqj
8

˙

ď exp

ˆ

´
N

8n

˙

ď
δ

pm ` nq
. (272)

The result then follows immediately from a union bound.

F.5. Basic Covering Numbers, Concentration Inequalities and Classic Results in Learning Theory

In this section, we summarize some existing results which are useful to our study.

Theorem F.11 (Generalization bound from Rademacher complexity, cf. e.g., (Bartlett & Mendelson, 2001), (Scott, 2014),
(Guermeur, 2020) etc.). Let Z,Z1, . . . , ZN be iid random variables taking values in a set Z . Consider a set of functions
F P r0, 1sZ . @δ ą 0, we have with probability ě 1 ´ δ over the draw of the sample S that

@f P F , EpfpZqq ď
1

N

N
ÿ

i“1

fpziq ` 2RSpFq ` 3

c

logp2{δq

2N
,

where RSpFq can be either the empirical or expected Rademacher complexity. In particular, if f˚ P argminfPF EpfpZqq

and f̂ P argminfPF
1
N

řN
i“1 fpziq, then

Epf̂pZqq ď Epf˚pZqq ` 4RSpFq ` 6

c

logp2{δq

2N
.
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Recall the following theorem on the covering number of classes of Lipschitz functions.

Proposition F.12 (Covering number of Lipschitz function balls, see (von Luxburg & Bousquet, 2004), Theorem 17 page
684, see also (Tikhomirov, 1993)). Let X be a connected and centred metric space (i.e. for all A Ă X with diampAq ď 2r
there exists an x P X such that dpx, aq ď r for all a P A). Let B denote the set of 1-Lipschitz functions from X to R which
are uniformly bounded by diampX q. For any ϵ ą 0 we have the following bound on the covering number of the class B as a
function of the covering number of X :

N pB, ϵ, } .}8q ď

ˆR

2 diampX q

ϵ

V

` 1

˙

ˆ 2N pX , ϵ2 ,dq. (273)

Applying the above to the d dimensional euclidean space, we immediately obtain:

Proposition F.13. Let } .}max denote max norm on Rd, i.e. }x}d “ maxi |xi|. Let Flip,Lf ,Bf
denote the set of Lf -Lipschitz

functions from r´B0,B0sd to R. We have the following bound on the covering number of Flip,Lf ,Bf
with respect to the L8

(uniform) norm on functions:

log
`

N pFlip,Lf ,Bf
q
˘

ď log

ˆR

4B0 Lf

ϵ

V

` 1

˙

`

„R

2B0 Lf

ϵ

V

` 1

ȷd

logp2q (274)

ď 3

„R

2B0 Lf

ϵ

V

` 1

ȷd

(275)

Proof. W.l.o.g, let Lf “ 1. Then, take the following ϵ{2 cover of r´B0,B0sd: rr´B0,B0s X ϵZs
d, which has cardinality

less than
“P

2B0

ϵ

T

` 1
‰d

.

Proposition F.14 (Massart’s finite class lemma). Let A Ă RN be a finite class of functions from rN s to R. Let r “

maxuPA }u}2. We have the following bound on the Rademacher complexity of A over the sample rN s:

Eσ

˜

1

N
sup
uPA

N
ÿ

i“1

σiui

¸

ď
r
a

2 log#pAq

N
. (276)

Lemma F.15 (Multiplicative Chernoff bound, well known, Cf e.g. Corollary 13.3 (pp. 13-3 and 13-4) in (Sinclair). i.i.d.
case originally from (Angluin & Valiant, 1979), Proposition 2.4 p 158, cf. also (Boucheron et al., 2004) (exercise 2.10 on
p. 48) and (Hagerup & Rüb, 1990)). Suppose X1, . . . , XN are independent random variables taking values in t0, 1u. Let
X “

řN
i“1 Xi denote their sum. For any δ ą 0 we have

PpX ě p1 ` δqEpXqq ď exp

ˆ

´
δ2EpXq

2 ` δ

˙

. (277)

In addition, for all 0 ă δ ă 1 we have

PpX ď p1 ´ δqEpXqq ď exp

ˆ

´
δ2EpXq

2

˙

. (278)

We will need the following further consequence in our analysis:

Corollary F.16. Let m P N and ηi be independent categorical variables on the domain t1, 2, . . . ,mu. For all j ď m let us
write Xj :“

řN
i“1 1pηi “ jq for the number of ηis which assume the value j. For any 0 ă δ ă 1 have

P
`

Dj, s.t. Xj ď p1 ´ δqEpXjq
˘

ď m exp

ˆ

´
Nδ2µ

2

˙

, (279)

where µminj EpXjq.

Lemma F.17 (Lemma 8 in (Long & Sedghi, 2020)). The (internal) covering number N of the ball of radius κ in dimension
d (with respect to any norm } .}) can be bounded by:

N ď

R

3κ

ϵ

Vd

ď

ˆ

3κ

ϵ
` 1

˙d

(280)
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Recall the following result from (Mazumder et al., 2010):

Lemma F.18 (Lemma 6 in (Mazumder et al., 2010)). For any matrix X P Rmˆn, the following holds:

}X}˚ “ min
A,B,ABJ“X

1

2

“

}A}2Fr ` }B}2Fr

‰

. (281)

Recall the following useful result, which is an immediate consequence of the McDiarmid inequality. A similar result was
presented in (Bartlett & Mendelson, 2001) (cf. Theorem 11 page 469) for the expected Rademacher complexity. See
also (Ledent et al., 2021b) for the exact result.

Lemma F.19. For any fixed x1, . . . , xN and any function class F mapping to r´1, 1s we have with probability ě 1 ´ δ
over the draw of the Rademacher variables σ1, . . . , σN ,

ˇ

ˇ

ˇ

ˇ

ˇ

sup
fPF

1

N

N
ÿ

i“1

σifpxiq ´ pRpx1,...,xnqpFq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

c

2 logp2{δq

N
. (282)

Proposition F.20 (Non commutative Bernstein inequality, Cf. (Recht, 2011)). Let X1, . . . , XS be independent, zero
mean random matrices of dimension m ˆ n. For all k, assume }Xk} ď M almost surely, and denote ρ2k “

maxp}EpXkX
J
k q}, }EpXJ

k Xkq}q and ν2 “
ř

k ρ
2
k. For any τ ą 0,

P

˜
›

›

›

›

›

S
ÿ

k“1

Xk

›

›

›

›

›

ě τ

¸

ď pm ` nq exp

˜

´
τ2{2

řS
k“1 ρ

2
k ` Mτ{3

¸

. (283)

Proposition F.21 (High probability version of Bernstein inequality). Let X1, . . . , XS be independent, zero mean
random matrices of dimension m ˆ n. For all k, assume }Xk} ď M almost surely, and denote ρ2k “

maxp}EpXkX
J
k q}, }EpXJ

k Xkq}q. Writing σ2 “
řS

k“1 ρ
2
k, for any δ ą 0, we have, with probability greater than 1 ´ δ:

›

›

›

›

›

S
ÿ

k“1

Xk

›

›

›

›

›

ď
a

8{3σ

d

log

ˆ

m ` n

δ

˙

`
8M

3
log

ˆ

m ` n

δ

˙

. (284)

Proof. From Proposition F.20, we can make the following conclusions splitting into two cases depending on whether
Mτ ď σ2 or Mτ ě σ2:

If Mτ ď σ2, we have, with probability ě 1 ´ δ:
›

›

›

›

›

S
ÿ

k“1

Xk

›

›

›

›

›

ď
a

8{3σ

d

log

ˆ

m ` n

δ

˙

. (285)

Similarly, if Mτ ě σ2, we have, with probability ě 1 ´ δ:
›

›

›

›

›

S
ÿ

k“1

Xk

›

›

›

›

›

ď
8M

3
log

ˆ

m ` n

N

˙

. (286)

Thus, in all cases, we certainly have, with probability greater than 1 ´ δ:
›

›

›

›

›

S
ÿ

k“1

Xk

›

›

›

›

›

ď
a

8{3σ

d

log

ˆ

m ` n

δ

˙

`
8M

3
log

ˆ

m ` n

δ

˙

, (287)

as expected.

F.6. Deterministic Results

In this subsection, we show how some of the most popular recent neural network models indirectly contain Schatten norm
regularized matrix components.
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One of the first descriptions of non-linear matrix factorization methods appears in (Dziugaite & Roy, 2015), which describes
the following very general class of models:

gpi, jq “ fθ
`

u1
i , v

1
j , u

2
i ˝ v2j , . . . , u

m
i ˝ v

m
j

˘

, (288)

where ˝ denotes an element wise product, fθ is a trainable neural network and u1, . . . , um (resp. v1, . . . , vm) are low
dimensional row (resp. column) embeddings. A particularly famous example of a more specific architectural variation is
the model presented in (He et al., 2017), which has achieved state of the art performance in various recommender systems
datasets. From an architectural perspective, the model can be described as follows.

gpi, jq “
@

concatpu1
i ˝ v1

j , f1pui, vjqq, concatpd, d1q
D

, (289)

where f1 is a neural network with a mutli-dimensional output, and concatpd, d1q is a vector representing the last linear layer.
Since then, further models have been proposed which rely on expressing the set of observed entries as a graph through
which one can propagate the embeddings (He et al., 2020; Zhang & Chen, 2020; Mao et al., 2021), to cite but a few.

In Corollary F.23 below, we show that a global minimum of (1) can always be attained with the additional constraint that
D1, . . . Dd´2 be diagonal matrices. In particular, this further cements the validity of the Schatten norm as a regularizer: the
models (288) and (1) also hide implicit Schatten norm regularized components. For instance, the model in (He et al., 2017)
is in fact equivalent to

gpi, jq “ Zi,j ` Ψpi, jq, (290)

where Ψpi, jq “ xD1, f2pui, vjqy is a neural network encoding derived from f1 with an additional linear layer, and the
matrix Z satisfies Zi,j “ xpui ˝ vjq, dy “ uJ

i diagpdqvJ
j so that Z “ UDV J for D “ diagpdq where the rows of U (resp.

V ) collect the row (resp. column) embeddings. Thus, imposing L2 regularization (which is arguably implicitly present in
popular optimization schemes such as gradient descent) on the parameters d, U, V is equivalent to imposing regularization
on the Schatten quasi-norm of Z with p “ 2

3 .

We first recall the following reformulation of Theorem 1 in (Dai et al., 2021), which can be interpreted as a generalization of
Lemma F.18 (i.e. Lemma 6 in (Mazumder et al., 2010)):

Theorem F.22 (Theorem 1 in (Dai et al., 2021)). Let Z P Rmˆn, for any integers d P N and o P N with o ě minpm,nq we
have

min
WdPRoˆn,W1PRmˆo

WkPRoˆo@k‰1,d

˜

d
ÿ

k“1

}Wk}2Fr

ˇ

ˇ

ˇ

ˇ

d
ź

k“1

Wk “ Z

¸

“ d
r
ÿ

u“1

σ2{d
u “ d}Z}

2{d
sc,2{d, (291)

where r “ rankpZq, the σus are the singular values of Z and } .}sc,p is the p-Schatten quasi-norm.

From this, we obtain the following result:

Corollary F.23. Let Z P Rmˆn, for any integers d P N and o P N with o ě minpm,nq and d ě 2 we have

min
APRmˆo,BPRnˆo

@kďd´2, Dk“diagpdkq, dkPRo

˜

}A}2Fr ` }B}2Fr `

d´2
ÿ

k“1

}Dk}2Fr

ˇ

ˇ

ˇ

ˇ

A

«

d´2
ź

k“1

Dk

ff

BJ “ Z

¸

“ d
r
ÿ

k“1

σ
2{d
k “ d}Z}SC

2{d, (292)

where the minimum runs over all matrices A P Rmˆo, B P Rnˆo and D1, . . . , Dd´2 P Q where Q is either the set of all
matrices in Roˆo or the set of all diagonal matrices in Roˆo. (As in Theorem F.22 r “ rankpZq, the σus are the singular
values of Z and } .}sc,p is the p-Schatten quasi-norm.)

In particular, for d “ 3, we have

min
APRmˆo,BPRnˆo,

RoˆoD“diagpdq,dPRo

˜

}A}2Fr ` }B}2Fr ` }D}2Fr

ˇ

ˇ

ˇ

ˇ

ˇ

ADBJ “ Z

¸

“ 3
r
ÿ

k“1

σ
2{3
k “ 3}Z}

2{3
sc,2{3. (293)
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Proof. We prove the theorem in two directions.

LHS ě RHS:

This follows immediately from Theorem F.22, since our set of admissible factor matrices pA,D1, . . . , dd´2, B
Jq is a

subset of the set of admissible pW1,W2, . . . ,Wdq in Theorem F.22 (as a result of the additional constraint that the matrices
D1, . . . , Dd´2 must be in Q).

LHS ď RHS:

This follows by constructing a set of matrices A,B,D1, . . . , Dd´2 which achieves the minimum whilst satisfying the
strictest constraint that D1, . . . , Dd´2 are diagonal matrices. For this, let Z “ UΣV J be the singular value decomposition
of Z with additional dimensions chosen such that U P Rmˆo,Σ P Roˆo, V P Rnˆo. We now choose:

A “ UΣ1{d

B “ V Σ1{d

Dk “ Σ1{d p@k ď d ´ 2q. (294)

It is clear that

A

«

d´2
ź

k“1

Dk

ff

BJ “ UΣ1{dΣpd´2q{dΣ1{dV J “ UΣV J “ Z.

In addition, we by the invariance of the Frobenius norm to rotations, we also have

}A}2Fr ` }B}2Fr `

d´2
ÿ

k“1

}Dk}2Fr “ }UΣ1{d}2Fr ` }V Σ1{d}2Fr `

d´2
ÿ

k“1

}Σ1{d}2Fr

“ }Σ1{d}2Fr ` }Σ1{d}2Fr

d´2
ÿ

k“1

}Σ1{d}2Fr “ d}Σ1{d}2Fr

“ d
r
ÿ

k“1

σ
2{d
k “ d}Z}SC

2{d “ RHS, (295)

as expected. The result follows.

We have the following immediate variant of Corollary F.23, which shows how we can add the weights to our regularizers in
our practical experiments.

Corollary F.24. Let p̌ P Rm and q̌ P Rn be arbitrary vectors and let Z P Rmˆn, for any integers d P N and o P N with
o ě minpm,nq and d ě 2 we have

min
APRmˆo,BPRnˆo

@kďd´2, DkPQ

˜

} qA}2Fr ` } qB}2Fr `

d´2
ÿ

k“1

}Dk}2Fr

ˇ

ˇ

ˇ

ˇ

A

«

d´2
ź

k“1

Dk

ff

BJ “ Z

¸

“ d
r
ÿ

k“1

σ
2{d
k “ d} qZ}SC

2{d, (296)

where qA :“ diagp
?
p̌qA, qB :“ diagp

?
q̌qB, qZ “ diagp

?
p̌qZ diagp

?
q̌q and the minimum runs over all matrices A P

Rmˆo, B P Rnˆo and D1, . . . , Dd´2 P Q where Q is either the set of all matrices in Roˆo or the set of all diagonal
matrices in Roˆo.
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G. Extention: Multiple Latent Matrices
In this section, we develop tools to extend some of our results to situations where there are multiple latent matrices, possibly
with different Schatten indices. This section is mostly illustrative: the models themselves are quite complicated, making the
bounds less meaningful than in other sections. In addition, the dependence on the number of latent factors obtainable with
the techniques below is quite strong. However, the tools developed show a general strategy which could be used for a broad
class of similar models.

G.1. Extension: Multi-latent Lipschitz Decomposition Lemmas

In this subsection, we prove some new results, analogous both Talagrand’s concentration lemma and Dudley’s entropy
theorem, aimed at bounding the Rademacher complexity of ℓpF1, . . . ,Fmq where Fv (for v ď m) are function classes and
ℓ is Lipschitz. The aim is to be able to bound the Rademacher complexity of F even if a covering number is not available
for any of the Fv .

We begin by remind the reader of the following classic.

Lemma G.1 (Talagrand contraction lemma (cf. (Ledoux & Talagrand, 1991) see also (Meir & Zhang, 2003) page 846)).
Let g : R Ñ R be 1-Lipschitz. Consider the set of functions tfipθq, i ď Nu (on t1, 2, . . . , Nu) depending on a parameter
θ P Θ.

For any function cpx, θq where x P X and any probability distribution on X , we have

EσEX sup
θPΘ

#

cpX, θq `

N
ÿ

i“1

σigpfipθqq

+

ď EσEηEX sup
θPΘ

#

cpX, θq `

N
ÿ

i“1

σifipθq

+

, (297)

where the σis are i.i.d. Rademacher variables.

We then present our first extension of the above:

Lemma G.2. Let g : Rm Ñ R be a function satisfying the following Lipschitz condition:

ˇ

ˇgpy2q ´ gpy1q
ˇ

ˇ ď
ÿ

kďm

ˇ

ˇy2k ´ y1k
ˇ

ˇλk (298)

with
řm

k“1 λk “ ℓ. Consider
␣

f1
i pθq

(

,
␣

f2
i pθq

(

, . . . , tfm
i pθqu, i ď N functions (on t1, 2, . . . , Nu) depending on a

parameter θ P Θ.

Define the function g on t1, 2 . . . , Nu by gipθq “ gpf1
i pθq, f2

i pθq, . . . , fm
i pθqq for all i ď N .

For any function cpx, θq where x P X and any probability distribution on X , we have

EσEX sup
θPΘ

#

cpX, θq `

N
ÿ

i“1

σigipθq

+

ď EσEηEX sup
θPΘ

#

cpX, θq ` ℓ
N
ÿ

i“1

σif
ηi

i pθq

+

, (299)

where the σis are i.i.d. Rademacher variables and the ηi are i.i.d. categorical variables on the domain t1, 2, . . . ,mu with
corresponding probabilities λ1{ ℓ, . . . , λm{ ℓ.

N.B.: The case m “ 1 is the standard Talagrand concentration Lemma.

Proof. W.l.o.g., we assume ℓ “ 1. The proof is by induction over N . The initial case N “ 1 certainly holds. Assume it
holds for N , we will show it holds for N ` 1.
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Eσ1,...,σN`1
EX sup

θPΘ

#

cpX, θq `

N`1
ÿ

i“1

σigipθq

+

ď Eσ1,...,σN
EX sup

θ1,θ2PΘ

#

cpX, θ1q ` cpX, θ2q

2
`

N
ÿ

i“1

σi
gipθ1q ` gipθ2q

2
`

gN`1pθ1q ´ gN`1pθ2q

2

+

“ Eσ1,...,σN
EX sup

θ1,θ2PΘ

#

cpX, θ1q ` cpX, θ2q

2
`

N
ÿ

i“1

σi
gipθ1q ` gipθ2q

2
`

|gN`1pθ1q ´ gN`1pθ2q|

2

+

ď Eσ1,...,σN
EX sup

θ1,θ2PΘ

#

cpX, θ1q ` cpX, θ2q

2

`

N
ÿ

i“1

σi
gipθ1q ` gipθ2q

2
`

m
ÿ

j“1

λj |f j
N`1pθ1q ´ f j

N`1pθ2q|

2

+

ď Eσ1,...,σN
EX

m
ÿ

j“1

sup
θ1,θ2PΘ

#

λjcpX, θ1q ` λjcpX, θ2q

2 ℓ

`

N
ÿ

i“1

σiλj
gipθ1q ` gipθ2q

2 ℓ
`

λj |f j
N`1pθ1q ´ f j

N`1pθ2q|

2

+

“ Eσ1,...,σN
EX

m
ÿ

j“1

sup
θ1,θ2PΘ

#

λjcpX, θ1q ` λjcpX, θ2q

2 ℓ

`

N
ÿ

i“1

σiλj
gipθ1q ` gipθ2q

2 ℓ
`

λj

”

f j
N`1pθ1q ´ f j

N`1pθ2q

ı

2

+

ď Eσ1,...,σN
EXEσN`1

m
ÿ

j“1

sup
θPΘ

#

λjcpX, θq

ℓ
`

N
ÿ

i“1

σi
λjgipθq

ℓ
` σN`1λjf

j
N`1pθq

+

ď Eσ1,...,σN
EXEσN`1

E ηPrmsN

η„λ

sup
θPΘ

#

cpX, θq ` ℓ
N
ÿ

i“1

σif
ηi

i pθq `

m
ÿ

j“1

σN`1λjf
j
N`1pθq

+

(300)

“ Eσ1,...,σN ,σN`1
EXE ηPrmsN`1

η„λ

sup
θPΘ

#

cpX, θq ` ℓ
N`1
ÿ

i“1

σif
ηi

i pθq

+

,

where the line (300) follows from the induction hypothesis. This completes the proof.

Using this, we then obtain the following result.

Proposition G.3. Let g : Rm Ñ R be a function satisfying the following condition:

ˇ

ˇgpy2q ´ gpy1q
ˇ

ˇ ď
ÿ

kďm

ˇ

ˇy2k ´ y1k
ˇ

ˇλk (301)

with
řm

k“1 λk “ ℓ. Consider m function classes F1, . . . ,Fm from rN s to r´B,Bs and define G :“
␣

g̃ : x Ñ g̃pxq “ gpf1pxq, f2pxq, . . . , fmpxqq : f1 P F1, . . . , fm P Fm

(

. We have the following bound on the Rademacher
complexity of G:
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pRpGq “ Eσ sup
f1,...,fm

1

N

N
ÿ

o“1

σogpf1poq, f2poq, . . . , fmpoqq (302)

ď B ℓ
13m logp2mNq

N
` ℓ

ÿ

jPJ1

λj

ℓ
max

kě
Nλj
2ℓ

pRN,kpFjq, (303)

where pRN,kpFjq :“ ECĂrNs

|C|“k
EσPt´1,1uC supfPFj

1
k

ř

oPC σofpoq.

Proof. By Lemma G.2 we have

RpGq ď ℓEσEη sup
f1,...,fm

1

N

N
ÿ

o“1

σof
ηi

poq (304)

“ ℓEσEη sup
f1,...,fm

Eoσof
ηi

poq, (305)

where the expectation over o runs over the uniform distribution over rN s. Now, let Cj “ ti : ηi “ ju. By Corollary F.16,
we have that with probability greater than 1 ´ δ{2 over the draw of the variables η1, . . . , ηN ,

|Cj | ě
λj

2 ℓ
for all j s.t. λj ě γ :“

8ℓ logp 2m
δ q

N
. (306)

Similarly, by a Chernoff bound (see Lemma F.15), w.p. ě 1 ´ δ{2, the following holds for all j ď m:

|Cj |

N
ď

λj

ℓ
`

d

λj

ℓ

3 log
`

2m
δ

˘

N
. (307)

Thus, with overall probability greater than 1 ´ δ over the draw of the ηis, both Equations (306) and (307) hold under their
respective constraints, which implies that we can continue the calculation from Equation (305) as follows, where we write
J1 (resp. J2) for the sets of indices satisfying (resp. not satisfying) the second equation in Equation (306)

RpGq ď ℓEσEη sup
f1,...,fm

Eoσof
ηi

poq

ď ℓEσEη sup
f1,...,fm

ÿ

j

|Cj |

N
EoPCj

σof
ηi

poq

ď ℓEσEη sup
f1,...,fm

ÿ

jPJ1

|Cj |

N
EoPCj

σof
jpoq ` ℓEσEη sup

f1,...,fm

ÿ

jPJ2

|Cj |

N
EoPCj

σof
jpoq

ď ℓ
ÿ

jPJ1

EσEη sup
fj

|Cj |

N
EoPCjσof

jpoq `
ÿ

jPJ2

ℓEσEη sup
fj

|Cj |

N
EoPCjσof

jpoq

ď δ B ℓ ` B ℓ
ÿ

jPJ2

»

–

λj

ℓ
`

d

λj

ℓ

3 log
`

2m
δ

˘

N

fi

fl ` ℓ
ÿ

jPJ1

λj

ℓ
max

kě
Nλj
2ℓ

E Cj :

|Cj |“k

Eσ sup
fj

EoPCjσof
jpoq (308)

ď
B ℓ

N
` B ℓ

«

8 logp2mNq

N
`

c

8 logp2mNq

N

3 log p2mNq

N

ff

` ℓ
ÿ

jPJ1

λj

ℓ
max

kě
Nλj
2ℓ

pRN,kpFjq (309)

ď B ℓ
13m logp2mNq

N
` ℓ

ÿ

jPJ1

λj

ℓ
max

kě
Nλj
2ℓ

pRN,kpFjq (310)

where at line (309), we have simply set δ “ 1
N and replaced the definition of RN,kpFjq. The result follows.
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Finally, the next corollary is the result we need for our analysis of NNmSd(+NN).

Corollary G.4. Let g : Rm Ñ R satisfy the conditions of Proposition G.3 and consider
m functions classes F1, . . . ,Fm from X to r´B,Bs. As in Proposition G.3, define G :“
␣

g̃ : x Ñ g̃pxq “ gpf1pxq, f2pxq, . . . , fmpxqq : f1 P F1, . . . , fm P Fm

(

. Assume that the Rademacher complexit-
ies of the individual function classes Fj satisfy the following inequality for any k ď N :

RpFjq “ EXEσ sup
fPFj

1

k

k
ÿ

o“1

σofpxoq ď

c

Rjpkq

k
, (311)

where Rjpkq is an increasing function of k for all j ď m. We have the following bound on the Rademacher complexity of
the function class G:

RpGq “ EXEσ sup
gPG

1

k

k
ÿ

o“1

σogpxoq ď B ℓ
13m logp2mNq

N
` ℓ

d

2
ř

jďm RjpNq

N
.

Proof. By Proposition G.3 for any sample x1, . . . , xN we have

pRpGq ď B ℓ
13m logp2mNq

N
` ℓ

ÿ

jPJ1

λj

ℓ
max

kě
Nλj
2ℓ

pRN,kpFjq. (312)

Taking expectations with respect to the sample x1, . . . , xN on both sides we obtain:

RpGq ď B ℓ
13m logp2mNq

N
` ℓ

ÿ

jPJ1

λj

ℓ
max

kě
Nλj
2ℓ

EX
pRN,kpFjq. (313)

Since the distribution of a uniformly random subset of size k of tx1, . . . , xNu where the xos are drawn i.i.d. from X is
distributed as k i.i.d. samples from X , we have

EX
pRN,kpFjq “ EX

pRkpFjq ď

c

Rjpkq

k
ď

c

RjpNq

k
. (314)

Plugging this back into Equation (313) we obtain:

RpGq ď B ℓ
13m logp2mNq

N
` ℓ

ÿ

jPJ1

λj

ℓ
max

kě
Nλj
2ℓ

c

RjpNq

k
(315)

ď B ℓ
13m logp2mNq

N
` ℓ

ÿ

jPJ1

λj

ℓ

d

2RjpNqℓ

Nλj
(316)

ď B ℓ
13m logp2mNq

N
` ℓ

ÿ

jďm

c

λj

ℓ

c

2RjpNq

N
(317)

ď B ℓ
13m logp2mNq

N
` ℓ

d

2
ř

jďm RjpNq

N
, (318)

where at Line (317) we have used the fact that γ :“ 8ℓ logp2mNq

N (cf. Equation (306) with δ “ 1{N , or the end of the
statement of Proposition G.3) and at the last line (318), we have used the Cauchy-Schwarz inequality.

G.2. Extension: an Example Generalization and Excess Risk Bound for a Composite Model with Multiple Latent
Matrices

In this subsection, we prove an additional result for a model which takes several latent matrices as input. In this preliminary
version, we allow a factor of the embedding size of the neural network embeddings in the final bounds and reserve removing
this factor to future work. We consider the following function class:

H :“ N2,W pa1, s1q ˝ pconcatmv“1p rFpv

rv,B0
q,N1,W,idpa, sqq (319)
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where the input of the network Ψ P N1,W,idpa, sq is a concatenation of a user ID and an item ID: N1,W,id being the class
of matrices in Rmˆn which can be represented as ϕ̃pxξq where ϕ̃ is a network form (259) satisfying Conditions (265) and
xi,j :“ concatpei, ejq. In this subsection, we assume that sℓ, aℓ, s1

ℓ, a
1
ℓ,B0,B ě 1.

Theorem G.5. Define ĝ P argmin
´

pEplpgξ, rG, ξqq : g P H
¯

and g˚ P argmin
´

Eplpgξ, rG, ξqq : g P H
¯

. Define sr “
řm

v“1 rv and assume that sℓ, aℓ, s1
ℓ, a

1
ℓ,B0,B ě 1. With probability greater than 1 ´ δ over the draw of the training set we

have

pRpHq, sup
gPH

Eplpg, rG, ξqq ´ pEplpg, rG, ξqq,Eplpĝ, rG, ξqq ´ Eplpg˚, rG, ξqq ď sR, (320)

where

sR “ rO

˜

B
c

logp1{δq

N
` B

c

W ` W 1

N
` B0 S 1 ℓ

c

m2
srpm ` nq

N
` B0 S 1 ℓ

c

m3

N

¸

(321)

where S 1 “
śL

ℓ“1 s
1
ℓ, and the rO notation hides polylogarithmic factors of m,n,N,m,B0,B, ℓ,

ś

ℓ sℓ,
ś

ℓ s
1
ℓ,
ś

ℓ aℓ,
ś

ℓ a
1
ℓ

(in particular, the depth L is considered constant).

Remark: Note that the dependence on m is very strong. In particular, the last term alone contributes a sample complexity of
rOpm3q. This is due to the need to bound the Lipschitz constant of the network Ψ in each dimension individually, resulting
in an additional factor of m outside the square root in the last two terms. We leave the delicate question of mitigating this
dependence, perhaps via an improved version of Corollary G.4, to future work.

Proof. Similarly to the proof of Theorem C.8, we use Lemma E.3 to join the Rademacher complexities of rFpv

rv,B0
for all

values of v with the covering numbers of the classes N1,W,idpa, sq and N2,W pa1, s1q.

To that aim, we begin by using Proposition F.9 with l “ Id, ℓ “ 1 and χ “
śL

ℓ“1 sℓ ` mB0, and ϵ Ð ϵ
2 to obtain a cover

of C1 Ă N2,W pa1, s1q such that for any ϕ P N2,W there exists a sϕ P C1 such that for any y P R1 with }y} ď χ we have

|pϕ´sϕqpyq| ď
ϵ

2
(322)

and

logp|C1|q ď W 1 log

¨

˝

12
”

śL
ℓ“1 sℓ ` B0 m

ı ”

śL
ℓ“1 s

1
ℓ

ı

r
ř

ℓ a
1
ℓs

ϵ
` 1

˛

‚ (323)

ď W logpΓW,mq, (324)

after setting ϵ “ 1{N and ΓW,m :“ 12N
”

śL
ℓ“1 sℓ ` mB0

ı ”

śL
ℓ“1 s

1
ℓ

ı ”

śL
ℓ“1 sℓ

ı

r
ř

ℓ a
1
ℓs r

ř

ℓ aℓs ` 1. Next we can

invoke Proposition F.9 again to construct a cover C2 of N2,W pa, sq such that for any Ψ P N2,W pa, sq there exists a sΨ P C2
such that

ˇ

ˇΨpξq ´ sΨpξq
ˇ

ˇ ď
ϵ

2
”

śL
ℓ“1 s

1
ℓ

ı (325)

and

logp|C2|q ď W 1 log

¨

˝

12
śL

ℓ“1 sℓ

”

śL
ℓ“1 s

1
ℓ

ı

r
ř

ℓ aℓs

ϵ
` 1

˛

‚ď W 1 logpΓW,mq, (326)

where we set ϵ “ 1
N . Note that for any fixed set of matrices Zv P rFpv

rv,B0
(v ď m), we have

ˇ

ˇϕpZ1, . . . , Zm,Ψq ´ sϕpZ1, . . . , Zm, sΨq
ˇ

ˇ (327)

ď
ˇ

ˇϕpZ1, . . . , Zm,Ψq ´ sϕpZ1, . . . , Zm,Ψq
ˇ

ˇ `
ˇ

ˇsϕpZ1, . . . , Zm,Ψq ´ sϕpZ1, . . . , Zm, sΨq
ˇ

ˇ

ď ϵ (328)
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where at the last line we have used Equations (322) and (325).

Thus, we are in a position to apply Lemma E.3 with ϵ “ 1
N to obtain:

pRpHq ď
1

N
` sup

sϕ,sΨ

pR
´

ϕ ˝pconcatp rFpv

rv,B0
q,Ψq

¯

` B
c

2π

N
` B

c

logp|C1p1{Nq||C2p1{Nq|q

N
. (329)

Note that by Theorem D.4, and Lemma F.6, we have for any N 1 ě 9pm ` nq,

Eξ
pRN 1 p rFpv

rv,B0
q ď

d

7B0
2

`1

N 1
` 88B0

c

rvpm ` nq

N 1
logpΓq, (330)

where Γ “: 6Nmn3rB0 `1s ` 1, and thus for any N 1,

Rv ď 2 ˆ 882 log2pΓq
“

B0
2 rvpm ` nq ` pB0

2
`1q

‰

. (331)

Thus by Corollary G.4 we have, for any ℓ
”

śL
ℓ“1 s

1
ℓ

ı

-Lipschitz function G : Rm Ñ R:
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and therefore, for any δ, with probability greater than 1 ´ δ we have

pRN pGpconcatmv“1p rFpv

rv,B0
qqq ď R ` O

˜

B
c

logp2{δq

N

¸

. (333)

By a union bound, inequality (334) below holds with probability ě 1´ δ over all the choices of G given by Gpxq “ sϕpx, sΨq

for sϕ P C2 and sΨ P C1:

pRN pGpconcatmv“1p rFpv

rv,B0
qqq ď R ` O

˜

B
c

logp2{δq

N

¸

` 2B
c

logp|C1||C2|q

N
. (334)

Plugging this back into Equation (329) (after setting ϵ “ 1
N ) we obtain (w.p. ě 1 ´ δ)

pRpHq ď
1

N
` R ` 2B

c

logp2{δq

N
` B

c

2π

N
` O

˜

B
c

logp|C1||C2|q
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¸

(335)

ď O

˜

B
c

logp1{δq

N

¸

` O

¨

˝B

d

pW ` W 1q log
`

ΓW,m

˘

N

˛

‚` R “: sR, (336)

as expected.

H. Additional Experimental Details
To assess the proposed methodology in this paper and compare it with related matrix completion approaches, we conducted
experiments using both synthetic and real-world datasets. On the one hand, the synthetic experiments were designed
to evaluate the performance of the methods and related mechanisms by varying proportions of observed entries in the
incomplete matrix targeted for completion. On the other hand, the real-world datasets were employed in practical scenarios
to gain insights into the methods’ behavior in real-world applications of matrix completion.
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Figure 3: Summary of the results from the synthetic data experiments with ground truth was generated by considering
fpxq “ x.

H.1. Experiments on Synthetic Data

As described in the main paper, we generate synthetic square data matrices in Rnˆn with a given rank r. For each matrix,
we vary the proportion of observed entries (%obs=ErN{n2s) as well as performed non-uniform sampling distribution.
Regarding the proportion of observed entries %obs, we explore values in the set t0.08, 0.10, . . . , 0.20, 0.25, . . . , 0.40u.
Concerning the sampling distribution, we divide the matrix into four equal-sized regions of size n{2 ˆ n{2. In the first
region, the probability of entry sampling equals α. In regions 2 and 3, it is 2α, and in region 4, it is 4α. For a given function
f or generation procedure, it is described as follows:

1. Randomly generate matrices U P Rnˆr and V P Rnˆr with each entry pi, jq sampled from a normal distribution
N p0, 1q.

2. Make R̃ “ UV J and rescale the product as R̄ “ n ˆ R̃{}R̃}Fr.

3. Apply the function f element-wise to R̃ and obtain R. Return the ground truth generation as R.

We generated 25 independent instances by considering the aforementioned generation procedure. For each matrix, we varied
the observations accordingly.

Remark: We observe that the number of degrees of freedom for an n ˆ n matrix of rank r is nr, which (up to logarithmic
terms) is loosely connected to the sample complexity. Consequently, the proportion of observed entries necessary for
the prediction task to be (statistically) feasible is linked to the choice of n and r. In our synthetic experiments, we opt
for smaller matrices due to the high number of simulations. Therefore, we set n “ 100 and r “ 3 in line with the
aforementioned observation strategy. As a choice for f , we considered the identity function gpxq “ x and the sigmoid
function σpxq “ 1{p1 ` e´xq.

Further Results: Figures 3 provide detailed results of our synthetic data experiments when the ground truth function is the
identity. In this case traditional matrix completion methods perform similarly to ours: the unneeded additional representative
power doesn’t hurt the performance, since it is small enough to come with negligible additional sample complexity as per
Thm C.6 and C.6.

Validation, Optimization and Hardware Specifications: For all synthetic data experiments, we employed a %obs of the
data for training (specified in each case), allocating 10% for validation, and utilizing the remaining portion as the test set. In
the validation procedure, we selected the regularization parameter from the set λ P t10´7, 10´6, . . . , 102u and fixed the size
of the embeddings to 20. We optimize all models with ADAM using Nesterov optimization through TensorFlow 2. We
consider a maximum of 100 epochs with early stopping and a patience of 5 in the validation loss, returning the best weights.
Regarding hardware specifications, all synthetic experiments were executed on a CPU cluster with 128 threads and 512GB
of RAM.

H.2. Experiments on Real-world Data

Validation, Optimization and Hardware Specifications: Similar to the synthetic data experiments, we optimized the
models using ADAM with Nesterov optimization in TensorFlow 2. We set a maximum of 100 epochs with early stopping,
employing a patience of 15 based on the validation loss for all models. The best weights were selected during training.
Real-world experiments were conducted on Nvidia DGX-A100 graphics cards with 40GB of GPU RAM.
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Regarding our validation procedure, we randomly split the observed entries uniformly, resulting in 90% for training and 5%
for each validation and test set. The parameter λ was selected from a sequence exponentially distributed between 10´7 and
102. For DOUBAN and LASTFM, this sequence has a size of 50, and for MVL25, it has a size of 15. For all datasets and
methods, we fixed the embeddings to have a size of 128.

H.3. Datasets

DOUBAN [m “ 2718, n “ 34893 and %obs“ 1.2%]: Douban serves as a platform for users to curate movies. Within this
matrix, users are interconnected within the social network, and the items represent movies. User ratings, ranging from 0.5 to
5 (in intervals of 0.5), are denoted by the entry pi, jq, corresponding to the rating of user i for movie j.

LASTFM [m “ 1892, n “ 17632 and %obs“ 0.27%]:: Last.fm, profiles users’ musical preferences and habits. In contrast
to other datasets, entries pi, jq in this matrix signify the log-scaled number of views user i has for band/artist j.

MVL25 [m “ 162541, n “ 57971 and %obs“ 0.27%]: The MovieLens 25M dataset, a widely adopted and stable
benchmark dataset, originates from a non-commercial movie recommendation website. Similar to Douban, entries pi, jq

here indicate the rating of user i for movie j, but on a scale from 1 to 5.

I. More Detailed Related Works
Note: in Matrix Completion, by “approximate recovery”, we mean results which bound the excess risk in the form of a
function of architectural parameters and the number of samples, with decay rate typically of the form 1{

?
N (but sometimes

1{N , or 1{
4
?
N if expressing the bound in terms of the Frobenius norm error rather than the square loss). For instance, in the

realisable case, if the noise is independent of the entries and has standard deviation ε and the loss function is the square loss,

this means that the normalized Frobenius norm of the error scales like ε2 `

b

R
N where R is some architectural quantity. By

“exact recovery”, we mean results which guarantee that the ground truth matrix is recovered exactly with high probability
when the number of samples N is large enough as long as there is no noise in the observations. By “perturbed recovery”,

we mean results which guarantee that for large enough N , an error of the type ε
b

sR
N is achievable for with high probability

for some other architectural quantity sR. The quantity sR typically has much worse dependence on architectural parameters
than the quantity R, and as long as that is the case, approximate recovery and perturbed/exact recovery are not subordinate
to each other, even if we ignore the minor difference in the optimization problem and sampling regime. To the best of our
knowledge: the only existing result which achieves the extremely impressive task of providing a perturbed recovery result
where the architectural dependence of sR is as tight as that of R in competing approximate recovery results is (Chen et al.,
2020), which only deals with the nuclear norm (p “ 1) and does not include non-linearities. In addition, like all exact and
perturbed recovery results we are aware of, the results in (Chen et al., 2020) are limited to the uniform sampling case. Our
results concern approximate recovery with the Schatten (quasi) norm, but we still compare to some exact and noisy recovery
results for illustrative purposes.

Approximate Recovery in Matrix Completion: There is a lot of literature on the sample complexity of matrix completion
with bounded Lipschitz losses and norm constraints. In particular, our work takes much inspiration from the pioneering
works of (Foygel et al., 2011) and (Shamir & Shalev-Shwartz, 2011; 2014), which proved analogues of our results (without
a learnable function) in the case p “ 1. The explicitly rank-restricted case was studied in classification settings in (Srebro
et al., 2004; Srebro & Shraibman, 2005; Srebro & Jaakkola, 2005). In general, the sample complexity is rOprnq.

Alternative Learning Settings and Models: There is also a substantial amount of work on other soft relaxations of the
rank, such as the max norm. In particular, the early work of (Srebro & Shraibman, 2005) shows a sample complexity of
rOpnM2q, where M is a constraint on the max norm. A perturbed recovery result was achieved for the max norm in the
classic work of (Cai & Zhou, 2016), which was further extended in (Wang et al., 2021) to provide bounds on the uniformly
weighted Frobenius error of the recovered matrix in the non-uniform sampling regime (under some approximate uniformity
assumption on the sampling probabilities). With nuclear norm regularizers, other works which provide uniform Frobenius
error bounds without uniform sampling include the “missing not at random” setting (Ma & Chen, 2019; Sportisse et al.,
2020), which adopts a Bayesian approach. Further, the pioneering work of (Gui et al., 2023) computes entry-wise confidence
intervals in low-rank matrix completion with an arbirary backbone model, substantially extending the entry-wise guarantees
provided in the known rank case in (Chen et al., 2021).

Exact Recovery in Matrix Completion: The problem of exactly recovering the entries of a uniformly sampled matrix

68



Generalization Analysis of Deep Non-linear Matrix Completion

can be traced back to the work of Tao (Candès & Tao, 2010) and has been widely studied since (Recht, 2011; Gross, 2011;
Candès & Recht, 2009; Chen, 2013): by minimizing the nuclear norm, the matrix can be recovered with high probability
after sampling rOpnrq entries where r is the rank of the ground truth matrix.

Perturbed Recovery in Matrix Completion: The first bounds with a refined dependence on the variance of the noise can
be traced back to the early work of (Candes & Plan, 2010), which roughly speaking shows an excess risk bound of order
rOpr1 `

b

n3

N sσq where σ is the standard deviation of the perturbation, sampling is without replacement and n " rOpnrq.
Thus, the architectural dependence on the matrix size n is very strong inside the term which involves the variance parameter
σ. Much later, a nearly optimal bound of rOpσ

a

nr
N qq (also for sampling without replacement) was achieved in (Chen et al.,

2020).

Inductive Matrix Completion: Inductive Matrix Completion studies predictors of the form AD1D2B
J where A and B

are fixed matrices which collect “side information” about the rows and columns. Thus, this can be viewed as an analogue
of deep matrix factorization with d “ 4 with A and B fixed. However, since A,B are fixed, the problem behaves more
similarly to matrix completion with nuclear norm constraints. To the best of our knowledge, the first bounds for this model in

the approximate recovery setting are from (Chiang et al., 2018; 2015), giving bounds of order M
b

1
N where M is a bound

on the nuclear norm of D1D2. Expressed in terms of rank-like quantities, this yields rOp

b

ra2

N q where a is the number of
columns of A and B. Later, stronger results were provided in (Ledent et al., 2021b) which match the non-inductive literature
with a playing the role of n in standard MC. For instance, the distribution-free sample complexity rate is rOpa

3
2

?
rq. For

exact recovery, a sample complexity rate of rOparq was provided in (Xu et al., 2013). Later, (Ledent et al., 2023) provided

a perturbed recovery bound of rO

ˆ

σ
b

a4

N

˙

. Furthermore, several works study more specific settings where the rows ans

columns have implicit cluster structure (Qiaosheng et al., 2019; Zhang et al., 2022; Ledent et al., 2021a; Alves et al., 2021).
Such assumptions are also becoming common in the field of low rank bandits (Pal & Jain, 2022; Pal et al., 2023). However,
none of these works consider the situation where the matrices A and B are trainable (which corresponds to the case d “ 4 in
our setting).

Orthogonal Tensor Recovery with the Schatten Quasi-Norm Beyond the examples above, we are not aware of any
work on the approximate recovery for Schatten norm constrained matrix completion. However, similar problems have
been studied with different losses or sampling regimes. In particular, (Fan et al., 2020; Fan, 2021) studies approximate
tensor recovery with Schatten regularization. The results are far reaching and go well beyond the more restricted setting
of matrix completion which we study here. However, in the case of a 2-way tensor (i.e. a matrix), the results can be
interpreted as a Lagrangian formulation of the empirical risk minimization problems we study. The loss function is the
square loss and sampling is uniformly at random without replacement, which means the results are not directly comparable.

The achieved excess Frobenius norm bounds scale like
4

c

n
2´2p
2´p M

2p
2´p

Np (cf. (Fan, 2021), Theorem 4), where M is an upper

bound on the } .}sc,p 3 Expressed in terms of our rank-like quantity r, this turns into 4

c

rn
2

2´p

Np . In contrast, our result is

rO

˜

B
2´2p
2´p ℓ

p
2´p

c

M
2p

2´p n
2´3p
2´p

Np

¸

, which translates to rO

ˆ

b

rn
Np

˙

. Firstly, note both results scale like rOprnq when p Ñ 0

(though the constant blows up like 1{p in both cases). Secondly, our rate is uniformly tighter since 2
2´p ą 1. And lastly, the

bound in (Fan, 2021) is vacuous for p “ 1, scaling like rOprn2q in that case, compared to rOprnq in our result.

Matrix sensing with Schatten Quasi-Norm: While exact and perturbed recovery for matrix completion with the nuclear
norm (and inductive matrix completion) is a very well-studied problem, for p ă 1, there appears to be little to no existing
work in the case of randomly sampled entries. However, there is a lot of work on the sample complexity of compressed
sensing for matrix completion, including with Schatten norm minimization (Zhang et al., 2013; Arora et al., 2019; Liu
et al., 2014; Recht et al., 2010). In compressed sensing, instead of observing entries, we observe measurements in the
form of Frobenius inner products of the ground truth with certain matrices Although MC can be expressed in the language
of compressed sensing by saying that the measurement matrices are indicator function of entries (and inductive matrix
completion can be expressed by saying that the measurement matrices are all the possible outer products of row and column

3We express our bounds in terms of excess risk with a bounded loss (which could be the truncated square loss), so the decay rate in N
can be understood as comparable: the main difference lies in the architectural sample complexity.

69



Generalization Analysis of Deep Non-linear Matrix Completion

side information vectors), it is not easy to deduce even existing results for matrix completion or IMC from their compressed
sensing analogues: indeed, the conditions on the measurement matrices are typically expressed deterministically via the
Restricted Isometry Property, which cannot be easily checked for indicator measurement matrices, though it holds with high
probability for certain classes of measurement matrices. For instance, (Zhang et al., 2013; Liu et al., 2014) show a sample
complexity of nr for perturbed recovery with the Schatten norm for a broad class of measurement matrices called “nearly
isometric families” (cf. (Recht et al., 2010)), which includes measurement matrices with i.i.d. Gaussian entries but not
indicator measurements: in that case, Property 4.3 from (Recht et al., 2010) only holds for uniform sampling, and property
4.1 only holds for bounded X , which violates the definition (which requires the property to be satisfied for all X), though
the fact it does hold for bounded X may offer insights on the relationship between the proof techniques. It is clear from the
uniform sampling complexity of rOpnrq that this setting, although much more general in many ways, cannot capture the
detailed effects of the sampling distribution on the function class capacity of matrices with constrained norms offered by
(Shamir & Shalev-Shwartz, 2011; 2014; Ledent et al., 2021b) and the present work.

Earlier works on deep matrix factorization often focus on the optimization and algorithmic aspects (Trigeorgis et al., 2016;
Zhao et al., 2017) without providing sample complexity bounds, though some include non-linear components (Xue et al.,
2017; Fan & Cheng, 2018; Wang et al., 2017; De Handschutter et al., 2021; Wei et al., 2020; Lara-Cabrera et al., 2020).
Note also that the non-linear components in those works are interpsersed between each matrix in the product (by analogy
with the activation functions in feedforward neural netowrks), rather than entry-wise and after the matrix multiplication (as
in FRMC), which implies the models are also different.

The observation that deep matrix factorization is equivalent to Schatten norm regularization was made in other works,
including (Arora et al., 2019), which studies the optimization landscape of the problem in a compressed sensing setting
where the measurement matrices commute (which does not apply to indicator measurements). The implications this has on
the implicit rank-restriction in which occurs when training deep neural networks is currently the subject of a large amount of
interest in the community (Dai et al., 2021; Jacot, 2022; Wang & Jacot, 2023). However, those works typically do not study
sample complexity, perhaps because it is only non trivial when the matrix is not flat, which implies a multi-output scenario
in the neural network context. Nevertheless, the potential to generalize our results to that situation is a tantalizing direction
for future work which may shed a different light on implicit rank-restriction in DNN training.

J. Future Directions
There are plenty of unanswered questions which can be studied in future work. For instance:

1. Can the strong dependence on m in the results in Section G be improved through a more refined handling of the L1
Lipschtiz constant in Proposition G.3?

2. Our results concern matrix completion. However, the equivalence between Schatten quasi-norm regularization and
L2 regularization of factor matrices is valid in the case of neural networks as well: in fact, there is a large amount of
renewed enthusiasm for this problem in the community in recent years from the optimization perspective (Dai et al.,
2021; Wang & Jacot, 2023; Giampouras et al., 2020; Arora et al., 2019). Do our results extend to this case? A simple
question is how the sample complexity of linear networks of the form

Rm Q fpxq “ AL . . . A1x px P Rnq (337)

behaves similarly to our bounds where the quantity M would be replaced by an upper bound on
ř

}Aℓ}2Fr. The two
problems are still technically distinct, and adaptations of the techniques would be necessary. The question can also
be extended to non zero reference matrices, which appears to be a highly non trivial problem. more generally, the
relationship between our results and those of (Dai et al., 2021) could be investigated further in this context.

3. Perhaps a unifying question regarding both points above is whether the results of Section C.2 can be obtained through a
covering number approach.

4. Can our chaining and Talagrand type arguments in Lemmas E.4 and E.3, as well as proposition G.3 be used to improve
existing generalization bounds for neural networks (with activations), at least by removing certain logarithmic terms?

5. Do our results extend unbounded losses?
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6. What can be said in the transductive case? Since has been studied in the case of nuclear norm regularization
before (Shamir & Shalev-Shwartz, 2011), it is not unreasonable to assume that similar results could hold for our setting.

7. Our results concern excess risk bounds which correspond to traditional performance measures (e.g. RMSE). However,
Recommendation Systems typically rely on measures more sensitive to higher predictions than lower ones (e.g. recall,
NDCG). Can generalization bounds be proved in those settings?

8. In recommendation systems settings, do our results extend to Graph neural networks such as LightGCN (He et al.,
2020)?
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