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Abstract
Generative models can be used in planning to pro-
pose targets corresponding to states that agents
deem either likely or advantageous to experience.
However, imperfections, common in learned mod-
els, lead to infeasible hallucinated targets, which
can cause delusional behaviors and thus safety
concerns. This work first categorizes and investi-
gates the properties of several kinds of infeasible
targets. Then, we devise a strategy to reject in-
feasible targets with a generic target evaluator,
which trains alongside planning agents as an add-
on without the need to change the behavior nor
the architectures of the agent (and the genera-
tive model) it is attached to. We highlight that,
without proper design, the evaluator can produce
delusional estimates, rendering the strategy futile.
Thus, to learn correct evaluations of infeasible
targets, we propose to use a combination of learn-
ing rule, architecture, and two assistive hindsight
relabeling strategies. Our experiments validate
significant reductions in delusional behaviors and
performance improvements for several kinds of
existing planning agents.

1. Introduction
The advent of generative models has spurred advancements
in model-based Reinforcement Learning (RL) agents. Many
agents use generative models, or ’generators,’ to imagine
next states or observations. For some other agents, these
generators propose subgoals corresponding to sets of states
to accomplish. For clarity of discussion, we call all such
agents Target-Assisted Planning (TAP) methods and their
such generated states or subgoals as targets, which are as-
sumed to be in generic forms of target embeddings (Nair
et al., 2018; Nasiriany et al., 2019; Hafner et al., 2025).

TAP methods are unified by the use of generative models
but can be very different in terms of planning behaviors.
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dence to: Mingde “Harry” Zhao <mingde.zhao@mail.mcgill.ca>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

feasible targetsGENERATOR
EVALUATOR

hindsight
experience replayenvironment

hallucinated
targets

rewards

accept

reject

reach indicator hother
components

actions
observations / states

paired training data

feasibility

target encoder g

Figure 1. Target-Assisted Planning (TAP) Framework with
Add-On Target Evaluator: An abstracted framework based on,
but not limited to, methods listed in Tab. 2 (in Appendix). The gen-
erator proposes candidate target embeddings g⊙. Our proposed
evaluator can be used to reject certain targets (related parts marked
in dashed lines).

For instance, some rollout-based TAP agents utilize fixed-
horizon transition models to simulate experiences (Sutton,
1991; Schrittwieser et al., 2019; Kaiser et al., 2020); While,
some methods directly generate arbitrarily distant targets
acting as candidate sub-goals to divide-and-conquer the
tasks into smaller, more manageable steps (Zadem et al.,
2024; Zhao et al., 2024; Lo et al., 2024).

It is another commonality shared by many TAP agents that
brings us to the topic of this work: an often unspoken as-
sumption of TAP agents is that all generated targets are
feasible, i.e., can be reached via some policy. However, the
generalization abilities of imperfect learned generative mod-
els inevitably lead to hallucinations (Xu et al., 2025; Zhang
et al., 2024b; Xing et al., 2024; Jesson et al., 2024; Aithal
et al., 2024) - the “dark side” of model generalization that
produces targets that can never be experienced by any pol-
icy. Hallucinations impact TAP agents differently based on
their planning behaviors. In decision-time planning (Alver
& Precup, 2024), where models are used to make an imme-
diate decision on what to do next, hallucinated targets can
lead to delusional plans that compromise performance and
safety (Di Langosco et al., 2022; Bengio et al., 2024). For
background planning agents, which train on simulated expe-
riences constructed with generated targets, delusional values
estimated from hallucinated targets can be catastrophically
destabilizing (Jafferjee et al., 2020; Lo et al., 2024).

Human brains address delusional behaviors by assisting the
belief formation system (similar to the generators) with a be-
lief evaluation system (Kiran & Chaudhury, 2009). Inspired

1



Rejecting Hallucinated State Targets during Planning

by this, we propose to inject a target evaluator into existing
TAP agents, to reject infeasible targets and thus address
delusional behaviors. Our design of the evaluator aims to
be a minimally intrusive add-on: it learns alongside a TAP
agent without the need to change the agent’s behaviors nor
the architectures, inspired by the auxiliary learners in Zhao
et al. (2020). For this to work, we also must ensure that the
evaluator itself does not produce delusional evaluations, i.e.,
errors that cannot be corrected by more training. Our main
contributions are as follows:

1. We systematically categorized and characterized infeasi-
ble targets w.r.t. time horizons

2. We discussed the desiderata of learning a minimally-
intrusive non-delusional target evaluator

3. We proposed a combination of a) off-policy compatible
update rule, b) an evaluator architecture compatible with
different time horizons and c) two assistive hindsight
relabeling strategies that provides training data beyond
those collected via interactions

4. We implemented the solution, as illustrated in Fig. 1,
for several types of existing TAP agents, as discussed in
Tab. 2 (in Appendix), and showed that agents can better
manage generated targets, reduce delusional behaviors
and significantly improve performance

2. Preliminaries
RL & Problem Setting: We model the interaction of an
agent with its environment as a Markov Decision Process
(MDP) M ≡ ⟨S,A, P,R, d, γ⟩, where S and A are the
sets of possible states and actions, P : S × A → Dist(S)
is the state transition function, R : S × A × S → R is
the reward function, d : S → Dist(S) is the initial state
distribution, and γ ∈ (0, 1] is a discount factor. An agent
needs to improve its policy π : S → Dist(A) to maximize
the value, i.e., the expected discounted cumulative return
Eπ,P [

∑T⊥
t=0 γ

tR(St, At, St+1)|S0 ∼ d], where T⊥ denotes
the time-step when the episode terminates. Some environ-
ments are partially observable, which means that instead of
a state, the agent receives an observation xt+1, used to infer
the state (possibly with episodic history).

Targets: for generality, we consider a target to be an em-
bedding of a set of states. Each target g⊙ 7→ {s⊙} is paired
with an indicator function h outputting h(s′, g⊙) = 1 if
s′ ∈ {s⊙} and 0 otherwise. For the interest of time hori-
zons, we also introduce τ - the maximum number of time
steps an agent is allowed in order to reach a state in g⊙.

Let Dπ(s, g) be a random variable representing the 1st time-
step t at which h(st, g

⊙) = 1, if the agent follows π from
state s, with π being g⊙-conditioned or not. We define
τ -feasibility of g⊙ from state s under π as p(Dπ(s, g

⊙) ≤

τ) :=
∑τ

t=1 p(Dπ(s, g
⊙) = t). g⊙ is called τ -feasible if

p(Dπ(s, g
⊙) ≤ τ) > 0, and τ -infeasible otherwise.

A target is generally evaluated as “good” if it leads to re-
warding outcomes, i.e.:

Uπ,µ(s, g⊙, τ) :=

rπ(s, g
⊙, τ) + γπ(s, g

⊙, τ) · Vµ(smin(Dπ(s,g⊙),τ))
(1)

where min(Dπ(s, g
⊙), τ) denotes the timestep at which

the commitment to g⊙ is terminated (by either h or
τ ), smin(Dπ(s,g⊙),τ) is the state the agent ended up in,

rπ(s, g
⊙, τ) :=

∑min(Dπ(s,g
⊙),τ)

t=1 γt−1rt is the cumula-
tive discounted reward along the way (from s following π),
γπ(s, g

⊙, τ) := γmin(Dπ(s,g
⊙),τ) is the associated cumula-

tive discount, and Vµ(· · · ) is the future value for following
µ from smin(Dπ(s,g⊙),τ).

Eq. 1 shows that if g⊙ is τ -infeasible, i.e., smin(Dπ,τ) /∈ g⊙,
then TAP methods blindly using g⊙ to determine Vµ will
produce delusional evaluations - the cause of delusional
planning behaviors. For example, feasibility-unaware meth-
ods, e.g., Sutton (1991); Schrittwieser et al. (2019); Hafner
et al. (2025), assume that targets are always reachable as
long as they can be generated. While, planned trajectories
involving infeasible targets are delusional; There are also
some feasibility-aware methods, e.g. Nasiriany et al. (2019);
Zhao et al. (2024); Lo et al. (2024), in which agents estimate
certain metrics to decide if a target is feasible. However, as
we will discuss later, they often produce incorrect estimates,
thus may still favor infeasible targets. In later sections,
we propose an evaluator that simultaneously estimates the
τ -feasibility and Dπ of the proposed targets, where these
estimations are used to decide if the evaluation of a target
should be trusted or if the target should be rejected.

Source-Target Pairs & Hindsight Relabeling To learn the
feasibility of a target from a given state, “source-target pairs”
are needed, which are tuples involving a source state and
a target embedding. The quality of these paired training
data is critical for the training outcome (Dai et al., 2021;
Moro et al., 2022; Davchev et al., 2022). Hindsight Expe-
rience Replay (HER) was proposed as a way to enhance
the diversity of the distribution of the pairs, by re-using
targets that happened to have been achieved on existing tra-
jectories, and pretending that they were the intended targets
that were followed during the interactions (Andrychowicz
et al., 2017). HER augments a transition ⟨st, at, rt+1, st+1⟩
with an additional state s⊙, which can be passed through a
target embedding function g at training time to acquire the
target embedding g(s⊙) as the relabeled target. Relabeling
strategies, corresponding to how s⊙ is obtained, are critical
for HER’s performance (Shams & Fevens, 2022). Most
existing relabeling strategies are trajectory-level, meaning
that s⊙ comes from the same trajectory as st. These include
future, where s⊙ ← st′ with t′ > t, and episode, with
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Table 1. Categorization of Targets based on Composition, Characteristics, Risks & Delusion Mitigation Strategies
Target

Composition
State
Correspondence

∞-Feasibility
p(Dπ(s, g

⊙) <∞)
Feasibility Delusions & Resulting
Delusional Planning Behaviors

Relabeling Strategies against
Feasibility Delusions

Only or
Single G.0

non-hallucinated
feasible states from s

> 0
E.0: May think G.0 states are
infeasible, thus turn to riskier
alternatives, e.g., G.1 or G.2

episode for G.0 (and G.2) states in the
same episode + pertask for G.0 (and
G.2) beyond the episode

Only or
Single G.1

hallucinated “states”
not belonging to the
MDP

should = 0
E.1: May think G.1 states are favorable,
thus commit to them. Impacted by
ill-defined Vµ(· · · )

generate for G.1 (and G.0 & G.2)
states, to be proposed by the generator

Only or
Single G.2

hallucinated MDP
states infeasible
from s

should = 0
E.2: May think G.2 states are favorable,
thus commit to them

pertask for G.2 (and G.0) beyond
episode + episode for G.2 (and G.0)
states in the same episode

Some G.0
at least one
non-hallucinated
state from s

=
p(Dπ(s, g

⊙
−) <∞)

> 0 (Thm. 4.1)
E.0 episode + pertask

Only G.1 &
G.2

set of ONLY
hallucinated states should = 0 E.1 & E.2 generate or generate + pertask

0 ≤ t′ ≤ T⊥. The introduction of HER greatly enhanced
the sample efficiency of learning about experienced targets.
Meanwhile, the incompleteness of the accompanying rela-
beling strategies planted a hidden risk of delusions towards
hallucinated targets for TAP agents developed based on
HER, to be discussed later.

3. Hallucinated State Targets in Planning
Categorizing targets proposed by the generator helps us not
only to understand the relationship between hallucinations
and planning, but also inform us about how to correctly
learn the feasibility of targets.

Let us first warm-up with singleton targets, i.e., g⊙ has a sin-
gle element ŝ⊙, and propose a characterization of generated
targets into 3 disjoint categories. Then, we will extend the
analysis to the case of non-singleton g⊙, where the target
correspond to sets of states.

3.1. G.0: ∞-Feasible

Given source state s, a generated singleton target g⊙ is
called G.0 if it maps to one state which is∞-feasible from
s, with some policy π. Note that G.0 includes τ -infeasible
states for given finite values of τ .

3.2. G.1 - Permanently Infeasible (Hallucination)

G.1 includes generated “states” that do not belong to
the MDP at all, i.e., a target “state” ŝ⊙ is G.1 if
∀s, π, p(Dπ(s, ŝ

⊙) <∞) = 0.

3.3. G.2 - Temporarily Infeasible (Hallucination)

This type includes those MDP states that are currently in-
feasible from state s. Unlike G.1, G.2 states could be G.0
if they were evaluated from a different source state. G.2s
can often be overlooked, not only because hallucinations are
mostly studied in contexts that do consider the source state

s, but also because they only exist in some special MDPs.

3.4. Examples

To provide intuition about these concepts, we use the Min-
iGrid platform to create a set of fully-observable environ-
ments, minimizing extraneous factors to focus on the targets
(Chevalier-Boisvert et al., 2023). We call this environment
SwordShieldMonster (SSM for short); In SSM, agents
navigate by moving one step at a time in one of four direc-
tions across fields of randomly placed, episode-terminating
lava traps, while searching for both a sword and a shield
to defeat a monster with a terminal reward. The lava traps’
density is controlled by a difficulty parameter δ, but there is
always a feasible path to success. Approaching the monster
without both the randomly placed sword and shield ends the
episode. Once acquired, either of the two items cannot be
relinquished, leading to a state space where not all states are
accessible from the others. Thus, SSM states are partitioned
into 4 semantic classes, defined by 2 indicators for sword
and shield possession. For example, ⟨0, 1⟩ denotes “sword
not acquired, shield acquired”.

G.1 generations in this environment may be semantically
valid, e.g., an SSM “state” with the agent surrounded by
lava, as in Fig. 2 (top row), or totally absurd, e.g., an SSM
observation without an agent.

G.2 states can be once G.0 but are now blocked due to a past
transition, e.g., after acquiring the sword in SSM, the agent
transitions from class ⟨0, 0⟩ to ⟨1, 0⟩, sealing off access
to ⟨0, 0⟩ or ⟨0, 1⟩; G.2 can also appear due to the initial
state distribution d: some states can only be accessed from
specific initial states, e.g., an agent spawned in ⟨1, 0⟩ cannot
reach ⟨0, 0⟩ or ⟨0, 1⟩. An example of delusional behavior
caused by a G.2 target is provided in Fig. 2 (bottom row).

Despite rising concerns regarding the safety of TAP agents
(Bengio et al., 2024), their delusional behaviors remain
under-investigated, largely due to the lack of access to
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D=1 (delusional feasibility)

hallucinated 
target (G.1)

G.1-induced delusional behavior

agent (moves in 4 directions)

lava (episode ends)

sword (can’t drop if picked up) 

shield (can’t drop if picked up)

monster
(episode ends, +1 reward w/    &    )

D=1 (delusional feasibility)

hallucinated 
target (G.2)

sword & shield already acquiredsword & shield both NOT acquired

G.2-induced delusional behavior (s in ⟨1, 1⟩, s⊙ in ⟨0, 0⟩)

Figure 2. Delusional Planning Behaviors in SSM: In both cases,
the evaluators, lacking understanding about the hallucinated targets
(yellow dots), mis-evaluate their feasibility, leading to delusional
plans which seemingly suggest that shorter paths to the task goal
via the hallucinated targets.

ground truths needed to identify hallucinations and their
resulting delusional behaviors. Thus, it is critical to analyze
with clear examples and conduct rigorous controlled exper-
iments where the ground truth of targets could be solved
with Dynamic Programming (DP) (Howard, 1960), which
is why we created SSM and used it later for experiments.

3.5. Non-Singleton Targets

For the general case when a generator generates target em-
beddings g⊙ potentially corresponding to a set of “states”
{ŝ⊙}, the elements of the associated set may span all cate-
gories (G.0, G.1 & G.2). Tab. 1 summarizes all the possible
cases of target composition and their implications1; Possible
solutions that we propose are discussed in later sections.

4. Correctly Evaluating Targets
Knowing that hallucinations cannot be eradicated in general,
we intend to lower their risks by adopting the brain-inspired
solution - to reject infeasible targets post-generation. If
done effectively, the negative impact of hallucinated tar-
gets becomes limited to the resource cost of generating and
rejecting targets, to be discussed in detail. This approach

1There may be no explicit mapping from a target embedding to
a set of “states” and thus any target can always map to arbitrarily
many G.1 “states”. This problem is solved by Thm. 4.1.

is in contrast with directly trying to address hallucinations
in the generators case-by-case, which we deem to have an
unbreakable glass ceiling and not versatile enough to be
generalized to generic TAP methods.

For a feasibility evaluator to be effectively differentiate the
proposed targets, it should correctly estimate the feasibility
of targets which maps to all kinds of states (G.0, G.1 &
G.2). However, learning to estimate feasibility is not as
trivial as it seems, because improper training could naturally
lead to delusional feasibility estimations, which cannot be
simply addressed by scaling up training. If the evaluator
has delusions of feasibility, then its incorporation becomes
futile, as hallucinated targets could still be favored.

For estimation errors, we similarly warm up with those of
the singleton targets. For clarity, we use matching identifiers
E.0, E.1, and E.2 to denote the estimation errors of feasibility
towards G.0, G.1, and G.2 “states”, respectively. These
discussions are presented in Tab. 1.

When targets correspond to general sets of states, we have:
Theorem 4.1. Let g⊙ be a target embedding. Its feasibility
from state s satisfies:

∀π, p(Dπ(s, g
⊙) ≤ τ) = p(Dπ(s, g

⊙
−) ≤ τ)

where g⊙
− is a target that correspond to the set of states of

g⊙ with all infeasible states (G.1 & G.2) removed.

This result indicates that a target is infeasible if and only if
it consists entirely of infeasible states, allowing us to focus
on learning processes that identify such cases.

4.1. Desiderata for Evaluator

We used the following important considerations to guide
our design for an appropriate feasibility evaluator.

• [automatic] the evaluator must learn to automatically
differentiate the feasibility of all kinds of targets without
pre-labeling: we need to exploit h

• [minimally intrusive] the evaluator should be generally
applicable to existing TAP agents, without changing the
agents too much to disturb the generally-sensitive RL
components: we need to ensure its behavior as an add-on
and it can be conditioned on the policy π of the agent, to
learn alongside the agent

• [unified] the evaluator should have a unified behavior
compatible with different τs: we can design it in a way to
learn the τ -feasibilities for many τ values simultaneously

4.2. Learning Rule & Architecture for Feasibility

Following the considerations, we propose to use the follow-
ing learning rule to indirectly learn the targets’ feasibility
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by directly learning the distribution of Dπ(s, g
⊙).

Dπ(s, g
⊙)← 1 +Dπ(s

′, g⊙) , with (2) Dπ(s, g
⊙) ≡ Dπ(s, a, g

⊙), a ∼ π(·|s, g⊙)
Dπ(s

′, g⊙) :=∞ if s′is terminal and h(s′, g⊙) = 0
Dπ(s

′, g⊙) := 0 if h(s′, g⊙) = 1

This results in an off-policy compatible policy evaluation
process over a parallel MDP almost-identical to the task
MDP, but adapted for g⊙, where all transitions yield “re-
ward” +1 and states satisfying g⊙ are changed to terminal
with state value 0. Every time the an infeasible target embed-
ding is sampled for training, the update rule will gradually
push the estimate towards∞, for all sampled source state s.

Our design only learns Dπ in a way that can lead to τ -
feasibilities p(Dπ(s, g

⊙) ≤ τ). For this purpose and
the consideration for a unified design, we propose to use
Eq. 2 in conjunction with a C51-style distributional archi-
tecture (Dabney et al., 2018), which outputs a distribu-
tion represented by a histogram over pre-defined supports.
When we set the support of the estimated Dπ(s, g

⊙) to
be [1, 2, · · · , T ] with T sufficiently large, the learned his-
togram bins via Eq. 2 will correspond to the probabilities
of p(Dπ(s, g

⊙) = t) for all t ∈ {1, . . . , T − 1}. This
technique of using C51 distributional learning enables the
extraction of τ -feasibility p(Dπ(s, g

⊙) ≤ τ) from a learned
T -feasibility with p(Dπ(s, g

⊙) = t) over t ∈ {1, . . . , T},
thus learning all τ -feasibility with τ < T simultaneously.
Take the example of the 1-step Dyna agent we implemented
for experiments (Sec. 5.2): if the estimated histogram has
little probability density for p(Dπ(s, g

⊙) = 1), then the tar-
get (simulated next state) is likely hallucinated and should
be rejected, avoiding a potential delusional value update.

Note that the C51 architecture also allows us to extract the
distribution of γπ(s, g

⊙, τ), which, as defined in Sec. 2,
the cumulative discount with a chosen target. This is done
via transplanting the output histogram of Dπ(s, g

⊙) over
[1, 2, . . . , τ, τ + 1, τ + 2, . . . ] onto the changed support of
[γ1, γ2, · · · , γτ , γτ , γτ , . . . ].

4.3. Training Data for Feasibility

With the proper learning rule and architecture, we now need
to ensure that the evaluator have proper training data and
does not become delusional. In Sec. 2, we mentioned the
incompleteness of the relabeling strategies, which will be
discussed in detail now: 1) Certain relabeling strategies nat-
urally create exposure issues, even for G.0 targets. For in-
stance, future only relabels with future observations, thus
only exposes a learner to future feasible targets, confusing
the evaluator when a “past” target is proposed during plan-
ning; 2) Trajectory-level relabeling is, by design, limited.
Short trajectories, common in many training procedures,
cover limited portions of the state space and prevent evalu-

ators from learning about distant targets, risking delusions
when such distant targets are proposed. Short trajectories
can be the product of experimental design (initial state distri-
butions, maximum episode lengths (Erraqabi et al., 2022), or
environment characteristics, e.g., density of terminal states).

Avoiding feasibility delusions requires learning from all
kinds of targets, including those that can never be experi-
enced. This is to counter the exposure bias - the discrepancy
between (most existing) TAP agents’ behaviors (involving
all targets that can be generated) and training (learning from
only experienced targets), identified in Talvitie (2014).

We introduce 2 ideas to expand training source-target pair
distributions, materialized as two relabeling strategies.

4.3.1. generate: EXPOSE CANDIDATES TARGETS (TO
BE GENERATED)

The first strategy, named generate, is to expose the targets
that will be proposed during planning to the evaluator, so
that it can figure out if these targets are infeasible.

We can implement this as a Just-In-Time (JIT) relabeling
strategy that relabels a sampled (un-relabeled) transition for
training with a generated target (provided by the generator).
We can expect generate to be effective, as evaluators will
get exposed to hallucinated targets that the generator could
offer. Note that generate requires the use of the generator,
thus it incurs additional computational burden, depending on
the complexity of target generation. The JIT-compatibility
lowers the need for storage and provides timely coverage
of the generators’ changing outputs, especially helpful for
non-pretrained generators. The idea behind generate can
be traced back to Talvitie (2014).

0 ... ... t t+1 ......

0 ... ... ......

new trajectory to be labeled:

old trajectory sampled by “pertask”:

a relabeled transition (source --• target pair) 
that helps estimators understand that it’s 
impossible to go from <1, 0> to <0, 1>

Figure 3. An Example of How pertask Reduces E.2 by Sam-
pling Across Episodes: The new trajectory acquired the sword
first and the shield later, while the old trajectory acquired the shield
first and then the sword. When relabeling a transition in the new
trajectory (in ⟨1, 0⟩), a target observation in the old trajectory (in
⟨0, 1⟩) can be paired to make an agent realize the infeasibility of
the relabeled target, thus reducing E.2 delusions.

4.3.2. pertask: EXPOSE EXPERIENCED TARGETS
BEYOND THE EPISODE

The second strategy, named pertask, is to expose the eval-
uator to ALL targets g(s⊙) experienced before, so that it
could realize if some previously achieved targets not present
in the current episode are infeasible from the current state.

5



Rejecting Hallucinated State Targets during Planning

We implement pertask by relabeling transitions with (the
target embedding of) observations from the same training
task, sampled across the entire replay. pertask can be seen
as an generalization of the “random” strategy in Andrychow-
icz et al. (2017) to multi-task training settings. Importantly,
pertask exposes the evaluator to E.2 delusions and to long-
distance E.0 caused by trajectory-level relabeling on short
trajectories. An example is shown in Fig. 3.

4.3.3. APPLICABILITY

pertask cannot address E.1 delusions. While, generate
can be used against some G.2 targets that the generator
hallucinates. pertask is a specialized and computation-
ally efficient strategy to reduce feasibility delusions to-
wards all experienced G.2 target states and importantly also
the long-distance E.0 errors that generate cannot handle.
pertask is expected to be more effective than generate in
generalization-focused scenarios, where the distribution of
G.0 & G.2 targets proposed by the generator during evalua-
tion can go beyond those trained under generate.

Importantly, relabeling strategies such as future, episode
and pertask rely on the existence of g that maps a state
into a target embedding, which is commonly found in TAP
agents (Andrychowicz et al., 2017). However, if only the
target set indicator function h is available, we may need to
accumulate ⟨s, g⟩ tuples for which h(s, g) = 1, and the use
them to train a g. Or, in the cases where feasibility is only
used for rejection, such as when dealing with simulated
experiences and tree search, we could also rely on only
generate, which does not require g; Sometimes, it is h that
needs to be constructed. We provide detailed discussions for
applying our solution on DreamerV2 in Sec. J (Appendix),
with a focus on how to construct a proper h.

4.3.4. MIXTURES

Both generate & pertask bias the training data distribu-
tion, making the evaluator spread out its learning efforts
to the source-target pairs possibly distant from each other.
Despite increasing training data diversity, distant pairs are
less likely to contribute to better evaluation compared to
the closer in-episode ones offered by episode, as close-
proximity G.0 targets matter the most.

Creating a mixture of sources of training data can increase
the diversity of source-target combinations. For HER specif-
ically, each atomic strategy, enumerated in Tab. 3 and il-
lustrated in Fig. 8 (Appendix), exhibits different estimation
accuracies for different types of source-target pairs, includ-
ing short-distance and long-distance ones involving all of
G.0, G.1 and G.2.

When the training budget is fixed, i.e., training frequency,
batch sizes, etc., stay unchanged, the mixing proportions

of strategies pose a tradeoff to the learning of different
kinds of source-target pairs. In the experiments, we mainly
used (E+P+G), which is a mixture of 2/3 episode and
1/3 pertask, with 1/4 chance using generate JIT, result-
ing in a mixture of 50% episode, 25% pertask and 25%
generate. (E+P+G) exploits the fact that assisting episode

with generate and pertask often results in better perfor-
mance in evaluator training, striking a balance between the
investment of training budgets for the feasible and infeasible
targets (Nasiriany et al., 2019; Yang et al., 2021).

4.4. Computational Overhead

The portion of overhead for the evaluation of targets is
straightforward, as each target will be fed into the neural
networks (paired with a source state) for a forward pass
at inference time. This portion of the overhead depends
on evaluator’s networks, complexity of the state / target
representations. Since the evaluator is a rather lightweight
secondary network, we can expect fast evaluations.

It is the strategy post evaluation that determines the overall
overhead, which depends on the planning behavior of the
TAP agent that the evaluator is attached to. For background
TAP agents that generate batches of targets, the improper
ones can be rejected and the whole batch can be all rejected
without problem (no Dyna update this time). For decision-
time TAP agents, targets act as subgoals and when they are
rejected, the agent can either re-generate or commit to more
random explorations.

5. Experiments
To investigate the effectiveness and generality of our pro-
posed solution against delusional behaviors caused by hallu-
cinated targets, we use a simple and unified implementation
of our evaluator (3-layers of ReLU activated MLP with out-
put bin T = 16 and (E+P+G)) for 8 sets of experiments,
encompassing decision-time v.s. background planning, TAP
methods compatible with arbitrary τs and fixed τs, single-
ton and non-singleton targets, on controlled environments
with respective emphases on G.1 and G.2 difficulties. The
implementations of our solutions for these experiments can
be extended to various existing TAP methods, per Tab. 2
(in Appendix). Due to page limit, we only provide brief
summaries of our experimental results in the main paper and
refer the readers to the Appendix for more comprehensive
details.

Exp.1/8: Skipper (decision-time TAP with singleton tar-
gets, arbitrary τ ) on SSM

Exp.2/8: (Appendix, Sec. C) LEAP (decision-time TAP
with singleton targets, arbitrary τ ) on SSM

Exp.3/8: (Appendix, Sec. D) Skipper on RDS, another con-
trolled environment focusing on G.1 difficulties
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Exp.4/8: LEAP on RDS

Exp.5/8: Dyna (background TAP with singleton targets,
τ = 1) on SSM

Exp.6/8: (Appendix, Sec. F) Dyna on RDS

Exp.7/8: (Appendix, Sec. G) Feasibility estimation of non-
singleton targets with arbitrary τ on SSM

Exp.8/8: Feasibility of non-singleton targets with arbitrary
τ on RDS

2 4 6 8 10 12 14
source-target distances

0

1

2

3

E.
0 

er
ro

r -
 D

(
)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) Final E.0 Errors by Distance

0.0 0.5 1.0 1.5
training steps 1e6

3

5

7

9

E.
1 

er
ro

r -
 D

(
)

Skipper
Skipper+

0.0 0.5 1.0 1.5
training steps 1e6

2

4

6

8

E.
2 

er
ro

r -
 D

(
)

0.0 0.5 1.0 1.5
training steps 1e6

10 4

10 3

G
.1

 ta
rg

et
s c

ho
se

n 
%

0.0 0.5 1.0 1.5
training steps 1e6

10 3

10 2

10 1

G
.2

 ta
rg

et
s c

ho
se

n 
%

(b) Evolution of E.1 Errors

(c) Evolution of E.2 Errors

0.0 0.5 1.0 1.5
training steps 1e6

0

.2

.4

ag
gr

eg
at

ed
 O

O
D

 su
cc

es
s r

at
e Skipper

Skipper+

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(d) Aggregated OOD Performance

Figure 4. Skipper on SSM: We compare the original form of Skip-
per, which learns its own feasibility estimates of target states in
its own way, against Skipper+, which has our proposed evaluator
injected to assist the evaluation of the feasibility of targets, pow-
ered by the (E+P+G) relabeling strategy. Results of more variants
are presented in Fig. 10 (Appendix). a): Final E.0 errors sepa-
rated across a range of ground truth distances. Both estimated
and true distances are conditioned on the evolving policies; b):
E.1 errors measured as L1 error in estimated (clipped) distance
throughout training; c): G.2-counterparts of b; d): Each data point
represents OOD evaluation performance aggregated over 4× 20
newly generated tasks, with mean difficulty matching training.
The decomposed results for each OOD difficulty are presented in
Fig. 11 (Appendix).

All presented mean curves and the 95%-confidence interval
bars are established over 20 independent seed runs.

5.1. Decision-Time Planning (Exp. 1/8 - 4/8)

For decision-time TAP agents, we are interested in under-
standing how rejecting hallucinated targets can influence
their abilities to generalize their learned skills after learning
from a limited number of training tasks. This also means,

the evaluator is expected to learn to generalize its identifica-
tion of infeasible targets in novel situations, by identifying
the patterns of the infeasible targets.

For such experimental purpose, we use distributional shifts
provided in SSM to simulate real-world OOD systematic
generalization scenarios in evaluation tasks (Frank et al.,
2009). For each seed run on SSM, we sample and preserve
50 training tasks of size 12× 12 and difficulty δ = 0.4. For
each episode, one of the 50 tasks is sampled for training.
Agents are trained for 1.5 × 106 interactions in total. To
speed up training, we make the initial state distributions
span all the non-terminal states in each training task, making
trajectory-level relabeling even more problematic.

5.1.1. METHODS

To demonstrate the generality of our proposed solution
against hallucinated targets for decision-time TAP, we apply
it onto two methods utilizing targets quite differently:

Skipper (Zhao et al., 2024): generates candidate target states
that, together with the current state, constitute the vertices of
a directed graph for task decomposition. On the other hand,
the edges are pairwise estimations of cumulative rewards
and discounts, under its evolving policy. A target is chosen
after applying value iteration, i.e., the values of targets are
the U values of the planned paths.2

LEAP (Nasiriany et al., 2019): LEAP uses the cross-entropy
method to evolve the shortest sequences of sub-goals leading
to the task goal (Rubinstein, 1997). The immediate sub-goal
of the elitist sequence is then used to condition a lower-
level policy. Compared to Skipper, LEAP is more prone to
delusional behaviors, since one hallucinated sub-goal can
render a whole sub-goal sequence delusional.3

For Exp. 1/8 - 4/8, targets are observation-like generations,
where G.1 & G.2 can be clearly identified. See the Sec. A.2
(Appendix) for more implementation details.

5.1.2. EVALUATIVE METRICS

Feasibility Errors: At each evaluation timing, we compare
the evaluators’ estimated feasibility of targets (estimated
expectation of Dπ), against the ground truths (Sutton &
Barto, 2018).

Delusional Behavior Frequencies: We monitor the fre-
quency of a hallucinated target (made of G.1 and G.2) be-
ing chosen by the agents (as the next sub-goal for Skipper,

2As shown in Tab. 2, our adaptation for Skipper can be ex-
tended to methods utilizing arbitrarily distant targets, including
background TAP methods such as GSP (Lo et al., 2024)

3As shown in Tab. 2, our implementation for LEAP can be
extended to planning methods proposing sub-goal sequences, such
as PlaNet (Hafner et al., 2019)
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as a part of the sub-goal chain for LEAP), i.e., delusional
planning behaviors. Due to the page limit, some related
discussions and results are presented in Appendix.

OOD Generalization Performance: We analyze the
changes in agents’ OOD generalization performance. The
evaluation tasks (targeting systematic generalization) are
sampled from a gradient of OOD difficulties - 0.25, 0.35,
0.45 and 0.55. Because of the lack of space, we present
the “aggregated” OOD performance, such as in Fig. 4 d), by
sampling 20 task instances from each of the 4 OOD difficul-
ties, and combine the performance across all 80 episodes,
which have a mean difficulty matching the training tasks. To
maximize the evaluation difficulty, the initial state is fixed
in each evaluation task instance: the agents are not only
spawned to be at the furthest edge to the monster, but also
in semantic class ⟨0, 0⟩, i.e., with neither the sword nor the
shield in hand.

5.1.3. A GLIMPSE ON Skipper ON SSM (EXP. 1/8)

We compare the original form of Skipper with Skipper+, a
variant that is assisted by the proposed evaluator. Details of
the variants are shown in the captions of Fig. 4.

Hallucination: we first investigate generator’s rates of hal-
lucinations. As shown in Fig. 9 (Appendix), the generator
produces targets that correspond to G.1 and G.2 with the
rate of around 3% and 5%, respectively. We leave the details
of the generators there for the readers.

Feasibility Errors: Skipper relies on a built-in cumula-
tive discount estimator whose estimations can be converted
to feasibility estimates that our evaluator seeks to learn.
Thus, we can examine the errors of the feasibility estimates
corrected by the injected evaluator to understand how the
proposed evaluator could reduce feasibility delusions of
arbitrary-horizon TAP methods. From Fig. 4 b) and c), we
can see that feasibility estimates corrected by our evalu-
ator have significantly less errors compared to the origi-
nal, towards both G.1 and G.2 targets. As a perk for Skip-
per+’s utilization of pertask for E.2 delusions (included
in (E+P+G)), its positive effect on far-away G.0 targets are
also shown in Fig. 4 a). It can be seen that the evaluator is
generally helpful for Skipper to understand the feasibility
of all G.0, G.1 and G.2 targets.

Frequency of Delusional Plans: The purpose of identi-
fying infeasible targets is to reduce delusional plans that
involve them. We provide detailed results on this in Fig. 10
(Appendix), where we observed significant reduction in
delusional plans involving both G.1 and G.2 targets.

Generalization: Comparing Skipper and Skipper+, we can
deduce from Fig. 4 that generally, lower E.2 errors (c) lead
to less frequent delusional behaviors (shown in Fig. 10, Ap-
pendix), which in turn improves the OOD performance in

d). This indicates that rejecting infeasible targets can help
decision-time TAP agents in systematic OOD generaliza-
tion.

5.1.4. A GLIMPSE ON LEAP ON RDS (EXP. 4/8)

Having covered G.2-focused SSM with Skipper, we turn to
another decision-time TAP agent compatible with arbitrary
horizon targets on an environment focused on G.1 difficul-
ties (more details in Sec. A.1, Appendix). As shown in
Fig. 5, LEAP+ (LEAP assisted by the proposed evaluator),
achieves significant fewer delusional plans and better OOD
evaluation performance.
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Figure 5. LEAP on RDS: compared to the baseline LEAP, LEAP+
selects significantly fewer G.1 subgoals. a) Evolving ratio of G.1
subgoals among the planned subgoal chains; b): Aggregated OOD
evaluation performance, same as for Fig.4 d).
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Figure 6. Dyna on SSM: compared to the baseline Dyna, Dyna+
rejects the updates toward 1-infeasible generated states flagged
by the evaluator, powered by (E+P+G). a) Evolving mean L1

distances between estimated Q & optimal values; b): task perfor-
mance on the 50 training tasks & rate of Dyna+ rejecting updates.

5.1.5. SUMMARY OF EXP. 1/8 - 4/8

For Exp. 1/8 - 4/8, with the proposed evaluator, we saw a
reduction in feasibility delusions and in delusional behav-
iors, which led to better OOD generalization performance,
against challenges of G.1 & G.2. These 4 sets of experi-
ments align in terms of the effectiveness of our approach.

5.2. Background Planning: A Glimpse on Exp. 5/8 & 6/8

These experiments focus on a rollout-based background
TAP agent - the classical 1-step Dyna (Sutton, 1991), which
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uses its learned transition model to generate next states from
existing states to construct simulated transitions that are
used to update the value estimator, i.e. a “Dyna update”.
Jafferjee et al. (2020) demonstrated the benefit when the
delusional Dyna updates bootstrapped on hallucinated tar-
gets are rejected with an oracle. We replace the oracle using
our learned evaluator. With the same training setup, in Fig. 6,
we present the empirical results of how target rejection can
significantly improve the performance of Dyna on SSM. The
rejection rate stabilizes as both the generator and the evalua-
tor learns. These observations are consistent with Exp. 6/8,
presented in Sec. F (Appendix).4

5.3. Non-Singleton Targets: A Glimpse on Exp. 7/8 & 8/8

We validate the evaluator’s empirical convergence to ground
truths when facing non-singleton targets. We present the
results on RDS (Exp. 8/8) in Fig. 7 and leave the SSM coun-
terpart Fig. 19 in Appendix (for Exp. 7/8). The results show
convergence as expected and more details are presented in
Sec. G in Appendix.
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Figure 7. Feasibility of Non-Singleton Targets on RDS: a) Evo-
lution of E.0 error; b) Evolution of E.1 error; The training data is
acquired with random walk.

6. Related Works
TAP: Most rollout-based TAP methods are oblivious to
model hallucinations and utilize all generated targets with-
out question. These include fixed-step background meth-
ods such as Sutton (1991); Kaiser et al. (2020); Yun et al.
(2024); Lee et al. (2024) and decision-time methods based
on tree-search, such as Schrittwieser et al. (2019); Hafner
et al. (2019); Zhao et al. (2021); Zhang et al. (2024a); TAP
methods compatible with arbitrarily distant targets (τ =∞)
often struggle to produce non-delusional feasibility-like es-
timates for hallucinated targets. Thus, they cannot properly
reject infeasible targets despite having their own “evalua-
tors”. These include background methods such as Lo et al.
(2024) and decision-time methods for path planning (Nasiri-

4The implementation here can be extended to fixed-horizon
rollout agents. In the Sec. J (Appendix), we provide details on how
we applied our Dyna solution to DreamerV2 (Hafner et al., 2021).

any et al., 2019; Yu et al., 2024; Duan et al., 2024), OOD
generalization (Zhao et al., 2024), and task decomposition
(Zadem et al., 2024). Previously, there were method-specific
approaches proposed against delusional planning behav-
iors, such as by constraining to certain probabilistic models
(Deisenroth & Rasmussen, 2011; Chua et al., 2018), or
training a target evaluator separately on a collected dataset.

Delusions in value estimates of hallucinated states are hy-
pothesized to plague background planning (Jafferjee et al.,
2020). Lo et al. (2024) introduced a temporally-abstract
background TAP method to limit temporal-difference up-
dates to only a few trustworthy targets. Di Langosco et al.
(2022) classified goal mis-generalization, a delusional be-
havior describing when an agent competently pursues a
problematic target. Talvitie (2017) tried to trains the model
to correct itself when error is produced. Zhao et al. (2024)
gave first examples of delusional behaviors caused by hallu-
cinated targets in decision-time TAP agents.

Hindsight Relabeling is highlighted for its improved sam-
ple efficiency towards G.0 targets, around which most
follow-up works revolved as well (Andrychowicz et al.,
2017; Dai et al., 2021). However, sample efficiency is not
the only concern in TAP agents, as delusions toward gener-
ated targets can cause delusional behaviors leading to other
failure modes. Shams & Fevens (2022) studied the sample
efficiency of atomic strategies, without looking into their
failure modes. Deshpande et al. (2018) detailed experimen-
tal techniques in sparse reward settings using future. In
(Yang et al., 2021), a mixture strategy similar to generate

improved estimation of feasible targets, though its impact
on hallucinated targets was not investigated. Note that the
performance of existing HER-trained agents is often limited
by their reliance on future or episode, whose delusions
this paper intends to address.

7. Conclusion & Limitations
We categorized hallucinations for planning agents that uses
generative models to produce state targets. Then, we pro-
posed to evaluate the feasibility of targets s.t. the infeasible
hallucinations can be properly rejected during planning. We
proposed a combination of learning rules, architectures and
two relabeling strategies that can address the delusions of
feasibility towards hallucinated targets. In experiments, we
showed that the proposed evaluator can address the harm of
hallucinated targets in various planning agents.

Some other planning agents propose “targets” that do not
directly correspond to reaching sets of states, instead, to
maximize certain signals without providing h. For future
work, we will investigate those agents to understand how
they are impacted by hallucinations.
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Impact Statement
The strategies outlined in this study are straightforward to
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Appendix: Part I - Referenced Tables & Figures

Table 2. Discussed Methods, Properties & How to use the Feasibility Evaluator
Method TAP Category Delusional Planning Behaviors How Our Solution Helps Implementation Details &

Challenges

Dyna
(Sutton,
1991)

Fixed-Horizon
Background

Planning

The imagined transitions could
contain hallucinated (next)
observations / states, whose
delusional value estimates could
destabilize the bootstrapping-based
TD learning

Cancel updates involving rejected
next states (not evaluated to be
reachable within 1 timestep).

Implemented (for 1-step Dyna): If the
output histogram of the evaluator has
significant density on the bin
corresponding to t = 1, then accept the
generation, or else, reject

Dreamer
(Hafner

et al., 2025)

Fixed-Horizon
Background

Planning

The imagined trajectories could
contain infeasible, hallucinated states

Do not let the rejected imagined
states participate in the construction
of update targets for the actor-critic
system (See Sec.J).

Implemented (insufficient compute for
results, Sec. J): Use the deterministic
state s as the state representation to
feed to the evaluator (also for imagined
future target states). Establish h with
Mahalanobis distance on the state
representations and use the discount,
reward and value predictions to force
behavioral realism. Truncate λ-returns
until infeasible imagined target states.

Director
(Hafner

et al., 2022)

Fixed-Horizon
Decision-Time

Planning (mainly)

The internally sampled goals may be
unreachable

Reject unreachable goals and
re-sample reachable ones

Similar to our implementation for
Dreamer.

MuZero
(Schrit-
twieser

et al., 2019)

Fixed-Horizon
Decision-Time

Planning

The predicted states in the tree
search could be unreachable
hallucinations

Reject hallucinated state generations,
regenerate node in tree search if
necessary

Similar to our implementation for
1-step Dyna

SimPLe
(Kaiser

et al., 2020)

Fixed-Horizon
Background

Planning

The predicted next observation could
be an unreachable hallucination

Reject learning against the
delusional estimates (potential)

Similar to our implementation for
1-step Dyna

Skipper
(Zhao et al.,

2024)

Arbitrary-Horizon
Decision-Time

Planning

Hallucinated subgoals could lead to
decision-time planning committing
to them, leading to unsafe behaviors

Use an evaluator to learn that the
expected cumulative discount is 0
when aiming to reach the
hallucinated subgoals. This
disconnects the hallucinated
subgoals from the current state in the
planning

Implemented: diversify the
source-target pairs with generate and
pertask mixtures. G is discrete and h
is a trivial comparison.

GSP (Lo
et al., 2024)

Arbitrary-Horizon
Background

Planning

Hallucinated subgoals could lead to
value estimation destabilization, like
in Dyna.

Use output histogram of the add-on
evaluator to correct the delusions by
GSP’s own estimators. Use the
“support swap” technique.

Similar to our implementation for
Skipper

LEAP
(Nasiriany

et al., 2019)

Arbitrary-Horizon
Decision-Time

Planning

Hallucinated subgoals could help
fake a sequence of subgoals that is
too good to be true and committed to
during planning

Use an evaluator to learn that the
expected cumulative distance is
infinite when aiming to reach the
hallucinated subgoals. This makes
sure that subgoal sequences
containing hallucinated subgoals will
not be favored

Implemented: pay attention to the
representation space of the sub-goals.

PlaNet
(Hafner

et al., 2019)

Arbitrary-Horizon
Decision-Time

Planning

Hallucinated subgoals could help
fake a sequence of subgoals that is
too good to be true and committed to
during planning

Reject the delusional subgoals and
therefore reject the delusional
subgoal sequences

Same as our implementation for LEAP
(both uses CEM for planning
(Rubinstein, 1997))

Similar colors are used to denote similar implementations for the solution proposed in this work.
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Figure 8. Representative Atom Hindsight Relabeling Strategies & Newly Proposed Ones: The first two strategies, future and
episode, are widely used as they create relabeled transitions that help evaluators efficiently handle G.0 targets during planning. The last
two, generate and pertask, are effective at addressing delusions, making them useful in specific scenarios. Atomic hindsight strategies
from the first group can serve as backbones for mixture strategies, complemented by the second group to address delusions.

Strategies Advantages Disadvantages Gist

episode

Efficient for evaluator to learn
close-proximity relationships

When used exclusively to train evaluator, 1) cannot handle E.2
and 2) prone to E.0 - cannot learn well from short trajectories;
Can cause G.2 targets when used to train generators

Creates training data with
source-target pairs sampled
from the same episodes

future

Can be used to learn a
conditional generator with
temporal abstractions

In addition to the shortcomings of episode (those for
evaluators only), this additionally causes E.0 when used as the
exclusive strategy for evaluator training

Creates training data with
temporally ordered
source-target pairs from the
same episodes

generate

Addresses E.1 with data
diversity (also E.2 when
generator produces G.2)

Relies on the generator with additional computational costs;
Potentially low efficiency in reducing E.0.

Augments training data to
include candidate targets
proposed at decision time

pertask

Addresses evaluator delusions
(E.2 & E.0 for long-distance
pairs)

low efficiency in learning close-proximity source-target
relationships

Augments training data to
include targets that were
experienced

Table 3. Hindsight Relabeling Strategies: episode and future are widely used as they increase sample efficiency towards G.0 states
significantly; generate and pertask, proposed in this paper, should be applied against delusions in relevant scenarios.
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Appendix: Part II - Experiments

A. More Details on Decision-Time TAP Experiments (Exp. 1/8 - 4/8)
A.1. RandDistShift

The second environment employed is RandDistShift, abbreviated as RDS. RDS was originally proposed in Zhao et al.
(2021) as a variant of the counterparts in the MiniGrid Baby-AI platform (Chevalier-Boisvert et al., 2023), and then later
used as the experimental backbone in Zhao et al. (2024). SSM was inspired by RDS. We can view RDS as a sub-task of SSM,
where everything happens in semantic class ⟨1, 1⟩, i.e., agents always spawn with the sword and the shield in hand, thus can
acquire the terminal sparse reward by simply navigating to the goal. RDS instances thus have smaller state spaces than its
SSM counterparts. The most important difference, in the views of this work, is that RDS removed the challenges introduced
by temporary infeasibility. This means that G.2 and E.2 are no longer relevant, shifting the dominance towards G.1 + E.1
combination. Using RDS not only showcase the performance of the proposed strategies on a controlled environment with
G.1 + E.1 dominance, contrasting the G.2 + E.2 dominance of SSM, it also can be used to validate the performance of our
adapted agents, on an environment where previous benchmarks exist.

A.2. Generator Hallucinations

We use hindsight-relabeled transitions to train the generators in the two methods (Skipper & LEAP), to demonstrate how
different ways of training the generator could affect the rates of hallucinations. G.2 can appear more frequently if the
generator is trained to imagine more diverse kinds of targets than needed. For example, a conditional target generator which
learns from episode will be more likely to produce G.2 targets (compared to future). This was why we mostly used
future to train the generators in the related experiments.

For the HER-trained generators, Fig. 9 a), shows that different training targets for the generator could lead to different
degrees of hallucinations, in terms of G.1 and G.2. Importantly, Fig. 9 b) indicates that, future generates G.2 targets
significantly less frequently than episode and pertask, as the other two wasted training budget on G.2 targets, especially
pertask that brings in more problematic training samples from long distances. In all other experiments, we only compare
variants with future for the generator training.

The generator is consistently used for both Skipper and LEAP in Exp. 1/8 - Exp. 4/8.

(a) G.1 Candidate Ratio in SSM (b) G.2 Candidate Ratio in SSM
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Figure 9. Hallucination Frequencies: a) Evolving ratio of G.1 “states” among all candidates at each target selection, throughout training;
Subfigure b) is the E.2-counterpart of a) on SSM; Subfigure c) is the RDS-counterpart of a).
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B. Skipper on SSM (Exp. 1/8, continued)
B.1. Additional Results of Skipper+ with other Relabeling Strategies & Frequencies of Delusional Plans

In the main manuscript, we focused on a particular implementation of evaluator which utilizes (E+P+G) for training
data. Since we have the full degrees of freedom in deciding the mixture ratios of the involved relabeling strategies, i.e.,
episode, generate & pertask, we will provide more results here that encompasses more variants of the evaluator with
different relabeling strategies. These results could not only provide the readers with more understanding of the empirical
characteristics of the relabeling strategies but also can serve as an ablation test for the two alternative relabeling strategies,
i.e., generate & pertask. The variant relabeling strategies are as follows:

• (E+G) - a mixture against E.1. episode with 50% chance using generate JIT, resulting in a half-half mixture of episode
& generate

• (E+P) - against E.2. Half episode & half pertask

We can see that (E+P+G) is the middle ground between (E+G) and (E+P), with a comprehensive coverage for both G.0, G.1
and G.2 cases. This is why we have chosen (E+P+G) as the default for our evaluator, since we do not wish to assume access
to the state space structures of the environments. Note that for your convenience, we have used consistent colors for each
variant throughout this work.

We expand the results in Fig. 4 to Fig. 10, to not only include new sub-figures on the frequencies of delusional planning
behaviors but also the variants.

From Fig. 10 a) and d), we can see that the more relabeling is invested into generate, the less E.1 errors the agents would
have and the less frequent G.1 targets trigger delusional plans. The same can be said for G.2 & pertask in Fig. 10 b) and e).
Because of the state space structure, on SSM, it is quite expected that (E+P) is the most efficient in terms of increasing OOD
evaluation performance (Fig. 10 f)) due to the dominating challenge of G.2 targets.

B.2. Breakdown of Task Performance

In Fig. 11, we present the evolution of Skipper variants’ performance on the training tasks as well as the OOD evaluation
tasks throughout the training process. Note that Fig. 10 f) (and by extension Fig. 4 d)) is an aggregation of all 4 sources of
OOD performance in Fig. 11 b-e).

From the performance advantages of the hybrid variants (in both training and evaluation tasks), we can see that learning to
address delusions during training brings better understanding for novel situations posed in OOD tasks.

C. LEAP on SSM (Exp. 2/8)
This set of experiments seeks to demonstrate that the proposed feasibility evaluator can help reduce delusional planning
behaviors in other decision-time TAP agents while facing challenges of G.2 targets. For this purpose, we study LEAP
performance on SSM, and its variant LEAP+ with our evaluator injected.

Compared to Skipper, LEAP utilizes the generated targets in a very different way, as its decision-time planning process
constructs a singular sequence of subgoals leading to the task goal. Due to a lack of backup subgoals, even if one among
them is problematic, the whole resulting plan would be delusional, making LEAP much more prone to failures compared to
Skipper, where candidate targets can still be reused if deviation from the original plan occurred.

SSM has a relatively large state space that requires more intermediate subgoals for LEAP’s plans. However, an increment of
the number of subgoals also dramatically increases the frequencies of delusional plans, damaging the agents’ performance.
Because of this, our experimental results of LEAP on SSM with size 12 × 12 became difficult to analyze because of the
rampant failures. We chose instead to present the results on SSM with size 8× 8 here.

Additionally, consistent with Exp. 1/8, for a more comprehensive understanding of the relabeling strategies’ impact on the
learned evaluator, we include results beyond (E+P+G), which is the default used in the main paper.
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(f) Aggregated OOD Performance

Figure 10. Skipper and More Variants of Skipper+ on SSM: In addition to subfigures that already exist in Fig. 4, i.e., a), b), c), & f), we
provide additional subfigures d) and e), to demonstrate the changes of frequencies in delusional behaviors throughout training, for G.1
and G.2 composed targets, respectively. The curves denote the frequencies of G.1 and G.2 targets becoming the imminent subgoals that
Skipper seeks to achieve next. Each figure is augmented with results of additional evaluator variants with different relabeling strategies.

0.0 0.5 1.0 1.5
training steps 1e6

.2

.4

.6

.8

su
cc

es
s r

at
e

0.0 0.5 1.0 1.5
training steps 1e6

0.0 0.5 1.0 1.5
training steps 1e6

0.0 0.5 1.0 1.5
training steps 1e6

Skipper
Skipper+(E+P)
Skipper+(E+G)
Skipper+(E+P+G)

0.0 0.5 1.0 1.5
training steps 1e6

(a) training, δ = 0.4

0.0 0.5 1.0 1.5
training steps 1e6

.2

.4

.6

.8

su
cc

es
s r

at
e

0.0 0.5 1.0 1.5
training steps 1e6

0.0 0.5 1.0 1.5
training steps 1e6

0.0 0.5 1.0 1.5
training steps 1e6

Skipper
Skipper+(E+P)
Skipper+(E+G)
Skipper+(E+P+G)

0.0 0.5 1.0 1.5
training steps 1e6

(b) OOD eval., δ = 0.25

0.0 0.5 1.0 1.5
training steps 1e6

.2

.4

.6

.8

su
cc

es
s r

at
e

0.0 0.5 1.0 1.5
training steps 1e6

0.0 0.5 1.0 1.5
training steps 1e6

0.0 0.5 1.0 1.5
training steps 1e6

Skipper
Skipper+(E+P)
Skipper+(E+G)
Skipper+(E+P+G)

0.0 0.5 1.0 1.5
training steps 1e6

(c) OOD eval., δ = 0.35

0.0 0.5 1.0 1.5
training steps 1e6

.2

.4

.6

.8

su
cc

es
s r

at
e

0.0 0.5 1.0 1.5
training steps 1e6

0.0 0.5 1.0 1.5
training steps 1e6

0.0 0.5 1.0 1.5
training steps 1e6

Skipper
Skipper+(E+P)
Skipper+(E+G)
Skipper+(E+P+G)

0.0 0.5 1.0 1.5
training steps 1e6

(d) OOD eval., δ = 0.45

0.0 0.5 1.0 1.5
training steps 1e6

.2

.4

.6

.8

su
cc

es
s r

at
e

0.0 0.5 1.0 1.5
training steps 1e6

0.0 0.5 1.0 1.5
training steps 1e6

0.0 0.5 1.0 1.5
training steps 1e6

Skipper
Skipper+(E+P)
Skipper+(E+G)
Skipper+(E+P+G)

0.0 0.5 1.0 1.5
training steps 1e6

(e) OOD eval., δ = 0.55

Figure 11. Separated Evolution of OOD Performance of Skipper Variants on SSM
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(e) Aggregated OOD Perf.

Figure 12. LEAP on SSM: a) Ratio of G.1 subgoals among the planned sequences; b) Ratio of G.2 subgoals in the planned sequences; c)
Ratio of evolved sequences containing at least one G.1 or G.2 target; d) The final estimation accuracies towards G.0 targets after training
completed, across a spectrum of ground truth distances. In this figure, both distances (estimation and ground truth) are conditioned on the
final version of the evolving policies; e) Each data point represents OOD evaluation performance aggregated over 4× 20 newly generated
tasks, with mean difficulty matching the training tasks.

For LEAP, we use some different metrics to analyze the effectiveness of the proposed strategies in addressing delusions.
This is because, if LEAP’s evaluator successfully addressed delusions and learned not to favor the problematic targets (G.1
and G.2), then they will not be selected in the evolved elitist sequence of subgoals. This makes it inconvenient for us to use
the distance error in the delusional source-target pairs during decision-time as a metric to analyze the reduction of delusional
estimates, because of their growing scarcity.

As we can see from Fig. 12, similar arguments about the effectiveness of the proposed hybrid strategies can be made, to
those with Skipper. The hybrids with more investment in addressing E.1, i.e., (E+G) and (E+P+G), exhibit the lowest E.1
errors (a)). Similarly, (E+P) and (E+P+G) achieve the lowest E.2 errors (b)). In e), we see that the 3 hybrid variants achieve
better OOD performance than the baseline E. Specifically, (E+G) achieved the best performance. This is likely because
that it induced the highest sample efficiency in terms of learning the estimations towards G.0 subgoals, as shown in d).
Assistive strategies such as generate and pertask do not only induce problematic targets, but also G.0 ones that can shift
the training distribution towards higher sample efficiencies in the traditional sense.

C.0.1. BREAKDOWN OF TASK PERFORMANCE

In Fig. 13, we present the evolution of LEAP variants’ performance on the training tasks as well as the OOD evaluation tasks
throughout the training process. Note that Fig. 12 e) is an aggregation of all 4 sources of OOD performance in Fig. 13 b-e).
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Figure 13. Evolution of OOD Performance of LEAP Variants on SSM

D. Skipper on RDS (Exp. 3/8)
This set of experiments focus on the feasibility evaluator’s abilities in the face of G.1 challenges. We present Skipper’s
evaluative curves in Fig. 14.

From Fig. 14 d), we can see that, probably because of the lack of dominant G.2 + E.2 cases, the OOD performance of even
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(d) Aggregated OOD Perf.

Figure 14. Skipper on RDS: a) E.1 delusions in terms of L1 error in estimated distance is visualized, throughout the training process. b)
The curves represent the frequencies of choosing G.1 “states” whenever a selection of targets is initiated; c) The final estimation accuracies
towards G.0 targets after training completed, across a spectrum of ground truth distances. In this figure, both distances (estimation and
ground truth) are conditioned on the final version of the evolving policies; The state structure of RDS does not permit G.2 targets and the
corresponding E.2 delusions; d) Each data point represents OOD evaluation performance aggregated over 4× 20 newly generated tasks,
with mean difficulty matching the training tasks.

the baseline Skipper is high (compared to the performance of LEAP baseline, because Skipper’s planning behaviors are
less prone to infeasible targets). (E+G), i.e. the hybrid with the most investment in generate (aiming at E.1), performs the
best both in terms of E.1 delusion suppression (a)), and OOD generalization (d)), as expected. Also, we observe similarly
that the more the evaluator is invested in generate, which is appropriate for RDS without G.2 challenges, the higher the
performance.

D.1. Breakdown of Task Performance

In Fig. 15, we present the evolution of Skipper variants’ performance on the training tasks as well as the OOD evaluation
tasks throughout the training process. Note that Fig. 14 d) is an aggregation of all 4 sources of OOD performance in Fig. 15
b-e).
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Figure 15. Evolution of OOD Performance of Skipper Variants on RDS

E. LEAP on RDS (Exp. 4/8)
The last set of experiments focus on LEAP’s performance on RDS. Previously, in the main manuscript, we briefly looked at
the results of this part without variants other than (E+P+G).

Similarly, we present the evaluative metrics in Fig. 16.

The results in this set of experiments (Exp. 4/8) are very similar to that of Skipper on RDS (Exp. 3/8).

The conclusions are similar, despite that the OOD performance gain by addressing delusions is significantly higher than in
SSM.
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(d) Aggregated OOD Performance

Figure 16. LEAP on RDS: a) Ratio of G.1 subgoals among the planned sequences; b) Ratio of planned sequences containing at least one
G.1 target; c) The final estimation accuracies towards G.0 targets after training completed, across a range of ground truth distances. In
this figure, both distances (estimation and ground truth) are conditioned on the final version of the learned policies; d) Each data point
represents OOD evaluation performance aggregated over 4× 20 newly generated tasks, with mean difficulty matching the training tasks.

E.0.1. BREAKDOWN OF TASK PERFORMANCE

In Fig. 17, we present the evolution of LEAP variants’ performance on the training tasks as well as the OOD evaluation tasks
throughout the training process. Note that Fig. 16 d) is an aggregation of all 4 sources of OOD performance in Fig. 17 b-e).
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Figure 17. Evolution of OOD Performance of LEAP Variants on RDS

F. Background Planning: Dyna on RDS (Exp.6/8)
In Fig. 18, we present the empirical performance of a Dyna variant with rejection enabled by (E+P+G), which is significantly
better than the baseline.

G. Feasibility of Non-Singleton Targets (Exp. 7/8 & 8/8)
For this set of experiments, we want to demonstrate the capability of the learned feasibility evaluator facing non-singleton
targets.

We test if our implemented feasibility evaluator for Exp. 1/8 - Exp. 4/8 could withstand targets that are non-singleton. In
its previous implementation, we use h to enforce the that the targets are singletons. In fact, each g⊙ takes the form of a
state representation and h is only activated if a state with exactly the same representation is reached. For the non-singleton
experiments however, we let h activate when a state is within distance one to the target state, effectively expanding each
target set from size 1 to maximally size 5. Given the new termination mechanisms enforced by the new h, each target now,
despite still taking the form of a state representation, has a new meaning. This setting mirrors the goal-conditioned path
planning agents that seeks to reach certain neighborhoods of the planned waypoints.

With this setting, we can also intuitively analyze the composition of the target set. Specifically, if one of the member
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Figure 18. Dyna on RDS: a): Evolving mean L1 distances between estimated Q values & ground truth optimals; b): evaluation
performance on the 50 training tasks; c): rate of rejecting Dyna updates.

state is G.2, then the whole target set are fully made of G.2. If all the 5 states are out of the state space, then the target is
fully composed of G.1. For SSM, a target in the temporarily unreachable situation, e.g., s ∈ ⟨1, 1⟩ with target encoding
s⊙ ∈ ⟨0, 1⟩, could be composed of not only G.2 states but also some G.1.

We apply the new h to evaluator training and to the ground truth DP solver, and then compare their differences. As we could
observe from Fig. 19, the proposed feasibility evaluator, with the help of the two assistive hindsight relabeling strategy,
significantly reduces the feasibility errors in all categories.
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Figure 19. Feasibility of Non-Singleton Targets on SSM: a) Evolution of E.0 error; b) Evolution of E.1 error; c) Evolution of E.2 error;
The training data is acquired with random walk, since the introduced non-singleton targets do not lead to adequate performances.

We observe the similar results in RDS, which was presented in Fig. 7 in the main manuscript.

As extensively discussed, our evaluator is featured with three components: 1) the off-policy compatible learning rule, 2) the
unified architecture with distributional output head that can learn up to T -feasibility and 3) two proper relabeling strategies
against feasibility delusions. In the Exp. 1/8 - Exp. 4/8, we demonstrated that such combination is effective against infeasible
targets and we used the difference compared to the ground truth feasibility values to quantitatively measure the convergence
(the reduction in feasibility errors and delusions). In these last two sets of experiments, we tried to do the same while
removing the need of control, focusing on the convergence itself under a random exploration policy, to demonstrate our
evaluator’s general applicability.
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Appendix: Part III - Technical Details & Discussions

H. Discussions & More Details of generate & pertask

H.1. Implementation of pertask

pertask takes the advantage of the fact that training is done on limited number of fixed task instances. We give each task a
unique task identifier. At relabeling time, pertask samples observations among all the transitions marked with the same
identifier as the current training task instance. This can be trivially implemented with individual auxiliary experience replays
that store only the experienced states with memory-efficient pointers to the buffered xt’s in the main HER.

H.2. Discussions

generate not only creates targets with G.1 “states”, but also generate valid targets that should resemble the distribution it
was trained on. Thus, it is not clear if mixing in data augmented by generate would result in lower sample efficiency in the
estimation cases involving valid targets. Take SSM as an example, generate seemed to have detrimental effect to E.0 cases
when applied to Skipper, while it greatly boosted accuracies for LEAP overall.

In some experiments, pertask demonstrated clear effectiveness in addressing E.1 as well, despite that it was not designed to.
This is likely because of some generalization effects of the evaluator, which were trained with additional data that boosted
data diversity.

In some environments, we expect that pertask could also be used (for mixtures of the generator) to learn to generate
longer-distance targets from the current states if the generator has trouble doing so with future, with the accompanied risks
of lower efficiency and G.2 hallucinations.

I. Implementation Details for Experiments
I.1. Skipper

Our adaptation of Skipper over the original implementation5 in Zhao et al. (2024) is minimal. We have additionally added
two simple vertex pruning procedures before the vertex pruning based on k-medoids. These two procedures include: 1)
prune vertices that are duplicated, and 2) prune vertices that cannot be reached from the current state with the estimated
connectivity.

We implemented a version of generator that can reliably handle both RDS and SSM with the same architecture. Please
consult models.py in the submitted source code for its detailed architecture.

For SSM instances, since the state spaces are 4-times bigger than those of RDS, we ask that Skipper generate twice the
number of candidates (both before and after pruning) for the proxy problems.

All other architectures and hyperparameters are identical to the original implementation.

For better adaptability during evaluation and faster training, Skipper variants in this paper keeps the constructed proxy
problem for the whole episode during training and replanning only triggers a re-selection, while during evaluation, the proxy
problems are always erased and re-constructed.

The quality of our adaptation of the original implementation can be assured by the fact the E variant’s performance matches
the original on RDS.

I.2. LEAP

LEAP’s training involves two pretraining stages, that are, generator pretraining and evaluator (a distance estimator) training.

We improved upon the adopted discrete-action space compatible implementation of LEAP (Nasiriany et al., 2019) from
Zhao et al. (2024). We gave LEAP additional flexibility to use fewer subgoals along the way to the task goal if necessary.
Also, we improved upon the Cross-Entropy Method (CEM) (Rubinstein, 1997), such that elite sequences would be kept

5https://github.com/mila-iqia/Skipper
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intact in the next population during the optimization process. We increased the base population size of each generation to
512 and lengthened the number of iterations to 10.

For RDS 12× 12 and SSM 8× 8, at most 3 subgoals are used in each planned path. We find that employing more subgoals
greatly increases the burden of CEM and lower the quality of the evolved subgoal sequences, leading to bad performance
that cannot be effectively analyzed.

We used the same generator architecture and hyperparameters as in Skipper. All other architectures and hyperparameters
remain unchanged.

Similarly for LEAP, for better adaptability during evaluation, the planned sequences of subgoals are always reconstructed
whenever planning is triggered. While in training, the sequence is reused and only a subgoal selection is conducted.

The quality of our adaptation of the original implementation can be assured by the fact the E variant’s performance matches
the original on RDS.

I.3. Dyna

The generator is a one-step model built for MiniGrid observations. For each batch update based on real, experienced
transitions, an equal sized batch of simulated transitions will be generated with the help of the generator.

The threshold for 1-feasibility based rejections are set to be 0.05, i.e., if the feasibility estimator estimates that there is
less than 5% probability that a generated target state is 1-feasible, the associated update would be rejected by setting its
corresponding error to be 0 within the generated minibatch.

J. Applying the Evaluator on Dreamerv2
To demonstrate that our approach functions effectively in more generalist settings, such as those with continuous state and
action spaces and partial observability, and to illustrate its application to a modern TAP agent, we integrated our proposed
evaluator into Dreamerv2 (Hafner et al., 2021). The evaluator filters out potentially delusional values from infeasible states
that might distort the λ-returns derived from imagined trajectories. Given the technical complexity ahead, we suggest readers
familiarize themselves with Dreamerv2 before continuing (Hafner et al., 2021).

Although Dreamerv2’s stochastic states are discrete and could theoretically support similarity assessments, their design
ensures they rarely repeat due to numerous possibilities, making them too random for our similarity function h. Consequently,
we rely on the deterministic state representations s, which also prompt us to more thought-provoking discussions.

Dreamerv2 operates as a Dyna-like method, employing fixed-horizon rollouts with autoregressively imagined states as
targets. Lacking a built-in similarity function h, it provides an opportunity to showcase how we construct h in our approach.
Our method incorporates various realism aspects to assess state similarity between the next state and the target state,
influencing the branching in Eq. 2 during evaluator updates (Russell et al., 2025).

J.1. How to craft h: Observational Realism

Observational realism, i.e., the similarity in terms of state representations is the first obvious criteria for h.

Theoretically, one might simplistically assume state equivalence by defining an ϵ-ball around the target state. However,
in practice, an ϵ-ball based on L2 distances proves inadequate due to varying representation scales. Instead, we employ
Mahalanobis distances, which better accommodate the representations’ distributional variations.

To be more precise, we use an Exponential Moving Average (EMA) of the covariance of concatenated current-next
deterministic state pairs [st, st+1] to calculate the Mahalanobis distances between the next state pair [st, st+1] and target
state pair [st, ŝt+1].

J.2. How to craft h: Behavioral Realism

The second focus is behavioral realism: does the agent exhibit similar behavior (e.g., in value, reward, and discount
estimations) across the states (st+1 & ŝt+1)?

Here, we apply Mahalanobis distances to pairs of current and future values, rewards, and discounts, ensuring the states
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appear similar from the agent’s perspective.

Caution is required with action-realism. Naively applying our method to one-hot encoded discrete actions could result in a
singular covariance matrix for the ϵ-ball computation.

Preliminary Atari experiments suggest setting distinct ϵ values for different components—state representations, value
estimations, reward estimations, and discount estimations.

J.3. How to Relabel: Just-In-Time (JIT) Construction

Since Dreamerv2 samples sub-trajectories and computes state representations autoregressively, we forgo a separate HER for
storing source-target pairs, opting instead for Just-In-Time (JIT) construction. Designed for single-environment training and
evaluation, Dreamerv2 allows us to implement a (E+G) variant on agent-sampled sub-trajectories. Initial tests indicate a
balanced mix of episode (within sub-trajectories) and generate performs effectively.

J.4. How to Reject: Three Criteria for λ-returns

Dreamerv2 leverages its model to imagine future states and values, using these, along with intermediate rewards and
discounts, to compute λ-returns for each origin state.

For such strategy, we implemented the following 3 criteria for rejecting the imagined states:

1. Transition-wise Rejection: If a next state seems unlikely to follow from the current state, its value is deemed untrustwor-
thy. This process is repeated for all imagined transitions. Notably, a state rejected as infeasible in one transition might
still be reachable elsewhere, so subsequent states are not automatically discarded.

2. Point-to-Point (P2P) Rejection for Targets: Starting from a replay-sampled base state, we assess whether each
imagined state is reachable, regardless of steps taken. This counters hallucinated targets from accumulated errors over
the imagination horizon (Talvitie, 2017), excluding such states from value estimation targets.

3. P2P Rejection for Current States: Entirely unreachable states are excluded as current states in multi-step value updates,
though subsequent states may remain viable.

original
targets

trajectory
(X: rejected states)

truncated
targets

Figure 20. Truncated λ-Returns with Rejected States: the original λ-returns are illustrated in the top row, while the truncated returns
are illustrated in the bottom row with the differences marked in red. Our strategy ensures that the critic targets in the trajectories can be
maximally preserved for updates. The states right before the rejected ones will have no trustworthy critic targets and are thus not updated.
Starting from the last rejected state, all critic targets remain the same as the originals.

The first two criteria yield a binary mask to truncate λ-returns in sampled sub-trajectories, excluding untrustworthy values
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while preserving horizons for reliable ones. Our repository offers an efficient implementation, maintaining the complexity
as the original, un-truncated λ-returns. The behavior of the (critic) target-based rejection is presented in Fig. 20.

The third criterion masks updates to wholly infeasible imagined states. By examining the rejection rate by the horizon index,
the evaluator can also be used to understand how long the imagined trajectories are likely to be trustworthy and thus adjust
the associated hyperparameters.

We developed a standalone, user-friendly evaluator (implemented in PyTorch) that integrates seamlessly into TAP agents
like Dreamerv2, employing its own optimizer and target networks for robust learning when activated. Please check
evaluator.py in the source code (https://github.com/mila-iqia/delusions).

We tuned the hyperparameters using the Atari environments and found that both the autoregressive estimations of distances
and the P2P distances (towards the target states) in the sampled and imagined trajectories roughly converge to the estimated
ground truth values, which are deduced from their time indices. This is the best we can do for environments without ground
truth access.

Regrettably, our Atari100k preliminary results with 105 interactions show negligible performance gains over the baseline
(Kaiser et al., 2020). This is likely because the state representations of Dreamer usually takes a significant portion of training
to stabilize and for the evaluator to adapt to. The differences are expected to show with prolonged experiments where
a significant number of updates will be made after the state representations stabilize. Limited computational resources
prevented our extended experiments, and we invite those with greater capacity to investigate further.

Our Dreamer implementations can be found in the source code repository.
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