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Abstract

Generating factual responses is a crucial re-
quirement for dialogue systems. To promote
more factual responses, a common strategy
is to ground their responses in relevant doc-
uments that inform response generation. How-
ever, common dialogue models still often hal-
lucinate information that was not contained
in these documents and is therefore unfaith-
ful. In this work, we propose to alleviate such
hallucinations by ‘subtracting’ the parameters
of a model trained to hallucinate from a dia-
logue response generation model in order to
‘negate’ the contribution of such hallucinated
examples from it. Extensive automatic and hu-
man evaluation shows favourable results when
compared to state-of-the-art methods that com-
bine the distributions of multiple models, such
as DExperts (Liu et al., 2021), and others that
change the training procedure, such as Quark
(Lu et al., 2022a). Finally, we show how we
can not only reduce hallucinations but also dis-
courage extractive responses, which are often a
consequence of reducing hallucinations by en-
couraging copy-pasting of document spans. We
will publicly release our code for reproducibil-
ity and facilitating further research.

1 Introduction

Current-day large language models (LLMs) impres-
sively generate coherent, grammatical, and seem-
ingly meaningful text, but are prone to hallucinat-
ing incorrect information. While grounding them
in relevant documents can alleviate this (Shuster
et al., 2021), models still tend to generate informa-
tion that conflicts these documents, which would
again be classified as hallucination (Dziri et al.,
2022a). This raises major safety concerns. Such
hallucinations could impair student learning, or
proliferate convincing-but-inaccurate news articles.
Therefore, ensuring trustworthiness is crucial for
the safe deployment of LLMs at scale, particularly
in high-stakes domains.

KC: The Flash first appeared in “Show-

case” #4 (October 1956) [...]

ur: What comic series is he from?

ur+41 F A
He first appeared in “Showcase” #4
(November 1956).

He first appeared in “Showcase” #4 v X
(October 1956).

His first appearance was in Showcase v
#4 in October 1956.

>
>

Figure 1: Constructed example of responses ur.; that
are 1) hallucinated (words contradicting the knowledge
K in red); ii) faithful but not abstractive (longest copied
n-gram in blue); and iii) both Faithful and Abstractive
based on Wizard-of-Wikipedia (Dinan et al., 2019).

Modelling solutions to mitigate hallucination
often take inspiration from methods used to dis-
courage other undesirable behaviours in LLMs,
for example, contradictions (Keskar et al., 2019),
repetitions (Lu et al., 2022a), or toxicity (Ilharco
et al., 2023). One group of methods achieves this
by fine-tuning an LLM conditioned on special to-
kens (Niu and Bansal, 2018; Keskar et al., 2019),
which can be assigned to model generations by a
learned reward model during training (Lu et al.,
2022a). Another re-weights the predictive distribu-
tion with models that are specialised for positive
or negative behaviour (Liu et al., 2021; Daheim
et al., 2022), called ‘experts’ or ‘anti-experts’ re-
spectively. While successful, these methods are
either inefficient to train, as a large number of gen-
erations needs to be sampled during training, or
inefficient in inference, as multiple models have
to be stored and evaluated. In this work, we ex-
plore a different family of methods (Choubey et al.,
2021; Ilharco et al., 2023) that uses modular deep
learning (Ponti et al., 2021; Pfeiffer et al., 2023)
by interpolating parameters without altering the
model architecture. This is efficient during infer-



ence, because only one interpolated model needs
to evaluated, and for training the models that are in-
terpolated no new data needs to be sampled during
the training procedure. Concretely, a new model
is obtained as the weighted difference between a
pretrained LLM and a model finetuned from it, for
example, as an anti-expert (Ilharco et al., 2023).
One drawback of this strategy is that parameters
are weighted uniformly even though they might
have differing contributions to hallucinations. Fur-
thermore, it might result in catastrophic interfer-
ence between the specialised models (McCloskey
and Cohen, 1989). To address this, we propose
Elastic Weight Removal (EWR), a novel method
for parameter interpolation that weights the impor-
tance of each parameter by using the Fisher Infor-
mation Matrix (FIM) as a measure of importance,
similar to previous works in continual learning
(Kirkpatrick et al., 2017), sample-efficient learning
(Ponti et al., 2019), or merging models for different
tasks (Matena and Raffel, 2022). In our experi-
ments, we show how this can be used to discourage
hallucinations by first training an anti-expert on
synthetically created data and then interpolating it
with the baseline model.

We compare our method with state-of-the-art
methods for removing hallucinations and other
undesired behaviours, which we adapt to remov-
ing hallucinations. Namely, we adapt Quark (Lu
et al., 2022a), DExperts (Liu et al., 2021), and
task arithmetic (Choubey et al., 2021; Ilharco et al.,
2023). Our findings show consistent improvements
in faithfulness, which can be combined with those
of others, such as CTRL (Rashkin et al., 2021). Of-
tentimes, an increase in faithfulness comes at an
increase in extractiveness from copy-pasting docu-
ment spans into the response. Based on this insight,
we finally highlight how EWR can be extended to
reducing hallucinations and extractiveness at the
same time. Our results are confirmed using a hu-
man evaluation with the Attributable to Identified
Source (AIS) framework (Rashkin et al., 2023). We
will release the code for all methods and metrics in
a comprehensive framework.

2 Background

The goal of dialogue response generation is to con-
tinue a dialogue ulT = (uy,...,ur) of T turns by
generating a new turn ur4;. Here, each turn uy is
just a sequence of N; tokens [u]Y* € VNt from

the model vocabulary V. In document-grounded

response generation, ur, is grounded in one or
more documents K C K from a document knowl-
edge base X, meaning that K informs the infor-
mation content of uz. Therefore, ur; should
also faithfully reflect it. This means that neither
contradicting nor unverifiable information should
be added. In this work, we assume that K is given.
A common strategy for generating ur; is using
language generators that model the distribution

po(urir | uf,K) =
Nri1q
I po(fursaln | [ara]i =" ul, K). (1)
n=1
parameterised by weights 0, for next-token pre-
diction paired with a search algorithm like beam
search. We focus on different methods of obtaining
6 while maintaining the same model architecture.

2.1 Parameter Combination for Faithful
Generation

Previous works have explored combining model
parameters with different goals, for example, to in-
crease robustness (Gao et al., 2022) but also to pro-
mote or discourage different behaviours by merg-
ing specifically trained model instances (Ilharco
et al., 2023). In this work, we use it to discour-
age hallucinations in dialogue models. By letting
© ={01,...,0y}, where 8; € R?, denote the pa-
rameters of a set of models that should be merged
and \; € R their respective scaling factors, many
such methods can be expressed by:
N

A ©0;
o= % @)
=1

where © denotes element-wise multiplication and
Z can be used to re-scale parameters.

One such method is task arithmetic (Ilharco et al.,
2023), which bases on the idea that essential infor-
mation about a task can be captured by the change
of the parameter values between pretrained initiali-
sation @ and the finetuned Oy, called task vector.
Given this information, the behaviour needed for
this task can be added to the model 6y by adding
a task vector and also removed by subtracting it.
Concretely, the task vector can be expressed as:

T = O — 0. 3)

Then, task arithmetic (Ilharco et al., 2023) uses the
following for model combination:

0' =60+ > N, )



where the scalar \; promotes the behaviour cap-
tured by 7; if A\; > 0 and discourages it if \; < 0.

We will use the latter to discourage hallucina-
tions by training a model to hallucinate and then
discouraging its behaviour through subtraction. We
will refer to such a model as ‘anti-expert’ (GAg)
and then use the following task arithmetic:

0 =6y X
=60 — X (0ag — 0p)
— (14+X)-00— - Ok, )

We would expect a model parameterised by 6’ to
hallucinate less than one parameterised by 6.

We could also add an expert model O, for exam-
ple, trained on abstractive data which significantly
rewrites the documents content:

0" =6y — Mg (0aE — 00) + Ae - (B — 6)). (6)

Setting A = Aag = Ag is equivalent to using
Contrastive Parameter Estimation (CaPE; Choubey
et al., 2021) with the following simplified update:

0 = Oy + - (9]5 — OAE)- @)

We will discuss how to train @ and O later.
Both task arithmetic and CaPE use scalars A for
parameter combination and therefore assume equal
parameter importance. Intuitively, though, only
a subset of parameters might be responsible for
hallucinations. For example, anomalous encoder—
decoder attention patterns correlate strongly with
hallucinations (Raunak et al., 2021; Guerreiro et al.,
2023, inter alia). Hence, only these specific param-
eters might be required to change. Moreover, com-
posing multiple task vectors might lead to catas-
trophic interference (Ansell et al., 2022). Next, we
show how parameters can be weighed individually
which we hope will improve task arithmetic.

3 Elastic Weight Removal

In our proposed method, Elastic Weight Removal
(EWR), we use the Fisher Information matrix
(or Fisher) to combine models with importance-
weighted scaling factors for each parameter.
Thereby, we aim to preserve positive behaviour in
the model fine-tuned for dialogue response genera-
tion while removing the most important parameters
in the anti-expert task vector, which lead to halluci-
nated generations. We take inspiration from prior
works that successfully use the Fisher for similar

parameter-specific scaling, for example, against
catastrophic forgetting (Kirkpatrick et al., 2017),
for merging checkpoints of the same model trained
independently on different tasks (Matena and Raf-
fel, 2022), or preconditioning updates in stochastic
optimization (Amari, 1998; Martens, 2020). We
refer the reader to prior works (Schraudolph, 2002;
Martens, 2020; Kunstner et al., 2019) for more in-
formation about theoretical properties of the Fisher.
Of practical importance is that the Fisher has size
d? for a neural network model with d parame-
ters. Therefore, it is commonly approximated by
its diagonal (Matena and Raffel, 2022, inter alia).
The diagonal can be estimated efficiently by sum-
ming or averaging the squared gradients of the
model over the training data. Here, the label is
sampled from the model at each step instead of
taking the annotated token (cf. Kunstner et al.
(2019)). For a model pg(y | x) this means calcu-
lating: fg = ﬁ > epViogpe(y' | x)]?, where
y' ~ pg(- | x) is sampled from the model.

We start by taking Equation (2) and setting Ag,
which scales pre-trained parameters 8, to g - fg
(note that )\ is equal to 1 in Equation (5) for task
arithmetic). Similarly, for each task vector 7;, we
replace the scalar factor \; with ); - f,. This way,
we can still control the influence of each model
with a scalar hyper-parameter, while the diago-
nal Fisher estimate controls individual parameters.
Since the entries in f can have different magnitudes
than the entries in 8, we use a scaling constant Z.
Then, our parameter combination is defined as:

, No-foy 00+ N N En T
0 = = . ®)

One choice is to set Z := Ao - fg, + >, [Ai| - £,
similar to Matena and Raffel (2022). Then, using
only a hallucination anti-expert @ag, we can rewrite
the update as:

)\AE ) fTAE 0 E (9)

0 =0, —
07 N0 foy + Mg - Brp

Therefore, fg, and £, determine how much each
parameter should be changed—parameters with
large fg, are preserved and parameters with large
f; are changed more due to their contribution
to negative behaviour. When an expert model
is added, as well, it is only possible to obtain a
similar rewrite when the sign of the correspond-
ing «; is flipped in the denominator, i.e. Z =
Ao - fg, + > ;(—X;) - fr,. We have found this to be



more stable empirically. However, it can introduce
divisions by 0 which can be avoided by adding a
small constant. Finally, we have found calculating
the Fisher at T to perform well empirically, even
though calculating it at @A or Og, respectively, is
theoretically better grounded. Next, we describe
how we train the expert and anti-expert models.
Pseudocode for EWR is shown in Appendix A.1.

3.1 Training Data for (Anti-)Experts

We use different strategies to create hallucinated ex-
amples DAE. For Wizard-of-Wikipedia (WoW), we
use all examples from Faithdial (Dziri et al., 2022a)
which humans rated as hallucinations according to
the BEGIN taxonomy (Dziri et al., 2022c). Since
such annotations often do not exist for other data,
we try lightweight data augmentation techniques
to artificially create hallucinated data. We find that
replacing the ground-truth documents to randomly
sampled ones performs similar to using human hal-
lucination annotations. Potentially, this forces the
model to hallucinate, as the input does not contain
the correct information for the response. We use
this strategy for all other datasets than WoW. CaPE
and DExperts (which we introduce in detail in the
following Section 4.2) also use a faithfulness ex-
pert in addition to a hallucination anti-expert. For
training this expert, we use responses that are as-
signed an entailment token when training CTRL,
because such examples are unlikely to contain hal-
lucinations.

To create a dataset of abstractive examples DE,
we use the density and coverage metrics introduced
in Grusky et al. (2018). Coverage measures the
ratio of unigrams from the grounding documents
that appear in the response and density measures
the average length of copied text spans. Intuitively,
we would like to have low density, because this
indicates paraphrasing, but such examples might
be hallucinated. Therefore, we pick examples that
also have high coverage to ensure that the infor-
mation from the document is used. We do this by
splitting the dataset into buckets and assigning low,
medium, and high density or coverage tokens to
them, similar to Keskar et al. (2019), and taking the
high density examples. Future work can explore
further methods for data augmentation.

4 Experiments

We experiment on multiple datasets outlined in Sec-
tion 4.1. We compare EWR to CaPE and task arith-

metic, as well as a set of other unlearning methods,
which we apply for faithful dialogue generation for
the first time. Furthermore, we compare to state-
of-the-art methods for faithful dialogue generation.
We list these baselines in Section 4.2. Crucially,
parameter combination can be added independently
on top of many of the other baselines.

All experiments are implemented using Hug-
gingface transformers (Wolf et al., 2020) and mod-
els are initialised from publicly available Flan-
TS5 checkpoints (Longpre et al., 2023), which we
have found to perform substantially better than pre-
viously introduced encoder-decoder models like
BART (Lewis et al., 2020) or TS5 (Raffel et al.,
2020). We organise our experiments using Sisy-
phus (Peter et al., 2018) and release configuration
files to reproduce our results. Further experimental
details, such as learning rate or number of epochs,
are given in Appendix B.1. We use beam search
with a beam size of 10 for decoding.

4.1 Datasets

We evaluate all methods on Wizard-of-Wikipedia
(Dinan et al., 2019, WoW), an open-domain dataset
for information-seeking dialogue where turns are
grounded in Wikipedia snippets. WoW contains
a seen and an unseen split. Furthermore, we use
the DSTC9 (Kim et al., 2020) extension of Multi-
WoZ 2.1 (Eric et al., 2020), which augments the
original dialogues by turns that are grounded in
short FAQ documents. For further experiments, we
use DSTC11 (Zhao et al., 2023; Kim et al., 2023),
which extends DSTC9 to multi-document settings,
and FaithDial (Dziri et al., 2022a), which is a de-
hallucinated subset of WoW. Statistics are shown
in Appendix B.2.

4.2 Baselines

CTRL (Keskar et al., 2019) introduces a se-
quence of control tokens c to steer the model to-
wards desirable generations:
p@(uTJrl ’ ulT’ Iév C). (10)
Rashkin et al. (2021) adapt the model in Equa-
tion (10) to promote faithfulness in document-
grounded dialogue by introducing entailment, lex-
ical overlap and first-person tokens. We employ
the first two. Entailment indicates whether the re-
sponse is entailed by the documents, determined
by an MNLI model, and lexical overlap splits
the responses into three buckets according to low,



WoWeen DSTC9
BLEU(Y) Critie)) Q2(f) BERT(1) FI(t)  Dems.(}) | BLEUM) Critic(l) Q3(f)  BERT() FI(1)  Dens.(})

Model .y | . . 9) ¥.K)

Flan-T5 85 223 76.2 844 786 124 8.5 62 623 61.3 452 173
+TA 19.1 19.4 75.9 822 744 1.1 18.5 25 79.6 63.6 53.9 2.80
+EWR 18100y 18.0 ey 7800wy 862cs 80.8ms 135ain | 20015 43010 84wy 644 sy 556000 32201

CaPE 18.3 13.2 782 837 75.9 1.2 173 23 72.5 63.3 526 2.63
+EWR 19000 94wy 787 w0s 882w 830 136w | 167000 26a0n  T92uen 643 i 5400 276 com

CTRL 195 103 83.9 87.8 82.3 13.9 17.6 53 79.8 64.5 57.8 330
+TA 19.3 8.9 82.7 87.0 812 13.0 18.0 12 89.5 66.5 63.6 453
+EWR 184 oy 57wse  868wms 913wy 877ass 163w | 1940 230w  853wss  655m0  60.6ms  3.80 1o

DExperts 18.0 143 79.6 87.0 822 143 7.1 29 749 63.6 557 283

Quark 17.2 7.9 91.9 92.6 90.2 18.6 19.0 57 73.1 62.7 49.8 2.03

Noisy Channel | 18.4 24.0 78.6 85.0 79.8 13.1 18.6 5.1 67.1 62.7 484 2.18

Table 1: Main results on WoW .., and DSTC9 indicating: i) performance in dialogue generation comparing true y
and predicted y responses (BLEU); ii) faithfulness of predicted response y to ground-truth knowledge K (Critic,
Q?, BERT, F1); 3) abstractiveness (Dens.). We report several baselines adapted for faithful generation and show
how Task Arithmetic (TA) and Elastic Weight Removal (EWR, ours) can be deployed on top of vanilla pre-trained
models, like Flan-T5, or on top of other methods like CTRL. Relative improvements and degradations are indicated

in green and red, respectively.

medium, and high lexical overlap. CTRL is trained
on examples from all three buckets and both entail-
ment labels but only conditioned on desired ones
at inference time (high-overlap and entailment).

Quark (Luetal.,, 2022a) uses a similar strategy
as CTRL for unlearning. The difference is that
not only the original training data but also model
generations which are taken after each epoch are
augmented with special tokens and used for train-
ing. Noting this similarity to CTRL, we therefore
employ the same tokens to adapt it to faithful di-
alog generation, allowing for a direct comparison.

DExperts (Liu et al., 2021) makes use of an ex-
pert and anti-expert model in order to reduce toxi-
city. The expert model is trained to generate non-
toxic text and the anti-expert to generate toxic text.
However, instead of combining models in parame-
ter space, as in our method, they are combined at
inference time as a density ratio:

1D

p(uT-i-l ‘ 11,{,]6) X
T
= Dez(ury1 |ui, K
p0001T+1| u{,Kn. E( + ’ z: ).
peAE(uT+1 | u; ’IC)

Tokens with high expert probability are encouraged
and tokens with high anti-expert probability are
discouraged. We use the same expert and anti-
expert models as in CaPE to adapt it to faithful
dialog generation and fairly compare both methods.

Noisy Channel Model (Daheim et al., 2022)
introduce a noisy channel model for document-

grounded dialogue:

pluris [uf,K) o« (12)

po, (K | uf,uri1) - pe,(uri1 | ui).

Here, pg, (K | ul', ur1) can be seen as a faithful-
ness and pg, (ury1 | ul’) as a fluency expert. We
use their reranking method to rescore generations
obtained from our baseline model.

4.3 Maetrics

We measure the lexical similarity of the generated
and the ground-truth responses with the sacrebleu
(Post, 2018) implementation of BLEU (Papineni
et al., 2002). To evaluate faithfulness, we em-
ploy the hallucination critic introduced by Dziri
et al. (2022a)', which classifies responses as hallu-
cinated or not, Q2 (Honovich et al., 2021), which
uses a question generation and question answering
pipeline, as well as token-level F1 and BERTScore
(Zhang* et al., 2020)2. To measure abstractiveness,
we again use Density (Grusky et al., 2018). Further
details are found in Appendix B.3.

5 Results

We first introduce our main results on WoW and
DSTC9 in Section 5.1. Then, we characterise trade-
offs between faithfulness and abstractiveness in
Section 5.2 before discussing the controllability
of model interpolation in Section 5.3. Finally, we
discuss ablations on various datasets in Section 5.4
and report human evaluation results in Section 6.
"https://huggingface.co/McGill-NLP/

roberta-large-faithcritic.
*We use the deberta-large-mnli checkpoint.


https://huggingface.co/McGill-NLP/roberta-large-faithcritic
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Figure 2: Metrics for EWR with Flan-T5p,s. on WoW.,,. (2) Faithfulness and abstractiveness can be traded-off by
varying both the influence of the abstractivness expert (a) and hallucination anti-expert (b).

5.1 Main Results on Faithfulness

We start with results for de-hallucinated models
using Flan-T5p,s in Table 1. Results with Flan-
T5}arge are found in the Appendix C.1 and show a
similar trend: subtracting anti-experts from vari-
ous base models can improve faithfulness at minor
degradation in other metrics. Increases in faith-
fulness from EWR are often stronger than from
task arithmetic, except for Flan-T5p,se on DSTCO,
especially in terms of BERT and token-level F1,
but can also lead to decreased BLEU. EWR on top
of CTRL provides state-of-the-art performance in
faithfulness, comparable to strong baselines like
Quark. While the additional faithfulness expert
used in CaPE generally improves over using only
an anti-expert, we observe fast degradation in terms
of BLEU and BertScore on DSTC9, potentially
stemming from comparatively small amounts of
expert training data after partitioning the dataset.

CTRL and Quark confirm the effectiveness of
control tokens and iteratively applying them to
model generations during training. DExperts and
noisy channel reranking are mostly outperformed
by EWR, task arithmetic, and CaPE, except for
Flan-T5p,sc on WoW. This is notable, as they re-
quire keeping multiple models but all others use
just one at inference time. Nevertheless, the perfor-
mance of noisy channel model reranking increases
with beam size (Daheim et al., 2022) which we
keep identical for all methods.

Improvements of CTRL and Quark are much
more conspicuous in WoW than DSTC9. We at-
tribute this to the fact that in DSTC9, the ground-
truth documents are FAQs, in which the question
might not be as important for the control tokens.
Furthermore, gold responses contain follow-up

30
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Figure 3: Improvements in faithfulness (Critic) tend to
incur an increase in extractiveness (LCS) on WoW.

questions at every turn, which might decrease the
effectiveness of the special tokens and might affect
automatic metrics.

Nevertheless, our results in Table 1 also illustrate
that increased faithfulness comes at the cost of
increased extractiveness, as measured by Density.
We investigate this further in the next subsection.

5.2 Faithfulness—Abstractiveness Trade-Off

As our main experiments show that improvements
in faithfulness also increase extractiveness, we now
outline experiments using an additional abstrac-
tiveness expert to reduce this effect. Figure 2 a
highlights our results on WoW using Flan-T5pse,
when only varying the scaling factor of the abstrac-
tion expert. From the plot, it emerges that we can
control the trade-off between faithfulness and ab-
stractiveness to improve over the baseline in both
dimensions, in the interval indicated by the greyed



BLEU(D) Criie) Q2(1)  BFI(H _ FI(D
Model .9 | (.K)
Wowunseen
Flan-TS5pase | 18.1 22.7 74.0 84.8 78.7
+TA 18.8 19.2 75.7 82.8 75.0
+ EWR 174 qon 177 050 784 29 869 21y 81.6 (129
DSTCI11
Flan-TSpue | 7.9 76.6 49.7 54.6 37.1
+TA 8.0 60.0 51.0 59.9 43.6
+ EWR 9.6\r1*v 41.1 (135.5) 57.3<7’m 60.0 54 38.6 (11.5)
FaithDial
Flan-TSpyee | 15.1 0.3 66.4 80.9 73.7
+ TA 153 0.1 57.5 77.3 67.6
+ EWR 14.9 102 0.1 (02 66.4 c00) 81.7 osy  75.0 113

Table 2: EWR improves faithfulness on unseen topics
(WoW ypseen ), multi-document corpora (DSTC11), and
datasets with cleaned ground-truth annotations (Faith-
Dial).

area. To further quantify this trade-off, which has
also been described in related works (Dziri et al.,
2022a; Daheim et al., 2022; Aksitov et al., 2023),
we use the ratio of the length of the longest com-
mon subsequence between ur4; and K and the
length of ur,; (LCS). We plot the dependency of
LCS and Critic in Figure 3 for Flan-T5p,s.-based
models on WoW. There is a clear trend towards
more extractiveness with increased faithfulness but
a better Critic score does not always imply an in-
crease in LCS.

5.3 Scaling Factors & Controllability

Next, we assess how much control EWR pro-
vides over faithfulness scores within an acceptable
range of BLEU, which measures overall perfor-
mance. Figure 2 b highlights that there is a larger
region of factors along which faithfulness con-
stantly improves within a narrow range of BLEU
scores. However, corresponding to the previously
discussed trade-off, density increases with faithful-
ness, indicating that the scaling factor also controls
how much of the knowledge is copied into the re-
sponse.

5.4 Generalisation to Additional Datasets

In this section, we study the performance of EWR
in challenging settings, namely on: i) unseen topics
that require generalisation (WoW unseen), ii) multi-
document corpora (DSTC11), and iii) cleaned train-
ing and test data that does not contain hallucina-
tions in ground-truth annotations (FaithDial). We
report the results in Table 2.

In summary, we observe the following: 1) EWR
shows improvements in all settings, especially in
terms of generalisation and in a multi-document
setting. Furthermore, we can even improve faithful-

Model WoW DSTC9

A Cm PMH|AM CM PM

Flan-TShae | 723 174  1.19 | 89.7 283 171
+EWRy | 75.1 162 125 | 94.7* 241 149

CTRL 85.5* 158 1.12 | 947 272 142
+TA 88.8* 1.58 1.16 | 97.0* 2.63 140
+ EWR 96.87 150 1.08 | 98.0f 2.50 1.36
Quark 93.1T 151 1.05 | 860 2.89 1.66

Table 3: Human evaluation on 218 examples annotated
by 3 expert annotators each. We measure attributability
(A), Co-cooperativeness (C), and paraphrasing (P). *
indicates significance wrt. Flan-T5p, and T wrt. to the
next best method with p < 0.05.

ness metrics when training and evaluating on the
cleaned FaithDial dataset. 2) task arithmetic can
improve results on multi-document corpora and
some metrics on the unseen set but fails to improve
BERT F1 and F1 on WoW unseen and FaithDial.

6 Human Evaluation

In addition to the automatic evaluation, we con-
duct a human evaluation on WoW and DSTC9 with
the help of three expert annotators 3, using the At-
tributable to Identified Source (AIS) framework
(Rashkin et al., 2023). First, we ask them to score
responses as attributable (A) only if all their con-
tent can be attributed to the knowledge that grounds
the dialogue response. Furthermore, we ask anno-
tators to rate cooperativeness (C), i.e. the ability of
the model to connect with and follow up on user
turns on a 3-point Likert scale. Here, 1 indicates a
response that does not cooperate with the dialogue,
2 a response that brings the dialogue forward, and
3 a response that acknowledges the previous ut-
terances and responds with a follow-up question.
Lastly, annotators rate paraphrasing (P) on a binary
scale, where 2 indicates non-trivial paraphrasing of
the knowledge and 1 substantial copying. Detailed
instructions can be found in Appendix B.4.

Table 3 shows the results for the A, C, and P cate-
gories with agreements of 0.61,0.51, 0.53, respec-
tively, in terms of Fleiss’ . Generally, we observe
that human evaluation results for attributability con-
firm results based on automatic faithfulness metrics
as they display similar patterns. In particular, all
methods improve over vanilla Flan-T5, with CTRL
and Quark performing similarly on average and out-
performing each other on the two different datasets.
Task arithmetic and EWR give improvements over

3All annotators are graduate students in NLP and paid
above minimum wage.



CTRL on both datasets. Most notably, EWRcTrL
improves over all other methods, including task
arithmetic and Quark, by a statistically significant
margin in human evaluation.

Our results also emphasize the trade-off be-
tween faithfulness and both paraphrasing (which
reflects abstractiveness) and cooperativeness. In-
creased attributability often leads to a decrease
in both other criteria. Nevertheless, EWR with
a faithfulness anti-expert and an abstraction ex-
pert, labelled EWR,s, improves both paraphras-
ing and attributability on WoW and attributabil-
ity on both datasets compared to vanilla Flan-T5.
While EWRy,s does not outperform this baseline
in paraphrasing on DSTC9, we believe that this
stems from the way the expert dataset DF is con-
structed, related to the comparatively less strong
performance of Quark and CTRL. As the ground-
truth responses in DSTC9 contain longer follow-up
questions, it is likely that density-based binning
does not pick up nuances, such as the difference
between non-paraphrased responses and follow-up
questions independent from the knowledge.

7 Related Work

Hallucination in LMs The impressive abilities
of LMs are offset by the potential for generating
hallucinated text (Ji et al., 2022; Thoppilan et al.,
2022; Bang et al., 2023; Qin et al., 2023; Choi
et al., 2023), which sparked an increasing interest
in tackling this problem in the context of grounded
language generation (Ji et al., 2022), encompassing
several tasks such as data-to-text generation (Wise-
man et al., 2017; Parikh et al., 2020), machine trans-
lation (Wang and Sennrich, 2020; Raunak et al.,
2021), summarisation (Durmus et al., 2020; Kang
and Hashimoto, 2020), generative question answer-
ing (Li et al., 2021), and dialogue generation (Dziri
et al., 2021, 2022c; Rashkin et al., 2021; Ji et al.,
2022; Razumovskaia et al., 2022). Different stud-
ies aim to address the issue of hallucination by
either developing automatic metrics to detect it
(Wiseman et al., 2017), or by identifying poten-
tial causes, such as out-of-domain generalisation,
noisy training data, and exposure bias (Kang and
Hashimoto, 2020; Raunak et al., 2021; Wang and
Sennrich, 2020; Dziri et al., 2021).

For neural dialogue models it has been shown
that retrieving relevant knowledge can reduce —but
not completely eliminate— hallucinations (Shuster
et al., 2021). Therefore, different methods have

been proposed to tackle it, such as token-level crit-
ics (Daziri et al., 2021), or control token- (Rashkin
et al., 2021) and reranking-based methods (Daheim
et al., 2022). Lastly, as hallucinations in training
data can greatly exacerbate those in models (Dziri
et al., 2022b), a hallucination-free dialogue bench-
mark has been proposed (Dziri et al., 2022a).

Controllable text generation Different works
steer model behaviour by controlled generation, for
example by combining models at decoding time
(Liu et al., 2021) or in parameter space (Ilharco
et al., 2023), conditioning on reward tokens as-
signed to model generations in training (Lu et al.,
2022a) or the initial training data (Keskar et al.,
2019; Niu and Bansal, 2018). Finally, different
methods constrain text generation with logical con-
straints (Lu et al., 2021, 2022b) or by forcing spe-
cific words to appear (Pascual et al., 2021).

8 Conclusion & Future Work

We introduce Elastic Weight Removal (EWR), a
novel method for steering the behaviour of lan-
guage generation models by combining their pa-
rameters with those of (anti-)experts, weighted
by Fisher Information. We show how EWR can
be used to reduce hallucinations in document-
grounded dialogue response generation across dif-
ferent settings. We compare it to other state-of-the-
art methods, many of which we adapt to faithful
response generation for the first time. Automated
metrics and human evaluation show that EWR im-
proves faithfulness over multiple baselines, and can
furthermore provide complementary improvements
with them. Moreover, we show that faithfulness
comes at the expense of abstraction. Therefore, we
combine an abstraction expert with the hallucina-
tion anti-expert to promote responses that are both
more faithful and abstractive than the baseline.

The main contribution of this work is that it out-
lines an unexplored way of promoting faithfulness
in document-grounded dialogue by using experts
and anti-experts not at inference time—and thereby
incurring significant overhead—but rather to navi-
gate the parameter space towards an improved set
of parameters without altering the model architec-
ture. This opens up many potential areas for future
work, such as controlling for further dimensions, or
developing more sophisticated data augmentation
techniques to create data for (anti-)experts.



9 Limitations

One limitation of our work is that we assume the
ground-truth knowledge K to be given. This as-
sumption does not hold in general, when a dialogue
system is used, because for a new user query it is
unknown. We might then expect that our method
stays more faithful to the retrieved knowledge, too,
but could generate erroneous responses to the user
query if this knowledge is incorrect.

A further limitation is the scale at which we con-
duct experiments, which do not go beyond 1B pa-
rameters due to the large number of baselines that
we evaluate on multiple corpora. On the other hand,
models used in production are often significantly
larger, often having tens of billions of parameters.

Connected to this, many of such models are
now trained using parameter-efficient finetuning
techniques, which either introduce a new subset of
model parameters that are trained, while all exist-
ing ones are kept fixed, or train a subset of model
parameters. Our method should be amenable to this
setting, because the task vector will also be 0 for
parameters that are not trained. However, we did
not experiment using parameter-efficient finetuning
techniques in this work.

Finally, we only evaluate a small set of (data
augmentation) techniques for creating hallucinated
and abstractive data and future work could evaluate
more such methods.

While we only study english datasets, we expect
the techniques to be similarly applicable for other
languages.

Ethics and Broader Impact Statement

Our work relies on LL.Ms to generate responses in
dialogue. Since such LLMs are prone to producing
errors, it can not be guaranteed that our methods
also do not produce erroneous outputs, such as
hallucinations, or output toxic or biased data. How-
ever, this work aims to mitigate hallucinations and
therefore we think that there is no direct ethical
concern.
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Appendix
A Details on Method

A.1 Pseudocode

Algorithm 1 outlines the steps for using EWR to
reduce hallucinations while promoting abstractive-
ness. Concretely, a dialogue response generation
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Algorithm 1 Pseudocode for removing hallucina-
tions and promoting abstraction with EWR. Note
that we apply (-)? element-wise.

Input Dialogues D, hallucinated anti-expert dataset D*F, ab-
stractive expert dataset D, initial parameter set 6

Output 6’
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model is trained first. Then, an anti-expert and
expert model are trained on hallucinated and ab-
stractive (and not hallucinated) data, respectively.
Both models are the subtracted and added to the di-
alogue response generation model, respectively, but
weighted by Fisher information. The Fisher infor-
mation is estimated by its diagonal with a squared
gradient approximation over the training, where
labels are sampled. We have found that calculat-
ing this by parameterising the model with the task
vectors TAg and 7g performs empirically well, but
it is theoretically better motivated to calculate it
at the anti-expert @5 or expert Og, respectively.
Both strategies provided similar performance in
our experience.

B Details on Experiments & Evaluation

B.1 Further Experimental Details

All models, with the exception of Quark and
(anti-)experts, which we train for 5 epochs, are
trained for 10 epochs using an initial learning rate
of 6.25e—5, linear learning rate decay without
warmup, and a batch size of 32, following prior
work (Daheim et al., 2022). We take checkpoints
after each epoch and pick the one with smallest
validation loss. For Task Arithmetic and EWR
we do a grid search to determine the scaling
factors on a validation set on WoW, FaithDial,
and DSTC9. For DSTCI11 we did not perform
such a grid set because we only had a validation
but not a test set, and the hyperparameters
seemed to be consistent across datasets. We
chose 1.0 for Task Arithmetic and 0.15 for EWR
for all experiments with only a hallucination

13

Dataset #train | #val #test
WoW (Dinan et al., 2019) 83247 | 4444 | {4356, 4380}
DSTC9 (Kim et al., 2020) 19184 | 2673 1981
FaithDial (Dziri et al., 2022a) | 18357 | 3417 3539
DSTCI11 (Zhao et al., 2023) 14768 | 2129 -

Table 4: Dataset statistics showing the number of train,
validation, and test examples counted in number of ut-
terances. For WoW test, we first show the seen and then
unseen split in curly brackets. For DSTC11, the test set
was not available yet at the time of writing.

anti-expert, since these factors performed best.
We use Flan-T5pase and Flan-T5y,,e with 250M
and 780M parameters, respectively. We use the
checkpoints that are available on the hugging-
face hub under https://huggingface.
co/google/flan-t5-base and
https://huggingface.co/google/
flan-t5-large. All experiments are per-
formed on NVIDIA A100 or V100 GPUs and each
model takes at most half a day to finetune.

All code for reproducing the experiments will be
made publicly available in a comprehensive soft-
ware repository under Apache License 2.0 *.

B.2 Further Details on Datasets

In this section we provide details on the splits of
all used datasets. The statistics are shown in Table
4. For Wizard-of-Wikipedia, we have used the
train, dev and both test splits (seen and unseen).
For DSTC11 we have only used validation split,
because the test set was not yet available at the time
of our experiments.

For the hallucination anti-expert model, the
training data is exactly the same size as for the
document-grounded response generation model,
just with the knowledge switched out. For all ex-
pert models we subsample the data according to
the assigned control tokens which depend on the
used metric and NLI model.

All datasets are in English and might there-
fore represent predominantly the demographics of
english-speaking countries. WoW was collected
by crowdsourcing dialogues in a roleplaying game.
DSTC9 was collected by asking crowdworkers to
fill in dialogues from MultiWoZ 2.1 (Eric et al.,
2020). DSTC11 was collected using crowdwork-
ers on Amazon MTurk, who stem from the USA,
Canada, and Great Britain (Zhao et al., 2023). Fi-
nally, FaithDial was created by asking crowdwork-

*https://www.apache.org/licenses/
LICENSE-2.0
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ers, also on Amazon MTurk, to clean dialogues
from WoW (Dziri et al., 2022a).

B.3 Further Details on Used Metrics

We evaluate BLEU (Papineni et al., 2002) on
the corpus-level using the sacrebleu package
(Post, 2018). Other metrics are calculated on an
example-level and averaged to obtain a global
score. Concretely, for critic model taken from Dziri
et al. (2022a), this means that we classify each
utterance as hallucination or not, with 1 indicating
hallucination and O otherwise. The score is aver-
aged over these classifications and can therefore be
seen as calculating the percentage of hallucinated
examples in the model predictions. The model
used for this is finetuned from RoBERTA (Liu
et al., 2019) and released as part of Dziri et al.
(2022a). It is openly available on the hugging-
face hub and can be found under https:
//huggingface.co/McGill-NLP/
roberta-large-faithcritic. For
Q? (Honovich et al., 2021), a pipeline of steps is
performed for each generated example to arrive at
a score. First, answer candidates are determined
for the generated response, which often correspond
to spans of entities. Then, questions are generated
for each answer candidate and answered based
on the knowledge documents. If the answer
is the same by string match, a score of 1 is
assigned. If there is no string match, a score of 1
is assigned if an NLI model judges one answer
to entail the other, and a score of 0 otherwise.
Questions are also filtered, and if no valid question
is found, entailment between the knowledge
and the generated response is calculated as a
fallback. We base our implementation on the
open-source implementation found in https:
//github.com/orhonovich/g-squared
which was released with Honovich et al. (2021)
and will open-source our reproduction under
Apache License 2.0.

Our adoption of density (Grusky et al., 2018)
calculates the average squared length of extrac-
tive spans that were copied from the knowledge
documents into the generated response. We aver-
age the densities of all predictions. Similarly, F1
calculates the token-level overlap between gener-
ated response and document, and we again take
the average over predictions. Again, all the imple-
mentations of these metrics will be made publicly
available by us.

For BertScore (Sun et al., 2022), we use the
open-source implementation found at https:
//github.com/Tiiiger/bert_score
and use the ‘deberta-large-mnli’ checkpoint, which
was recommended at the time of implementation.

B.4 Details on Human Evaluation

In this section, we detail the instructions and re-
cruitment for our human evaluation. All of the
annotators are graduate students in NLP from one
of the authoring institutions and are all paid well
above minimum-wage. All annotators voluntarily
agreed to participating in our study and were in-
formed, and agree to, that no personal data would
be released and only the human judgements would
be stored. The annotators were instructed to score
218 randomly sampled examples generated with
different models from WoW and DSTC9 accord-
ing to three criteria: Faithfulness, Coherence, and
Paraphrasing, abbreviated with F, C, and P, respec-
tively, in Table 3. The instructions for Faithful-
ness follow the well-established Attributable to
Identified source framework (AIS) (Rashkin et al.,
2023). We follow the exact definitions from their
work and show these as guidelines to the anno-
tators, who were instructed to carefully read the
paper. This is feasible, because all annotators have
graduate-level knowledge of NLP. Following the
frame work, we instructed users to only annotate
interpretable responses, others were to be left out.
Then, a score of one should be assigned if the con-
ditions in (Rashkin et al., 2023, Definition 8) are
met. We repeat the definition here verbatim for
completeness and refer the reader to their work for
more information about the framework.

Definition 1. AIS, full definition (Rashkin et al.,
2021) A pair (s, c), where s is a sentence and ¢y, t
is a pair consisting of a linguistic context and a
time, is Attributable to Identified Sources (AIS) iff
the following conditions hold:

1. The systems provides a set of parts P of some
underlying corpus K, along with S.

2. s in the context c is interpretable (i.e.,
E(e,s) # NULL.

3. The explicature E(c, s) is a standalone propo-
sition.

4. The pair (E(c, s),t) is attributable to P.

The pair E(c, s),t) is attributable to a set of parts
P of some underlying corpus K iff: A generic
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hearer will, with a chosen level of confidence, af-
firm the following statement: “According to P,
E(c,s), where E(c,s) is interpreted relative to
time t.”

According to this, a binary label is assigned,
where 1 indicates ‘faithful’ and O ‘not faithful’. We
only make a slight change in definition for DSTC9,
where the FAQ documents are short and give rele-
vant information to a customer in customer service
conversations, for example, for hotel booking. The
change is as follows: “If important information for
the user in K is left out, the response should be
scored as ‘not faithful’.”

For Coherence, we ask the annotators to only
score such responses that were annotated with 1 in
the previous step on a 3-point Likert scale. The
instructions are as follows:

3: The response is highly co-operative and, for
example, explicitely acknowledges the pre-
vious turn (e.g. ""Yes,.."".) and contains a
follow-up question.

The response follows up logically to the pre-
vious dialog and / or shows some degree of
co-operativeness.

: The response is standalone and does not
follow-up logically to the previous dialog.

Here, the listing item (e.g. “3:”) indicates the rat-
ing.

For Paraphrasing, we chose a two-point scale
with the following instructions:

2: Response paraphrases the evidence to a suffi-
cient extent.

: The response copy-pastes the evidence into
the response verbatim or almost verbatim.

As noted in Section 6, we achieve agreements of
0.61,0.51, 0.53, respectively, in terms of Fleiss’ «,
for the three categories above in order of writing.

C Further Results

C.1 Additional Experiments Using
Flan-T5;arge

Table 5 shows results obtained using the same set-
up as in Section 5.1 but using Flan-T5},ec instead
of Flan-T5y,s.. We find the results from the smaller
checkpoint to be confirmed and find much larger
improvements for EWR on DSTC9 than using the
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base checkpoint. Again, parameter interpolation
methods can be used effectively to reduce halluci-
nations at minor costs of fluency and abstractive-
ness, also on top of other methods that promote
faithfulness. However, we find CTRL and Quark
less effective for DSTC9, potentially because the
overlap and entailment tokens have more errors
than in WoW due to the structure of the used FAQ
documents.



WoWgeen DSTC9
BLEU(1) Critic(]) Q? 1) BERT(1) FI(1) Dens.(]) | BLEU(1) Critic(}) Q2 ©) BERT(1) FI1(1) Dens.({)

Model (y.9) (y,K) (y,9) (y,K)

Flan-T5jarge 18.6 26.7 77.8 83.8 71.5 12.3 18.6 6.9 64.0 61.2 44.7 1.81
+TA 19.1 16.7 80.2 84.6 77.8 12.6 19.0 3.7 74.3 64.4 55.6 3.50
+EWR ]7‘3 (-1.3) ]6‘9(;‘7\\\ 80‘3 (12.5) 88.3 (14.5) 83.9 (16.4) ]4‘9\T2(»7 ]9.] (10.5) 2.8 (4.1 83.8 (119.8) 64.8 (13.6) 57‘3 (112.6) 3‘48 (T1.67)

CaPE 19.0 13.0 79.5 83.7 75.4 11.3 17.2 43 73.3 64.4 532 2.82
+ EWR 18.2 wosy 9.3 139 80.4 09y 89.4 157y 84.9 195y 152 139 | 16.2 w10y 1.1 32 749 1169 64.1 o3 54.1 oo 3.00 ro.s)

CTRL 19.8 11.3 82.0 87.3 81.5 13.4 19.5 6.8 77.4 63.8 52.7 2.73
+TA 19.2 7.2 84.3 86.8 80.6 13.0 19.3 2.6 79.3 65.9 57.5 3.37
+ EWR 18.6 112 7.0 a3 858 cse 9052 868 sy 168 ¢aw | 181 ey 0.8 60 843 6oy 652 ¢1s 595 ¢esy  3.83 iy

DExperts 18.3 17.9 79.8 81.7 71.4 12.7 18.2 42 70.5 63.9 549 2.78

Quark 18.0 9.1 914 91.2 88.1 16.9 20.3 6.0 74.7 64.9 54.3 3.09

Noisy Channel | 18.8 22.3 77.2 85.5 80.2 13.3 18.4 6.1 67.2 62.2 47.4 2.20

Table 5: Main results on WoW e, and DSTCO using Flan-T5yc.

16




