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Abstract

Generating factual responses is a crucial re-001
quirement for dialogue systems. To promote002
more factual responses, a common strategy003
is to ground their responses in relevant doc-004
uments that inform response generation. How-005
ever, common dialogue models still often hal-006
lucinate information that was not contained007
in these documents and is therefore unfaith-008
ful. In this work, we propose to alleviate such009
hallucinations by ‘subtracting’ the parameters010
of a model trained to hallucinate from a dia-011
logue response generation model in order to012
‘negate’ the contribution of such hallucinated013
examples from it. Extensive automatic and hu-014
man evaluation shows favourable results when015
compared to state-of-the-art methods that com-016
bine the distributions of multiple models, such017
as DExperts (Liu et al., 2021), and others that018
change the training procedure, such as Quark019
(Lu et al., 2022a). Finally, we show how we020
can not only reduce hallucinations but also dis-021
courage extractive responses, which are often a022
consequence of reducing hallucinations by en-023
couraging copy-pasting of document spans. We024
will publicly release our code for reproducibil-025
ity and facilitating further research.026

1 Introduction027

Current-day large language models (LLMs) impres-028

sively generate coherent, grammatical, and seem-029

ingly meaningful text, but are prone to hallucinat-030

ing incorrect information. While grounding them031

in relevant documents can alleviate this (Shuster032

et al., 2021), models still tend to generate informa-033

tion that conflicts these documents, which would034

again be classified as hallucination (Dziri et al.,035

2022a). This raises major safety concerns. Such036

hallucinations could impair student learning, or037

proliferate convincing-but-inaccurate news articles.038

Therefore, ensuring trustworthiness is crucial for039

the safe deployment of LLMs at scale, particularly040

in high-stakes domains.041

K: The Flash first appeared in “Show-
case” #4 (October 1956) [...]
uT : What comic series is he from?
uT+1 F A
He first appeared in “Showcase” #4
(November 1956).

✗ ✗

He first appeared in “Showcase” #4
(October 1956).

✓ ✗

His first appearance was in Showcase
#4 in October 1956.

✓ ✓

Figure 1: Constructed example of responses uT+1 that
are i) hallucinated (words contradicting the knowledge
K in red); ii) faithful but not abstractive (longest copied
n-gram in blue); and iii) both Faithful and Abstractive
based on Wizard-of-Wikipedia (Dinan et al., 2019).

Modelling solutions to mitigate hallucination 042

often take inspiration from methods used to dis- 043

courage other undesirable behaviours in LLMs, 044

for example, contradictions (Keskar et al., 2019), 045

repetitions (Lu et al., 2022a), or toxicity (Ilharco 046

et al., 2023). One group of methods achieves this 047

by fine-tuning an LLM conditioned on special to- 048

kens (Niu and Bansal, 2018; Keskar et al., 2019), 049

which can be assigned to model generations by a 050

learned reward model during training (Lu et al., 051

2022a). Another re-weights the predictive distribu- 052

tion with models that are specialised for positive 053

or negative behaviour (Liu et al., 2021; Daheim 054

et al., 2022), called ‘experts’ or ‘anti-experts’ re- 055

spectively. While successful, these methods are 056

either inefficient to train, as a large number of gen- 057

erations needs to be sampled during training, or 058

inefficient in inference, as multiple models have 059

to be stored and evaluated. In this work, we ex- 060

plore a different family of methods (Choubey et al., 061

2021; Ilharco et al., 2023) that uses modular deep 062

learning (Ponti et al., 2021; Pfeiffer et al., 2023) 063

by interpolating parameters without altering the 064

model architecture. This is efficient during infer- 065
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ence, because only one interpolated model needs066

to evaluated, and for training the models that are in-067

terpolated no new data needs to be sampled during068

the training procedure. Concretely, a new model069

is obtained as the weighted difference between a070

pretrained LLM and a model finetuned from it, for071

example, as an anti-expert (Ilharco et al., 2023).072

One drawback of this strategy is that parameters073

are weighted uniformly even though they might074

have differing contributions to hallucinations. Fur-075

thermore, it might result in catastrophic interfer-076

ence between the specialised models (McCloskey077

and Cohen, 1989). To address this, we propose078

Elastic Weight Removal (EWR), a novel method079

for parameter interpolation that weights the impor-080

tance of each parameter by using the Fisher Infor-081

mation Matrix (FIM) as a measure of importance,082

similar to previous works in continual learning083

(Kirkpatrick et al., 2017), sample-efficient learning084

(Ponti et al., 2019), or merging models for different085

tasks (Matena and Raffel, 2022). In our experi-086

ments, we show how this can be used to discourage087

hallucinations by first training an anti-expert on088

synthetically created data and then interpolating it089

with the baseline model.090

We compare our method with state-of-the-art091

methods for removing hallucinations and other092

undesired behaviours, which we adapt to remov-093

ing hallucinations. Namely, we adapt Quark (Lu094

et al., 2022a), DExperts (Liu et al., 2021), and095

task arithmetic (Choubey et al., 2021; Ilharco et al.,096

2023). Our findings show consistent improvements097

in faithfulness, which can be combined with those098

of others, such as CTRL (Rashkin et al., 2021). Of-099

tentimes, an increase in faithfulness comes at an100

increase in extractiveness from copy-pasting docu-101

ment spans into the response. Based on this insight,102

we finally highlight how EWR can be extended to103

reducing hallucinations and extractiveness at the104

same time. Our results are confirmed using a hu-105

man evaluation with the Attributable to Identified106

Source (AIS) framework (Rashkin et al., 2023). We107

will release the code for all methods and metrics in108

a comprehensive framework.109

2 Background110

The goal of dialogue response generation is to con-111

tinue a dialogue uT
1 := (u1, . . . ,uT ) of T turns by112

generating a new turn uT+1. Here, each turn ut is113

just a sequence of Nt tokens [ut]
Nt
1 ∈ VNt from114

the model vocabulary V . In document-grounded115

response generation, uT+1 is grounded in one or 116

more documents K̂ ⊆ K from a document knowl- 117

edge base K, meaning that K̂ informs the infor- 118

mation content of uT+1. Therefore, uT+1 should 119

also faithfully reflect it. This means that neither 120

contradicting nor unverifiable information should 121

be added. In this work, we assume that K̂ is given. 122

A common strategy for generating uT+1 is using 123

language generators that model the distribution 124

pθ(uT+1 | uT
1 , K̂) = 125

NT+1∏
n=1

pθ([uT+1]n | [uT+1]
n−1
1 ,uT

1 , K̂), (1) 126

parameterised by weights θ, for next-token pre- 127

diction paired with a search algorithm like beam 128

search. We focus on different methods of obtaining 129

θ while maintaining the same model architecture. 130

2.1 Parameter Combination for Faithful 131

Generation 132

Previous works have explored combining model 133

parameters with different goals, for example, to in- 134

crease robustness (Gao et al., 2022) but also to pro- 135

mote or discourage different behaviours by merg- 136

ing specifically trained model instances (Ilharco 137

et al., 2023). In this work, we use it to discour- 138

age hallucinations in dialogue models. By letting 139

Θ = {θ1, . . . ,θN}, where θi ∈ Rd, denote the pa- 140

rameters of a set of models that should be merged 141

and λi ∈ Rd their respective scaling factors, many 142

such methods can be expressed by: 143

θ′ =

N∑
i=1

λi ⊙ θi
Z

, (2) 144

where ⊙ denotes element-wise multiplication and 145

Z can be used to re-scale parameters. 146

One such method is task arithmetic (Ilharco et al., 147

2023), which bases on the idea that essential infor- 148

mation about a task can be captured by the change 149

of the parameter values between pretrained initiali- 150

sation θ0 and the finetuned θft, called task vector. 151

Given this information, the behaviour needed for 152

this task can be added to the model θ0 by adding 153

a task vector and also removed by subtracting it. 154

Concretely, the task vector can be expressed as: 155

τ := θft − θ0. (3) 156

Then, task arithmetic (Ilharco et al., 2023) uses the 157

following for model combination: 158

θ′ = θ0 +
∑
i

λiτi, (4) 159
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where the scalar λi promotes the behaviour cap-160

tured by τi if λi > 0 and discourages it if λi < 0.161

We will use the latter to discourage hallucina-162

tions by training a model to hallucinate and then163

discouraging its behaviour through subtraction. We164

will refer to such a model as ‘anti-expert’ (θAE)165

and then use the following task arithmetic:166

θ′ = θ0 − λ · τ167

= θ0 − λ · (θAE − θ0)168

= (1 + λ) · θ0 − λ · θAE. (5)169

We would expect a model parameterised by θ′ to170

hallucinate less than one parameterised by θ0.171

We could also add an expert model θE, for exam-172

ple, trained on abstractive data which significantly173

rewrites the documents content:174

θ′ = θ0−λAE · (θAE −θ0)+λE · (θE −θ0). (6)175

Setting λ = λAE = λE is equivalent to using176

Contrastive Parameter Estimation (CaPE; Choubey177

et al., 2021) with the following simplified update:178

θ′ = θ0 + λ · (θE − θAE). (7)179

We will discuss how to train θAE and θE later.180

Both task arithmetic and CaPE use scalars λ for181

parameter combination and therefore assume equal182

parameter importance. Intuitively, though, only183

a subset of parameters might be responsible for184

hallucinations. For example, anomalous encoder–185

decoder attention patterns correlate strongly with186

hallucinations (Raunak et al., 2021; Guerreiro et al.,187

2023, inter alia). Hence, only these specific param-188

eters might be required to change. Moreover, com-189

posing multiple task vectors might lead to catas-190

trophic interference (Ansell et al., 2022). Next, we191

show how parameters can be weighed individually192

which we hope will improve task arithmetic.193

3 Elastic Weight Removal194

In our proposed method, Elastic Weight Removal195

(EWR), we use the Fisher Information matrix196

(or Fisher) to combine models with importance-197

weighted scaling factors for each parameter.198

Thereby, we aim to preserve positive behaviour in199

the model fine-tuned for dialogue response genera-200

tion while removing the most important parameters201

in the anti-expert task vector, which lead to halluci-202

nated generations. We take inspiration from prior203

works that successfully use the Fisher for similar204

parameter-specific scaling, for example, against 205

catastrophic forgetting (Kirkpatrick et al., 2017), 206

for merging checkpoints of the same model trained 207

independently on different tasks (Matena and Raf- 208

fel, 2022), or preconditioning updates in stochastic 209

optimization (Amari, 1998; Martens, 2020). We 210

refer the reader to prior works (Schraudolph, 2002; 211

Martens, 2020; Kunstner et al., 2019) for more in- 212

formation about theoretical properties of the Fisher. 213

Of practical importance is that the Fisher has size 214

d2 for a neural network model with d parame- 215

ters. Therefore, it is commonly approximated by 216

its diagonal (Matena and Raffel, 2022, inter alia). 217

The diagonal can be estimated efficiently by sum- 218

ming or averaging the squared gradients of the 219

model over the training data. Here, the label is 220

sampled from the model at each step instead of 221

taking the annotated token (cf. Kunstner et al. 222

(2019)). For a model pθ(y | x) this means calcu- 223

lating: fθ = 1
|D|

∑
x∈D[∇ log pθ(y

′ | x)]2, where 224

y′ ∼ pθ(· | x) is sampled from the model. 225

We start by taking Equation (2) and setting λ0, 226

which scales pre-trained parameters θ0, to λ0 · fθ 227

(note that λ0 is equal to 1 in Equation (5) for task 228

arithmetic). Similarly, for each task vector τi, we 229

replace the scalar factor λi with λi · fτi . This way, 230

we can still control the influence of each model 231

with a scalar hyper-parameter, while the diago- 232

nal Fisher estimate controls individual parameters. 233

Since the entries in f can have different magnitudes 234

than the entries in θ, we use a scaling constant Z. 235

Then, our parameter combination is defined as: 236

θ′ =
λ0 · fθ0 · θ0 +

∑N
i=1 λi · fτi · τi

Z
, (8) 237

One choice is to set Z := λ0 · fθ0 +
∑

i |λi| · fτi , 238

similar to Matena and Raffel (2022). Then, using 239

only a hallucination anti-expert θAE, we can rewrite 240

the update as: 241

θ′ = θ0 −
λAE · fτAE

λ0 · fθ0 + λAE · fτAE

θAE. (9) 242

Therefore, fθ0 and fτAE determine how much each 243

parameter should be changed—parameters with 244

large fθ0 are preserved and parameters with large 245

fτ1 are changed more due to their contribution 246

to negative behaviour. When an expert model 247

is added, as well, it is only possible to obtain a 248

similar rewrite when the sign of the correspond- 249

ing αi is flipped in the denominator, i.e. Z := 250

λ0 · fθ0 +
∑

i(−λi) · fτi . We have found this to be 251
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more stable empirically. However, it can introduce252

divisions by 0 which can be avoided by adding a253

small constant. Finally, we have found calculating254

the Fisher at τ to perform well empirically, even255

though calculating it at θAE or θE, respectively, is256

theoretically better grounded. Next, we describe257

how we train the expert and anti-expert models.258

Pseudocode for EWR is shown in Appendix A.1.259

3.1 Training Data for (Anti-)Experts260

We use different strategies to create hallucinated ex-261

amples DAE. For Wizard-of-Wikipedia (WoW), we262

use all examples from Faithdial (Dziri et al., 2022a)263

which humans rated as hallucinations according to264

the BEGIN taxonomy (Dziri et al., 2022c). Since265

such annotations often do not exist for other data,266

we try lightweight data augmentation techniques267

to artificially create hallucinated data. We find that268

replacing the ground-truth documents to randomly269

sampled ones performs similar to using human hal-270

lucination annotations. Potentially, this forces the271

model to hallucinate, as the input does not contain272

the correct information for the response. We use273

this strategy for all other datasets than WoW. CaPE274

and DExperts (which we introduce in detail in the275

following Section 4.2) also use a faithfulness ex-276

pert in addition to a hallucination anti-expert. For277

training this expert, we use responses that are as-278

signed an entailment token when training CTRL,279

because such examples are unlikely to contain hal-280

lucinations.281

To create a dataset of abstractive examples DE,282

we use the density and coverage metrics introduced283

in Grusky et al. (2018). Coverage measures the284

ratio of unigrams from the grounding documents285

that appear in the response and density measures286

the average length of copied text spans. Intuitively,287

we would like to have low density, because this288

indicates paraphrasing, but such examples might289

be hallucinated. Therefore, we pick examples that290

also have high coverage to ensure that the infor-291

mation from the document is used. We do this by292

splitting the dataset into buckets and assigning low,293

medium, and high density or coverage tokens to294

them, similar to Keskar et al. (2019), and taking the295

high density examples. Future work can explore296

further methods for data augmentation.297

4 Experiments298

We experiment on multiple datasets outlined in Sec-299

tion 4.1. We compare EWR to CaPE and task arith-300

metic, as well as a set of other unlearning methods, 301

which we apply for faithful dialogue generation for 302

the first time. Furthermore, we compare to state- 303

of-the-art methods for faithful dialogue generation. 304

We list these baselines in Section 4.2. Crucially, 305

parameter combination can be added independently 306

on top of many of the other baselines. 307

All experiments are implemented using Hug- 308

gingface transformers (Wolf et al., 2020) and mod- 309

els are initialised from publicly available Flan- 310

T5 checkpoints (Longpre et al., 2023), which we 311

have found to perform substantially better than pre- 312

viously introduced encoder-decoder models like 313

BART (Lewis et al., 2020) or T5 (Raffel et al., 314

2020). We organise our experiments using Sisy- 315

phus (Peter et al., 2018) and release configuration 316

files to reproduce our results. Further experimental 317

details, such as learning rate or number of epochs, 318

are given in Appendix B.1. We use beam search 319

with a beam size of 10 for decoding. 320

4.1 Datasets 321

We evaluate all methods on Wizard-of-Wikipedia 322

(Dinan et al., 2019, WoW), an open-domain dataset 323

for information-seeking dialogue where turns are 324

grounded in Wikipedia snippets. WoW contains 325

a seen and an unseen split. Furthermore, we use 326

the DSTC9 (Kim et al., 2020) extension of Multi- 327

WoZ 2.1 (Eric et al., 2020), which augments the 328

original dialogues by turns that are grounded in 329

short FAQ documents. For further experiments, we 330

use DSTC11 (Zhao et al., 2023; Kim et al., 2023), 331

which extends DSTC9 to multi-document settings, 332

and FaithDial (Dziri et al., 2022a), which is a de- 333

hallucinated subset of WoW. Statistics are shown 334

in Appendix B.2. 335

4.2 Baselines 336

CTRL (Keskar et al., 2019) introduces a se- 337

quence of control tokens c to steer the model to- 338

wards desirable generations: 339

pθ(uT+1 | uT
1 , K̂, c). (10) 340

Rashkin et al. (2021) adapt the model in Equa- 341

tion (10) to promote faithfulness in document- 342

grounded dialogue by introducing entailment, lex- 343

ical overlap and first-person tokens. We employ 344

the first two. Entailment indicates whether the re- 345

sponse is entailed by the documents, determined 346

by an MNLI model, and lexical overlap splits 347

the responses into three buckets according to low, 348
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WoWseen DSTC9
BLEU(↑) Critic(↓) Q2(↑) BERT(↑) F1(↑) Dens.(↓) BLEU(↑) Critic(↓) Q2(↑) BERT(↑) F1(↑) Dens.(↓)

Model (y, ŷ) (y, K̂) (y, ŷ) (y, K̂)

Flan-T5 18.5 24.3 76.2 84.4 78.6 12.4 18.5 6.2 62.3 61.3 45.2 1.73
+ TA 19.1 19.4 75.9 82.2 74.4 11.1 18.5 2.5 79.6 63.6 53.9 2.80
+ EWR 18.1 (↓-0.4) 18.1 (↓-6.2) 78.0 (↑1.8) 86.2 (↑1.8) 80.8 (↑2.2) 13.5 (↑1.1) 20.0 (↑1.5) 4.3 (↓-1.9) 78.4 (↑16.1) 64.4 (↑3.1) 55.6 (↑10.4) 3.22 (↑1.49)

CaPE 18.8 13.2 78.2 83.7 75.9 11.2 17.3 2.3 72.5 63.3 52.6 2.63
+ EWR 19.0 (↑0.2) 9.4 (↓-3.8) 78.7 (↑0.5) 88.2 (↑4.5) 83.0 (↑7.1) 13.6 (↑2.4) 16.7 (↓-0.6) 2.6 (↑0.3) 79.2 (↑6.7) 64.3 (↑1.0) 54.0 (↑1.4) 2.76 (↑0.13)

CTRL 19.5 10.3 83.9 87.8 82.3 13.9 17.6 5.3 79.8 64.5 57.8 3.30
+ TA 19.3 8.9 82.7 87.0 81.2 13.0 18.0 1.2 89.5 66.5 63.6 4.53
+ EWR 18.4 (↓-0.8) 5.7 (↓-4.6) 86.8 (↑2.9) 91.3 (↑3.5) 87.7 (↑5.4) 16.3 (↑2.4) 19.4 (↑1.7) 2.3 (↓-3.0) 85.3 (↑5.5) 65.5 (↑1.0) 60.6 (↑2.8) 3.80 (↑0.5)

DExperts 18.0 14.8 79.6 87.0 82.2 14.3 17.1 2.9 74.9 63.6 55.7 2.83
Quark 17.2 7.9 91.9 92.6 90.2 18.6 19.0 5.7 73.1 62.7 49.8 2.03
Noisy Channel 18.4 24.0 78.6 85.0 79.8 13.1 18.6 5.1 67.1 62.7 48.4 2.18

Table 1: Main results on WoWseen and DSTC9 indicating: i) performance in dialogue generation comparing true ŷ
and predicted y responses (BLEU); ii) faithfulness of predicted response y to ground-truth knowledge K̂ (Critic,
Q2, BERT, F1); 3) abstractiveness (Dens.). We report several baselines adapted for faithful generation and show
how Task Arithmetic (TA) and Elastic Weight Removal (EWR, ours) can be deployed on top of vanilla pre-trained
models, like Flan-T5, or on top of other methods like CTRL. Relative improvements and degradations are indicated
in green and red, respectively.

medium, and high lexical overlap. CTRL is trained349

on examples from all three buckets and both entail-350

ment labels but only conditioned on desired ones351

at inference time (high-overlap and entailment).352

Quark (Lu et al., 2022a) uses a similar strategy353

as CTRL for unlearning. The difference is that354

not only the original training data but also model355

generations which are taken after each epoch are356

augmented with special tokens and used for train-357

ing. Noting this similarity to CTRL, we therefore358

employ the same tokens to adapt it to faithful di-359

alog generation, allowing for a direct comparison.360

361

DExperts (Liu et al., 2021) makes use of an ex-362

pert and anti-expert model in order to reduce toxi-363

city. The expert model is trained to generate non-364

toxic text and the anti-expert to generate toxic text.365

However, instead of combining models in parame-366

ter space, as in our method, they are combined at367

inference time as a density ratio:368

p(uT+1 | uT
1 , K̂) ∝ (11)369

pθ0(uT+1 | uT
1 , K̂) · pθE(uT+1 | uT

1 , K̂)

pθAE(uT+1 | uT
1 , K̂)

.370

Tokens with high expert probability are encouraged371

and tokens with high anti-expert probability are372

discouraged. We use the same expert and anti-373

expert models as in CaPE to adapt it to faithful374

dialog generation and fairly compare both methods.375

Noisy Channel Model (Daheim et al., 2022)376

introduce a noisy channel model for document-377

grounded dialogue: 378

p(uT+1 | uT
1 , K̂) ∝ (12) 379

pθ1(K̂ | uT
1 ,uT+1) · pθ2(uT+1 | uT

1 ). 380

Here, pθ1(K̂ | uT
1 ,uT+1) can be seen as a faithful- 381

ness and pθ2(uT+1 | uT
1 ) as a fluency expert. We 382

use their reranking method to rescore generations 383

obtained from our baseline model. 384

4.3 Metrics 385

We measure the lexical similarity of the generated 386

and the ground-truth responses with the sacrebleu 387

(Post, 2018) implementation of BLEU (Papineni 388

et al., 2002). To evaluate faithfulness, we em- 389

ploy the hallucination critic introduced by Dziri 390

et al. (2022a)1, which classifies responses as hallu- 391

cinated or not, Q2 (Honovich et al., 2021), which 392

uses a question generation and question answering 393

pipeline, as well as token-level F1 and BERTScore 394

(Zhang* et al., 2020)2. To measure abstractiveness, 395

we again use Density (Grusky et al., 2018). Further 396

details are found in Appendix B.3. 397

5 Results 398

We first introduce our main results on WoW and 399

DSTC9 in Section 5.1. Then, we characterise trade- 400

offs between faithfulness and abstractiveness in 401

Section 5.2 before discussing the controllability 402

of model interpolation in Section 5.3. Finally, we 403

discuss ablations on various datasets in Section 5.4 404

and report human evaluation results in Section 6. 405

1https://huggingface.co/McGill-NLP/
roberta-large-faithcritic.

2We use the deberta-large-mnli checkpoint.
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Figure 2: Metrics for EWR with Flan-T5base on WoWseen. (a) Faithfulness and abstractiveness can be traded-off by
varying both the influence of the abstractivness expert (a) and hallucination anti-expert (b).

5.1 Main Results on Faithfulness406

We start with results for de-hallucinated models407

using Flan-T5base in Table 1. Results with Flan-408

T5large are found in the Appendix C.1 and show a409

similar trend: subtracting anti-experts from vari-410

ous base models can improve faithfulness at minor411

degradation in other metrics. Increases in faith-412

fulness from EWR are often stronger than from413

task arithmetic, except for Flan-T5base on DSTC9,414

especially in terms of BERT and token-level F1,415

but can also lead to decreased BLEU. EWR on top416

of CTRL provides state-of-the-art performance in417

faithfulness, comparable to strong baselines like418

Quark. While the additional faithfulness expert419

used in CaPE generally improves over using only420

an anti-expert, we observe fast degradation in terms421

of BLEU and BertScore on DSTC9, potentially422

stemming from comparatively small amounts of423

expert training data after partitioning the dataset.424

CTRL and Quark confirm the effectiveness of425

control tokens and iteratively applying them to426

model generations during training. DExperts and427

noisy channel reranking are mostly outperformed428

by EWR, task arithmetic, and CaPE, except for429

Flan-T5base on WoW. This is notable, as they re-430

quire keeping multiple models but all others use431

just one at inference time. Nevertheless, the perfor-432

mance of noisy channel model reranking increases433

with beam size (Daheim et al., 2022) which we434

keep identical for all methods.435

Improvements of CTRL and Quark are much436

more conspicuous in WoW than DSTC9. We at-437

tribute this to the fact that in DSTC9, the ground-438

truth documents are FAQs, in which the question439

might not be as important for the control tokens.440

Furthermore, gold responses contain follow-up441
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Figure 3: Improvements in faithfulness (Critic) tend to
incur an increase in extractiveness (LCS) on WoW.

questions at every turn, which might decrease the 442

effectiveness of the special tokens and might affect 443

automatic metrics. 444

Nevertheless, our results in Table 1 also illustrate 445

that increased faithfulness comes at the cost of 446

increased extractiveness, as measured by Density. 447

We investigate this further in the next subsection. 448

5.2 Faithfulness–Abstractiveness Trade-Off 449

As our main experiments show that improvements 450

in faithfulness also increase extractiveness, we now 451

outline experiments using an additional abstrac- 452

tiveness expert to reduce this effect. Figure 2 a 453

highlights our results on WoW using Flan-T5base, 454

when only varying the scaling factor of the abstrac- 455

tion expert. From the plot, it emerges that we can 456

control the trade-off between faithfulness and ab- 457

stractiveness to improve over the baseline in both 458

dimensions, in the interval indicated by the greyed 459
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BLEU(↑) Critic(↓) Q2(↑) BF1(↑) F1(↑)
Model (y, ŷ) (y, K̂)

WoWunseen
Flan-T5base 18.1 22.7 74.0 84.8 78.7

+ TA 18.8 19.2 75.7 82.8 75.0
+ EWR 17.4 (↓-0.7) 17.7 (↓-5.0) 78.4 (↑4.4) 86.9 (↑2.1) 81.6 (↑2.9)

DSTC11
Flan-T5base 7.9 76.6 49.7 54.6 37.1

+ TA 8.0 60.0 51.0 59.9 43.6
+ EWR 9.6 (↑1.7) 41.1 (↓35.5) 57.3 (↑7.6) 60.0 (↑5.4) 38.6 (↑1.5)

FaithDial
Flan-T5base 15.1 0.3 66.4 80.9 73.7

+ TA 15.3 0.1 57.5 77.3 67.6
+ EWR 14.9 (↓-0.2) 0.1 (↓-0.2) 66.4 (-0.0) 81.7 (↑0.8) 75.0 (↑1.3)

Table 2: EWR improves faithfulness on unseen topics
(WoWunseen), multi-document corpora (DSTC11), and
datasets with cleaned ground-truth annotations (Faith-
Dial).

area. To further quantify this trade-off, which has460

also been described in related works (Dziri et al.,461

2022a; Daheim et al., 2022; Aksitov et al., 2023),462

we use the ratio of the length of the longest com-463

mon subsequence between uT+1 and K̂ and the464

length of uT+1 (LCS). We plot the dependency of465

LCS and Critic in Figure 3 for Flan-T5base-based466

models on WoW. There is a clear trend towards467

more extractiveness with increased faithfulness but468

a better Critic score does not always imply an in-469

crease in LCS.470

5.3 Scaling Factors & Controllability471

Next, we assess how much control EWR pro-472

vides over faithfulness scores within an acceptable473

range of BLEU, which measures overall perfor-474

mance. Figure 2 b highlights that there is a larger475

region of factors along which faithfulness con-476

stantly improves within a narrow range of BLEU477

scores. However, corresponding to the previously478

discussed trade-off, density increases with faithful-479

ness, indicating that the scaling factor also controls480

how much of the knowledge is copied into the re-481

sponse.482

5.4 Generalisation to Additional Datasets483

In this section, we study the performance of EWR484

in challenging settings, namely on: i) unseen topics485

that require generalisation (WoW unseen), ii) multi-486

document corpora (DSTC11), and iii) cleaned train-487

ing and test data that does not contain hallucina-488

tions in ground-truth annotations (FaithDial). We489

report the results in Table 2.490

In summary, we observe the following: 1) EWR491

shows improvements in all settings, especially in492

terms of generalisation and in a multi-document493

setting. Furthermore, we can even improve faithful-494

Model WoW DSTC9
A (↑) C (↑) P (↑) A (↑) C (↑) P (↑)

Flan-T5base 72.3 1.74 1.19 89.7 2.83 1.71
+ EWRabs 75.1 1.62 1.25 94.7∗ 2.41 1.49

CTRL 85.5∗ 1.58 1.12 94.7∗ 2.72 1.42
+ TA 88.8∗ 1.58 1.16 97.0∗ 2.63 1.40
+ EWR 96.8† 1.50 1.08 98.0† 2.50 1.36

Quark 93.1† 1.51 1.05 86.0 2.89 1.66

Table 3: Human evaluation on 218 examples annotated
by 3 expert annotators each. We measure attributability
(A), Co-cooperativeness (C), and paraphrasing (P). ∗

indicates significance wrt. Flan-T5base and † wrt. to the
next best method with p < 0.05.

ness metrics when training and evaluating on the 495

cleaned FaithDial dataset. 2) task arithmetic can 496

improve results on multi-document corpora and 497

some metrics on the unseen set but fails to improve 498

BERT F1 and F1 on WoW unseen and FaithDial. 499

6 Human Evaluation 500

In addition to the automatic evaluation, we con- 501

duct a human evaluation on WoW and DSTC9 with 502

the help of three expert annotators 3, using the At- 503

tributable to Identified Source (AIS) framework 504

(Rashkin et al., 2023). First, we ask them to score 505

responses as attributable (A) only if all their con- 506

tent can be attributed to the knowledge that grounds 507

the dialogue response. Furthermore, we ask anno- 508

tators to rate cooperativeness (C), i.e. the ability of 509

the model to connect with and follow up on user 510

turns on a 3-point Likert scale. Here, 1 indicates a 511

response that does not cooperate with the dialogue, 512

2 a response that brings the dialogue forward, and 513

3 a response that acknowledges the previous ut- 514

terances and responds with a follow-up question. 515

Lastly, annotators rate paraphrasing (P) on a binary 516

scale, where 2 indicates non-trivial paraphrasing of 517

the knowledge and 1 substantial copying. Detailed 518

instructions can be found in Appendix B.4. 519

Table 3 shows the results for the A, C, and P cate- 520

gories with agreements of 0.61, 0.51, 0.53, respec- 521

tively, in terms of Fleiss’ κ. Generally, we observe 522

that human evaluation results for attributability con- 523

firm results based on automatic faithfulness metrics 524

as they display similar patterns. In particular, all 525

methods improve over vanilla Flan-T5, with CTRL 526

and Quark performing similarly on average and out- 527

performing each other on the two different datasets. 528

Task arithmetic and EWR give improvements over 529

3All annotators are graduate students in NLP and paid
above minimum wage.
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CTRL on both datasets. Most notably, EWRCTRL530

improves over all other methods, including task531

arithmetic and Quark, by a statistically significant532

margin in human evaluation.533

Our results also emphasize the trade-off be-534

tween faithfulness and both paraphrasing (which535

reflects abstractiveness) and cooperativeness. In-536

creased attributability often leads to a decrease537

in both other criteria. Nevertheless, EWR with538

a faithfulness anti-expert and an abstraction ex-539

pert, labelled EWRabs, improves both paraphras-540

ing and attributability on WoW and attributabil-541

ity on both datasets compared to vanilla Flan-T5.542

While EWRabs does not outperform this baseline543

in paraphrasing on DSTC9, we believe that this544

stems from the way the expert dataset DE is con-545

structed, related to the comparatively less strong546

performance of Quark and CTRL. As the ground-547

truth responses in DSTC9 contain longer follow-up548

questions, it is likely that density-based binning549

does not pick up nuances, such as the difference550

between non-paraphrased responses and follow-up551

questions independent from the knowledge.552

7 Related Work553

Hallucination in LMs The impressive abilities554

of LMs are offset by the potential for generating555

hallucinated text (Ji et al., 2022; Thoppilan et al.,556

2022; Bang et al., 2023; Qin et al., 2023; Choi557

et al., 2023), which sparked an increasing interest558

in tackling this problem in the context of grounded559

language generation (Ji et al., 2022), encompassing560

several tasks such as data-to-text generation (Wise-561

man et al., 2017; Parikh et al., 2020), machine trans-562

lation (Wang and Sennrich, 2020; Raunak et al.,563

2021), summarisation (Durmus et al., 2020; Kang564

and Hashimoto, 2020), generative question answer-565

ing (Li et al., 2021), and dialogue generation (Dziri566

et al., 2021, 2022c; Rashkin et al., 2021; Ji et al.,567

2022; Razumovskaia et al., 2022). Different stud-568

ies aim to address the issue of hallucination by569

either developing automatic metrics to detect it570

(Wiseman et al., 2017), or by identifying poten-571

tial causes, such as out-of-domain generalisation,572

noisy training data, and exposure bias (Kang and573

Hashimoto, 2020; Raunak et al., 2021; Wang and574

Sennrich, 2020; Dziri et al., 2021).575

For neural dialogue models it has been shown576

that retrieving relevant knowledge can reduce –but577

not completely eliminate– hallucinations (Shuster578

et al., 2021). Therefore, different methods have579

been proposed to tackle it, such as token-level crit- 580

ics (Dziri et al., 2021), or control token- (Rashkin 581

et al., 2021) and reranking-based methods (Daheim 582

et al., 2022). Lastly, as hallucinations in training 583

data can greatly exacerbate those in models (Dziri 584

et al., 2022b), a hallucination-free dialogue bench- 585

mark has been proposed (Dziri et al., 2022a). 586

Controllable text generation Different works 587

steer model behaviour by controlled generation, for 588

example by combining models at decoding time 589

(Liu et al., 2021) or in parameter space (Ilharco 590

et al., 2023), conditioning on reward tokens as- 591

signed to model generations in training (Lu et al., 592

2022a) or the initial training data (Keskar et al., 593

2019; Niu and Bansal, 2018). Finally, different 594

methods constrain text generation with logical con- 595

straints (Lu et al., 2021, 2022b) or by forcing spe- 596

cific words to appear (Pascual et al., 2021). 597

8 Conclusion & Future Work 598

We introduce Elastic Weight Removal (EWR), a 599

novel method for steering the behaviour of lan- 600

guage generation models by combining their pa- 601

rameters with those of (anti-)experts, weighted 602

by Fisher Information. We show how EWR can 603

be used to reduce hallucinations in document- 604

grounded dialogue response generation across dif- 605

ferent settings. We compare it to other state-of-the- 606

art methods, many of which we adapt to faithful 607

response generation for the first time. Automated 608

metrics and human evaluation show that EWR im- 609

proves faithfulness over multiple baselines, and can 610

furthermore provide complementary improvements 611

with them. Moreover, we show that faithfulness 612

comes at the expense of abstraction. Therefore, we 613

combine an abstraction expert with the hallucina- 614

tion anti-expert to promote responses that are both 615

more faithful and abstractive than the baseline. 616

The main contribution of this work is that it out- 617

lines an unexplored way of promoting faithfulness 618

in document-grounded dialogue by using experts 619

and anti-experts not at inference time—and thereby 620

incurring significant overhead—but rather to navi- 621

gate the parameter space towards an improved set 622

of parameters without altering the model architec- 623

ture. This opens up many potential areas for future 624

work, such as controlling for further dimensions, or 625

developing more sophisticated data augmentation 626

techniques to create data for (anti-)experts. 627

8



9 Limitations628

One limitation of our work is that we assume the629

ground-truth knowledge K̂ to be given. This as-630

sumption does not hold in general, when a dialogue631

system is used, because for a new user query it is632

unknown. We might then expect that our method633

stays more faithful to the retrieved knowledge, too,634

but could generate erroneous responses to the user635

query if this knowledge is incorrect.636

A further limitation is the scale at which we con-637

duct experiments, which do not go beyond 1B pa-638

rameters due to the large number of baselines that639

we evaluate on multiple corpora. On the other hand,640

models used in production are often significantly641

larger, often having tens of billions of parameters.642

Connected to this, many of such models are643

now trained using parameter-efficient finetuning644

techniques, which either introduce a new subset of645

model parameters that are trained, while all exist-646

ing ones are kept fixed, or train a subset of model647

parameters. Our method should be amenable to this648

setting, because the task vector will also be 0 for649

parameters that are not trained. However, we did650

not experiment using parameter-efficient finetuning651

techniques in this work.652

Finally, we only evaluate a small set of (data653

augmentation) techniques for creating hallucinated654

and abstractive data and future work could evaluate655

more such methods.656

While we only study english datasets, we expect657

the techniques to be similarly applicable for other658

languages.659

Ethics and Broader Impact Statement660

Our work relies on LLMs to generate responses in661

dialogue. Since such LLMs are prone to producing662

errors, it can not be guaranteed that our methods663

also do not produce erroneous outputs, such as664

hallucinations, or output toxic or biased data. How-665

ever, this work aims to mitigate hallucinations and666

therefore we think that there is no direct ethical667

concern.668

References669

Renat Aksitov, Chung-Ching Chang, David Reit-670
ter, Siamak Shakeri, and Yun-Hsuan Sung. 2023.671
Characterizing attribution and fluency tradeoffs for672
retrieval-augmented large language models. CoRR,673
abs/2302.05578.674

Shun-ichi Amari. 1998. Natural Gradient Works Effi- 675
ciently in Learning. Neural Computation, 10(2):251– 676
276. 677

Alan Ansell, Edoardo Ponti, Anna Korhonen, and Ivan 678
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Appendix 1065

A Details on Method 1066

A.1 Pseudocode 1067

Algorithm 1 outlines the steps for using EWR to 1068

reduce hallucinations while promoting abstractive- 1069

ness. Concretely, a dialogue response generation 1070
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Algorithm 1 Pseudocode for removing hallucina-
tions and promoting abstraction with EWR. Note
that we apply (·)2 element-wise.
Input Dialogues D, hallucinated anti-expert dataset DAE, ab-
stractive expert dataset DE, initial parameter set θ
Output θ′

θ0 ← finetune(θ,D)
θAE ← finetune(θ0,DAE)
τAE ← θAE − θ0

θE ← finetune(θ0,DE)
τAE ← θE − θ0

fθ0 ←
1

|D|
∑
D

(∇ log pθ0(uT+1 | uT
1 , K̂))2

fτAE ←
1

|DAE|
∑
DAE

(∇ log pτAE(uT+1 | uT
1 , K̂))2

fτE ←
1

|DE|
∑
DE

(∇ log pτE(uT+1 | uT
1 , K̂))2

θ′ ← λ0·fθ0 ·θ0−λAE·fτAE ·τAE+λE·fτE ·τE

Z

model is trained first. Then, an anti-expert and1071

expert model are trained on hallucinated and ab-1072

stractive (and not hallucinated) data, respectively.1073

Both models are the subtracted and added to the di-1074

alogue response generation model, respectively, but1075

weighted by Fisher information. The Fisher infor-1076

mation is estimated by its diagonal with a squared1077

gradient approximation over the training, where1078

labels are sampled. We have found that calculat-1079

ing this by parameterising the model with the task1080

vectors τAE and τE performs empirically well, but1081

it is theoretically better motivated to calculate it1082

at the anti-expert θAE or expert θE, respectively.1083

Both strategies provided similar performance in1084

our experience.1085

B Details on Experiments & Evaluation1086

B.1 Further Experimental Details1087

All models, with the exception of Quark and1088

(anti-)experts, which we train for 5 epochs, are1089

trained for 10 epochs using an initial learning rate1090

of 6.25e−5, linear learning rate decay without1091

warmup, and a batch size of 32, following prior1092

work (Daheim et al., 2022). We take checkpoints1093

after each epoch and pick the one with smallest1094

validation loss. For Task Arithmetic and EWR1095

we do a grid search to determine the scaling1096

factors on a validation set on WoW, FaithDial,1097

and DSTC9. For DSTC11 we did not perform1098

such a grid set because we only had a validation1099

but not a test set, and the hyperparameters1100

seemed to be consistent across datasets. We1101

chose 1.0 for Task Arithmetic and 0.15 for EWR1102

for all experiments with only a hallucination1103

Dataset #train #val #test
WoW (Dinan et al., 2019) 83247 4444 {4356, 4380}
DSTC9 (Kim et al., 2020) 19184 2673 1981
FaithDial (Dziri et al., 2022a) 18357 3417 3539
DSTC11 (Zhao et al., 2023) 14768 2129 -

Table 4: Dataset statistics showing the number of train,
validation, and test examples counted in number of ut-
terances. For WoW test, we first show the seen and then
unseen split in curly brackets. For DSTC11, the test set
was not available yet at the time of writing.

anti-expert, since these factors performed best. 1104

We use Flan-T5base and Flan-T5large with 250M 1105

and 780M parameters, respectively. We use the 1106

checkpoints that are available on the hugging- 1107

face hub under https://huggingface. 1108

co/google/flan-t5-base and 1109

https://huggingface.co/google/ 1110

flan-t5-large. All experiments are per- 1111

formed on NVIDIA A100 or V100 GPUs and each 1112

model takes at most half a day to finetune. 1113

All code for reproducing the experiments will be 1114

made publicly available in a comprehensive soft- 1115

ware repository under Apache License 2.0 4. 1116

B.2 Further Details on Datasets 1117

In this section we provide details on the splits of 1118

all used datasets. The statistics are shown in Table 1119

4. For Wizard-of-Wikipedia, we have used the 1120

train, dev and both test splits (seen and unseen). 1121

For DSTC11 we have only used validation split, 1122

because the test set was not yet available at the time 1123

of our experiments. 1124

For the hallucination anti-expert model, the 1125

training data is exactly the same size as for the 1126

document-grounded response generation model, 1127

just with the knowledge switched out. For all ex- 1128

pert models we subsample the data according to 1129

the assigned control tokens which depend on the 1130

used metric and NLI model. 1131

All datasets are in English and might there- 1132

fore represent predominantly the demographics of 1133

english-speaking countries. WoW was collected 1134

by crowdsourcing dialogues in a roleplaying game. 1135

DSTC9 was collected by asking crowdworkers to 1136

fill in dialogues from MultiWoZ 2.1 (Eric et al., 1137

2020). DSTC11 was collected using crowdwork- 1138

ers on Amazon MTurk, who stem from the USA, 1139

Canada, and Great Britain (Zhao et al., 2023). Fi- 1140

nally, FaithDial was created by asking crowdwork- 1141

4https://www.apache.org/licenses/
LICENSE-2.0
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ers, also on Amazon MTurk, to clean dialogues1142

from WoW (Dziri et al., 2022a).1143

B.3 Further Details on Used Metrics1144

We evaluate BLEU (Papineni et al., 2002) on1145

the corpus-level using the sacrebleu package1146

(Post, 2018). Other metrics are calculated on an1147

example-level and averaged to obtain a global1148

score. Concretely, for critic model taken from Dziri1149

et al. (2022a), this means that we classify each1150

utterance as hallucination or not, with 1 indicating1151

hallucination and 0 otherwise. The score is aver-1152

aged over these classifications and can therefore be1153

seen as calculating the percentage of hallucinated1154

examples in the model predictions. The model1155

used for this is finetuned from RoBERTA (Liu1156

et al., 2019) and released as part of Dziri et al.1157

(2022a). It is openly available on the hugging-1158

face hub and can be found under https:1159

//huggingface.co/McGill-NLP/1160

roberta-large-faithcritic. For1161

Q2 (Honovich et al., 2021), a pipeline of steps is1162

performed for each generated example to arrive at1163

a score. First, answer candidates are determined1164

for the generated response, which often correspond1165

to spans of entities. Then, questions are generated1166

for each answer candidate and answered based1167

on the knowledge documents. If the answer1168

is the same by string match, a score of 1 is1169

assigned. If there is no string match, a score of 11170

is assigned if an NLI model judges one answer1171

to entail the other, and a score of 0 otherwise.1172

Questions are also filtered, and if no valid question1173

is found, entailment between the knowledge1174

and the generated response is calculated as a1175

fallback. We base our implementation on the1176

open-source implementation found in https:1177

//github.com/orhonovich/q-squared1178

which was released with Honovich et al. (2021)1179

and will open-source our reproduction under1180

Apache License 2.0.1181

Our adoption of density (Grusky et al., 2018)1182

calculates the average squared length of extrac-1183

tive spans that were copied from the knowledge1184

documents into the generated response. We aver-1185

age the densities of all predictions. Similarly, F11186

calculates the token-level overlap between gener-1187

ated response and document, and we again take1188

the average over predictions. Again, all the imple-1189

mentations of these metrics will be made publicly1190

available by us.1191

For BertScore (Sun et al., 2022), we use the 1192

open-source implementation found at https: 1193

//github.com/Tiiiger/bert_score 1194

and use the ‘deberta-large-mnli’ checkpoint, which 1195

was recommended at the time of implementation. 1196

B.4 Details on Human Evaluation 1197

In this section, we detail the instructions and re- 1198

cruitment for our human evaluation. All of the 1199

annotators are graduate students in NLP from one 1200

of the authoring institutions and are all paid well 1201

above minimum-wage. All annotators voluntarily 1202

agreed to participating in our study and were in- 1203

formed, and agree to, that no personal data would 1204

be released and only the human judgements would 1205

be stored. The annotators were instructed to score 1206

218 randomly sampled examples generated with 1207

different models from WoW and DSTC9 accord- 1208

ing to three criteria: Faithfulness, Coherence, and 1209

Paraphrasing, abbreviated with F, C, and P, respec- 1210

tively, in Table 3. The instructions for Faithful- 1211

ness follow the well-established Attributable to 1212

Identified source framework (AIS) (Rashkin et al., 1213

2023). We follow the exact definitions from their 1214

work and show these as guidelines to the anno- 1215

tators, who were instructed to carefully read the 1216

paper. This is feasible, because all annotators have 1217

graduate-level knowledge of NLP. Following the 1218

frame work, we instructed users to only annotate 1219

interpretable responses, others were to be left out. 1220

Then, a score of one should be assigned if the con- 1221

ditions in (Rashkin et al., 2023, Definition 8) are 1222

met. We repeat the definition here verbatim for 1223

completeness and refer the reader to their work for 1224

more information about the framework. 1225

Definition 1. AIS, full definition (Rashkin et al., 1226

2021) A pair (s, c), where s is a sentence and cl, t 1227

is a pair consisting of a linguistic context and a 1228

time, is Attributable to Identified Sources (AIS) iff 1229

the following conditions hold: 1230

1. The systems provides a set of parts P of some 1231

underlying corpus K, along with S. 1232

2. s in the context c is interpretable (i.e., 1233

E(c, s) ̸= NULL. 1234

3. The explicature E(c, s) is a standalone propo- 1235

sition. 1236

4. The pair (E(c, s), t) is attributable to P . 1237

The pair E(c, s), t) is attributable to a set of parts 1238

P of some underlying corpus K iff: A generic 1239
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hearer will, with a chosen level of confidence, af-1240

firm the following statement: “According to P ,1241

E(c, s), where E(c, s) is interpreted relative to1242

time t.”1243

According to this, a binary label is assigned,1244

where 1 indicates ‘faithful’ and 0 ‘not faithful’. We1245

only make a slight change in definition for DSTC9,1246

where the FAQ documents are short and give rele-1247

vant information to a customer in customer service1248

conversations, for example, for hotel booking. The1249

change is as follows: “If important information for1250

the user in K is left out, the response should be1251

scored as ‘not faithful’.”1252

For Coherence, we ask the annotators to only1253

score such responses that were annotated with 1 in1254

the previous step on a 3-point Likert scale. The1255

instructions are as follows:1256

3: The response is highly co-operative and, for1257

example, explicitely acknowledges the pre-1258

vious turn (e.g. ""Yes,.."".) and contains a1259

follow-up question.1260

2: The response follows up logically to the pre-1261

vious dialog and / or shows some degree of1262

co-operativeness.1263

1: The response is standalone and does not1264

follow-up logically to the previous dialog.1265

Here, the listing item (e.g. “3:”) indicates the rat-1266

ing.1267

For Paraphrasing, we chose a two-point scale1268

with the following instructions:1269

2: Response paraphrases the evidence to a suffi-1270

cient extent.1271

1: The response copy-pastes the evidence into1272

the response verbatim or almost verbatim.1273

As noted in Section 6, we achieve agreements of1274

0.61, 0.51, 0.53, respectively, in terms of Fleiss’ κ,1275

for the three categories above in order of writing.1276

C Further Results1277

C.1 Additional Experiments Using1278

Flan-T5large1279

Table 5 shows results obtained using the same set-1280

up as in Section 5.1 but using Flan-T5large instead1281

of Flan-T5base. We find the results from the smaller1282

checkpoint to be confirmed and find much larger1283

improvements for EWR on DSTC9 than using the1284

base checkpoint. Again, parameter interpolation 1285

methods can be used effectively to reduce halluci- 1286

nations at minor costs of fluency and abstractive- 1287

ness, also on top of other methods that promote 1288

faithfulness. However, we find CTRL and Quark 1289

less effective for DSTC9, potentially because the 1290

overlap and entailment tokens have more errors 1291

than in WoW due to the structure of the used FAQ 1292

documents. 1293
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WoWseen DSTC9
BLEU(↑) Critic(↓) Q2(↑) BERT(↑) F1(↑) Dens.(↓) BLEU(↑) Critic(↓) Q2(↑) BERT(↑) F1(↑) Dens.(↓)

Model (y, ŷ) (y, K̂) (y, ŷ) (y, K̂)

Flan-T5large 18.6 26.7 77.8 83.8 77.5 12.3 18.6 6.9 64.0 61.2 44.7 1.81
+ TA 19.1 16.7 80.2 84.6 77.8 12.6 19.0 3.7 74.3 64.4 55.6 3.50
+ EWR 17.3 (↓-1.3) 16.9 (↓-9.8) 80.3 (↑2.5) 88.3 (↑4.5) 83.9 (↑6.4) 14.9 (↑2.6) 19.1 (↑0.5) 2.8 (↓-4.1) 83.8 (↑19.8) 64.8 (↑3.6) 57.3 (↑12.6) 3.48 (↑1.67)

CaPE 19.0 13.0 79.5 83.7 75.4 11.3 17.2 4.3 73.3 64.4 53.2 2.82
+ EWR 18.2 (↓-0.8) 9.3 (↓-3.7) 80.4 (↑0.9) 89.4 (↑5.7) 84.9 (↑9.5) 15.2 (↑3.9) 16.2 (↓-1.0) 1.1 (↓-3.2) 74.9 (↑1.6) 64.1 (↓-0.3) 54.1 (↑0.9) 3.00 (↑0.18)

CTRL 19.8 11.3 82.0 87.3 81.5 13.4 19.5 6.8 77.4 63.8 52.7 2.73
+ TA 19.2 7.2 84.3 86.8 80.6 13.0 19.3 2.6 79.3 65.9 57.5 3.37
+ EWR 18.6 (↓-1.2) 7.0 (↓-4.3) 85.8 (↑5.4) 90.5 (↑3.2) 86.8 (↑5.3) 16.8 (↑3.4) 18.1 (↓-1.4) 0.8 (↓-6.0) 84.3 (↑6.9) 65.2 (↑1.4) 59.5 (↑6.8) 3.83 (↑1.1)

DExperts 18.3 17.9 79.8 81.7 71.4 12.7 18.2 4.2 70.5 63.9 54.9 2.78
Quark 18.0 9.1 91.4 91.2 88.1 16.9 20.3 6.0 74.7 64.9 54.3 3.09
Noisy Channel 18.8 22.3 77.2 85.5 80.2 13.3 18.4 6.1 67.2 62.2 47.4 2.20

Table 5: Main results on WoWseen and DSTC9 using Flan-T5large.
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