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Abstract

Estimating mutual correlations between random
variables or data streams is essential for intelli-
gent behavior and decision-making. As a funda-
mental quantity for measuring statistical relation-
ships, mutual information has been extensively
studied and utilized for its generality and equi-
tability. However, existing methods often lack
the efficiency needed for real-time applications,
such as test-time optimization of a neural net-
work, or the differentiability required for end-to-
end learning, like histograms. We introduce a neu-
ral network called InfoNet, which directly outputs
mutual information estimations of data streams
by leveraging the attention mechanism and the
computational efficiency of deep learning infras-
tructures. By maximizing a dual formulation
of mutual information through large-scale sim-
ulated training, our approach circumvents time-
consuming test-time optimization and offers gen-
eralization ability. We evaluate the effectiveness
and generalization of our proposed mutual infor-
mation estimation scheme on various families of
distributions and applications. Our results demon-
strate that InfoNet and its training process provide
a graceful efficiency-accuracy trade-off and order-
preserving properties. Our code and models are
available as a comprehensive toolbox to facili-
tate studies in different fields requiring real-time
mutual information estimation.
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Figure 1: Log-scale run time comparison of MINE (Bel-
ghazi et al., 2018a) and the proposed InfoNet, which con-
sistently achieves better performance by magnitudes across
sequences of varying lengths through bypassing the costly
test-time optimization.

1. Introduction
We exist in a universe where various entities are intercon-
nected. At the micro level, particles can exhibit entangle-
ment, as described by quantum mechanics, while at the
macro level, celestial bodies are governed by gravity, char-
acterized by general relativity. These interconnections en-
sure that our observations of the states of different entities
around us are intricately correlated rather than indepen-
dently distributed. This interconnectedness enables us to
make informed reasoning and predictions.

Efficiently estimating correlations between scene entities
from environmental sensory signals is essential for the emer-
gence of intelligent behavior. This is particularly relevant
for embodied agents that interact with the scene and receive
large volumes of streaming data, such as video, audio, and
touch, within seconds. Rapid correlation estimation helps
agents build informative representations of their surround-
ings and identify crucial elements for survival. Moreover,
vast amounts of data are generated every second across
the internet, including stock prices, social media messages,
e-commerce transactions, and Internet-of-Things devices.
Efficiently estimating mutual correlations between differ-
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Figure 2: A comparison of MINE (Belghazi et al., 2018a) and the proposed InfoNet for neural MI estimation. In the training
phase, MINE optimizes an MLP’s parameters (as a discriminant function) using the dual formula (Donsker & Varadhan,
1983) against a joint distribution. The optimized MLP then estimates the same distribution’s MI with its samples. However,
the MLP is not optimal for a new distribution and requires retraining (test-time optimization) before providing an estimate.
In contrast, InfoNet is trained to output the optimal discriminant (θ) given samples from various distributions. At test time,
InfoNet predicts the optimal discriminant for a new distribution using its samples, leveraging the generalization capability
from large-scale training, thus eliminating the need for test-time optimization and increasing efficiency.

ent types or parts of this data informs critical analyses for
decision-making.

In this work, we study how to neuralize the computation
of mutual information (MI) between two random variables
from sequences sampled from their empirical joint distribu-
tion. Specifically, we want to explore whether the estimation
of MI can be performed by a neural network without test-
time optimization, i.e., taking a pair of sequences as input
and speeding out the MI estimate without re-training the
network, which guarantees efficiency and differentiability
of the estimation procedure.

As a fundamental concept in information theory (Shannon,
1948), a huge amount of effort has been devoted to the
estimation of MI (Paninski, 2003; Kraskov et al., 2004),
due to its generality and equitability (Reshef et al., 2011;
Kinney & Atwal, 2014). For example, many algorithms
have been proposed to improve the accuracy and efficiency
of MI estimation, which include both non-parametric and
parametric methods. However, most of them do not uti-
lize neural networks and can not benefit from advances in
deep learning techniques. Recently, MINE (Belghazi et al.,
2018a) employs a dual formulation of the Kullback–Leibler
divergence and estimates the MI of a pair of sequences by
optimizing a neural network’s parameters against the dual
objective. Even though the estimation can be performed via

back-propagation, the optimization process is still behind
real-time (Fig. 1, where a joint sequence is sampled from a
randomly generated mixture of Gaussian). Moreover, each
time the joint distribution changes, a new optimization has
to be performed (e.g., the network in MINE is only opti-
mized for a specific distribution, also see Fig. 2, first row),
thus not efficient.

To overcome these difficulties, yet still enjoy the efficiency
of deep networks, we propose a novel network architec-
ture that leverages the attention mechanism (Vaswani et al.,
2017) and encodes the aforementioned optimization into
the network parameters. Specifically, the proposed network
takes as input a sequence of observations (pairs) and outputs
a tensor, which aims at maximizing the Donsker-Varadhan
(Donsker & Varadhan, 1983) dual and can be converted into
an MI estimate by a quick summation over different entries.
This way, we transform the optimization-based estimation
into a feed-forward prediction, thus bypassing the time-
consuming test-time gradient computation and avoiding
sub-optimality via large-scale training on a wide spectrum
of distributions. Our experiments demonstrate efficiency,
accuracy and generalization of the proposed MI neural esti-
mation framework.

In summary, we: 1) propose a neural network and train-
ing method for efficiently estimating MI of any distribution
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(sequences) without resorting to test-time optimization; 2)
conduct an extensive study on the proposed scheme’s effec-
tiveness with different distribution families, verifying its ac-
curacy and order-preserving properties; and 3) demonstrate
the generalization of the proposed InfoNet on real-world dis-
tributions, showcasing promising results in object discovery
from videos.

2. Problem Statement
We consider real-world scenarios where an agent receives
sensory inputs via multiple channels, i.e., multimodal sig-
nals. We treat these observations as random variables and
their (synchronized) temporal sequences as if sampled from
an empirical joint distribution. More explicitly, we char-
acterize observations {(xt, yt)}Tt=1 as samples from a joint
distribution p(x,y), e.g., by histogramming. Our goal is to
compute Shannon’s MI between x and y, i.e., I(x,y), in an
efficient manner such that an agent can leverage these corre-
lations to learn useful representations and to make effective
decisions. Specifically, we aim to train neural networks ϕ
such that C(x,y) = ϕ({(xt, yt)}) is an estimation of the
MI of p(x,y) from the input sequences, without re-training
ϕ for different distributions (see Fig. 2, second row). In
this work, we focus on the efficient computation of low-
dimensional random variables, e.g., 1D/2D, and leverage
the projection technique in Goldfeld & Greenewald (2021)
for an extension to high-dimensional while maintaining
computational efficiency and accuracy.

3. Neural MI Estimation without Test-Time
Optimization

MI can be written in Shannon Entropy: I(x,y) = H(x)−
H(x|y), or in Kullback–Leibler divergence: I(x,y) =
DKL(px,y∥px·py). However, exact computation is only fea-
sible for discrete variables or a restricted set of distributions
(Paninski, 2003). Recently, MINE (Belghazi et al., 2018a)
proposes estimating MI using a neural network trained with
a dual formula (Donsker & Varadhan, 1983). This method
is capable of handling continuous random variables, but
requires training from scratch for a different joint distribu-
tions p′(x,y) (test-time optimization), making real-time MI
estimation challenging.

In the following, we provide details of the dual formulation
(Donsker & Varadhan, 1983) employed for MI estimation
and elaborate on the proposed methods for training the neu-
ral network ϕ for computing MI of an unseen distribution
without test-time optimization.

Dual Estimation of MI According to Donsker & Varad-
han (1983) (also see Gutmann & Hyvärinen (2010)), the
KL-divergence between two distributions, p and q, can be

written as: DKL(p∥q) = supθ Ep[θ] − log(Eq[exp(θ)]),
where θ is a discriminant function, whose output is a scalar
value, defined on the joint domain with finite expectations.
The dual estimation formula for MI is then as follows:

I(x,y) = sup
θ
J info(θ;x,y)

= sup
θ

Epx,y [θ]− log(Epx·py [exp(θ)]) , (1)

with θ : X × Y → R and X ,Y the domain of the random
variables x,y correlated by a joint distribution p(x,y). One
can instantiate θ as a neural network and train it with the
right-hand side in Eq. 1 as the objective, as done in MINE
(Belghazi et al., 2018a). The optimal value of the right hand
can then serve as the estimate of MI between x and y under
p(x,y). The same training has to be performed for a new
distribution, i.e., test-time optimization (see Fig. 2, first row).
In contrast, we propose to bypass the test-time optimization
by training a novel network architecture that directly outputs
the optimal discriminant regarding the dual, using samples
from the new distribution. In other words, we treat the
optimal scalar-valued function θ of a new distribution as the
output of the neural network ϕ. This way, we can speed up
the estimation by magnitudes and enjoy the benefit of the
differentiability of deep neural networks.

Optimal Discriminant Prediction To enable predicting
the optimal discriminant θ of a distribution p(x,y) from p’s
samples {(xt, yt)}, we formalize θx,y = ϕ({(xt, yt)}) ∈
RL×L as a 2D tensor, where L represents the quantization
levels of the range of the involved random variables. Now,
the value of θx,y(xt, yt) for a continuous pair (xt, yt) can
be directly read out from the tensor as a look-up table with
correct indexing and appropriate interpolation.

To facilitate the prediction, we design a neural network
by adapting the Perceiver IO from (Jaegle et al., 2021).
The proposed network structure ϕ is illustrated in Fig. 3
and named as InfoNet. It takes in a pair of jointly sampled
sequences, e.g., {(xt, yt)}Tt=1 ∈ RT×2, and outputs a tensor
θx,y as a discretization of the scalar function θ in Eq. 1.

The input is initially processed through two distinct path-
ways. The first pathway involves processing joint samples,
which are encoded by an attention module and mapped to
a tensor in RM×D, where M,D are the number and di-
mension of the learnable queries. This tensor is further
processed by a series of self-attention modules to produce a
set of keys and values. The second pathway involves pro-
cessing individual variables X and Y . Each sample of X
or Y is mapped separately using a multi-layer perceptron
(MLP), then consumed by an attention module to produce
an output of shape RL×L, which represents a set of queries.
Notably, each query is a combination of the Y samples and
can serve as a token to computing the marginals θx,y(:, y).
Furthermore, the outputs from the two pathways are then
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Figure 3: The proposed InfoNet architecture for MI prediction comprises learnable queries and attention blocks. It accepts
a sequence of samples from two random variables and outputs a look-up table (top-right) representing a discretization of
the optimal scalar discriminant function defined on the joint domain in the Donsker-Varadhan representation (Donsker &
Varadhan, 1983). The MI between the two random variables (sequences) can then be calculated by summation according to
Eq. 1. Note that the input sequences for training are sampled from various distributions. Please also refer to Fig. 2 for a
comparison between MINE and InfoNet training schemes.

integrated by an attention module to generate a 2D tensor
θx,y of shape RL×L, which serves as the look-up table. Fi-
nally, a convolutional layer with a non-learnable Gaussian
kernel is applied to θx,y to enhance the smoothness.

In addition, to improve the training efficiency, we apply
a copula transformation Durante & Sempi (2010) on the
sequences before inputting them to the network, which helps
normalize their range to [0, 1]. It is worth noting that the
invariance property of MI under bijective mappings of the
RVs ensures that such a transformation does not change the
MI between the two sequences. More details on this copula
transformation can be found in Appendix A.1.

With the predicted (discretized) discriminant function θx,y,
we can then compute an estimate of the MI between x and
y using the quantity J info(θ;x,y) in Eq. 1.

To ensure that the predicted discriminant is optimal for
p(x,y) under Eq. 1, we train the neural network ϕ using
the following objective (a discretization of Eq. 1):

LMI(ϕ,D) =
1

N

N∑
i=1

J (θxi,yi ;xi,yi)

=
1

N

N∑
i=1

{
1

T

T∑
t=1

θxi,yi(xit, y
i
t)

− log

(
1

T

T∑
t=1

exp(θxi,yi(xit, ỹ
i
t))

)}
. (2)

Here D is a dataset of N different distributions, i.e., D =
{(xi,yi)}Ni=1 with each (xi,yi) = {(xit, yit)}Tt=1 represent-
ing a sequence sampled from a distribution pi(x,y). Please
also note that the second expectation in Eq. 1 is over the
product of the marginals, so we write ỹi in the second sum-
mation in Eq. 2 to emphasize the difference. The marginal
distribution pi(y) can be sampled by simply breaking the
pairing between xit and yit, e.g., by shuffling {yit}Tt=1 as if
x does not exist. We detail the generation of the training
samples of many different distributions in Sec. 4. Since
the training of ϕ (InfoNet) is performed with a large set
of (simulated) distributions between x and y instead of a
single distribution as in MINE (Belghazi et al., 2018a), the
predicted θx′,y′ from samples {(x′t, y′t)}Tt=1 of a new distri-
bution p′(x,y) is supposed to maximize the quantity J info

in Eq. 1 through generalization. We also verify the general-
ization of the trained InfoNet with an extensive study in the
experimental section.

4. Data Generation and Training Algorithm
To generate training data, we consider sampling the joint
distributions (sequences)D = {(xi,yi)}Ni=1 from Gaussian
Mixture Models (GMMs). It is widely accepted that GMM
is a versatile and effective tool for modeling real-world dis-
tributions due to its capability to handle complex and noisy
data (Reynolds et al., 2009). Specifically, GMMs repre-
sent a family of distributions as a weighted sum of Gaus-
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Algorithm 1 InfoNet Training

Require: A maximum number of Gaussian components;
Learning rate η

1: repeat
2: Randomly select N two-dimensional Gaussian mix-

ture distributions
3: Select T data points from each joint distribution
4: Shuffle the y component to get its marginal samples
5: Put joint samples into the model and get N two-

dimensional lookup tables θxi,yi ’s
6: Apply lookup function to get the corresponding dis-

criminant values θxi,yi(xit, y
i
t) for all data points in

the joint and marginal samples

7:

L ← 1

N

N∑
i=1

{
1

T

T∑
t=1

θxi,yi(xit, y
i
t)

− log

(
1

T

T∑
t=1

exp(θxi,yi(xit, ỹ
i
t))

)}
.

8: Do gradient ascent for L
9: until convergence.

sian components defined as: p(z) =
∑K
i=1 πiN (z|µi,Σi),

where p(z) is the probability density function (PDF) of the
GMM, K is the total number of components in the mix-
ture, πi denotes the weight of the i-th component satisfying∑K
i=1 πi = 1, and N (z|µi,Σi) is the PDF of a Gaussian

with mean µi and covariance Σi. By varying the parameters
K, πi, µi, and Σi, a GMM can faithfully approximate an
arbitrary distribution. With this, we propose that sampling
from GMMs allows us to synthesize arbitrarily complex
distributions so that the trained InfoNet can generalize to
real-world ones (in a similar spirit to Cranmer et al. (2020);
Lavin et al. (2021)).

In our experiments, we set the maximum number of com-
ponents to 20 to ensure enough diversity in the sampled
GMMs. Specifically, we first randomly choose a number K
from {1, 2, ..., 20}, and then perform another sampling of
the component weights {πi}Ki=1 such that their sum is one.
For each GMM component, we randomly sample its mean
from the interval [−5, 5]. To generate the covariance ma-
trix, we begin by creating a matrix D where each element
is sampled from the range [−3, 3]. Then, the covariance
matrix is derived by Σ = DDT + ϵI, where ϵ = 0.01 is
to enforce the matrix to be positive definite. To this end, a
random GMM distribution is instantiated, and we can sam-
ple from it to get a joint sequence by partitioning z into
two parts. Examples of the GMM samplings can be found
in Appendix A.9. A training batch contains 32 randomly
generated GMM distributions (sequences) with a sample
length of 2000. Also, note that each batch is sampled from
a different set of GMMs to ensure the training data for In-
foNet is diverse and can explore the whole GMM family.

Trained with randomly sampled distributions, our model
is empowered to estimate MI for an untrained distribution
encountered during test time. Please refer to Algorithm 1
for the full training pipeline of the proposed method.

5. Experiments
We concentrate on three aspects related to the training ef-
fectiveness and estimation efficiency: 1) Establishing evalu-
ation criteria and collecting data for the proposed InfoNet
and baseline methods; 2) Validating and comparing the pro-
posed MI estimation pipeline with other baselines in various
settings; 3) Conducting experiments on data with real-world
statistics to evaluate performance against other baselines in
terms of efficiency and generalization.

5.1. Evaluation Data and Metrics

Evaluation sequences (distributions) are generated with
the same protocol described in Sec. 4 and the ground-truth
(GT) MI is determined by the following: for a single-
component GMM (Gaussian), we apply the analytical for-
mula of MI; otherwise, the Monte-Carlo Integration (MCI)
method (Shapiro, 2003) is employed to compute the GT by
integrating the known density function.

Setups and Metrics. We evaluate our method and others
with the following setups:

• Test-Time Efficiency. We compare the computational
efficiency of the proposed InfoNet with various base-
line methods across different distributions and sequence
lengths drawn from the GMM family.

• Sanity Check. We use the sequences sampled from Gaus-
sian distributions to benchmark against other methods, a
commonly adopted evaluation setting in the MI estimation
literature (Belghazi et al., 2018b; Piras et al., 2023). The
GT MI values are computed with the analytical formula.

• GMMs with Multiple Components. We also analyze the
mean and variance of the errors in estimated MI. Specifi-
cally, we bin the sampled evaluation sequences based on
their ground-truth MI values, such as those with a ground-
truth MI of around 0.5. We then report the mean and
variance of these errors for each bin of different methods.

• Mutual Correlation Order Accuracy. Beyond applica-
tion domains where the exact MI value is critical, most
of the time, for decision-making, the more important is
the order of mutual correlations between different random
variables. For this, we generate an evaluation set of joint
distributions consisting of triplets of random variables
{(x,y,y′)}, whose ground-truth order is determined by
the computed GT MI (i.e., I(x,y) > I(x,y′)). We test
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Table 1: Comparison of test-time efficiency on GMM distri-
butions with varying lengths (unit: seconds).

SEQ. LENGTH 200 500 1000 2000 5000

KSG-1 0.009 0.024 0.049 0.098 0.249
KSG-5 0.010 0.025 0.049 0.102 0.253
KDE 0.004 0.021 0.083 0.32 1.801

MINE-2000 3.350 3.455 3.607 3.930 4.157
MINE-500 0.821 0.864 0.908 0.991 1.235
MINE-10 0.017 0.017 0.019 0.021 0.027
OURS-1 0.010 0.010 0.011 0.011 0.013

OURS-16 0.001 0.002 0.002 0.002 0.003

different methods on the triplets to check the correlation
order accuracy averaged over all triplets.

• High Dimensional Independence Testing. We further
employ the slicing technique proposed in sliced mutual
information (SMI) (Goldfeld & Greenewald, 2021) for
estimating MI between high-dimensional variables with
InfoNet. Details are in Appendix A.2. Note that the
slicing technique causes minor computational overhead
due to parallelization. Due to the lack of GT values, we
assess InfoNet’s capability to accurately determine the
independence between two random vectors.

• Evaluation with Motion Data. We verify the generaliza-
tion of the trained InfoNet on motion data with real-world
statistics (e.g., (Radford et al., 2021; Zheng et al., 2023)),
where the goal is to check whether the points coming from
the same object in motion can be grouped correctly by the
estimated MI.

5.2. Results and Comparisons

We report the results and comparisons with three primary
baselines. These baselines include: KSG (Kraskov et al.,
2004), calculating MI by averaging k-nearest neighbor dis-
tances for entropy estimates; KDE (Silverman, 2018), which
uses kernel functions to estimate joint and marginal densi-
ties, followed by MI computation through integration; and
MINE (Belghazi et al., 2018a), employing a similar dual
formulation for MI estimation as InfoNet but resorts to opti-
mizing a network for different distributions. All evaluations
are conducted on an RTX 4090 GPU and an AMD Ryzen
Threadripper PRO 5975WX 32-Core CPU.

Test-Time Efficiency. We compare the time complexity of
InfoNet with baseline methods on new distributions sampled
with varying sequence lengths. The run times, averaged over
100 trials, are presented in Tab. 1, illustrating the efficiency
of different approaches. For MINE, the parameters for test-
time optimization are: a batch size of 100 and a learning rate
of 0.001, while MINE-500 indicates 500 training iterations.

Figure 4: Comparison of MI estimates under Gaussian set-
tings (runtime included).

For our approach, InfoNet-16 denotes the simultaneous esti-
mation of 16 distributions in the batch mode. No training
in InfoNet is needed. The results demonstrate that InfoNet
significantly outperforms other methods in processing speed
for all sequence lengths tested, underscoring our method’s
efficiency in diverse settings.

Sanity Check on Gaussian. We evaluate the MI estima-
tion accuracy of different methods on Gaussian distributions.
In this case, the MI of a (joint) distribution depends on their
Pearson correlation coefficient ρ. For a fair comparison, the
MINE model is trained with a batch size of 500 for 500
steps at a learning rate of 0.001. The KSG method uses
a neighborhood size of 5 for best performance. For each
method, the number of data samples from the test distri-
butions is 2000. As shown in Fig. 4, InfoNet predicts MI
values closer to the ground-truth MI compared to baseline
methods, with mean error shown in the figure’s legend. We
can see that InfoNet quantitatively achieves a similar error
with KSG but is 30× faster. When compared to MINE, In-
foNet runs 50× faster, while achieving a 30% improvement
in accuracy. This sanity check verifies that the proposed
InfoNet has an optimal efficiency-accuracy tradeoff than
others. More results can be found in Appendix A.4.

GMMs with Multiple Components. We also evaluate
the above MI estimators on GMMs with multiple compo-
nents, which is a more challenging but practical task. Our
test dataset is generated as follows: we define 10 MI levels,
ranging from 0.0 to 0.9, and create random GMM distribu-
tions using the same data generation protocol. The MI of
a sampled distribution is calculated using the Monte-Carlo
Integration (MCI) method. A GMM distribution is saved to
one of the 10 MI levels if its computed MI is within ±0.02
of that level’s value, while also recording the exact MI. The
test data generation continues until each MI level has 1,000
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Table 2: Error mean and variance of different MI estimators. Methods that do not rely on neural networks are highlighted
in Blue, and those leveraging neural networks are colored Green. Numbers highlighted in bold represent the optimal
performance achieved by neural estimators.

MI 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
M

ea
n

KSG 0.001 0.001 0.004 0.006 0.008 0.009 0.012 0.015 0.016 0.014
KDE 0.005 0.010 -0.003 -0.350 -0.071 -0.109 -0.155 -0.199 -0.239 -0.292

MINE-500 -0.003 -0.058 -0.116 -0.173 -0.228 -0.294 -0.344 -0.399 -0.431 -0.485
MINE-100 -0.008 -0.092 -0.173 -0.251 -0.336 -0.420 -0.504 -0.584 -0.658 -0.742

InfoNet 0.010 0.004 0.008 -0.024 -0.040 -0.063 -0.082 -0.101 -0.124 -0.138

V
ar

ia
nc

e KSG 2e-4 3e-4 4e-4 5e-4 6e-4 8e-4 9e-4 9e-4 1e-3 1e-3
KDE 0.010 0.005 0.001 0.003 0.004 0.005 0.010 0.012 0.014 0.019

MINE-500 4e-5 0.001 0.004 0.008 0.013 0.018 0.027 0.039 0.052 0.060
MINE-100 4e-5 5e-4 0.002 0.005 0.009 0.012 0.017 0.025 0.033 0.040

InfoNet 1e-5 1e-4 3e-4 8e-4 0.001 0.002 0.004 0.005 0.007 0.009

test distributions. For each GMM distribution, we sample
sequences with a length equal to 2000. These sequences’
MI is then estimated using various methods. The mean error
and variance for each method across different MI levels are
summarized in Tab. 2.

Accordingly, we can make the following observations: 1)
Although traditional methods, e.g., KSG, perform relatively
well in terms of mean error and variance, they cannot utilize
neural networks for computational efficiency. 2) Among
the neural methods (InfoNet and variants of MINE), our
model achieves much smaller mean errors, and the predic-
tion is more stable (in terms of variance) than MINE, which
performs 100 and 500 gradient steps during the test-time
training for different distributions. The runtime for MINE-
100 and MINE-500 are 0.17 and 0.991 seconds, respectively,
while the runtime for InfoNet is 0.011 seconds.

Mutual Correlation Order Accuracy. Now we report the
results of various methods for the task of correlation order
prediction with varying GMM components (e.g., K ranges
from 1 to 10), investigating how order accuracy changes
with the difficulty of MI estimation. As outlined in Sec. 5.1,
we evaluate the estimated order of 2000 triplets per category
(K) against the ground truth established by the MCI method.
An order is deemed accurate if the estimated relationship
(I(x,y) > I(x,y′) or I(x,y) ≤ I(x,y′)) aligns with the
ground truth. The results are summarized in Tab. 3.

We can see that InfoNet consistently achieves higher order
accuracy than the test-time optimization method (MINE),
despite both utilizing neural networks. Furthermore, even
as the difficulty of MI estimation increases (K from 1 to
10), InfoNet reliably produces accurate order estimates be-
tween variables under different joint distributions. This
underscores InfoNet’s generalization as a neural estima-
tor of correlation order for decision-making. Performance
curves comparing InfoNet and GT under different Gaussian
components are shown in Appendix A.3 (Fig. 7).

High Dimensional Independence Testing. We assess In-
foNet in dealing with high-dimensional random variables
(distributions) by the independence test proposed in Sec. 5.1.
Even though trained with low-dimensional variables, we can
easily adapt InfoNet for high-dimensional data by utilizing
the slicing technique proposed in Goldfeld & Greenewald
(2021). Specifically, the sliced mutual information (SMI)
SI(X,Y ) computed of high-dimensional X and Y with MI
estimators (for low-dimensional variables) guarantees that
SI(X,Y ) = 0 implies I(X,Y ) = 0, i.e., independence
between X and Y .

Fig. 5 shows the results of the proposed independence test-
ing in three settings. We report the area under the curve
(AUC) of the receiver operating characteristic (ROC) for the
slicing-empowered InfoNet, MINE, and KSG. The compu-
tation of SMI with InfoNet involves 1000 random projection
steps in parallel. We obtain the high-dimensional test data
with three types of data correlations (Appendix A.5). Each
number on the curve is an average over ten trials. For each
trial, the independence is evaluated on 100 pairs of RVs with
different MI estimators, within which 50 are independent
and the remaining 50 are dependent, balancing the labels.
More details on how to generate high-dimensional joint dis-
tributions can be found in Appendix A.5. To get the plot,
we vary the sequence length n and the RV dimension d
from 16 to 128, showing the variations of AUC of differ-
ent methods. The plots in Fig. 5 demonstrate that InfoNet
performs better than the other baselines in independence
testing of high-dimensional random variables, verifying the
effectiveness of InfoNet for dealing with high-dimensional
data, especially with short sequences. More results on high-
dimensional data can be found in Appendix A.6.

Validation on Out-of-Domain Motion Data. We further
evaluate our model’s generalization to out-of-domain data.
Specifically, we leverage InfoNet to perform mutual infor-
mation estimation on motion trajectories of pixels in a video,
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Table 3: Correlation order prediction accuracy of different MI estimators. Methods without neural networks are highlighted
in Blue, and neural estimators are colored Green. Performance is reported with various numbers of components in GMMs.

NO. OF COMPS. K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10

KSG 98.7 99.0 98.2 98.0 97.9 97.7 97.6 97.5 97.0 97.3
KDE 97.4 97.7 97.9 97.5 97.9 97.8 97.0 97.4 97.4 97.4

MINE-500 98.5 91.2 90.8 87.2 84.5 83.7 81.2 79.6 81.3 78.1
MINE-100 94.6 77.1 75.4 71.6 67.5 69.4 66.5 66.3 68.7 66.4
MINE-10 60.9 56.1 55.1 54.3 52.4 54.9 53.7 50.4 53.1 52.5
INFONET 99.8 99.5 99.0 99.2 99.1 99.2 99.0 99.2 99.3 99.5

(a) Correlation Type I (b) Correlation Type II (c) Correlation Type III

Figure 5: Independence testing under three types of data correlations. Each curve in the plots depicts the area under the
curve (AUC) of the receiver operating characteristic (ROC) with respect to sequence length n. Four MI estimators are
compared: InfoNet, KSG, MINE-100, and MINE-1000 (i.e., MINE trained with 100 and 1000 gradient steps during test-time
optimization), each with two dimensions (16 and 128). The curves obtained by InfoNet (with the slicing technique) are
constantly higher than the others, which demonstrates the effectiveness of InfoNet for dealing with high-dimensional data.

and then use the estimated MI to perform object segmenta-
tion by thresholding the MIs. If the estimation is correct,
pixels from the same object should be grouped together.

We use the Pointodyssey dataset (Zheng et al., 2023), con-
sisting of long videos that provide rich ground-truth trajec-
tories. Given a pixel Pi in the first frame of a video, we
can extract the locations of the corresponding pixels in all
frames with the ground-truth trajectories. Then we utilize
InfoNet to compute mutual information between the loca-
tions of any two pixels Pi and Pi in the first frame. Since
InfoNet does not resort to test-time optimization, the com-
putation is efficient, e.g., less than 5 seconds for hundreds of
pairs. Instead of picking one threshold γ for the grouping,
we vary it in an increment of 0.01 to plot the precision-recall
(P-R) curves with the help of the ground-truth object masks.
Fig. 6 shows the P-R curves obtained for each MI estimation
method on Pointodyssey. For more details, please refer to
Appendix A.7. Results in Fig. 6 demonstrate InfoNet’s abil-
ity to achieve higher segmentation performance with sound
generalization to out-of-domain data.

6. Related Works
MI quantifies the statistical dependence between variables
through a variety of nonparametric and parametric ap-
proaches. Nonparametric methods, such as K-Nearest
Neighbors (KNN) and Kernel Density Estimation (KDE),
estimate MI without assuming specific probability distribu-
tions (Reshef et al., 2011; Kinney & Atwal, 2014; Khan
et al., 2007; Kwak & Choi, 2002; Kraskov et al., 2004;
Pál et al., 2010; Gao et al., 2015b; 2017; Runge, 2018;
Lord et al., 2018; Moon et al., 1995; Steuer et al., 2002;
Gretton et al., 2005; Kumar et al., 2021). These meth-
ods, however, suffer from limitations such as sensitivity
to parameter choice, curse of dimensionality, computa-
tional complexity, and assumptions about continuity (Suzuki
et al., 2008; Walters-Williams & Li, 2009; Gao et al., 2018;
Mukherjee et al., 2020; Fukumizu et al., 2007; Estévez
et al., 2009; Bach, 2022). Binning methods and adaptive
partitioning offer nonparametric alternatives but are con-
strained by bin/partition selection and the curse of dimen-
sionality (Lugosi & Nobel, 1996; Darbellay & Vajda, 1999;
Cellucci et al., 2005; Fernando et al., 2009; Cakir et al.,
2019; Marx et al., 2021; Thévenaz & Unser, 2000; Paninski,
2003; Knops et al., 2006; Tsimpiris et al., 2012). On the
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Figure 6: Precision-Recall curves of MI-based segmentation
on Pointodyssey, verifying MI estimators’ generalization to
out-of-domain data.

other hand, parametric methods assume specific distribu-
tions, such as Gaussian, but their accuracy is contingent
upon correct assumptions and parameter estimation (Hulle,
2005; Gupta & Srivastava, 2010; Sugiyama et al., 2012;
Gao et al., 2015a; Ince et al., 2017; Suzuki et al., 2008;
Walters-Williams & Li, 2009).

Measuring and optimizing MI with limited sample sizes
presents a challenge (Treves & Panzeri, 1995; McAllester
& Stratos, 2020). Nevertheless, alternative measurements
within a Reproducing Kernel Hilbert Space (RKHS) have
demonstrated effectiveness in detecting statistical depen-
dence (Gretton et al., 2005). Singular Value Decom-
position (SVD) (Anantharam et al., 2013; Makur et al.,
2015), Alternating Conditional Expectation (ACE) algo-
rithm (Breiman & Friedman, 1985; Buja, 1990; Huang &
Xu, 2020; Almaraz-Damian et al., 2020), and rank correla-
tion (Kendall, 1938; Klaassen & Wellner, 1997) are widely
used conventional methods. Recently, neural network ap-
proaches have also been proposed (Xu & Huang, 2020).

Numerous works have addressed the scalable computation
of MI and statistical dependences (Lopez-Paz et al., 2013;
Mary et al., 2019; Goldfeld & Greenewald, 2021; Chen
et al., 2022). Our proposed InfoNet offers an orthogonal
alternative to these methods. Instead of striving for a more
accurate approximation of the highly nonlinear MI or de-
vising advanced yet computationally friendly correlation
metrics, InfoNet focuses on MI estimation by encoding the
optimization of its objectives into neural networks through
pertaining, bypassing test-time optimization and concep-
tually allows for more efficient and accurate solutions to
these complex correlation measures. The proposed method
is also related to simulation-based intelligence (Cranmer
et al., 2020; Ramon et al., 2021).

7. Discussion
We present InfoNet, a novel neural network architecture
for efficient MI estimation. Utilizing the attention mech-
anism and large-scale training, our approach circumvents
time-consuming test-time optimization and demonstrates
generalization capabilities. We extensively evaluated In-
foNet’s effectiveness on various distribution families and
applications, emphasizing its efficiency-accuracy trade-off
and order-preserving properties. We validate InfoNet’s po-
tential in the fields requiring real-time MI estimation and
expect that our work can facilitate further exploration of
neuralizing the computation of MI and other information-
theoretic quantities. We also expect the proposed method
and trained models can benefit applications that require es-
timating a vast amount of correlation in a low time budget.
Future work could investigate leveraging the proposed train-
ing scheme for directly estimating the mutual information
between high-dimensional random variables.
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A. Appendix
A.1. Copulas

To enhance the efficiency of MI estimation, we introduce the method called copula Durante & Sempi (2010) during the data
preprocessing stage. This approach is initiated based on a fundamental property of MI: given that f, g : R→ R are arbitrary
strictly increasing functions, the following equation holds true:

I (f(X), g(Y )) = I (X,Y ) . (3)

Specifically, drawing inspiration from (Pál et al., 2010), we choose mappings f = FX and g = FY , representing the
cumulative distribution functions (CDFs) of random variablesX and Y . For continuous FX and FY , the marginal distribution
uniformly spans [0, 1].

While the specific CDF of X and Y is not known in our situations, we employ the empirical CDF
(
F̂X , F̂Y

)
as an

alternative. Given a sequence X = (X1, X2, · · · , Xn) with length n, where each sample Xi, i = 1, · · · , n, originates from
an unknown distribution, the empirical CDF is defined as follows:

F̂X(x) =
1

n
card ({i : 1 ≤ i ≤ n, x ≤ Xi}) , x ∈ R, (4)

where card(·) denotes the cardinality of the set. Note that while F̂X does not establish a bijection between R and the interval
[0, 1], it is quite straightforward to create a bijection through interpolation while preserving the order of the sampling points.
This ensures the invariance of MI, which remains unaffected by the transformation.

Our approach involves using the empirical CDF of X and Y to map them to a uniform distribution between [0, 1] prior to
training and evaluation. In practice, this mapping process can be reduced to a simple sorting step:

f(x) =
1

n
card ({i : 1 ≤ i ≤ n, x ≤ Xi}) , x = X1, X2, · · · , Xn, (5)

and
g(y) =

1

n
card ({i : 1 ≤ i ≤ n, y ≤ Yi}) , y = Y1, Y2, · · · , Yn, (6)

which are strictly increasing mappings that satisfy the requirement stated in equation 3.

A.2. Sliced Mutual Information

To estimate high-dimensional MI, we adopt the SMI concept (Goldfeld & Greenewald, 2021), which averages the MI
between one-dimensional random projections of variables. Let X and Y be random variables with dimensions dx and dy
respectively. SMI is thus the expected MI across these one-dimensional projections

SMI(X;Y ) = Eϕ,ψ [I(ϕ(X);ψ(Y ))] =
1

Sdx−1Sdy−1

∮
Sdx−1

∮
Sdy−1

I
(
θ⊤X;ϕ⊤Y

)
dθdϕ (7)

Here, Sd−1 denotes the d-dimensional sphere (whose surface area is designated by Sd−1), ϕ and ψ are vectors used for linear
projection from high-dimensional space to one-dimensional space, and Eϕ,ψ denotes the expectation over these projection
functions.

While SMI typically yields lower values compared to MI, it retains many of the intrinsic properties of MI and exhibits a
certain degree of correlation with it. This inter-connectedness is crucial, as it implies that while SMI offers a novel approach
to handling high-dimensional data, it still adheres to the fundamental principles of MI, thereby ensuring consistency in its
theoretical foundations and practical applications.

A.3. Additional Results on GMMs with Multiple Components

We demonstrate the capability of the InfoNet model in handling GMMs that comprise 1 to 10 Gaussian components. We
evaluate the model’s precision in estimating MI values by comparing these estimates with ground truth values. The results,
depicted in Figure 7, reveal that the InfoNet model accurately estimates MI on Gaussian mixture distributions, yielding
estimates that are in close agreement with the ground truth values.

13



InfoNet: Neural Estimation of Mutual Information without Test-Time Optimization

Figure 7: Performance of our InfoNet model across various numbers of Gaussian components. The assessment is based on
200 randomly generated joint distributions in each category (number K of GMM components), then sorted according to the
value of ground-truth mutual information.
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A.4. Performance on Other Distributions

Paper (Czyż et al., 2023) provides a diverse family of distributions with known ground truth mutual information. We select
three one-dimension distributions to test our InfoNet performance, note that our model has been only trained on GMM
distributions and without any additional training.

Half-Cube Map Applying the half-cube homeomorphism h(x) = |x|3/2 sign(x) to Gaussian variables X and Y , this could
lengthen the tail. The transformation does not influence the ground truth value of MI.

Asinh Mapping Applying inverse hyperbolic sine function asinhx = log
(
x+
√
1 + x2

)
to shorten the tails, this transfor-

mation does not change the ground truth value of MI.

Additive Noise Let independent r.v. X ∼ Uniform(0, 1) and N ∼ Uniform(−ε, ε), where ε is the noise level. For
Y = X +N , we could derive I(X;Y ) analytically.

Figure 8: Evaluation of performance on distribution other than GMM, comparing with MINE with 500 training iterations
and KSG with nearest neighbor number k = 1.

Fig. 8 shows our result on other distributions despite the Mixture of Gaussian distributions. Due to the introduction of the
copula, our model can suit different monotonic transformations well and produce good estimations for Half-Cube Map and
Asinh Mapping. Also, our model performs well on Additive noise, evidencing good generalization ability as we do not train
it on any uniform distributions and additive noise.

A.5. Three types of dependencies between X and Y

Below are three different relationships between X and Y in high dimensional independence test in sec. 5.2.

(a) One feature (linear): X,Z ∼ N (0, Id) i.i.d. and Y = 1√
2

(
1√
d

(
1⊤X

)
1+ Z

)
, where 1 := (1, . . . , 1)⊤ ∈ Rd.

(b) Two features: X,Z ∼ N (0, Id) i.i.d. and Yi = 1√
2

{
1
d

(
1⌊d/2⌋0 . . . 0

)⊤
X + Zi, i ≤ d

2
1
d

(
0 . . . 01⌈d/2⌉

)⊤
X + Zi, i > d

2 .

(c) Independent coordinates: X,Z ∼ N (0, Id) i.i.d. and Y = 1√
2
(X + Z).

A.6. Additional Result On High Dimension

Similarly, we validate the capability of InfoNet in classifying the correct correlation order on d-dimensional Gauss
distributions: (X,Y ) =

(
(X1, X2, · · ·Xd), (Y 1, Y 2, · · ·Y d)

)
∼ N (µ,Σ).

This result shows that our InfoNet model reaches high accuracy and still costs low time complexity. Since our model allows
parallel computing on multiple GPUs, it can compute the MI of multiple projected variables in one feed-forward process.

A.7. Results of Validation on Out-of-Domain Motion Data

In this section, we provide detailed results of the experiments on motion data.
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Table 4: Correlation order accuracy of different MI estimators. Methods that do not rely on neural networks are highlighted
in Blue, and those leveraging neural networks are colored Green. MINE-100 means training MINE method for 100 iterations,
InfoNet-100 means we do 100 times random projection to get an average.

DIMENSIONS 2 3 4 5 6 7 8 9 10

KSG 94.4 95.5 91.8 92 94.1 93.6 94.1 94.1 94.2
ENERGY DISTANCE 49.6 51.2 52.2 51.5 52.5 49.6 48.7 50.2 51.3

MINE-100 78.5 82.1 86.7 84.7 88.4 89.8 90.1 90.4 90
MINE-1000 93.6 93.9 94.4 94.3 91.6 91.7 89.5 91 90.3
MINE-5000 96.2 97 97 96.2 94.9 94.2 93.2 92.8 93

INFONET-100 93.7 94.6 94.4 95.7 93.3 95.8 95.8 95.4 93.8
INFONET-500 94.9 93.7 95.7 95.8 97.1 96.4 97.2 97.8 96.8

INFONET-1500 97.7 96.4 96.2 97.9 97.4 98.1 98.2 97.3 98.3

It is worth noting that certain trajectories provided may contain unreasonable values such as ”inf” or ”-50000”. To address
this issue in the dataset, we apply a filtering process to ensure that only points appearing throughout the entire video are
considered for analysis.

Fig. 9 and Fig. 10 show the visualization of estimated mutual information between one selected point and other points in the
videos. Fig. 11 presents the individual PR curves for each object, while Fig 12 provides the comparison of PR curves across
different methods on each object.

(a) Estimated Mutual Information with point in object 1 (high-
lighted black).

(b) Estimated Mutual Information with point in object 2 (high-
lighted black).

Figure 9: Visualization results using InfoNet model.

A.8. Additional Validation Results on the Order of Estimated Slice Mutual Information

In this section, we present additional experiments to validate our estimated sliced MI has a strong correlation with the ground
truth in multi-dimensional. We use the SpatialMultiOmniglot dataset, following the Rhodes et al. (2020). Our experiment
aims to assess the sliced mutual information (MI) between two random variables, u and v, obtained through the following
steps:

First, we organize the Omniglot data into alphabets {Ai}li=1, with each Ai containing ni characters, each character
represented in 20 variants. Thus, Ai = {{aij,k}20k=1}

ni
j=1, where aij,k is the k-th variant of the j-th character in the

i-th alphabet. Sample d indices randomly: j = (j1, . . . , jd) from d different alphabets, where each ji represents a
specific character from one alphabet. Sample two independent, identically distributed (i.i.d.) vectors k and k′ from∏d
i=1 Uniform(20), representing different versions of the characters:

k = (k1, . . . , kd), k′ = (k′1, . . . , k
′
d).

Then a datapoint x = (u, v) is defined by:

u = (a1j1,k1 , . . . , a
d
jd,kd

), v = (a1j1+1,k′1
, . . . , adjd+1,k′d

).

This ensures that ui and vi are sequential characters within their alphabet, albeit with randomized versions.
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The ground-truth mutual information I(U, V ) between u and v can be computed as (see Rhodes et al., 2020):

I(U, V ) =

d∑
i=1

log ni

We present estimation results for dimensions d = 4 and d = 9 employing the sliced mutual information (SMI) technique.
SMI correlates highly with MI and retains many of its properties. As noted in the SMI paper (Goldfeld & Greenewald,
2021), the SMI value tends to be systematically lower than the actual MI value. To compensate for this, we apply a constant
scaling to the estimated SMI and compare it with the ground-truth MI values, which helps to verify if the SMI aligns with
the MI in terms of order accuracy.

Results for d = 4 and d = 9 using sliced mutual information are shown below:

Dimension Method Value 1 Value 2 Value 3 Value 4 Value 5 Value 6 Value 7

d = 4
Ground Truth MI 11.69 12.16 13.21 13.51 14.19 14.28 15.41

InfoNet estimated SMI 0.164 0.167 0.177 0.178 0.189 0.190 0.199
SMI × a constant 12.25 12.47 13.22 13.30 14.12 14.20 14.87

d = 9
Ground Truth MI 26.96 29.76 30.01 30.11 30.87 31.14 32.12

InfoNet estimated SMI 0.061 0.067 0.068 0.068 0.069 0.070 0.072
SMI × a constant 27.20 29.88 30.33 30.33 30.78 31.22 32.11

Table 5: Results for d = 4 and d = 9.

From these results, we observe that the extension of InfoNet to real-world high-dimensional tasks with SMI can accurately
capture the correlation order measured by the mutual information. Moreover, with a scaling that compensates for the
systematic bias, InfoNet can faithfully capture the mutual information quantity between two high-dimensional random
variables.

A.9. Data Distributions

In this section, we provide several plots to visualize the sequences sampled from randomly generated Gaussian mixture
distributions used for training.
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Figure 10: Visual comparison of estimated MI of pixel locations between our model and MINE on the video datasets. Large
value in red while small value in blue. From left to right: InfoNet (no test-time optimization), MINE (test-time gradient
steps 10), MINE (test-time gradient steps 50), and MINE (test-time gradient steps 3000).
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 11: Individual PR graph of our model and MINE. In the experiments conducted on video datasets, InfoNet exhibited
notably high stability compared to MINE.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 12: Comparison between PR graphs of our model and MINE. In the same video dataset, InfoNet consistently exhibits
superior performance compared to MINE.
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Figure 13: Data points sampled from one mog distribution with 3 components, MI between X and Y is 0.316.

Figure 14: Data points sampled from one mog distribution with 7 components, MI between X and Y is 0.510.

Figure 15: Data points sampled from one mog distribution with 10 components, MI between X and Y is 0.071.
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