Hallucinations in Code Change to Natural Language Generation:
Prevalence and Evaluation of Detection Metrics

Anonymous ACL submission

Abstract

Language models have shown strong capabili-
ties across a wide range of tasks in software en-
gineering, such as code generation, yet they suf-
fer from hallucinations. While hallucinations
have been studied independently in natural lan-
guage and code generation, their occurrence
in tasks involving code changes which have
a structurally complex and context-dependent
format of code remains largely unexplored.
This paper presents the first comprehensive
analysis of hallucinations in two critical tasks
involving code change to natural language gen-
eration: commit message generation and code
review comment generation. We quantify the
prevalence of hallucinations in recent language
models and explore a range of metric-based
approaches to automatically detect them. Our
findings reveal that approximately 50% of gen-
erated code reviews and 20% of generated com-
mit messages contain hallucinations. Whilst
commonly used metrics are weak detectors on
their own, combining multiple metrics substan-
tially improves performance. Notably, model
confidence and feature attribution metrics ef-
fectively contribute to hallucination detection,
showing promise for inference-time detection. !

1 Introduction

Al-based software engineering tools are becoming
increasingly ubiquitous due to their potential to im-
prove developer productivity (Jain et al., 2022; Fan
et al., 2023; Hou et al., 2024). While such tools can
accelerate software development, their reliance on
underlying language models exposes the risk of hal-
lucination—the phenomenon where models gener-
ate outputs that are inconsistent with their inputs or
fabricate non-existent information (Ji et al., 2023;
Huang et al., 2025). Such behavior may decrease
developer productivity or even mislead junior de-
velopers (Ferino et al., 2025), allowing errors to
propagate through to the software. Although prior

'All code and data will be released upon acceptance.

research has focused on the effects of hallucination
during code generation (Liu et al., 2024; Tian et al.,
2024; Agarwal et al., 2024), these effects remain
largely unexplored in generation tasks involving
code changes. Unlike complete code files, code
changes present snippets of both the old and new
versions simultaneously, which could potentially
amplify hallucinations due to the model’s need to
process and reason about multiple code states with
partial context.

Indeed, code changes commonly used in the
software engineering workflows (Tao et al., 2012;
Grazia et al., 2023). Recent work also leveraged
code changes as primary inputs of language mod-
els for automated software engineering tasks such
as code reviews (Li et al., 2022; Lin et al., 2023).
Given the increasing use of code changes in gener-
ation tasks, there is a need to understand the preva-
lence and effectiveness of the current detection met-
rics. The fragmented and context-dependent nature
of code changes may increase hallucination risk
and hinder detection.

In this paper, we present a comprehensive study
of hallucinations in code change to natural lan-
guage (CodeChange?2NL) generation tasks. We fo-
cus on two key tasks: (1) automated commit mes-
sage generation, which aids developers in docu-
menting what and why code was changed, and (2)
automated code review generation, which assists
reviewers in identifying potential issues in code
changes and suggesting improvements. To system-
atically analyze hallucination in CodeChange2NL,
we first develop a hallucination annotation work-
flow specific to the CodeChange2NL context based
on the outputs from task-specific models. We then
empirically evaluate the effectiveness of various
metric-based approaches for automatically detect-
ing these hallucinations. In particular, we exam-
ine both reference-based metrics (which compare
against human-written references) and reference-
free metrics (without the references).

Our findings reveal the severity of the hallucina-
tion problem in CodeChange2NL tasks. We found
that nearly 50% of model-generated code reviews
and 20% of generated commit messages contain
hallucinations. The three predominant categories
of hallucinations are input inconsistency (where the
generated NL is inconsistent with the code change),
logic inconsistency (where the NL contains inter-
nally contradictory reasoning), and intention viola-
tion (where the generation fails for the specific task,
e.g., it is not a review comment for code review but
just a summary of the code change). Furthermore,
we demonstrate that individual metrics for hallu-
cination detection perform only marginally better
than random chance (56.6% ROC-AUC for code
review and 61.7% for commit messages). How-
ever, combining multiple metrics yields substan-
tial improvements (69.1% and 75.3% respectively).
Notably, reference-free metrics show promising re-
sults comparable to using all available metrics, sug-
gesting the feasibility of detecting hallucinations
without ground truth references.

This work makes three primary contributions:
(1) the first systematic characterization of halluci-
nations in code change to natural language tasks,
revealing the severity and patterns of the problem;
(2) a comprehensive evaluation of automatic hal-
lucination detection methods, demonstrating that
combining multiple metrics significantly improves
detection capability; and (3) identification of key
reference-free metrics (model confidence and at-
tribution scores) that effectively predict hallucina-
tions, facilitating real-time detection in production
environments without requiring reference text.

2 Related Work

Hallucination in Natural Language Generation
Initially, Maynez et al. (2020) categorized halluci-
nations in summarization into two types: intrinsic
hallucinations (where models misinterpret informa-
tion present in the input, generating content that
contradicts the source document) and extrinsic hal-
lucinations (where models forge information absent
from the input that cannot be verified using avail-
able information). Recently, Huang et al. (2025)
identified three subcategories of intrinsic halluci-
nations in LLMs: instruction-inconsistent (outputs
are not consistent with the instruction), logic in-
consistency (output itself exhibits internal logical
contradictions), and context inconsistency (outputs
are not consistent with the provided input context).

Huang et al. (2025) further refined these factual
hallucinations by distinguishing between factual
contradiction (outputs that can be grounded but
contradict real-world knowledge) and factual fabri-
cation (outputs that are completely made up with
no basis in reality or verifiable facts). Research on
hallucination in code generation tasks also grounds
hallucination types based on these categories (Liu
et al., 2024). This taxonomy aligns closely with our
CodeChange2NL tasks and serves as a foundation
to determine the hallucination types in Section 3.2.

Hallucination in Code to Natural Language Gen-
eration Different from hallucination research in
natural language to code generation, which primar-
ily focuses on incorrect code generations e.g., dead-
/unreachable code, syntactic incorrectness (Liu
et al., 2024; Agarwal et al., 2024), hallucination in
code to natural language generation focuses on nat-
ural language utterances that are incorrect with re-
spect to the code/task at hand. Whilst many halluci-
nations in code generation can be verified by static
analysis and execution (Tian et al., 2024), these
solutions are not applicable for natural language
outputs. Recent work examined hallucination in
code-to-natural language tasks (Zhang, 2024; Ma-
haraj et al., 2024; Kang et al., 2024). However,
they primarily focus on compilable code imple-
mentations (e.g., the full body of a method). For
example, Maharaj et al. (2024) studied entity-level
hallucination in code summarization, where the
input consists of a method-level function contain-
ing adequate contextual information. Yet, other
code-to-natural language tasks involving snippets
of code changes remain largely overlooked, de-
spite their common use in real-world scenarios
like commit message generation and code review
(Lin et al., 2023). Moreover, due to the technical
constraints of long-context modeling, snippets of
code changes are often used as inputs for genera-
tion tasks instead of the complete code context (Lu
et al., 2025; Berabi et al., 2024). The fragmented,
context-dependent nature of code changes may in-
crease hallucination risk and hinder detection, mo-
tivating our investigation into their prevalence and
the effectiveness of existing metrics.

Automatic Hallucination Detection Automatic
hallucination detection methods fall into two broad
categories: reference-based and reference-free.
Reference-based metrics use ground truth to gauge
the quality of the generated outputs, using this
quality as an estimation of hallucination. This in-

cludes lexical overlap such as BLEU (Papineni
et al., 2002), which evaluates n-gram similarity be-
tween generated and reference texts. This is widely
used in both Code2NL and NL2NL tasks (Liu et al.,
2018a; Tufano et al., 2021; Liet al., 2022; Liu et al.,
2025). More advanced metrics use Natural Lan-
guage Inference (NLI): the model output is treated
as a “hypothesis” to be validated against the ref-
erence. An entailment classifier labels output as
entailment or contradiction, which maps to faith-
ful or hallucinated content (Manakul et al., 2023;
Elaraby et al., 2023; Hu et al., 2024; Valentin et al.,
2024). Reference-free methods operate in many
open-ended generation settings, where a reference
is unavailable, by analyzing internal model behav-
iors and input-output relationships. One family
of approaches estimates uncertainty inside models
during generation (Guerreiro et al., 2023; Huang
et al., 2024), with hallucinations typically exhibit-
ing lower confidence in probability distributions
and higher entropy. Another promising line is fea-
ture attribution techniques (Tang et al., 2022; Chen
et al., 2025), which examine how inputs influence
outputs, e.g., when a model hallucinates, its atten-
tion patterns or hidden states behave anomalously.
While these metrics have been used to detect hal-
lucinations in various NL2NL tasks, such as ma-
chine translation and question answering (Guer-
reiro et al., 2023; Dale et al., 2023), their capabili-
ties in CodeChange2NL tasks remain unknown.

3 Study Design

3.1 Research Questions

RQ1: To what extent do task-specific language
models hallucinate in code change to natural
language tasks? Prior work on hallucination in
software engineering has focused on code genera-
tion, which can be verified deterministically. How-
ever, little attention has been paid to hallucinations
in CodeChange2NL generation tasks, such as code
review comment generation and commit message
generation.

RQ2: How effectively can existing hallucina-
tion detection methods perform on code change
to natural language tasks? While prior work
in NLP have developed various methods (Dale
et al., 2023; Huang et al., 2025; Ji et al., 2023)
to detect hallucinations in natural language gener-
ation, their applicability to the bi-modal scenario
of CodeChange2NL remains unknown. Effective
detection in such contexts requires an understand-

Generated
Message (M

Non-Hallucination

Semantic Informative
Equivalent & Plausible

Is M semantically
equivalent to the ground
truth?

NO/Unsure

Uninformative/Too Generic
N: F; heckil
eed Fact Checking >

Hallucination
(g e)
%
e)
—————Conboweon)

Is M obviously deviating
from the given context
input, task, it self)?

Which type of
deviation best
describes M?

Figure 1: Hallucination Annotation Flowchart

ing of the semantics behind both code, natural lan-
guage, and their interaction.

3.2 Hallucination Annotation Workflow

Since no existing work addresses hallucinations
in the CodeChange2NL context, we developed a
decision-tree-based hallucination detection work-
flow by adapting taxonomies from both code gener-
ation (Liu et al., 2024) and natural language hallu-
cination (Huang et al., 2025). Our workflow? (see
Figure 1) evaluates a generated NL as follows:
Semantic Equivalence. We first determine
whether the generated NL is semantically equiva-
lent to the ground truth (i.e., conveying the same
intent with similar framing and emphasis). If equiv-
alent, the output is classified as non-hallucination.
Contextual Faithfulness. For semantically non-
equivalent outputs, we assess whether the NL devi-
ates from the context (source code, task specifica-
tion, and generated text itself). Non-deviating out-
puts are classified as either Informative & Plausible
(valid alternatives) or Uninformative (truisms).
Hallucination Type Classification. When con-
text deviation exists, we categorize the hallucina-
tion into five types:® 1) Input Inconsistency, where
the generation conflicts with the source code, e.g.,
pointing out a non-existent issue in code review or
speculating intent that contradicts the code change
in commit messages; 2) Logic Inconsistency, where
the generation is internally illogical, independent of
the input; 3) Input Repetition, where the generation
directly copies from the input; 4) Intent Deviation,

2See Appendix A for definition and annotation guidelines.
SExamples are provided in Appendix A.3.

where the generation deviates from the task’s goal,
e.g., not identifying issues in a code review or not
explaining the code change in a commit message;
and 5) Others for cases that are not covered by
the above types. Cases requiring additional project
specific fact-checking are labeled as Unsure.

3.3 Datasets and CodeChange2NL Generation

Datasets. We choose the widely used CodeRe-
viewer (Li et al., 2022) dataset for code review
comment generation and CommitBench (Schall
et al., 2024) for commit message generation. The
CodeReviewer corpus contains code diff and nat-
ural language review pairs, across 9 popular pro-
gramming languages and over 1k GitHub projects.
It includes 118k training, 10k validation, and 10K
testing examples. CommitBench contains code
diffs paired with natural language commit mes-
sages, spanning over 72k GitHub repositories and
6 programming languages. It includes 1.16 million
training examples and 250k examples each for val-
idation and testing. While related, the two tasks
are different in nature—commit messages are pri-
marily descriptive, whereas code reviews require
deeper reasoning about functional correctness and
potential impacts across the codebase.

Models. To analyze hallucination behaviors, we
conduct experiments to select language models that
are highly capable in both tasks. This is determined
by BLEU-4 results, which is the most commonly
used metric (Li et al., 2022; Schall et al., 2024).
We choose two recent LLM families (Qwen2.5 and
Llama3.1)* with varied model sizes for both di-
rect prompting (7-8B, 70-72B) and task-specific
fine-tuning (7-8B). We also fine-tune CCT5 (Lin
et al., 2023), which is a 220M T5-based model
pre-trained on 1.5M code change to commit mes-
sage pairs. We used the original training data in
two datasets to fine-tune the models. We found
that fine-tuned models performed the best for both
tasks.> Table 1 (Overall columns) presents the ex-
perimental results. Thus, we select the three fine-
tuned models to generate outputs for hallucination
analysis in Sections 4 and 5.

3.4 Hallucination Detection Methodology

We use both reference-based and reference-free
hallucination detection approaches: the former
for model development where the ground truth

“These were the latest models at the time of experiment.
>See Appendix B for details on prompting and fine-tuning.

Model CodeReview CommitBench
Overall ~ Sample Overall ~ Sample
Llama3.1-8B 5.28 5.25 15.06 15.29
Qwen2.5-7B 5.43 5.73 15.37 15.57
CCTS5 5.58 6.53 17.45 17.46

Table 1: Performance (BLEU-4 in %) of fine-tuned
models on CodeReview and CommitBench benchmarks.

is available, and the latter for real-world deploy-
ment where references are unavailable. Table 2
presents a summary of the metrics we used, in-
cluding two types of reference-based (BLEU-4 and
NLI), and three types of reference-free (similarity,
uncertainty, and feature-attribution). Uncertainty
and feature-attribution metrics are calculated with
either LLaMA3.1-8B-Instruct (Grattafiori et al.,
2024), Qwen2.5-7B-Instruct (Yang et al., 2025) or
CCTS5 (Lin et al., 2023). Due to space limitations,
detailed descriptions and formulas are provided in
Appendix D.1. In total, 26 unique methods were
considered: 2 reference-based metrics + 3 similar-
ity scores + 3 models x 7 feature attribution and
uncertainty metrics.

4 To what extent do task-specific
language models hallucinate in
CodeChange2NL tasks?

To address RQ1, we manually categorize the mes-
sages generated by the three fine-tuned models
into our CodeChange2NL hallucination annotation
workflow introduced in Section 3.2 to identify the
presence and types of hallucinations. Using the
annotated samples, we further analyze the overall
prevalence of hallucinations and their distributional
patterns across models and two datasets.

4.1 Manual Annotation

We selected the top 3 fine-tuned models (lama3.1-
8B, Qwen2.5-7B, and CCT)) to generate messages
in the test set. To address RQ1, we manually la-
beled a subset of samples that were randomly se-
lected from the test set of each task, constituting
a statistically significant sample size with a confi-
dence level of 90% and a margin of error of £5%.
This results in 264 samples for CodeReviewer com-
ments and 268 samples for CommitBench. In total,
we annotated 1,596 samples, including 264 x 3
model outputs for CodeReviewer comments and
268 x 3 for CommitBench messages.

Two annotators (authors of the paper) with 5+
years of experience in computer science and soft-
ware engineering annotated all samples. We con-

Metric Type Description

BLEU-4 Lexical-Overlap The n-gram overlap between the generation y and reference 7.

Entailment NLI The probability that a NLI classifier predicts ¢ entails y. We used nli-deberta-v3° as the
classifier.

Similarity Similarity The embedding-based cosine similarity between the generation y and source code x. We
used three embeding models: codebert-base’ , codetSp—220m—bim0dalg, and codelSp—770m9.

SeqLogProb Uncertainty The average negative log-probability of the generated tokens in y as assigned by a language
model M.

SeqLogit Uncertainty The average raw logit score (pre-Softmax) of the generated tokens in y from a model M.

SeqEntropy Uncertainty The average entropy of the generated tokens in y from a model M.

Source Attribution

Feature Attribution

The average of the maximum attribution scores from source tokens to each generated token

iny (.e., % Zle max;e(1,N] Aj ¢, where A; y = x; X % is the importance of x;
) ; z;

to y; from a model M). A higher score represents source contributes more strongly to y.

Target Attribution

Feature Attribution

The average of the maximum attribution scores from previously generated tokens
(Y1, ..., Yyt—1) to each current token y;. A higher score represents the reliance on previ-
ously generated tokens.

Changed Attribution

Feature Attribution

The average of the maximum attribution scores from source tokens that are changed (in +,
- lines) to each generated token in y. A high score represents changed tokens contributes
strongly to .

Unchanged Attribution

Feature Attribution

The average of the maximum attribution scores from source tokens that are unchanged to
each generated token in y. A high score represents unchanged snippets in source contributes

strongly to y.

Table 2: Descriptions of hallucination detection metrics, including into reference-based (BLEU-4 and

Entailment) and reference-free (all others).

For uncertainty and feature attribution, the model M &

{LLaMA3.1-8B, Qwen2.5-7B, and CCT5}. We apply both self-attribution (generator attributes its own output) and
cross-attribution (external model attributes generator’s output). See Appendix D.1 for a detailed description.

Category | CodeReviewer | CommitBench
Type
‘ CCT5 Llama3.1 Qwen2.5 ‘ CCT5 Llama3.1 Qwen2.5
Non-Hallucination Semantic_Equivalent 1.5 1.1 1.5 11.2 12.3 16.4
vematt Informative 95 9.8 8.7 48.1 425 44.4
Uninformative Uninformative ‘ 20.1 1.5 3.8 ‘ 15.7 7.1 9.7
Unsure Unsure | 220 41.3 432 | 56 16.4 15.3
Input_Inconsistency 26.5 239 24.6 17.2 19.8 13.1
Input_Repetition 42 0.0 0.0 0.0 0.7 0.7
Hallucination Intent_Deviation 0.8 17.4 15.9 0.4 0.4 0.0
Logic_Inconsistency 14.0 4.5 1.9 1.9 0.7 0.4
Others 1.5 0.4 0.4 0.0 0.0 0.0
Total Hallucination ‘ 47.0 46.2 42.8 ‘ 19.5 21.6 14.2

Table 3: The distribution (percentage) of hallucination categories and types for annotated samples. The Category
column is the high-level category in Figure 1. The “Total Hallucination” is the sum of the four hallucination types.

ducted two pilot rounds (150 samples each) to
refine the taxonomy and guidelines. Cohen’s x
improved from 0.36/0.30 (CodeReviewer/Commit-
Bench) in the first round to 0.56/0.38 in the second.
Final disagreements were resolved through discus-
sion, achieving near-perfect agreement (x = 0.98 /
0.96). The annotators then divided the remaining
samples (half-half), cross-examining each other’s
work to ensure consistent labeling.

4.2 Hallucination Prevalence and Patterns

Table 3 shows that hallucination rates vary signif-
icantly across tasks. For the code review task,
all models exhibit high hallucination rates rang-
ing from 42.8% to 47.0%. Surprisingly, although
CCT5 achieves the highest BLEU score on the
CodeReviewer dataset among the three models (Ta-
ble 8), it also exhibits the highest hallucination rate
at 47.0%. This highlights the risk of hallucinations

even in models with strong BLEU performance.
On the other hand, the commit message generation
task has a lower hallucination rate than code review
(14.2% to 21.6%), where Qwen2.5 has the lowest
rate at 14.2%. This may be because code review is
more challenging than commit message generation,
as it requires identifying problems and providing
specific feedback beyond what is directly observ-
able in the code changes. Such added complexity
might lead to increased hallucination behavior.

The overall distribution of hallucination types
varies between tasks. Notably, the Input Inconsis-
tency emerges as the dominant hallucination type
for both tasks. This suggests that models frequently
generate messages that contradict or misrepresent
the actual code changes. One frequent issue in code
review is that the generated messages tend to fabri-
cate non-existent code tokens. For example, CCT5
suggests “I think this should be orderPath instead

of orderPathkey”. However, orderPathkey does not
appear in the code change:!? +~public static final

String ORDER_PATH = "orderPath”; This suggests
that the model does not fully understand the mean-
ing of newly introduced code. In the commit mes-
sage task, models also often misunderstand the
code changes. For example, the generated mes-
sage “nomad: fix peers.json recovery for protocol
version 3” misrepresents the change, which actu-
ally adds support for Nomad versions below 3, as
indicated by the code line + if s.config.RaftConfig
.ProtocolVersion < 3 {.11

Intent deviation and logic inconsistency appear
as another two pronounced hallucination types in
the code review task, but they are rare in the com-
mit message generation, suggesting that commit
message generation models generate messages that
better align with the task and suffer less logic in-
consistency. Interestingly, we observe many cases
where the generated review comment reads more
like a commit message—for example, “This is a
temporary fix.”, which describes the code change
rather than providing a review.

Different models exhibit different type of hal-
lucinations. CCTS5, which is the specialized fine-
tuned model demonstrates higher logic inconsis-
tencies (14.0% in CodeReviewer) but significantly
lower intent deviation (0.8%) than general-purpose
LLMs. On the other hand, larger models (Llama3.1,
Qwen2.5) frequently have intent deviation (>
15.9% average) but fewer logic inconsistencies
(<4.5%). This pattern likely reflects the difference
between specialized and general-purpose pretrain-
ing. Despite fine-tuning, general models retain
broad task knowledge from pretraining, which can
lead them to apply reasoning patterns from unre-
lated tasks—resulting in higher intent deviation.

5 How well do existing metrics detect
hallucinations in CodeChange2NL tasks?

RQ1 showed that models often exhibit hallucina-
tions and misinterpretations of code changes. In
RQ2, we examine how effective automated ap-
proaches are at detecting these hallucinations in
code review and commit message generation. Us-
ing our manually annotated dataset, we evaluate
both reference-based and reference-free metrics de-
scribed in Section 3.4. Our goal is to assess how
well existing metrics detect hallucinations in Code-

19The full code context in provided in Appendix C.1.
""The code patch is provided in Appendix C.2.

to-NL tasks, particularly for code changes. We
evaluate both individual metrics and combinations
of complementary ones to determine whether they
can approximate human judgment.

We use ROC-AUC to evaluate the hallucination
detection capability of each metric. The positive
class is the hallucination samples that we anno-
tated. The negative class is the non-Hallucination
samples. A ROC-AUC score of 1 indicates per-
fect discrimination between hallucinated and non-
hallucinated cases, while a score of 0.5 suggests no
discriminatory power equivalent to random guess-
ing. For individual metrics, we calculate the ROC-
AUC to assess discrimination power.'?> To combine
metrics, we use logistic regression and evaluate its
performance using accuracy and ROC-AUC.

5.1 How do individual metrics perform in
detecting hallucinations?

Metric Effectiveness. Based on the the generator-
agnostic results, the current metrics achieve modest
ROC-AUC scores ranging from 0.538-0.566 on
CodeReviewer and 0.562-0.617 on CommitBench
(see Figures 2 and 3). Based on the generator-
specific results, hallucinations in CCT5 are more
detectable on the CodeReviewer dataset (ROC-
AUC 0.65-0.71), while hallucinations in Llama3.1
are most detectable on the CommitBench dataset
(ROC-AUC 0.62-0.68). This suggests that the effec-
tiveness on hallucination detection of the metrics
may vary across generation models and datasets.

Table 4 shows the metrics with the highest ROC-
AUC scores in each studied dataset. In addition, we
observe that on CodeReviewer, uncertainty-based
metrics (logit and entropy) perform best, while
embedding similarity and reference-based metrics
are best on CommitBench. Nonetheless, the ROC-
AUC scores suggest the limited effectiveness of cur-
rent metrics on hallucination detection, which are
slightly better than random guessing, highlighting
the challenges of automated hallucination detection
in these tasks.

Metric Complementarity. Different metrics may
capture distinct aspects of hallucinations, poten-
tially flagging different instances. To assess this,
we selected the three highest-performing metrics
based on ROC-AUC and examined their top 25%
ranked samples (see the analysis details in Ap-
pendix D.2). Figure 4 shows small overlap in the

1>The point-biserial correlation confirms a similar trend be-
tween metric scores and hallucination labels. Detailed results
are provided in Appendix D.3.

0.7
5 ALL- 0.445 0.517 0.560 0.508 0.463 0.507 0.493 0.468 0.448 0.490 0.535 0.566 0.515 0.444 0512 0462 0493 0.552 0.548 0.511 0.513 0.508 0.489 0.538 0.532 0.487 I
g 0.6
d:b CCT5 - 0.458 | 0.603 0.490 NUKCEVE 0.607 0.379 0.396 0.500 0.463 | 0.378 NONAPRNCLLREVELZE 0.543 NUELLE 0.468 0.404 NOGPLEREECTIS 0.438 LEZER 0.534 g
<
(z -05¢0
o Lllama3.1- 0.509 0.506 0.558 0.509 0.447 0.488 0.512 0.569 0.413 0.474 0.575 0482 0.478 0617 0510 0.564 0.483 0.576 0.489 0.483 0610 0562 0.569 0.510 0.477 0.455 S
©
@ -0.4
2 quen25 - 0.409 XN 0365 NEPIN 0.431 0569 0.451 0.404 0541 E 0445 0.422 0419 0478 0.559 0533 [ONFEN 0435 0417 |0.591 0528 [0.594 0490 0.459 0.447 i
R T N I L N N R A & S
R N T S N N I I G e e N T O - v S
& & o & ¢ F & & ¢ oy & & & F & ¢ o & & & & & KK
o & S N SN S R N § S o 4o &8 §¢ & N OO
” ¢ PRSP AR R N I TR Al A AN P e
S NP N ISR T S A A N I &
&S © S & & & ¢ & & & e
N~ V\,Dé* R N . o o

Hallucination Detector (Metric)

Figure 2: ROC-AUC Scores of Metrics for Hallucination Detection Across Generators on CodeReviewer. The ALL
row represents the generator-agnostic result, using all outputs from CCT5, Llama3.1, and Qwen2.5. The remaining
rows show performance in the generator-specific result, based on outputs from each model individually.

:D: ALL -SOELER 0.405 0.518 0.517 0.493 0.450 JuRGGE 0.535 RUEyFR 0.512 0.498 0.523 0.451 0.502 0.410 0.517 0.529 0.562 0.486 0.438 0.515 0.455 [0.592 0.520 RS ID'65
I3 - 0.60
o

5 CCT5- 0,392 (0389 0481 0.536 0.524 0.437 JUCIER 0.546 0409 0.559 0.535 0.513 0.478 0.466 0.495 0460 0.567 0.565 0482 0.442 0452 0502 0.518 0.514 0481 0.577 -0.55 9
o -0.50 &
ga Llama3.1 0.389 0.578 0485 0.433 0.433 RUCEEN 0.526 0.507 0.492 EVKCEN 0.528 0.444 0.517 NOEEEN 0.507 0.542 NOUFEN 0.491 w 0.507 | 0.392 WXI3-N 0.538 045
5 -0.40
g Qwen2.5 ﬂ 0.443 0481 0.538 0.540 0.495 0.580 0.533 0.469 0.458 NUKPFE 0.572 0.451 0.493 0.451 0.479 0.468 0.541 0.507 0.547 0.463 0.579 0.543 | 0.582 l 0.35

S S T o S N B
& & &S S E S @SS S S S
& & \V A & & & N » L e & & & 4 AN) & < N
F & o F o FEEE ¢y EFEEE ¢ e EFE T
o & & & & & « N N & & o & & ~ «a & & & & S § & &
& & (}"\ A EA N S N SR SRS S P . S A A TS 4
< RO o S Y @y &S AN MY &
& & s ~ S & o o & & & ° @
VS & NS & o <
Hallucination Detector (Metric)
Figure 3: ROC-AUC Scores of Metrics for Hallucination Detection Across Generators on CommitBench.

logit_Llama3.1 __changed contribution_CCT5 target_target_contrib_CCTS ‘ CodeReviewer ‘ CommitBench

logit_Llama3.1

G\

similarity_score_codebert-base

similarity_score_codet5p-770m

Figure 4: Top 3 individual metrics complement to each
other on CodeReviewer (left) and CommitBench (right)

top 25% samples ranked by these three metrics,
indicating these metrics flag different instances as
hallucinated. This highlights the potential comple-
mentarity between metrics.

5.2 Can combining multiple metrics enhance
the accuracy of hallucination detection?

The results in section 5.1 highlight the potential
complementarity between metrics. Thus, we ex-
plore whether combining them can improve perfor-
mance. Prior work (Snyder et al., 2024) also shows
that combining multiple signals improves halluci-
nation detection in question-answering tasks. To
analyze the descrimination power of combined met-
rics for hallucination detection, we use a logistic
regression model fitted to our annotated samples.
For each generation task, we combine all samples
from the three models, resulting in 440 samples for
CodeReviewer and 717 samples for CommitBench.

To understand the capability of different types of

Type | Acc AUC | Acc AUC
Top Performing Individual Metrics
logit_Llama3.1 - 0.57 - 0.60
Sim-CodeT5p-770M - 0.48 - 0.62
Sim-Codebase - 0.54 - 0.59
changed_contrib_CCT5 - 0.52 - 0.41
target_target_contrib_CCT5S - 0.49 - 0.61
Multiple Metrics on Logistic Regression
Reference-based 81.6 0.59 76.0 0.68
Reference-free 81.6 0.66 78.9 0.75
ALL 82.7 0.69 77.8 0.75

Table 4: Logic regression results (Acc (%) and AUC)
on hallucination prediction using multiple metrics.

metrics, we build three logistic regression models
using: 1) all metrics, 2) reference-based metrics
only, and 3) reference-free metrics only. Since
some metrics may capture similar signals or re-
dundant, leading to multicollinearity and overfit-
ting, we use the Akaike Information Criterion
(AIC) (Akaike, 1974) to identify metrics that mean-
ingfully contribute to the prediction. Then, we use
the selected metrics as features to fit the logistic
regression model and analyze the coefficients to
identify which metrics are most important for hal-
lucination detection.

Table 4 shows the logistic regression results.
Combining multiple metrics substantially improves
ROC-AUC scores for hallucination detection on
both datasets, compared to individual metrics alone.

Type Metric | ICoefl | Sign
Uncertainty logit_Llama3.1 6.00" +
Uncertainty entropy_Qwen2.5 3.33* +
Attribution source_target_Qwen2.5 2.83* +
Attribution source_target_Llama3.1 2.78* -
N-gram BLEU 1.94*

Table 5: Top-5 important features on predicting hallu-
cinations (vs. non-hallucinations) in CodeReviewer. *
indicates the coef is significant (p < 0.05).

Type Metric | ICoefl Sign
Uncertainty ~ logit_Llama3.1 6.86™ +
Uncertainty logit_Qwen2.5 5.93* -
Attribution changed_CCT5 4.71*

N-gram BLEU 3.49* -
Similarity similarity_score_codebert 2.41% +

Table 6: Top-5 importance features on predicting hallu-
cinations (vs. non-hallucinations) in CommitBench.

For CodeReviewer, the ROC-AUC increased from
the best individual score of 0.57 (logit_Llama3.1)
to 0.69 when using all metrics. For CommitBench,
it improved from 0.62 (similarity_score_codet5p-
770m) to 0.75. Surprisingly, using reference-free
metrics alone achieved ROC-AUC scores close to
that of using all metrics. In contrast, reference-
based metrics achieved lower performance, possi-
bly because they are fewer in number or inher-
ently less predictive. This highlights a poten-
tial benefit of hallucination detections in these
CodeChange2NL tasks without ground-truth.

Tables 5 and 6 present the most important
features along with their coefficients. The Se-
qLogit calculated with Llama3.1 (Logit_Llama3.1)
emerges as the most important feature for both
tasks. Uncertainty metrics from Llama3.1 and
Qwen2.5 consistently appear among the top fea-
tures, demonstrating strong predictive power.For
CommitBench dataset, the — coefficient in
Qwen?2.5 aligns with prior findings, i.e., when not
hallucinating, a model is more confident (Dale
et al., 2023). On the other hand, the + coefficient in
Llama3.1 could be due to its overconfidence as the
distribution of logit in Llama3.1 is skewed towards
high scores in CommitBench (See Appendix D.4).
Feature attribution metrics rank next in predictive
strength, indicating that hallucinations can be de-
tected by analyzing how models utilize source code
during generation.

Figure 5 presents an example generated for code
review.'®> The generated review suggests passing
a parameter that is already being passed in both

13See an example of commit message in Appendix Figure 8.

@@ -204,7 +204,7 @@ func (d *RPCFactory) CreateFrontendGRPCConnection(
hostName string) *grpc.ClientC

}

}

- return d.dial(hostName, tIsClientConfig) ----------

2nd ‘highes(attribution score=0.118
+ return d.dial(hostName, tlsClientConfig, false) :
attribution

max attribution scnrc:(LIﬂ\‘\
~.._score=0.009 |

v
5

“IV v

Qwen?2.5: I think we should pass the * tls “to the " d. dial * function .

[Logit=14.1 | [Logit=13.56 |

Figure 5: An example of feature attribution on a hallu-
cinated code review comment generated by Qwen?2.5.
Attribution model: Llama3.1.

old and new code, while ignoring the actual code
change. This hallucinated generation has high logit
and high attribution from source code. Particularly,
the generated tokens appearing in the input context
have high confidence based on elevated logit val-
ues. For example, based on uncertainty calculated
with Llama3.1, particularly API method names like
tlsClientConfig and dial have logit values of 14.1
and 13.6. However, based on the attribution scores,
critical changes (i.e., the addition of the “false” pa-
rameter) that should be the primary focus of the
review has minimal contribution to the generation.
Instead, these common tokens like t1sClientConfig
have large attribution scores, meaning that they
contributing significantly to the generation.

For non-hallucinations, we observed that the
correct input in the code changes contributes sig-
nificantly to the relevant generation compared to
other code snippets (e.g., in the generated com-
ment, “Why is this needed?” the “this” token was
mainly contributed by the changed line of code
“+ from databricks import koalas as ks”). This in-
dicates that the balance between the contribution
from changed code and unchanged code is one im-
portant cause of hallucination in code review tasks.

6 Conclusion

Hallucinations are prevalent in CodeChange2NL
tasks, occurring in 50% of code reviews and 20%
of commit messages. We identify three common
types—input/logic inconsistency, and intention vi-
olation. Our findings show that individual met-
rics are insufficient for effective detection, while
a multi-metric approach significantly improves
performance, particularly combining model con-
fidence and feature attribution.

7 Limitations

While our study advances the understanding of hal-
lucination severity and automatic detection capabil-
ities in CodeChange2NL tasks, several limitations
remain.

Dataset Size. Despite using statistically repre-
sentative samples from the test set, our annotated
dataset is relatively small due to the significant ef-
fort required for manual annotation. To mitigate
this limitation, we analyzed both model-specific
and aggregated samples across models to increase
effective sample sizes.

Hallucination Granularity. We primarily fo-
cused on instance-level (whole sequence) hallucina-
tion analysis to establish a foundational understand-
ing of the phenomenon. Our feature attribution
analysis showed promise for token-level halluci-
nation detection, revealing cases where generation
heavily relied on unchanged code snippets while
ignoring critical changes. Future work should ex-
plore finer-grained token-level hallucination analy-
sis with appropriate annotations and develop tech-
niques for more precisely identifying hallucinations
at different levels of granularity.

Model Recency and Coverage. Due to cost con-
straints, we excluded commercial models (e.g.,
GPT-40, Claude 3.7) from our analysis and focused
on the latest open-source language models avail-
able at the time of our experiments. However, the
landscape is evolving rapidly, with newer models
such as LLaMA 4 and Qwen2.5-Coder emerging
since our evaluation. As a result, our findings may
not fully generalize to these newer or commercial
models, or to different model families such as Gem-
ini, which could exhibit different hallucination pat-
terns in Code2NL tasks. Also, our study focuses on
the hallucination in task-specific fine-tuned models
since they perform better than zero-shot prompting.
The hallucination prevalence in zero-shot prompt-
ing may be different. Our work lays the foundation
for future research in this space, highlighting the
need for ongoing evaluation as models continue to
evolve and diversify.

References

Vibhor Agarwal, Yulong Pei, Salwa Alamir, and Xi-
aomo Liu. 2024. Codemirage: Hallucinations in
code generated by large language models. arXiv
preprint arXiv:2408.08333.

H. Akaike. 1974. A new look at the statistical model
identification. IEEE Transactions on Automatic Con-
trol, 19(6):716-723.

Berkay Berabi, Alexey Gronskiy, Veselin Raychev,
Gishor Sivanrupan, Victor Chibotaru, and Martin
Vechev. 2024. Deepcode ai fix: Fixing security
vulnerabilities with large language models. arXiv
preprint arXiv:2402.13291.

Yuyan Chen, Zehao Li, Shuangjie You, Zhengyu Chen,
Jingwen Chang, Yi Zhang, Weinan Dai, Qingpei Guo,
and Yanghua Xiao. 2025. Attributive reasoning for
hallucination diagnosis of large language models. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 39, pages 23660-23668.

David Dale, Elena Voita, Loic Barrault, and Marta R.
Costa-jussa. 2023. Detecting and mitigating halluci-
nations in machine translation: Model internal work-
ings alone do well, sentence similarity Even better.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 36-50, Toronto, Canada. As-
sociation for Computational Linguistics.

Mohamed Elaraby, Mengyin Lu, Jacob Dunn, Xuey-
ing Zhang, Yu Wang, Shizhu Liu, Pingchuan Tian,
Yuping Wang, and Yuxuan Wang. 2023. Halo: Es-
timation and reduction of hallucinations in open-
source weak large language models. arXiv preprint
arXiv:2308.11764.

Angela Fan, Beliz Gokkaya, Mark Harman, Mitya
Lyubarskiy, Shubho Sengupta, Shin Yoo, and Jie M.
Zhang. 2023. Large Language Models for Software
Engineering: Survey and Open Problems . In 2023
IEEE/ACM International Conference on Software
Engineering: Future of Software Engineering (ICSE-
FoSE), pages 31-53, Los Alamitos, CA, USA. IEEE
Computer Society.

Samuel Ferino, Rashina Hoda, John Grundy, and
Christoph Treude. 2025. Junior software developers’
perspectives on adopting llms for software engineer-
ing: a systematic literature review. arXiv preprint
arXiv:2503.07556.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, et al. 2024. The llama 3 herd of mod-
els. arXiv preprint arXiv:2407.21783.

Luca Di Grazia, Paul Bredl, and Michael Pradel.
2023. Diffsearch: A scalable and precise search
engine for code changes. IEEE Trans. Softw. Eng.,
49(4):2366-2380.

Nuno M. Guerreiro, Elena Voita, and André Martins.
2023. Looking for a needle in a haystack: A com-
prehensive study of hallucinations in neural machine
translation. In Proceedings of the 17th Conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 1059-1075, Dubrovnik,
Croatia. Association for Computational Linguistics.

https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.18653/v1/2023.acl-long.3
https://doi.org/10.18653/v1/2023.acl-long.3
https://doi.org/10.18653/v1/2023.acl-long.3
https://doi.org/10.18653/v1/2023.acl-long.3
https://doi.org/10.18653/v1/2023.acl-long.3
https://doi.org/10.1109/ICSE-FoSE59343.2023.00008
https://doi.org/10.1109/ICSE-FoSE59343.2023.00008
https://doi.org/10.1109/ICSE-FoSE59343.2023.00008
https://doi.org/10.1109/TSE.2022.3218859
https://doi.org/10.1109/TSE.2022.3218859
https://doi.org/10.1109/TSE.2022.3218859
https://doi.org/10.18653/v1/2023.eacl-main.75
https://doi.org/10.18653/v1/2023.eacl-main.75
https://doi.org/10.18653/v1/2023.eacl-main.75
https://doi.org/10.18653/v1/2023.eacl-main.75
https://doi.org/10.18653/v1/2023.eacl-main.75

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong
Wang, Li Li, Xiapu Luo, David Lo, John Grundy,
and Haoyu Wang. 2024. Large language models for
software engineering: A systematic literature review.
ACM Trans. Softw. Eng. Methodol., 33(8).

Xiangkun Hu, Dongyu Ru, Lin Qiu, Qipeng Guo,
Tianhang Zhang, Yang Xu, Yun Luo, Pengfei Liu,
Yue Zhang, and Zheng Zhang. 2024. Refchecker:
Reference-based fine-grained hallucination checker
and benchmark for large language models.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting
Liu. 2025. A survey on hallucination in large lan-
guage models: Principles, taxonomy, challenges, and
open questions. ACM Trans. Inf. Syst., 43(2).

Yuheng Huang, Jiayang Song, Zhijie Wang, Shengming
Zhao, Huaming Chen, Felix Juefei-Xu, and Lei Ma.
2024. Look before you leap: An exploratory study of
uncertainty measurement for large language models.
In International Conference on Software Engineering
(ICSE).

Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan
Natarajan, Suresh Parthasarathy, Sriram Rajamani,
and Rahul Sharma. 2022. Jigsaw: large language
models meet program synthesis. In Proceedings of
the 44th International Conference on Software Engi-
neering, ICSE °22, page 1219-1231, New York, NY,
USA. Association for Computing Machinery.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of hal-
lucination in natural language generation. ACM com-
puting surveys, 55(12):1-38.

Sungmin Kang, Louis Milliken, and Shin Yoo. 2024.
Identifying inaccurate descriptions in llm-generated
code comments via test execution. Preprint,
arXiv:2406.14836.

Jiawei Li, David Farag6, Christian Petrov, and Iftekhar
Ahmed. 2024. Only diff is not enough: Generating
commit messages leveraging reasoning and action of
large language model. Proceedings of the ACM on
Software Engineering, 1(FSE):745-766.

Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh
Jannu, Grant Jenks, Deep Majumder, Jared Green,
Alexey Svyatkovskiy, Shengyu Fu, and Neel Sun-
daresan. 2022. Automating code review activities
by large-scale pre-training. In Proceedings of ES-
EC/FSE, page 1035-1047.

Bo Lin, Shangwen Wang, Zhongxin Liu, Yepang Liu,
Xin Xia, and Xiaoguang Mao. 2023. Cct5: A code-
change-oriented pre-trained model. In Proceedings
of the 31st ACM Joint European Software Engineer-
ing Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2023, page
1509-1521, New York, NY, USA. Association for
Computing Machinery.

10

Hong Yi Lin, Patanamon Thongtanunam, Christoph
Treude, and Wachiraphan Charoenwet. 2024. Im-
proving automated code reviews: Learning from ex-
perience. In Proceedings of the 21st International
Conference on Mining Software Repositories, MSR
’24, page 278-283, New York, NY, USA. Association
for Computing Machinery.

Chunhua Liu, Hong Yi Lin, and Patanamon Thongta-
nunam. 2025. Too noisy to learn: Enhancing data
quality for code review comment generation. In Pro-
ceedings of the 2 1st International Conference on Min-
ing Software Repositories.

Fang Liu, Yang Liu, Lin Shi, Houkun Huang, Ruifeng
Wang, Zhen Yang, Li Zhang, Zhongqi Li, and Yuchi
Ma. 2024. Exploring and evaluating hallucinations
in llm-powered code generation. arXiv preprint
arXiv:2404.00971.

Zhongxin Liu, Xin Xia, Ahmed E Hassan, David Lo,
Zhenchang Xing, and Xinyu Wang. 2018a. Neural-
machine-translation-based commit message genera-
tion: how far are we? In Proceedings of the 33rd
ACM/IEEE International Conference on Automated
Software Engineering, pages 373-384.

Zhongxin Liu, Xin Xia, Ahmed E. Hassan, David Lo,
Zhenchang Xing, and Xinyu Wang. 2018b. Neural-
machine-translation-based commit message genera-
tion: how far are we? In Proceedings of the 33rd
ACM/IEEE International Conference on Automated
Software Engineering, ASE °18, page 373-384, New
York, NY, USA. Association for Computing Machin-
ery.

Junyi Lu, Lili Jiang, Xiaojia Li, Jianbing Fang, Fengjun
Zhang, Li Yang, and Chun Zuo. 2025. Towards prac-
tical defect-focused automated code review. In Forty-
second International Conference on Machine Learn-

ing.

Kishan Maharaj, Vitobha Munigala, Srikanth G Tamil-
selvam, Prince Kumar, Sayandeep Sen, Palani
Kodeswaran, Abhijit Mishra, and Pushpak Bhat-
tacharyya. 2024. Etf: An entity tracing framework
for hallucination detection in code summaries. arXiv
preprint arXiv:2410.14748.

Potsawee Manakul, Adian Liusie, and Mark Gales. 2023.
SelfCheckGPT: Zero-resource black-box hallucina-
tion detection for generative large language models.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
9004-9017, Singapore. Association for Computa-
tional Linguistics.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and
Ryan McDonald. 2020. On faithfulness and factu-
ality in abstractive summarization. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1906-1919, On-
line. Association for Computational Linguistics.

Sabrina J. Mielke, Arthur Szlam, Emily Dinan, and Y-
Lan Boureau. 2022. Reducing conversational agents’

https://doi.org/10.1145/3695988
https://doi.org/10.1145/3695988
https://doi.org/10.1145/3695988
https://arxiv.org/abs/2405.14486
https://arxiv.org/abs/2405.14486
https://arxiv.org/abs/2405.14486
https://arxiv.org/abs/2405.14486
https://arxiv.org/abs/2405.14486
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3510003.3510203
https://doi.org/10.1145/3510003.3510203
https://doi.org/10.1145/3510003.3510203
https://arxiv.org/abs/2406.14836
https://arxiv.org/abs/2406.14836
https://arxiv.org/abs/2406.14836
https://doi.org/10.1145/3611643.3616339
https://doi.org/10.1145/3611643.3616339
https://doi.org/10.1145/3611643.3616339
https://doi.org/10.1145/3643991.3644910
https://doi.org/10.1145/3643991.3644910
https://doi.org/10.1145/3643991.3644910
https://doi.org/10.1145/3643991.3644910
https://doi.org/10.1145/3643991.3644910
https://doi.org/10.1145/3238147.3238190
https://doi.org/10.1145/3238147.3238190
https://doi.org/10.1145/3238147.3238190
https://doi.org/10.1145/3238147.3238190
https://doi.org/10.1145/3238147.3238190
https://openreview.net/forum?id=mEV0nvHcK3
https://openreview.net/forum?id=mEV0nvHcK3
https://openreview.net/forum?id=mEV0nvHcK3
https://doi.org/10.18653/v1/2023.emnlp-main.557
https://doi.org/10.18653/v1/2023.emnlp-main.557
https://doi.org/10.18653/v1/2023.emnlp-main.557
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.1162/tacl_a_00494
https://doi.org/10.1162/tacl_a_00494

overconfidence through linguistic calibration. Trans-
actions of the Association for Computational Linguis-
tics, 10:857-872.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of ACL,
pages 311-318.

Gabriele Sarti, Nils Feldhus, Ludwig Sickert, and Os-
kar van der Wal. 2023. Inseq: An interpretability
toolkit for sequence generation models. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 3: System
Demonstrations), pages 421-435, Toronto, Canada.
Association for Computational Linguistics.

Maximilian Schall, Tamara Czinczoll, and Gerard De
Melo. 2024. Commitbench: A benchmark for com-
mit message generation. In 2024 IEEE Interna-
tional Conference on Software Analysis, Evolution
and Reengineering (SANER), pages 728739, Pots-
dam, Germany. IEEE.

Avanti Shrikumar, Peyton Greenside, and Anshul Kun-
daje. 2017. Learning important features through
propagating activation differences. In Proceedings of
the 34th International Conference on Machine Learn-
ing, volume 70 of Proceedings of Machine Learning
Research, pages 3145-3153. PMLR.

Ben Snyder, Marius Moisescu, and Muhammad Bilal
Zafar. 2024. On early detection of hallucinations in
factual question answering. In Proceedings of the
30th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining, KDD ’24, page 2721-2732,
New York, NY, USA. Association for Computing
Machinery.

Joél Tang, Marina Fomicheva, and Lucia Specia. 2022.
Reducing hallucinations in neural machine trans-
lation with feature attribution. arXiv preprint
arXiv:2211.09878.

Yida Tao, Yingnong Dang, Tao Xie, Dongmei Zhang,
and Sunghun Kim. 2012. How do software engineers
understand code changes? an exploratory study in
industry. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Soft-
ware Engineering, FSE *12, New York, NY, USA.
Association for Computing Machinery.

Yingchen Tian, Yuxia Zhang, Klaas-Jan Stol, Lin Jiang,
and Hui Liu. 2022. What makes a good commit
message? In Proceedings of the 44th International
Conference on Software Engineering, pages 2389—
2401.

Yuchen Tian, Weixiang Yan, Qian Yang, Xuandong
Zhao, Qian Chen, Wen Wang, Ziyang Luo, Lei Ma,
and Dawn Song. 2024. Codehalu: Investigating code
hallucinations in llms via execution-based verifica-
tion. arXiv preprint arXiv:2405.00253.

11

Rosalia Tufano, Luca Pascarella, Michele Tufano,
Denys Poshyvanyk, and Gabriele Bavota. 2021. To-
wards automating code review activities. In Proceed-
ings of ICSE, pages 163-174.

Simon Valentin, Jinmiao Fu, Gianluca Detommaso,
Shaoyuan Xu, Giovanni Zappella, and Bryan Wang.
2024. Cost-effective hallucination detection for Ilms.
In KDD 2024 GenAl Evaluation Workshop.

Lanxin Yang, Jinwei Xu, Yifan Zhang, He Zhang, and
Alberto Bacchelli. 2023. Evacrc: Evaluating code
review comments. In Proceedings of the 31st ACM
Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engi-
neering, ESEC/FSE 2023, page 275-287, New York,
NY, USA. Association for Computing Machinery.

Qwen An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li,
Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang
Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru
Zhang, and Zihan Qiu. 2025. Qwen2.5 technical
report. Preprint, arXiv:2412.15115.

Yichi Zhang. 2024. Detecting code comment incon-
sistencies using llm and program analysis. In Com-
panion Proceedings of the 32nd ACM International
Conference on the Foundations of Software Engineer-
ing, FSE 2024, page 683-685, New York, NY, USA.
Association for Computing Machinery.

Kaitlyn Zhou, Dan Jurafsky, and Tatsunori Hashimoto.
2023. Navigating the grey area: How expressions
of uncertainty and overconfidence affect language
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 55065524, Singapore. Association for Com-
putational Linguistics.

A Hallucination Annotation

We used the annotation workflow described in Sec-
tion 3.2 to guide the process of identifying and
labeling hallucinations. Detailed definitions for
each node (both non-hallucination and hallucina-
tion classes) are provided in Table 7.

To help annotators understand the essential ele-
ments of commit messages and code review com-
ments, task definitions were also provided in A.1.
Through initial pilot rounds and discussions among
annotators, we distilled a set of rules to guide the
annotation process, which is provided in A.2.

https://doi.org/10.1162/tacl_a_00494
https://doi.org/10.18653/v1/2023.acl-demo.40
https://doi.org/10.18653/v1/2023.acl-demo.40
https://doi.org/10.18653/v1/2023.acl-demo.40
https://doi.org/10.1109/SANER60148.2024.00080
https://doi.org/10.1109/SANER60148.2024.00080
https://doi.org/10.1109/SANER60148.2024.00080
https://proceedings.mlr.press/v70/shrikumar17a.html
https://proceedings.mlr.press/v70/shrikumar17a.html
https://proceedings.mlr.press/v70/shrikumar17a.html
https://doi.org/10.1145/3637528.3671796
https://doi.org/10.1145/3637528.3671796
https://doi.org/10.1145/3637528.3671796
https://doi.org/10.1145/2393596.2393656
https://doi.org/10.1145/2393596.2393656
https://doi.org/10.1145/2393596.2393656
https://doi.org/10.1145/2393596.2393656
https://doi.org/10.1145/2393596.2393656
https://doi.org/10.1145/3611643.3616245
https://doi.org/10.1145/3611643.3616245
https://doi.org/10.1145/3611643.3616245
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://doi.org/10.1145/3663529.3664458
https://doi.org/10.1145/3663529.3664458
https://doi.org/10.1145/3663529.3664458
https://doi.org/10.18653/v1/2023.emnlp-main.335
https://doi.org/10.18653/v1/2023.emnlp-main.335
https://doi.org/10.18653/v1/2023.emnlp-main.335
https://doi.org/10.18653/v1/2023.emnlp-main.335
https://doi.org/10.18653/v1/2023.emnlp-main.335

Type: Definition

Semantic Equivalent (SE): The generated message is semantically equivalent to the ground truth.

« In code review, a semantically equivalent comment should share the same intentions regarding both the issues identified and the solutions proposed

as in the ground truth.

¢ In commit message, we should consider both the “What” and “Why” together to decide the semantic equivalence. Semantic equivalent commit
messages should convey the same intents with similar framing and emphasis.

Not_SE_Informative: M is different from ground truth but it is informative for the task as hand.

¢ In code review, M is considered as informative if it points out a concern and/or provide suggestions for improvement.

« For commit messages, M captures some aspects of the code change but may overlook certain points compared to the ground truth. For instance,
‘Add ’scheme’ to sys path in ok_test/scheme.py” indicates where the change occurs but lacks the "why.” In contrast, the ground-truth message
Add ’scheme’ to path to handle zip archive case” provides (why) context on the purpose of the modification. Note (simple way): M must contain
“What”, but can be incomplete or slightly different from ground truth; “Why” can be missing.

Not_SE_Uninformative: M is different from the ground truth and it doesn’t provide useful information for the task at hand.

¢ In code review, M is considered uninformative if it merely seeks information to understand the code design or implementation choices, presents a
general question without rationale, serves as self-justification for the code change, or acts as a compliment to the code. Note (simple way): if the

What (issue) is missing, then it’s not informative.

¢ In commit messages, vague and general wording fails to clearly communicate the specifics of the change, such as the ‘what’ (the nature of the
modification) and the ‘why’ (the reason for the modification). For example, the message ‘Minor refactoring in VRaptor’ lacks detail about what
parts were refactored and the intended impact of those changes, making it difficult for reviewers to understand the significance or context of the
update. Note (simple way): “What” is essential, it’s uninformative if it lacks specifics of “What”.

Unsure_or_Looks_Applicable: M appears relevant to the context but needs further fact-checking, as its factual accuracy cannot be directly verified from

the given context

¢ In code review, this can involve M using context such as historical background, rationale beyond the given input, or the need for fact-checking the

provided solution.

¢ In a commit message, the rationale for explaining the issue or objectives in M might need fact-checking.

Input Inconsistency : M conflicts with the provided input.

* In code review, this means M points out an non-existent issue or provides a solution that is already exists in the code change or violates with

programming commonsense.

« In commit message, this means that M contains information that’s not included in the code change, or misinterpret code change.

Logic Inconsistency: M itself doesn’t make logical sense.

Context Repetition: M is completely or largely copied from the input.

Intent Deviation: M deviates with the goal of the task at hand: not providing a review in code review task or not providing a commit message that covers

what is being changed and why it’s being changed.

Others: This is used to capture any other types that’s not covered in the above categories

Table 7: The definitions for each of the type in our annotation. M denotes the model generated message.

A.1 Essential Elements in Code Reviews and
Commit Messages

Code Review Comments The primary purpose
of code review comments is to offer constructive
feedback from reviewers to code authors, aiming
to improve code quality and maintain coding stan-
dards. A review comment often covers three ele-
ments:

¢ What (Evaluation): A review comment should
point out what is the concern or issue in the
code (Yang et al., 2023).

* How (Suggestion): An ideal review comment
provides suggestions for correction or preven-
tion since code review is expected to help fix
defects, improve quality, and address develop-
ers’ quality concerns (Yang et al., 2023).

12

* Why: Explain the reasoning behind the con-
cern and/or the suggested improvement (Lin
et al., 2024).

Commit Messages The primary purpose of com-
mit messages is to provide developers (both current
and future) with a summary of code changes, en-
abling them to understand how the code of a project
has changed and why. Two elements have been
shown to be essential for a commit message (Liu
et al., 2018b; Tian et al., 2022).

* What (Changes): A summary of what changes
were made in the code. This often includes:

— A summary of code object change that
shows the object of change, characteris-
tics of changes, or contrast before and
after. For example, “this commit re-
moves the following deprecated prop-

erties: * ‘server.connection-timeout’ *
‘server.use-forward-headers’ [...]”. An-
other example, “rename HeldCertifi-

cate.Builder.issuedBy() to signedBy()”.

— An illustration of function. For example,
Rename preferred-mapper property so its
clear it only applies to JSON)

— Description of implementation princi-
ples. For example, “Ss/ContextBuilder
was using InetAddress.getByName(null)
[...] On Android, null returns IPv6 loop-
back, which has the name ‘ip6-localhost’

”

* Why: A justification of the motivation behind
the code change. This often includes describ-
ing objectives or issues, illustrating require-
ments, or implying necessity.

A.2 Summarized rules for annotation

Rules for Annotating Generated Code Reviews

1. Unsure — Knowledge_Overreach: a note
of Knowledge_Overreach should be left for
cases that contain code snippets or software
evolution (maintains, process related), we are
not sure whether the generated content is true
or not. E.g., “I think it would be better to use
‘getByld‘ here.”

2. For a composite review that contains multiple
sentences, there might be some sentences not
functioning as review. As long as there is at
least one review exist, we consider it as review
(not intent deviation).

3. A review might have multiple sentences and
each sentence has different labels, we decide
the final label based on most severe one (label
hallucination types if it exists).

For example, given this message “I think
this is a bug. The ‘m_indirectKernelMem '
is a ‘std::vector<usm::memory>‘. The
‘usm_mem"* is a single element of that vec-
tor. So this line is going to overwrite the
‘m_indirectKernelMem* with a single ele-
ment.”. We have two labels: (a) we can-
not tell that the m_indirectKernelMem* is a
‘std::vector<usm::memory> or not, which is
‘Unsure* requires fact checking; and (b) we
know that “So this line is going to overwrite
the ‘m_indirectKernelMem* with a single el-
ement.” is wrong based on the code context,

13

it won’t overwrite, so it’s Input Inconsistency.
Base on the two labels, we choose Input In-
consistency for this message.

. How to distinguish it’s a review or a justifi-

cation? A review should contain the basic
components of issue/concern, with optional
suggestion and explanation, while a justifica-
tion is a message aligned with the code change
(no concern or suggestion, no new informa-
tion inside). For example, this message “This
is a bit of a hack, but I think it’s the best we
can do for now” should be labeled as Intent
Deviation since there is no any issue or con-
cern.

. Cases where the model suggests changing

back to the older version without explanation,
we don’t know whether the suggestion is bet-
ter or not. If know exactly what to fact check,
we label it Unsure (needs fact checking); oth-
erwise, if it’s not violating the context, then
we choose NO context deviation and then de-
cide whether it’s Informative or Uninforma-
tive. The following message should be labeled
as Context Deviation — No and Informative,
because it’s sensible given the code context:
“I think this is a bit of a misnomer. I think
it should be "Gets or sets JSON serialization

"o

settings".”.

. In cases where the review is ambiguous, it

might refer back to multiple places in the code
patch, we label it as No-context deviation if
it’s possible to apply in at least one kinds of
scenario. Leave a comment of “Can be inter-
preted as another wrong way”. In the example
of: “Layout/EmptyLinesAroundBlockBody:
Extra empty line detected at block body end.”,
where the ‘block body end’ can be mapped to
different places, one with an extra empty line
and one without.

. A review can apply to multiple places in

the code patch, we prioritize mapping it to
the code change part (-/+ lines) unless the
review explicitly mentions other unchanged
code snippets. For example, in this message
“I think this is a bit of overkill. We can just
use ‘Fatal’ and ‘Warning * directly.”, the ‘Fa-
tal’ and ‘Warning’ exist in both code changed
parts and unchanged parts, but we prioritize
the changed part.

Rules for Annotating Commit Messages

1. A message is considered as semantically
equivalent to the ground truth message if the
information you can get are equal after read-
ing both. Specifically, both “what” changed in
the code and and “why” it is changed should
be aligned.

For semantic equivalence, we don’t not over-
infer the meanings, if the message doesn’t
explicit mention about it then it’s not. E.g.,
“Added support for CircleMarker” we don’t
infer the CircleMarker is a type/instance of
Marker unless the code explicitly defined it.

For cases where we are not sure and cannot
understand the message based on the given
context, our prior knowledge and external web
search, label it as Unsure, leave a note of “Dif-
ficult to comprehend the message”.

The <I> symbol comes from training data,
where they mask out information referring to
a different platform such as issue IDS, URLs,
and version numbers. For example, the mes-
sage “Bump to <I> (#<I>)” is not halluci-
nating, but it’s Uninformative based on the
code change as it doesn’t tell specifics of what
bump to <I>. This message “removed unused
imports from rfc<I>" is considered informa-
tive based on the code context.

A3 red

Examples with Annotated Hallucination Types We
use the code review task as a representative exam-
ple to illustrate the distinctions between different
types of hallucinations.

Input Inconsistency We annotate the model out-
put code review “I think we should use Trim() here
as well.” as an Input Inconsistency, since the cor-
responding code change (see below) already uses
Trim(). While the comment may seem reasonable
on its own, it conflicts with the actual code context
and addresses a non-existent issue.

@@ -144,6 +144,12 @@ namespace OpenTelemetry.

Instrumentation.AspNetCore.Implementation

{
activity.SetTag(SemanticConventions.
AttributeHttpUserAgent, userAgent);

var xForwardedFor = request.
Headers["X-Forwarded-For"].FirstOrDefault();

if (!string.IsNullOrEmpty(
xForwardedFor))

14

{
activity.SetTag(
SemanticConventions.AttributeHttpClientIP,
xForwardedFor.Split(',"').First().Trim());
3
3
3

Logic Inconsistency We annotate the following
model output as Logic Inconsistency: “I think it
would be better to test that “resp.json['data'["
data']['fingerprint'] " is a ‘dict " and not a “dict
~.”. The logic inside the review comment itself is
problematic, regardless of the code input.

Input Repetition For the code change below,
the model output ‘input[form] polyfill, cannot load
conditionally‘ is annotated as Input Repetition, as
the output merely copies snippets from the code
change.

@@ -15,6 +15,7 @@ return array(
'vendor/bootstrap.min. js',
'vendor/bootstrap-accessibility.min.js",
'vendor/validator.min. js',
'vendor/form-attr-polyfill.js', // input

[form] polyfill, cannot load conditionally,

since we need all versions of IE
'autocomplete. js',

'common. js',
'lightbox.js',

Intent Deviation

For the code change below, the model out-
put “This is a bug fix. The “period.fraction” was
being used instead of ‘period.nanosec" in the °
DeadlineQosPolicy * constructor.” 1s annotated as
Intent Deviation, as it describes the code change
rather than providing a review comment. It fails to
identify issues or offer suggestions, thus violating
the task objective.

@@ -42,7 +42,7 @@ bool DeadlineQosPolicy::
addToCDRMessage (CDRMessage_t* msg)

bool valid = CDRMessage::addUInt16(msg, this
->Pid);

valid &= CDRMessage::addUInt16(msg, this->
length);//this->length);

valid &= CDRMessage: :addInt32(msg,period.
seconds);

valid &= CDRMessage: :addUInt32(msg,period.

fraction);

valid &= CDRMessage: :addUInt32(msg,period.

nanosec);

return valid;

B Prompting and Fine-tuning Models

Zero-shot prompting We use VLLM'* for zero-
shot prompting. The model temperature was set

“https://docs.vllm.ai/en/latest/

https://docs.vllm.ai/en/latest/

to 0 to make the output deterministic. We used
the following prompts for code review and commit
message generation.

Below is a code diff submitted during a code
review process.

Please write a commit message within 50
words.

[code_diff]: {code_diff}

Respond only with valid JSON. Do not write an
introduction or summary.

Below is a code diff submitted during a code
review process. Please write a code review com-
ment within 50 words to identify the concerns
and suggest improvements.

[code_diff]: {code_diff}

Respond only with valid JSON. Do not write an
introduction or summary.

Fine-tuning models We fine-tuned the three
models on task-specific training data, including two
general language models (Llama3.1-8B-Instruct!?
and Qwen2.5-7B-Instruct'®) and one specialized
small language model pre-trained on code and com-
mit message generation (Lin et al., 2023). The ex-
periment was conducted on 1 NVIDIA H100 GPU.

For CCT5 (Lin et al., 2023), we reused the
code and original scripts from their replication
package!” to fine-tune the model on our dataset.
The hyperparameters are: train_batch_size= 32,
learning_rate = 3e-4, max_source_length = 512,
max_target_length = 128 and warmup_steps
500, gradient_accumulation_steps = 4, maxi-
mum_train_steps = 150000, optimizer=AdamW.

For LLaMA3.1-8B-Instruct and Qwen2.5-7B-
Instruct, we perform instruction fine-tuning to fur-
ther update the models parameters for the tasks at
hand. We use full fine-tuning rather than parameter-
efficient methods such as LoRA, as our preliminary
experiments found that full fine-tuning performed
better. The following instruction templates are used
during training:

15https://huggingface.co/meta—llama/Llama—3.
1-8B-Instruct

https://huggingface.co/Qwen/Qwen2.
5-7B-Instruct

"https://github.com/Ringbo/CCT5

15

Below is an instruction that describes a task,
paired with an input that provides further con-
text. Write an Output that appropriately com-
pletes the request.

Instruction: Review the code diff and pro-
vide a constructive comment highlighting any
issues and suggesting improvements.

Input:

Code diff: {code_diff?}

Output:

{code_review}

Below is an instruction that describes a task,
paired with an input that provides further con-
text. Write an Output that appropriately com-
pletes the request.

Instruction: You are a programmer who
makes the below code changes. Please write a
commit message for the below code diff

Input:

Code diff: {code_diff}

Output:

{commit_message}

Regarding the hyperparameters used to fine-
tune the two LLMs (Llama3.1-8B-Instruct and
Qwen2.5-7B), we set the learning_rate = Se-5,
max_sequence_length = 1024, batch_size = 4. We
set the max_steps of fine-tuning to be 30000 and
choose the best performing model on the validation
set. The optimiser is Adamw.

Results We evaluated seven models in total, in-
cluding four zero-shot and 2 fine-tuned models, '3
on their capability of generating task-specific mes-
sages using the traditional BLEU-4 metric (Pap-
ineni et al., 2002). Table 8 presents the experimen-
tal results on code review comment generation and
commit message generation across prompting and
fine-tuning approaches.

The experimental results reveal several key pat-
terns. First, zero-shot prompting approaches con-
sistently underperform fine-tuned models, with
BLEU scores ranging from 3.88-4.70% for code
review and 8.62-9.72% for commit messages. In
contrast, fine-tuned models achieve substantially
higher performance, with the specialized CCT5
model reaching 5.58% on code review and 17.45%
on commit messages. This highlights the neces-

"We consider the fine-tuned LLMs as different models
from the ones before fine-tuning, as their weights have been
updated for the tasks.

https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://github.com/Ringbo/CCT5

Setting Model CodeReview CommitBench

Overall ~ Sample Overall ~ Sample
Llama3.1-8B-Instruct 4.22 3.28 9.21 8.89
Zero-shot prompt Qwen?2.5-7B-Instruct 4.70 4.00 8.99 8.62
) Llama3.1-70B-Instruct 3.88 4.09 9.72 9.88
Qwen2.5-72B-Instruct 4.29 4.31 8.62 8.06
Llama3.1-8B-Instruct 5.28 5.25 15.06 15.29
Fine-tuned Qwen2.5-7B-Instruct 543 5.73 15.37 15.57
CCTS 5.58 6.53 17.45 17.46

Table 8: Performance (BLEU-4 measured in %) comparison of different models on CodeReview and CommitBench
benchmarks under zero-shot and fine-tune settings.

sity of fine-tuning for generating higher-quality =~ C Examples of Code Changes
CodeChange2NL messages.

C.1 Example from CodeReview

Second, code review proves to be a more chal-
lenging task compared to commit message gener-
ation, with BLEU scores approximately 2-3 times
lower across all model configurations. This is sensi-
ble given that code review comments require mod-
els to critically analyze and provide constructive
feedback on code changes, representing a higher

cognitive demand than the descriptive nature of @@ -65,6 +65,7 @@ public class

SmartStorePlugin extends ForcePlugin {

commit messages. public static final String LIKE_KEY = "
likeKey";

public static final String MATCH_KEY = "
matchKey";

public static final String SMART_SQL = "
smartSql”;

+ public static final String ORDER_PATH = "

orderPath”;

public static final String ORDER = "order"”;
public static final String PAGE_SIZE = "
pageSize";
public static final String QUERY_TYPE = "
queryType";
Human Code Review: Previously you
could only order by the field you were search-
ing by. But for full-text search, you can search
across all indexed fields, and it didn’t make
sense not to have a sorting. For backward com-
patibility, the javascript code uses indexPath as

The performance on our manually sampled sub-
set closely mirrors the overall dataset performance,
with sample BLEU scores showing similar trends

(e.g., CCT5 achieving 6.53% vs 5.58% overall for | the orderPath when no orderPath is provided.
CCTS Code Review: I think this should be

code review), validating the representativeness of i
orderPath instead of orderPathKey.

our evaluation approach.

16

C.2 Example from CommitBench

diff --git a/nomad/server.go b/nomad/server.
g0

index <HASH>..<HASH> 100644

--- a/nomad/server.go

+++ b/nomad/server.go

@@ -1169,7 +1169,12 @@ func (s *Server)
setupRaft() error {

} else if _, err :
err nil {
s.logger.Info("found peers.json file,
recovering Raft configuration...")
configuration, err := raft.ReadPeersJSON
(peersFile)
var configuration raft.Configuration
if s.config.RaftConfig.ProtocolVersion <
34
configuration, err = raft.
ReadPeersJSON(peersFile)
} else {
configuration, err = raft.
ReadConfigJSON(peersFile)
}
if err != nil {
return fmt.Errorf("recovery failed to
parse peers.json: %v", err)

os.Stat(peersFile);

3

Human Commit Message: Add support in
nomad for supporting raft 3 protocol peers.json
CCTS5 Commit Message: nomad: fix
peers.json recovery for protocol version 3

D Hallucination Detection

D.1 Hallucination Detection Methodology
Details

We adopt existing hallucination measurement met-
rics, including reference-based and reference-free
hallucination detection approaches to address dif-
ferent practical needs. Reference-based metrics
serve as valuable benchmarks during model train-
ing and evaluation when gold standards are avail-
able, while reference-free methods enable halluci-
nation detection in real-world deployment scenar-
ios where reference texts are typically unavailable.

D.1.1 Reference-based Metrics

In reference-based metrics, hallucination is esti-
mated by the quality of a generation y, which is
evaluated by comparing against the reference g
using certain metrics. The hypothesis is that the
lower the quality is, the more likely y it is to be a
hallucination. We use two metrics that are widely
used for quality estimation: Lexical overlap with
BLEU, and Natural Language Inference.

17

Lexical overlap metrics such as BLEU evalu-
ate the n-gram overlap between the y and g. This
type of metric has been widely used in prior work
to evaluate the quality of generated commit mes-
sages (Liu et al., 2018a; Li et al., 2024) and review
comments (Tufano et al., 2021; Li et al., 2022). Re-
cently, it has also been adapted to study the correla-
tion with hallucinations in natural language genera-
tion tasks, such as machine translation (Guerreiro
et al., 2023; Dale et al., 2023).

Natural Language Inference (NLI). NLI is a
standard NLP task that evaluates the logic rela-
tionship between a pair of premise and hypothesis
sentences, determining whether it is entailment,
contradiction, or neutral, which has been widely
used to evaluate the factual consistency (Hu et al.,
2024; Valentin et al., 2024) and hallucination de-
tection (Manakul et al., 2023; Elaraby et al., 2023).
We use NLI to measure the probability of the refer-
ence y entails the the generated NL ¢. The intuition
is that if the y can be directly inferred from the ref-
erence ¢, then it is high quality and less likely to
hallucinate. We used the best performing model
nli-deberta-v3!° based on the performance on Sen-
tence Transformer 2° to obtain the entailment logit.

D.1.2 Reference-free Metrics

In reference-free measurements, reference is not
accessed, only information from the source input
or from the model behaviors while generating a
sequence is used. We use three types of measure-
ments: similarity-based, uncertainty-based, and
feature-attribution based.

Similarity between the generation and the
source We estimate semantic similarity between
source and generation using cosine similarity
cos(Ey, E,) between embeddings of generated NL
y and source code x. The intuition is that irrele-
vant generations are less similar and more likely
to hallucinate. To obtain the embeddings, we use
three models pre-trained on both code and natural
language corpora: codebert-base?!, codetSp-220m-
bimodal?®?, and codet5p-770m?3.

Sequence-level confidence scores A sequence-
level confidence score has been used in machine

Yhttps://huggingface.co/cross-encoder/nli-deberta-v3-
base

Phttps://sbert.net/

2 https://huggingface.co/microsoft/codebert-base

Zhttps://huggingface.co/Salesforce/codet5p-220m-
bimodal

Bhttps://huggingface.co/Salesforce/codet5p-770m

translation for hallucination detection (Guerreiro
et al., 2023; Huang et al., 2024), where it is calcu-
lated via aggregating token-level uncertainty into
sentence level by taking the average across the se-
quence. Token-level confidence can be measured
in various ways. The intuition is when a model
hallucinates, it tends to be less confident. Several
metrics have been proposed to estimate the token-
level uncertainty, including probability, logit and
entropy (Guerreiro et al., 2023; Huang et al., 2024;
Valentin et al., 2024).

We also use entropy to measure uncertainty: a
more uniform token distribution (higher entropy)
indicates lower model certainty. This can be for-
mulated as follows:

L
1
SeqEntropy = 7 g H;, (1)
i=1

where H; is the entropy of the token distribution.

Feature attribution In a transformer-based
model M, generating a token y; involves both the
input x and previously generated target tokens (y;
to y;—1). Prior work has shown that the interaction
between y; and these sources reveals hallucination
patterns (Tang et al., 2022; Chen et al., 2025; Sny-
der et al., 2024), which can be detected through fea-
ture attribution in NL hallucinations. We conduct
both feature attribution for both the input source x
and the previously generated target tokens.

We employ a widely used feature attribution
method Input X Gradient (Shrikumar et al., 2017),
which calculates the gradient of the output with re-
spect to the input and considers the impact of input
magnitudes on generation. The attribution score
from z; to y; can be formulated as:

Oy

Az‘t =x; X
’ (91‘1

2

where A; ; is the attribution score, and % denotes
the gradient of y; in an attribution model M with
respect to the input x;. A higher A; ; indicates that
x; 1s more important for generating y;.

Source Attribution Score. To investigate hallu-
cinations on sequence level, we apply an aggre-
gation function on A to convert a sequence of
token-level attribution scores into a single attribu-
tion value. We first compute the maximum attribu-
tion value across all input tokens for each output
token y;, then take the average of these maximum
values. The attribution score of the source to the

18

generated sequence.

1 T
SourceAttr = —

3)

max_ A; 4,
1 1€[1,N]

where T is the length of the generated sequence,
SourceAttr represents final sequence-level overall
source contribution score. The intuition is that
when the maximum input contribution is small, the
generated y is likely to be a hallucination as the
model didn’t generate based on the input.

Given our input is a code change consisting of
both old and new code, human developers primarily
focus on the changed parts when generating com-
mit messages and code review comments. Based
on this observation and the assumption that mod-
els should similarly emphasize code changes, we
designed variations of the aggregation methods
that separate attribution scores for changed and
unchanged code. Our hypothesis is that lower attri-
bution scores on the changed parts indicate a higher
likelihood of hallucination.

T
1
ChangedAttr = T2 r?eaCXAi’t’ 4)
1 T
UnchangedAttr = — max A;;, (5)
T = i€[LN)\C ’

where C' C [1, N| represents the indices of tokens
in the changed code (all - and + lines), and [1, N\
C represents the indices of unchanged code tokens.
Target Attribution. We also calculate the attri-
bution score from previously generated tokens:

1
T: tAttr = —
argetAttr = - 2

where flj,t is the attribution score from y; to
y; (j ranges from 1 to ¢ — 1). The final Targe-
tAttr score denotes the overall maximum attribu-
tion score from previously generated tokens to the
current token.

To obtain attribution scores for generated se-
quences, we use constrained attribution (Sarti et al.,
2023) through the Inseq library.”* Constrained attri-
bution works by providing an attribution model M
with both the input code = and the generated output
1, then analyzing how the model associates each
input token with each output token step by step.
Rather than generating text freely, the model is

Zhttps://inseq.org/en/latest/

constrained to follow the specified target sequence,
allowing us to measure which parts of the input
most strongly influence each token in the output.
This reveals the model’s implicit justification for
each output token based on the input.

As the attribution model M, we use the same
three models fine-tuned in our RQ1 experiments
for each task: LLaMA3.1-8B-Instruct, Qwen2.5-
7B-Instruct, and CCTS5. For each generation, we
apply both self-attribution (where the generator at-
tributes its own output, e.g., CCT5 attributes its
own generation) and cross-attribution (where a dif-
ferent model attributes the output, e.g., CCT5 at-
tributes LLaMA3.1-8B’s generation). This dual
perspective helps us understand whether a model
is aware of its own hallucinations and whether ex-
ternal models can detect hallucinations based on
attribution signals. While attributing each output
token, we also extract uncertainty scores based on
logit, probability, and entropy.

D.2 Complementarity Among Individual
Detection Metrics

To examine how different types of metrics comple-
ment each other, we select the top three individual
metrics (one from each category) based on ROC-
AUC.

For CodeReviewer, we choose logit_Llama3.1,
similarity_score_codebert-base, and
changed_contribution_CCTS5. For Commit-
Bench, we select similarity_score_codetSp-770m,
target_target_contrib_CCTS5, and logit_Llama3.1.

From each metric, we extract the top 25% sam-
ples ranked by their metric score, indicating that
they are highly correlated with hallucination labels.
We then analyze the overlaps and unions of these
sets.

Figure 4 shows the Venn diagrams of the selected
metrics. On CODEREVIEWER, the three metrics
capture almost disjoint sets. On COMMITBENCH,
only three samples are shared across all three met-
rics, suggesting strong complementarity.

D.3 Correlation between Detection Metrics
and Hallucination

In addition to ROC-AUC, we also analyzed the
correlation between each individual metric and the
hallucination labels we annotated (hallucination
= 1, non-hallucination = 0). To evaluate the cor-
relation, we use the point-biserial correlation co-
efficient (r,,), which measures the strength and
direction of the relationship between a continuous

19

variable (i.e., metric scores) and a dichotomous
variable (i.e., the binary hallucination label).

The results are presented in Figures 6 and 7.
Overall, the correlation is weak (|rp| € [0,0.2))
across all samples for individual metrics. How-
ever, when examining generator-specific results,
the correlation between certain generator—metric
pairs increases (|r| € [0.2,0.3)).

These findings further motivate our exploration
of how combining multiple metrics can improve
hallucination detection.

D.4 Signs of Coefficients in LR model

In Section 5.2 (Table 6), we observed that the two
uncertainty-based metrics—logit_I.lama3.1 and
logit_Qwen2.5—both contribute significantly to
hallucination prediction, but with opposite coeffi-
cient signs: positive for logit_Llama3.1 and neg-
ative for logit_Qwen2.5. The signs of the coeffi-
cients indicate that higher logits from LLaMA3.1
are associated with hallucinations, whereas higher
logits from Qwen2.5 are associated with non-
hallucinations. We hypothesize that Qwen’s confi-
dence is more reliable, while LLaMA3.1 tends to
be overconfident. To further explore this, we plot
the joint distribution of the two logits in Figure 9.
When Qwen2.5 is more confident than LLaMA3.1
(above the diagonal), hallucinations are less fre-
quent; conversely, when LLaMA3.1 is more con-
fident (below the diagonal), hallucinations occur
more often. This pattern supports our hypothesis.

This observation aligns with prior work (Zhou
et al., 2023; Mielke et al., 2022), which shows that
models can be overconfident when generating out-
puts due to differences in training data and strate-
gies. In our study, both models were fine-tuned
on the same data, so we suspect this difference is
partly due to pre-training.

D.5 LR Model Predictions by Hallucination
Type

To understand which hallucination types are cor-

rectly detected, we examine samples predicted

as hallucinations by our best logistic regression

models on CodeReviewer and CommitBench (Sec-

tion 5).

Figure 10 shows the type distributions. They
largely mirror the overall dataset distribution, with
INPUT INCONSISTENCY most frequent in both
datasets, followed by INTENT DEVIATION in
CODEREVIEWER, and LOGIC INCONSISTENCY
thereafter.

.
g ...- i ...
2
I
]
5 CCT5 0.10: . . . - CZRRUAVEY 0.129 0.210
)
& Llama3.1 . X .082 | ! . X 0164 0109 0102 | /1 w -0.027
g
g Qwenzsﬁ > - : : . :)) - -- : o0 - 0 i
N \ N N D D S & S D N Q Q S S N Q 3 > D S &
e B N N S
Na » @ < S N S S N4 d <2 < S 3 & N & ;!
\« & o i 2 5 S L &E > N & F i N £ ¥ <
& NN & g S & & & N > S & ¢ & & & 2 S & 0 & & L0
AU SN & ¢ ¢ N & €S & S SEERCES & S
& o <& N -~ 2 < N S & N < & & “ o & N & & §
&S & AN G P IR (NS R I R S PGS S
&« & &S & & & o¥ & & & & EN
&
N \}@é‘ & NG & o o

Hallucination Detector (Metric)

Figure 6: Point-biserial correlation between metrics and hallucinations on CodeReviewer.

Message Generator

Hallucination Detector (Metric)

Figure 7: Point-biserial correlation between metrics and hallucinations on CommitBench.

D.6 LR model prediction per programming
language

While our hallucination detection approach is
language-agnostic, model performance may still be
influenced by programming language distributions
in pre-training and fine-tuning data. To examine
this, we analyze the distribution of programming
languages among samples predicted as hallucina-
tions by the logistic regression model and compare
it to the distribution of samples labeled as halluci-
nation in the full test set.

The results are shown in Figure 11 for CODERE-
VIEWER and Figure 12 for COMMITBENCH. In
CODEREVIEWER, the language distribution of
model predictions closely matches that of the test
set, suggesting consistent detection across lan-
guages. In COMMITBENCH, the distributions
also largely align, with one notable exception:
JavaScript (js) is the most dominant in the test
set but is not predicted (recalled) in the model’s
predicted hallucinations.

20

-0.2

-0.1

0.0

| |
o o
[

Point Biserial Correlation

Point Biserial Correlation

index <HASH>..<HASH> 100644

}

}

diff --git a/tests/PHPUnit/Framework/TestingEnvironmentManipulator.php \
b/tests/PHPUnit/Framework/TestingEnvironmentManipulator.php

--- a/tests/PHPUnit/Framework/TestingEnvironmentManipulator.php

+++ b/tests/PHPUnit/ Framework/TestngnVlronmentulator php '

@@ -148,7 +148,7 @@ class TestingEnvironmentManipulator implements Env1ronmentMan1pulator
$diConfigs[] = $testCaseClass::$fixture->provideContainerConfig();

- if (method_exists($testCase, 'provideContainerConﬁgBeforeClass'))[}-
if (method_exists($testCaseClass, 'provideContainerConfigBeforeClass')) {
$diConfigs[] = $testCaseClass::provideContainerConfigBeforeClass();

max attribution score = 0.064

\4

Llama3.1: Fix ing a [[§ifll] in the Testing Environment _ ulator

Logit=12.6

) v v
[Logit=18.7 | [Logit=20.1][Logit=20.1 |

Figure 8: An example of feature attribution on a hallucinated commit message comment generated by Llama3.1.

Attribution model: Llama3.1.

Joint Distribution of Logits (Above vs Below Diagonal)

20.0 1 Above Diagonal q
Hallu: 25
Non-Hallu: 149

17.5 1 7

\

15.0 7
1
~
T

2 12.5

o
o=
(=1

2 10.0 % b

e
"/’d‘-':‘i
7.51 // Below Diagonal 7
~ Hallu: 123
R4 Non-Hallu: 320 |
5.0 1 e 4
,
;
.
T T T T T T T
5.0 7.5 10.0 12.5 15.0 17.5 20.0
logit_Llama3.1

Figure 9: Joint Distribution of Qwen and Llama Logits
on CommitBench dataset.

21

200 -

150 1
o
g
3 100
o
501
0
T T T
o
& o Qd & &
¢ & g X N
23 N) &)
& © © el
& < oy Ny
N & N N
7 & &7 \(\Q
® &
Context Deviation Type
(a) Codereviewer
254
201
€
S 15
o
o
104
5
0 T T T T
o) N &
& é‘d <° £°
ICH & @'\\’b P
& 4 &
& S <
N & & N
X <$‘('/ & &
N Ny

Context Deviation Type

(b) Commitbench

Figure 10: hallucination type distribution on LR models
corrected predicted as hallucination.

100 -

80 -

60 -

Count

40 1

20 A

S

B

P

Programming Language

(a) Samples in model corrected predicted as hallucination

801

60 -

Count

20 A

§

&

LITTPY

Programming Language

(b) Samples in test set

Figure 11: CodeReviewer: programming language dis-

tribution on the model corrected predicted as hallucina-
tions and our test set.

17.54

15.04

12.54

10.0 4

Count

7.54

5.0 1

2.54

0.0 T

(a) Samples in model corrected predicted as hallucination

T T T I:l
N o & 3
< & < &

Programming Language

351

301

£

Figure 12: CommitBench: programming language dis-
tribution on the model corrected predicted as hallucina-

Q

Ir

Programming Language

<
&

(b) Samples in Test set

tions and our test set.

22

	Introduction
	Related Work
	Study Design
	Research Questions
	Hallucination Annotation Workflow
	Datasets and CodeChange2NL Generation
	Hallucination Detection Methodology

	To what extent do task-specific language models hallucinate in CodeChange2NL tasks?
	Manual Annotation
	Hallucination Prevalence and Patterns

	How well do existing metrics detect hallucinations in CodeChange2NL tasks?
	How do individual metrics perform in detecting hallucinations?
	Can combining multiple metrics enhance the accuracy of hallucination detection?

	Conclusion
	Limitations
	Hallucination Annotation
	Essential Elements in Code Reviews and Commit Messages
	Summarized rules for annotation
	red

	Prompting and Fine-tuning Models
	Examples of Code Changes
	Example from CodeReview
	Example from CommitBench

	Hallucination Detection
	Hallucination Detection Methodology Details
	Reference-based Metrics
	Reference-free Metrics

	Complementarity Among Individual Detection Metrics
	Correlation between Detection Metrics and Hallucination
	Signs of Coefficients in LR model
	LR Model Predictions by Hallucination Type
	LR model prediction per programming language

