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Abstract

Language models have shown strong capabili-001
ties across a wide range of tasks in software en-002
gineering, such as code generation, yet they suf-003
fer from hallucinations. While hallucinations004
have been studied independently in natural lan-005
guage and code generation, their occurrence006
in tasks involving code changes which have007
a structurally complex and context-dependent008
format of code remains largely unexplored.009
This paper presents the first comprehensive010
analysis of hallucinations in two critical tasks011
involving code change to natural language gen-012
eration: commit message generation and code013
review comment generation. We quantify the014
prevalence of hallucinations in recent language015
models and explore a range of metric-based016
approaches to automatically detect them. Our017
findings reveal that approximately 50% of gen-018
erated code reviews and 20% of generated com-019
mit messages contain hallucinations. Whilst020
commonly used metrics are weak detectors on021
their own, combining multiple metrics substan-022
tially improves performance. Notably, model023
confidence and feature attribution metrics ef-024
fectively contribute to hallucination detection,025
showing promise for inference-time detection.1026

1 Introduction027

AI-based software engineering tools are becoming028

increasingly ubiquitous due to their potential to im-029

prove developer productivity (Jain et al., 2022; Fan030

et al., 2023; Hou et al., 2024). While such tools can031

accelerate software development, their reliance on032

underlying language models exposes the risk of hal-033

lucination—the phenomenon where models gener-034

ate outputs that are inconsistent with their inputs or035

fabricate non-existent information (Ji et al., 2023;036

Huang et al., 2025). Such behavior may decrease037

developer productivity or even mislead junior de-038

velopers (Ferino et al., 2025), allowing errors to039

propagate through to the software. Although prior040

1All code and data will be released upon acceptance.

research has focused on the effects of hallucination 041

during code generation (Liu et al., 2024; Tian et al., 042

2024; Agarwal et al., 2024), these effects remain 043

largely unexplored in generation tasks involving 044

code changes. Unlike complete code files, code 045

changes present snippets of both the old and new 046

versions simultaneously, which could potentially 047

amplify hallucinations due to the model’s need to 048

process and reason about multiple code states with 049

partial context. 050

Indeed, code changes commonly used in the 051

software engineering workflows (Tao et al., 2012; 052

Grazia et al., 2023). Recent work also leveraged 053

code changes as primary inputs of language mod- 054

els for automated software engineering tasks such 055

as code reviews (Li et al., 2022; Lin et al., 2023). 056

Given the increasing use of code changes in gener- 057

ation tasks, there is a need to understand the preva- 058

lence and effectiveness of the current detection met- 059

rics. The fragmented and context-dependent nature 060

of code changes may increase hallucination risk 061

and hinder detection. 062

In this paper, we present a comprehensive study 063

of hallucinations in code change to natural lan- 064

guage (CodeChange2NL) generation tasks. We fo- 065

cus on two key tasks: (1) automated commit mes- 066

sage generation, which aids developers in docu- 067

menting what and why code was changed, and (2) 068

automated code review generation, which assists 069

reviewers in identifying potential issues in code 070

changes and suggesting improvements. To system- 071

atically analyze hallucination in CodeChange2NL, 072

we first develop a hallucination annotation work- 073

flow specific to the CodeChange2NL context based 074

on the outputs from task-specific models. We then 075

empirically evaluate the effectiveness of various 076

metric-based approaches for automatically detect- 077

ing these hallucinations. In particular, we exam- 078

ine both reference-based metrics (which compare 079

against human-written references) and reference- 080

free metrics (without the references). 081
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Our findings reveal the severity of the hallucina-082

tion problem in CodeChange2NL tasks. We found083

that nearly 50% of model-generated code reviews084

and 20% of generated commit messages contain085

hallucinations. The three predominant categories086

of hallucinations are input inconsistency (where the087

generated NL is inconsistent with the code change),088

logic inconsistency (where the NL contains inter-089

nally contradictory reasoning), and intention viola-090

tion (where the generation fails for the specific task,091

e.g., it is not a review comment for code review but092

just a summary of the code change). Furthermore,093

we demonstrate that individual metrics for hallu-094

cination detection perform only marginally better095

than random chance (56.6% ROC-AUC for code096

review and 61.7% for commit messages). How-097

ever, combining multiple metrics yields substan-098

tial improvements (69.1% and 75.3% respectively).099

Notably, reference-free metrics show promising re-100

sults comparable to using all available metrics, sug-101

gesting the feasibility of detecting hallucinations102

without ground truth references.103

This work makes three primary contributions:104

(1) the first systematic characterization of halluci-105

nations in code change to natural language tasks,106

revealing the severity and patterns of the problem;107

(2) a comprehensive evaluation of automatic hal-108

lucination detection methods, demonstrating that109

combining multiple metrics significantly improves110

detection capability; and (3) identification of key111

reference-free metrics (model confidence and at-112

tribution scores) that effectively predict hallucina-113

tions, facilitating real-time detection in production114

environments without requiring reference text.115

2 Related Work116

Hallucination in Natural Language Generation117

Initially, Maynez et al. (2020) categorized halluci-118

nations in summarization into two types: intrinsic119

hallucinations (where models misinterpret informa-120

tion present in the input, generating content that121

contradicts the source document) and extrinsic hal-122

lucinations (where models forge information absent123

from the input that cannot be verified using avail-124

able information). Recently, Huang et al. (2025)125

identified three subcategories of intrinsic halluci-126

nations in LLMs: instruction-inconsistent (outputs127

are not consistent with the instruction), logic in-128

consistency (output itself exhibits internal logical129

contradictions), and context inconsistency (outputs130

are not consistent with the provided input context).131

Huang et al. (2025) further refined these factual 132

hallucinations by distinguishing between factual 133

contradiction (outputs that can be grounded but 134

contradict real-world knowledge) and factual fabri- 135

cation (outputs that are completely made up with 136

no basis in reality or verifiable facts). Research on 137

hallucination in code generation tasks also grounds 138

hallucination types based on these categories (Liu 139

et al., 2024). This taxonomy aligns closely with our 140

CodeChange2NL tasks and serves as a foundation 141

to determine the hallucination types in Section 3.2. 142

Hallucination in Code to Natural Language Gen- 143

eration Different from hallucination research in 144

natural language to code generation, which primar- 145

ily focuses on incorrect code generations e.g., dead- 146

/unreachable code, syntactic incorrectness (Liu 147

et al., 2024; Agarwal et al., 2024), hallucination in 148

code to natural language generation focuses on nat- 149

ural language utterances that are incorrect with re- 150

spect to the code/task at hand. Whilst many halluci- 151

nations in code generation can be verified by static 152

analysis and execution (Tian et al., 2024), these 153

solutions are not applicable for natural language 154

outputs. Recent work examined hallucination in 155

code-to-natural language tasks (Zhang, 2024; Ma- 156

haraj et al., 2024; Kang et al., 2024). However, 157

they primarily focus on compilable code imple- 158

mentations (e.g., the full body of a method). For 159

example, Maharaj et al. (2024) studied entity-level 160

hallucination in code summarization, where the 161

input consists of a method-level function contain- 162

ing adequate contextual information. Yet, other 163

code-to-natural language tasks involving snippets 164

of code changes remain largely overlooked, de- 165

spite their common use in real-world scenarios 166

like commit message generation and code review 167

(Lin et al., 2023). Moreover, due to the technical 168

constraints of long-context modeling, snippets of 169

code changes are often used as inputs for genera- 170

tion tasks instead of the complete code context (Lu 171

et al., 2025; Berabi et al., 2024). The fragmented, 172

context-dependent nature of code changes may in- 173

crease hallucination risk and hinder detection, mo- 174

tivating our investigation into their prevalence and 175

the effectiveness of existing metrics. 176

Automatic Hallucination Detection Automatic 177

hallucination detection methods fall into two broad 178

categories: reference-based and reference-free. 179

Reference-based metrics use ground truth to gauge 180

the quality of the generated outputs, using this 181

quality as an estimation of hallucination. This in- 182
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cludes lexical overlap such as BLEU (Papineni183

et al., 2002), which evaluates n-gram similarity be-184

tween generated and reference texts. This is widely185

used in both Code2NL and NL2NL tasks (Liu et al.,186

2018a; Tufano et al., 2021; Li et al., 2022; Liu et al.,187

2025). More advanced metrics use Natural Lan-188

guage Inference (NLI): the model output is treated189

as a “hypothesis” to be validated against the ref-190

erence. An entailment classifier labels output as191

entailment or contradiction, which maps to faith-192

ful or hallucinated content (Manakul et al., 2023;193

Elaraby et al., 2023; Hu et al., 2024; Valentin et al.,194

2024). Reference-free methods operate in many195

open-ended generation settings, where a reference196

is unavailable, by analyzing internal model behav-197

iors and input-output relationships. One family198

of approaches estimates uncertainty inside models199

during generation (Guerreiro et al., 2023; Huang200

et al., 2024), with hallucinations typically exhibit-201

ing lower confidence in probability distributions202

and higher entropy. Another promising line is fea-203

ture attribution techniques (Tang et al., 2022; Chen204

et al., 2025), which examine how inputs influence205

outputs, e.g., when a model hallucinates, its atten-206

tion patterns or hidden states behave anomalously.207

While these metrics have been used to detect hal-208

lucinations in various NL2NL tasks, such as ma-209

chine translation and question answering (Guer-210

reiro et al., 2023; Dale et al., 2023), their capabili-211

ties in CodeChange2NL tasks remain unknown.212

3 Study Design213

3.1 Research Questions214

RQ1: To what extent do task-specific language215

models hallucinate in code change to natural216

language tasks? Prior work on hallucination in217

software engineering has focused on code genera-218

tion, which can be verified deterministically. How-219

ever, little attention has been paid to hallucinations220

in CodeChange2NL generation tasks, such as code221

review comment generation and commit message222

generation.223

RQ2: How effectively can existing hallucina-224

tion detection methods perform on code change225

to natural language tasks? While prior work226

in NLP have developed various methods (Dale227

et al., 2023; Huang et al., 2025; Ji et al., 2023)228

to detect hallucinations in natural language gener-229

ation, their applicability to the bi-modal scenario230

of CodeChange2NL remains unknown. Effective231

detection in such contexts requires an understand-232

NO/Unsure

Is M semantically
equivalent to the ground

truth?

Informative
& Plausible

Yes

Is M obviously deviating
from the given context 

(input, task, it self)?
Unsure

Is M informative?  Yes

Uninformative/Too Generic

NO

Input Inconsistency

Which type of
deviation best
describes M? 

Input Repetition

Intent Deviation

Logic Inconsistency

Generated
Message (M)

No

Others

Yes Semantic
Equivalent

Hallucination

Non-Hallucination

Need Fact Checking

Figure 1: Hallucination Annotation Flowchart

ing of the semantics behind both code, natural lan- 233

guage, and their interaction. 234

3.2 Hallucination Annotation Workflow 235

Since no existing work addresses hallucinations 236

in the CodeChange2NL context, we developed a 237

decision-tree-based hallucination detection work- 238

flow by adapting taxonomies from both code gener- 239

ation (Liu et al., 2024) and natural language hallu- 240

cination (Huang et al., 2025). Our workflow2 (see 241

Figure 1) evaluates a generated NL as follows: 242

Semantic Equivalence. We first determine 243

whether the generated NL is semantically equiva- 244

lent to the ground truth (i.e., conveying the same 245

intent with similar framing and emphasis). If equiv- 246

alent, the output is classified as non-hallucination. 247

Contextual Faithfulness. For semantically non- 248

equivalent outputs, we assess whether the NL devi- 249

ates from the context (source code, task specifica- 250

tion, and generated text itself). Non-deviating out- 251

puts are classified as either Informative & Plausible 252

(valid alternatives) or Uninformative (truisms). 253

Hallucination Type Classification. When con- 254

text deviation exists, we categorize the hallucina- 255

tion into five types:3 1) Input Inconsistency, where 256

the generation conflicts with the source code, e.g., 257

pointing out a non-existent issue in code review or 258

speculating intent that contradicts the code change 259

in commit messages; 2) Logic Inconsistency, where 260

the generation is internally illogical, independent of 261

the input; 3) Input Repetition, where the generation 262

directly copies from the input; 4) Intent Deviation, 263

2See Appendix A for definition and annotation guidelines.
3Examples are provided in Appendix A.3.
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where the generation deviates from the task’s goal,264

e.g., not identifying issues in a code review or not265

explaining the code change in a commit message;266

and 5) Others for cases that are not covered by267

the above types. Cases requiring additional project268

specific fact-checking are labeled as Unsure.269

3.3 Datasets and CodeChange2NL Generation270

Datasets. We choose the widely used CodeRe-271

viewer (Li et al., 2022) dataset for code review272

comment generation and CommitBench (Schall273

et al., 2024) for commit message generation. The274

CodeReviewer corpus contains code diff and nat-275

ural language review pairs, across 9 popular pro-276

gramming languages and over 1k GitHub projects.277

It includes 118k training, 10k validation, and 10K278

testing examples. CommitBench contains code279

diffs paired with natural language commit mes-280

sages, spanning over 72k GitHub repositories and281

6 programming languages. It includes 1.16 million282

training examples and 250k examples each for val-283

idation and testing. While related, the two tasks284

are different in nature—commit messages are pri-285

marily descriptive, whereas code reviews require286

deeper reasoning about functional correctness and287

potential impacts across the codebase.288

Models. To analyze hallucination behaviors, we289

conduct experiments to select language models that290

are highly capable in both tasks. This is determined291

by BLEU-4 results, which is the most commonly292

used metric (Li et al., 2022; Schall et al., 2024).293

We choose two recent LLM families (Qwen2.5 and294

Llama3.1)4 with varied model sizes for both di-295

rect prompting (7-8B, 70-72B) and task-specific296

fine-tuning (7-8B). We also fine-tune CCT5 (Lin297

et al., 2023), which is a 220M T5-based model298

pre-trained on 1.5M code change to commit mes-299

sage pairs. We used the original training data in300

two datasets to fine-tune the models. We found301

that fine-tuned models performed the best for both302

tasks.5 Table 1 (Overall columns) presents the ex-303

perimental results. Thus, we select the three fine-304

tuned models to generate outputs for hallucination305

analysis in Sections 4 and 5.306

3.4 Hallucination Detection Methodology307

We use both reference-based and reference-free308

hallucination detection approaches: the former309

for model development where the ground truth310

4These were the latest models at the time of experiment.
5See Appendix B for details on prompting and fine-tuning.

Model CodeReview CommitBench
Overall Sample Overall Sample

Llama3.1-8B 5.28 5.25 15.06 15.29
Qwen2.5-7B 5.43 5.73 15.37 15.57
CCT5 5.58 6.53 17.45 17.46

Table 1: Performance (BLEU-4 in %) of fine-tuned
models on CodeReview and CommitBench benchmarks.

is available, and the latter for real-world deploy- 311

ment where references are unavailable. Table 2 312

presents a summary of the metrics we used, in- 313

cluding two types of reference-based (BLEU-4 and 314

NLI), and three types of reference-free (similarity, 315

uncertainty, and feature-attribution). Uncertainty 316

and feature-attribution metrics are calculated with 317

either LLaMA3.1-8B-Instruct (Grattafiori et al., 318

2024), Qwen2.5-7B-Instruct (Yang et al., 2025) or 319

CCT5 (Lin et al., 2023). Due to space limitations, 320

detailed descriptions and formulas are provided in 321

Appendix D.1. In total, 26 unique methods were 322

considered: 2 reference-based metrics + 3 similar- 323

ity scores + 3 models × 7 feature attribution and 324

uncertainty metrics. 325

4 To what extent do task-specific 326

language models hallucinate in 327

CodeChange2NL tasks? 328

To address RQ1, we manually categorize the mes- 329

sages generated by the three fine-tuned models 330

into our CodeChange2NL hallucination annotation 331

workflow introduced in Section 3.2 to identify the 332

presence and types of hallucinations. Using the 333

annotated samples, we further analyze the overall 334

prevalence of hallucinations and their distributional 335

patterns across models and two datasets. 336

4.1 Manual Annotation 337

We selected the top 3 fine-tuned models (lama3.1- 338

8B, Qwen2.5-7B, and CCT5) to generate messages 339

in the test set. To address RQ1, we manually la- 340

beled a subset of samples that were randomly se- 341

lected from the test set of each task, constituting 342

a statistically significant sample size with a confi- 343

dence level of 90% and a margin of error of ±5%. 344

This results in 264 samples for CodeReviewer com- 345

ments and 268 samples for CommitBench. In total, 346

we annotated 1,596 samples, including 264 × 3 347

model outputs for CodeReviewer comments and 348

268 × 3 for CommitBench messages. 349

Two annotators (authors of the paper) with 5+ 350

years of experience in computer science and soft- 351

ware engineering annotated all samples. We con- 352
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Metric Type Description
BLEU-4 Lexical-Overlap The n-gram overlap between the generation y and reference ŷ.
Entailment NLI The probability that a NLI classifier predicts ŷ entails y. We used nli-deberta-v36 as the

classifier.
Similarity Similarity The embedding-based cosine similarity between the generation y and source code x. We

used three embeding models: codebert-base7, codet5p-220m-bimodal8, and codet5p-770m9.
SeqLogProb Uncertainty The average negative log-probability of the generated tokens in y as assigned by a language

model M .
SeqLogit Uncertainty The average raw logit score (pre-Softmax) of the generated tokens in y from a model M .
SeqEntropy Uncertainty The average entropy of the generated tokens in y from a model M .
Source Attribution Feature Attribution The average of the maximum attribution scores from source tokens to each generated token

in y (i.e., 1
T

∑T
t=1 maxi∈[1,N] Ai,t, where Ai,t = xi × ∂yt

∂xi
is the importance of xi

to yt from a model M ). A higher score represents source contributes more strongly to y.
Target Attribution Feature Attribution The average of the maximum attribution scores from previously generated tokens

(y1, . . . , yt−1) to each current token yt. A higher score represents the reliance on previ-
ously generated tokens.

Changed Attribution Feature Attribution The average of the maximum attribution scores from source tokens that are changed (in +,
- lines) to each generated token in y. A high score represents changed tokens contributes
strongly to y.

Unchanged Attribution Feature Attribution The average of the maximum attribution scores from source tokens that are unchanged to
each generated token in y. A high score represents unchanged snippets in source contributes
strongly to y.

Table 2: Descriptions of hallucination detection metrics, including into reference-based (BLEU-4 and
Entailment) and reference-free (all others). For uncertainty and feature attribution, the model M ∈
{LLaMA3.1-8B,Qwen2.5-7B, and CCT5}. We apply both self-attribution (generator attributes its own output) and
cross-attribution (external model attributes generator’s output). See Appendix D.1 for a detailed description.

Category Type CodeReviewer CommitBench

CCT5 Llama3.1 Qwen2.5 CCT5 Llama3.1 Qwen2.5

Non-Hallucination Semantic_Equivalent 1.5 1.1 1.5 11.2 12.3 16.4
Informative 9.5 9.8 8.7 48.1 42.5 44.4

Uninformative Uninformative 20.1 1.5 3.8 15.7 7.1 9.7

Unsure Unsure 22.0 41.3 43.2 5.6 16.4 15.3

Hallucination

Input_Inconsistency 26.5 23.9 24.6 17.2 19.8 13.1
Input_Repetition 4.2 0.0 0.0 0.0 0.7 0.7
Intent_Deviation 0.8 17.4 15.9 0.4 0.4 0.0
Logic_Inconsistency 14.0 4.5 1.9 1.9 0.7 0.4
Others 1.5 0.4 0.4 0.0 0.0 0.0

Total Hallucination 47.0 46.2 42.8 19.5 21.6 14.2

Table 3: The distribution (percentage) of hallucination categories and types for annotated samples. The Category
column is the high-level category in Figure 1. The “Total Hallucination” is the sum of the four hallucination types.

ducted two pilot rounds (150 samples each) to353

refine the taxonomy and guidelines. Cohen’s κ354

improved from 0.36/0.30 (CodeReviewer/Commit-355

Bench) in the first round to 0.56/0.38 in the second.356

Final disagreements were resolved through discus-357

sion, achieving near-perfect agreement (κ = 0.98 /358

0.96). The annotators then divided the remaining359

samples (half-half), cross-examining each other’s360

work to ensure consistent labeling.361

4.2 Hallucination Prevalence and Patterns362

Table 3 shows that hallucination rates vary signif-363

icantly across tasks. For the code review task,364

all models exhibit high hallucination rates rang-365

ing from 42.8% to 47.0%. Surprisingly, although366

CCT5 achieves the highest BLEU score on the367

CodeReviewer dataset among the three models (Ta-368

ble 8), it also exhibits the highest hallucination rate369

at 47.0%. This highlights the risk of hallucinations370

even in models with strong BLEU performance. 371

On the other hand, the commit message generation 372

task has a lower hallucination rate than code review 373

(14.2% to 21.6%), where Qwen2.5 has the lowest 374

rate at 14.2%. This may be because code review is 375

more challenging than commit message generation, 376

as it requires identifying problems and providing 377

specific feedback beyond what is directly observ- 378

able in the code changes. Such added complexity 379

might lead to increased hallucination behavior. 380

The overall distribution of hallucination types 381

varies between tasks. Notably, the Input Inconsis- 382

tency emerges as the dominant hallucination type 383

for both tasks. This suggests that models frequently 384

generate messages that contradict or misrepresent 385

the actual code changes. One frequent issue in code 386

review is that the generated messages tend to fabri- 387

cate non-existent code tokens. For example, CCT5 388

suggests “I think this should be orderPath instead 389
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of orderPathKey”. However, orderPathKey does not390

appear in the code change:10 +~public static final391

String ORDER\_PATH = "orderPath"; This suggests392

that the model does not fully understand the mean-393

ing of newly introduced code. In the commit mes-394

sage task, models also often misunderstand the395

code changes. For example, the generated mes-396

sage “nomad: fix peers.json recovery for protocol397

version 3” misrepresents the change, which actu-398

ally adds support for Nomad versions below 3, as399

indicated by the code line + if s.config.RaftConfig400

.ProtocolVersion < 3 {.11401

Intent deviation and logic inconsistency appear402

as another two pronounced hallucination types in403

the code review task, but they are rare in the com-404

mit message generation, suggesting that commit405

message generation models generate messages that406

better align with the task and suffer less logic in-407

consistency. Interestingly, we observe many cases408

where the generated review comment reads more409

like a commit message—for example, “This is a410

temporary fix.”, which describes the code change411

rather than providing a review.412

Different models exhibit different type of hal-413

lucinations. CCT5, which is the specialized fine-414

tuned model demonstrates higher logic inconsis-415

tencies (14.0% in CodeReviewer) but significantly416

lower intent deviation (0.8%) than general-purpose417

LLMs. On the other hand, larger models (Llama3.1,418

Qwen2.5) frequently have intent deviation (≥419

15.9% average) but fewer logic inconsistencies420

(≤4.5%). This pattern likely reflects the difference421

between specialized and general-purpose pretrain-422

ing. Despite fine-tuning, general models retain423

broad task knowledge from pretraining, which can424

lead them to apply reasoning patterns from unre-425

lated tasks—resulting in higher intent deviation.426

5 How well do existing metrics detect427

hallucinations in CodeChange2NL tasks?428

RQ1 showed that models often exhibit hallucina-429

tions and misinterpretations of code changes. In430

RQ2, we examine how effective automated ap-431

proaches are at detecting these hallucinations in432

code review and commit message generation. Us-433

ing our manually annotated dataset, we evaluate434

both reference-based and reference-free metrics de-435

scribed in Section 3.4. Our goal is to assess how436

well existing metrics detect hallucinations in Code-437

10The full code context in provided in Appendix C.1.
11The code patch is provided in Appendix C.2.

to-NL tasks, particularly for code changes. We 438

evaluate both individual metrics and combinations 439

of complementary ones to determine whether they 440

can approximate human judgment. 441

We use ROC-AUC to evaluate the hallucination 442

detection capability of each metric. The positive 443

class is the hallucination samples that we anno- 444

tated. The negative class is the non-Hallucination 445

samples. A ROC-AUC score of 1 indicates per- 446

fect discrimination between hallucinated and non- 447

hallucinated cases, while a score of 0.5 suggests no 448

discriminatory power equivalent to random guess- 449

ing. For individual metrics, we calculate the ROC- 450

AUC to assess discrimination power.12 To combine 451

metrics, we use logistic regression and evaluate its 452

performance using accuracy and ROC-AUC. 453

5.1 How do individual metrics perform in 454

detecting hallucinations? 455

Metric Effectiveness. Based on the the generator- 456

agnostic results, the current metrics achieve modest 457

ROC-AUC scores ranging from 0.538–0.566 on 458

CodeReviewer and 0.562–0.617 on CommitBench 459

(see Figures 2 and 3). Based on the generator- 460

specific results, hallucinations in CCT5 are more 461

detectable on the CodeReviewer dataset (ROC- 462

AUC 0.65-0.71), while hallucinations in Llama3.1 463

are most detectable on the CommitBench dataset 464

(ROC-AUC 0.62-0.68). This suggests that the effec- 465

tiveness on hallucination detection of the metrics 466

may vary across generation models and datasets. 467

Table 4 shows the metrics with the highest ROC- 468

AUC scores in each studied dataset. In addition, we 469

observe that on CodeReviewer, uncertainty-based 470

metrics (logit and entropy) perform best, while 471

embedding similarity and reference-based metrics 472

are best on CommitBench. Nonetheless, the ROC- 473

AUC scores suggest the limited effectiveness of cur- 474

rent metrics on hallucination detection, which are 475

slightly better than random guessing, highlighting 476

the challenges of automated hallucination detection 477

in these tasks. 478

Metric Complementarity. Different metrics may 479

capture distinct aspects of hallucinations, poten- 480

tially flagging different instances. To assess this, 481

we selected the three highest-performing metrics 482

based on ROC-AUC and examined their top 25% 483

ranked samples (see the analysis details in Ap- 484

pendix D.2). Figure 4 shows small overlap in the 485

12The point-biserial correlation confirms a similar trend be-
tween metric scores and hallucination labels. Detailed results
are provided in Appendix D.3.
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Figure 2: ROC-AUC Scores of Metrics for Hallucination Detection Across Generators on CodeReviewer. The ALL
row represents the generator-agnostic result, using all outputs from CCT5, Llama3.1, and Qwen2.5. The remaining
rows show performance in the generator-specific result, based on outputs from each model individually.
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Figure 3: ROC-AUC Scores of Metrics for Hallucination Detection Across Generators on CommitBench.
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Figure 4: Top 3 individual metrics complement to each
other on CodeReviewer (left) and CommitBench (right)

top 25% samples ranked by these three metrics,486

indicating these metrics flag different instances as487

hallucinated. This highlights the potential comple-488

mentarity between metrics.489

5.2 Can combining multiple metrics enhance490

the accuracy of hallucination detection?491

The results in section 5.1 highlight the potential492

complementarity between metrics. Thus, we ex-493

plore whether combining them can improve perfor-494

mance. Prior work (Snyder et al., 2024) also shows495

that combining multiple signals improves halluci-496

nation detection in question-answering tasks. To497

analyze the descrimination power of combined met-498

rics for hallucination detection, we use a logistic499

regression model fitted to our annotated samples.500

For each generation task, we combine all samples501

from the three models, resulting in 440 samples for502

CodeReviewer and 717 samples for CommitBench.503

To understand the capability of different types of504

CodeReviewer CommitBench
Type Acc AUC Acc AUC

Top Performing Individual Metrics

logit_Llama3.1 - 0.57 - 0.60
Sim-CodeT5p-770M - 0.48 - 0.62
Sim-Codebase - 0.54 - 0.59
changed_contrib_CCT5 - 0.52 - 0.41
target_target_contrib_CCT5 - 0.49 - 0.61

Multiple Metrics on Logistic Regression

Reference-based 81.6 0.59 76.0 0.68
Reference-free 81.6 0.66 78.9 0.75
ALL 82.7 0.69 77.8 0.75

Table 4: Logic regression results (Acc (%) and AUC)
on hallucination prediction using multiple metrics.

metrics, we build three logistic regression models 505

using: 1) all metrics, 2) reference-based metrics 506

only, and 3) reference-free metrics only. Since 507

some metrics may capture similar signals or re- 508

dundant, leading to multicollinearity and overfit- 509

ting, we use the Akaike Information Criterion 510

(AIC) (Akaike, 1974) to identify metrics that mean- 511

ingfully contribute to the prediction. Then, we use 512

the selected metrics as features to fit the logistic 513

regression model and analyze the coefficients to 514

identify which metrics are most important for hal- 515

lucination detection. 516

Table 4 shows the logistic regression results. 517

Combining multiple metrics substantially improves 518

ROC-AUC scores for hallucination detection on 519

both datasets, compared to individual metrics alone. 520
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Type Metric |Coef| Sign

Uncertainty logit_Llama3.1 6.00∗ +
Uncertainty entropy_Qwen2.5 3.33∗ +
Attribution source_target_Qwen2.5 2.83∗ +
Attribution source_target_Llama3.1 2.78∗ -
N-gram BLEU 1.94∗ -

Table 5: Top-5 important features on predicting hallu-
cinations (vs. non-hallucinations) in CodeReviewer. ∗
indicates the coef is significant (p < 0.05).

Type Metric |Coef| Sign

Uncertainty logit_Llama3.1 6.86∗ +
Uncertainty logit_Qwen2.5 5.93∗ -
Attribution changed_CCT5 4.71∗ -
N-gram BLEU 3.49∗ -
Similarity similarity_score_codebert 2.41∗ +

Table 6: Top-5 importance features on predicting hallu-
cinations (vs. non-hallucinations) in CommitBench.

For CodeReviewer, the ROC-AUC increased from521

the best individual score of 0.57 (logit_Llama3.1)522

to 0.69 when using all metrics. For CommitBench,523

it improved from 0.62 (similarity_score_codet5p-524

770m) to 0.75. Surprisingly, using reference-free525

metrics alone achieved ROC-AUC scores close to526

that of using all metrics. In contrast, reference-527

based metrics achieved lower performance, possi-528

bly because they are fewer in number or inher-529

ently less predictive. This highlights a poten-530

tial benefit of hallucination detections in these531

CodeChange2NL tasks without ground-truth.532

Tables 5 and 6 present the most important533

features along with their coefficients. The Se-534

qLogit calculated with Llama3.1 (Logit_Llama3.1)535

emerges as the most important feature for both536

tasks. Uncertainty metrics from Llama3.1 and537

Qwen2.5 consistently appear among the top fea-538

tures, demonstrating strong predictive power.For539

CommitBench dataset, the − coefficient in540

Qwen2.5 aligns with prior findings, i.e., when not541

hallucinating, a model is more confident (Dale542

et al., 2023). On the other hand, the + coefficient in543

Llama3.1 could be due to its overconfidence as the544

distribution of logit in Llama3.1 is skewed towards545

high scores in CommitBench (See Appendix D.4).546

Feature attribution metrics rank next in predictive547

strength, indicating that hallucinations can be de-548

tected by analyzing how models utilize source code549

during generation.550

Figure 5 presents an example generated for code551

review.13 The generated review suggests passing552

a parameter that is already being passed in both553

13See an example of commit message in Appendix Figure 8.

 }

@@ -204,7 +204,7 @@ func (d *RPCFactory) CreateFrontendGRPCConnection(
hostName string) *grpc.ClientC
        }
    }
-   return d.dial(hostName, tlsClientConfig)

+   return d.dial(hostName, tlsClientConfig, false)
2nd highest attribution score=0.118

max attribution score=0.137

Qwen2.5: I think we should pass the ` tls ClientConfig ` to the ` d . dial ` function .

attribution 
score=0.009

Logit=14.1 Logit=13.56

Figure 5: An example of feature attribution on a hallu-
cinated code review comment generated by Qwen2.5.
Attribution model: Llama3.1.

old and new code, while ignoring the actual code 554

change. This hallucinated generation has high logit 555

and high attribution from source code. Particularly, 556

the generated tokens appearing in the input context 557

have high confidence based on elevated logit val- 558

ues. For example, based on uncertainty calculated 559

with Llama3.1, particularly API method names like 560

tlsClientConfig and dial have logit values of 14.1 561

and 13.6. However, based on the attribution scores, 562

critical changes (i.e., the addition of the “false” pa- 563

rameter) that should be the primary focus of the 564

review has minimal contribution to the generation. 565

Instead, these common tokens like tlsClientConfig 566

have large attribution scores, meaning that they 567

contributing significantly to the generation. 568

For non-hallucinations, we observed that the 569

correct input in the code changes contributes sig- 570

nificantly to the relevant generation compared to 571

other code snippets (e.g., in the generated com- 572

ment, “Why is this needed?” the “this” token was 573

mainly contributed by the changed line of code 574

“+ from databricks import koalas as ks”). This in- 575

dicates that the balance between the contribution 576

from changed code and unchanged code is one im- 577

portant cause of hallucination in code review tasks. 578

6 Conclusion 579

Hallucinations are prevalent in CodeChange2NL 580

tasks, occurring in 50% of code reviews and 20% 581

of commit messages. We identify three common 582

types—input/logic inconsistency, and intention vi- 583

olation. Our findings show that individual met- 584

rics are insufficient for effective detection, while 585

a multi-metric approach significantly improves 586

performance, particularly combining model con- 587

fidence and feature attribution. 588
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7 Limitations589

While our study advances the understanding of hal-590

lucination severity and automatic detection capabil-591

ities in CodeChange2NL tasks, several limitations592

remain.593

Dataset Size. Despite using statistically repre-594

sentative samples from the test set, our annotated595

dataset is relatively small due to the significant ef-596

fort required for manual annotation. To mitigate597

this limitation, we analyzed both model-specific598

and aggregated samples across models to increase599

effective sample sizes.600

Hallucination Granularity. We primarily fo-601

cused on instance-level (whole sequence) hallucina-602

tion analysis to establish a foundational understand-603

ing of the phenomenon. Our feature attribution604

analysis showed promise for token-level halluci-605

nation detection, revealing cases where generation606

heavily relied on unchanged code snippets while607

ignoring critical changes. Future work should ex-608

plore finer-grained token-level hallucination analy-609

sis with appropriate annotations and develop tech-610

niques for more precisely identifying hallucinations611

at different levels of granularity.612

Model Recency and Coverage. Due to cost con-613

straints, we excluded commercial models (e.g.,614

GPT-4o, Claude 3.7) from our analysis and focused615

on the latest open-source language models avail-616

able at the time of our experiments. However, the617

landscape is evolving rapidly, with newer models618

such as LLaMA 4 and Qwen2.5-Coder emerging619

since our evaluation. As a result, our findings may620

not fully generalize to these newer or commercial621

models, or to different model families such as Gem-622

ini, which could exhibit different hallucination pat-623

terns in Code2NL tasks. Also, our study focuses on624

the hallucination in task-specific fine-tuned models625

since they perform better than zero-shot prompting.626

The hallucination prevalence in zero-shot prompt-627

ing may be different. Our work lays the foundation628

for future research in this space, highlighting the629

need for ongoing evaluation as models continue to630

evolve and diversify.631
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Type: Definition

Semantic Equivalent (SE): The generated message is semantically equivalent to the ground truth.

• In code review, a semantically equivalent comment should share the same intentions regarding both the issues identified and the solutions proposed
as in the ground truth.

• In commit message, we should consider both the “What” and “Why” together to decide the semantic equivalence. Semantic equivalent commit
messages should convey the same intents with similar framing and emphasis.

Not_SE_Informative: M is different from ground truth but it is informative for the task as hand.

• In code review, M is considered as informative if it points out a concern and/or provide suggestions for improvement.

• For commit messages, M captures some aspects of the code change but may overlook certain points compared to the ground truth. For instance,
‘Add ’scheme’ to sys path in ok_test/scheme.py” indicates where the change occurs but lacks the ’why.’ In contrast, the ground-truth message
Add ’scheme’ to path to handle zip archive case” provides (why) context on the purpose of the modification. Note (simple way): M must contain
“What”, but can be incomplete or slightly different from ground truth; “Why” can be missing.

Not_SE_Uninformative: M is different from the ground truth and it doesn’t provide useful information for the task at hand.

• In code review, M is considered uninformative if it merely seeks information to understand the code design or implementation choices, presents a
general question without rationale, serves as self-justification for the code change, or acts as a compliment to the code. Note (simple way): if the
What (issue) is missing, then it’s not informative.

• In commit messages, vague and general wording fails to clearly communicate the specifics of the change, such as the ‘what’ (the nature of the
modification) and the ‘why’ (the reason for the modification). For example, the message ‘Minor refactoring in VRaptor’ lacks detail about what
parts were refactored and the intended impact of those changes, making it difficult for reviewers to understand the significance or context of the
update. Note (simple way): “What” is essential, it’s uninformative if it lacks specifics of “What”.

Unsure_or_Looks_Applicable: M appears relevant to the context but needs further fact-checking, as its factual accuracy cannot be directly verified from
the given context

• In code review, this can involve M using context such as historical background, rationale beyond the given input, or the need for fact-checking the
provided solution.

• In a commit message, the rationale for explaining the issue or objectives in M might need fact-checking.

Input Inconsistency : M conflicts with the provided input.

• In code review, this means M points out an non-existent issue or provides a solution that is already exists in the code change or violates with
programming commonsense.

• In commit message, this means that M contains information that’s not included in the code change, or misinterpret code change.

Logic Inconsistency: M itself doesn’t make logical sense.
Context Repetition: M is completely or largely copied from the input.
Intent Deviation: M deviates with the goal of the task at hand: not providing a review in code review task or not providing a commit message that covers
what is being changed and why it’s being changed.
Others: This is used to capture any other types that’s not covered in the above categories

Table 7: The definitions for each of the type in our annotation. M denotes the model generated message.

A.1 Essential Elements in Code Reviews and914

Commit Messages915

Code Review Comments The primary purpose916

of code review comments is to offer constructive917

feedback from reviewers to code authors, aiming918

to improve code quality and maintain coding stan-919

dards. A review comment often covers three ele-920

ments:921

• What (Evaluation): A review comment should922

point out what is the concern or issue in the923

code (Yang et al., 2023).924

• How (Suggestion): An ideal review comment925

provides suggestions for correction or preven-926

tion since code review is expected to help fix927

defects, improve quality, and address develop-928

ers’ quality concerns (Yang et al., 2023).929

• Why: Explain the reasoning behind the con- 930

cern and/or the suggested improvement (Lin 931

et al., 2024). 932

Commit Messages The primary purpose of com- 933

mit messages is to provide developers (both current 934

and future) with a summary of code changes, en- 935

abling them to understand how the code of a project 936

has changed and why. Two elements have been 937

shown to be essential for a commit message (Liu 938

et al., 2018b; Tian et al., 2022). 939

• What (Changes): A summary of what changes 940

were made in the code. This often includes: 941

– A summary of code object change that 942

shows the object of change, characteris- 943

tics of changes, or contrast before and 944

after. For example, “this commit re- 945

moves the following deprecated prop- 946
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erties: * ‘server.connection-timeout’ *947

‘server.use-forward-headers’ [...]”. An-948

other example, “rename HeldCertifi-949

cate.Builder.issuedBy() to signedBy()”.950

– An illustration of function. For example,951

Rename preferred-mapper property so its952

clear it only applies to JSON)953

– Description of implementation princi-954

ples. For example, “SslContextBuilder955

was using InetAddress.getByName(null)956

[...] On Android, null returns IPv6 loop-957

back, which has the name ‘ip6-localhost’958

”959

• Why: A justification of the motivation behind960

the code change. This often includes describ-961

ing objectives or issues, illustrating require-962

ments, or implying necessity.963

A.2 Summarized rules for annotation964

Rules for Annotating Generated Code Reviews965

1. Unsure → Knowledge_Overreach: a note966

of Knowledge_Overreach should be left for967

cases that contain code snippets or software968

evolution (maintains, process related), we are969

not sure whether the generated content is true970

or not. E.g., “I think it would be better to use971

‘getById‘ here.”972

2. For a composite review that contains multiple973

sentences, there might be some sentences not974

functioning as review. As long as there is at975

least one review exist, we consider it as review976

(not intent deviation).977

3. A review might have multiple sentences and978

each sentence has different labels, we decide979

the final label based on most severe one (label980

hallucination types if it exists).981

For example, given this message “I think982

this is a bug. The ‘m_indirectKernelMem‘983

is a ‘std::vector<usm::memory>‘. The984

‘usm_mem‘ is a single element of that vec-985

tor. So this line is going to overwrite the986

‘m_indirectKernelMem‘ with a single ele-987

ment.”. We have two labels: (a) we can-988

not tell that the m_indirectKernelMem‘ is a989

‘std::vector<usm::memory> or not, which is990

‘Unsure‘ requires fact checking; and (b) we991

know that “So this line is going to overwrite992

the ‘m_indirectKernelMem‘ with a single el-993

ement.” is wrong based on the code context,994

it won’t overwrite, so it’s Input Inconsistency. 995

Base on the two labels, we choose Input In- 996

consistency for this message. 997

4. How to distinguish it’s a review or a justifi- 998

cation? A review should contain the basic 999

components of issue/concern, with optional 1000

suggestion and explanation, while a justifica- 1001

tion is a message aligned with the code change 1002

(no concern or suggestion, no new informa- 1003

tion inside). For example, this message “This 1004

is a bit of a hack, but I think it’s the best we 1005

can do for now” should be labeled as Intent 1006

Deviation since there is no any issue or con- 1007

cern. 1008

5. Cases where the model suggests changing 1009

back to the older version without explanation, 1010

we don’t know whether the suggestion is bet- 1011

ter or not. If know exactly what to fact check, 1012

we label it Unsure (needs fact checking); oth- 1013

erwise, if it’s not violating the context, then 1014

we choose NO context deviation and then de- 1015

cide whether it’s Informative or Uninforma- 1016

tive. The following message should be labeled 1017

as Context Deviation → No and Informative, 1018

because it’s sensible given the code context: 1019

“I think this is a bit of a misnomer. I think 1020

it should be "Gets or sets JSON serialization 1021

settings".”. 1022

6. In cases where the review is ambiguous, it 1023

might refer back to multiple places in the code 1024

patch, we label it as No-context deviation if 1025

it’s possible to apply in at least one kinds of 1026

scenario. Leave a comment of “Can be inter- 1027

preted as another wrong way”. In the example 1028

of: “Layout/EmptyLinesAroundBlockBody: 1029

Extra empty line detected at block body end.”, 1030

where the ‘block body end’ can be mapped to 1031

different places, one with an extra empty line 1032

and one without. 1033

7. A review can apply to multiple places in 1034

the code patch, we prioritize mapping it to 1035

the code change part (-/+ lines) unless the 1036

review explicitly mentions other unchanged 1037

code snippets. For example, in this message 1038

“I think this is a bit of overkill. We can just 1039

use ‘Fatal‘ and ‘Warning‘ directly.”, the ‘Fa- 1040

tal’ and ‘Warning’ exist in both code changed 1041

parts and unchanged parts, but we prioritize 1042

the changed part. 1043
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Rules for Annotating Commit Messages1044

1. A message is considered as semantically1045

equivalent to the ground truth message if the1046

information you can get are equal after read-1047

ing both. Specifically, both “what” changed in1048

the code and and “why” it is changed should1049

be aligned.1050

2. For semantic equivalence, we don’t not over-1051

infer the meanings, if the message doesn’t1052

explicit mention about it then it’s not. E.g.,1053

“Added support for CircleMarker” we don’t1054

infer the CircleMarker is a type/instance of1055

Marker unless the code explicitly defined it.1056

3. For cases where we are not sure and cannot1057

understand the message based on the given1058

context, our prior knowledge and external web1059

search, label it as Unsure, leave a note of “Dif-1060

ficult to comprehend the message”.1061

4. The <I> symbol comes from training data,1062

where they mask out information referring to1063

a different platform such as issue IDS, URLs,1064

and version numbers. For example, the mes-1065

sage “Bump to <I> (#<I>)” is not halluci-1066

nating, but it’s Uninformative based on the1067

code change as it doesn’t tell specifics of what1068

bump to <I>. This message “removed unused1069

imports from rfc<I>” is considered informa-1070

tive based on the code context.1071

A.3 red1072

Examples with Annotated Hallucination Types We1073

use the code review task as a representative exam-1074

ple to illustrate the distinctions between different1075

types of hallucinations.1076

Input Inconsistency We annotate the model out-1077

put code review “I think we should use Trim() here1078

as well.” as an Input Inconsistency, since the cor-1079

responding code change (see below) already uses1080

Trim(). While the comment may seem reasonable1081

on its own, it conflicts with the actual code context1082

and addresses a non-existent issue.1083

@@ -144,6 +144,12 @@ namespace OpenTelemetry.1084
Instrumentation.AspNetCore.Implementation1085
{1086

activity.SetTag(SemanticConventions.1087
AttributeHttpUserAgent, userAgent);1088

}1089
+1090
+ var xForwardedFor = request.1091

Headers["X-Forwarded-For"].FirstOrDefault();1092
+ if (!string.IsNullOrEmpty(1093

xForwardedFor))1094

+ { 1095
+ activity.SetTag( 1096

SemanticConventions.AttributeHttpClientIP, 1097
xForwardedFor.Split(',').First().Trim()); 1098

+ } 1099
} 1100

} 1101

Logic Inconsistency We annotate the following 1102

model output as Logic Inconsistency: “I think it 1103

would be better to test that `resp.json['data'][' 1104

data']['fingerprint']` is a `dict` and not a `dict 1105

`.”. The logic inside the review comment itself is 1106

problematic, regardless of the code input. 1107

Input Repetition For the code change below, 1108

the model output ‘input[form] polyfill, cannot load 1109

conditionally‘ is annotated as Input Repetition, as 1110

the output merely copies snippets from the code 1111

change. 1112

@@ -15,6 +15,7 @@ return array( 1113
'vendor/bootstrap.min.js', 1114
'vendor/bootstrap-accessibility.min.js', 1115
'vendor/validator.min.js', 1116

+ 'vendor/form-attr-polyfill.js', // input 1117
[form] polyfill, cannot load conditionally, 1118
since we need all versions of IE 1119

'autocomplete.js', 1120
'common.js', 1121
'lightbox.js', 1122

Intent Deviation 1123

For the code change below, the model out- 1124

put “This is a bug fix. The `period.fraction` was 1125

being used instead of `period.nanosec` in the ` 1126

DeadlineQosPolicy` constructor.” is annotated as 1127

Intent Deviation, as it describes the code change 1128

rather than providing a review comment. It fails to 1129

identify issues or offer suggestions, thus violating 1130

the task objective. 1131

@@ -42,7 +42,7 @@ bool DeadlineQosPolicy:: 1132
addToCDRMessage(CDRMessage_t* msg) 1133

bool valid = CDRMessage::addUInt16(msg, this 1134
->Pid); 1135

valid &= CDRMessage::addUInt16(msg, this-> 1136
length);//this->length); 1137

valid &= CDRMessage::addInt32(msg,period. 1138
seconds); 1139

- valid &= CDRMessage::addUInt32(msg,period. 1140
fraction); 1141

+ valid &= CDRMessage::addUInt32(msg,period. 1142
nanosec); 1143
return valid; 1144

} 1145

B Prompting and Fine-tuning Models 1146

Zero-shot prompting We use vLLM14 for zero- 1147

shot prompting. The model temperature was set 1148

14https://docs.vllm.ai/en/latest/

14

https://docs.vllm.ai/en/latest/


to 0 to make the output deterministic. We used1149

the following prompts for code review and commit1150

message generation.1151

Below is a code diff submitted during a code
review process.
Please write a commit message within 50
words.
[code_diff]: {code_diff}
Respond only with valid JSON. Do not write an
introduction or summary.

1152

Below is a code diff submitted during a code
review process. Please write a code review com-
ment within 50 words to identify the concerns
and suggest improvements.
[code_diff]: {code_diff}
Respond only with valid JSON. Do not write an
introduction or summary.

1153

Fine-tuning models We fine-tuned the three1154

models on task-specific training data, including two1155

general language models (Llama3.1-8B-Instruct151156

and Qwen2.5-7B-Instruct16) and one specialized1157

small language model pre-trained on code and com-1158

mit message generation (Lin et al., 2023). The ex-1159

periment was conducted on 1 NVIDIA H100 GPU.1160

For CCT5 (Lin et al., 2023), we reused the1161

code and original scripts from their replication1162

package17 to fine-tune the model on our dataset.1163

The hyperparameters are: train_batch_size= 32,1164

learning_rate = 3e-4, max_source_length = 512,1165

max_target_length = 128 and warmup_steps =1166

500, gradient_accumulation_steps = 4, maxi-1167

mum_train_steps = 150000, optimizer=AdamW.1168

For LLaMA3.1-8B-Instruct and Qwen2.5-7B-1169

Instruct, we perform instruction fine-tuning to fur-1170

ther update the models parameters for the tasks at1171

hand. We use full fine-tuning rather than parameter-1172

efficient methods such as LoRA, as our preliminary1173

experiments found that full fine-tuning performed1174

better. The following instruction templates are used1175

during training:1176

15https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct

16https://huggingface.co/Qwen/Qwen2.
5-7B-Instruct

17https://github.com/Ringbo/CCT5

Below is an instruction that describes a task,
paired with an input that provides further con-
text. Write an Output that appropriately com-
pletes the request.
### Instruction: Review the code diff and pro-
vide a constructive comment highlighting any
issues and suggesting improvements.
### Input:
Code diff: {code_diff}
### Output:
{code_review}

1177

Below is an instruction that describes a task,
paired with an input that provides further con-
text. Write an Output that appropriately com-
pletes the request.
### Instruction: You are a programmer who
makes the below code changes. Please write a
commit message for the below code diff
### Input:
Code diff: {code_diff}
### Output:
{commit_message}

1178

Regarding the hyperparameters used to fine- 1179

tune the two LLMs (Llama3.1-8B-Instruct and 1180

Qwen2.5-7B), we set the learning_rate = 5e-5, 1181

max_sequence_length = 1024, batch_size = 4. We 1182

set the max_steps of fine-tuning to be 30000 and 1183

choose the best performing model on the validation 1184

set. The optimiser is Adamw. 1185

Results We evaluated seven models in total, in- 1186

cluding four zero-shot and 2 fine-tuned models,18 1187

on their capability of generating task-specific mes- 1188

sages using the traditional BLEU-4 metric (Pap- 1189

ineni et al., 2002). Table 8 presents the experimen- 1190

tal results on code review comment generation and 1191

commit message generation across prompting and 1192

fine-tuning approaches. 1193

The experimental results reveal several key pat- 1194

terns. First, zero-shot prompting approaches con- 1195

sistently underperform fine-tuned models, with 1196

BLEU scores ranging from 3.88-4.70% for code 1197

review and 8.62-9.72% for commit messages. In 1198

contrast, fine-tuned models achieve substantially 1199

higher performance, with the specialized CCT5 1200

model reaching 5.58% on code review and 17.45% 1201

on commit messages. This highlights the neces- 1202

18We consider the fine-tuned LLMs as different models
from the ones before fine-tuning, as their weights have been
updated for the tasks.
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Setting Model CodeReview CommitBench
Overall Sample Overall Sample

Zero-shot prompt

Llama3.1-8B-Instruct 4.22 3.28 9.21 8.89
Qwen2.5-7B-Instruct 4.70 4.00 8.99 8.62
Llama3.1-70B-Instruct 3.88 4.09 9.72 9.88
Qwen2.5-72B-Instruct 4.29 4.31 8.62 8.06

Fine-tuned
Llama3.1-8B-Instruct 5.28 5.25 15.06 15.29
Qwen2.5-7B-Instruct 5.43 5.73 15.37 15.57
CCT5 5.58 6.53 17.45 17.46

Table 8: Performance (BLEU-4 measured in %) comparison of different models on CodeReview and CommitBench
benchmarks under zero-shot and fine-tune settings.

sity of fine-tuning for generating higher-quality1203

CodeChange2NL messages.1204

Second, code review proves to be a more chal-1205

lenging task compared to commit message gener-1206

ation, with BLEU scores approximately 2-3 times1207

lower across all model configurations. This is sensi-1208

ble given that code review comments require mod-1209

els to critically analyze and provide constructive1210

feedback on code changes, representing a higher1211

cognitive demand than the descriptive nature of1212

commit messages.1213

The performance on our manually sampled sub-1214

set closely mirrors the overall dataset performance,1215

with sample BLEU scores showing similar trends1216

(e.g., CCT5 achieving 6.53% vs 5.58% overall for1217

code review), validating the representativeness of1218

our evaluation approach.1219

C Examples of Code Changes 1220

C.1 Example from CodeReview 1221

@@ -65,6 +65,7 @@ public class
SmartStorePlugin extends ForcePlugin {

public static final String LIKE_KEY = "
likeKey";

public static final String MATCH_KEY = "
matchKey";

public static final String SMART_SQL = "
smartSql";

+ public static final String ORDER_PATH = "
orderPath";

public static final String ORDER = "order";
public static final String PAGE_SIZE = "

pageSize";
public static final String QUERY_TYPE = "

queryType";

### Human Code Review: Previously you
could only order by the field you were search-
ing by. But for full-text search, you can search
across all indexed fields, and it didn’t make
sense not to have a sorting. For backward com-
patibility, the javascript code uses indexPath as
the orderPath when no orderPath is provided.
### CCT5 Code Review: I think this should be
orderPath instead of orderPathKey.

1222
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C.2 Example from CommitBench1223

diff --git a/nomad/server.go b/nomad/server.
go

index <HASH>..<HASH> 100644
--- a/nomad/server.go
+++ b/nomad/server.go
@@ -1169,7 +1169,12 @@ func (s *Server)

setupRaft() error {
}

} else if _, err := os.Stat(peersFile);
err == nil {

s.logger.Info("found peers.json file,
recovering Raft configuration...")

- configuration, err := raft.ReadPeersJSON
(peersFile)

+ var configuration raft.Configuration
+ if s.config.RaftConfig.ProtocolVersion <

3 {
+ configuration, err = raft.

ReadPeersJSON(peersFile)
+ } else {
+ configuration, err = raft.

ReadConfigJSON(peersFile)
+ }

if err != nil {
return fmt.Errorf("recovery failed to

parse peers.json: %v", err)
}

### Human Commit Message: Add support in
nomad for supporting raft 3 protocol peers.json
### CCT5 Commit Message: nomad: fix
peers.json recovery for protocol version 3

1224

D Hallucination Detection1225

D.1 Hallucination Detection Methodology1226

Details1227

We adopt existing hallucination measurement met-1228

rics, including reference-based and reference-free1229

hallucination detection approaches to address dif-1230

ferent practical needs. Reference-based metrics1231

serve as valuable benchmarks during model train-1232

ing and evaluation when gold standards are avail-1233

able, while reference-free methods enable halluci-1234

nation detection in real-world deployment scenar-1235

ios where reference texts are typically unavailable.1236

D.1.1 Reference-based Metrics1237

In reference-based metrics, hallucination is esti-1238

mated by the quality of a generation y, which is1239

evaluated by comparing against the reference ŷ1240

using certain metrics. The hypothesis is that the1241

lower the quality is, the more likely y it is to be a1242

hallucination. We use two metrics that are widely1243

used for quality estimation: Lexical overlap with1244

BLEU, and Natural Language Inference.1245

Lexical overlap metrics such as BLEU evalu- 1246

ate the n-gram overlap between the y and ŷ. This 1247

type of metric has been widely used in prior work 1248

to evaluate the quality of generated commit mes- 1249

sages (Liu et al., 2018a; Li et al., 2024) and review 1250

comments (Tufano et al., 2021; Li et al., 2022). Re- 1251

cently, it has also been adapted to study the correla- 1252

tion with hallucinations in natural language genera- 1253

tion tasks, such as machine translation (Guerreiro 1254

et al., 2023; Dale et al., 2023). 1255

Natural Language Inference (NLI). NLI is a 1256

standard NLP task that evaluates the logic rela- 1257

tionship between a pair of premise and hypothesis 1258

sentences, determining whether it is entailment, 1259

contradiction, or neutral, which has been widely 1260

used to evaluate the factual consistency (Hu et al., 1261

2024; Valentin et al., 2024) and hallucination de- 1262

tection (Manakul et al., 2023; Elaraby et al., 2023). 1263

We use NLI to measure the probability of the refer- 1264

ence y entails the the generated NL ŷ. The intuition 1265

is that if the y can be directly inferred from the ref- 1266

erence ŷ, then it is high quality and less likely to 1267

hallucinate. We used the best performing model 1268

nli-deberta-v319 based on the performance on Sen- 1269

tence Transformer 20 to obtain the entailment logit. 1270

D.1.2 Reference-free Metrics 1271

In reference-free measurements, reference is not 1272

accessed, only information from the source input 1273

or from the model behaviors while generating a 1274

sequence is used. We use three types of measure- 1275

ments: similarity-based, uncertainty-based, and 1276

feature-attribution based. 1277

Similarity between the generation and the 1278

source We estimate semantic similarity between 1279

source and generation using cosine similarity 1280

cos(Ey, Ex) between embeddings of generated NL 1281

y and source code x. The intuition is that irrele- 1282

vant generations are less similar and more likely 1283

to hallucinate. To obtain the embeddings, we use 1284

three models pre-trained on both code and natural 1285

language corpora: codebert-base21, codet5p-220m- 1286

bimodal22, and codet5p-770m23. 1287

Sequence-level confidence scores A sequence- 1288

level confidence score has been used in machine 1289

19https://huggingface.co/cross-encoder/nli-deberta-v3-
base

20https://sbert.net/
21https://huggingface.co/microsoft/codebert-base
22https://huggingface.co/Salesforce/codet5p-220m-

bimodal
23https://huggingface.co/Salesforce/codet5p-770m
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translation for hallucination detection (Guerreiro1290

et al., 2023; Huang et al., 2024), where it is calcu-1291

lated via aggregating token-level uncertainty into1292

sentence level by taking the average across the se-1293

quence. Token-level confidence can be measured1294

in various ways. The intuition is when a model1295

hallucinates, it tends to be less confident. Several1296

metrics have been proposed to estimate the token-1297

level uncertainty, including probability, logit and1298

entropy (Guerreiro et al., 2023; Huang et al., 2024;1299

Valentin et al., 2024).1300

We also use entropy to measure uncertainty: a1301

more uniform token distribution (higher entropy)1302

indicates lower model certainty. This can be for-1303

mulated as follows:1304

SeqEntropy =
1

L

L∑
i=1

Hi, (1)1305

where Hi is the entropy of the token distribution.1306

Feature attribution In a transformer-based1307

model M , generating a token yt involves both the1308

input x and previously generated target tokens (y11309

to yt−1). Prior work has shown that the interaction1310

between yt and these sources reveals hallucination1311

patterns (Tang et al., 2022; Chen et al., 2025; Sny-1312

der et al., 2024), which can be detected through fea-1313

ture attribution in NL hallucinations. We conduct1314

both feature attribution for both the input source x1315

and the previously generated target tokens.1316

We employ a widely used feature attribution1317

method Input X Gradient (Shrikumar et al., 2017),1318

which calculates the gradient of the output with re-1319

spect to the input and considers the impact of input1320

magnitudes on generation. The attribution score1321

from xi to yt can be formulated as:1322

Ai,t = xi ×
∂yt
∂xi

(2)1323

where Ai,t is the attribution score, and ∂yt
∂xi

denotes1324

the gradient of yt in an attribution model M with1325

respect to the input xi. A higher Ai,t indicates that1326

xi is more important for generating yt.1327

Source Attribution Score. To investigate hallu-1328

cinations on sequence level, we apply an aggre-1329

gation function on A to convert a sequence of1330

token-level attribution scores into a single attribu-1331

tion value. We first compute the maximum attribu-1332

tion value across all input tokens for each output1333

token yt, then take the average of these maximum1334

values. The attribution score of the source to the1335

generated sequence. 1336

SourceAttr =
1

T

T∑
t=1

max
i∈[1,N ]

Ai,t, (3) 1337

where T is the length of the generated sequence, 1338

SourceAttr represents final sequence-level overall 1339

source contribution score. The intuition is that 1340

when the maximum input contribution is small, the 1341

generated y is likely to be a hallucination as the 1342

model didn’t generate based on the input. 1343

Given our input is a code change consisting of 1344

both old and new code, human developers primarily 1345

focus on the changed parts when generating com- 1346

mit messages and code review comments. Based 1347

on this observation and the assumption that mod- 1348

els should similarly emphasize code changes, we 1349

designed variations of the aggregation methods 1350

that separate attribution scores for changed and 1351

unchanged code. Our hypothesis is that lower attri- 1352

bution scores on the changed parts indicate a higher 1353

likelihood of hallucination. 1354

ChangedAttr =
1

T

T∑
t=1

max
i∈C

Ai,t, (4) 1355

UnchangedAttr =
1

T

T∑
t=1

max
i∈[1,N ]\C

Ai,t, (5) 1356

where C ⊂ [1, N ] represents the indices of tokens 1357

in the changed code (all - and + lines), and [1, N ] \ 1358

C represents the indices of unchanged code tokens. 1359

Target Attribution. We also calculate the attri- 1360

bution score from previously generated tokens: 1361

TargetAttr =
1

T

T∑
t=1

max
j∈1,...,t−1

Âj, t, (6) 1362

where Âj, t is the attribution score from y1 to 1363

yj (j ranges from 1 to t − 1). The final Targe- 1364

tAttr score denotes the overall maximum attribu- 1365

tion score from previously generated tokens to the 1366

current token. 1367

To obtain attribution scores for generated se- 1368

quences, we use constrained attribution (Sarti et al., 1369

2023) through the Inseq library.24 Constrained attri- 1370

bution works by providing an attribution model M 1371

with both the input code x and the generated output 1372

y, then analyzing how the model associates each 1373

input token with each output token step by step. 1374

Rather than generating text freely, the model is 1375

24https://inseq.org/en/latest/
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constrained to follow the specified target sequence,1376

allowing us to measure which parts of the input1377

most strongly influence each token in the output.1378

This reveals the model’s implicit justification for1379

each output token based on the input.1380

As the attribution model M , we use the same1381

three models fine-tuned in our RQ1 experiments1382

for each task: LLaMA3.1-8B-Instruct, Qwen2.5-1383

7B-Instruct, and CCT5. For each generation, we1384

apply both self-attribution (where the generator at-1385

tributes its own output, e.g., CCT5 attributes its1386

own generation) and cross-attribution (where a dif-1387

ferent model attributes the output, e.g., CCT5 at-1388

tributes LLaMA3.1-8B’s generation). This dual1389

perspective helps us understand whether a model1390

is aware of its own hallucinations and whether ex-1391

ternal models can detect hallucinations based on1392

attribution signals. While attributing each output1393

token, we also extract uncertainty scores based on1394

logit, probability, and entropy.1395

D.2 Complementarity Among Individual1396

Detection Metrics1397

To examine how different types of metrics comple-1398

ment each other, we select the top three individual1399

metrics (one from each category) based on ROC-1400

AUC.1401

For CodeReviewer, we choose logit_Llama3.1,1402

similarity_score_codebert-base, and1403

changed_contribution_CCT5. For Commit-1404

Bench, we select similarity_score_codet5p-770m,1405

target_target_contrib_CCT5, and logit_Llama3.1.1406

From each metric, we extract the top 25% sam-1407

ples ranked by their metric score, indicating that1408

they are highly correlated with hallucination labels.1409

We then analyze the overlaps and unions of these1410

sets.1411

Figure 4 shows the Venn diagrams of the selected1412

metrics. On CODEREVIEWER, the three metrics1413

capture almost disjoint sets. On COMMITBENCH,1414

only three samples are shared across all three met-1415

rics, suggesting strong complementarity.1416

D.3 Correlation between Detection Metrics1417

and Hallucination1418

In addition to ROC-AUC, we also analyzed the1419

correlation between each individual metric and the1420

hallucination labels we annotated (hallucination1421

= 1, non-hallucination = 0). To evaluate the cor-1422

relation, we use the point-biserial correlation co-1423

efficient (rpb), which measures the strength and1424

direction of the relationship between a continuous1425

variable (i.e., metric scores) and a dichotomous 1426

variable (i.e., the binary hallucination label). 1427

The results are presented in Figures 6 and 7. 1428

Overall, the correlation is weak (|rpb| ∈ [0, 0.2)) 1429

across all samples for individual metrics. How- 1430

ever, when examining generator-specific results, 1431

the correlation between certain generator–metric 1432

pairs increases (|rpb| ∈ [0.2, 0.3)). 1433

These findings further motivate our exploration 1434

of how combining multiple metrics can improve 1435

hallucination detection. 1436

D.4 Signs of Coefficients in LR model 1437

In Section 5.2 (Table 6), we observed that the two 1438

uncertainty-based metrics—logit_Llama3.1 and 1439

logit_Qwen2.5—both contribute significantly to 1440

hallucination prediction, but with opposite coeffi- 1441

cient signs: positive for logit_Llama3.1 and neg- 1442

ative for logit_Qwen2.5. The signs of the coeffi- 1443

cients indicate that higher logits from LLaMA3.1 1444

are associated with hallucinations, whereas higher 1445

logits from Qwen2.5 are associated with non- 1446

hallucinations. We hypothesize that Qwen’s confi- 1447

dence is more reliable, while LLaMA3.1 tends to 1448

be overconfident. To further explore this, we plot 1449

the joint distribution of the two logits in Figure 9. 1450

When Qwen2.5 is more confident than LLaMA3.1 1451

(above the diagonal), hallucinations are less fre- 1452

quent; conversely, when LLaMA3.1 is more con- 1453

fident (below the diagonal), hallucinations occur 1454

more often. This pattern supports our hypothesis. 1455

This observation aligns with prior work (Zhou 1456

et al., 2023; Mielke et al., 2022), which shows that 1457

models can be overconfident when generating out- 1458

puts due to differences in training data and strate- 1459

gies. In our study, both models were fine-tuned 1460

on the same data, so we suspect this difference is 1461

partly due to pre-training. 1462

D.5 LR Model Predictions by Hallucination 1463

Type 1464

To understand which hallucination types are cor- 1465

rectly detected, we examine samples predicted 1466

as hallucinations by our best logistic regression 1467

models on CodeReviewer and CommitBench (Sec- 1468

tion 5). 1469

Figure 10 shows the type distributions. They 1470

largely mirror the overall dataset distribution, with 1471

INPUT INCONSISTENCY most frequent in both 1472

datasets, followed by INTENT DEVIATION in 1473

CODEREVIEWER, and LOGIC INCONSISTENCY 1474

thereafter. 1475
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Figure 6: Point-biserial correlation between metrics and hallucinations on CodeReviewer.
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Figure 7: Point-biserial correlation between metrics and hallucinations on CommitBench.

D.6 LR model prediction per programming1476

language1477

While our hallucination detection approach is1478

language-agnostic, model performance may still be1479

influenced by programming language distributions1480

in pre-training and fine-tuning data. To examine1481

this, we analyze the distribution of programming1482

languages among samples predicted as hallucina-1483

tions by the logistic regression model and compare1484

it to the distribution of samples labeled as halluci-1485

nation in the full test set.1486

The results are shown in Figure 11 for CODERE-1487

VIEWER and Figure 12 for COMMITBENCH. In1488

CODEREVIEWER, the language distribution of1489

model predictions closely matches that of the test1490

set, suggesting consistent detection across lan-1491

guages. In COMMITBENCH, the distributions1492

also largely align, with one notable exception:1493

JavaScript (js) is the most dominant in the test1494

set but is not predicted (recalled) in the model’s1495

predicted hallucinations.1496
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diff --git a/tests/PHPUnit/Framework/TestingEnvironmentManipulator.php \
b/tests/PHPUnit/Framework/TestingEnvironmentManipulator.php
index <HASH>..<HASH> 100644
--- a/tests/PHPUnit/Framework/TestingEnvironmentManipulator.php
+++ b/tests/PHPUnit/Framework/TestingEnvironmentManipulator.php
@@ -148,7 +148,7 @@ class TestingEnvironmentManipulator implements EnvironmentManipulator
                     $diConfigs[] = $testCaseClass::$fixture->provideContainerConfig();
                 }
 
-                if (method_exists($testCase, 'provideContainerConfigBeforeClass')) {
+                if (method_exists($testCaseClass, 'provideContainerConfigBeforeClass')) {
                     $diConfigs[] = $testCaseClass::provideContainerConfigBeforeClass();
                 }

max attribution score = 0.042

Llama3.1: Fix ing a typo in the Testing Environment Manip ulator

Logit=12.6 Logit=18.7 Logit=20.1Logit=20.1

max attribution score = 0.064

Figure 8: An example of feature attribution on a hallucinated commit message comment generated by Llama3.1.
Attribution model: Llama3.1.

Figure 9: Joint Distribution of Qwen and Llama Logits
on CommitBench dataset.
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Figure 10: hallucination type distribution on LR models
corrected predicted as hallucination.
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(a) Samples in model corrected predicted as hallucination

go py jav
a .cs js c

cpp rb ph
p

Programming Language

0

20

40

60

80

Co
un

t

(b) Samples in test set

Figure 11: CodeReviewer: programming language dis-
tribution on the model corrected predicted as hallucina-
tions and our test set.
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Figure 12: CommitBench: programming language dis-
tribution on the model corrected predicted as hallucina-
tions and our test set.

22


	Introduction
	Related Work
	Study Design
	Research Questions
	Hallucination Annotation Workflow
	Datasets and CodeChange2NL Generation
	Hallucination Detection Methodology

	To what extent do task-specific language models hallucinate in CodeChange2NL tasks?
	Manual Annotation
	Hallucination Prevalence and Patterns

	How well do existing metrics detect hallucinations in CodeChange2NL tasks?
	How do individual metrics perform in detecting hallucinations?
	Can combining multiple metrics enhance the accuracy of hallucination detection?

	Conclusion
	Limitations
	Hallucination Annotation 
	Essential Elements in Code Reviews and Commit Messages
	Summarized rules for annotation
	red

	Prompting and Fine-tuning Models
	Examples of Code Changes
	Example from CodeReview
	Example from CommitBench

	Hallucination Detection
	Hallucination Detection Methodology Details
	Reference-based Metrics
	Reference-free Metrics

	Complementarity Among Individual Detection Metrics
	Correlation between Detection Metrics and Hallucination
	Signs of Coefficients in LR model
	LR Model Predictions by Hallucination Type
	LR model prediction per programming language


