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ABSTRACT

Are score function estimators a viable approach to learning with k-subset sam-
pling? Sampling k-subsets is a fundamental operation in machine learning that
is not amenable to differentiable parametrization, impeding gradient-based opti-
mization. Prior work has focused on relaxed sampling or approximate pathwise
gradients but dismissed score function estimators due to their high variance. In-
spired by the success of score function estimators in variational inference and re-
inforcement learning, we revisit them within the context of k-subset sampling.
Specifically, we demonstrate how to efficiently compute the k-subset distribu-
tion’s score function using a discrete Fourier transform, and reduce the estimator’s
variance with control variates. The resulting estimator provides both exact sam-
ples and unbiased gradient estimates while being applicable to non-differentiable
downstream models, unlike existing methods. We validate our approach in mul-
tiple experimental settings and find that comparable results can be achieved to
recent state-of-the-art relaxed and approximate pathwise gradient methods, across
all tasks.

1 INTRODUCTION

Subsets are essential in tasks such as feature selection (Balın et al., 2019; Huijben et al., 2019;
Yamada et al., 2020), optimal sensor placement (Manohar et al., 2018), learning to explain (Chen
et al., 2018), stochastic k-nearest neighbors (Grover et al., 2019), and system identification (Brunton
et al., 2016). Therefore, understanding and effectively manipulating subsets is an important step in
improving machine methods that model discrete phenomena.

A cornerstone of modern machine learning is efficient optimization, typically achieved through dif-
ferentiable models optimized via stochastic gradient descent. However, not all operations are dif-
ferentiable, necessitating approximate differentiation to leverage gradient-based optimization. This
includes discrete sampling, and thus k-subset sampling which is not amenable to the reparametriza-
tion trick (Kingma & Welling, 2014).

Differentiable optimization of Bernoulli and categorical distributions have been extensively studied
(Bengio et al., 2013; Jang et al., 2017; Maddison et al., 2017; Dimitriev & Zhou, 2021; De Smet
et al., 2023; Liu et al., 2023). These distributions are less structured than subset distributions and
do not share their combinatorially large support. Still, the methods employed in their optimiza-
tion serve as a blueprint for more structured distributions. Existing approaches for differentiable
subset sampling (Xie & Ermon, 2019; Ahmed et al., 2023; Pervez et al., 2023) use either relaxed
sampling methods or approximate pathwise gradient estimators. While these methods are effective,
they produce relaxed samples (which cannot be used in all settings) and biased gradient estimates
respectively (see fig. 1). This paper seeks to address these limitations by revisiting score function es-
timators (Glynn, 1990; Williams, 1992; Kleijnen & Rubinstein, 1996), a technique well-established
in reinforcement learning (Sutton et al., 1999) and variational inference (Ranganath et al., 2014), but
overlooked for subset sampling. In this work, we cover the aforementioned research gap by posing
the following question:

Can we enjoy the benefits of score function estimators and obtain similar results to
recent relaxed and approximate pathwise gradient estimators in k-subset sampling?
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Figure 1: Gradient estimation for discrete distributions. Three prominent approaches to gradient estimation
for discrete distributions: (a) approximate score function estimator, (b) pathwise gradient estimator, and (c)
relaxed sampling. The examples listed estimate the gradients of Bernoulli samples, categorical samples, or
both. We propose a score function estimator for k-subset sampling to complement existing methods based on
approximate pathwise derivatives and relaxed sampling (see section 5). Because it does not use the pathwise
gradient, it is applicable in cases when f is non-differentiable.

We propose score function estimators for k-subset sampling (SFESS) as a complement to existing
methods. Our proposed approach fundamentally differs from prior works on k-subset sampling (see
table 1), offering both exact samples and unbiased gradient estimates. Furthermore, it does not as-
sume differentiable downstream models, broadening the possible applications of k-subset sampling
to cases when the downstream model’s gradient is unavailable or computationally expensive.

In addition to the complementary advantages of our proposed approach, our research question holds
significant relevance to the field, as previous work advises against the use of score function esti-
mators for k-subset selection due to their high variance (Xie & Ermon, 2019; Niepert et al., 2021;
Ahmed et al., 2023). Thus, illustrating the potential of this family of methods could facilitate further
progress in a direction that is currently overlooked in the field.

To realize our proposal, we develop an efficient method for computing the score function based on
the discrete Fourier transform (DFT) for computing the Poisson binomial distributions’ probability
density function (Fernandez & Williams, 2010). Furthermore, we use control variates to significantly
reduce the high variance of the vanilla score function estimator. In summary, our contributions are
the following:

• Research gap. We identify and address a significant research gap in k-subset sampling
where score function estimators are not being considered despite their conceptual simplic-
ity, desirable properties, and broad applicability.

• Approach. We propose a score function estimator for the k-subset distribution featuring
an efficient DFT-based score function calculation and reduced variance using multi-sample
control variates.

• Results. We validate our approach in multiple experimental settings and find comparable
results to state-of-the-art relaxed and approximate pathwise gradient methods, signifying
the potential of score function estimators for k-subset selection.

2 PROBLEM STATEMENT AND MOTIVATION

The gradient estimation problem We are interested in learning with k-subset sampling using the
following gradient:

∇θEpθ,k(z)[f(z)], (1)

where pθ,k is a parameterized distribution over subsets with size k and f is a downstream function
of the subset samples. In practice, f will often be a parameterized function with additional inputs
besides z. The discrete distribution over subsets is not amenable to the reparametrization trick
(Kingma & Welling, 2014) which motivates the development of alternative gradient estimators for
eq. (1).
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Table 1: Method comparison. Comparison of methods for learning with k-subset sampling based on the
criteria: producing exact (k-hot) samples, having unbiased gradient estimates (a desirable property in statistical
estimators), compatibility with non-differentiable objectives f , and being free from parameters requiring tuning
(e.g. relaxation temperature, which may require multiple training runs to adjust). Insensitive parameters like
the number of samples used for variance reduction are not considered tuned.

Method Exact samples Unbiased Non-differentiable f Tuning-free

GS (Xie & Ermon, 2019) ✗ ✓ ✗ ✗

STGS (Xie & Ermon, 2019) ✓ ✗ ✗ ✗

I-MLE (Niepert et al., 2021) ✗ ✗ ✓ ✗

SIMPLE (Ahmed et al., 2023) ✓ ✗ ✗ ✓

NCPSS (Pervez et al., 2023) ✓1 ✗ ✗ ✓

SFESS (Ours) ✓ ✓ ✓ ✓
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Figure 2: Toy problem comparison. Bias and variance (left) and error (right) of gradient estimates in a toy
problem (Ahmed et al., 2023) with known ground-truth gradients. All methods use single sample estimates,
except SFESS + VR, where control variates are computed using 32 samples. Estimates are computed using
10,000 samples, with error bars (1 std) from 10 repetitions with different random seeds.

Existing approaches and their limitations Existing approaches to learning with k-subset sam-
pling generally fall into one of two categories: relaxed sampling or approximate gradient methods.
Approximate pathwise gradient methods directly modify the gradient calculation. The best-known
example is the straight-through estimator (Bengio et al., 2013) which treats the sampling as an iden-
tity function during the backward pass. Recently, Liu et al. (2023) showed that straight-through es-
timation works as a first-order approximation of the gradient for Bernoulli and categorical samples.
However, these approximate estimators tend to produce biased gradients. Relaxed sampling meth-
ods replace the distribution with a relaxed distribution so that the reparametrization trick (Kingma
& Welling, 2014) can be used to obtain a gradient. These are gradients of the relaxed samples, not
the original discrete distribution. Regardless, these gradients can be used to train a model that is
used with discrete samples at test time. Although this approach can often be effective, there are two
main limitations: (1) it requires the use of relaxed samples in place of discrete samples (which may
not be possible depending on f ), and (2) the model trained with relaxed sampling is not guaranteed
to generalize to discrete samples at test time. Figure 1 shows the forward- and backward-passes
of the two approaches and how they differ from score function estimators. For in-depth reviews of
Monte-Carlo gradient estimators and the Gumbel-max trick, we refer the reader to Mohamed et al.
(2020) and Huijben et al. (2023) respectively.

Why use black-box gradient estimates? A natural question to ask is what potential benefits
black-box gradient estimates like score function estimators provide. Although discarding the path-
wise gradient theoretically reduces the dimensionality of gradient information by one (Metz et al.,
2021; Liu et al., 2023), it also allows for non-differentiable downstream functions. Interestingly,
Metz et al. (2021) find that the variance of black-box estimates is not necessarily higher than for
pathwise estimators. Furthermore, black-box estimators have been used extensively in settings like
variational inference (Ranganath et al., 2014) and reinforcement learning (Sutton et al., 1999) where
they form the basis for algorithms like PPO (Schulman et al., 2017). In table 1 we summarize the
desirable properties of our proposed method and compare it to existing methods.

1NCPSS draws k-hot samples, but relaxes the subset size k such that k varies slightly.
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3 METHOD

We are interested in devising a black-box gradient estimator for k-subset sampling with efficacy
similar to the existing techniques. Here, we describe our method including how to compute the
score function and reduce its variance with control variables. The resulting algorithm is presented
in alg. 2 along with Gumbel top-k sampling (Kool et al., 2019b) in alg. 1 for k-subset sampling.

Overview We are interested in sampling subsets z of size k given a set of n variables. We consider
the following conditional distribution:

pθ,k(z) = pθ
(
b
∣∣ ∑n

i=1 bi = k
)
=

∏n
i=1 pθ(bi)

pθ (
∑n

i=1 bi = k)
1 [
∑n

i=1 bi = k] , (2)

where b ∈ {0, 1}n is independently Bernoulli distributed with parameters θ ∈ [0, 1]n and 1[·]
denotes the indicator function. This equation induces a particular distribution over the

(
n
k

)
possible

subsets using only n parameters.

Previous work has explored approximate derivatives of this distribution’s samples (Xie & Ermon,
2019; Ahmed et al., 2023). In this work, we instead consider score function estimators that are
exact in expectation. Hence, we want to compute the score function defined on the region where∑n

i=1 bi = k,

∇θ log pθ,k(z) =

n∑
i=1

∇θ log pθ(bi)−∇θ log pθ (
∑n

i=1 bi = k) . (3)

Computing the first term is easy, since each pθ(bi) is Bernoulli distributed. The second term appears
more challenging. Importantly, it follows a Poisson binomial distribution, a generalized binomial
distribution where the samples are not necessarily identically distributed. Several efficient methods
for computing the Poisson binomial’s density function have been developed, including approximate
and recursive methods (Le Cam, 1960; Wadycki et al., 1973; Ahmed et al., 2023). We follow Fer-
nandez & Williams (2010) and compute it using a DFT (Cooley & Tukey, 1965)—leveraging its
O(n log n) time-complexity and efficient implementation on modern hardware2. The gradient of
the log probability is computed using automatic differentiation.

Now, being able to compute the score function in eq. (3), we can write the following score function
estimator:

∇θEp(x)Epθ,k(z)[f(z,x)] = Ep(x)Epθ,k(z)[∇θ log pθ,k(z)f(z,x)] (4)

≈ 1

NM

N∑
i=1

M∑
j=1

∇θ log pθ,k(z
(j))f(z(j),x(i)),

where N samples x(i) ∼ p(x) are sampled from the training data and M k-subset samples z(j) ∼
pθ,k(z) are used in the Monte-Carlo estimate of the expectations in eq. (4). For completeness, we
derive the standard score function estimator in appendix A.

Efficiently computing the score function The second term of eq. (3) follows a Poisson binomial
distribution. The likelihood of which can be written as:

pθ (
∑n

i=1 bi = k) =
∑

b∈{0,1}n

1 [
∑n

i=1 bi = k] pθ(b). (5)

Naı̈vely computing the likelihood using eq. (5) requires iterating all 2n binary vectors b which is
prohibitively expensive. Instead, we look for a more efficient method. Fernandez & Williams (2010)
derive this closed-form expression using the discrete Fourier transform:

pθ (
∑n

i=1 bi = k) =
1

n+ 1
DFTk

(
n∏

i=1

pθ(bi)e
2
√
−1π/(n+1) + (1− pθ(bi))

)
. (6)

Note that this expression is solely a function of θ and k which means we can cache any repeated
calls when computing eq. (3) with different subsets z with the same size k. This is a common
occurrence in e.g. instancewise feature selection (Chen et al., 2018), where a new z is evaluated for
each example x.

2We use the Nvidia cuFFT implementation in PyTorch. See appendix B for pseudocode.
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Algorithm 1 Subset sampling using Gumbel top-k

Require: Subset parameters θ and size k

1: Sample noise gi ∼ Gumbel(0, 1) for i ∈ [n]

2: Compute z ← ArgTopK(log θ + g, k) ▷ A k-hot vector

3: return z

Algorithm 2 SFESS + VR: Score function estimator for k-subset sampling with variance reduction

Require: Initial subset parameters θ and size k, training data D batch size N , and number of

variance reduction samples M

1: repeat

2: Sample data x(i) ∼ D for i ∈ [N ]

3: Sample subsets z(j) ∼ pθ,k(z) for j ∈ [M ] ▷ Or conditionally with e.g. pθ,k(z|x)
4: Compute the Poisson-Binomial likelihood log pθ

(∑n
i=1 b

(j)
i = k

)
using eq. (6)

5: Compute the score function∇θ log pθ,k(z
(j)) using eq. (3) and autodiff

6: Evaluate f(x(i), z(j)) for i, j ∈ [N ]× [M ]

7: Optimize parameters θ using the variance-reduced gradients in eq. (7)

8: until convergence ▷ Number of steps, threshold, etc.

9: return θ

Reducing variance with control variates The vanilla score function estimator generally suffers
from high variance. While many variance reduction techniques have been proposed (Mnih & Gregor,
2014; Gu et al., 2016; Tucker et al., 2017; Shi et al., 2022), we choose to employ control variates
using multiple samples (Mnih & Rezende, 2016; Kool et al., 2019a) in this work due to its simplicity,
unbiasedness, and lack of additional assumptions. In section 4, we will see that this straightforward
approach proves highly effective. The estimator with reduced variance is shown below:

∇θEp(x)Epθ,k(z)[f(z,x)] ≈
1

NM

N∑
i=1

M∑
j=1

∇θ log pθ,k(z
(j)) (7)

·
(
f(z(j),x(i))− 1

M − 1

∑
k ̸=j

f(z(k),x(i))

)
.

Conditional distributions and parameterized f Conditional k-subset distributions pθ(z|x) are
a useful extension of the model presented above that do not change the gradient estimator (the
estimated gradients are simply backpropagated through the conditioning variable). Similarly, pa-
rameterized functions f are easily incorporated and optimized alongside the k-subset distribution’s
parameters. We investigate both conditional distribution and neural-network parameterized func-
tions in our experiments (section 4).

4 EXPERIMENTS

In this section, we validate our proposed estimator in three main experimental settings: feature
selection, variational autoencoders (VAE), and stochastic k-nearest-neighbors (k-NN). In this set of
problems, the k-subset distribution is used in various ways: as the first operation in feature selection,
as the mid-point bottleneck in a VAE, and in computing the final loss in stochastic k-NN.

We use MNIST (LeCun et al., 1998) and FASHION MNIST (Xiao et al., 2017) with the canonical
train and test splits. We withhold 10,000 samples from the train set for validation. For all training,
we use a batch size of 128 and train for 50,000 steps using the Adam optimizer (Kingma & Ba,
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Figure 3: Variance reduction and gradient error. The cosine difference of the true gradient and the estimated
gradient using SFESS + VR with different numbers of variance reduction samples (shown in parentheses) on
the toy problem with known gradients. No VR corresponds to the vanilla SFESS estimator. Estimates are
computed using 10,000 samples, with error bars (1 std) from 10 repetitions with different random seeds.

2015) with a learning rate of 1e−4 and parameters β1 = 0.9 and β2 = 0.999. We compare our
proposed method with variance reduction (SFESS + VR) using 32 variance reduction samples to
relaxed subset sampling (GS) and its straight-through variant (STGS) (Xie & Ermon, 2019), implicit
maximum likelihood estimation (I-MLE) (Niepert et al., 2021), SIMPLE (Ahmed et al., 2023),
and SFESS without variance reduction. For ST and STGS we use the the relaxation temperature
τ = 0.5, which gave the best overall results out of τ ∈ {0.1, 0.5, 1.0}. For I-MLE, we set both the
input and target noise temperature to 1.0. As noted in table 1, SIMPLE and our method have no
hyperparameters in need of tuning.

4.1 TOY PROBLEM

First, we consider a simple toy setting with known ground-truth gradients. We adapt the toy problem
in Ahmed et al. (2023)3 where the gradient estimator is used to minimize Epθ(z)[∥z − θ∗∥2] where
θ∗ are the ground-truth parameters sampled from a standard normal distribution. Using n = 10 and
k = 5 lets us enumerate all

(
10
5

)
= 256 subsets and compute the ground-truth gradient. Figure 2

shows the estimated bias, variance, and error (1−cosine similarity compared to ground-truth) of the
different estimators. Figure 3 shows the decreasing error of SFESS + VR as the number of variance
reduction samples increases.

4.2 FEATURE SELECTION

Sampling a subset of inputs and estimating the gradients (Balın et al., 2019; Huijben et al., 2019;
Yamada et al., 2020) is an intuitive approach to differentiable feature selection. By being differen-
tiable, the selection can be jointly optimized alongside a downstream network. We consider feature
selection for reconstruction and where a reconstruction network (282 → 200 → 282 dense ReLU
network) predicts the full set of input features inputs masked by the sampled subset and both the
subset parameters and reconstruction network are optimized using the reconstruction loss (binary
cross entropy). Table 2 shows our results and fig. 4 the convergence of the validation loss.

4.3 VARIATIONAL AUTOENCODERS

Variational Autoencoders (Kingma & Welling, 2014) with latent variables distributed over k-subsets
has been used as a benchmark in previous work on learning with k-subset sampling (Niepert et al.,
2021; Ahmed et al., 2023). We use the approximate ELBO and network architecture of Niepert
et al. (2021). The encoder (282 → 512→ 256→ nd dense ReLU network) encodes the input. The
outputs are reshaped to (d× d). Then, d k-subset sample of length n are drawn and decoded by the
decoder (d2 → 256 → 512 → 282 dense ReLU network). The loss is the sum of a reconstruction
loss (binary cross entropy) and the KL-divergence between each latent distribution and a uniform
prior. Examples of the encoding and decoding results are shown in fig. 8. Table 3 shows our results
and fig. 5 the convergence of the validation loss. Finally, the wall-clock time is shown in fig. 7.

3Code available at https://github.com/UCLA-StarAI/SIMPLE.
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Figure 4: Feature selection validation loss. Convergence of BCE on the validation set for feature selection
with k = 30 selections (see appendix C for k = 50) averaged over 5 repetitions with different random seeds.
The results follow the trend in the toy experiment (see fig. 2).
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Figure 5: VAE validation loss. Convergence of BCE + KL-divergence on the validation set with d = 20,
n = 20, and k = 10 (see appendix C for d = 10, n = 10, and k = 5) averaged over 5 repetitions with
different random seeds. The effect of variance reduction on SFESS is evident—going from a failure to learn
useful representations to second best among the methods tested.

Table 2: Feature selection results. BCE on the test split. The parameters n and k are the number of inputs and
the number of selections respectively. The means and standard deviations are computed from 5 repetitions with
different random seeds. The best mean result is shown in bold and the second best mean result is underlined.

MNIST FASHION MNIST

Method n k Mean Std Mean Std

GS (Xie & Ermon, 2019) 784 50 0.147 ± 0.005 0.320 ± 0.002
STGS (Xie & Ermon, 2019) 784 50 0.146 ± 0.001 0.318 ± 0.002
I-MLE (Niepert et al., 2021) 784 50 0.182 ± 0.010 0.323 ± 0.001
SIMPLE (Ahmed et al., 2023) 784 50 0.133 ± 0.001 0.311 ± 0.001
SFESS (Ours) 784 50 0.189 ± 0.011 0.326 ± 0.002
SFESS + VR (Ours) 784 50 0.132 ± 0.002 0.307 ± 0.001

GS (Xie & Ermon, 2019) 784 30 0.168 ± 0.004 0.336 ± 0.002
STGS (Xie & Ermon, 2019) 784 30 0.173 ± 0.005 0.335 ± 0.004
I-MLE (Niepert et al., 2021) 784 30 0.206 ± 0.010 0.341 ± 0.005
SIMPLE (Ahmed et al., 2023) 784 30 0.160 ± 0.002 0.327 ± 0.002
SFESS (Ours) 784 30 0.214 ± 0.011 0.343 ± 0.004
SFESS + VR (Ours) 784 30 0.154 ± 0.003 0.320 ± 0.002

4.4 STOCHASTIC k-NEAREST-NEIGHBORS

Our final experiment is stochastic k-NN (Grover et al., 2019). Here, we learn an embedding that op-
timizes the classification accuracy of k-NN. During training, we sample a query point {xq,yq} and a
batch of neighbors {xi

n,y
i
n}ni=1 (we use n = 128 in our experiments) and encode them using an en-

coder fθ (282 → 512→ 256→ d dense ReLU network). Then, we compute the Euclidean distance
from the query point embedding to all neighbor candidates’ embeddings {

∥∥fθ(xq)− fθ(x
i
n)
∥∥}ni=1
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Table 3: VAE results. BCE + KL-divergence on the test set. The parameters d, n, and k are the number of
latent subsets, their dimensionality, and size respectively. The means and standard deviations are computed
from 5 repetitions with different random seeds. The best mean result is shown in bold and the second best
mean result is underlined.

MNIST FASHION MNIST

Method d n k Mean Std Mean Std

GS (Xie & Ermon, 2019) 10 10 5 97.36 ± 2.08 241.72 ± 1.57
STGS (Xie & Ermon, 2019) 10 10 5 95.05 ± 1.57 233.68 ± 0.53
I-MLE (Niepert et al., 2021) 10 10 5 99.74 ± 0.77 234.88 ± 0.36
SIMPLE (Ahmed et al., 2023) 10 10 5 81.90 ± 0.10 225.19 ± 0.11
SFESS (Ours) 10 10 5 205.72 ± 0.15 384.27 ± 1.20
SFESS + VR (Ours) 10 10 5 90.04 ± 2.79 227.73 ± 0.12

GS (Xie & Ermon, 2019) 20 20 10 86.25 ± 1.03 248.63 ± 1.87
STGS (Xie & Ermon, 2019) 20 20 10 73.90 ± 0.24 225.06 ± 0.55
I-MLE (Niepert et al., 2021) 20 20 10 84.55 ± 0.45 238.13 ± 1.95
SIMPLE (Ahmed et al., 2023) 20 20 10 67.96 ± 0.14 218.82 ± 0.29
SFESS (Ours) 20 20 10 205.86 ± 0.05 384.81 ± 0.11
SFESS + VR (Ours) 20 20 10 68.83 ± 0.15 218.39 ± 0.15

Table 4: k-NN results. Accuracy on the test set. The parameters d, n, and k are the dimensionality of the
embedding, the number of neighbors sampled in the training steps, and the parameter of k-NN respectively.
The means and standard deviations are computed from 5 repetitions with different random seeds. The best
mean result is shown in bold and the second best mean result is underlined.

MNIST FASHION MNIST

Method d n k Mean Std Mean Std

GS (Xie & Ermon, 2019) 2 128 10 0.950 ± 0.002 0.873 ± 0.002
STGS (Xie & Ermon, 2019) 2 128 10 0.950 ± 0.002 0.873 ± 0.002
I-MLE (Niepert et al., 2021) 2 128 10 0.740 ± 0.037 0.696 ± 0.023
SIMPLE (Ahmed et al., 2023) 2 128 10 0.949 ± 0.002 0.871 ± 0.002
SFESS (Ours) 2 128 10 0.938 ± 0.009 0.778 ± 0.010
SFESS + VR (Ours) 2 128 10 0.949 ± 0.002 0.869 ± 0.001

and sample a k-subset of neighbors using the distances as unnormalized logits. Finally, the negated
proportion of the k-subset with the same label as the query point is used as a loss. The algorithm is
slightly different at test time: we use the entire training set as candidate neighbors and compute the
k-nearest-neighbors deterministically instead of sampling a k-subset. Table 4 shows the results. The
convergence of accuracy on the validation set is shown in appendix C. Embeddings of the validation
sets are shown in fig. 6.

5 RELATED WORK

In this section, we provide an overview of existing methods for k-subset sampling. Table 1 shows a
qualitative comparison of the methods’ different properties.

Relaxed Subset Sampling (Xie & Ermon, 2019) extends the Gumbel-Softmax distribution to dis-
tributions over subsets. Despite its elegance, relaxed subset sampling inherits the biased gradient
estimation of the Gumbel-Softmax estimator. Furthermore, the top-k sampling procedure sequen-
tially applies the softmax function k times, which limits scalability with respect to k and potentially
degrades performance (Pervez et al., 2023). The temperature parameter τ ∈ R≥0 controls the relax-
ation strength. The relaxed samples approach uniform as τ → inf and k-hot as τ → 0.

SIMPLE (Ahmed et al., 2023) approximates the pathwise gradient of the sample using its exact
marginals, achieving both lower bias and variance than ST Gumbel-Softmax top-k.
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Figure 6: Stochastic k-NN embeddings. Two-dimensional embeddings (d = 2) of the MNIST (left) and
FASHION MNIST (right) validation sets learned by optimizing the stochastic k-NN objective with k = 10 for
30,000 training steps. The resulting embeddings form clusters of the same class. Note that some of the samples
placed between clusters are indeed ambiguous examples.

GS STGS I-MLE SIMPLE SFESS SFESS + VR
0

5

10

15

20

25

30

Wall-clock time [ms]
Forward
Backward

Figure 7: Wall-clock time. The
average wall clock time of a single
training step (forward + backward)
of the methods in table 3 (MNIST
with batch size 128). Despite draw-
ing 32 samples for variance reduc-
tion, the increase in wall time from
SFESS to SFESS + VR is minor.

Figure 8: VAE reconstruction. The
top row shows images from the
MNIST validation set. The middle
row shows their learned embeddings
as 10 k-subsets with 10 elements and
k = 5. Finally, the bottom row
shows the reconstructions.

Neural Conditional Poisson Subset Sampling (NCPSS) (Per-
vez et al., 2023) relaxes k-subset sampling in a manner dif-
ferent from relaxed subset sampling (Xie & Ermon, 2019), al-
lowing subset sizes slightly smaller and larger subsets than k.
Then, pathwise gradient estimates are used for differentiable op-
timization. The authors show that NCPSS is more scalable than
relaxed subset sampling and that the subset size k can be opti-
mized alongside the distribution’s parameters.

Implicit Maximum Likelihood Estimation (I-MLE) (Niepert
et al., 2021) uses a perturb-and-MAP approach that is applica-
ble to general optimization problems, with subset sampling as a
special case.

Other methods In some settings, a subset distribution can be
modeled as either the concatenation of n Bernoulli variables or
the sum of k categorical variables. This way, a host of gra-
dient estimates for Bernoulli and categorical variables can be
used (Yamada et al., 2020; Paulus et al., 2021; Dimitriev &
Zhou, 2021; Shi et al., 2022; De Smet et al., 2023; Liu et al.,
2023). However, neither option directly models k-subset sam-
pling. Bernoulli variables require some constraint (e.g. a loss
term) limiting the subset size, and a sum of categoricals requires
nk parameters and runs the risk of duplicate inclusions (Nilsson
et al., 2024). Finally, there are techniques for relaxed sampling
of other structures like permutation matrices, trees, or graphs
(Paulus et al., 2020).

6 CONCLUSION

In this work we identified a research gap to explore the viability
of score-function estimators for learning with k-subset sampling. We devised a simple approach
and showed its efficacy in a variety of tasks achieving comparable results to existing state-of-the-art.
This is a significant finding not only due to the complementary properties and wider applicability of
our approach but also due to its dismissal in the current literature. We believe our work will serve
the field by opening up a new viable direction for further research.
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A DERIVING THE SCORE FUNCTION ESTIMATOR

In this appendix, we derive the score function estimator (Williams, 1992) which provides a Monte-
Carlo estimate of the objective’s gradient. We adapt the proof from Mohamed et al. (2020) (with
annotations added):

∇θEpθ(z)[f(z)] = ∇θ

∑
z

pθ(z)f(z) By definition of E (8)

=
∑
z

∇θpθ(z)f(z) Interchange gradient and summation

=
∑
z

pθ(z)∇θ log pθ(z)f(z) By log derivative rule

= Epθ(z)[f(z)∇θ log pθ(z)] By definition of E (9)

≈ 1

N

N∑
i=1

f(z(i))∇θ log pθ(z
(i)) Monte-Carlo estimate (10)

By the law of large numbers, the Monte-Carlo estimator in eq. (10) converges to the expected value
in eq. (9) as N →∞, which is exactly the value of the true gradient in eq. (8). Hence, the estimator
is an unbiased estimator of the true gradient.

B SCORE FUNCTION CALCULATION

A key component of SFESS is calculating the score function. The unconditional independent
Bernoulli distribution is renormalized by the Poisson-Binomial distribution. This renormalization
factor is calculated following Fernandez & Williams (2010). Listing 1 outlines this calculation in
pseudocode.

Listing 1 PyTorch-style pseudocode for calculating the Poisson-Binomial PMF (Fernandez &
Williams, 2010).
import torch
import cmath

def poibin_prob(theta, k):
n = theta.size(0)
i = torch.arange(n + 1).unsqueeze(-1)
c = cmath.exp(2j * torch.pi / (n + 1))
prod = torch.prod(theta * c**i + (1 - theta), dim=1)
probs = torch.fft.fft(prod).real / (n + 1)
return probs[k]
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C ADDITIONAL LOSS CURVES
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Figure 9: Feature selection validation loss. Convergence of BCE on the validation set for feature selection
with for k = 50 averaged over 5 repetitions with different random seeds. The results follow the trend in the toy
experiment (see fig. 2).
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Figure 10: VAE validation loss. Convergence of BCE + KL-divergence on the validation set with d = 10,
n = 10, and k = 5 averaged over 5 repetitions with different random seeds. The effect of variance reduction
on SFESS is evident—going from a failure to learn useful representations to second best among the methods
tested.
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Figure 11: k-NN validation accuracy. Convergence of accuracy on the validation set with d = 2, n = 128,
and k = 10 averaged over 5 repetitions with different random seeds. All methods except I-MLE and SFESS
quickly converge to similar minima.
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