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Abstract

While fusing language models and knowledge001
graphs has become common in commonsense002
question answering research, enabling faithful003
chain-of-thought explanations in these models004
remains an open problem. Our analysis reveals005
that one major weakness of current KG-based006
explanation methodologies lies in overlooking007
the faithfulness of path decoding during evalu-008
ation. This oversight leads to the distribution009
of the graph encoder often diverging from the010
original model predictions. To address this gap,011
we present two main contributions: (1) We pro-012
pose and validate Text-GNN Fidelity in this013
specific context, to assess the reliability of the014
graph representation. (2) We introduce TeGDA015
(Text-Graph Distribution-aware Alignment), a016
novel algorithm that aligns the graph encoder017
with the target model to improve the faithful-018
ness of subsequent explanations and that can be019
easily integrated into existing approaches. Our020
experiments and analysis show its potential to021
produce more faithful systems. Concretely, our022
work emphasises the neglected distributional023
misalignment problem in LM-KG reasoning024
models, which has been a latent source of spu-025
rious explanations.026

1 Introduction027

Question answering relies on explicit text and028

implicit domain knowledge (Hirschman and029

Gaizauskas, 2001). Pre-trained language mod-030

els, fine-tuned for QA tasks, are essential in NLP031

(Khashabi et al., 2020), using extensive textual032

knowledge. For commonsense reasoning, knowl-033

edge graphs (KGs) like Freebase (Bollacker et al.,034

2008), Wikidata (Vrandečić and Krötzsch, 2014),035

and ConceptNet (Speer et al., 2017) are used, en-036

hancing reasoning with their structured entity re-037

lationships (Ren et al., 2020; Ren and Leskovec,038

2020; Ren et al., 2021). KGs also compensate for039

language models’ (LM) limited factual memory (Li040

et al., 2022), providing insight into LM inference041
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Figure 1: This figure depicts the attention weights as-
signed by two variants of the QA-GNN model when
interpreting a reasoning path: the original implementa-
tion (right) and one trained using the TeGDA technique
(left). A context node Z sits atop other concept nodes.
In the original QA-GNN, near-equal attention weights
around 0.17 are given to all nodes connected to Z. By
comparison, the TeGDA approach resolves this limi-
tation by assigning the highest attention weight to the
most likely answer node, and markedly ten times smaller
weights to other unrelated concepts. This differential
weighting enhances model explainability by highlight-
ing the pivotal connections influencing predictions.

(Danilevsky et al., 2020). 042

Effective explanations should accurately reflect a 043

model’s reasoning (Herman, 2017). In knowledge- 044

augmented commonsense QA, attention weights 045

from message-passing provide explanations (Lin 046

et al., 2019; Yasunaga et al., 2021), as in Figure 047

1. However, the reliability of these explanations 048

is questionable (Jain and Wallace, 2019), and cri- 049

teria for evaluating model explainability are often 050

neglected, diminishing their impact. 051

We argue that explanations from a broad class of 052

KG-enhanced LMs (LM-KG) are of limited faith- 053

fulness. The behaviour of graph encoder deviates 054

from the overall LM-KG model and it has lim- 055

ited influence on the prediction, so explanations 056

extracted from the graph encoder are unlikely to 057

reflect the full set of facts. Besides, this process 058
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does not guarantee that the extracted explanations059

will be faithful to the reasoning of the model (Jain060

and Wallace, 2019).061

To advance faithful KG explanations, we intro-062

duce a novel metric, Text-GNN Fidelity, for as-063

sessing graph encoder faithfulness in LM-KG mod-064

els. Prior works have evaluated GNN explanation065

faithfulness (Zhao et al., 2023), but ours is the first066

to propose quantitative fidelity metrics for KG ex-067

planations in LM-KG fusion models. Our findings068

reveal low fidelity in existing LM-KG models with069

a notable divergence between graph encoder and070

full model distributions. To address this, we pro-071

pose Text-GNN Distribution-aware Alignment072

(TeGDA), featuring consistency regularisation and073

a method for extracting post-hoc explanations from074

the optimized GNN encoder. Our analysis, us-075

ing CommonsenseQA and OpenBookQA datasets,076

shows that TeGDA enhances fidelity in various LM-077

KG models, marking a significant contribution to078

graph explainability and setting a benchmark for079

future research.080

Research questions. This study aims to critically081

examine the extent to which graph explanations082

align with the reasoning processes of fusion mod-083

els, thereby offering a metric for assessing model084

consistency. The research is structured around re-085

fined questions, focusing on the fidelity and impact086

of graph-based explanations: our work delves into087

the following:088

Q1 How can we define and measure faithful-089

ness in the context of discrepancies between090

graph encoder outputs and black-box lan-091

guage model predictions?092

Q2 How prevalent is the issue of inconsistency093

in current graph explanation methods, and094

how to enhance the explainability of GNN095

encoders in terms of fidelity?096

Q3 To what extent can TeGDA robustly identify097

explanatory sub-structures for interpreting the098

target graph model?099

2 Related Work100

Knowledge Graphs in NLP. Research has ex-101

plored enhancing NLP with additional knowledge.102

Studies have shown pre-trained language models103

can serve as implicit knowledge bases (Pan et al.,104

2019; Petroni et al., 2019). Others have integrated105

structured knowledge graphs into language mod- 106

els for better knowledge representation, focusing 107

on processing the knowledge graph (KG) and the 108

language model (LM) separately before combining 109

them for question answering (QA) tasks (Mihaylov 110

and Frank, 2018; Wang et al., 2019; Zhang et al., 111

2022; Lin et al., 2019; Yasunaga et al., 2021). 112

Multi-relational Graph Encoder. Graph Neu- 113

ral Networks (GNNs) are significant in handling 114

diverse graph structures (Kipf and Welling, 2017; 115

Veličković et al., 2018). For multi-relational graphs 116

like KGs, which have complex relational data, 117

R-GCNs and GAT have been developed to han- 118

dle these relations effectively (Schlichtkrull et al., 119

2018; Veličković et al., 2018). 120

KGs for Post-hoc Explanations in LMs. LMs 121

struggle with interpretability (Danilevsky et al., 122

2020). Grounding LM outputs in KGs has been a 123

method to provide explanations, but these are of- 124

ten not fully representative due to the reliance on 125

text and graph embeddings (Feng et al., 2020; Sun 126

et al., 2022; Jain and Wallace, 2019; Zhang et al., 127

2022; Yasunaga et al., 2021). Recent approaches 128

like GraphMask attempt to improve faithfulness in 129

explanations, but challenges persist in quantifying 130

the fidelity of graph encoder explanations in LM- 131

KG models (Schlichtkrull et al., 2021; Aglionby 132

and Teufel, 2022). 133

3 Background 134

3.1 Models 135

In this study, we focus on a category of models that 136

synergize a text encoder (LM) and a graph encoder 137

for the purpose of commonsense question answer- 138

ing. These models effectively combine linguistic 139

and structured world knowledge to enhance rea- 140

soning and understanding. In a multi-choice com- 141

monsense question answering setting, the model 142

processes a question q and a set of answer choices 143

C. For each answer choice a ∈ C, a concatenated 144

input statement s = [q;a] is formed, where q and 145

a represent the word entities in the question and 146

answer choice, respectively. The external Knowl- 147

edge Graph is then utilized to extract a relevant 148

subgraph G, guided by the input statement s. This 149

contextualized subgraph is formally defined as a 150

multi-relational graph G = (V, I, ϕ), where V rep- 151

resents the set of vertices (or nodes), I the set 152

of edges, and ϕ the relational types in the graph. 153

The language model, denoted as LM, computes 154

the context tokens ZLM = LM(s). This involves 155
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Figure 2: As depicted in (a), TeGDA comprises two primary components: the original model (left) and the LM-
masked ablation (right). Within each model, LM and KG make interaction with each other. Following the fusion,
predictions are generated independently. The losses from both are then simultaneously back-propagated to ensure
greater consistency in the output distributions. (b) This part of the figure provides an in-depth representation of a
representative LK-KG question answering model architecture discussed here. It also elucidates the details of the
masking process and emphasises a category of question answering models that harness the capabilities of knowledge
graphs.

encoding the concatenated question and answer156

choice into a high-dimensional vector space, cap-157

turing the linguistic nuances and semantic relation-158

ships. Simultaneously, a graph encoder EKG is159

employed to encode the KG subgraph G. The en-160

coding EKG(G) captures the structured relational161

information and knowledge present in the graph.162

Finally, a fusion module F integrates the outputs163

of both the LM and EKG encoders to generate a164

joint representation F(ZLM, EKG). This module165

can range from simple feature concatenation to166

more complex architectures, such as a transformer-167

based fusion layer, which effectively merges the168

linguistic context with the structured knowledge169

graph information. The output of this fusion model170

is then utilized to predict the correct answer from171

the set of choices, leveraging both the unstructured172

text understanding from the LM and the structured173

commonsense knowledge from the G.174

3.2 Graph Neural Network Architecture175

Following Zhang et al. (2022), the graph encoder,176

denoted as EG, processes a local knowledge graph177

G linked to a question-answer (QA) example. Ini-178

tially, it assigns initial embeddings {v(0)1 , . . . , v
(0)
J }179

to the graph’s nodes using pre-trained embeddings.180

In each Graph Neural Network (GNN) layer, these181

embeddings {v(ℓ−1)
0 , v

(ℓ−1)
1 , . . . , v

(ℓ−1)
J } are up-182

dated through information exchange among nodes,183

leading to updated node embeddings for each entity.184

Here, v0 typically represents the context node: 185

{v′0(ℓ), . . . , v′J (ℓ)} = EG({v(ℓ−1)
0 , . . . , v

(ℓ−1)
J })

for ℓ = 1, . . . ,M
(1) 186

This process uses a modified graph attention net- 187

work (GAT), similar to Yasunaga et al. (2021). The 188

GNN calculates node representations v′j
(ℓ) for each 189

node vj through message passing: 190

v′j
(ℓ) = fn

 ∑
vs∈Nvj∪{vj}

βsjmsj

+ v
(ℓ−1)
j (2) 191

Here, Nvj is the neighbourhood of node vj , msj 192

is the message from neighbour vs to vj , βsj is an 193

attention weight, and fn is a two-layer Multilayer 194

Perceptron (MLP). The message msj is calculated 195

as: 196

rsj = fr(tsj , us, uj) (3) 197
198

msj = fm(v(ℓ−1)
s , us, rsj) (4) 199

Here, us, uj are node type embeddings, tsj is a 200

relation embedding, fr is a two-layer MLP, and fm 201

is a linear transformation. The attention weights 202

βsj are calculated as follows: 203

βsj ∝ softmax

(
fq

(
v(ℓ−1)
s , us

)⊤
· fk

(
v
(ℓ−1)
j , uj , rsj

))
(5) 204

Here, βsj represents the attention weight between 205

nodes s and j. The function fq computes a query 206

vector for the source node vs, and fk computes a 207

key vector for the target node vj . The dot product 208
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of these vectors determines the raw attention score,209

which is then normalized across all neighbouring210

nodes using the softmax function. This simplified211

equation captures the core of the attention mecha-212

nism without the intricate details.213

3.3 Post-hoc Explanation Extraction214

Post-hoc explanations can be extracted from the215

trained fusion model by inspecting the attention216

weights of the final GNN layer. As the model per-217

forms multiple rounds of message passing and up-218

dating node representations, the attention weights219

in the last GNN layer indicate the most salient re-220

lationships in the graph with respect to predicting221

the final answer.222

Specifically, for each attention head, we com-223

pute the average attention weight β̄ij between all224

node pairs (i, j) connected by an edge in the graph.225

By averaging across multiple attention heads, we226

derive explanations that summarize the most im-227

portant semantics captured in the full graph struc-228

ture. More formally, let βh,M
ij indicate the attention229

weight between nodes i and j for the h-th atten-230

tion head in the M -th (final) GNN layer. Then the231

explanation Eij for edge (i, j) is:232

Eij =
1

H

H∑
h=1

βh,M
ij (6)233

where H is the total number of attention heads.234

By selecting edges from the last GNN layer that235

influence the joint prediction, these edge weights236

indicate the semantic paths in the graph that play237

a pivotal role connecting the question to the right238

answer choice. The highlighted subgraphs help to239

explain the reasoning process, as shown in figure240

1.241

4 Datasets242

We assess our methods by using two multiple-243

choice question answering datasets: Common-244

senseQA (Talmor et al., 2019) and OpenBookQA245

(Mihaylov et al., 2018), serving as benchmarks for246

commonsense reasoning.247

CommonsenseQA. A dataset of 12,102 ques-248

tions in a 5-way multiple-choice format which re-249

quires commonsense knowledge beyond mere lan-250

guage understanding. For our experiments, we251

adopted the in-house (IH) data split by Lin et al.252

(2019) to facilitate comparison with established253

baseline methods.254

OpenBookQA. A dataset with its 4-way 255

multiple-choice structure, assesses elementary 256

scientific knowledge through its collection of 257

5,957 questions, accompanied by a compilation 258

of scientific facts. For this dataset, we relied on 259

the official data splits provided by Mihaylov et al. 260

(2018). 261

5 Evaluating KG Faithfulness 262

We argue that LM-KG models are intrinsically un- 263

able to provide graph-structured explanations that 264

are highly faithful to the full model. Our desire for 265

these explanations is that they are the collection 266

of facts used by the model to complete a natural 267

language understanding task. The more faithful 268

these explanations are, the more useful they will 269

be for developers and users to understand model 270

behaviour. 271

Assumption 1. If a faithful explanation is to 272

be extracted from a GNN encoder, the output dis- 273

tributions of it should exhibit consistency or less 274

discrepancy from the output of the original LM-KG 275

model. 276

The measurement of the faithfulness of an expla- 277

nation refers to how accurately it reflects the true 278

reasoning process of the model (Herman, 2017). To 279

answer Q1, here we propose the metrics for mea- 280

suring the GNN explainability faithfulness in the 281

context of LM-KG systems: Text-GNN Fidelity. 282

In our case, if assumption 1 holds, the explanations 283

generated by the graph encoder can serve as an in- 284

terpretable proxy for the overall predictions made 285

by the model. 286

5.1 Text-GNN Fidelity 287

Text-GNN Fidelity (FTG) is defined as the over- 288

lap between the original model prediction and text- 289

encoder-masked Multilayer Perceptron (MLP) pre- 290

dictions. Different from the methods by Aglionby 291

and Teufel (2022), which measure the accuracy of 292

newly trained ablation with text encoder output de- 293

tached from the model or with text encoder frozen 294

all the time. To maintain the integrity of the model, 295

we directly mask out text encoder output from the 296

fusion layer without new training and model modi- 297

fication (Figure 2b). 298

5.1.1 Probing by Masking 299

Inspired by (Schlichtkrull et al., 2021), FTG is 300

conducted using a controlled variable method with 301

masking, all factors are kept constant except that 302
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the text encoder outputs are masked out. Keep-303

ing all parameters and the model architecture as304

is allows us to establish a causal relationship be-305

tween the text encoder variable and the observed306

outcomes, especially in such a model class with307

multiple deep fusion layers. Masking here can be308

equivalently thought of as adding a certain type of309

noise when prediction, it contains at best minimal310

useful information for answering the question cor-311

rectly. It can be categorised as belonging to the312

class of perturbation-based methods (Guan et al.,313

2019; Schlichtkrull et al., 2021).314

Specifically, we calculate the FTG as the statisti-315

cal difference of outputs by checking the prediction316

overlap between models. Text-GNN Fidelity is de-317

fined as follows:318

FTG =

∑
δ (cM, cMmask)

N

cM = argmax
c∈C

P (Ŷ = c | G,M)

cMmask = argmax
c∈C

P
(
Ŷ = c | G,Mmask

) (7)319

The FTG score, as a percentage of overlap, pro-320

vides a measure of the agreement between the orig-321

inal model’s output and the text-encoder-masked322

model’s output. Where C is the set of choices, cM323

is the prediction using the original model M and324

Mmask is the ZLM masked model. P (Y | M)325

denotes the probability distribution of the output326

Y given the model M. δ(x, y) is the Kronecker327

delta function, which is 1 if x = y and 0 otherwise,328

N is the total number of instances in the dataset329

considered. This represents the proportion of in-330

stances where the predictions from the two models331

agree. Measurement of FTG is reported in Table 2.332

We report the original models and the LM-disabled333

model performance in Table 1.334

6 Improving Text-GNN Fidelity335

To achieve a more faithful GNN interpretation, it’s336

imperative to ensure that the introduced modifica-337

tions of LM-KG models do not substantially devi-338

ate from the KG’s behaviour, implying that even339

after introducing modifications, the GNN encoder340

should output a distribution that mirrors the one341

emitted by the unaltered model. While traditional342

methods have relied heavily on cross-entropy as343

the primary loss function, the inconsistent GNN en-344

coder of existing LM-KG models demands a more345

nuanced approach. To answer Q2 We next intro-346

duce Text-GNN Distribution-aware Alignment347

(TeGDA) – a strategy designed to bridge this gap 348

(Figure 2). 349

6.1 Text-GNN Distribution-aware Alignment 350

(TeGDA) 351

In order to quantitatively assess the divergence be- 352

tween the output density of our original model M 353

and its masked variant Mmask, we first devise the 354

Text-GNN Consistency (CTG) metric to measure 355

the alignment between the probability distributions 356

of their outputs. Our chosen metric is inspired by 357

the Jensen–Shannon divergence J (Lin, 1991), a 358

symmetrised and smoothed version of the Kullback- 359

Leibler divergence (Kullback and Leibler, 1951), 360

which offers a bounded measure of similarity be- 361

tween probability distribution pairs. The CTG 362

metric is computed as follows: 363

CTG : J (Mmask,M) = λDKL (P (Y | Mmask) ∥A)

+(1− λ)DKL(P (Y | M)∥A)
(8) 364

Where DKL represents the Kullback-Leibler di- 365

vergence. The key to the computation of J is the 366

average of the two distributions, which we denote 367

as A: 368

N =
1

2
(P (Y | Mmask ) + P (Y | M)) (9) 369

A serves as the mid-point reference distribution 370

against which the divergence of each of the two 371

distributions is measured. By employing J as our 372

metric for CTG, we aim to capture the nuanced 373

differences between the output probability distribu- 374

tions of M and Mmask . A smaller J indicates a 375

high degree of similarity or consistency between 376

the two models, while a larger value signifies a 377

greater divergence in their outputs. This assess- 378

ment is crucial for understanding the impact of the 379

GNN part model’s behaviour and ensuring that the 380

explainability remains intact across variants. A 381

smaller CTG indicates that, even when the LM 382

output is masked out, the graph encoder can still as- 383

sign probabilities to choices that closely align with 384

the original model’s decisions, making it poten- 385

tially more representative of the original model’s 386

thought process. 387

TeGDA enhances the cross-entropy LCE by in- 388

troducing a consistency factor LCTG
. This factor is 389

a component that ensures the graph encoder’s out- 390

puts align closely with the original model’s predic- 391

tions. The objective function for TeGDA is given 392

by: 393
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Lalign(M,Mmask) = ϵ1 · ∇θtLCE + ϵ2 · ∇θtLCTG (10)394

395

In this equation, θt are the model parameters at time396

step t, ϵ1, ϵ2, are learning rates, LCE represents397

the cross-entropy loss, which was traditionally em-398

ployed. LCTG
is the consistency term that mea-399

sures the divergence between the probability dis-400

tributions of the original and masked models. The401

equation shows the parameter update rule, where402

the gradients of the two losses are subtracted from403

the current parameters θt to obtain the updated pa-404

rameters θt+1. Next, we go into the details of this405

strategy which also incorporates details on post-hoc406

explanation extraction:407

• TeGDA utilizes text s = [q;a] and a back-408

ground subgraph G for training. It connects409

entities from question q and answer a ∈ C410

in G.The model first uses a language model411

encoder for text representations ZLM and412

a graph neural network (GNN) encoder for413

graph embeddings EKG of G.414

• A fusion module F then combines ZLM and415

EKG for answer prediction. Masking ZLM416

generates Mmask, used to calculate prediction417

probability P (Y |Mmask).418

• TeGDA minimizes the Jensen-Shannon419

divergence J between P (Y |M) and420

P (Y |Mmask) for better graph explanation421

and reasoning fidelity, using a joint ob-422

jective L that includes both J -based and423

cross-entropy terms.424

• Post-hoc explanations are derived from the425

trained graph encoder EKG by analyzing atten-426

tion weights βh,M
ij , indicating key semantic re-427

lationships in G. These post-hoc explanations,428

aligned with the graph encoder’s training, of-429

fer a more faithful reflection of the reasoning430

process of model M.431

7 Experiment Settings432

7.1 Knowledge Graph433

We use ConceptNet (Speer et al., 2017), a broad434

knowledge graph, for our tasks. A subgraph G for435

each QA context is extracted using the method by436

Feng et al. (2020) with hop size k=2.437

7.2 Implementation & Training Details 438

Our model, following Feng et al. (2020); Yasunaga 439

et al. (2021), includes a 4-head, 5-layer graph en- 440

coder (dimension D = 200) with a 0.2 dropout 441

rate (Srivastava et al., 2014). Using RAdam (Liu 442

et al., 2019a) with batch size 128, we refine param- 443

eters. Input node features from concatenated [q;a] 444

pass through RoBERTa-Large, yielding 1024d to- 445

ken embeddings. Gradient clipping at 1.0 (Pascanu 446

et al., 2013) and learning rates of 1e−5 (LM) and 447

1e−3 (GNN) are set. Training takes about 3 hours 448

for 30 epochs on a Tesla V100 GPU, with hyperpa- 449

rameters tuned on the development set. 450

7.3 LM-KG Baseline Models 451

To assess our TeGDA training and Text-GNN 452

Fidelity metric, we compare it with three LM- 453

KG models: QA-GNN(Yasunaga et al., 2021), 454

GreaseLM(Zhang et al., 2022), and MHGRN(Feng 455

et al., 2020), each contributing uniquely to integrat- 456

ing language models with knowledge graphs. QA- 457

GNN introduces a context node for joint reasoning. 458

GreaseLM enhances the interaction between lan- 459

guage models and knowledge graphs through a 460

fusion mechanism. MHGRN offers a graph encod- 461

ing architecture for multi-hop relational reasoning 462

over knowledge graphs. 463

For fair comparison, we use RoBERTa-Large 464

(Liu et al., 2019b) in all the baselines and our meth- 465

ods. Under our new approach and node embedding 466

settings, the performance of each behaves differ- 467

ently than described in papers, which we discuss 468

next. 469

8 Results Analysis 470

Table 1 presents results on CommonsenseQA 471

and OpenBookQA using TeGDA-trained models 472

and three LM-masked models. TeGDA notably 473

enhances faithfulness across all scenarios, with 474

GreaseLMMask on the CommonsenseQA IH-dev 475

split achieving a 36.2% accuracy increase. This 476

highlights TeGDA’s effectiveness in addressing 477

model inconsistencies and bolstering graph en- 478

coder predictions, setting a foundation for reliable 479

graph interpretation. Additionally, Table 3 reports 480

FTG metric scores under TeGDA, showing consis- 481

tent improvements, like over 98% faithfulness for 482

GreaseLM across scenarios. 483
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Method CommonsenseQA OpenBookQA
IH-dev (%) IH-test (%) Dev (%) Test (%)

QA-GNN (Yasunaga et al., 2021) 76.5 75.4 78.2 80.8
+Mask 67.8 65.6 39.2 43.2

QA-GNNTeGDA 75.8 69.8 79.0 80.0
+Mask 75.4 (↑ 7.6%) 69.8 (↑ 4.2%) 78.2 (↑ 39.0%) 80.4 (↑ 37.2%)

GreaseLM (Zhang et al., 2022) 77.8 73.0 82.2 82.6
+Mask 39.4 38.7 54.2 56.4

GreaseLMTeGDA 76.2 71.1 80.6 82.4
+Mask 75.6 (↑ 36.2%) 70.8 (↑ 32.1%) 80.4 (↑ 26.2%) 82.6 (↑ 26.2%)

MHGRN (Feng et al., 2020) 77.8 74.1 69.4 67.4
+Mask 48.4 46.6 60.6 56.6

MHGRNTeGDA 76.9 71.2 71.2 66.6
+Mask 75.3 (↑ 26.9%) 68.8 (↑ 22.2%) 69.2 (↑ 8.6%) 66.6 (↑ 10.0%)

Table 1: Accuracy comparison of three different LM-KG models in their original version and trained with the
TeGDA scheme (grey background) across two benchmark datasets. +Mask means the hidden state from the text
encoder or from the interaction node of the model is masked out.

Original CommonsenseQA OpenBookQA
dev test dev test

QA-GNN 78.3 75.5 39.3 45.5
GreaseLM 41.2 40.7 60.3 62.7
MHGRN 52.3 51.0 75.4 73.0

Table 2: Text-GNN Fidelity of the original model on
each dataset.

TeGDA CommonsenseQA OpenBookQA
dev test dev test

QA-GNN 98.5 98.7 97.6 98.0
GreaseLM 98.9 98.0 99.6 99.6
MHGRN 95.5 95.0 96.2 97.4

Table 3: Text-GNN Fidelity of models trained with the
TeGDA scheme.

8.1 LM-masked Models484

Performance results in Table 1 show that mask-485

ing the text encoder leads to a significant drop in486

performance across all models on both datasets.487

For example, on CommonsenseQA IH-dev, mask-488

ing reduces accuracy by ↓ 39.7% for GreaseLM.489

This substantial decrease demonstrates the text en-490

coder’s contribution to the overall reasoning and491

prediction process. In contrast, Table ?? shows the492

accuracy of TeGDA, the LM-disabled models (e.g.493

MHGRNMask with a ↓ 2.4% and GreaseLMMask494

with only ↓ 0.3% on CommonsenseQA IH-test495

split) exhibit only minor drops or even slight im-496

provements (e.g. GreaseLMMask with ↑ 0.2% on497

OpenBookQA Test split) in accuracy compared to498

the unmasked originals.499

However, a tradeoff is that the unmasked models500

trained with TeGDA tend to have slightly lower ac-501

curacy than their counterparts without consistency 502

regularisation. For example, on the OpenBookQA 503

test set, MHGRNTeGDA accuracy is 66.6% com- 504

pared to 67.4% for vanilla MHGRN. This decrease 505

suggests enforcing consistency introduces some 506

limitations on the modelling flexibility. Addition- 507

ally, for QA-GNN, there is a small gap (↓ 8.7%) 508

between the original model and masked model ac- 509

curacy in Table 1. This indicates the GNN en- 510

coder outputs alone can achieve comparable perfor- 511

mance to the full model, which is preferred. For 512

GreaseLM and MHGRN, however, it shows that 513

the text encoder makes a more significant contribu- 514

tion to these models. 515

In summary, the results show that TeGDA train- 516

ing improves graph encoder fidelity and reduces 517

reliance on the text encoder. This supports the 518

claim that TeGDA produces more faithful graph- 519

based predictions that better reflect the full model’s 520

reasoning process. The graph encoder trained with 521

TeGDA can then serve as a more reliable inter- 522

pretability proxy for the overall model. 523

8.2 Text-GNN Fidelity 524

The Text-GNN Fidelity (FTG) scores significantly 525

increased across all models after applying TeGDA 526

training, as seen in Table 3, compared to the 527

original models in Table 2. Specifically, in the 528

CommonsenseQA IH-test set, fidelity rose from 529

75.7% to 98.7% for QA-GNN, 40.7% to 98.0% for 530

GreaseLM, and 51.0% to 95.0% for MHGRN. The 531

original fidelity of QA-GNN was already higher 532

(75.7%) than that of GreaseLM (40.7%) and MH- 533

GRN (51.0%), suggesting a more representative 534

graph encoder in QA-GNN’s architecture. Post- 535
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Figure 3: Accuracy on the IH-test set for original QA-
GNN (orange) and trained with TeGDA (blue) as per-
centage of edges removed increases.
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Figure 4: Accuracy on the IH-dev set for original QA-
GNN (orange) and trained with TeGDA (blue) as per-
centage of edges removed increases.

TeGDA training, all models showed over 95% fi-536

delity (FTG), indicating a high consistency of537

graph encoder outputs with the original model out-538

puts, despite masking the text encoder. This aligns539

with TeGDA’s aim of enhancing explanation faith-540

fulness. GreaseLM’s fidelity notably improved541

from a low 40.7% to 98.0%, and achieved 99.6% on542

both OpenBookQA dev and test sets, demonstrat-543

ing TeGDA’s effectiveness in models with initially544

weak graph-text encoder connections.545

8.3 Explanation Fidelity546

For the lack of groundtruth GNN explanations, we547

will evaluate the obtained explanations in terms of548

fidelity (figure 3 and 4). To answer Q3, specifi-549

cally, we sequentially remove edges from the GNN550

by following importance weight learned by the ex-551

planation model and test the classification perfor-552

mance. Generally, the removal of really important553

edges would significantly degrade the classifica-554

tion performance. Thus, a faster performance drop555

represents stronger fidelity. Figures 3 and 4 com-556

pare results on the test set and dev set respectively557

for the original QA-GNN model and QA-GNN558

trained with TeGDA. As more edges are removed,559

the accuracy of TeGDA drops much more rapidly560

compared to original QA-GNN. For example, af-561

ter removing the top 1% of edges, the accuracy of 562

the original QA-GNN remains relatively steady on 563

both dev and test sets, while for TeGDA the ac- 564

curacy drops 25-30%, indicating the explanations 565

from TeGDA better capture the critical edges. The 566

more rapid degradation for TeGDA as important 567

edges are removed demonstrates its explanations 568

have higher fidelity in reflecting the true reason- 569

ing process. This analysis provides quantitative 570

evidence that the knowledge graph explanations ex- 571

tracted from the TeGDA model are more faithful. 572

8.4 Findings and Hypothesis 573

There are a few key differences that may explain 574

why GreaseLM shows more improvement over the 575

Text-GNN Fidelity metric under the TeGDA train- 576

ing scheme, and why the original QA-GNN may 577

have achieved better graph fidelity compared to the 578

others. (1) GreaseLM’s separate graph encoder, 579

focusing solely on the knowledge graph, may en- 580

hance the independence of LM and GNN struc- 581

tures, offering a balance between alignment and 582

independence. This could explain its initial low 583

fidelity, leading to high alignment accuracy later. 584

In contrast, QA-GNN’s integrated encoding of the 585

QA context and knowledge graph could improve 586

knowledge graph context incorporation but lacks 587

a modulating control mechanism. Significantly, a 588

discrepancy is observed between graph fidelity and 589

text-graph consistency. MHGRN shows moderate 590

fidelity in CommonsenseQA, suggesting that high 591

fidelity doesn’t guarantee high consistency. This 592

underscores the importance of using both fidelity 593

and consistency metrics for a comprehensive model 594

evaluation. 595

9 Conclusion 596

Our study focused on assessing the faithfulness 597

of knowledge graph explanations in commonsense 598

reasoning models. We introduced Text-GNN Fi- 599

delity to evaluate the accuracy of these explana- 600

tions. Our analysis revealed that the initial faith- 601

fulness of graph explanations in contemporary lan- 602

guage model-knowledge graph (LM-KG) systems 603

was limited. To address this, we developed a novel 604

training method, Text-Graph Distribution-aware 605

Alignment (TeGDA), which significantly enhances 606

the consistency and fidelity of KG explanations, 607

aligning them more closely with the actual reason- 608

ing processes of the models. 609
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