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ABSTRACT

Causal Judge Evaluation (CJE) casts offline “LLM-as-judge” evaluation as
calibrated off-policy estimation. We introduce a single design rule—Design-
by-Projection (DbP)—that encodes justified knowledge as closed convex sets
and projects valid objects onto them: (i) reward calibration (AutoCal-R, mean-
preserving isotonic in judge score 5), (ii) weight stabilization (SIMCal-W, unit-
mean, S-monotone ratios with a light variance cap), (iii) nuisance-orthogonalized
estimators (OC-IPS/DR-CPO/TR-CPO), and (iv) variance-optimal IF-space stack-
ing. A Knowledge—Riesz result shows that intersecting the admissible IF class with
justified convex knowledge preserves the estimand and weakly lowers the attainable
variance; with cross-fitting, our projection-designed estimators attain the surrogate
information bound. On Arena logs (n=4,989; five policies), SIMCal-W lifts
ESS from near-degenerate regimes (e.g., 0.6% — 94.6%), calibrated DR regains
near-/n scaling with tight, honest Cls, and IF-stacked DR improves ordering. CJE
surfaces overlap/tail and judge-calibration diagnostics and, when identification
fails, reports rank-robust conclusions (REFUSE-LEVEL).

1 INTRODUCTION

Offline “LLM-as-judge” scores are fast but correlational: computed under a logging policy 7, they
do not answer the counterfactual “What would our KPI be if we deployed 7' ?” Off-policy evaluation
(OPE) is the right causal tool, yet in practice IPS/SNIPS explode under limited overlap (heavy tails),
DR inherits instability from noisy ratios and misspecified nuisances, and judge scores can drift or
miscalibrate against higher-fidelity labels (Horvitz & Thompson, |1952; L1 et al.| [2011; |Crump et al.,
2009; Jiang & Li, [2016; Lee et al., [2024).

Design-by-Projection (DbP). We encode justified knowledge as a closed convex set and project
valid objects onto it: (i) project scores/influence functions (IFs) onto nuisance-orthogonal subspaces
(efficiency); (ii) project rewards/weights onto mean-preserving, shape-constrained cones (stability;
ESS 1); and (iii) project estimator combinations onto a simplex (variance-hedged stacking). Metric
projections preserve the estimand (via the mean-one hyperplane) and weakly shrink dispersion
through orthogonality and majorization (Bickel et al.,| 1993} |van der Vaart & Wellner, [2000; Barlow
et al., |1972; Marshall et al.,[2011)).

Causal Judge Evaluation (CJE). We instantiate DbP as a practical OPE system. AutoCal-R fits
a mean-preserving calibrator from judge score S to oracle labels on a small i.i.d. slice (isotonic in
S with an automatic two-stage single-index fallback). SIMCal-W projects baseline ratios onto the
cone of S-monotone, unit-mean weights using out-of-fold (OOF) stacking and a light variance guard,
deterministically lifting ESS. Sequence-aware estimators—OC-IPS, DR-CPO, and TR-CPO—add
targeting/retargeting and can be stacked by minimizing IF covariance. An oracle-fold jackknife
yields oracle-uncertainty—aware (OUA) confidence intervals. Brief diagnostics and gates surface
overlap/tails, judge reliability/coverage, and DR orthogonality; when coverage is poor, CJE returns
rank-robust conclusions via REFUSE-LEVEL.



Theory and evidence. We derive the surrogate-model efficient influence function (EIF) and prove
a Knowledge—Riesz (Influence Representer) result: intersecting the admissible IF class with justified
closed convex knowledge preserves the estimand and weakly lowers the attainable semiparametric
variance; with cross-fitting, projection-designed estimators attain the surrogate information bound
(Bickel et al.l [1993; ivan der Vaart & Wellner, |2000). Two corollaries guide design: (i) Black-
well—efficiency monotonicity—finer judges (larger o-fields) weakly lower, and generically strictly
reduce, the surrogate bound; (ii) SIMCal-W’s mean-one isotonic step Lorenz-dominates baseline
weights, improving every Schur-convex dispersion metric (variance/ESS and beyond). On Arena-
derived logs (n=4,989; five policies), SIMCal-W raises ESS from near zero to healthy regimes (e.g.,
0.6% —94.6%, 0.7% — 80.8%); calibrated DR regains near-/n scaling with tight, honest CIs; and
IF-stacked DR further improves accuracy and ordering. When calibration support is limited, CJE
flags REFUSE-LEVEL yet preserves rankings.

Contributions.

1. DbP for OPE: a unifying projection rule—subspaces (efficiency), cones (stability), and simplices
(hedging)—that preserves the estimand and shrinks variance.

2. Calibration & stability: AutoCal-R (mean-preserving; automatic two-stage fallback) and SIMCal-
W (unit-mean, S-monotone) with deterministic dispersion/ESS improvement via majorization.

3. Inference & uncertainty: sequence-aware DR/TMLE (OC-IPS, DR-CPO, TR-CPO), IF-Stack
for variance-optimal convex ensembling, and OUA ClIs that propagate calibration uncertainty.

4. Knowledge-Riesz & design corollaries: restricting IFs to justified convex sets lowers the variance
bound and is attainable with cross-fitting; finer judges strictly help (Blackwell monotonicity), and
SIMCal-W yields Lorenz-dominant weights (beyond ESS). When identification fails, CJE reports
rank-robust, partial-ID conclusions (REFUSE-LEVEL).

2 BACKGROUND AND SETUP

Setup & notation. We observe i.i.d. logs (X;, A;, S;) under a fixed logger 7o (- | X); S = s(X, A)
is a scalar judge score on every row, and a small i.i.d. oracle slice provides labels Y. For a candidate
policy 7', the sequence-level importance ratio is

(A | X5)

Wﬂ'/i = -
’ mo(4; | X3)

= exp{logpx (A | X;) —logpry(4i | Xi)},

computed via teacher forcing (TF). The target is the counterfactual value V(n') = E[Y (7')]. We use
the sample-mean-one normalization (SNIPS) when helpful.

OPE basics. IPS/SNIPS estimate V' (7’) by reweighting logged outcomes (Horvitz & Thompson,
1952; Hajekl, [1965; |Li et al, 2011; Swaminathan & Joachims, [2015)). The direct method (DM)
plugsin g(z) = >, 7'(a | ) m(x, a). Doubly robust (DR) estimators combine IPS and DM and,
with sample-splitting and cross—fitting, admit /7 inference under the standard one—of—two n /4
product-rate condition (Bickel et al., |1993; jvan der Vaart & Wellner, |2000; [Kosorok} [2008}; |Jiang &
L1l 2016} [Chernozhukov et al., | 2018}; [van der Laan & Rose} [2011). Teacher forcing (TF) provides
sequence—level propensities/ratios, so these forms apply to sequence policies without modification
(Lee et al.,[2024).

Variance, overlap, and stabilization. IPS variance scales with E[IW?2] and deteriorates under
limited overlap (Crump et al.,|2009). We monitor stability with the effective sample size (ESS),

(3, W) ESS(W) 1

ESS(W) = , —
W) S, WP n 1+ CV3(W)

when W = 1 (global mean—one/SNIPS).

We also track tail behavior via diagnostics (Hill, 1975} |Liu, [2001; Owen, [2013). Common stabilizers
include truncation/clipping (Ionides, [2008]), overlap weighting (Li et al.,[2018}; [Fong et al.| [2021]),
balancing objectives (Kallus,|2018), and covariate—shift reweighting (Shimodaira, |2000; Sugiyama
et al., [2007).



Calibration for OPE. Calibration enforces identities under 7y: outcome calibration de-biases
g(X); ratio calibration enforces E, [W,/] = 1 and E,[W,-h] = E,[h] for a test class h; orthogonal
moments enable honest inference (Kallus & Maol 2022} Fong & Kennedyl [2022). Recent work
gives projection-based IPS/DR with stability guarantees (van der Laan et al., 2025aib). For DR, IF
orthogonality renders small calibration error second order (Bickel et al., {1993} |Chernozhukov et al.,
2018} [van der Laan & Rose, [2011).

Shape constraints (isotonic). Isotonic regression is the Euclidean projection onto the cone of
monotone functions (PAVA) (Ayer et al., |1955}; |Barlow et al., |1972); it avoids extrapolation and
weakly reduces dispersion by majorization (Banerjee, 2001; Hardy et al., [1952; Marshall et al., 2011).
CJE uses two mean-preserving projections: (i) AutoCal-R calibrates R = f(.5) on the oracle slice
(default: isotonic in S; automatic two-stage spline—rank—isotonic fallback), and (ii) SIMCal-W
maps mean-one ratios onto the cone of S-monotone, unit-mean weights (optionally intersected with
box/Lipschitz constraints), which deterministically lifts ESS by majorization. A light variance guard
can blend to a cap before re-projection.

Judges as surrogates. Automatic judges (LLM-as-judge or preference models) provide scalable
scoring (Ouyang et al., [2022; Bai et al.l [2022; [Zheng et al., 2023} [Kim et al., 2024; Kocmi & Fe+{
dermann, [2023)) but are correlational and may drift (Wang et al.| 2023} |Liu et al.| [2023)). Viewing
S as a surrogate connects to surrogate endpoints and mediation (Prentice}, |1989; Robins & Green-
land, [1992; [Frangakis & Rubin, 2002} |Pearl, 2012; [VanderWeele, 2015)). Under mean sufficiency
(E[Y | X,A,S] = u(S)), calibrating R = f(S) preserves V(n') = E[f(S™ )] and supplies a
one-dimensional index that stabilizes weights.

OUA uncertainty & IF stacking. Treating learned R = f (S) as fixed understates uncertainty; we
add a calibration component via a delete-one-oracle-fold jackknife on top of the main IF variance
(consistent; vanishes as the slice grows) (Bickel et al.l|1993} Kiinschl [1989; |Politis & Romano, |1994).
Many OPE estimators are regular and asymptotically linear with per-row IFs ¢(¢); we stack them
by minimizing the plug-in IF covariance over the simplex, preserving regularity and supporting
caps/guards, with an optional outer split (Wolpert, |1992; Breiman), |1996; van der Laan et al., [2007).

3 METHODS

CIJE follows one rule—Design-by-Projection (DbP)—applied to each object in the pipeline: (i)
calibrate the reward (projection onto a monotone cone), (ii) stabilize ratios (projection onto a
unit-mean, S-monotone cone), (iii) compute an orthogonalized estimator (projection onto a nuisance-
orthogonal subspace), and (iv) optionally hedge variance by stacking (projection onto a simplex). All
learners are cross-fitted; by Knowledge—Riesz, these projections preserve the estimand and attain the
surrogate information bound (see Section ).

3.1 REWARD CALIBRATION (AUTOCAL-R: ISOTONIC IN S WITH AN AUTOMATIC TWO-STAGE
FALLBACK)

On the oracle slice {(S;,Y;)}, fit a mean-preserving calibrator R = f(T'(S)) with K-fold cross-
fitting:

¢ Monotone mode (default). Isotonic regression on S f¢ € argmingen, Y;eo (Y — f (Si))Q.
PAVA preserves the slice mean exactly.

» Two-stage mode (automatic fallback). Fit a smooth index T'(.S) = ¢g(.S) (splines+ridge), map to
mid-ranks U = ECDF{T'(S)}, then fit isotonic h+(U). Predictions are R = h4+(ECDF{g(S5)}).

Select the mode by OOF RMSE with a one-standard-error (1-SE) preference for monotone;
low/mid/high-S diagnostics are logged. Let RO©F denote OOF predictions used along the IF path;
the point estimate may use the pooled fit. The terminal isotonic step makes AutoCal-R mean-honest
in either mode.



3.2 WEIGHT CALIBRATION (SIMCAL-W: UNIT-MEAN, S-MONOTONE RATIOS WITH OOF
STACKING)

Let W be the sample-mean-one baseline (SNIPS). For each fold :

1. Monotone projections (train on /_;). Fit increasing/decreasing isotonic maps on S (the latter
via —8), rescale each to mean one on I, and predict OOF candidates on I}, WTOOF, WPOF;

include the identity candidate WIS&F =1.

2. OOF stacking (variance-aware). Define residuals 7; used by the downstream estimator: T;=R;
for IPS and T;=R; — m(X;, A;) for DR (with 7= below). Let U, = WOOFT for ¢ € {base, 1

, 1} and compute 3.4 = cov(U,, Uy) (tiny ridge if needed). Choose simplex weights
A : T stack A OOF
S b y w - c Wc )
B €argmin 5315 > 5

then renormalize W'k to mean one.
3. Light variance guard (optional; p=1 by default). Cap dispersion relative to the baseline and
re-project:
p Var(Wi')
Each step preserves the sample mean; the final mean-one isotonic re-projection weakly reduces
dispersion (majorization), hence ESS(W,/) > ESS(W™!) deterministically.

a= min{l, }, whlend — 1o (Wstak_1), W, = IsoMeanOneg(WP"en).

Remark (transport view). In the continuous case the ideal component is m*(s) = pg|x (8)/Ps|m, (5)s

SIMCal-W is the L? monotone projection of noisy W, onto the cone of increasing, mean-one
functions of .S (a monotone rearrangement along 5).

3.3 ESTIMATORS: CAL-IPS, OC-IPS, DR-CPO, AND TR-CPO

Let §(z,a) = E[R | X=x, A=a] and g (x) = Y, 7'(a | z) §(z, a); all nuisances are cross-fitted
and OOF predictions are used inside IFs.

Calibrated IPS.

n
IPS _ 13 OOF _
VIPS E g R, ¢; > =Wp iR — Vips.

S\H

Orthogonalized IPS (OC-IPS). Add a mean-zero orthogonal term using the raw ratio W and a
fold-honest isotonic fit m(S) ~ E[WE™ | S]:

- N 1 & . .
Vocps = Vips + Z (WE —m(S:) (RPOT — (Sh)).
i=1
This solves the leading EIF moment and restores +/n rates under mild conditions.

DR-CPO (sequence-aware DR).

~ 1 (. . . . N ~

Vor(n) = EZ{gﬂ/(Xi)jLWw/,i(Ri—q(Xi,AZ-))}7 PR = G (X)) A Wir 1 (ROOF —POF) ~Vpg.
i=1

TR-CPO (targeted & retargeted DR; optional triply-robust add-on). Targeting updates ¢

along the clever covariate H(X, A) = W,/ (identity or logit link) to solve * =D W s (RPOF —

G=(X;, A;)) = 0. Retargeting applies a control variate anchored at (W — 1).

ZWe —1) 5 1 .
7= W (RO —3007), 5= QBT D g LS G ()4 Zis (W),
( A 2 2 (o 02
TR = G (X)) + Zi — 4 (War i — 1) = Vg
(When labels are sparse and MAR in S, a fold-honest label-propensity 7, (S) € [e, 1] yields a triply
robust correction; see the appendix.)



3.4 IF-SPACE STACKING (VARIANCE-OPTIMAL CONVEX ENSEMBLING)

For a small library £ of regular estimators (e.g., DR/TMLE/MRDR variants, capped IPS), form
the matrix of centered IF columns & = [¢(®)].c¢ (computed OOF on the same folds), estimate
¥ = 13T ® + I, and solve the simplex QP

A LT > A Te stack A
Q€ arg glelg a Ya, Vstack = ; Qe V(e)’ (bs Ak = ; Qe (b(e)‘
e e

4 THEORY: EIF, DESIGN-BY-PROJECTION, AND EFFICIENCY
We state the main results; proofs and technical lemmas are deferred to the appendix.

Surrogate model and EIF. Let R* = E[Y | S] and m*(S) = E[W, | S]. Under mean sufficiency
ElY | X, A, S] = R*(S5),

V(r') =Em*(S)R*(S)],  dsur(Os7) = gr p(X) + m*(S)(R" — qp(X, A)) — V(r),
with ¢x (7, a) = E[R* | X=x, A=a] and g}, p(z) = >_, 7'(a | z) qx(z,a).

Theorem 1 (Surrogate EIF and variance reduction). Let ¢uncon be the canonical gradient in the
nonparametric model that does not use S. Then ¢gy, is the canonical gradient in the surrogate
model, and Var(dsur) < Var(duncon ), with strict inequality unless W is o(S)-measurable and R*
is degenerate.

Knowledge-Riesz (Influence Representer). Let L3 be the mean-zero Hilbert space with inner
product (f, g) = E[fg], and let I(P) = ¢* + T(P)" denote the affine class of influence functions in
a baseline model. For a nonempty closed convex set C C L3 encoding justified knowledge (e.g., o(S)-
measurability, mean-one S-monotone weight components, simplex hulls), define Io(P) = I(P)NC
and ¢¢ = argminge . (p) E[¢?].

Theorem 2 (Knowledge—Riesz (Influence Representer)). (i) Metric projection & information im-
provement. ¢¢ = Il;(pync(0) is unique and satisfies ||¢c||3 < ||¢*|13, with equality iff I(P) N C
already contains ¢*. If C1 C Ca, then ||¢c, |13 < ||¢c, |3. (ii) Attainability. Replacing nuisances
by their projections into C and applying a one-step/TMLE update with cross-fitting yields a regular
estimator with IF ¢c¢.

Corollary 1 (Blackwell-efficiency monotonicity). If Ss is a garbling of S; (i.e., 0(S2) C o(S1)),
then Var(gﬁsur(Sl)) < Var(¢sur(52)), with strict inequality unless W/ is already o(Ss)-
measurable and R* is degenerate.

Consequences for CJE (i) Conditioning: taking C = {f : f = E[f | S]} recovers Theorem
(il) Mean-one monotone weights: restricting the weight component to {w : Ejw] = 1, w T S
corresponds to SIMCal-W and weakly reduces dispersion in finite samples (majorization). (iii)
Stacking: restricting to the convex hull of candidate IF columns gives the variance-optimal convex
ensemble.

Proposition 1 (Cal-IPS: mean correctness and dispersion control). Let R = f(T(S)) be AutoCal-R
(monotone in S or two-stage index; cross-fitted), and let W' = W, /E[W,.] denote the uncalibrated
mean-one ratios. Let Wy be SIMCal-W weights (OOF stack + mean-one isotonic, optional guard p >
1). Then Vips = L5, W iR —p V(1'), and Var,, (W,) < p Var,(W2') with ESS(W,) >
ESS(W™) deterministically.

Theorem 3 (DR-CPO / TR-CPO: /n limits and efficiency). Assume mean sufficiency, suitable
tails/moments, and cross-fitted nuisances satisfying the one-of-two rate condition |G — q&||2 - | War —
m*||2 = 0,(n"/?) (e.g., either factor = 0,(n=1/%)). Then

Vi(Vor = V(")) ~ NO,Var(dsw)),  Va(Ver — V(@) ~ N(0, Var(duw)),

i.e., DR-CPO and its targeted/retargeted refinement TR-CPO attain the surrogate efficiency bound.



Oracle x Sample Size Interaction Analysis (STACKED-DR)
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Figure 1: Oracle x sample size interaction for stacked—-dr. (A) debiased RMSE; (B) SE
including OUA; (C) MDE (two-policy, 5% two-sided, 80% power). Cells show means; dashed curves
are iso—label budgets m = nXxcoverage. Lower is better.

Budgeted bound (variance cap). For p > 1, define
W, = {m L E[m] =1, m1 S, E[(m —1)2] < pE[(m* — 1)2]},

and let m; be the L?(Ps) projection of m* onto W,. Define the budgeted gradient ¢(*) = grr r(X)+
my(S) (R — qi(X, A)) = V().

Theorem 4 (Budgeted information bound). The optimal asymptotic variance under the cap p equals
Var(¢(?)), which is nonincreasing in p and satisfies lim,_, «, Var(¢(")) = Var(¢su). If SIMCal-W
converges to my, (with the guard), then TR-CPO attains Var(¢(®)).

Theorem 5 (IF-space stacking). Let {V(E }eeg be regular asymptotically linear estimators with
centered IFs {¢ e)} and let & € arg mingea o TS o with S the empirical IF covariance. IfE - %
uniformly on A, then the stacked estimator V(@ jg asymptotically linear with IF $*") and variance
mingea oS a < min, Be.. An outer split leaves the limit unchanged.

Corollary 2 (Carathéodory sparsity). If & = [qi)(e)] has empirical rank r, the variance-optimal convex
combination uses at most r+1 base estimators.

Proposition 2 (OUA jackknife consistency). Let 17( f) be any CJE estimator that uses R = f(S)
(cross-fitted along the IF path). Under L?(Ps)-consistency of f fold honesty, and mild smoothness
of f — ‘7( f), the delete-one-oracle-fold jackknife consistently estimates the calibration-induced
variance component, so that \//a\rtotal = \//a\rmain + \//a\roracle is a consistent variance estimator.

Discussion. Theorem [2| formalizes Design-by-Projection: intersecting the IF class with justi-
fied closed convex sets can only lower the attainable variance, and projection-designed estimators
(AutoCal-R, SIMCal-W, DR/TMLE with cross-fitting, IF-Stack) attain the corresponding bound
in their respective models. In finite samples, isotonic projections additionally majorize dispersion,
explaining the deterministic ESS gains delivered by SIMCal-W. (Metric projections are firmly
non-expansive; composing DbP modules yields a non-expansive, i.e., 1-Lipschitz, pipeline.)

5 EXPERIMENTS

We evaluate CJE on an Arena-derived benchmark to measure: (i) stability (ESS/tails) from SIMCal-
W; (ii) accuracy and interval quality using OUA-augmented Cls; (iii) ordering robustness under
overlap stress; and (iv) sensitivity to key design choices (AutoCal-R mode, IF-space stacking, variance
guard p).

5.1 SETUP

Data & policies. We use n=4,989 prompts from public Chatbot Arena logs (Zheng et al, 2023)
collected under a fixed logger my. We compare five policies: base, clone (A/A), prompt-variant,
premium, and adversarial unhelpful.




Judges & oracle. Every row has a scalar judge score .S; a small i.i.d. oracle slice provides labels Y.
AutoCal-R is cross-fitted; out-of-fold RO°F are used along IF paths.

Propensities. Sequence-level TF forms W, = exp{logpr' — log px, }; TF conformance filters
apply (App.[E).
Baselines & metrics. We compare IPS/SNIPS (with clipping/overlap weighting), DR/TMLE/MRDR,

and calibrated variants (Cal-IPS, OC-IPS, DR-CPO, TR-CPO, IF-Stack); we report debiased RMSEd,
interval score, coverage gap, SE GM, and ranking metrics (pairwise wins, 7, regret).

5.2 MAIN RESULTS

Table 1: Accuracy & Uncertainty Metrics

Estimator RMSE? | IS (interval score) | [Cov—95|, SEGM | Pairwise % 1 Top-1% 1 71 Regret | Runtime (s) |
stacked-dr 0.0226 0.0767 0467  0.0125 91.9 83.1 0.837 0.0039 17.2
stacked-dr-oc 0.0225 0.0755 0.733  0.0123 90.2 794 0.804 0.0043 41.8
stacked-dr-oc-tr 0.0225 0.0755 0.760  0.0122 90.1 79.3  0.802 0.0043 54.2
calibrated-dr-cpo 0.0227 0.1450 4493 0.0258 91.0 81.0 0.819 0.0056 12.6
oc-dr-cpo 0.0459 0.0973 4787  0.0202 783 464 0565 0.0086 13.4
dr-cpo 0.0460 0.2171 4307  0.0386 78.4 46.3 0.567  0.0086 129
tr-cpo-e 0.1355 0.1472 0.040  0.0341 724 329 0448 0.0103 10.5
tr-cpo-e-anchored-orthogonal 0.1524 0.1845 0.467 0.0426 71.3 324 0425 0.0118 10.8
calibrated-ips 0.0245 0.5261 1.960  0.0947 46.1 17.9 -0.078  0.1727 5.1
orthogonalized-ips 0.1591 0.6812 2.893  0.1651 38.3 8.6 -0.234 0.2780 59
SNIPS 0.1596 0.7379 3.267  0.1815 383 8.7 -0.235 0.2785 4.5

J: lower is better, 1: higher is better. Bold: best, underlined: second-best. Metrics averaged across all regimes.

Accuracy and ordering. Table[I|shows stacked, calibrated DR variants dominate level accuracy and
ranking quality with tight uncertainty. stacked-dr attains the best (or tied-best) pairwise wins, 7,
regret, and competitive RMSE®. OC/TR refinements (stacked-dr-oc, stacked-dr—-oc—tr)
further shave SE GM at additional compute. IPS baselines remain fast but inaccurate, with unstable
uncertainty and weak ordering despite clipping/overlap weighting.

Table 2: Weight Diagnostics: SIMCal Calibration Effect

ESS (%) Weight CV Max Weight Tail «
Policy SNIPS—Cal A SNIPS—Cal A SNIPS—Cal A | SNIPS—Cal
Clone 26.2% — 98.8% +278% 1.8 = 0.1 +96% | 0.040 — 0.002 +95% | 1.08 — > 10 > 900%
Parallel Universe Prompt | 0.6% — 94.6% +15877% | 26.6 — 0.2 +99% | 0.617 — 0.003 +99% | 0.56 — > 10 > 900%
Premium 0.7% — 80.8% +12280% | 16.8 — 0.4 +97% | 0.409 — 0.004 +99% | 0.32 — > 10 > 900%
Unhelpful 0.4% — 84.0% +21908% | 24.1 — 0.4 +98% | 0.619 — 0.005 +99% | 0.13 — > 10 > 900%

Stability from SIMCal-W. Table [2| quantifies SIMCal-W'’s effect on weights. The mean-one iso-
tonic projection (with OOF stacking) deterministically reduces dispersion via majorization, yielding
large ESS uplifts, dramatic CV shrinkage, and tail relief (Hill & > 2), even under extreme raw-overlap
(e.g., prompt-variant).

Precision & power planner. Figure [T|shows how precision scales with the joint budget of logs (1)
and oracle coverage. Panel B reports SEs that include the OUA addition; Panel C converts them to
MBDE for a two-policy comparison at 80% power. Dashed iso—label-budget curves (m=n xcoverage)
reveal tradeoffs between more logs and more labels; along a fixed dashed curve (constant m), MDE
tightens as n grows.

5.3 ABLATIONS (BRIEF)

Ablations. Disabling SIMCal-W raises variance and worsens interval score/coverage; IF-Stack
matches or beats the best single DR with a slight CI widening under an outer split; the guard p rarely
engages for p € [1, 2] (default 1); one rollout per (X, 7’) suffices for g, with a light smoother.



5.4 DIAGNOSTICS AND GATES (SUMMARY)

Per policy we render ESS/tails (baseline vs. SIMCal-W), an S-overlap heatmap, a DR-orthogonality
CI, a judge-reliability diagram with a coverage badge, and the OUA share. Gates: OVERLAP, JUDGE,
IDENTIFICATION (triggers REFUSE-LEVEL), DR, MULTIPLICITY; thresholds in App.[D]

6 LIMITATIONS

Overlap (positivity). As with IPS/DR, CJE requires support overlap between my and each 7’.
When overlap is poor, raw ratios are heavy-tailed and uncertainty inflates. Mitigations: SIMCal-W
reduces dispersion and raises ESS; if tails persist we (i) gate on ESS and Hill indices, (ii) use overlap
weighting or cohort restriction, and (iii) run an online check when ;<1 or single-row dominance

persists (App. D).

Judge assumptions (surrogate validity). AutoCal-R assumes mean sufficiency and monotonicity
in S (or a learned index). If strained, the two—stage fallback preserves mean honesty but targets
E[f(S ’T/)]. Mitigations: surface reliability curves and regional residuals; when evidence is weak,
label as surrogate—target, widen/refresh the oracle slice, and target labels where error concentrates.

Calibration coverage (identification). If a 7’ pushes S outside the labeled range, isotonic cal-
ibration flattens at the boundary and levels are not point—identified. Mitigations: flag LIMITED
CALIBRATION SUPPORT and set REFUSE-LEVEL (report rankings and partial-ID bounds) until
targeted labels cover the uncovered .S region (App. D).

Approximate sufficiency (bias modulus). When E[Y | X, A, S] # u(S), the residual A(X, A, S)
induces bias proportional to calibration error. Mitigations: by Cauchy—Schwarz, |Bias| < ||m —
W2 [|A]l2; DbP shrinks ||m — W/ ||2, so bias is second order when either calibration is tight or
the violation small; we surface this via diagnostics and invoke REFUSE-LEVEL when unbounded.

Label sparsity and MAR. TR-CPO’s label term assumes MAR in .S with bounded label propensity;
severe violations or tiny propensities degrade guarantees. Mitigations: monitor labeled ESS and
min 7, stratify labeling to shore up sparse strata, or revert to DR without label-propensity terms.

Temporal dependence and logger drift. Non-stationarity (launches, safety updates) can bias or
widen intervals. Mitigations: report dependence—robust SEs (block/stationary bootstrap), shorten
analysis windows, and monitor judge drift via rank—based/residual change detection with FDR
control.

Oracle independence and leakage. OUA assumes the oracle slice is i.i.d. and fold—honest. Miti-
gations: reuse deterministic folds across modules, de—duplicate the slice, and periodically refresh
it.

Selection and multiplicity. Scanning many 7’ inflates winner’s curse. Mitigations: use FDR
control (BH/BY), optionally an outer split for [F-Stack to reduce selection optimism, and emphasize
pre—specified contrasts.

Teacher forcing and API drift. Accurate propensities require deterministic, chat—native TF (stable
tokenizer/template) with additivity/conditionality invariants; missing/invalid TF corrupts ratios.
Mitigations: enforce schema/conformance checks, ledger failures, and treat results as conditional on

TF quality (App. [E).

Subgroups and fairness. Calibration quality and ESS gains may differ across subgroups. Miti-
gations: provide subgroup diagnostics (ESS, reliability) and, when feasible, use subgroup—specific
calibration/weights or constrained pooling.



Judge informativeness (garbling). Coarser judges raise the surrogate information bound and
widen Cls. Mitigations: prefer richer rubrics (multi-dimensional .S with stable aggregation) and
validate with coarsening ablations (empirical Blackwell monotonicity).

Compute. DR/TR-CPO add one rollout + judge per (X, 7’); AutoCal-R refits for OUA add modest
overhead. We amortize via TF caches, shared folds, and a small stacking library.

Ethics Statement. We analyze retrospective logs that may include sensitive content. Diagnos-
tics/gates prevent overconfident claims under poor overlap/coverage and surface judge drift. When
identification fails, we report rankings only (REFUSE-LEVEL) and recommend targeted labeling or
online checks. Any deployment should assess subgroup reliability and adopt privacy safeguards for
logs.

Reproducibility Statement. We provide two example configs and the fold-hash rule (supplement);
schema, TF contract, pseudocode, and numerics appear in the appendices. Additional artifacts will
be released after review.

7 CONCLUSION

We introduced CJE, an audit-ready recipe for offline policy evaluation with LLM judges built around
a single rule: Design-by-Projection (DbP). The principle is simple—encode justified assumptions
as closed convex sets and project valid objects onto them. Projections onto subspaces (nuisance-
orthogonal scores), monotone cones (mean-preserving reward/weight calibration), and simplices
(variance-hedged stacking) preserve the estimand while weakly reducing variance.

Concretely, AutoCal-R learns a mean-preserving surrogate R = f(T'(S)); SIMCal-W produces unit-
mean, S-monotone ratios with deterministic ESS uplift via OOF stacking and a light guard; sequence-
aware OC-IPS/DR-CPO/TR-CPO deliver +/n inference under cross-fitting; IF-Stack minimizes
plug-in IF variance; and OUA adds calibration uncertainty for honest Cls.

Theoretically, our Knowledge—Riesz (Influence Representer) theorem explains why intersecting the ad-
missible IF class with justified convex knowledge lowers the attainable variance and is attainable with
projection-designed estimators. Two design corollaries follow: (i) Blackwell—efficiency monotonic-
ity—richer judges (finer o-fields) strictly help; (ii) isotonic mean-one calibration Lorenz-dominates
baseline weights, improving all Schur-convex dispersion metrics (not just ESS). Empirically, on
Arena-derived logs, SIMCal-W turns near-degenerate ratios into stable weights (large ESS gains),
calibrated DR achieves tight, well-calibrated intervals and near-/n scaling, and stacking improves
ordering; when calibration support is limited, CJE flags the issue and reports robust rankings with
conservative uncertainty (REFUSE-LEVEL).

Takeaways. (i) Project before you compute: express assumptions as convex sets and apply metric
projections.

(i1) Treat teacher forcing and diagnostics (overlap, tails, reliability, orthogonality) as first-class
artifacts.

(iii) Report oracle—uncertainty—aware variance, not just IF variance.

(iv) Ship with explicit gates for OVERLAP, JUDGE, IDENTIFICATION, DR, and MULTIPLICITY.
(v) Prefer richer, more informative judges (Blackwell monotonicity) and shape-stabilized weights
(Lorenz dominance).

Future work. Selection-aware inference over large policy sets; robust/DP isotonic calibration
(mirror/Bregman DbP) for heavy tails; active oracle budgeting via shadow prices; sequential/agent
evaluations with prefix-aware SIMCal and stepwise DR; and subgroup-aware constraints with fairness
diagnostics. We include example configs and a deterministic fold hash rule in the supplement; full
algorithms, pseudocode, and diagnostics are in the appendices. Additional public artifacts will be
released after review.
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A NOTATION AND FORMAL SETUP

Observed data and policies. We observe i.i.d. logs
Oi = (Xi7Ai;Si7Y;0bs7Li)7 1= 1,...777,7

generated under a fixed logger A; ~ 7mo(- | X;). A scalar judge S; = s(X;, A;) is available on
all rows. The label indicator L; € {0, 1} marks inclusion in the oracle slice; when L; = 1 we
observe Y,°" =Y, otherwise Y,°> is missing. For a candidate policy 7/, define the sequence-level
importance ratio

' (A | X;)

Wﬂ'li = -
' mo(Ai | X5)

= exp{ logpr (4;] X3) — log pr, (4: | X5) },
computed via teacher forcing (TF) with the model’s own tokenizer/rendering. Write

Wml _ Wﬂ'/vi
i T 1 n
n Zj:l W

for the sample-mean—one (SNIPS) baseline (global normalization over the evaluation cohort).

Estimand. Let Y (7) denote the outcome under the counterfactual draw A ~ 7/(- | X). The target
is


https://proceedings.mlr.press/v275/
https://arxiv.org/abs/2411.02771
https://arxiv.org/abs/2305.05658
https://arxiv.org/abs/2305.05658

A.1 ASSUMPTIONS (COMPACT)

(D1) Fixed logger & i.i.d. (X;, 4;,5;) are i.i.d. under m; TF log-likelihoods are stable and well-
defined.

(D2) Overlap (positivity). mo(a | x) > 0 whenever 7’(a | x) > 0, and E,,[W2] < occ.

(D3) Judge coverage & stability. S is well-defined under both 7 and 7’; the Radon-Nikodym
derivative on o (S) exists; the judge/rubric is stable on the analysis window.

(J1) Oracle slice. There exists an i.i.d. subsample O = {i : L; = 1} with m = |O| < n on which
Y is observed.

(J2-M) Mean sufficiency (monotone). E[Y | X, A, S] = u(S) with p weakly nondecreasing.
(J2-SI) Single-index fallback. There exist g* : R— R and nondecreasing p* such that E[Y | S] =

1 (g*(9))-
(R1) Tails/moments. E[Y?] < oo, E[S?] < oo, and E,,[W2] < co. When using the SIMCal-W
variance cap p > 1, Var, (W) < p Var, (W=31).

(R2) Calibration consistency. AutoCal-R satisfies || f(T'(S))—E[Y | S]] L2(Ps) = 0p(1) (monotone
or two-stage mode), and SIMCal-W satisfies || W, — E[W, | S] 2Py = 0p(1).
(R3) One-of-two rates with cross-fitting. With nuisances §(x, a) ~ E[R | , a] and W,

16— aillzcp) - [War —m*ll2p) = 0p(n~1/?),

e.g., either factor is 0, (n~'/4) with the other consistent.

A.2 CROSS-FITTING AND FOLDS

Let F: {1,...,n}—={1,..., K} be a deterministic fold map (e.g., a hash of z_id). For any learner
L, train H~%) = Lon {i : F(i) # k} and use out-of-fold predictions H°°F = /(=) (0;) in
influence-function (IF) calculations. The same folds are reused across AutoCal-R, SIMCal-W, and
DR nuisances.

A.3 PROJECTION OPERATORS USED BY CJE

Monotone cone. M; = {f : R — R nondecreasing}. The isotonic projector (PAVA) IIry,
enjoys: (i) L? optimality; (ii) mean preservation on the training sample; (iii) dispersion reduction by
majorization.

Mean-one cone for weights. For w € R" ordered by .5, define the mean-one isotonic projection

IsoMeanOneg(w) = argmin Z(uz —w;)? st ou€ My(9), %Zul =1,

where M4 (.S) denotes vectors nondecreasing in the S-order. This preserves the sample mean and
weakly reduces empirical variance; hence ESS weakly increases (deterministically, by majorization).

Simplex hull. For centered IF columns {¢(®)}.ce, let ® = [¢()]and A = {a 1, >0, 3, e =
1}. TF-space stacking solves mingea o' Y a with Y = (1/n)® @ + AL

A.4 AUTOCAL-R AND SIMCAL-W PRIMITIVES

AutoCal-R.On O = {i: L; = 1}, fit R = f(T(S)) by either: (i) monotone (T (S) = S), or (ii)
two-stage (T'(S) = ECDF{g(S)} with a spline g), selecting by OOF RMSE (1-SE rule). Use OOF
predictions ROOF along IF paths; the point estimate may use a pooled fit. A terminal isotonic step
enforces slice-mean preservation.

SIMCal-W. (Per fold) Fit up/down isotonic maps on .S to obtain WTO OF, f)OF; include Wbob&F =

Define residuals T; (IPS: R;; DR: R; — G(X;, A;)). Choose Be argmingea, BT 3 where 3 is the
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covariance of U, = WOOFT. Form Wstack = S~ 3 WOOF renormalize to mean one (global, over
the evaluation cohort), optionally apply the variance guard

p Var(Wmh) }
’ Var(Wstack) ’

and re-project by W, = IsoMeanOneg (WPlend),

o= mln{l Wblend =1 +a (Wstack _ 1)7

A.5 DR NUISANCES AND SEQUENCE VALUE

Let §(x,a) = E[R | z,a] and define . (z) = >, 7'(a | ) §(x,a). For sequences, approximate
g (x) with one (default) rollout A’ ~7'(- | z) and R’ = f(s(z, A’)); a light smoother (e.g., ridge
over (z, z) features) can reduce Monte Carlo noise. Cross-fitting is used throughout.

A.6 INFLUENCE FUNCTIONS AND VARIANCE

Let {¢;}_, denote the (approximately) centered influence—function contributions of 1&, computed
with cross—fitted/OOF nuisances and RO°F along the IF path, so that £ 3" | ¢; ~ 0. Under
standard regularity conditions,

Vi (d—v) L N0, Var()).

We estimate the main IF variance and the total variance (including the oracle addition) by
1 n
e ) g ., e
Varmain = — Z ¢i7 Variotal = Varmain + Varoracle,
n =1

and report the (1 — o) Wald interval

Cli_o: ) + zl_m\/\m.

When serial or cluster dependence is a concern, we additionally report dependence—robust SEs (e.g.,
cluster—robust sandwich or block/stationary bootstrap) as a sensitivity analysis.

A.7 ORACLE-UNCERTAINTY—AWARE (OUA) JACKKNIFE

Partition O into K oracle folds {Oy,} 5, . For each k, refit AutoCal-R on O \ Oy, recompute R(~*),
and rerun the full pipeline to obtain ¢)(—*). Then
K

K
_ . _ K—1 . 9
— 1 E —k _ § : —k
w - K ¢( )a Varoracle = K (’(/)( ) — w) .
k=1 k=1
(With unequal fold sizes, use the standard weighted delete-one-group formula.)

A.8 DIAGNOSTICS (DEFINITIONS)

ESS. ESS(W) = (X, I/Vi)2 /> W2, we report the fraction ESS/n. Under global mean-one

K3

normalization (SNIPS), > . W; = n and
ESS(W) 1
n 1+ CVEW)
Unless stated otherwise, diagnostics use the global (not per-fold) mean-one scaling.

Max-weight share. max; W; /> i W

with CV?(W) = Var(W) (since E[W] = 1).

Tail index (Hill). For top-k order statistics Wy > -+ > Wy, a = % Z§=1 log(W(j)/W(k))
(we sweep k over a stability grid and report the plateau).

Bhattacharyya affinity in S. Ap = [ \/ps|x (5) Ps|r, (s) ds (discrete: sum over bins); Dp =
—log Ap.
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Algorithm 1 AUTOCAL-R: mean-preserving reward calibration (cross-fitted; automatic two-stage
fallback)

1: Inputs: Oracle pairs {(S;,Y;) : L;=1}; folds F'(-); smooth index class g(-) (splines+ridge)
Outputs: Global reward R; = f(T'(S;)) and OOF ROOF
for k = 1to K do
Train set O_, ={i : L;=1, F (i) # k}; testset O, ={i : L;=1, F(i) = k}
Monotone candidate: fT(fk) €argmingea, Y ico., (Yi — f(S:))?%; set R%?F = fT(fk)(Si)
for i€ Oy,
6:  Two-stage candidate: fit g=%) on O_y; ranks U; = ECDFo_, (9% (S;)); fit h%_k) €

argminpent, Yyeo., (Y — h(Ui)%: set ROOF = 1™ (U;) for i€ O,
7: end for
8: Compute OOF risks (overall and by S tertile); select mode via 1-SE rule (prefer monotone unless
two-stage is significantly better)
9: Refit the selected mode on the full oracle slice to obtain global R; for all i € {1:n}; retain RPCF
per fold for IFs
10: Note: The terminal isotonic step preserves the oracle-slice mean exactly.

DR orthogonality score. n ' 3>, Wy ; (ROOF — OOF (X, A;)) with a Wald CL

Coverage badge. Plug-in estimate of Pr,/ (S ¢ [Sore , Sore D ; large out-of-range mass with near-flat

min’ ~max

boundaries triggers LIMITED CALIBRATION SUPPORT and REFUSE-LEVEL.

A.9 SYMBOL GLOSSARY

Symbol Meaning

X, A Context, action (sequence)

S =s(X,A) Judge score (scalar)

Y Ground-truth outcome (on oracle slice)

o, T Logger and candidate policies

W Importance ratio 7' (A | X)/mo(A | X)

wmi Mean-one (SNIPS) baseline

R = f(T(S)) Calibrated reward (AutoCal-R; monotone or two-stage)
Wﬁ/ Calibrated, unit-mean, S-monotone weights (SIMCal-W)
4y Gn Outcome and policy—value nuisances for DR

10) Per-row centered influence-function contribution
Varmain IF variance n~! Var(¢;)

Vargracle Oracle jackknife variance addition

ESS(WV) Effective sample size

B ALGORITHMS (EXTENDED)

This appendix gives compact, cross-fitted pseudocode for CJE modules: reward calibration
(AUTOCAL-R), surrogate-indexed weight calibration (SIMCAL-W), estimators (CAL-IPS, OC-IPS,
DR-CPO, TR-CPO), IF-space stacking, and oracle—uncertainty—aware variance (OUA). We reuse
the same K-fold map F'(i) € {1: K} across all modules. “OOF” denotes out-of-fold predictions used
along the IF path.

Complexity notes. PAVA is O(n) after a shared sort by S. SIMCAL-W is linear-time per fold;
the stacking QP is 3x 3 (weights) or a small |£|x|£]| system. DR/TR-CPO add one rollout + judge
per (X, 7"). The OUA jackknife refits the calibrator K times and reruns the pipeline; TF caches and
precomputed features amortize cost.
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Algorithm 2 SIMCAL-W: surrogate-indexed, unit-mean monotone weight calibration (OOF project
— stack — cap — re-project)
1: Inputs: Baseline mean-one ratios W:}l; scores S; residuals T (IPS: T=R; DR: T=R — q);
folds F(+); variance cap p>1 (default 1)
2: Qutput: Calibrated weights VAVW, (mean-one, S-monotone)
3: for k=1to K do
{OOF candidate projections}
Train I, = {i: F(i) # k};test I, = {i : F(i) = k}
5 Fitisotonic maps on I_j: increasing m%ﬁk)(S) and decreasing miﬁk) (S) (via —S); rescale
each to mean one on [
6:  Predicton Ij: VVOOF = m% (9), WOOF mi_k)(S), and include WQOF = 1
7: end for .
8: OOF stacking (variance-aware). Form U, = WCOOF T for ¢ € {base, T, ]}; compute Xy =
cov(Ug, Ud) 4+ Ale—y
9: Choose § € argmingea, 73 3; set Wstack = S~ 3 JWOOF, renormalize W52k to sample
mean one
10: Light variance guard (optional). o = min{1, p Var(W=!)/ Var(Wstack)}; set hlend —
14+« (Wstack _ 1)
11: Final projection. W IsoMeanOneS(Wble“d) (mean preserved; dispersion weakly
decreases = ESS 1)

Algorithm 3 CAL-IPS and OC-IPS

1: Inputs: Calibrated rewards R, ROOF (Alg.; calibrated weights W (Alg.; raw ratios W M,
fold-honest 1 (5) ~ E[Wiaw \ S|

2: Outputs: VIpS, VOC 1PS (IFs defined analogously to DR)
3: Cal-IPS: Vips = Z Wori Ris $7S = Wor s ROOF — Vips

i=1

~ N 1 . .
4: OC-IPS: Vocups = Vies + Z (WY —n(S;)) (ROOF — f(S))
i=1
5: Note: The orthogonal term solves the leading EIF moment and restores /n rates under mild
conditions.

C PROOFS AND TECHNICAL LEMMAS

We collect standing identities, shape-constrained facts, and proofs for the results in Sectiond] Unless
stated otherwise, expectations are under the logging law P,,; L? norms are with respect to the
relevant marginal (e.g., L?(P) or L?(Ps)). We reuse the fold map F(-) from Section and the
projection operators from Section

C.1 STANDING IDENTITIES AND TOOLS

Change of measure. For any integrable h(X, A, S,Y) and any candidate 7/,
E[W, h(X,A,5,Y)] = Ex[h(X,A,S,Y)], EWx]=1. )
Doob-Dynkin / conditional expectation as L? projection. Let G = o(9). Then m*(S) :=
E[W, | G] is the L? projection of W, onto the closed subspace L?(G) C L?(P), i.
E[(War = U(5))?] = E[(War — m*(S))?] + E[(m*(S) — U(S)) ]7 )
for all U(S) € L?(G). In particular, Var(W,/U) > Var(m*(S)U) for any U(S) € L*(G).
Pythagoras in Hilbert spaces. Let L3(P) be the mean-zero Hilbert space with inner product

(f,g) = E[fg]. For a nonempty closed convex set C C L3 and any z € L2, denote by Il¢(2) the
metric projection. If C; C Cs then dist(z,Cs) < dist(z,Cy).
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Algorithm 4 DR-CPO: sequence-aware doubly robust estimator (cross-fitted)

Inputs: W,.; R and ROOF from Alg.|1} folds F(-)

Outputs: Vg and IF ¢PR

for £ =1to K do
Train ¢C~%) (x,a) ®E[R | 2,a] on {i : F(i) # k}; predict OOF ¢O°F = ¢(=*)(X;, A;) for
i€ I,

5:  Approximate gﬁr,‘k)(x) =E gr/(.j)[d% (z, A)] via one rollout A’ ~ 7/(- | X) and optional

smoothing; obtain OOF gfr),%F fori € I
6: end for

R

~ 1. R R
7: Vbr = -~ ; {gw’ (X3) + War i (R — 4(Xi, Ai))}
8: ?R = g (Xi) + W‘n”,i (R?OF - quoOF) - ‘7DR

Algorithm 5 TR-CPO: targeted & retargeted DR (optional triply robust add-on)
1: Inputs: Same as Alg. E]; link (identity if R is unbounded; logit if R € [0, 1])
Targeting (solve EIF moment).
for k = 1to K do .
With clever covariate H (X, A) = W, fite(=%) on {i : F(i) # k} so that

R

nhY Wi (ROOF — ¢ (X5, A)) = 0
i€ly
under the chosen link.
5: end for
6: Set g, to the pooled targeted fit; recompute g, accordingly
7: Retargeting (control variate). Z; = W, ;(RYOF — ¢9°F(X;, 4;)); 4 = cov(Z, W —
1)/ Var(Wy —1)

P 1 ) o ) . .
8: Vrr = — > {gw' (Xo) + Zi =4 (Wi — 1)}7 O = g (Xi) + Zi = 4(We i — 1) = Vg

9: Optional triply robust term (MAR in S). If a fold-honest label propensity 71,(S) € [e,1] is
available, add a mean-zero residual xresidual term on labeled rows to further damp first-order
calibration error (see Appendix [C)).

C.2 ISOTONIC REGRESSION: MEAN PRESERVATION AND MAJORIZATION

Lemma 1 (Mean preservation; PAVA). Let f € argmin femy 2ierWi — f (51))? be the isotonic fit
(PAVA) on indices 1. Then ﬁ Yoicr [(si) = ﬁ Y icr Vi

Lemma 2 (Dispersion reduction by majorization). After sorting by s, the isotonic fitted vector
is a mean-preserving adjacent pooling of y; hence for any convex ¢, y, ¢(u;) < Y-, ¢(y;) (Hardy
et al.| 1952 Marshall et al., 2011)). In particular, with sample mean one, Var,, () < Var, (y) and
ESS(a) > ESS(y).

Proofs are standard; see|Ayer et al.|(1955); Barlow et al.|(1972); Robertson et al.|(1988)); Banerjee
(2001).

C.3 PROOF OF THEOREM[I| (SURROGATE EIF & VARIANCE DROP)
Let R* = E[Y | S] and m*(S) = E[W, | S]. Under mean-sufficiency E[Y" | X, A, S] = R*(S),
V(r') = ]E[WW/R*] = E[m*(S)R*(S)]. 3)

Standard semiparametric calculations (projecting the unconstrained score onto the tangent space of
the surrogate model) yield

Psur (05 7) = grs (X) +m*(S)(R* — qx(X, A)) — V() “4)
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Algorithm 6 IF-STACK: variance-optimal convex ensembling in IF space

Inputs: Candidates {‘A/(e)7 #(¢)} e (centered IFs; same folds); ridge A

Outputs: V(@ and ¢(®)

Form & = [¢p(9)],ce; ¥ = (1/n)®T® + I

Solve & € argmingea a’Sa

Vi@ — e Ge Ve, ¢@ = S oce Ge 0

Optional outer split: learn & on one half; apply to the other to reduce selection optimism

Support note (Carathéodory). If rank(®) = r, the variance-optimal stack uses at most r+1 base
estimators.

AN A o

Algorithm 7 OUA jackknife: oracle—uncertainty—aware variance addition

1: Inputs: Oracle folds {Oy}X_,; end-to-end estimator ‘A/()
2: Outputs: Varg acle and Variotal = Varmain + Varoracle
3: for k =1to K do
4:  Refit AUTOCAL-R on O \ Oy; recompute R%) and all downstream nuisances & weights;
run the full pipeline to get V(=)
5: end for R . R o
6: V=2> VR, Vargaae = K223, (VIR = V)
k

7: Return: Varioiar = Varmain + Varoracle

with i (2,a) = E[R* | z,a] and g}, p(7) = Eann(|2)[aR(7, A)] (Bickel et al., 1993} van der
Vaart & Wellner, [2000). Since m* is the L? projection of W, onto L?(c(S)), Pythagoras (or (2)))
implies Var(¢su;) < Var(¢uncon ), strictly unless W, € L?(o(S)) and R* is degenerate.

C.4 PROOF OF THEOREM 2] (KNOWLEDGE-RIESZ / CKP)

Let I(P) = ¢* + T(P)* be the affine class of IFs in a baseline model and C C L2 be nonempty,
closed, convex. Define I¢c(P) = I(P) NC and ¢¢ = II;,(p)(0) = arg minge 1. (p) E[¢?]. Then

e |3 = dist?(0, Ic(P)) < dist*(0,1(P)) = [|¢*]13,

with equality iff I (P) already contains ¢*. Monotonicity for C; C Cs is immediate. For attainability,
replace nuisances in a one-step/TMLE update by their projections into C; cross-fitting ensures the
empirical score equations hold in the restricted model and the remainder is o, (n~1/2) (Bickel et al.,
1993} ivan der Vaart & Wellner, [2000; [van der Laan & Rose, [2011)).

C.5 PROOF OF COROLLARYI

If 0(Ss) C 0(S1), then L?(0(S2)) C L?(o(S1)). Hence the feasible knowledge set for conditioning,
C(S) = {f: [ = E[f | S]}, satisfies C(S2) C C(S1). Applying Theorem [2 with I(P) fixed
yields [|pc(s) |3 < [|de(sa)ll3, ie. Var(dsur (S1)) < Var(gsur(Sz2)). Strictness fails only if the finer
knowledge already holds, i.e., if W is o(S3)-measurable and R* is degenerate.

C.6 PROOF OF PROPOSITION [T](CAL-IPS)

Write
Vips — V(') = (P, — P)[m*(S)R*] + P[(Wrr — m*)R*] + Plm*(f(T(S)) — R*)] + rem,

where rem collects second-order sample-splitting terms. The empirical process term is Op(n_l/ ),
the second and third vanish by L?-consistency of SIMCal-W and AutoCal-R (monotone or two-
stage) and Cauchy—Schwarz; the remainder is o, (1) by cross-fitting. Finite-sample dispersion

control follows from Lemmaand, if used, the blend cap p > 1; thus ESS(VAVW/) > ESS(Wm)
deterministically.
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C.7 PROOF OF THEOREM (DR/TR-CPO /1 LIMITS)

With cross-fitted nuisances and ROOF along the IF path,
Vor — V(') = (P = P)[osw] + P[(Wer — m*){q} — @}] + 0p(n~1/?).
The second term is 0, (n~/2) by the one-of-two product-rate condition || W+ —m*||2 - || — ¢k|l2 =

0,(n~1/2) and cross-fitting; the central limit theorem yields the limit variance Var(egy, ). TR-CPO
adds (i) a one-dimensional fluctuation that solves the EIF moment in finite samples and (ii) a mean-

zero control variate anchored at (W,T/ — 1); both are second order under the same rate condition,
leaving the limit unchanged.

C.8 PROOF OF THEOREM [4] (BUDGETED BOUND)

Let W, = {m :E[m] =1, m 1 S, E[(m —1)?] < pE[(w* — 1)?]}. Intersecting the surrogate
tangent space with the linear span induced by m € W, replaces m* by its L?(Ps) projection
my = Iy, (m*) in ¢sur, giving #(?). Monotonicity in p follows from nested convex sets Wo, CW,,
for p1 < p2, and lim,_, o qb(p) Osur- If SIMCal-W converges to m (with the same cap), TR-CPO
attains Var(¢(?)) by the same one-of-two rate argument.

C.9 PROOF OF THEOREM [5] (IF-SPACE STACKING) AND COROLLARY [2]

Let {V(} be regular and asymptotically linear with centered IFs {¢(¢)}. Set ® = [$(°)] and

= (1/n)®T® + AI. A uniform law of large numbers on the simplex A yields DIy uniformly;
by argmin continuity, & — o* € argmin,ea o' ¥ . Hence V(@ s asymptotically linear with IF
o) = Yo aézj)(e) and variance mingea o' ¥ a < min, X... For Corollary if rank(®) = r,
then the feasible IF combinations lie in an r-dimensional affine subspace; by Carathéodory’s theorem,
any point in conv{¢(®)} admits a representation using at most r+1 extreme points.

C.10 PROOF OF PROPOSITION[2] (OUA JACKKNIFE)

Let V(f) be a regular estimator that depends on f only through R = f(T'(S)), with f — V(f)
Hadamard-differentiable at f* in L?(Pg). Using a delta-method expansion and cross-fitting (so that
oracle folds are asymptotically independent of the IF path), the delete-one-oracle-fold jackknife
(Bickel et al.| [1993}; |[Kiinsch, |1989; |Politis & Romano 1994)) consmtently estimates the variance

contribution from first-stage calibration. Therefore Vartotal Varmdm + Vauromcle is consistent for
Var(V).

C.11 AUXILIARY LEMMAS USED IN THE MAIN PROOFS

Lemma 3 (OOF mean preservation for AutoCal-R). Let K be fixed and let ROOF = f(=F1)(T(S,))
be OOF predictions from AutoCal-R (either mode). Then P,,[RO°F]—P,[Y] = 0,(1) and P[ROOF —
R*] = 0,(1) under L?(Ps)-consistency of f.

Lemma 4 (Second-order remainder for DR with cross-fitting). Let ‘//\'DR be DR-CPO with cross-fitted
(q, G ) and calibrated W . Then

‘7DR - V(’IT/) - (Pn - P)(bsur = P[(Wﬂ" - m*)(qﬁ - (j)] + Op(n_1/2)7
and the bracketed term is op(nfl/Q) under ||W7r/ —m*2- | — grllz = op(n*1/2).
Lemma 5 (Guard stability). Let Wk e the OOF-stacked candidate and W the mean-one base-
line. For p > 1, define o = min{1, p Var(WH1)/ Var(Wstack)} ang Whlend = 1 4 o (Wstack 1),

Then Var(WPend) < p Var(W1) and the subsequent mean-one isotonic projection cannot increase
empirical variance by Lemma

Lemma 6 (Firm non-expansiveness of projections). Metric projections onto closed convex sets in
Hilbert spaces are firmly non-expansive: ||Il¢(x) — Ie(y)||? < (e (x) — He(y), x — y). Hence
compositions of DbP modules (reward, weight, IF-space projections) are non-expansive. See, e.g.,
Bauschke & Combettes| (2017, Prop. 4.16).
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Remarks on dependence. If logs exhibit serial or cluster dependence, the IF CLTs can be replaced
by block/stationary bootstrap arguments; our reported intervals can include a dependence-robust

alternative (App.[A.§).

C.12 WHAT THE BOUNDS DO NOT INCLUDE

The surrogate and budgeted information bounds describe model limits: they do not include (i) finite-
sample dispersion control from the sample cap (we encode it population-wise via p) or (ii) the oracle
first-stage uncertainty (added separately by OUA).

C.13 CITATIONS FOR TECHNICAL INGREDIENTS

Semiparametric efficiency and one-step/TMLE: |Bickel et al.| (1993); |van der Vaart & Wellner| (2000);
van der Laan & Rose|(2011); Tsiatis| (2006).

Isotonic regression / PAVA and order-restricted inference: |Ayer et al.|(1955); Barlow et al.|(1972);
Robertson et al.| (1988)); Banerjee| (2001).

Majorization theory: [Hardy et al.|(1952); Marshall et al.| (201 1)).

Calibration for OPE: Kallus & Mao|(2022)); Fong & Kennedy|(2022); [van der Laan et al.| (2025a3b).
Jackknife/bootstraps for dependence: [Kiinsch|(1989); |Politis & Romano|(1994).

Projections and non-expansive maps: |[Bauschke & Combettes|(2017)).

D DIAGNOSTICS, GATES, AND REPORTING (DETAILS)

This appendix formalizes the diagnostics used in CJE, the associated ship/stop gates, and the reporting
ledger. The main text shows a compact panel per policy; here we provide precise formulas, defaults,
and recommended thresholds. Unless stated otherwise, expectations and variances are empirical over
the evaluation cohort (global SNIPS normalization).

D.1 WEIGHT BEHAVIOR & OVERLAP

Effective sample size (ESS). For nonnegative weights,

2

(> W)

E S —
S =W
Under global mean-one normalization (SNIPS), ZZ W, =n, so
E 1
SSW) _ s—  CV*(W) = Var(W) when E[W] = 1.
n 1+ CVH(W)

Report the ESS fraction ESS(W)/n and the multiplicative uplift ESS(Wy/) /ESS(W31).

Max-weight share. max; W; / > ; W flags single-row dominance; display alongside the empirical
99.5th percentile of W.

Tail index (Hill) and CCDFE. For the top-k order statistics W(l) > > W( k)

swept over a stability grid K (e.g., 1-5% of n). Plot & (k) with a band over the plateau region (median
and IQR over K), and the empirical CCDF of W on a log-log scale.

Overlap in judge space. Let pg, and pg|,+ denote the (binned) densities of S under 7 and 7':
AB :Z\/pb(’ﬂ'o)pb(’ﬂ'/), DB :—IOgAB.
b

Overlay an S-binned heatmap of log W' to localize regions of poor overlap.
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D.2 JUDGE CALIBRATION, COVERAGE, AND DRIFT

Reliability diagram. Partition S into B bins; for bin b, plot the bin mean of R = f(T(S)) against
the oracle mean of Y, with 95% binomial intervals. Report a Brier-style reliability term and the OOF
RMSE, with a 1-SE model-selection overlay (monotone vs. two-stage).

Coverage badge. Estimate the fraction of evaluation mass outside the oracle S range:
OutOfRange = Prﬂ/(S < 8% or § > 5o

min max) .

Also report boundary flatness (slope of f in the lowest/highest oracle decile). Large Out OfRange
together with flat boundaries triggers LIMITED CALIBRATION SUPPORT and the REFUSE-LEVEL
gate.

Rank drift (optional anchor). Given a fixed anchor set of (X, A) pairs scored over time, compute
Kendall’s 7 between historical and current judge rankings with a permutation p-value. Change
detection on residuals can be monitored via CUSUM/EWMA with FDR control across anchors.

D.3 DR ORTHOGONALITY AND DECOMPOSITION
Orthogonality score. Let U; = Wy ; (RYOF — ¢O9F(X;,4;)) and U = =Y, U;. Form a

Wald CI for U using the standard error \/\//E;"( U)/n (or a cluster-/block-robust analogue). Report U
and its CI; near-zero indicates successful orthogonality.

DM-IPS decomposition. Display Voy = n= ' Y, §o(X;) and Vayg = n~ ' 3, Uy, with Cls and
the empirical correlation between their per-row contributions.

D.4 UNCERTAINTY: IF VARIANCE AND OUA ADDITION

For any estimator with centered IF contributions {¢; }7 ,
— 1 — — — —
Va'rmain = E Var(¢i)7 Vartotal = Va'rmain + Varoracle,

with \//a\rorade from the oracle jackknife (App. . Report the oracle share \/@Ome / @total and,
optionally, a dependence-robust alternative (below).

Dependence-robust SEs. When time/cluster dependence is suspected, also report: (i) cluster-
robust sandwich SEs when a cluster id (e.g., session/user) is available; and (ii) block/stationary
bootstrap intervals (block length chosen by a simple variance-stability sweep) (Kiinsch, [1989; |Politis
& Romano), [1994).

D.5 MULTIPLICITY FOR MANY-POLICY COMPARISONS
For contrasts A, = ‘7(71';)) — V(x*), compute Wald p-values and apply BH at level ¢ € [0.05,0.2];

BY can be used under strong dependence. Provide a pairwise win matrix with FDR marks and
Kendall’s 7 over policy means (all policies).

D.6 GATES: THRESHOLDS AND ACTIONS
REFUSE-LEVEL procedure. When IDENTIFICATION fails: (i) gray-out level estimates; (ii)

highlight Out OfRange and boundary flatness; (iii) report rank-only conclusions with conservative
relative CIs; (iv) recommend targeted labeling in uncovered S regions.

D.7 PLANNER: MDE AND LABEL/LOG BUDGETS

Given two independent estimates with equal SE §E, the two-sided 95% test at 80% power has
MDEgpy = (20.8 + 20.975)\/5 SE.
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Table 3: Default gates (suggested; tighten for high-stakes launches).

Gate Default Action if failed

OVERLAP ESS/n > 0.30; Hill & > 2; A > 0.85 Use overlap weights or cohort restriction; report with
warning if & € [1, 2); do not ship offline conclusions if
a<1

JUDGE Reliability band covers diagonal at knots; no persistent drift alarms Refresh/extend oracle slice; switch to two-stage index;
re-validate

IDENTIFICATION OutOfRange < 7 (default n=5%) or non-flat boundaries Flag LIMITED CALIBRATION SUPPORT; set REFUSE-
LEVEL: report rankings + partial-ID only

DR Orthogonality CI includes 0; no NaNs; residual tails acceptable Strengthen nuisances/cross-fitting; fall back to stabilized
IPS as a diagnostic

MULTIPLICITY  FDR control applied when [II'| > 5 Report adjusted p-values; avoid uncorrected winner
claims

CApP Guard rarely engaged; CI width not sensitive to p If guard active on > 50% folds or sensitivity high, show

cap curve and prefer overlap weights/restriction

We tabulate SE versus (n, m/n) (labels per log) using Stacked-DR with OUA and annotate “iso-cost”
lines for the label budget.

D.8 REPORTING LEDGER (PER POLICY/COHORT)

Persist: (i) calibrator mode, OOF risk by tertiles, knots/levels (hash); (ii)) SIMCal-W maps, stacking
weights /3, guard p and blend «; (iii) ESS fraction, max-weight share, Hill index band, Ap; (iv) DR

orthogonality score and CI; DM-IPS split; (v) OUA trace {17(*’“)} and variance breakdown; (vi)
filter counts (e.g., TF gaps) and an inclusion manifest of x-ids; (vii) multiplicity control (family, ¢,
adjusted p).

D.9 VISUALIZATION PRIMITIVES (FOR REPRODUCIBLE PANELS)

» ESS/tails strip: bars for ESS fraction (baseline vs. SIMCal-W); dot for max-weight share; Hill
band.
* S-overlap heatmap: density of S under 7y vs. 7’ with overlaid log W; annotate Ap.

* Reliability panel: bin means of (R, Y") with 95% Cls; mode card (monotone vs. two-stage; OOF
RMSE).

+ Orthogonality panel: point/CI for U; DM-IPS bars with CIs and correlation.
* Uncertainty ring: pie of \//a\romde / \//zﬁmtal.
D.10 OPTIONAL: DEPENDENCE-ROBUST IMPLEMENTATION DETAILS

Cluster-robust SEs: if a cluster id (i) is available, Varcr = n"2 Y, (,c. ¢1) (ice 6i) ' » with
finite-sample correction.  Stationary bootstrap: sample blocks of geometric length ¢ ~ Geom(p)

glued to length n; form the bootstrap distribution of 1/} (or of n=1/2 > ¢;) and report percentile or
t-based bands.

D.11 COMPACT GATE PSEUDO-LOGIC

E IMPLEMENTATION, ENGINEERING, AND REPRODUCIBILITY

This appendix enumerates the concrete artifacts needed to reproduce CJE end-to—end: a minimal
logging schema, a teacher—forcing (TF) contract with conformance checks, fold construction, numer-
ics, persisted outputs, and a lightweight resource model. No packages beyond the ICLR style file are
required.

E.1 MINIMAL LOGGING SCHEMA (STORAGE—AGNOSTIC)

Each row corresponds to one prompt—continuation pair under the fixed logger my. We persist only
what is necessary to reconstruct SNIPS/IPS weights and judge scores.
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Algorithm 8 Gate logic (per policy)

1: Compute weight/tail metrics: ESS fraction, max-share, Hill band; compute Ap; judge reliabil-
ity/coverage; orthogonality score; OUA share
2: if ESS/n < 0.30 or median Hill< 2 or Ap < 0.85 then
3:  Flag OVERLAP (warn; restrict or use overlap weights)
4: end if
5. if Out OfRangenandboundaryslopes= 0 then
6: REFUSE-LEVEL < TRUE
7: end if
8: if Orthogonality CI excludes O then
9:  Flag DR; strengthen nuisances/cross-fitting
10: end if
11: if Cap engaged on > 50% folds or CI sensitivity to p high then
12:  Show cap-sensitivity; prefer overlap weights/restriction
13: end if
14: Apply multiplicity control (BH/BY) when |TII'| > 5

Table 4: Columns required for CJE. Columnar formats (Parquet) are convenient but not required.

Field Type Description

x_id string Stable identifier (hash of normalized prompt + cohort)
prompt bytes/string  Canonicalized X (tokenizer + normalization recorded)
continuation bytes/string Realized A under 7y (full sequence)

tokens int[] Token ids for A under each model’s TF tokenizer
logp-pi0 float[] Per—token log pr, (at | ht) across A

judge_S float/json Scalar judge score S = s(X, A) (or struct of sub—scores)
judge_cfg json Judge rubric, decoding params, model snapshot hash
run_cfg json mo engine tag, decoding params, checkpoint hash, seed
fold.id int Deterministic fold (F(z_id); see

cohort string Optional slice label (time window, traffic source, etc.)

TF cache (per target 7). A separate table stores, for each (z_id, 7’): logp_pi_prime, logii=
log pr» — log pr,, and

wnt = eXp(logW — logsumexp(1ogW) + log n),

i.e., a single global denominator that enforces sample—-mean—one. Rows with missing/invalid TF are
filtered and recorded in a ledger.

E.2 TEACHER FORCING: CONTRACT AND CONFORMANCE

We require a single—call, chat-native TF API that returns per—token and summed log p, (A | X') under
a fixed template, tokenizer, and snapshot. Client—side checks:

* Determinism. % identical calls for the same (X, A, T@SNAPSHOT, template) must be
bit-identical (tolerance < 10~7).

* Additivity. Also return log p,(X) and log p,(X+A) and verify log p,(X+A) =~ log p.(X) +
log p=(A| X) < logp,(X). Violation = discard row (and log it).

» Template/tokenizer provenance. Return immutable hashes; reject moving aliases.

* Masking. If safety masks are applied, return mask bits and a renormalized flag; prefer an
evaluation—only path without hidden renormalization.

Conformance snippet (pseudo).
lp = TF (model_id, template_id, X, A)

assert same_bits(lp.sum, sum(lp.per_token), tol)
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1pX, 1pXA = TF_logp(X), TF_logp (X+A)
assert abs (lpXA - (lpX + 1lp.sum)) < eps and lp.sum <= 0

The supplement’s README repeats this minimal additivity check.

E.3 FOLDS AND CROSS—FITTING

We use K'=5 folds by default. The fold map F'(7) is a stable hash of x_id modulo K, ensuring that
all modules (AutoCal-R, SIMCal-W, DR nuisances) share identical OOF boundaries. Oracle folds
are derived by intersecting F'(i) with L;=1. We may serialize F'(¢) internally for determinism; the
public supplement publishes only the hash rule F(x_id)=hash(z_id) mod 5 (no fold map file).

E.4 NUMERICS AND STABILITY

* Ratios in log—space. Keep log W until forming the global mean—one normalization; use a single
logsumexp for the denominator.

* Center residuals. For stacking objectives and covariances, center 7" and drop NaNs/inf at ingestion.

* Variance estimates. Use Welford’s online formulas for high dynamic range; add a tiny ridge
(A€[1071°,1079]) to covariance matrices.

* PAVA. Run once per fold after sorting by S; enforce mean—one via an additive shift (translation),
not multiplicative rescaling. This preserves monotonicity and avoids tail distortion.

* Guard (relative cap). Default p=1; compute v = min{1, p Var(W™!)/ Var(W=t<k)}; blend
and then (re)project/translate to mean—one. Persist whether the guard engaged.

Reference code note. For simplicity, the supplement’s simcal.py uses global isotonic fits
and—unlike the main pipeline—computes the stacking covariance on those same in-sample fits
(no OOF in the tiny reference).

E.5 PERSISTED ARTIFACTS (PER POLICY/COHORT)
 Calibrator: mode (monotone vs. two—stage), OOF RMSE (overall + tertiles), knots/levels (hash),
OOF vs. pooled predictions.

* Weights: isotonic merge metadata, S orientation (up/down), stacking weights B including the
identity/baseline candidate, guard p and blend «, final mean—one check.

» Estimators: point estimates, centered IF vectors’ hashes, Var,in, orthogonality score and CI,
dependence-robust SEs (if used).

* OUA: {‘7(_’“)}5:1, \//a\roracle» @total-

* Diagnostics: ESS fraction, max—weight share, Hill band, S—overlap (Ap), coverage badge, gate
statuses.

» Ledger: counts by filter reason (TF gaps, moderation, timeouts), x_id inclusion manifest.
E.6 REFERENCE RUN ORDER (PSEUDOCODE)

# 0) Build TF cache for each pi’ (one pass per policy)
build_tf_cache —--policies <list> —--dataset logs.parquet —--out tf_cache.parquet

# 1) Reward calibration (cross-fitted; auto monotone vs two-stage)
autocal_r —--oracle oracle.parquet --folds 5 —--out rewards.parquet

# 2) SIMCal-W per policy (OOF project->stack->cap->translate-to-mean-one)

simcal_w —-tf-cache tf_cache.parquet —--scores S.parquet —--rho 1.0 ——-folds 5 \
--out weights.parquet

# 3) Estimation + IFs (Cal-IPS / OC-IPS / DR-CPO / TR-CPO)

estimate --rewards rewards.parquet —--weights weights.parquet --folds 5 \
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—-—out estimates.parquet

# 4) IF-Stack (optional)
stack —--estimates estimates.parquet —--out stacked.parquet

# 5) OUA jackknife
oua —-oracle—-folds 5 —--pipeline-config cfg.yaml —--out wvariance.parquet

# 6) Report (diagnostics, gates, CIs)
report ——-inputs *.parquet —--figs figs/ —--out report.html

E.7 COMPUTE AND RESOURCE MODEL

Let n be prompts, 1" the mean continuation length, and |II’| the number of candidate policies.

o TF cache. O(|II'| n T') forward tokens; microbatch by length; near-linear scaling across GPUs.
» SIMCal-W. O(nlogn) for sort + O(n) for PAVA per fold; covariance/stacking are tiny (3x3).

¢ DR/TR-CPO. If §, uses one rollout per (X, '), add O(|II'| n T") tokens once; a light smoother
amortizes Monte Carlo noise.

» OUA. K refits of AutoCal-R and re-runs of the pipeline; cache features to avoid recomputation.

E.8 DETERMINISM, VERSIONING, AND PRIVACY

Determinism: fix seeds at engine, dataloader, and sampler; record random states in run_cfg;
serialize fold maps (internal).

Versioning: record immutable hashes for model weights, tokenizer, and template; pin checkpoints.
Privacy: encrypt prompts/continuations at rest; hash x_id with salt; public artifacts include only
aggregates/diagnostics and redacted IDs.

E.9 WHAT TO PUBLISH WITH THE PAPER (MICRO—SUPP)

* README.md (10-12 lines): what’s inside; how it ties to the paper; the fold rule
F(z_id)=hash(x_id) mod 5; the TF additivity snippet; and a SIMCal usage snippet. Note: iso-
tonic fits are global for simplicity and, in this tiny reference, stacking covariance is computed
in—sample (no OOF).

* configs/ablation_config.yaml and configs/policies.yaml: sanitized examples
(no vendors/paths).

* code/simcal.py: reference SIMCal-W with four fixes baked in: (i) mean—one by translation
after isotonic (not scaling); (ii) relative p—guard Var(cal) < var_cap X Var(baseline); (iii)
include the identity/baseline candidate in the stack; (iv) doc note on global fits and in—sample
covariance for stacking in the tiny reference.

* results/ablation_sample. jsonl: tiny, double-blind sample (two lines) illustrating the
output schema. This sample reports IF—only SEs/CIs for brevity; in the paper, all Cls include the
OUA addition.

All other details (schema, TF contract, pseudocode, numerics) appear in the appendices. Public
artifacts beyond these examples will be released after review.

F STATEMENT ON THE USE OF LARGE LANGUAGE MODELS (LLMS)

Disclosure. LLMs played a significant supporting role in the conception, drafting, and engineering
of this work. Consistent with the venue’s policy, the authors take full responsibility for all content,
including any text or code initially produced with LLM assistance. LLMs are not authors.
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Tools. We used general-purpose conversational and code-assistant LLMs (“chat” and
IDE—completion interfaces) throughout the project. Interactions were iterative (prompt—response
with edits), and no model was granted authorship credit or decision authority.

Roles where LLMs were used.

* Writing and editing. Drafting and revising prose (clarity, organization, grammar), con-
verting notes to LaTeX, tightening section transitions, normalizing bibliography fields, and
suggesting figure captions.

Related work & scoping. Generating candidate literatures and keywords; proposing nearby
citations and contrasts. All citations included in the paper were manually verified against
primary sources before inclusion.

Mathematical development. Assisting with algebraic manipulations and outline sketches
for derivations (e.g., surrogate EIF decomposition, orthogonality checks, majorization facts
for isotonic projections, and IF—space stacking conditions). All proofs and statements in the
paper were independently derived and checked by the authors; LLM outputs served only as
“hints” or drafts.

Software engineering. Translating pseudocode to Python scaffolds; proposing unit—test
skeletons; producing small utilities (e.g., PAVA helpers, ESS/tail diagnostics, jackknife
wrappers). Every code artifact was reviewed, rewritten as needed, and validated by the
authors with tests and end—to—end runs.

Experiment design & analysis. Suggesting ablation grids, reporting tables, and plotting
snippets; stress—testing overlap and calibration—coverage scenarios; drafting README
and micro—supplement structure. Final configurations, thresholds, and interpretations were
selected by the authors.

Safeguards and verification.

* Source verification. No reference was added without manual inspection of the primary
paper (title/venue, statement fidelity, and relevance).

* Math checks. Key identities (e.g., EIF forms, nuisance—orthogonality, and variance/CI
formulas) were re—derived by the authors and cross—checked by simulation or symbolic
sanity checks (dimensions, limits, special cases).

* Code validation. All LLM-suggested code passed author—written tests (deterministic
TF conformance, mean—preserving isotonic calibration, ESS/tail diagnostics, cross—fitting
boundaries, and OUA recomputation). Any failing or non—idiomatic snippets were discarded
or rewritten.

* Data handling. Interactions avoided sharing non—public data or metadata beyond what
appears (redacted/anonymized) in the paper or supplement. Double-blindness was preserved
in all materials supplied to LLMs.

Limitations of LLM assistance. LLMs can produce incorrect or fabricated statements, code, and
citations. Our mitigation was to treat outputs as draft suggestions only, to require independent verifi-
cation for every technical claim, and to gate inclusion behind tests/derivations and primary—source
checks. Any errors that remain are the authors’ responsibility.

Authorship and accountability. LLMs are not eligible for authorship. All conceptual contributions,
final mathematical results, experimental choices, and interpretations are the authors’. This disclosure
exceeds the “significant usage” threshold and is provided to ensure transparency while maintaining
the paper’s double-blind status.
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