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ABSTRACT

Causal Judge Evaluation (CJE) casts offline “LLM-as-judge” evaluation as
calibrated off-policy estimation. We introduce a single design rule—Design-
by-Projection (DbP)—that encodes justified knowledge as closed convex sets
and projects valid objects onto them: (i) reward calibration (AutoCal-R, mean-
preserving isotonic in judge score S), (ii) weight stabilization (SIMCal-W, unit-
mean, S-monotone ratios with a light variance cap), (iii) nuisance-orthogonalized
estimators (OC-IPS/DR-CPO/TR-CPO), and (iv) variance-optimal IF-space stack-
ing. A Knowledge–Riesz result shows that intersecting the admissible IF class with
justified convex knowledge preserves the estimand and weakly lowers the attainable
variance; with cross-fitting, our projection-designed estimators attain the surrogate
information bound. On Arena logs (n=4,989; five policies), SIMCal-W lifts
ESS from near-degenerate regimes (e.g., 0.6%→94.6%), calibrated DR regains
near-
√
n scaling with tight, honest CIs, and IF-stacked DR improves ordering. CJE

surfaces overlap/tail and judge-calibration diagnostics and, when identification
fails, reports rank-robust conclusions (REFUSE-LEVEL).

1 INTRODUCTION

Offline “LLM-as-judge” scores are fast but correlational: computed under a logging policy π0, they
do not answer the counterfactual “What would our KPI be if we deployed π′?” Off-policy evaluation
(OPE) is the right causal tool, yet in practice IPS/SNIPS explode under limited overlap (heavy tails),
DR inherits instability from noisy ratios and misspecified nuisances, and judge scores can drift or
miscalibrate against higher-fidelity labels (Horvitz & Thompson, 1952; Li et al., 2011; Crump et al.,
2009; Jiang & Li, 2016; Lee et al., 2024).

Design-by-Projection (DbP). We encode justified knowledge as a closed convex set and project
valid objects onto it: (i) project scores/influence functions (IFs) onto nuisance-orthogonal subspaces
(efficiency); (ii) project rewards/weights onto mean-preserving, shape-constrained cones (stability;
ESS ↑); and (iii) project estimator combinations onto a simplex (variance-hedged stacking). Metric
projections preserve the estimand (via the mean-one hyperplane) and weakly shrink dispersion
through orthogonality and majorization (Bickel et al., 1993; van der Vaart & Wellner, 2000; Barlow
et al., 1972; Marshall et al., 2011).

Causal Judge Evaluation (CJE). We instantiate DbP as a practical OPE system. AutoCal-R fits
a mean-preserving calibrator from judge score S to oracle labels on a small i.i.d. slice (isotonic in
S with an automatic two-stage single-index fallback). SIMCal-W projects baseline ratios onto the
cone of S-monotone, unit-mean weights using out-of-fold (OOF) stacking and a light variance guard,
deterministically lifting ESS. Sequence-aware estimators—OC-IPS, DR-CPO, and TR-CPO—add
targeting/retargeting and can be stacked by minimizing IF covariance. An oracle-fold jackknife
yields oracle-uncertainty–aware (OUA) confidence intervals. Brief diagnostics and gates surface
overlap/tails, judge reliability/coverage, and DR orthogonality; when coverage is poor, CJE returns
rank-robust conclusions via REFUSE-LEVEL.
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Theory and evidence. We derive the surrogate-model efficient influence function (EIF) and prove
a Knowledge–Riesz (Influence Representer) result: intersecting the admissible IF class with justified
closed convex knowledge preserves the estimand and weakly lowers the attainable semiparametric
variance; with cross-fitting, projection-designed estimators attain the surrogate information bound
(Bickel et al., 1993; van der Vaart & Wellner, 2000). Two corollaries guide design: (i) Black-
well–efficiency monotonicity—finer judges (larger σ-fields) weakly lower, and generically strictly
reduce, the surrogate bound; (ii) SIMCal-W’s mean-one isotonic step Lorenz-dominates baseline
weights, improving every Schur-convex dispersion metric (variance/ESS and beyond). On Arena-
derived logs (n=4,989; five policies), SIMCal-W raises ESS from near zero to healthy regimes (e.g.,
0.6%→94.6%, 0.7%→80.8%); calibrated DR regains near-

√
n scaling with tight, honest CIs; and

IF-stacked DR further improves accuracy and ordering. When calibration support is limited, CJE
flags REFUSE-LEVEL yet preserves rankings.

Contributions.

1. DbP for OPE: a unifying projection rule—subspaces (efficiency), cones (stability), and simplices
(hedging)—that preserves the estimand and shrinks variance.

2. Calibration & stability: AutoCal-R (mean-preserving; automatic two-stage fallback) and SIMCal-
W (unit-mean, S-monotone) with deterministic dispersion/ESS improvement via majorization.

3. Inference & uncertainty: sequence-aware DR/TMLE (OC-IPS, DR-CPO, TR-CPO), IF-Stack
for variance-optimal convex ensembling, and OUA CIs that propagate calibration uncertainty.

4. Knowledge–Riesz & design corollaries: restricting IFs to justified convex sets lowers the variance
bound and is attainable with cross-fitting; finer judges strictly help (Blackwell monotonicity), and
SIMCal-W yields Lorenz-dominant weights (beyond ESS). When identification fails, CJE reports
rank-robust, partial-ID conclusions (REFUSE-LEVEL).

2 BACKGROUND AND SETUP

Setup & notation. We observe i.i.d. logs (Xi, Ai, Si) under a fixed logger π0(· | X); S = s(X,A)
is a scalar judge score on every row, and a small i.i.d. oracle slice provides labels Y . For a candidate
policy π′, the sequence-level importance ratio is

Wπ′,i =
π′(Ai | Xi)

π0(Ai | Xi)
= exp

{
log pπ′(Ai | Xi)− log pπ0

(Ai | Xi)
}
,

computed via teacher forcing (TF). The target is the counterfactual value V (π′) = E[Y (π′)]. We use
the sample-mean-one normalization (SNIPS) when helpful.

OPE basics. IPS/SNIPS estimate V (π′) by reweighting logged outcomes (Horvitz & Thompson,
1952; Hájek, 1965; Li et al., 2011; Swaminathan & Joachims, 2015). The direct method (DM)
plugs in g(x) =

∑
a π

′(a | x) m̂(x, a). Doubly robust (DR) estimators combine IPS and DM and,
with sample–splitting and cross–fitting, admit

√
n inference under the standard one–of–two n−1/4

product–rate condition (Bickel et al., 1993; van der Vaart & Wellner, 2000; Kosorok, 2008; Jiang &
Li, 2016; Chernozhukov et al., 2018; van der Laan & Rose, 2011). Teacher forcing (TF) provides
sequence–level propensities/ratios, so these forms apply to sequence policies without modification
(Lee et al., 2024).

Variance, overlap, and stabilization. IPS variance scales with E[W 2
π′ ] and deteriorates under

limited overlap (Crump et al., 2009). We monitor stability with the effective sample size (ESS),

ESS(W ) =

(∑
iWi

)2∑
iW

2
i

,
ESS(W )

n
=

1

1 + CV2(W )
when W̄ = 1 (global mean–one/SNIPS).

We also track tail behavior via diagnostics (Hill, 1975; Liu, 2001; Owen, 2013). Common stabilizers
include truncation/clipping (Ionides, 2008), overlap weighting (Li et al., 2018; Fong et al., 2021),
balancing objectives (Kallus, 2018), and covariate–shift reweighting (Shimodaira, 2000; Sugiyama
et al., 2007).
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Calibration for OPE. Calibration enforces identities under π0: outcome calibration de-biases
g(X); ratio calibration enforces Eπ0

[Wπ′ ] = 1 and Eπ0
[Wπ′h] = Eπ′ [h] for a test class h; orthogonal

moments enable honest inference (Kallus & Mao, 2022; Fong & Kennedy, 2022). Recent work
gives projection-based IPS/DR with stability guarantees (van der Laan et al., 2025a;b). For DR, IF
orthogonality renders small calibration error second order (Bickel et al., 1993; Chernozhukov et al.,
2018; van der Laan & Rose, 2011).

Shape constraints (isotonic). Isotonic regression is the Euclidean projection onto the cone of
monotone functions (PAVA) (Ayer et al., 1955; Barlow et al., 1972); it avoids extrapolation and
weakly reduces dispersion by majorization (Banerjee, 2001; Hardy et al., 1952; Marshall et al., 2011).
CJE uses two mean-preserving projections: (i) AutoCal-R calibrates R = f(S) on the oracle slice
(default: isotonic in S; automatic two-stage spline→rank→isotonic fallback), and (ii) SIMCal-W
maps mean-one ratios onto the cone of S-monotone, unit-mean weights (optionally intersected with
box/Lipschitz constraints), which deterministically lifts ESS by majorization. A light variance guard
can blend to a cap before re-projection.

Judges as surrogates. Automatic judges (LLM-as-judge or preference models) provide scalable
scoring (Ouyang et al., 2022; Bai et al., 2022; Zheng et al., 2023; Kim et al., 2024; Kocmi & Fe-
dermann, 2023) but are correlational and may drift (Wang et al., 2023; Liu et al., 2023). Viewing
S as a surrogate connects to surrogate endpoints and mediation (Prentice, 1989; Robins & Green-
land, 1992; Frangakis & Rubin, 2002; Pearl, 2012; VanderWeele, 2015). Under mean sufficiency
(E[Y | X,A, S] = µ(S)), calibrating R = f(S) preserves V (π′) = E[f(Sπ′

)] and supplies a
one-dimensional index that stabilizes weights.

OUA uncertainty & IF stacking. Treating learned R = f̂(S) as fixed understates uncertainty; we
add a calibration component via a delete-one-oracle-fold jackknife on top of the main IF variance
(consistent; vanishes as the slice grows) (Bickel et al., 1993; Künsch, 1989; Politis & Romano, 1994).
Many OPE estimators are regular and asymptotically linear with per-row IFs ϕ(e); we stack them
by minimizing the plug-in IF covariance over the simplex, preserving regularity and supporting
caps/guards, with an optional outer split (Wolpert, 1992; Breiman, 1996; van der Laan et al., 2007).

3 METHODS

CJE follows one rule—Design-by-Projection (DbP)—applied to each object in the pipeline: (i)
calibrate the reward (projection onto a monotone cone), (ii) stabilize ratios (projection onto a
unit-mean, S-monotone cone), (iii) compute an orthogonalized estimator (projection onto a nuisance-
orthogonal subspace), and (iv) optionally hedge variance by stacking (projection onto a simplex). All
learners are cross-fitted; by Knowledge–Riesz, these projections preserve the estimand and attain the
surrogate information bound (see Section 4).

3.1 REWARD CALIBRATION (AUTOCAL-R: ISOTONIC IN S WITH AN AUTOMATIC TWO-STAGE
FALLBACK)

On the oracle slice {(Si, Yi)}, fit a mean-preserving calibrator R = f(T (S)) with K-fold cross-
fitting:

• Monotone mode (default). Isotonic regression on S: f̂↑ ∈ argminf∈M↑

∑
i∈O

(
Yi − f(Si)

)2
.

PAVA preserves the slice mean exactly.

• Two-stage mode (automatic fallback). Fit a smooth index T (S) = g(S) (splines+ridge), map to
mid-ranks U = ECDF{T (S)}, then fit isotonic ĥ↑(U). Predictions are R = ĥ↑(ECDF{g(S)}).

Select the mode by OOF RMSE with a one-standard-error (1-SE) preference for monotone;
low/mid/high-S diagnostics are logged. Let ROOF denote OOF predictions used along the IF path;
the point estimate may use the pooled fit. The terminal isotonic step makes AutoCal-R mean-honest
in either mode.
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3.2 WEIGHT CALIBRATION (SIMCAL-W: UNIT-MEAN, S-MONOTONE RATIOS WITH OOF
STACKING)

Let Wm1
π′ be the sample-mean-one baseline (SNIPS). For each fold k:

1. Monotone projections (train on I¬k). Fit increasing/decreasing isotonic maps on S (the latter
via −S), rescale each to mean one on I¬k, and predict OOF candidates on Ik: WOOF

↑ , WOOF
↓ ;

include the identity candidate WOOF
base ≡ 1.

2. OOF stacking (variance-aware). Define residuals Ti used by the downstream estimator: Ti=Ri

for IPS and Ti=Ri − m̂(Xi, Ai) for DR (with m̂=q̂ below). Let Uc =WOOF
c T for c ∈ {base, ↑

, ↓} and compute Σ̂cd = cov(Uc, Ud) (tiny ridge if needed). Choose simplex weights

β̂ ∈ arg min
β∈∆3

β⊤Σ̂β, W stack =
∑
c

β̂cW
OOF
c ,

then renormalize W stack to mean one.
3. Light variance guard (optional; ρ=1 by default). Cap dispersion relative to the baseline and

re-project:

α = min
{
1,
ρ Var(Wm1

π′ )

Var(W stack)

}
, W blend = 1+α (W stack−1), Ŵπ′ = IsoMeanOneS

(
W blend

)
.

Each step preserves the sample mean; the final mean-one isotonic re-projection weakly reduces
dispersion (majorization), hence ESS(Ŵπ′) ≥ ESS(Wm1

π′ ) deterministically.

Remark (transport view). In the continuous case the ideal component is m⋆(s) = pS|π′(s)/pS|π0
(s);

SIMCal-W is the L2 monotone projection of noisy Wπ′ onto the cone of increasing, mean-one
functions of S (a monotone rearrangement along S).

3.3 ESTIMATORS: CAL-IPS, OC-IPS, DR-CPO, AND TR-CPO

Let q̂(x, a) ≈ E[R | X=x,A=a] and ĝπ′(x) =
∑

a π
′(a | x) q̂(x, a); all nuisances are cross-fitted

and OOF predictions are used inside IFs.

Calibrated IPS.

V̂IPS(π
′) =

1

n

n∑
i=1

Ŵπ′,iRi, ϕIPS
i = Ŵπ′,iR

OOF
i − V̂IPS.

Orthogonalized IPS (OC-IPS). Add a mean-zero orthogonal term using the raw ratio W raw
π′ and a

fold-honest isotonic fit m̂(S) ≈ E[W raw
π′ | S]:

V̂OC-IPS = V̂IPS +
1

n

n∑
i=1

(
W raw

π′,i − m̂(Si)
) (
ROOF

i − f̂(Si)
)
.

This solves the leading EIF moment and restores
√
n rates under mild conditions.

DR-CPO (sequence-aware DR).

V̂DR(π
′) =

1

n

n∑
i=1

{
ĝπ′(Xi)+Ŵπ′,i

(
Ri−q̂(Xi, Ai)

)}
, ϕDR

i = ĝπ′(Xi)+Ŵπ′,i

(
ROOF

i −q̂OOF
i

)
−V̂DR.

TR-CPO (targeted & retargeted DR; optional triply-robust add-on). Targeting updates q̂
along the clever covariate H(X,A) = Ŵπ′ (identity or logit link) to solve 1

n

∑
i Ŵπ′,i

(
ROOF

i −
q̂ε(Xi, Ai)

)
= 0. Retargeting applies a control variate anchored at (Ŵπ′ − 1):

Zi = Ŵπ′,i

(
ROOF

i −q̂OOF
i

)
, γ̂ =

cov(Z, Ŵπ′ − 1)

Var(Ŵπ′ − 1)
, V̂TR =

1

n

n∑
i=1

{
ĝπ′(Xi)+Zi−γ̂ (Ŵπ′,i−1)

}
,

ϕTR
i = ĝπ′(Xi) + Zi − γ̂ (Ŵπ′,i − 1)− V̂TR.

(When labels are sparse and MAR in S, a fold-honest label-propensity π̂L(S) ∈ [ε, 1] yields a triply
robust correction; see the appendix.)
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3.4 IF-SPACE STACKING (VARIANCE-OPTIMAL CONVEX ENSEMBLING)

For a small library E of regular estimators (e.g., DR/TMLE/MRDR variants, capped IPS), form
the matrix of centered IF columns Φ = [ϕ(e)]e∈E (computed OOF on the same folds), estimate
Σ̂ = 1

nΦ
⊤Φ+ λI , and solve the simplex QP

α̂ ∈ arg min
α∈∆

α⊤Σ̂α, V̂stack =
∑
e∈E

α̂e V̂
(e), ϕstack =

∑
e∈E

α̂e ϕ
(e).

4 THEORY: EIF, DESIGN-BY-PROJECTION, AND EFFICIENCY

We state the main results; proofs and technical lemmas are deferred to the appendix.

Surrogate model and EIF. Let R⋆ = E[Y | S] and m⋆(S) = E[Wπ′ | S]. Under mean sufficiency
E[Y | X,A, S] = R⋆(S),

V (π′) = E
[
m⋆(S)R⋆(S)

]
, ϕsur(O;π′) = g⋆π′,R(X) + m⋆(S)

(
R⋆ − q⋆R(X,A)

)
− V (π′),

with q⋆R(x, a) = E[R⋆ | X=x,A=a] and g⋆π′,R(x) =
∑

a π
′(a | x) q⋆R(x, a).

Theorem 1 (Surrogate EIF and variance reduction). Let ϕuncon be the canonical gradient in the
nonparametric model that does not use S. Then ϕsur is the canonical gradient in the surrogate
model, and Var(ϕsur) ≤ Var(ϕuncon), with strict inequality unless Wπ′ is σ(S)-measurable and R⋆

is degenerate.

Knowledge–Riesz (Influence Representer). Let L2
0 be the mean-zero Hilbert space with inner

product ⟨f, g⟩ = E[fg], and let I(P ) = ϕ⋆ + T (P )⊥ denote the affine class of influence functions in
a baseline model. For a nonempty closed convex set C ⊂ L2

0 encoding justified knowledge (e.g., σ(S)-
measurability, mean-one S-monotone weight components, simplex hulls), define IC(P ) = I(P ) ∩ C
and ϕC = argminϕ∈IC(P ) E[ϕ2].
Theorem 2 (Knowledge–Riesz (Influence Representer)). (i) Metric projection & information im-
provement. ϕC = ΠI(P )∩C(0) is unique and satisfies ∥ϕC∥22 ≤ ∥ϕ⋆∥22, with equality iff I(P ) ∩ C
already contains ϕ⋆. If C1 ⊆ C2, then ∥ϕC2∥22 ≤ ∥ϕC1∥22. (ii) Attainability. Replacing nuisances
by their projections into C and applying a one-step/TMLE update with cross-fitting yields a regular
estimator with IF ϕC .

Corollary 1 (Blackwell–efficiency monotonicity). If S2 is a garbling of S1 (i.e., σ(S2) ⊆ σ(S1)),
then Var

(
ϕsur(S1)

)
≤ Var

(
ϕsur(S2)

)
, with strict inequality unless Wπ′ is already σ(S2)-

measurable and R⋆ is degenerate.

Consequences for CJE (i) Conditioning: taking C = {f : f = E[f | S]} recovers Theorem 1.
(ii) Mean-one monotone weights: restricting the weight component to {w : E[w] = 1, w ↑ S}
corresponds to SIMCal-W and weakly reduces dispersion in finite samples (majorization). (iii)
Stacking: restricting to the convex hull of candidate IF columns gives the variance-optimal convex
ensemble.

Proposition 1 (Cal-IPS: mean correctness and dispersion control). Let R = f̂(T (S)) be AutoCal-R
(monotone in S or two-stage index; cross-fitted), and letWm1

π′ ≜Wπ′/E[Wπ′ ] denote the uncalibrated
mean-one ratios. Let Ŵπ′ be SIMCal-W weights (OOF stack + mean-one isotonic, optional guard ρ ≥
1). Then V̂IPS = 1

n

∑
i Ŵπ′,iRi →p V (π′), and Varn(Ŵπ′) ≤ ρ Varn(W

m1
π′ ) with ESS(Ŵπ′) ≥

ESS(Wm1
π′ ) deterministically.

Theorem 3 (DR-CPO / TR-CPO:
√
n limits and efficiency). Assume mean sufficiency, suitable

tails/moments, and cross-fitted nuisances satisfying the one-of-two rate condition ∥q̂− q⋆R∥2 · ∥Ŵπ′ −
m⋆∥2 = op(n

−1/2) (e.g., either factor = op(n
−1/4)). Then

√
n
(
V̂DR − V (π′)

)
⇝ N

(
0,Var(ϕsur)

)
,

√
n
(
V̂TR − V (π′)

)
⇝ N

(
0,Var(ϕsur)

)
,

i.e., DR-CPO and its targeted/retargeted refinement TR-CPO attain the surrogate efficiency bound.
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Figure 1: Oracle × sample size interaction for stacked-dr. (A) debiased RMSE; (B) SE
including OUA; (C) MDE (two-policy, 5% two-sided, 80% power). Cells show means; dashed curves
are iso–label budgets m = n×coverage. Lower is better.

Budgeted bound (variance cap). For ρ ≥ 1, define

Wρ =
{
m : E[m] = 1, m ↑ S, E

[
(m− 1)2

]
≤ ρE

[
(m⋆ − 1)2

]}
,

and letm⋆
ρ be theL2(PS) projection ofm⋆ ontoWρ. Define the budgeted gradient ϕ(ρ) = g⋆π′,R(X)+

m⋆
ρ(S)

(
R⋆ − q⋆R(X,A)

)
− V (π′).

Theorem 4 (Budgeted information bound). The optimal asymptotic variance under the cap ρ equals
Var(ϕ(ρ)), which is nonincreasing in ρ and satisfies limρ→∞ Var(ϕ(ρ)) = Var(ϕsur). If SIMCal-W
converges to m⋆

ρ (with the guard), then TR-CPO attains Var(ϕ(ρ)).

Theorem 5 (IF-space stacking). Let {V̂ (e)}e∈E be regular, asymptotically linear estimators with
centered IFs {ϕ(e)}, and let α̂ ∈ argminα∈∆ α

⊤Σ̂α with Σ̂ the empirical IF covariance. If Σ̂→ Σ

uniformly on ∆, then the stacked estimator V̂ (α̂) is asymptotically linear with IF ϕ(α
⋆) and variance

minα∈∆ α
⊤Σα ≤ mine Σee. An outer split leaves the limit unchanged.

Corollary 2 (Carathéodory sparsity). If Φ = [ϕ(e)] has empirical rank r, the variance-optimal convex
combination uses at most r+1 base estimators.
Proposition 2 (OUA jackknife consistency). Let V̂ (f̂) be any CJE estimator that uses R = f̂(S)

(cross-fitted along the IF path). Under L2(PS)-consistency of f̂ , fold honesty, and mild smoothness
of f 7→ V̂ (f), the delete-one-oracle-fold jackknife consistently estimates the calibration-induced
variance component, so that V̂artotal = V̂armain + V̂aroracle is a consistent variance estimator.

Discussion. Theorem 2 formalizes Design-by-Projection: intersecting the IF class with justi-
fied closed convex sets can only lower the attainable variance, and projection-designed estimators
(AutoCal-R, SIMCal-W, DR/TMLE with cross-fitting, IF-Stack) attain the corresponding bound
in their respective models. In finite samples, isotonic projections additionally majorize dispersion,
explaining the deterministic ESS gains delivered by SIMCal-W. (Metric projections are firmly
non-expansive; composing DbP modules yields a non-expansive, i.e., 1-Lipschitz, pipeline.)

5 EXPERIMENTS

We evaluate CJE on an Arena-derived benchmark to measure: (i) stability (ESS/tails) from SIMCal-
W; (ii) accuracy and interval quality using OUA-augmented CIs; (iii) ordering robustness under
overlap stress; and (iv) sensitivity to key design choices (AutoCal-R mode, IF-space stacking, variance
guard ρ).

5.1 SETUP

Data & policies. We use n=4,989 prompts from public Chatbot Arena logs (Zheng et al., 2023)
collected under a fixed logger π0. We compare five policies: base, clone (A/A), prompt-variant,
premium, and adversarial unhelpful.
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Judges & oracle. Every row has a scalar judge score S; a small i.i.d. oracle slice provides labels Y .
AutoCal-R is cross-fitted; out-of-fold ROOF are used along IF paths.

Propensities. Sequence-level TF forms Wπ′ = exp{log pπ′ − log pπ0}; TF conformance filters
apply (App. E).

Baselines & metrics. We compare IPS/SNIPS (with clipping/overlap weighting), DR/TMLE/MRDR,
and calibrated variants (Cal-IPS, OC-IPS, DR-CPO, TR-CPO, IF-Stack); we report debiased RMSEd,
interval score, coverage gap, SE GM, and ranking metrics (pairwise wins, τ , regret).

5.2 MAIN RESULTS

Table 1: Accuracy & Uncertainty Metrics
Estimator RMSEd ↓ IS (interval score) ↓ |Cov − 95| ↓ SE GM ↓ Pairwise % ↑ Top-1 % ↑ τ ↑ Regret ↓ Runtime (s) ↓
stacked-dr 0.0226 0.0767 0.467 0.0125 91.9 83.1 0.837 0.0039 17.2
stacked-dr-oc 0.0225 0.0755 0.733 0.0123 90.2 79.4 0.804 0.0043 41.8
stacked-dr-oc-tr 0.0225 0.0755 0.760 0.0122 90.1 79.3 0.802 0.0043 54.2
calibrated-dr-cpo 0.0227 0.1450 4.493 0.0258 91.0 81.0 0.819 0.0056 12.6
oc-dr-cpo 0.0459 0.0973 4.787 0.0202 78.3 46.4 0.565 0.0086 13.4
dr-cpo 0.0460 0.2171 4.307 0.0386 78.4 46.3 0.567 0.0086 12.9
tr-cpo-e 0.1355 0.1472 0.040 0.0341 72.4 32.9 0.448 0.0103 10.5
tr-cpo-e-anchored-orthogonal 0.1524 0.1845 0.467 0.0426 71.3 32.4 0.425 0.0118 10.8
calibrated-ips 0.0245 0.5261 1.960 0.0947 46.1 17.9 -0.078 0.1727 5.1
orthogonalized-ips 0.1591 0.6812 2.893 0.1651 38.3 8.6 -0.234 0.2780 5.9
SNIPS 0.1596 0.7379 3.267 0.1815 38.3 8.7 -0.235 0.2785 4.5

↓: lower is better, ↑: higher is better. Bold: best, underlined: second-best. Metrics averaged across all regimes.

Accuracy and ordering. Table 1 shows stacked, calibrated DR variants dominate level accuracy and
ranking quality with tight uncertainty. stacked-dr attains the best (or tied-best) pairwise wins, τ ,
regret, and competitive RMSEd. OC/TR refinements (stacked-dr-oc, stacked-dr-oc-tr)
further shave SE GM at additional compute. IPS baselines remain fast but inaccurate, with unstable
uncertainty and weak ordering despite clipping/overlap weighting.

Table 2: Weight Diagnostics: SIMCal Calibration Effect
ESS (%) Weight CV Max Weight Tail α

Policy SNIPS→Cal ∆ SNIPS→Cal ∆ SNIPS→Cal ∆ SNIPS→Cal ∆

Clone 26.2%→ 98.8% +278% 1.8→ 0.1 +96% 0.040→ 0.002 +95% 1.08→ > 10 > 900%
Parallel Universe Prompt 0.6%→ 94.6% +15877% 26.6→ 0.2 +99% 0.617→ 0.003 +99% 0.56→ > 10 > 900%
Premium 0.7%→ 80.8% +12280% 16.8→ 0.4 +97% 0.409→ 0.004 +99% 0.32→ > 10 > 900%
Unhelpful 0.4%→ 84.0% +21908% 24.1→ 0.4 +98% 0.619→ 0.005 +99% 0.13→ > 10 > 900%

Stability from SIMCal-W. Table 2 quantifies SIMCal-W’s effect on weights. The mean-one iso-
tonic projection (with OOF stacking) deterministically reduces dispersion via majorization, yielding
large ESS uplifts, dramatic CV shrinkage, and tail relief (Hill α > 2), even under extreme raw-overlap
(e.g., prompt-variant).

Precision & power planner. Figure 1 shows how precision scales with the joint budget of logs (n)
and oracle coverage. Panel B reports SEs that include the OUA addition; Panel C converts them to
MDE for a two-policy comparison at 80% power. Dashed iso–label-budget curves (m=n×coverage)
reveal tradeoffs between more logs and more labels; along a fixed dashed curve (constant m), MDE
tightens as n grows.

5.3 ABLATIONS (BRIEF)

Ablations. Disabling SIMCal-W raises variance and worsens interval score/coverage; IF-Stack
matches or beats the best single DR with a slight CI widening under an outer split; the guard ρ rarely
engages for ρ∈ [1, 2] (default 1); one rollout per (X,π′) suffices for ĝπ′ with a light smoother.
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5.4 DIAGNOSTICS AND GATES (SUMMARY)

Per policy we render ESS/tails (baseline vs. SIMCal-W), an S-overlap heatmap, a DR-orthogonality
CI, a judge-reliability diagram with a coverage badge, and the OUA share. Gates: OVERLAP, JUDGE,
IDENTIFICATION (triggers REFUSE-LEVEL), DR, MULTIPLICITY; thresholds in App. D.

6 LIMITATIONS

Overlap (positivity). As with IPS/DR, CJE requires support overlap between π0 and each π′.
When overlap is poor, raw ratios are heavy-tailed and uncertainty inflates. Mitigations: SIMCal–W
reduces dispersion and raises ESS; if tails persist we (i) gate on ESS and Hill indices, (ii) use overlap
weighting or cohort restriction, and (iii) run an online check when α̂Hill<1 or single–row dominance
persists (App. D).

Judge assumptions (surrogate validity). AutoCal–R assumes mean sufficiency and monotonicity
in S (or a learned index). If strained, the two–stage fallback preserves mean honesty but targets
E[f(Sπ′

)]. Mitigations: surface reliability curves and regional residuals; when evidence is weak,
label as surrogate–target, widen/refresh the oracle slice, and target labels where error concentrates.

Calibration coverage (identification). If a π′ pushes S outside the labeled range, isotonic cal-
ibration flattens at the boundary and levels are not point–identified. Mitigations: flag LIMITED
CALIBRATION SUPPORT and set REFUSE-LEVEL (report rankings and partial–ID bounds) until
targeted labels cover the uncovered S region (App. D).

Approximate sufficiency (bias modulus). When E[Y | X,A, S] ̸= µ(S), the residual ∆(X,A, S)
induces bias proportional to calibration error. Mitigations: by Cauchy–Schwarz, |Bias| ≤ ∥m −
Wπ′∥2 ∥∆∥2; DbP shrinks ∥m−Wπ′∥2, so bias is second order when either calibration is tight or
the violation small; we surface this via diagnostics and invoke REFUSE-LEVEL when unbounded.

Label sparsity and MAR. TR–CPO’s label term assumes MAR in S with bounded label propensity;
severe violations or tiny propensities degrade guarantees. Mitigations: monitor labeled ESS and
min π̂L, stratify labeling to shore up sparse strata, or revert to DR without label–propensity terms.

Temporal dependence and logger drift. Non–stationarity (launches, safety updates) can bias or
widen intervals. Mitigations: report dependence–robust SEs (block/stationary bootstrap), shorten
analysis windows, and monitor judge drift via rank–based/residual change detection with FDR
control.

Oracle independence and leakage. OUA assumes the oracle slice is i.i.d. and fold–honest. Miti-
gations: reuse deterministic folds across modules, de–duplicate the slice, and periodically refresh
it.

Selection and multiplicity. Scanning many π′ inflates winner’s curse. Mitigations: use FDR
control (BH/BY), optionally an outer split for IF–Stack to reduce selection optimism, and emphasize
pre–specified contrasts.

Teacher forcing and API drift. Accurate propensities require deterministic, chat–native TF (stable
tokenizer/template) with additivity/conditionality invariants; missing/invalid TF corrupts ratios.
Mitigations: enforce schema/conformance checks, ledger failures, and treat results as conditional on
TF quality (App. E).

Subgroups and fairness. Calibration quality and ESS gains may differ across subgroups. Miti-
gations: provide subgroup diagnostics (ESS, reliability) and, when feasible, use subgroup–specific
calibration/weights or constrained pooling.
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Judge informativeness (garbling). Coarser judges raise the surrogate information bound and
widen CIs. Mitigations: prefer richer rubrics (multi–dimensional S with stable aggregation) and
validate with coarsening ablations (empirical Blackwell monotonicity).

Compute. DR/TR–CPO add one rollout + judge per (X,π′); AutoCal–R refits for OUA add modest
overhead. We amortize via TF caches, shared folds, and a small stacking library.

Ethics Statement. We analyze retrospective logs that may include sensitive content. Diagnos-
tics/gates prevent overconfident claims under poor overlap/coverage and surface judge drift. When
identification fails, we report rankings only (REFUSE-LEVEL) and recommend targeted labeling or
online checks. Any deployment should assess subgroup reliability and adopt privacy safeguards for
logs.

Reproducibility Statement. We provide two example configs and the fold–hash rule (supplement);
schema, TF contract, pseudocode, and numerics appear in the appendices. Additional artifacts will
be released after review.

7 CONCLUSION

We introduced CJE, an audit-ready recipe for offline policy evaluation with LLM judges built around
a single rule: Design-by-Projection (DbP). The principle is simple—encode justified assumptions
as closed convex sets and project valid objects onto them. Projections onto subspaces (nuisance-
orthogonal scores), monotone cones (mean-preserving reward/weight calibration), and simplices
(variance-hedged stacking) preserve the estimand while weakly reducing variance.

Concretely, AutoCal-R learns a mean-preserving surrogate R = f(T (S)); SIMCal-W produces unit-
mean, S-monotone ratios with deterministic ESS uplift via OOF stacking and a light guard; sequence-
aware OC-IPS/DR-CPO/TR-CPO deliver

√
n inference under cross-fitting; IF-Stack minimizes

plug-in IF variance; and OUA adds calibration uncertainty for honest CIs.

Theoretically, our Knowledge–Riesz (Influence Representer) theorem explains why intersecting the ad-
missible IF class with justified convex knowledge lowers the attainable variance and is attainable with
projection-designed estimators. Two design corollaries follow: (i) Blackwell–efficiency monotonic-
ity—richer judges (finer σ-fields) strictly help; (ii) isotonic mean-one calibration Lorenz-dominates
baseline weights, improving all Schur-convex dispersion metrics (not just ESS). Empirically, on
Arena-derived logs, SIMCal-W turns near-degenerate ratios into stable weights (large ESS gains),
calibrated DR achieves tight, well-calibrated intervals and near-

√
n scaling, and stacking improves

ordering; when calibration support is limited, CJE flags the issue and reports robust rankings with
conservative uncertainty (REFUSE-LEVEL).

Takeaways. (i) Project before you compute: express assumptions as convex sets and apply metric
projections.
(ii) Treat teacher forcing and diagnostics (overlap, tails, reliability, orthogonality) as first-class
artifacts.
(iii) Report oracle–uncertainty–aware variance, not just IF variance.
(iv) Ship with explicit gates for OVERLAP, JUDGE, IDENTIFICATION, DR, and MULTIPLICITY.
(v) Prefer richer, more informative judges (Blackwell monotonicity) and shape-stabilized weights
(Lorenz dominance).

Future work. Selection-aware inference over large policy sets; robust/DP isotonic calibration
(mirror/Bregman DbP) for heavy tails; active oracle budgeting via shadow prices; sequential/agent
evaluations with prefix-aware SIMCal and stepwise DR; and subgroup-aware constraints with fairness
diagnostics. We include example configs and a deterministic fold hash rule in the supplement; full
algorithms, pseudocode, and diagnostics are in the appendices. Additional public artifacts will be
released after review.
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A NOTATION AND FORMAL SETUP

Observed data and policies. We observe i.i.d. logs

Oi = (Xi, Ai, Si, Y
obs
i , Li), i = 1, . . . , n,

generated under a fixed logger Ai ∼ π0(· | Xi). A scalar judge Si = s(Xi, Ai) is available on
all rows. The label indicator Li ∈ {0, 1} marks inclusion in the oracle slice; when Li = 1 we
observe Y obs

i = Yi, otherwise Y obs
i is missing. For a candidate policy π′, define the sequence-level

importance ratio

Wπ′,i =
π′(Ai | Xi)

π0(Ai | Xi)
= exp

{
log pπ′(Ai |Xi)− log pπ0

(Ai |Xi)
}
,

computed via teacher forcing (TF) with the model’s own tokenizer/rendering. Write

Wm1
π′,i =

Wπ′,i
1
n

∑n
j=1Wπ′,j

for the sample–mean–one (SNIPS) baseline (global normalization over the evaluation cohort).

Estimand. Let Y (π′) denote the outcome under the counterfactual draw A ∼ π′(· | X). The target
is

V (π′) = E
[
Y (π′)

]
.
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A.1 ASSUMPTIONS (COMPACT)

(D1) Fixed logger & i.i.d. (Xi, Ai, Si) are i.i.d. under π0; TF log-likelihoods are stable and well-
defined.

(D2) Overlap (positivity). π0(a | x) > 0 whenever π′(a | x) > 0, and Eπ0
[W 2

π′ ] <∞.

(D3) Judge coverage & stability. S is well-defined under both π0 and π′; the Radon–Nikodym
derivative on σ(S) exists; the judge/rubric is stable on the analysis window.

(J1) Oracle slice. There exists an i.i.d. subsample O = {i : Li = 1} with m = |O| ≪ n on which
Y is observed.

(J2-M) Mean sufficiency (monotone). E[Y | X,A, S] = µ(S) with µ weakly nondecreasing.
(J2-SI) Single-index fallback. There exist g⋆ : R→R and nondecreasing µ⋆ such that E[Y | S] =
µ⋆
(
g⋆(S)

)
.

(R1) Tails/moments. E[Y 2] < ∞, E[S2] < ∞, and Eπ0
[W 2

π′ ] < ∞. When using the SIMCal-W
variance cap ρ ≥ 1, Varn(Ŵπ′) ≤ ρ Varn(W

m1
π′ ).

(R2) Calibration consistency. AutoCal-R satisfies ∥f̂(T (S))−E[Y | S]∥L2(PS) = op(1) (monotone
or two-stage mode), and SIMCal-W satisfies ∥Ŵπ′ − E[Wπ′ | S]∥L2(P ) = op(1).

(R3) One-of-two rates with cross-fitting. With nuisances q̂(x, a) ≈ E[R | x, a] and Ŵπ′ ,

∥q̂ − q⋆R∥L2(P ) · ∥Ŵπ′ −m⋆∥L2(P ) = op(n
−1/2),

e.g., either factor is op(n−1/4) with the other consistent.

A.2 CROSS-FITTING AND FOLDS

Let F : {1, . . . , n}→{1, . . . ,K} be a deterministic fold map (e.g., a hash of x id). For any learner
L, train η̂(−k) = L on {i : F (i) ̸= k} and use out-of-fold predictions η̂OOF

i = η̂(−F (i))(Oi) in
influence-function (IF) calculations. The same folds are reused across AutoCal-R, SIMCal-W, and
DR nuisances.

A.3 PROJECTION OPERATORS USED BY CJE

Monotone cone. M↑ = {f : R → R nondecreasing}. The isotonic projector (PAVA) ΠM↑

enjoys: (i) L2 optimality; (ii) mean preservation on the training sample; (iii) dispersion reduction by
majorization.

Mean-one cone for weights. For w ∈ Rn ordered by S, define the mean-one isotonic projection

IsoMeanOneS(w) = argmin
u

∑
i

(ui − wi)
2 s.t. u ∈M↑(S),

1
n

∑
i

ui = 1,

whereM↑(S) denotes vectors nondecreasing in the S-order. This preserves the sample mean and
weakly reduces empirical variance; hence ESS weakly increases (deterministically, by majorization).

Simplex hull. For centered IF columns {ϕ(e)}e∈E , let Φ = [ϕ(e)] and ∆ = {α : αe ≥ 0,
∑

e αe =

1}. IF-space stacking solves minα∈∆ α
⊤Σ̂α with Σ̂ = (1/n)Φ⊤Φ+ λI .

A.4 AUTOCAL-R AND SIMCAL-W PRIMITIVES

AutoCal-R. On O = {i : Li = 1}, fit R = f̂(T (S)) by either: (i) monotone (T (S) = S), or (ii)
two-stage (T (S) = ECDF{g(S)} with a spline g), selecting by OOF RMSE (1-SE rule). Use OOF
predictions ROOF along IF paths; the point estimate may use a pooled fit. A terminal isotonic step
enforces slice-mean preservation.

SIMCal-W. (Per fold) Fit up/down isotonic maps on S to obtainWOOF
↑ ,WOOF

↓ ; includeWOOF
base ≡ 1.

Define residuals Ti (IPS: Ri; DR: Ri− q̂(Xi, Ai)). Choose β̂ ∈ argminβ∈∆3 β
⊤Σ̂β where Σ̂ is the
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covariance of Uc =WOOF
c T . Form W stack =

∑
c β̂cW

OOF
c , renormalize to mean one (global, over

the evaluation cohort), optionally apply the variance guard

α = min
{
1,

ρ Var(Wm1
π′ )

Var(W stack)

}
, W blend = 1 + α (W stack − 1),

and re-project by Ŵπ′ = IsoMeanOneS(W
blend).

A.5 DR NUISANCES AND SEQUENCE VALUE

Let q̂(x, a) ≈ E[R | x, a] and define ĝπ′(x) =
∑

a π
′(a | x) q̂(x, a). For sequences, approximate

ĝπ′(x) with one (default) rollout A′∼π′(· | x) and R′ = f̂
(
s(x,A′)

)
; a light smoother (e.g., ridge

over (x, z) features) can reduce Monte Carlo noise. Cross-fitting is used throughout.

A.6 INFLUENCE FUNCTIONS AND VARIANCE

Let {ϕi}ni=1 denote the (approximately) centered influence–function contributions of ψ̂, computed
with cross–fitted/OOF nuisances and ROOF along the IF path, so that 1

n

∑n
i=1 ϕi ≈ 0. Under

standard regularity conditions,
√
n
(
ψ̂ − ψ

) d−→ N (0, Var(ϕ)) .

We estimate the main IF variance and the total variance (including the oracle addition) by

V̂armain =
1

n

n∑
i=1

ϕ2i , V̂artotal = V̂armain + V̂aroracle,

and report the (1− α) Wald interval

CI1−α : ψ̂ ± z1−α/2

√
V̂artotal .

When serial or cluster dependence is a concern, we additionally report dependence–robust SEs (e.g.,
cluster–robust sandwich or block/stationary bootstrap) as a sensitivity analysis.

A.7 ORACLE–UNCERTAINTY–AWARE (OUA) JACKKNIFE

Partition O into K oracle folds {Ok}Kk=1. For each k, refit AutoCal-R on O \Ok, recompute R(−k),
and rerun the full pipeline to obtain ψ̂(−k). Then

ψ̄ = 1
K

K∑
k=1

ψ̂(−k), V̂aroracle =
K − 1

K

K∑
k=1

(
ψ̂(−k) − ψ̄

)2
.

(With unequal fold sizes, use the standard weighted delete-one-group formula.)

A.8 DIAGNOSTICS (DEFINITIONS)

ESS. ESS(W ) =
(∑

iWi

)2
/
∑

iW
2
i ; we report the fraction ESS/n. Under global mean-one

normalization (SNIPS),
∑

iWi = n and

ESS(W )

n
=

1

1 + CV2(W )
with CV2(W ) = Var(W ) (since E[W ] = 1).

Unless stated otherwise, diagnostics use the global (not per-fold) mean-one scaling.

Max-weight share. maxiWi

/∑
j Wj .

Tail index (Hill). For top-k order statistics W(1) ≥ · · · ≥ W(k), α̂−1 = 1
k

∑k
j=1 log

(
W(j)/W(k)

)
(we sweep k over a stability grid and report the plateau).

Bhattacharyya affinity in S. AB =
∫ √

pS|π′(s) pS|π0
(s) ds (discrete: sum over bins); DB =

− logAB .
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Algorithm 1 AUTOCAL-R: mean-preserving reward calibration (cross-fitted; automatic two-stage
fallback)

1: Inputs: Oracle pairs {(Si, Yi) : Li=1}; folds F (·); smooth index class g(·) (splines+ridge)
2: Outputs: Global reward Ri = f̂(T (Si)) and OOF ROOF

i
3: for k = 1 to K do
4: Train set O¬k={i : Li=1, F (i) ̸= k}; test set Ok={i : Li=1, F (i) = k}
5: Monotone candidate: f̂ (−k)

↑ ∈ argminf∈M↑

∑
i∈O¬k

(Yi − f(Si))
2; set ROOF

↑,i = f̂
(−k)
↑ (Si)

for i∈Ok

6: Two-stage candidate: fit g(−k) on O¬k; ranks Ui = ECDFO¬k
(g(−k)(Si)); fit ĥ(−k)

↑ ∈
argminh∈M↑

∑
i∈O¬k

(Yi − h(Ui))
2; set ROOF

2s,i = ĥ
(−k)
↑ (Ui) for i∈Ok

7: end for
8: Compute OOF risks (overall and by S tertile); select mode via 1-SE rule (prefer monotone unless

two-stage is significantly better)
9: Refit the selected mode on the full oracle slice to obtain global Ri for all i ∈ {1:n}; retain ROOF

i
per fold for IFs

10: Note: The terminal isotonic step preserves the oracle-slice mean exactly.

DR orthogonality score. n−1
∑

i Ŵπ′,i

(
ROOF

i − q̂OOF(Xi, Ai)
)

with a Wald CI.

Coverage badge. Plug-in estimate of Prπ′
(
S /∈ [Sorc

min, S
orc
max]

)
; large out-of-range mass with near-flat

boundaries triggers LIMITED CALIBRATION SUPPORT and REFUSE-LEVEL.

A.9 SYMBOL GLOSSARY

Symbol Meaning

X,A Context, action (sequence)
S = s(X,A) Judge score (scalar)
Y Ground-truth outcome (on oracle slice)
π0, π

′ Logger and candidate policies
Wπ′ Importance ratio π′(A | X)/π0(A | X)
Wm1

π′ Mean-one (SNIPS) baseline
R = f̂(T (S)) Calibrated reward (AutoCal-R; monotone or two-stage)
Ŵπ′ Calibrated, unit-mean, S-monotone weights (SIMCal-W)
q̂, ĝπ′ Outcome and policy–value nuisances for DR
ϕ Per-row centered influence-function contribution
V̂armain IF variance n−1V̂ar(ϕi)

V̂aroracle Oracle jackknife variance addition
ESS(W ) Effective sample size

B ALGORITHMS (EXTENDED)

This appendix gives compact, cross-fitted pseudocode for CJE modules: reward calibration
(AUTOCAL-R), surrogate-indexed weight calibration (SIMCAL-W), estimators (CAL-IPS, OC-IPS,
DR-CPO, TR-CPO), IF-space stacking, and oracle–uncertainty–aware variance (OUA). We reuse
the same K-fold map F (i)∈{1:K} across all modules. “OOF” denotes out-of-fold predictions used
along the IF path.

Complexity notes. PAVA is O(n) after a shared sort by S. SIMCAL-W is linear-time per fold;
the stacking QP is 3×3 (weights) or a small |E|×|E| system. DR/TR-CPO add one rollout + judge
per (X,π′). The OUA jackknife refits the calibrator K times and reruns the pipeline; TF caches and
precomputed features amortize cost.
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Algorithm 2 SIMCAL-W: surrogate-indexed, unit-mean monotone weight calibration (OOF project
→ stack→ cap→ re-project)

1: Inputs: Baseline mean-one ratios Wm1
π′ ; scores S; residuals T (IPS: T=R; DR: T=R − q̂);

folds F (·); variance cap ρ≥1 (default 1)
2: Output: Calibrated weights Ŵπ′ (mean-one, S-monotone)
3: for k = 1 to K do

{OOF candidate projections}
4: Train I¬k = {i : F (i) ̸= k}; test Ik = {i : F (i) = k}
5: Fit isotonic maps on I¬k: increasing m(−k)

↑ (S) and decreasing m(−k)
↓ (S) (via −S); rescale

each to mean one on I¬k

6: Predict on Ik: WOOF
↑ = m

(−k)
↑ (S), WOOF

↓ = m
(−k)
↓ (S), and include WOOF

base ≡ 1
7: end for
8: OOF stacking (variance-aware). Form Uc = WOOF

c T for c ∈ {base, ↑, ↓}; compute Σ̂cd =
cov(Uc, Ud) + λ1c=d

9: Choose β̂ ∈ argminβ∈∆3 β
⊤Σ̂β; set W stack =

∑
c β̂cW

OOF
c ; renormalize W stack to sample

mean one
10: Light variance guard (optional). α = min

{
1, ρ Var(Wm1

π′ )/Var(W stack)
}

; set W blend =

1 + α (W stack − 1)

11: Final projection. Ŵπ′ ← IsoMeanOneS
(
W blend

)
(mean preserved; dispersion weakly

decreases⇒ ESS ↑)

Algorithm 3 CAL-IPS and OC-IPS

1: Inputs: Calibrated rewardsR,ROOF (Alg. 1); calibrated weights Ŵπ′ (Alg. 2); raw ratiosW raw
π′ ;

fold-honest m̂(S)≈E[W raw
π′ |S]

2: Outputs: V̂IPS, V̂OC-IPS (IFs defined analogously to DR)

3: Cal-IPS: V̂IPS =
1

n

n∑
i=1

Ŵπ′,iRi, ϕIPS
i = Ŵπ′,iR

OOF
i − V̂IPS

4: OC-IPS: V̂OC-IPS = V̂IPS +
1

n

n∑
i=1

(
W raw

π′,i − m̂(Si)
) (
ROOF

i − f̂(Si)
)

5: Note: The orthogonal term solves the leading EIF moment and restores
√
n rates under mild

conditions.

C PROOFS AND TECHNICAL LEMMAS

We collect standing identities, shape-constrained facts, and proofs for the results in Section 4. Unless
stated otherwise, expectations are under the logging law Pπ0

; L2 norms are with respect to the
relevant marginal (e.g., L2(P ) or L2(PS)). We reuse the fold map F (·) from Section A.2 and the
projection operators from Section A.3.

C.1 STANDING IDENTITIES AND TOOLS

Change of measure. For any integrable h(X,A, S, Y ) and any candidate π′,

E
[
Wπ′ h(X,A, S, Y )

]
= Eπ′

[
h(X,A, S, Y )

]
, E[Wπ′ ] = 1. (1)

Doob–Dynkin / conditional expectation as L2 projection. Let G = σ(S). Then m⋆(S) :=
E[Wπ′ | G] is the L2 projection of Wπ′ onto the closed subspace L2(G) ⊂ L2(P ), i.e.,

E
[
(Wπ′ − U(S))2

]
= E

[
(Wπ′ −m⋆(S))2

]
+ E

[
(m⋆(S)− U(S))2

]
, (2)

for all U(S) ∈ L2(G). In particular, Var(Wπ′U) ≥ Var(m⋆(S)U) for any U(S) ∈ L2(G).

Pythagoras in Hilbert spaces. Let L2
0(P ) be the mean-zero Hilbert space with inner product

⟨f, g⟩ = E[fg]. For a nonempty closed convex set C ⊂ L2
0 and any z ∈ L2

0, denote by ΠC(z) the
metric projection. If C1 ⊆ C2 then dist(z, C2) ≤ dist(z, C1).
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Algorithm 4 DR-CPO: sequence-aware doubly robust estimator (cross-fitted)

1: Inputs: Ŵπ′ ; R and ROOF from Alg. 1; folds F (·)
2: Outputs: V̂DR and IF ϕDR

3: for k = 1 to K do
4: Train q̂(−k)(x, a)≈E[R | x, a] on {i : F (i) ̸= k}; predict OOF q̂OOF

i = q̂(−k)(Xi, Ai) for
i ∈ Ik

5: Approximate ĝ(−k)
π′ (x) = EA∼π′(·|x)[q̂

(−k)(x,A)] via one rolloutA′ ∼ π′(· | X) and optional
smoothing; obtain OOF gOOF

π′,i for i ∈ Ik
6: end for

7: V̂DR =
1

n

n∑
i=1

{
ĝπ′(Xi) + Ŵπ′,i

(
Ri − q̂(Xi, Ai)

)}
8: ϕDR

i = ĝπ′(Xi) + Ŵπ′,i

(
ROOF

i − q̂OOF
i

)
− V̂DR

Algorithm 5 TR-CPO: targeted & retargeted DR (optional triply robust add-on)
1: Inputs: Same as Alg. 4; link (identity if R is unbounded; logit if R ∈ [0, 1])
2: Targeting (solve EIF moment).
3: for k = 1 to K do
4: With clever covariate H(X,A) = Ŵπ′ , fit ε(−k) on {i : F (i) ̸= k} so that

n−1
∑
i∈Ik

Ŵπ′,i

(
ROOF

i − q̂(−k)
ε (Xi, Ai)

)
≈ 0

under the chosen link.
5: end for
6: Set q̂⋆ to the pooled targeted fit; recompute ĝπ′ accordingly
7: Retargeting (control variate). Zi = Ŵπ′,i

(
ROOF

i − q̂OOF
⋆ (Xi, Ai)

)
; γ̂ = cov(Z, Ŵπ′ −

1)/Var(Ŵπ′ − 1)

8: V̂TR =
1

n

∑
i

{
ĝπ′(Xi) + Zi − γ̂ (Ŵπ′,i − 1)

}
, ϕTR

i = ĝπ′(Xi)+Zi− γ̂(Ŵπ′,i−1)− V̂TR

9: Optional triply robust term (MAR in S). If a fold-honest label propensity π̂L(S) ∈ [ε, 1] is
available, add a mean-zero residual×residual term on labeled rows to further damp first-order
calibration error (see Appendix C).

C.2 ISOTONIC REGRESSION: MEAN PRESERVATION AND MAJORIZATION

Lemma 1 (Mean preservation; PAVA). Let f̂ ∈ argminf∈M↑

∑
i∈I(yi − f(si))2 be the isotonic fit

(PAVA) on indices I . Then 1
|I|

∑
i∈I f̂(si) =

1
|I|

∑
i∈I yi.

Lemma 2 (Dispersion reduction by majorization). After sorting by s, the isotonic fitted vector û
is a mean-preserving adjacent pooling of y; hence for any convex ϕ,

∑
i ϕ(ûi) ≤

∑
i ϕ(yi) (Hardy

et al., 1952; Marshall et al., 2011). In particular, with sample mean one, Varn(û) ≤ Varn(y) and
ESS(û) ≥ ESS(y).

Proofs are standard; see Ayer et al. (1955); Barlow et al. (1972); Robertson et al. (1988); Banerjee
(2001).

C.3 PROOF OF THEOREM 1 (SURROGATE EIF & VARIANCE DROP)

Let R⋆ = E[Y | S] and m⋆(S) = E[Wπ′ | S]. Under mean-sufficiency E[Y | X,A, S] = R⋆(S),

V (π′) = E
[
Wπ′R⋆

]
= E

[
m⋆(S)R⋆(S)

]
. (3)

Standard semiparametric calculations (projecting the unconstrained score onto the tangent space of
the surrogate model) yield

ϕsur(O;π′) = g⋆π′,R(X) +m⋆(S)
(
R⋆ − q⋆R(X,A)

)
− V (π′), (4)
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Algorithm 6 IF-STACK: variance-optimal convex ensembling in IF space

1: Inputs: Candidates {V̂ (e), ϕ(e)}e∈E (centered IFs; same folds); ridge λ
2: Outputs: V̂ (α̂) and ϕ(α̂)

3: Form Φ = [ϕ(e)]e∈E ; Σ̂ = (1/n)Φ⊤Φ+ λI

4: Solve α̂ ∈ argminα∈∆ α
⊤Σ̂α

5: V̂ (α̂) =
∑

e∈E α̂e V̂
(e), ϕ(α̂) =

∑
e∈E α̂e ϕ

(e)

6: Optional outer split: learn α̂ on one half; apply to the other to reduce selection optimism
7: Support note (Carathéodory). If rank(Φ) = r, the variance-optimal stack uses at most r+1 base

estimators.

Algorithm 7 OUA jackknife: oracle–uncertainty–aware variance addition

1: Inputs: Oracle folds {Ok}Kk=1; end-to-end estimator V̂ (·)
2: Outputs: V̂aroracle and V̂artotal = V̂armain + V̂aroracle
3: for k = 1 to K do
4: Refit AUTOCAL-R on O \Ok; recompute R(−k) and all downstream nuisances & weights;

run the full pipeline to get V̂ (−k)

5: end for
6: V̄ = 1

K

∑
k

V̂ (−k), V̂aroracle =
K−1
K

∑
k

(
V̂ (−k) − V̄

)2
7: Return: V̂artotal = V̂armain + V̂aroracle

with q⋆R(x, a) = E[R⋆ | x, a] and g⋆π′,R(x) = EA∼π′(·|x)[q
⋆
R(x,A)] (Bickel et al., 1993; van der

Vaart & Wellner, 2000). Since m⋆ is the L2 projection of Wπ′ onto L2(σ(S)), Pythagoras (or (2))
implies Var(ϕsur) ≤ Var(ϕuncon), strictly unless Wπ′ ∈ L2(σ(S)) and R⋆ is degenerate.

C.4 PROOF OF THEOREM 2 (KNOWLEDGE–RIESZ / CKP)

Let I(P ) = ϕ⋆ + T (P )⊥ be the affine class of IFs in a baseline model and C ⊂ L2
0 be nonempty,

closed, convex. Define IC(P ) = I(P ) ∩ C and ϕC = ΠIC(P )(0) = argminϕ∈IC(P ) E[ϕ2]. Then

∥ϕC∥22 = dist2(0, IC(P )) ≤ dist2(0, I(P )) = ∥ϕ⋆∥22,

with equality iff IC(P ) already contains ϕ⋆. Monotonicity for C1 ⊆ C2 is immediate. For attainability,
replace nuisances in a one-step/TMLE update by their projections into C; cross-fitting ensures the
empirical score equations hold in the restricted model and the remainder is op(n−1/2) (Bickel et al.,
1993; van der Vaart & Wellner, 2000; van der Laan & Rose, 2011).

C.5 PROOF OF COROLLARY 1

If σ(S2) ⊆ σ(S1), then L2(σ(S2)) ⊆ L2(σ(S1)). Hence the feasible knowledge set for conditioning,
C(S) = {f : f = E[f | S]}, satisfies C(S2) ⊆ C(S1). Applying Theorem 2 with I(P ) fixed
yields ∥ϕC(S1)∥22 ≤ ∥ϕC(S2)∥22, i.e., Var(ϕsur(S1)) ≤ Var(ϕsur(S2)). Strictness fails only if the finer
knowledge already holds, i.e., if Wπ′ is σ(S2)-measurable and R⋆ is degenerate.

C.6 PROOF OF PROPOSITION 1 (CAL-IPS)

Write

V̂IPS − V (π′) = (Pn − P )
[
m⋆(S)R⋆

]
+ P

[
(Ŵπ′ −m⋆)R⋆

]
+ P

[
m⋆(f̂(T (S))−R⋆)

]
+ rem,

where rem collects second-order sample-splitting terms. The empirical process term is Op(n
−1/2);

the second and third vanish by L2-consistency of SIMCal-W and AutoCal-R (monotone or two-
stage) and Cauchy–Schwarz; the remainder is op(1) by cross-fitting. Finite-sample dispersion
control follows from Lemma 2 and, if used, the blend cap ρ ≥ 1; thus ESS(Ŵπ′) ≥ ESS(Wm1

π′ )
deterministically.
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C.7 PROOF OF THEOREM 3 (DR/TR-CPO
√
n LIMITS)

With cross-fitted nuisances and ROOF along the IF path,

V̂DR − V (π′) = (Pn − P )
[
ϕsur

]
+ P

[
(Ŵπ′ −m⋆){q⋆R − q̂}

]
+ op(n

−1/2).

The second term is op(n−1/2) by the one-of-two product-rate condition ∥Ŵπ′ −m⋆∥2 · ∥q̂− q⋆R∥2 =

op(n
−1/2) and cross-fitting; the central limit theorem yields the limit variance Var(ϕsur). TR-CPO

adds (i) a one-dimensional fluctuation that solves the EIF moment in finite samples and (ii) a mean-
zero control variate anchored at (Ŵπ′ − 1); both are second order under the same rate condition,
leaving the limit unchanged.

C.8 PROOF OF THEOREM 4 (BUDGETED BOUND)

Let Wρ = {m : E[m] = 1, m ↑ S, E[(m − 1)2] ≤ ρE[(w⋆ − 1)2]}. Intersecting the surrogate
tangent space with the linear span induced by m ∈ Wρ replaces m⋆ by its L2(PS) projection
m⋆

ρ = ΠWρ(m
⋆) in ϕsur, giving ϕ(ρ). Monotonicity in ρ follows from nested convex setsWρ1 ⊆ Wρ2

for ρ1 ≤ ρ2, and limρ→∞ ϕ(ρ) = ϕsur. If SIMCal-W converges to m⋆
ρ (with the same cap), TR-CPO

attains Var(ϕ(ρ)) by the same one-of-two rate argument.

C.9 PROOF OF THEOREM 5 (IF-SPACE STACKING) AND COROLLARY 2

Let {V̂ (e)} be regular and asymptotically linear with centered IFs {ϕ(e)}. Set Φ = [ϕ(e)] and
Σ̂ = (1/n)Φ⊤Φ+ λI . A uniform law of large numbers on the simplex ∆ yields Σ̂→ Σ uniformly;
by argmin continuity, α̂→ α⋆ ∈ argminα∈∆ α

⊤Σα. Hence V̂ (α̂) is asymptotically linear with IF
ϕ(α

⋆) =
∑

e α
⋆
eϕ

(e) and variance minα∈∆ α
⊤Σα ≤ mine Σee. For Corollary 2: if rank(Φ) = r,

then the feasible IF combinations lie in an r-dimensional affine subspace; by Carathéodory’s theorem,
any point in conv{ϕ(e)} admits a representation using at most r+1 extreme points.

C.10 PROOF OF PROPOSITION 2 (OUA JACKKNIFE)

Let V̂ (f̂) be a regular estimator that depends on f only through R = f̂(T (S)), with f 7→ V̂ (f)
Hadamard-differentiable at f⋆ in L2(PS). Using a delta-method expansion and cross-fitting (so that
oracle folds are asymptotically independent of the IF path), the delete-one-oracle-fold jackknife
(Bickel et al., 1993; Künsch, 1989; Politis & Romano, 1994) consistently estimates the variance
contribution from first-stage calibration. Therefore V̂artotal = V̂armain + V̂aroracle is consistent for
Var(V̂ ).

C.11 AUXILIARY LEMMAS USED IN THE MAIN PROOFS

Lemma 3 (OOF mean preservation for AutoCal-R). LetK be fixed and letROOF
i = f̂ (−F (i))(T (Si))

be OOF predictions from AutoCal-R (either mode). Then Pn[R
OOF]−Pn[Y ] = op(1) and P [ROOF−

R⋆] = op(1) under L2(PS)-consistency of f̂ .

Lemma 4 (Second-order remainder for DR with cross-fitting). Let V̂DR be DR-CPO with cross-fitted
(q̂, ĝπ′) and calibrated Ŵπ′ . Then

V̂DR − V (π′)− (Pn − P )ϕsur = P
[
(Ŵπ′ −m⋆)(q⋆R − q̂)

]
+ op(n

−1/2),

and the bracketed term is op(n−1/2) under ∥Ŵπ′ −m⋆∥2 · ∥q̂ − q⋆R∥2 = op(n
−1/2).

Lemma 5 (Guard stability). Let W stack be the OOF-stacked candidate and Wm1
π′ the mean-one base-

line. For ρ ≥ 1, define α = min{1, ρ Var(Wm1
π′ )/Var(W stack)} and W blend = 1+α(W stack−1).

Then Var(W blend) ≤ ρ Var(Wm1
π′ ) and the subsequent mean-one isotonic projection cannot increase

empirical variance by Lemma 2.
Lemma 6 (Firm non-expansiveness of projections). Metric projections onto closed convex sets in
Hilbert spaces are firmly non-expansive: ∥ΠC(x) − ΠC(y)∥2 ≤ ⟨ΠC(x) − ΠC(y), x − y⟩. Hence
compositions of DbP modules (reward, weight, IF-space projections) are non-expansive. See, e.g.,
Bauschke & Combettes (2017, Prop. 4.16).
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Remarks on dependence. If logs exhibit serial or cluster dependence, the IF CLTs can be replaced
by block/stationary bootstrap arguments; our reported intervals can include a dependence-robust
alternative (App. A.8).

C.12 WHAT THE BOUNDS DO NOT INCLUDE

The surrogate and budgeted information bounds describe model limits: they do not include (i) finite-
sample dispersion control from the sample cap (we encode it population-wise via ρ) or (ii) the oracle
first-stage uncertainty (added separately by OUA).

C.13 CITATIONS FOR TECHNICAL INGREDIENTS

Semiparametric efficiency and one-step/TMLE: Bickel et al. (1993); van der Vaart & Wellner (2000);
van der Laan & Rose (2011); Tsiatis (2006).
Isotonic regression / PAVA and order-restricted inference: Ayer et al. (1955); Barlow et al. (1972);
Robertson et al. (1988); Banerjee (2001).
Majorization theory: Hardy et al. (1952); Marshall et al. (2011).
Calibration for OPE: Kallus & Mao (2022); Fong & Kennedy (2022); van der Laan et al. (2025a;b).
Jackknife/bootstraps for dependence: Künsch (1989); Politis & Romano (1994).
Projections and non-expansive maps: Bauschke & Combettes (2017).

D DIAGNOSTICS, GATES, AND REPORTING (DETAILS)

This appendix formalizes the diagnostics used in CJE, the associated ship/stop gates, and the reporting
ledger. The main text shows a compact panel per policy; here we provide precise formulas, defaults,
and recommended thresholds. Unless stated otherwise, expectations and variances are empirical over
the evaluation cohort (global SNIPS normalization).

D.1 WEIGHT BEHAVIOR & OVERLAP

Effective sample size (ESS). For nonnegative weights,

ESS(W ) =

(∑
iWi

)2∑
iW

2
i

.

Under global mean-one normalization (SNIPS),
∑

iWi = n, so

ESS(W )

n
=

1

1 + CV2(W )
, CV2(W ) = Var(W ) when E[W ] = 1.

Report the ESS fraction ESS(W )/n and the multiplicative uplift ESS(Ŵπ′)/ESS(Wm1
π′ ).

Max-weight share. maxiWi

/∑
j Wj flags single-row dominance; display alongside the empirical

99.5th percentile of W .

Tail index (Hill) and CCDF. For the top-k order statistics W(1) ≥ · · · ≥W(k),

α̂−1(k) =
1

k

k∑
j=1

log

(
W(j)

W(k)

)
, k ∈ K,

swept over a stability grid K (e.g., 1–5% of n). Plot α̂(k) with a band over the plateau region (median
and IQR over K), and the empirical CCDF of W on a log–log scale.

Overlap in judge space. Let pS|π0
and pS|π′ denote the (binned) densities of S under π0 and π′:

AB =
∑
b

√
pb(π0) pb(π′), DB = − logAB .

Overlay an S-binned heatmap of logW to localize regions of poor overlap.
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D.2 JUDGE CALIBRATION, COVERAGE, AND DRIFT

Reliability diagram. Partition S into B bins; for bin b, plot the bin mean of R = f̂(T (S)) against
the oracle mean of Y , with 95% binomial intervals. Report a Brier-style reliability term and the OOF
RMSE, with a 1-SE model-selection overlay (monotone vs. two-stage).

Coverage badge. Estimate the fraction of evaluation mass outside the oracle S range:

OutOfRange = P̂rπ′
(
S < Sorc

min or S > Sorc
max

)
.

Also report boundary flatness (slope of f̂ in the lowest/highest oracle decile). Large OutOfRange
together with flat boundaries triggers LIMITED CALIBRATION SUPPORT and the REFUSE-LEVEL
gate.

Rank drift (optional anchor). Given a fixed anchor set of (X,A) pairs scored over time, compute
Kendall’s τ between historical and current judge rankings with a permutation p-value. Change
detection on residuals can be monitored via CUSUM/EWMA with FDR control across anchors.

D.3 DR ORTHOGONALITY AND DECOMPOSITION

Orthogonality score. Let Ui = Ŵπ′,i

(
ROOF

i − q̂OOF(Xi, Ai)
)

and Ū = n−1
∑

i Ui. Form a

Wald CI for Ū using the standard error
√

V̂ar(U)/n (or a cluster-/block-robust analogue). Report Ū
and its CI; near-zero indicates successful orthogonality.

DM–IPS decomposition. Display V̂DM = n−1
∑

i ĝπ′(Xi) and V̂Aug = n−1
∑

i Ui, with CIs and
the empirical correlation between their per-row contributions.

D.4 UNCERTAINTY: IF VARIANCE AND OUA ADDITION

For any estimator with centered IF contributions {ϕi}ni=1,

V̂armain =
1

n
V̂ar(ϕi), V̂artotal = V̂armain + V̂aroracle,

with V̂aroracle from the oracle jackknife (App. A.7). Report the oracle share V̂aroracle/V̂artotal and,
optionally, a dependence-robust alternative (below).

Dependence-robust SEs. When time/cluster dependence is suspected, also report: (i) cluster-
robust sandwich SEs when a cluster id (e.g., session/user) is available; and (ii) block/stationary
bootstrap intervals (block length chosen by a simple variance-stability sweep) (Künsch, 1989; Politis
& Romano, 1994).

D.5 MULTIPLICITY FOR MANY-POLICY COMPARISONS

For contrasts ∆p = V̂ (π′
p)− V̂ (π⋆), compute Wald p-values and apply BH at level q ∈ [0.05, 0.2];

BY can be used under strong dependence. Provide a pairwise win matrix with FDR marks and
Kendall’s τ over policy means (all policies).

D.6 GATES: THRESHOLDS AND ACTIONS

REFUSE-LEVEL procedure. When IDENTIFICATION fails: (i) gray-out level estimates; (ii)
highlight OutOfRange and boundary flatness; (iii) report rank-only conclusions with conservative
relative CIs; (iv) recommend targeted labeling in uncovered S regions.

D.7 PLANNER: MDE AND LABEL/LOG BUDGETS

Given two independent estimates with equal SE ŜE, the two-sided 95% test at 80% power has

MDE80% = (z0.8 + z0.975)
√
2 ŜE.
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Table 3: Default gates (suggested; tighten for high-stakes launches).
Gate Default Action if failed
OVERLAP ESS/n ≥ 0.30; Hill α̂ ≥ 2; AB ≥ 0.85 Use overlap weights or cohort restriction; report with

warning if α̂ ∈ [1, 2); do not ship offline conclusions if
α̂ < 1

JUDGE Reliability band covers diagonal at knots; no persistent drift alarms Refresh/extend oracle slice; switch to two-stage index;
re-validate

IDENTIFICATION OutOfRange ≤ η (default η=5%) or non-flat boundaries Flag LIMITED CALIBRATION SUPPORT; set REFUSE-
LEVEL: report rankings + partial-ID only

DR Orthogonality CI includes 0; no NaNs; residual tails acceptable Strengthen nuisances/cross-fitting; fall back to stabilized
IPS as a diagnostic

MULTIPLICITY FDR control applied when |Π′| > 5 Report adjusted p-values; avoid uncorrected winner
claims

CAP Guard rarely engaged; CI width not sensitive to ρ If guard active on > 50% folds or sensitivity high, show
cap curve and prefer overlap weights/restriction

We tabulate ŜE versus (n, m/n) (labels per log) using Stacked-DR with OUA and annotate “iso-cost”
lines for the label budget.

D.8 REPORTING LEDGER (PER POLICY/COHORT)

Persist: (i) calibrator mode, OOF risk by tertiles, knots/levels (hash); (ii) SIMCal–W maps, stacking
weights β̂, guard ρ and blend α; (iii) ESS fraction, max-weight share, Hill index band, AB ; (iv) DR
orthogonality score and CI; DM–IPS split; (v) OUA trace {V̂ (−k)} and variance breakdown; (vi)
filter counts (e.g., TF gaps) and an inclusion manifest of x-ids; (vii) multiplicity control (family, q,
adjusted p).

D.9 VISUALIZATION PRIMITIVES (FOR REPRODUCIBLE PANELS)

• ESS/tails strip: bars for ESS fraction (baseline vs. SIMCal–W); dot for max-weight share; Hill
band.

• S-overlap heatmap: density of S under π0 vs. π′ with overlaid logW ; annotate AB .
• Reliability panel: bin means of (R, Y ) with 95% CIs; mode card (monotone vs. two-stage; OOF

RMSE).
• Orthogonality panel: point/CI for Ū ; DM–IPS bars with CIs and correlation.

• Uncertainty ring: pie of V̂aroracle/V̂artotal.

D.10 OPTIONAL: DEPENDENCE–ROBUST IMPLEMENTATION DETAILS

Cluster-robust SEs: if a cluster id c(i) is available, V̂arCR = n−2
∑

c

(∑
i∈c ϕi

)(∑
i∈c ϕi

)⊤
, with

finite-sample correction. Stationary bootstrap: sample blocks of geometric length ℓ ∼ Geom(p)

glued to length n; form the bootstrap distribution of ψ̂ (or of n−1/2
∑
ϕi) and report percentile or

t-based bands.

D.11 COMPACT GATE PSEUDO-LOGIC

E IMPLEMENTATION, ENGINEERING, AND REPRODUCIBILITY

This appendix enumerates the concrete artifacts needed to reproduce CJE end–to–end: a minimal
logging schema, a teacher–forcing (TF) contract with conformance checks, fold construction, numer-
ics, persisted outputs, and a lightweight resource model. No packages beyond the ICLR style file are
required.

E.1 MINIMAL LOGGING SCHEMA (STORAGE–AGNOSTIC)

Each row corresponds to one prompt–continuation pair under the fixed logger π0. We persist only
what is necessary to reconstruct SNIPS/IPS weights and judge scores.
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Algorithm 8 Gate logic (per policy)
1: Compute weight/tail metrics: ESS fraction, max-share, Hill band; compute AB; judge reliabil-

ity/coverage; orthogonality score; OUA share
2: if ESS/n < 0.30 or median Hill< 2 or AB < 0.85 then
3: Flag OVERLAP (warn; restrict or use overlap weights)
4: end if
5: if OutOfRange¿ηandboundaryslopes≈ 0 then
6: REFUSE-LEVEL← TRUE
7: end if
8: if Orthogonality CI excludes 0 then
9: Flag DR; strengthen nuisances/cross-fitting

10: end if
11: if Cap engaged on > 50% folds or CI sensitivity to ρ high then
12: Show cap–sensitivity; prefer overlap weights/restriction
13: end if
14: Apply multiplicity control (BH/BY) when |Π′| > 5

Table 4: Columns required for CJE. Columnar formats (Parquet) are convenient but not required.
Field Type Description
x id string Stable identifier (hash of normalized prompt + cohort)
prompt bytes/string Canonicalized X (tokenizer + normalization recorded)
continuation bytes/string Realized A under π0 (full sequence)
tokens int[] Token ids for A under each model’s TF tokenizer
logp pi0 float[] Per–token log pπ0

(at |ht) across A
judge S float/json Scalar judge score S = s(X,A) (or struct of sub–scores)
judge cfg json Judge rubric, decoding params, model snapshot hash
run cfg json π0 engine tag, decoding params, checkpoint hash, seed
fold id int Deterministic fold (F (x id); see §E.3)
cohort string Optional slice label (time window, traffic source, etc.)

TF cache (per target π′). A separate table stores, for each (x id, π′): logp pi prime, logW=
log pπ′ − log pπ0

, and

Wm1
π′ = exp

(
logW− logsumexp(logW) + logn

)
,

i.e., a single global denominator that enforces sample–mean–one. Rows with missing/invalid TF are
filtered and recorded in a ledger.

E.2 TEACHER FORCING: CONTRACT AND CONFORMANCE

We require a single–call, chat–native TF API that returns per–token and summed log pπ(A |X) under
a fixed template, tokenizer, and snapshot. Client–side checks:

• Determinism. k identical calls for the same (X,A, π@SNAPSHOT, template) must be
bit–identical (tolerance < 10−7).

• Additivity. Also return log pπ(X) and log pπ(X+A) and verify log pπ(X+A) ≈ log pπ(X) +
log pπ(A |X) ≤ log pπ(X). Violation⇒ discard row (and log it).

• Template/tokenizer provenance. Return immutable hashes; reject moving aliases.
• Masking. If safety masks are applied, return mask bits and a renormalized flag; prefer an

evaluation–only path without hidden renormalization.

Conformance snippet (pseudo).

lp = TF(model_id, template_id, X, A)
assert same_bits(lp.sum, sum(lp.per_token), tol)
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lpX, lpXA = TF_logp(X), TF_logp(X+A)
assert abs(lpXA - (lpX + lp.sum)) < eps and lp.sum <= 0

The supplement’s README repeats this minimal additivity check.

E.3 FOLDS AND CROSS–FITTING

We use K=5 folds by default. The fold map F (i) is a stable hash of x id modulo K, ensuring that
all modules (AutoCal–R, SIMCal–W, DR nuisances) share identical OOF boundaries. Oracle folds
are derived by intersecting F (i) with Li=1. We may serialize F (i) internally for determinism; the
public supplement publishes only the hash rule F (x id)=hash(x id) mod 5 (no fold map file).

E.4 NUMERICS AND STABILITY

• Ratios in log–space. Keep logW until forming the global mean–one normalization; use a single
logsumexp for the denominator.

• Center residuals. For stacking objectives and covariances, center T and drop NaNs/inf at ingestion.
• Variance estimates. Use Welford’s online formulas for high dynamic range; add a tiny ridge

(λ∈ [10−10, 10−6]) to covariance matrices.
• PAVA. Run once per fold after sorting by S; enforce mean–one via an additive shift (translation),

not multiplicative rescaling. This preserves monotonicity and avoids tail distortion.
• Guard (relative cap). Default ρ=1; compute α = min

{
1, ρ Var(Wm1)/Var(W stack)

}
; blend

and then (re)project/translate to mean–one. Persist whether the guard engaged.

Reference code note. For simplicity, the supplement’s simcal.py uses global isotonic fits
and—unlike the main pipeline—computes the stacking covariance on those same in-sample fits
(no OOF in the tiny reference).

E.5 PERSISTED ARTIFACTS (PER POLICY/COHORT)

• Calibrator: mode (monotone vs. two–stage), OOF RMSE (overall + tertiles), knots/levels (hash),
OOF vs. pooled predictions.

• Weights: isotonic merge metadata, S orientation (up/down), stacking weights β̂ including the
identity/baseline candidate, guard ρ and blend α, final mean–one check.

• Estimators: point estimates, centered IF vectors’ hashes, V̂armain, orthogonality score and CI,
dependence–robust SEs (if used).

• OUA: {V̂ (−k)}Kk=1, V̂aroracle, V̂artotal.
• Diagnostics: ESS fraction, max–weight share, Hill band, S–overlap (AB), coverage badge, gate

statuses.
• Ledger: counts by filter reason (TF gaps, moderation, timeouts), x id inclusion manifest.

E.6 REFERENCE RUN ORDER (PSEUDOCODE)

# 0) Build TF cache for each pi’ (one pass per policy)
build_tf_cache --policies <list> --dataset logs.parquet --out tf_cache.parquet

# 1) Reward calibration (cross-fitted; auto monotone vs two-stage)
autocal_r --oracle oracle.parquet --folds 5 --out rewards.parquet

# 2) SIMCal-W per policy (OOF project->stack->cap->translate-to-mean-one)
simcal_w --tf-cache tf_cache.parquet --scores S.parquet --rho 1.0 --folds 5 \

--out weights.parquet

# 3) Estimation + IFs (Cal-IPS / OC-IPS / DR-CPO / TR-CPO)
estimate --rewards rewards.parquet --weights weights.parquet --folds 5 \
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--out estimates.parquet

# 4) IF-Stack (optional)
stack --estimates estimates.parquet --out stacked.parquet

# 5) OUA jackknife
oua --oracle-folds 5 --pipeline-config cfg.yaml --out variance.parquet

# 6) Report (diagnostics, gates, CIs)
report --inputs *.parquet --figs figs/ --out report.html

E.7 COMPUTE AND RESOURCE MODEL

Let n be prompts, T̄ the mean continuation length, and |Π′| the number of candidate policies.

• TF cache. O(|Π′|n T̄ ) forward tokens; microbatch by length; near–linear scaling across GPUs.

• SIMCal–W. O(n log n) for sort + O(n) for PAVA per fold; covariance/stacking are tiny (3×3).

• DR/TR–CPO. If ĝπ′ uses one rollout per (X,π′), add O(|Π′|n T̄ ′) tokens once; a light smoother
amortizes Monte Carlo noise.

• OUA. K refits of AutoCal–R and re–runs of the pipeline; cache features to avoid recomputation.

E.8 DETERMINISM, VERSIONING, AND PRIVACY

Determinism: fix seeds at engine, dataloader, and sampler; record random states in run cfg;
serialize fold maps (internal).
Versioning: record immutable hashes for model weights, tokenizer, and template; pin checkpoints.
Privacy: encrypt prompts/continuations at rest; hash x id with salt; public artifacts include only
aggregates/diagnostics and redacted IDs.

E.9 WHAT TO PUBLISH WITH THE PAPER (MICRO–SUPP)

• README.md (10–12 lines): what’s inside; how it ties to the paper; the fold rule
F (x id)=hash(x id) mod 5; the TF additivity snippet; and a SIMCal usage snippet. Note: iso-
tonic fits are global for simplicity and, in this tiny reference, stacking covariance is computed
in–sample (no OOF).

• configs/ablation config.yaml and configs/policies.yaml: sanitized examples
(no vendors/paths).

• code/simcal.py: reference SIMCal–W with four fixes baked in: (i) mean–one by translation
after isotonic (not scaling); (ii) relative ρ–guard Var(cal) ≤ var cap × Var(baseline); (iii)
include the identity/baseline candidate in the stack; (iv) doc note on global fits and in–sample
covariance for stacking in the tiny reference.

• results/ablation sample.jsonl: tiny, double–blind sample (two lines) illustrating the
output schema. This sample reports IF–only SEs/CIs for brevity; in the paper, all CIs include the
OUA addition.

All other details (schema, TF contract, pseudocode, numerics) appear in the appendices. Public
artifacts beyond these examples will be released after review.

F STATEMENT ON THE USE OF LARGE LANGUAGE MODELS (LLMS)

Disclosure. LLMs played a significant supporting role in the conception, drafting, and engineering
of this work. Consistent with the venue’s policy, the authors take full responsibility for all content,
including any text or code initially produced with LLM assistance. LLMs are not authors.
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Tools. We used general–purpose conversational and code–assistant LLMs (“chat” and
IDE–completion interfaces) throughout the project. Interactions were iterative (prompt–response
with edits), and no model was granted authorship credit or decision authority.

Roles where LLMs were used.

• Writing and editing. Drafting and revising prose (clarity, organization, grammar), con-
verting notes to LaTeX, tightening section transitions, normalizing bibliography fields, and
suggesting figure captions.

• Related work & scoping. Generating candidate literatures and keywords; proposing nearby
citations and contrasts. All citations included in the paper were manually verified against
primary sources before inclusion.

• Mathematical development. Assisting with algebraic manipulations and outline sketches
for derivations (e.g., surrogate EIF decomposition, orthogonality checks, majorization facts
for isotonic projections, and IF–space stacking conditions). All proofs and statements in the
paper were independently derived and checked by the authors; LLM outputs served only as

“hints” or drafts.

• Software engineering. Translating pseudocode to Python scaffolds; proposing unit–test
skeletons; producing small utilities (e.g., PAVA helpers, ESS/tail diagnostics, jackknife
wrappers). Every code artifact was reviewed, rewritten as needed, and validated by the
authors with tests and end–to–end runs.

• Experiment design & analysis. Suggesting ablation grids, reporting tables, and plotting
snippets; stress–testing overlap and calibration–coverage scenarios; drafting README
and micro–supplement structure. Final configurations, thresholds, and interpretations were
selected by the authors.

Safeguards and verification.

• Source verification. No reference was added without manual inspection of the primary
paper (title/venue, statement fidelity, and relevance).

• Math checks. Key identities (e.g., EIF forms, nuisance–orthogonality, and variance/CI
formulas) were re–derived by the authors and cross–checked by simulation or symbolic
sanity checks (dimensions, limits, special cases).

• Code validation. All LLM–suggested code passed author–written tests (deterministic
TF conformance, mean–preserving isotonic calibration, ESS/tail diagnostics, cross–fitting
boundaries, and OUA recomputation). Any failing or non–idiomatic snippets were discarded
or rewritten.

• Data handling. Interactions avoided sharing non–public data or metadata beyond what
appears (redacted/anonymized) in the paper or supplement. Double–blindness was preserved
in all materials supplied to LLMs.

Limitations of LLM assistance. LLMs can produce incorrect or fabricated statements, code, and
citations. Our mitigation was to treat outputs as draft suggestions only, to require independent verifi-
cation for every technical claim, and to gate inclusion behind tests/derivations and primary–source
checks. Any errors that remain are the authors’ responsibility.

Authorship and accountability. LLMs are not eligible for authorship. All conceptual contributions,
final mathematical results, experimental choices, and interpretations are the authors’. This disclosure
exceeds the “significant usage” threshold and is provided to ensure transparency while maintaining
the paper’s double–blind status.

26


	Introduction
	Background and Setup
	Methods
	Reward calibration (AutoCal-R: isotonic in S with an automatic two-stage fallback)
	Weight calibration (SIMCal-W: unit-mean, S-monotone ratios with OOF stacking)
	Estimators: Cal-IPS, OC-IPS, DR-CPO, and TR-CPO
	IF-space stacking (variance-optimal convex ensembling)

	Theory: EIF, Design-by-Projection, and Efficiency
	Experiments
	Setup
	Main results
	Ablations (brief)
	Diagnostics and gates (summary)

	Limitations
	Conclusion
	Notation and Formal Setup
	Assumptions (compact)
	Cross-fitting and folds
	Projection operators used by CJE
	AutoCal-R and SIMCal-W primitives
	DR nuisances and sequence value
	Influence functions and variance
	Oracle–uncertainty–aware (OUA) jackknife
	Diagnostics (definitions)
	Symbol glossary

	Algorithms (extended)
	Proofs and Technical Lemmas
	Standing identities and tools
	Isotonic regression: mean preservation and majorization
	Proof of Theorem 1 (surrogate EIF & variance drop)
	Proof of Theorem 2 (Knowledge–Riesz / CKP)
	Proof of Corollary: Blackwell monotonicity
	Proof of Proposition 1 (Cal-IPS)
	Proof of Theorem 3 (DR/TR-CPO n limits)
	Proof of Theorem 4 (budgeted bound)
	Proof of Theorem 5 (IF-space stacking) and Carathéodory sparsity
	Proof of Proposition 2 (OUA jackknife)
	Auxiliary lemmas used in the main proofs
	What the bounds do not include
	Citations for technical ingredients

	Diagnostics, Gates, and Reporting (details)
	Weight behavior & overlap
	Judge calibration, coverage, and drift
	DR orthogonality and decomposition
	Uncertainty: IF variance and OUA addition
	Multiplicity for many-policy comparisons
	Gates: thresholds and actions
	Planner: MDE and label/log budgets
	Reporting ledger (per policy/cohort)
	Visualization primitives (for reproducible panels)
	Optional: dependence–robust implementation details
	Compact gate pseudo-logic

	Implementation, Engineering, and Reproducibility
	Minimal logging schema (storage–agnostic)
	Teacher forcing: contract and conformance
	Folds and cross–fitting
	Numerics and stability
	Persisted artifacts (per policy/cohort)
	Reference run order (pseudocode)
	Compute and resource model
	Determinism, versioning, and privacy
	What to publish with the paper (micro–supp)

	Statement on the Use of Large Language Models (LLMs)

