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ABSTRACT

Recent researches have achieved substantial advances in learning structured repre-
sentations from images. However, current methods rely heavily on the annotated
mapping between the nodes of scene graphs and object bounding boxes inside im-
ages. Here, we explore the problem of learning the mapping between scene graph
nodes and visual objects under weak supervision. Our proposed method learns a
metric among visual objects and scene graph nodes by incorporating information
from both object features and relational features. Extensive experiments on Visual
Genome (VG) and Visual Relation Detection (VRD) datasets verify that our model
post an improvement on scene graph grounding task over current state-of-the-art
approaches. Further experiments on scene graph parsing task verify the grounding
found by our model can reinforce the performance of the existing method.

1 INTRODUCTION

Motivated by various needs, researchers have designed multiple representations to describe visual
contents. More specifically, object bounding boxes localize the objects inside an image while scene
graphs represent object-wise interactions. Ideally, each bounding box should corresponds to a node
in the scene graph. However, in many cases, such node-object level correspondences are not es-
tablished, particularly when the information of scene graphs come from non-visual inputs, such as
image captions (Wang et al., 2018b), knowledge graph (Zareian et al., 2020b) and commonsense
base (Shi et al., 2019).

The lack of node-object level mapping in data results in constraints on various multi-modal learning
tasks, e.g., scene graph parsing (Xu et al., 2017; Zhang et al., 2017b), VQA (Ghosh et al., 2019)
and image captioning (Yang et al., 2019). If the mapping can be learned without extra annota-
tions, a comprehensive view of an image will be created and benefit a number of downstream tasks.
Therefore, in this paper, we focus on grounding scene graph nodes to visual objects under weak
supervision, where the node-object correspondences are not annotated even during training phase.

Although the scene graph grounding problem can benefit plentiful downstream tasks, it has been
barely studied. Unlike other weakly supervised learning tasks, which focus on single label space
(Dietterich et al., 1997; Wang et al., 2018a), the scene graph grounding problem is involved with
two label spaces: object categories and relation types, which are disjoint but dependent. More
specifically, visual relations are highly correlated with visual objects. As a result, a desirable model
should correctly handle the interaction among object categories and visual relations instead of sim-
ply learning them independently. Therefore, most of the well-studied weakly supervised learning
methods are not suitable for the learning on scene graphs.

Among the few relevant efforts recently spent on this task, Zareian et al. achieve impressive results.
They notice the grounding problem when they are trying to handle weakly supervised scene graph
parsing. They treat it as a side challenge in weakly supervised learning and propose to tackle it by
jointly learning the node-object mapping and a visual relation parser under weak supervision. In
their method, a parser capturing the interaction of relation feature and object feature represents the
image as a bounding box graph. Then they align such bounding box graph with the scene graph to
construct the correspondence between visual regions and scene graph nodes. The mapping found by
alignment algorithm is further utilized in optimizing the scene graph parser.

However, the graph aligning process results in one core limitation of their method. Given the fact
that the graph-matching problem is NP-hard, they must take the trade-off between efficiency and
accuracy into consideration. Furthermore, to enable weakly supervised learning, in training stage
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the authors directly generate supervision signal for the parser from the mapping output by the model
itself. And as a consequence, an inaccurate graph alignment in initial training stage could mislead
the parser, leading to a performance drop.

In this paper, we propose to formulate the mapping problem as a minimum match problem on bipar-
tite graph instead of graph alignment. More specifically, to measure the similarity of a node-object
pair, we propose to learn a cost function incorporating information from both object classes and
mutual relations. The lack of node-object level mapping brings challenges to the learning process.
Therefore, we design an image-graph level distance inspired by Wasserstein Distance(Rüschendorf,
1985), and propose to train our model by minimizing this distance on corresponding image-graph
pairs.

Our contributions are:

• This is the first paper that considers weakly supervised scene graph grounding as an inde-
pendent task and explores it. We argue that weakly supervised scene graph grounding is
vital to multi-modal learning and deserves broad attention.

• We propose a novel framework that can bridge visual objects and scene graph nodes by cap-
turing both object classes and relational information and searching the best match among
the objects and nodes. By designing an image-graph level distance, we tackle the challenge
brought by the lack of supervision.

• Empirical results indicate that our grounding method outperforms existing mapping meth-
ods. Moreover, we also verify the value of our model in enhancing the performance of
existing SOTA models on weakly supervised scene graph parsing, an important and bene-
ficial downstream task in multi-modal learning.

2 RELATED WORK

Visual Relation Detection (VRD): The goal of VRD is to further understand an image by detect-
ing the relations between detected object pairs. Powered by datasets consisting of visual relation
annotations, e.g., Visual Relation Detection (Lu et al., 2016) and Visual Genome (VG) (Krishna
et al., 2017), substantial advancements are made by recent researches. Several convolutional neural
network (CNN) architectures (Zhang et al., 2017b; Yin et al., 2018; Li et al., 2017; Inayoshi et al.,
2020) are tailored for recognizing visual relations, while some other researches (Dai et al., 2017;
Zhang et al., 2017b; Mi & Chen, 2020) focus on post-CNN feature inference. Apart from the vision
domain, some researchers (Lu et al., 2016; Yu et al., 2017; Zhang et al., 2017a) pay their attention to
the language domain, employing linguistic priors for better predicate predictions. Recent researches
(Baldassarre et al., 2020; Peyre et al., 2017) explore the problem with weak supervision.

Scene Graph Parsing: Unlike the VRD task, scene graph parsing, first introduced by (Xu et al.,
2017), aims at parsing a structured representation of the given image. A few works (Tang et al.,
2019; Wang et al., 2019; Lin et al., 2020; Zellers et al., 2018) parse scene graphs by reasoning over
visual context. Furthermore, Yang et al. proposes an R-CNN (Girshick, 2015) like model with
additional graph convolutional networks (GCN) (Kipf & Welling, 2017). Additionally, real-world
commonsense, as well as external knowledge, are utilized to guide the scene graph parsing process
(Zareian et al., 2020b; Gu et al., 2019; Chen et al., 2019; Zareian et al., 2020c). Recently, Zareian
et al. proposes a novel graph alignment to parse scene graphs under weak supervision.

Graph Neural Networks (GNN): Recent years, a great quantity of research efforts have been de-
voted into Graph Neural Networks (GNN) (Scarselli et al., 2008; Bruna et al., 2013; Kipf & Welling,
2016). By adopting suitable aggregation strategies, GNN can capture features from various aspects,
including edges, nodes and the whole graph (Battaglia et al., 2018). In computer vision fields,
graph neural networks can be applied to capture the structural information on both images and scene
graphs (Yang et al., 2018; Johnson et al., 2018; Yang et al., 2019). More specifically, by aggregating
structural information on the input graph, GNN can represent a scene graph node or a visual object
as an embedding vector containing relational information of the edges connected to it.

Weakly Supervised Learning (WSL): Weakly supervised learning has been utilized in many com-
puter vision tasks like object detection, semantic segmentation and visual relation detection (Zhang
et al., 2017b; Huang et al., 2018; Zareian et al., 2020a). Many of them belong to Multiple Instance
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Learning (MIL)(Dietterich et al., 1997; Maron & Lozano-Pérez, 1998). When applying neural net-
works in multiple instance learning, instance-level pooling (Liu et al., 2012) and feature-level pool-
ing(Wang et al., 2018a) are two common architectures in practice, making MIL compatible with
gradient-based optimization strategies.

3 TASK DEFINITION

A scene graph is a structured representation of an image, capturing both visual objects and their
relations. We denote an image as I , regarded as a set of visual objects {v1, v2, ..., vm}. We assume
that the features and locations of visual objects can be extracted by a pre-trained object detector. 1

And the scene graph describing I can be formulated as G = 〈U,R〉, where U = {u1, u2, ..., un} is
the node set (n ≤ m) and R = {r1, r2, ..., rk} is the edge set. Each node u has a label yu which
describes the object category it refers to. And each edge r is represented as a triplet 〈ui, uj , yr〉,
where ui is the source node, uj is the target node and yr is the relation type.

Scene Graph Grounding: Though the graph-image pair 〈G, I〉 can be easily retrieved, the corre-
spondences between graph nodes U and visual objects V remain unclear. The goal of scene graph
grounding is to map each node u to a visual object v inside the image.

Weakly Supervised Scene Graph Grounding: As manually labeling the ground-truth node-object
references is expensive and time consuming, we aims at learning a grounding model without relying
on such annotations. In Weakly Supervised Scene Graph Grounding, we are given a training set D,
where the each sample in D is a tuple of an image I and its scene graph representation G. However,
the ground truth node-object mapping is not provided for any tuple. We aims at learning a grounding
model from D.

4 PROPOSED METHOD

To build up the mapping between visual objects and scene graph nodes, we propose to learn a
object-node wise metric that incorporates information from both object categories and relations.
Given an ungrounded image-graph pair, we measure the similarity of each object-node pair using
learned metric and build a bipartite graph among the object set and the node set. In this way, we
formulate the object-node mapping problem as searching the minimum weight match in a bipartite
graph. Unlike the NP-hard graph matching problem in previous work (Zareian et al., 2020a), our
formulation leads to a polynomial time solution. The overview of our framework is shown in Fig. 1.
Formally, we define the metric on a given object-node pair (u, v) as following cost function:

c(u, v) = λcobj(u, v) + (1− λ)crel(u, v) (1)
where cobj(u, v) is the object-class based metric and crel(u, v) refers to the relation based metric.

4.1 OBJECT-CLASS BASED METRIC

Given a scene graph node u and a visual object v, we define following metric to incorporate object
category information:

cobj(u, v) = P (yu 6= yv) = 1− P (yu = yv) (2)
where yu is the object category of node u and yv is the category of v. Since the ground-truth object-
node mapping is not accessible during training phase, we can not acquire the ground truth categories
of visual objects. Therefore, we train a neural network to estimate P (yu = yv) through pool based
multiple instance learning. The estimate is denoted as P̂ (yu = yv; θobj) where θobj is the parameter
of the network. We optimize the neural network with the following loss function:

LMIL(G, I; θobj) = −
∑

y∈Y (U)

log σ({P̂ (yv = y; θobj)|v ∈ I}) (3)

where I is the image, U is the node set of corresponding scene graph G, Y (U) is the object cat-
egory set of U and σ is a pooling operator. For a class y existing in the image, the pooling oper-
ator aggregates the probabilities P̂ (yv = y; θobj) over all objects v in the image I . It can be any

1However, due to the label space difference between pre-training dataset and scene graph dataset, we can
not give the category label of the visual objects
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Figure 1: Overview of Our Framework: Bounding boxes and RoI features of visual objects are
extracted by a pretrained detector; The object class based metric and relation based metric compute
the cost matrix between visual objects and scene graph nodes; A matching algorithm is utilized to
predict the grounding results.

Figure 2: Overview of Our Relation based Metric Module: Visual objects and scene graphs are fed
into two independent GNN model, which map them to the joint relational space Z.

permutation-invariant operator, such as max or mean. With the learned P̂ (yu = yv), we define cobj
as:

cobj(u, v; θobj) = 1− P̂ (yu = yv; θobj) (4)

4.2 RELATION BASED METRIC

Apart from object category, the object-wise interaction and relation-object interaction are also im-
portant for learning the mapping, as the scene in an image may be complicated (He et al., 2020).
For example, in one image there might be a “person” “riding” a “horse” and a “person” “riding” a
“bike”. It is crucial to correctly distinguish them for some downstream tasks like weakly supervised
scene graph parsing.

To learn a metric capturing above interaction information from both visual input and scene graph,
we propose a two-stream architecture, as shown in Fig. 2, to model the structural similarity. The
two streams are two graph neural networks that project visual objects and scene graph nodes into a
shared embedding space Z. In visual stream, to capture object-wise interaction, we first construct a
fully connected graph where each node is a visual object. Then the graph is forwarded into a graph
neural network, where the i-th layer updates the representation of object v as follows:

hi+1
u = MLP2(AGGREGATE({MLP1(h

i
u +©hiu′)|u′ ∈ N (u)})) (5)

4



Under review as a conference paper at ICLR 2021

where +© means concatenate, AGGREGATE is an aggregation operator, and N (u) is the neighbor
set of u. We initialize the representation of each visual object as the features extracted by a pre-
trained visual-encoder. Meanwhile, to capture the relation features in scene graph, we forward it
into another graph neural network proposed in Johnson et al. (2018), which can model the relation-
object interactions. The initial representation of a node or an edge is the word embedding of its class
name. Its updating rule in each layer is shown in Alg. 1.

Algorithm 1 Updating algorithm of Scene Graph Neural Network.
Require: A scene graph G = 〈U,R〉, node representation hu of each node u ∈ U and edge repre-

sentation hr of each edge r ∈ R
Ensure: Updated node representation h′u and edge representation h′r

1: for each edge r = 〈s, o, yr〉 do
2: ht = gr(hs +©hr +©ho){gr is a function aggregating information from a triplet}
3: h′r = fr(ht){fs is a linear layer with activation}
4: end for
5: for each node u do
6: hsu = AGGREGATE({fs(ht)|r ∈ S(u)}) {fs is a linear layer with activation and S(u) is

the set of edges whose source node is u}
7: hou = AGGREGATE({fo(ht)|r ∈ O(u)}) {fo is a linear layer with activation and O(u) is

the set of edges whose target node is u}
8: h′u = MLP(AGGREGATE(hsu, h

o
u))

9: end for

Given a scene graph node u ∈ G and a visual object v ∈ I , let us denoted their representation in
space Z as h(u) and h(v) respectively. Then we can calculate the structural similarity between u
and v as:

crel(u, v; θrel) = d(h(u), h(v)) (6)

where d is a vector metric on space Z and θrel is the parameters in relational metric module. Since
graph neural network can represent structural information on graphs as vectors, by comparing h(u)
and h(v), we can measure the relational similarity of an object-node pair. However, training the
graph neural networks is very challenging. Because when ground truth object-node mapping is
not accessible, we can not simply minimize the distance of mapped object-node pairs. Since graph
structure can not be simply classified to a set of discrete categories, we can not apply similar strategy
as in learning object category metric.

Inspired by Wasserstein Distance (Rüschendorf, 1985), defined as the cost expect of the optimal
transport on two distributions, we propose a distance that applicable to two discrete sets. Specifically,
we apply the cost sum of the optimal linear sum assignment on the node sets and object sets as
image-graph level distance, denoted as D(G, I):

D(G, I) =
∑

(u,v)∈M∗
c(u, v) =

∑
(u,v)∈M∗

λcobj(u, v) + (1− λ)crel(u, v) (7)

where the definition of M∗ is

M∗ = argmin
M∈π(G,I)

∑
(u,v)∈M

c(u, v) (8)

where π(G, I) is the set of all possible match between the scene graph node set and visual object
set. We then propose to train the model by minimizing D(G, I) for all mapped image-graph pairs.

Precisely optimizing above distance via gradient descent is intractable, because the process of
searching the minimum match M∗ is non-differential. An alternative solution is that in each it-
eration, we first calculate the minimum match M∗ based on current GNN parameters, then run a
gradient descent step that minimizes the distance of matched node-object pairs.2 However, in the
initial training stage, the relational embeddings randomly spread in the space. Thus, the match found

2The justification of this alternative solution can be found in Appendix
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under current parameter may contain noise and mislead the training. To address this challenge, we
approximate M∗ as M ′, which is defined as:

M ′ = argmin
M∈π(G,I)

∑
(u,v)∈M

cobj(u, v). (9)

Since searching the minimum match on bipartite graph can be solved by Hungarian Algorithm
(Kuhn, 1955) in polynomial time, such approximation can be computed as long as the multiple
instance classifier is trained in advance. Our loss function on graph neural network branch can be
written as:

Lgnn(G, I) =
∑

(u,v)∈M ′
λcobj(u, v) + (1− λ)crel(u, v) = C + (1− λ)

∑
(u,v)∈M ′

λcrel(u, v) (10)

where C is a constant. Note that if we apply simple Euclidean distance or inner-product distance as
d, above loss function will have a trivial solution where crel(u, v) = 0 for all (u, v). To avoid it, we
use their normalized version. Given a distance d like Euclidean distance, its normalized version is
defined as:

dnorm(u, v) = − exp (−d(u, v))∑
k∈I exp (−d(u, k))

(11)

4.3 TRAINING AND INFERENCE

The training algorithm of our model is illustrated in Alg. 2. In general, the training can be divided as
two phases. In the first phase, we train the object-class based metric via pool based multiple instance
learning. In the second phase, we train the Graph Neural Networks based on the well-trained object-
class based metric. In testing stage, since θobj and θrel have been well-trained, we can calculate M∗
with Hungarian Algorithm simply and output M∗ as mapping result.

Algorithm 2 Training Algorithm on Weakly Supervised Dataset D.
Require: Dataset D
Ensure: The well-trained parameters θobj of the object category based metric and θrel of the rela-

tion based metric.
1: Randomly initialize θobj and θrel
2: while θobj not converged do
3: Sample a batch of samples (I,G) from D and forward the samples into the neural networks

in Sec. 4.1.
4: Calculate the loss function LMIL in Eq. 3
5: Update θobj according to the loss function LMIL.
6: end while
7: Calculate minimum match M ′ with Hungarian algorithm
8: while θrel not converged do
9: Sample a batch of samples (I,G) from D and forward the samples into the graph neural

networks in Sec. 4.2.
10: Calculate the loss function Lgnn in Eq. 10
11: Update θobj according to the loss function Lgnn.
12: end while

5 EXPERIMENTS ON WEAKLY SUPERVISED SCENE GRAPH GROUNDING

5.1 EXPERIMENT SETTING

Datasets: We evaluate our grounding approach on two prevailing datasets: Visual Genome
(VG)(Krishna et al., 2017) and Visual Relation Detection (VRD) (Lu et al., 2016). For VG dataset,
we apply the split and preprocess protocol in Xu et al. (2017). For VRD dataset, we apply the
original split and protocal in the original paper (Lu et al., 2016).

Baselines: We compare our method with following baselines, which support weakly supervised
learning on images and their ungrounded scene graphs: (1) VSPNet (Zareian et al., 2020a) is a
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Methods Visual Genome VRD
Ground Truth RPN Proposal Ground Truth RPN Proposal

WS-VRD 36.0 10.7 27.8 9.6
VSPNet-v1 38.6 14.7 52.6 9.7
VSPNet-v2 41.9 15.2 57.7 13.1
Our Method 50.8 15.8 68.9 16.5

Table 1: Results of Weakly Supervised Scene Graph Grounding Methods with VG and VRD: Our
proposed model surpass all baseline models by noticeable margins.

framework jointly learning scene graph parsing and scene graph grounding under weak supervision.
Its graph alignment module can alternatively select starting from mapping edges or mapping nodes.
We denote the first one as VSPNet-v1 and the latter one as VSPNet-v2; (2)WS-VRD (Baldassarre
et al., 2020) is an explanation-based weakly supervised scene graph parser. It first aggregate the
relation feature of all visual object pairs and predict all possible relation types that may exist in
the image. Then it assign each predicted relationship label to the object pair that make the greatest
contribution to the prediction.

Among models above, WS-VRD does not have an explicit grounding module. Therefore, to evaluate
its performance on grounding task, we borrow the idea of VSPNet and first use it to transform
input images to scene graphs where each node is a bounding box. Then we use a graph alignment
algorithm to map each scene graph node to a bounding box based on the output graph.

Visual Object Extraction: To extract the visual object features from raw image, following VSPNet
(Zareian et al., 2020a) we apply an off-the-shelf Faster-RCNN (Ren et al., 2015) object detector pre-
trained on OpenImage (Kuznetsova et al., 2020) dataset. The location of each object is represented
as a bounding box. Since scene graph grounding is highly affected by the quality of object proposals,
we report grounding accuracy under two settings: one is that the object detector is given ground truth
bounding box as proposal, denoted as Ground Truth, and the other is that the object detector use the
proposals from its own RPN (Region Proposal Network) module, denoted as RPN Proposal. To be
fair, we apply this extraction protocol on all methods.

Evaluation Metrics: We apply Accuracy to evaluate the models on grounding task following Sadhu
et al. (2019). In Ground Truth setting, a node is correctly mapped if it is exactly mapped to the
corresponding ground truth bounding box. In RPN Proposal setting, a node is correctly mapped if
the IoU score between the mapped box and ground truth box is larger or equal to 0.5. The final
accuracy is averaged over all scene graph nodes.

5.2 RESULTS ON SCENE GRAPH GROUNDING

Quantitative results shown in Tab. 1. illustrates our advantages on both datasets, regardless of which
type of proposals are given. On Visual Genome, our model improves the recall by nearly 9% with
ground truth bounding boxes, while gets a slightly higher recall with RPN proposals. Besides, our
model achieves 68.9% recall, more than 10% higher than any other baselines, on VRD with ground
truth bounding boxes. Additionally, with proposals generated by RPN, our model shows a 3% boost
on the recall. It is noticeable that the improvement made by our proposed method is much larger
when ground truth bounding boxes are given. Such difference indicates that our model can better
learn the mapping between objects and scene graph nodes with desirable object proposals.

5.3 ABLATION STUDY

To quantify the contribution of different components of our model, we conduct ablation study by
comparing our model with two variants: (1) Without Minimum Match: after calculating the cost
function matrix, instead of conducting minimum match via Hungarian Algorithm, we simply map
each node to the box with minimum cost function value with it; (2) Without Relational Metric: we
set λ in Eq. 1 to 1 so that the model only makes use of the object category metric.

The results are shown in Tab. 2. Compared with the model without minimum matching, our model
has a noticeable performance boost, indicating that matching node-box through Hungarian algo-
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Methods Visual Genome VRD
Ground Truth RPN Proposal Ground Truth RPN Proposal

Ours w/o minimum matching 40.6 12.1 57.2 10.5
Ours w/o relational metric 49.1 15.4 66.7 16.6

Ours (full) 50.8 15.8 68.9 16.5

Table 2: Ablation Study on Our Grounding Model: The results show that our model benefits from
the matching process and the relational metric

Node Type Node Numbers Acc w/o rel-metric Acc with rel-metric
Ambi-Nodes with relations 106k 28.3 33.3

Ambi-Nodes without relations 91k 26.0 26.9
Unique Nodes 155k 77.2 77.3

Table 3: Detailed Ablation Study on Our Grounding Model on VG dataset: The results show that
our model benefits from the matching process and the relational metric

rithm is much better than greedy methods. It is also shown that our model is able to learn feasible
information from data, compared with the model without relational metrics.

Furthermore, to verify that our relational based metric successfully learn to use relational infor-
mation to distinguish the nodes with same object class (like the case of “person riding horse” and
“person riding bike”), we report the grounding accuracy on different fractions of the nodes on test
set of Visual Genome Dataset. We apply the ground truth bounding boxes as candidate boxes. We
divide the nodes to three types: ambiguous nodes with relations, ambiguous nodes without relations
and unique nodes. A node is an unique node if there is no other nodes belonging to the same object
class of it in the same graph. Otherwise, the node is an ambiguous node. Obviously, for unique
nodes, the object class information is adequate for grounding. For ambiguous nodes with relations,
relational information is important for distinguishing them from the nodes with same object class.

The results shown in Tab. 3 demostrates that, for the ambiguous nodes with relations, the relational
metric significantly improve the grounding accuracy. Also, even for the ambiguous nodes that do
not have relations, relational metric also helps the grounding. This is because our model applies
minimum matching. When matching the ambiguous nodes with relations correctly, it also help the
ambiguous nodes without relations exclude wrong options. Meanwhile, our relational metric does
not interrupt the grounding of the unique nodes, which can be well handled by the object-based
metric.

6 APPLICATION: IMPROVING WEAKLY SUPERVISED SCENE GRAPH
PARSING

Apart from scene graph grounding shown in Sec. 5, we further apply our grounding results to
a downstream task: weakly supervised scene graph parsing. More specifically, given a weakly
supervised scene graph parsing dataset, we first apply our grounding model to map each node in the
scene graph to a bounding box in the image. In this way we generate grounded scene graph parsing
annotations. We use above annotations to train scene graph parsers in fully supervised manner. In
the evaluation stage, we compare them with the parsers directly trained on the original dataset under
weak supervision.

Experiment Setting: We conduct this experiment on Visual Genome with three weakly supervised
methods: (1) VSPNet (Zareian et al., 2020a), the current state-of-the-art; (2) A multi-layer percep-
tron (MLP) which accepts the concatenation of two object features as input and predicts their visual
relations; (3) A graph neural network (GNN) over fully connected graphs where each node repre-
sents one visual object. All three models can be trained under full supervision or weak supervision.
To train the MLP and the GNN under weak supervision, we adopt the multi-instance-learning (MIL)
based loss function.
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Methods Supervision SGCls PredCls
Recall@50 Recall@100 Recall@50 Recall@100

MLP FS Full 22.8 25.9 40.7 49.3
GNN FS Full 23.5 26.6 41.5 50.0

VSPNet FS Full 31.5 34.1 67.4 73.7
MLP-MIL Weak 19.7 22.5 38.2 47.0
GNN-MIL Weak 18.2 20.7 37.4 45.8

VSPNet WS Weak 30.5 32.7 57.7 62.4
MLP (Ours) Weak 22.4 25.1 41.1 49.8
GNN (Ours) Weak 21.7 24.8 38.8 47.8

VSPNet (Ours) Weak 30.6 33.3 59.9 65.2

Table 4: Results of Scene Graph Classification and Predicate Classification on VG: Our grounding
results can act as a reinforcement to other scene graph parsing models and further improve their
performances

Methods SGGen
Recall@50 Recall@100

MLP-MIL 1.9 2.2
GNN-MIL 1.5 1.8

VSPNet WS 4.7 5.4
MLP (Ours) 2.4 3.0
GNN (Ours) 2.4 3.0

VSPNet (Ours) 5.1 5.8

Table 5: Results of Scene Graph Generation on VG: Our grounding results can bring boosts to other
scene graph parsing models in the scenario without ground-truth bounding boxes

Evaluation Metrics: Following (Herzig et al., 2018) and (Zareian et al., 2020a), we evaluate the
models above with three setups: scene graph generation (SGGen), scene graph classification (SG-
Cls) and predicate classification (PredCls). SGGen requires a model to generate triplets from an
input image without ground truth bounding box. A generated triplet is considered as correct if (1)
for both subject and object, the detected bounding boxes have an IoU of at least 0.5 with ground
truth and (2) the categories of subject, object and relation are all correctly predicted. SGCls requires
a model to predict object categories along with their mutual relations given ground truth bound-
ing boxes. And PredCls asks for predicting relations for all visual object pairs given ground truth
bounding boxes. We report Recall@K score, the ratio of ground truth triplets correctly detected
by the model when top K triplet predictions are taken into account, with K=50, 100. For the fully
supervised models, we only report their performance of SGCls and PredCls because they require
denser proposals (300) in SGGen setup compared to the weakly supervised models (20 proposals
required), which is unfair for the comparison.

Results: Quantitative results are shown in Tab. 4 and 5. Such results demonstrate that our ground-
ing model can act as an reinforcement for other weakly supervised approaches. In particular, our
grounding improves the performance of the MLP model for nearly 3% over all 4 metrics with ground
truth boxes. The recalls of the GNN model also raise for more than 1% with the help of our ground-
ing results. Additionally, the correspondences generated from our model brings performance boost
to VSPNet, the state-of-the-art, on all metrics of all set up.

7 CONCLUSION

In this paper, we propose the task of weakly supervised scene graph grounding, establishing corre-
spondences between visual objects and scene graph nodes, and provide an algorithm solving it. Our
method surpasses the current state-of-the-art on the task. Furthermore, the outputs of our model can
be applied to downstream scene graph parsing algorithm and effectively improve the performance.
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APPENDIX

A POOLING-BASED MIL

Figure 3: The pipeline of pooling-based MIL.

Here we describe the pooling-based MIL with a pipeline in Figure 3. In each updating iteration, a
neural network classifier takes the object features in and output the probabilities of each label in the
label space. The probability vectors form a matrix where each raw corresponds to an object. After
that, a pooling operator like mean aggregates each column in the matrix to a scalar. Then a gradient
descent step is applied to maximize the aggregated probability of labels existing in the image and
minimize the others.

B JUSTIFICATION OF THE ALTERNATIVE OPTIMIZATION METHOD

Here we give the justification of the alternative optimization method mentioned in Sec 4.2.

Let c(u, v; θobj , θrel) represent the cost function given current model parameters θobj , θrel. Let us
define M∗(θobj , θrel) as:

M∗(θobj , θrel) = argmin
M∈π(G,I)

∑
(u,v)∈M

c(u, v; thetaobj , θrel) (12)

Suppose we run an optimization step and obtained new parameters θ′obj , θ
′
rel. If the new parameters

satisfy: ∑
(u,v)∈M∗(θobj ,θrel)

c(u, v; θobj , θrel) ≥
∑

(u,v)∈M∗(θobj ,θrel)

c(u, v; θ′obj , θ
′
rel) (13)

Based on the definition of M∗(θ′obj , θ
′
rel) we have:∑

(u,v)∈M∗(θobj ,θrel)

c(u, v; θ′obj , θ
′
rel) ≥

∑
(u,v)∈M∗(θ′obj ,θ

′
rel)

c(u, v; θ′obj , θ
′
rel) (14)

And thus we have: ∑
(u,v)∈M∗(θobj ,θrel)

c(u, v; θobj , θrel) ≥
∑

(u,v)∈M∗(θ′obj ,θ
′
rel)

c(u, v; θ′obj , θ
′
rel) (15)

C DATASETS

As mentioned in Sec. 5, we conduct our experiment with two datasets Visual Genome (VG) (Krishna
et al., 2017) and Visual Relation Detection(VRD) (Lu et al., 2016).
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• VG comes with 108k images, along with object, relation and scene graph annotations.
Following Zareian et al. (2020a), we keep 150 most frequent entities categories and 50
most frequent predicate classes. We also follow the split adopted by Zareian et al. (2020a),
which contains 75k images for training and 32k for testing.

• VRD contains 5k images with 100 object categories and 70 predicate types. More specifi-
cally, the training set consists of 4k images while the test set has 1k.

D IMPLEMENTATION DETAILS

D.1 OVERALL SETTING OF GROUNDING MODEL

We set λ = 0.5 for VG dataset and λ = 0.9 for VRD datasset. As for the word embedding, in our
implementation, for VG dataset, we apply the same pre-trained GloVe word embedding (Pennington
et al., 2014) as VSPNet for both object category names and relation type names. For VRD dataset,
we apply the word embedding in spacy library. The word embedding dimensions of all datasets and
methods are set as 300, following VSPNet. We apply Adam (Kingma & Ba, 2014) with learning
rate of 1e− 4 to optimize our model

D.2 OBJECT CLASS BASED METRIC

Here, let use denote the object category label set of the dataset as L = {l1, l2, ...}. We apply two-
layer perceptron to estimate P (yv|v) given the feature extracted by the Faster-RCNN. In the case
where ground-truth bounding boxes are given, we directly use the perceptron to predict the category
of the object. More specifically, we set the output dimension of the percepetron as |L|, which is
the object category number of the dataset (150 in VG and 100 in VRD). Then we apply Softmax
function to normalize the output vector to be a distribution. In the case where we are given RPN
proposals, we first use the perceptron to project an object feature to a 300-dimension vector xv .
Then we calculate the inner dot product between the 300-dimension vector and word embedding of
each object category. Then the object category distribution P (yv|xv) of an object v is predicted as:

P (yv = li|xv) =
expxv · w(li)∑

j<|L| expxv · w(lj)
(16)

where w(li) is the word embedding of category li. For the pooling operator σ in LMIL, we apply
mean for the RPN proposal setting of VG and max for others.

D.2.1 RELATIONSHIP BASED METRIC

Visual Graph Neural Network: We apply mean as aggregating operation. We set the MLP1 and
MLP2 as two-layer perceptrons, with hidden dimension of 512 and output dimension of 512.

Scene Graph Neural Network: We apply sum as aggregating operator in line 6 and 7 of Alg. 1.
As for the aggregating operator in line 8, we apply following definition:

AGGREGATE(hsu, h
o
u) =

hsu + hou
|S(u)|+ |O(u)|

(17)

which is the same as Johnson et al.. For the MLP in line 8, we apply a two-layer perceptron, with
hidden dimension of 512 and output dimension of 512.

D.2.2 SETTING OF SCENE GRAPH PARSING MODEL

Here we introduce the implementation of MLP and GNN parsing models in detail. As for the
VSPNet, we directly apply all of the original setting in the original implementation of the authors.

Loss function: The loss function of MLP FS and GNN FS is cross entropy applied on object
category and relation type respectively. As for MLP-MIL and GNN-MIL, the loss function of object
category is the same as the loss function of object class based metric. And the loss function of
relation type on one sample 〈I,G = 〈U,R〉〉 is defined as:

L =
∑

〈u,u′,yr〉∈R

log σ({P (yv = yu)P (yv′ = yu′)P (y(v,v′) = yr)|v, v′ ∈ I}) (18)
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where σ is a max-pooling operator among all possible object pairs. P (y(v,v′) = yr) is the possi-
bility that the relation from v to v′ belongs to type yr predicted by the model. When applying our
grounding results on MLP, GNN and VSPNet, we just treat our grounding result as ground-truth and
run the model in fully supervisd setting.

Optimization: We apply Adam (Kingma & Ba, 2014) with learning rate of 1e− 4 to optimize our
model. We use a validation set of 1k images for early stopping. To be fair, for all three settings
(fully supervision, weakly supervision and the version with our grounding), we provide ground-
truth scene graph on the validation sets for GNN and MLP. As for VSPNet, we directly copy their
hyperparameter setup. In VSPNet + our Grounding setting, we borrow the hyperparameters of their
fully supervised version.

Neural Network Architecture: For MLP, we apply two-layer perceptrons whose hidden dimension
number equal to their input dimension number. For GNN, we directly use the architecture and
hyperparameter of the Visual Graph Neural Network in grounding model. We concatenate the output
of the VGNN and the initial feature from Faster-RCNN to get the final feature of each visual object.
Then we feed them into a MLP to predict their categories and feed the concatenation of all object
pairs into another MLP to predict their relation categories.

E VISUALIZATION OF OUR GROUNDING MODEL

We visualize our scene graph mapping results on several samples given ground-truth bounding
boxes. The visualization results are shown in Fig. 4. We Further visualizes some failure cases
in Fig. 5. In the first failure case, the model gets confused between “book” and “paper”, while in the
second case, the model fails to distinguish different plates. In Fig 6, we show that when there are
multiple objects with the same category in the image, our model is able to distinguish them through
object-wise relations.
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Figure 4: The visualization of the mapping found by our model given ground-truth bounding boxes.

16



Under review as a conference paper at ICLR 2021

Book

Box

People

Face Paper

Table

Vegeta

ble

Food

Plate

Table

On Plate

Seat

Bike

Engine

Handle

Wheel

Window

Table

BedRoom

Book

Figure 5: Visualization on Failure Cases of Our Model

17



Under review as a conference paper at ICLR 2021

Man Has

Woman

Hair

Glasses

HairHas

Bottle Guy

GuyShirt

Holding

In

Man

Dog

Eye

Eye

Jacket

Nose

Of

Of

Man

ManWave

Board

Over

On

Figure 6: Visualizations on Ambiguous Objects with Relations

18


	Introduction
	Related Work
	Task Definition
	Proposed Method
	Object-Class Based Metric
	Relation based Metric
	Training and Inference

	Experiments on Weakly Supervised Scene Graph Grounding
	Experiment Setting
	Results on Scene Graph Grounding
	Ablation Study

	Application: Improving Weakly Supervised Scene Graph Parsing
	Conclusion
	Pooling-based MIL
	Justification of the alternative optimization method
	Datasets
	Implementation Details
	Overall Setting of Grounding Model
	Object Class Based Metric
	Relationship Based Metric
	Setting of Scene Graph Parsing Model


	Visualization of our Grounding Model

