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Abstract

Meta-Black-Box Optimization (MetaBBO) streamlines the automation of opti-
mization algorithm design through meta-learning. It typically employs a bi-level
structure: the meta-level policy undergoes meta-training to reduce the manual
effort required in developing algorithms for low-level optimization tasks. The orig-
inal MetaBox (2023) provided the first open-source framework for reinforcement
learning-based single-objective MetaBBO. However, its relatively narrow scope
no longer keep pace with the swift advancement in this field. In this paper, we
introduce MetaBox-v2 (https://github.com/MetaEvo/MetaBox) as a mile-
stone upgrade with four novel features: 1) a unified architecture supporting RL,
evolutionary, and gradient-based approaches, by which we reproduce 23 up-to-date
baselines; 2) efficient parallelization schemes, which reduce the training/testing
time by 10—40x; 3) a comprehensive benchmark suite of 18 synthetic/realistic tasks
(1900+ instances) spanning single-objective, multi-objective, multi-model, and
multi-task optimization scenarios; 4) plentiful and extensible interfaces for custom
analysis/visualization and integrating to external optimization tools/benchmarks.
To show the utility of MetaBox-v2, we carry out a systematic case study that evalu-
ates the built-in baselines in terms of the optimization performance, generalization
ability and learning efficiency. Valuable insights are concluded from thorough and
detailed analysis for practitioners and those new to the field.

1 Introduction

Black-Box-Optimization (BBO) represents challenging optimization tasks in practice. For decades,
many BBO optimizers [1—] are developed and widely discussed. A key limitation of traditional
BBO optimizers is that they require human experts to design effective algorithms, which might result
in design bias to adapt for novel optimization scenarios [5]. To address this, recent Meta-Black-
Box Optimization (MetaBBO) [6, 7] researches propose meta-learning algorithm design policy by
a bi-level framework: the meta-level policy is trained on a problem distribution to maximize the
performance of low-level BBO optimizer. The trained policy is expected to generalize on unseen
problems. Considering MetaBBO lacks decent benchmark, MetaBox [8] in 2023 served as the first
benchmark platform for developing and evaluating MetaBBO approaches. In particular, this original
version focused on a specific optimization scenario: single-objective optimization, and a specific
learning paradigm: MetaBBO with reinforcement learning (MetaBBO-RL). The reason behind is that
before 2023, a primary research focus in MetaBBO was exploring how to incorporate RL [9] with
BBO optimizers. With 8 popular MetaBBO-RL baselines and 3 basic testsuites, MetaBox provides
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Figure 1: The four novel and user-friendly features of MetaBox-v2.

fully automatic train-test-log workflow with minimal development requirement. It has received
considerable recognition in the field and gathered a MATLAB extension recently [10].

Promising as it is, MetaBBO researches grow up rapidly within the last two years. On the one hand,
more and more novel ideas came out in terms of flexible learning paradigms. According to the latest
survey [6], four major learning paradigms have been discussed: MetaBBO-RL, MetaBBO-SL [1 |-

] where supervised learning is used to train the meta-level policy, MetaBBO-NE [14, 15] where
neuroevolution [ 1 6] is adopted, and MetaBBO-ICL [ 17-19] where LLMs with in-context learning [20]
serve as meta-level policies for algorithm design. On the other hand, MetaBBO’s potential has been
widely explored in diverse optimization fields such as multi-objective optimization [2 1], multi-modal
optimization [22, 23], large-scale global optimization [24, 25], multi-task optimization [26], etc. The
original MetaBox no longer keeps pace with the swift advancement in the field.

We therefore propose MetaBox-v2 through fundamental improvements that systematically address
the above limitations while inheriting the benefits of the original Metabox. To summarize, this study
presents the following key contributions to advancing the MetaBBO benchmark research:

1. Milestone Framework Upgrade (MetaBox-v2): The upgraded MetaBox-v2 introduces four
synergistic enhancements through framework innovations, as illustrated in Figure

1) Unified Integration of All Four MetaBBO Paradigms: Through redefine the algorithmic interfaces,
we now propose the MetaBBO Template for algorithm development. It serves as the first framework
capable of supporting all the four distinct MetaBBO paradigms: MetaBBO-RL, MetaBBO-SL,
MetaBBO-NE, and MetaBBO-ICL. Based on the unified framework, we also extend our baseline
library from 8 to 23 algorithms.

2) Efficient Parallelization: MetaBBO approaches are typically time-consuming due to the nested
bi-level structure. In MetaBox-v2, we introduce two parallel schemes: vectorized optimization
environment and instance-level distributed evaluation, to accelerate MetaBBO by 10 — 40x.

3) Rich Benchmarks: To include diverse optimization problem types, we rewrite the Problem class
as an inheritable class. By inheriting from Problem, complex optimization problems such as multi-
objective and multi-task ones can be seamlessly integrated, allowing polymorphism in different
problem-specific behavior. MetaBox-v2 extend the testsuites from 3 to 18 synthetic/realistic tasks.

4) Plentiful and Extensible Interfaces: We thoroughly upgrade MetaBox’s developer flexibility. Every
detailed process data are systematically recorded as metadata, which could be used for customized
analysis by users. Furthermore, to match the open-source ecosystem, MetaBox-v2 provides plentiful
interfaces to external resources. We prepare a systematic online documentation to guide the users.

2. Comprehensive Benchmarking Study: A comprehensive benchmarking study is conducted
to showcase the practical value of MetaBox-v2, where up-to-date MetaBBO baselines are fairly
trained and evaluated in terms of their performance, efficiency, generalization ability, etc. Our
analysis yields valuable insights, particularly the significant variance in baseline generalization
across testsuites and the critical trade-offs between learning efficiency and performance robustness.
These findings establish empirical guidelines for practitioners while identifying promising research
directions, accelerating future advancements in MetaBBO algorithm development.
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Table 1: Comparison to related benchmarks. #Optimization Scopes: supported optimization problem
types; Learning Support: supported MetaBBO learning paradigms; Parallel: hardware-level paral-
lelism support; #Problem: the number of problem instances (#synthetic + #realistic); #MetaBBO
Baseline: the number of MetaBBO baselines; Template: Template coding support; Auto: automated
train/test workflow; Custom: configurable settings; Visual: visualization tools support; Compatibility:
compatibility with open-source resources.

#0p ;zfmzatwn Learning Parallel ~ #Problems #Meta}?BO Template  Auto  Custom  Visual ~Compatibility
copes Support Baselines
COCO [42] 4 X X 481+0 X v v X v few
CEC [43] 1 X X 30+0 X X X X X none
IOHprofiler [44] 3 X X 55+0 X v X v v few
Bayesmark [45] 1 X X 0+228 X v v X X few
Zigzag [46] 1 X X 4+0 X X X v X none
Engineering [47] 1 X X +57 X x X X X none
MA-BBOB [48] 1 X X 1000+0 X X X X X none
BBOPlace [49] 1 X X 0+14 X X v X X none
PyPop7 [50] 2 X X 92+11 X X X X X few
EvoX [51] 2 X v 44450 X v X v v rich
MetaBox [8] 1 RL X 544280 8 v v v v few
MetaBox-v2 NSV IISECE 2 v VA v rich

2 Related Works

MetaBBO. We first illustrate the bi-level paradigm of Meta-Black- NotaTovel Algorithm Desian Poliey
Box-Optimization (MetaBBO) [6] in Figure . In low-level opti- S— :

mization environment, a BBO optimizer A is maintained to optimize Fp"mmm’H v HAlgmmmJ
a problem p sampled from distribution P. At each optimization
step t, optimization status features are extracted from the current
optimization process (such as population and objective values infor-
mation). Then in meta level, an algorithm design policy my (with —
learnable parameters ) outputs a desired design w! by w! = my(s!).
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A optimizes p by w! for one step. A performance measurement
function r; is used to evaluate the performance gain obtained by this Low-level Optimization Environment
algorithm design deci;iqn. S.uppose T optimizatior} steps are gllowed Figure 2: Bi-level Paradigm of
for the low-level optimization process, then 7y is meta-trained to existing MetaBBOs.
maximize a meta-objective formulated as: J(6) = Epep[z;; ),

which is expectation of accumulated single step performance gain

over all problem instances in P. In practice, a training problem set serves as the distribution P. It is
important to note that in this brief introduction we use w as an abstract notation for algorithm design,
considering that MetaBBO provides a universal concept framework for diverse algorithm design tasks
such as algorithm selection, algorithm configuration etc. w is hence a flexible and abstract concept to
represent specific design choice under the given context. For a comprehensive summary of different
algorithm design categories, we refer to MetaBBO survey [6] for further reading.

input

Following this paradigm, a wide array of MetaBBO approaches have been proposed, which further
diverge into four same-end branches according to the learning techniques they adopt [6, 7]. The
four branches are: 1) MetaBBO-RL: those first model the algorithm design process as a Markov
Decision Process (MDP), then employ effective RL techniques to learn well-performing policies.
Initial works such as DEDDQN [27], LDE [28], DEDQN [29] and RLEPSO [30] focus on designing
dynamic configuration strategy for BBO optimizer. Following them, in-depth exploration include
high-capacity neural policy [3 1, 32], complete optimizer generation [33, 34], optimization feature
learning [35, 36] and efficient offline learning [37, 38]; 2) MetaBBO-SL.: this branch originates from
RNN-opt [1 1], where given a solution as input, a RNN is used to auto-regressively iterate it for better
solution. The RNN is trained by minimizing the differentiable objective function. Although this
paradigm requires white-box (differentiable) problems for training, recent works such as GLHF [13]
and B20pt [12] demonstrate that only training on synthetic problems is sufficient for generalization
towards unseen problems; 3) MetaBBO-NE: where a the meta-level policy is learned by evolutionary
optimization on its net parameters [14, 15, 39]; 4) MetaBBO-ICL: where a general LLM serves as
either the low-level optimizer [17-19], or a meta-level configuration policy [40, 41]. The textual
optimization process information is regarded as the context and learned by the LLM to propose
algorithm designs. The fast development in MetaBBO field anticipates corresponding benchmarks.



Universal Agent Class Universal Problem Class Vec-Env Training Distributed Testing

§ . N\
Class Basic_Agent Class Basic_Problem opt env |[opt en
+ init(config) T init(config) MetaBBO Agent %% Agent
init(config init(config opt_env ||opt _env
F rin(opt. ) | I 7 x —
A rollout(optﬁenvz + eval(popu anonj Batched Batched 1
______________ — Algorithm Learning | Ray Sub-tasks |

Inheritance |Rewrite

ini i Designs Objs
wrapped training obj. 2
— { l v L

|
[ 1
[rovard | [(grad ] [fmess | W W
A SO0 MOO LR 7

Vectorized Optimiztion Envs | Ray Aggregate I

| Optimization Environment |

Figure 3: Major architecture adjustments in MetaBox-v2.

Related Benchmarks. A comparison of MetaBox-v2 to representative and up-to-date BBO bench-
marks is presented in Table ' to show the novelty of our work. Apart from those have been reviewed
and compared in MetaBox [&], latest efforts on developing BBO benchmark include: 1) Engineer-
ing [47]: a collection of real world engineering optimization problems such as heat exchanger network
design, industrial chemical process optimization, etc; 2) MA-BBOB [48]: a many-affine problem sets
constructed from COCO [42] by interpolation operations on COCO’s problem instances, resulting in
diversified synthetic instances; 3) BBOPlace [49]: chip placement tasks which represents complex
and challenging optimization scenarios; 4) PyPop7 [50]: a comprehensive benchmark platform
featured by massive number of BBO optimizers, which include decades of advanced optimizers
with different types and specialized scenarios. 5) EvoX [51]: a high-efficiency benchmark platform
featured by its distributed GPU-accelerated evaluation framework, with over 100x speedups than
traditional BBO benchmarks such as CoCo and PyPop7. Notably, MetaBox, across its two versions,
remains the sole platform that supports MetaBBO’s bi-level framework to streamline the development
and benchmarking processes in this research domain.

3 MetaBox-v2

3.1 Unified MetaBBO Interface

Compatibility with Diverse MetaBBO. As reviewed in Section ', the rapid development in
MetaBBO has witnessed the exploration of various learning paradigms. A fundamental challenge
is that, while sharing the bi-level paradigm, their underlying learning forms differ with each other.
MetaBBO-RL is built on MDP, necessitating a reward signal from the low-level optimization envi-
ronment to train the meta-level RL agent through trial-and-error. MetaBBO-SL and MetaBBO-NE
require gradient information and fitness-like feedback, respectively. To achieve this, in MetaBox-v2,
we replace the original RL-specific agent class with a unified Basic_Agent class featuring universal
train and rollout interfaces. This is achieved through a wrapper function to transform different
learning objective forms into a universal data object (shown in the left of Figure ).

By such a novel design, we reproduce 15 more representative MetaBBO baselines upon the orig-
inal MetaBox, including 1) MetaBBO-RL: NRLPSO [52], RLDAS [32], SYMBOL [33], GLEET [31],
RLDEAFL [36], Surr_RLDE [37], MADAC [21], PSORLNS [53], RLEMMO [22], L2T [26]; 2) MetaBBO-
SL: GLHF [13], B20PT [12]; 3) MetaBBO-NE: LES [15], LGA [14]; 4) MetaBBO-ICL: OPRO [ 7]. In
summary, MetaBox-v2 now supports 36 baselines including 23 MetaBBO baselines and 13 traditional
BBO baselines. It is capable of providing not only comprehensive comparisons and analysis usages,
but also a formal tutorial for those new to this field.

Scalable Testsuites Library. While the original MetaBox supported three synthetic/realistic testsuites
for single-objective optimization (SOO), the up-to-date MetaBBO approaches have been initiated
to multi-objective optimization (MOO) [21, 54], large-scale global optimization (LSGO) [24, 25],
multi-modal optimization (MMO) [22] and multi-task optimization (MTO) [26, 55]. To keep pace
with MetaBBO’s advancement so as to embrace users from diverse optimization sub-domains, we
make a key adjustment to generalizing the SOO-specific problem class in MetaBox into a polymorphic
Basic_Problem parent class (shown in the second column of Figure ). This abstract base class with
its core eval() interface enables problem specialization through inheritance, namely, users implement
domain-specific evaluation logic by overriding this method.



Table 2: Diverse BBO testsuites in MetaBox-v2.

Name Type Dimension maxFEs | Size Scenario Description License
bbob-10D[42] SO0 10D 2E4 24 | synthetic | Single-objective instances in CoCo BSD-3-Clause
bbob-30D[42] SO0 30D SE4 24 | synthetic | Single-objective instances in CoCo BSD-3-Clause
bbob-noisy-10D[42] | SOO 10D 2E4 24 | synthetic bbob-10D with gaussian noise BSD-3-Clause
bbob-noisy-30D[42] | SOO 30D 5E4 24 | synthetic bbob-30D with gaussian noise BSD-3-Clause
hpo-b[63] SO0 2-16D 2E3 935 | realistic Hyper-parameter optimization MIT License
uav[65] SO0 30D 2.5E3 56 realistic UAV path planning tasks Attribution 4.0
protein[64] SO0 12D 2E3 280 | realistic | Simplified protein-docking instances | Attribution 4.0
Isgo[60] LSGO >905D 3E6 20 | synthetic Large-scale problem instances GPL-3.0
ne[51] LSGO >1000D 2.5E3 66 realistic Neuroevolution for control tasks GPL-3.0
zd1[56] MOO 10-30D SE3 5 synthetic A group of bi-objective problems Apache-2.0
uf[58] MOO 30D SE3 10 | synthetic Multi-objective problem instances Apache-2.0
dtlz[57] MOO 6-29D SE3 46 | synthetic | Scalable multi-objective problems Apache-2.0
wfgl[59] MOO 12-38D SE3 117 | synthetic | Complex multi-objective problems Apache-2.0
moo-uav[56] MOO 30D 2.5E3 56 realistic Multi-objective form of uav Apache-2.0
mmo[61] MMO 1-20D SE4-4E5 | 20 | synthetic Standard multi-modal problems Simplified BSD
cec2017mto[62] MTO 25-50D 2.5E4 9 synthetic Multi-task problems in CEC2017 -
weei2020[62] MTO 50D 6.25E5 10 | synthetic | Multi-task problems in WCCI2020 -
weei2020-aug MTO 50D 1.25E5 127 | synthetic | Flexible combinations of wcci2020 -

Specifically, we have integrated 18 testsuites with over 1900 problem instances from diverse prob-
lem types into MetaBox-v2. These problems include not only representative synthetic benchmark
functions for SOO [42], MOO [56=59], LSGO [60], MMO [61] and MTO [62], but also realistic
testsuites with challenging optimization characteristics widely collected from AutoML [63], protein
science [64], UAV system [65] and robotics [51]. We present basic information of them in Table
More details are accessible at the online documentation.

Open-Source Ecosystem. MetaBox-v2 exemplifies exceptional extensibility through strategic
integration with established optimization frameworks. For example, some built-in BBO baselines
are implemented by calling powerful platforms such as DEAP [66], PyCMA [67], PyPop7 [50] etc.
Some testsuites are borrowed from emerging benchmark platforms such as EvoX [51] to further
acquire in-testing acceleration. We provide point-to-point tutorial documentation to connect users
with these flexible usages.

3.2 Efficiency Optimization

Parallel Training. The time-consuming training caused by MetaBBO’s bi-level nested paradigm is
a critical but understudied bottleneck in current literature. Our preliminary experiments reveal that
serialized environment evaluations in the original MetaBox lead to prohibitive training times when
handling modern testsuite scales, posing barriers to the rapid development of MetaBBO field. In
MetaBox-v2, to address this efficiency issue, we propose a novel parallel scheme termed as vectorized
optimization environment to accelerate MetaBBO’s training. In specific, as illustrated in the third
column of Figure ', during the training, we simultaneously construct a batch of low-level optimization
environments and wrap them into a vectorized environment based on Tianshou [68]. Then the meta-
level agent could perform batched algorithm designs via multi-processing parallelization in the
vectorized environment. This allows parallel collection of learning signals (rewards/gradients/fitness
measures) across multiple environments and problem instances, which are aggregated into mini-
batches for efficient meta-policy updates. To the best of our knowledge, MetaBox-v2 is the first
development examplar to make MetaBBO’s training parallel.

Parallel Testing. MetaBox-v2 provides Ray-based parallel scheme [69] for distributed testing of
MetaBBO/BBO baselines. As illustrated in the right of Figure , given a MetaBBO’s meta-level agent
and a testsuite, we first copy the agent for each testing run and use Ray to construct the corresponding
sub-tasks. Then all sub-tasks are distributed into independent CPU/GPU cores for parallel testing.
The testing results in these sub-tasks are aggregated automatically by Ray’s handler. To show the
detail, we first assume a testing scenario where N problem instances compose the testing set, B
baselines to be tested, and R independent runs to ensure the statistical robustness. Naive testing
procedure requires nested 3-layer loop to complete all these N x B x R testing runs. In contrast,
in MetaBox-v2, we provide four parallel testing modes to achieve fine-grained testing efficiency
optimization: 1) mode-1: N cpu cores are used to distribute the N testing problem instances, on each
core, line2-line3 are executed as two-layer loop; 2) mode-2: R cpu cores are used to distribute the R
independent runs, while on each core, linel-line2 are executed as two-layer loop; 3) mode-3: NxB
cpu cores are used to distribute the N problem instances and B baselines, while on each core, line3 are
executed as one-layer loop; 4) mode-4: NxBxR cpu cores are used to distribute all evaluation tasks,
hence there is no loop anymore. The hardware requirement from mode-1 to mode-4 is incremental.


https://metaboxdoc.readthedocs.io/en/latest/guide/DS_BL/index.html
https://metaboxdoc.readthedocs.io/en/latest/guide/Gallery/index.html

By decomposing parallelism into two orthogonal dimensions as above: (a) distributed solving across
problem instances, and (b) parallel execution of independent test runs, we provide sufficient flexibility
for users to accelerate their programs based on their specific hardware conditions.

3.3 Novel Evaluation Metrics

Metadata. MetaBox-v2 inherits the automatic train-test-log workflow of original MetaBox. However,
the original MetaBox does not provide interfaces for users to operate on the process data observed
from both the training and testing. Instead, it provides users post-processed data such as comparison
tables and optimization progress figures. As an emerging topic, it is still an open question how
to measure different MetaBBO approaches with fairness and objectivity. To this end, we open a
data acquirement interface get_metadata() for users who would like to custom their own metrics
in analysis. For example, consider evaluating a pre-trained MetaBBO approach A on a testsuite
D containing N problem instances {pi,...,pn}. For each problem instance p;, we execute K
independent runs. Then the metadata md; for p; is structured as a json object:

{"problem_id":p;, "data":{"run_1":{"X":List,"Y":List,"T":5.23},

o ey
"run_K":{"X":List,"Y":List,"T":4.96} }}

where "X" is a list of each generation’s solution population, "Y" is a list of the objective values, "T" is
the wall-clock time consumed for optimizing p;. Then the overall metadata md(.A, D) is aggregated
from each p;: {"problem_type":S00, "all_data":[md,...,mdy]}, where "problem_type"
is the optimization types of . Notably, md(.A, D) provide significant convenience for computing
various metrics. For example, a normalized performance metric widely used in existing MetaBBO

approaches [13, 15, 31, 70] can be easily computed as Perf(A, D) = WlK[Zfil Zszl ?017:?],

where Y;%; and Y}*; are the initial and final objective values, p; is the optimal. We next showcase two
customized metrics based on the metadata.

Learning Efficiency Indicator. We provide a novel built-in metric in MetaBox-v2: learning
efficiency, to measure how efficiently a MetaBBO approach learns an effective meta-level policy.
Specifically, during the training of a given algorithm .4, we save a series of its model snapshots
{A(g )}5:0 where G is the number of training epochs. Evaluating all snapshots on the testsuite I,

we obtain corresponding metadata: {md(A9), D)}?zo. Suppose training A9 consumes 7'(9) hours,

Perf (A9 D)

then the learning efficiency of AW is computed as: T8

training efficiency of A at different time slots g.

. This metric could fairly reflect the

Anti-NFL Indicator. Recall that the core motivation of MetaBBO is to learn generalizable policy
towards unseen problems. This is somewhat against the well-known no-free-lunch (NFL) theorem [5].
We hence propose a novel indicator named as Anti-NFL, which could reflect the performance
variance of a given algorithm .4 on unseen testsuites apart from the one it was trained. Suppose A is
trained on Dy.;,, and tested on other B testsuites: {D[g}bB:l. After obtaining all of the metadata by
testing the final model .A() on these testsuites, the Anti-NFL is computed as:

B Perf (A(G),]D)E:S)[) — Perf (-A<G)7 Dtrain )

' B 1
Anti-NFL =exp | & ; Perf (A, Dyin )

@

A larger Anti-NFL indicator indicates that .A performs robustly under problem-shifts, and vice versa.

4 Benchmarking Study

We present a comprehensive case study on up-to-date MetaBBO approaches through MetaBox-v2,
addressing four critical research questions: RQ1: Does MetaBox-v2 significantly enhance train/test
efficiency compared to the conventional version? RQ2: How effectively do up-to-date MetaBBO
methods generalize under standardized training protocols and diverse test scenarios? RQ3: How to
objectively compare the dominance relationship of learning efficiency and generalization ability of
baselines? RQ4: How does MetaBBO perform under extreme problem shift in practice?
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Figure 4: Training improvement curves of baselines on Metabox-v2 and MetaBox.
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Figure 5: Testing efficiency comparison of MetaBox-v2 (4 parallel modes) and MetaBox.

4.1 Experimental Setup

Baselines. We select 20 baselines from the library of MetaBox-v2 for case study, including 5
traditional BBO optimizers: PSO [2], DE [3], SHADE [71], JDE21 [72], MadDE [73], and 15 up-to-date
MetaBBO baselines from all of four learning paradigms: RNNOPT [! 1], DEDDQN [27], DEDQN [29],
LDE [28], RLPSO [74], RLEPSO [30], NRLPSO [52], LES [15], GLEET [31], GLHF [13], RLDAS [32],
SYMBOL [33], OPRO [17], B20PT [12], RLDEAFL [36]. The settings follows their original papers.

Testsuites. First, we employ the bbob-10D testsuite and split its 24 problem instances into 8 training
instances and 16 testing instances, with the latter serving as in-distribution evaluation. Then, the
out-of-distribution evaluation involves four other testsuites: bbob-noisy-30D, protein, uav, and hpo-b.
To ensure the fairness of training, all algorithms undergo 1600 episodes for each training instance.
The testing phases employ 51 independent runs with seed-controlled reproducibility. All experiments
are conducted with 2 AMD EPYC 7H12 CPU, a RTX 3080 GPU and 512GB RAM.

4.2 Platform’s Acceleration Performance (RQ1)

We use vectorized environment with batch_size as 16 to accelerate the training of all involved
MetaBBO baselines. Due to the space limitation, we selectively illustrate in Figure - the performance
improvement curves of 8 baselines, where y-axis denotes normalized performance on testing set of
bbob-10D. Compared to original MetaBox, MetaBox-v2 consistently accelerates MetaBBO baselines
by at most 10x. We can observe that the concrete acceleration may varies on different baselines, this
is because the differences of the internal logic and communication cost among the baselines. An
important note is that the irregular record points in Figure - is due to the unstable multi-processing.
For parallel cases, we draw 5 points (every 20 training epochs), which might present irregular patterns
since the x-axis denotes the training time.

We also illustrate the acceleration performance of MetaBox-v2 compared to original MetaBox in
Figure = in terms of testing efficiency, where y-axis denotes the throughput of evaluation process
measured by the number of instance test runs per second. We compare the throughput of the 4 Ray
modes in MetaBox-v2 to original MetaBox, and the results show that even the simplest distribution
Mode-1 could significantly accelerate the testing workflow. If users have advanced hardware, the
distribution Mode-4 could introduce no less than 40x acceleration.

4.3 Generalization Performance Comparisons among Baselines (RQ2)

In-distribution Test. Table = shows the average results and error bars on the testing set of bbob-10D
across 51 independent runs. We additionally summarize the average ranks among the baselines at
the bottom of the table. The in-distribution test aims at validating the basic learning effectiveness of



Table 3: In-distribution optimization performances of baselines over bbob-10D, with gray box
labeling the best. Due to the space limitation, results for 8 of 16 problem instances in bbob-10D’s
testing set are presented here while the complete results can be accessed at this online page.

Sharp_Ridge Different_Powers Schaffers HC ~Composite_GR Schwefel Gallagher_21 Katsuura Lunacek_BR

PSO(1995) 2] 1.905E+02 6.802E-01 5.600E+00 3.290E+00 2.560E+00 6.803E+00 1.272E+00 6.139E+01
+ 2.156E+01 + 1.760E-01 + 1.368E+00  + 5.796E-01 +3.067E-01  + 6.472E+00 4 2.933E-01  + 5.747E+00

DE(1997) 3] 8.588E-01 8.180E-04 9.454E-02 2.577E+00 9.156E-01 3.393E+00 1.467E+00 4.210E+01
+ 1.054E+00 + 2.537E-04 + 6.483E-02 + 4.860E-01 +3.039E-01  +4.999E+00 4 2.734E-01 =+ 3.043E+00

SHADE(2013) [71] 1.442E+00 2.721E-04 2.649E-01 2.238E+00 1.338E+00 1.155E+00 1.553E+00 4.248E+01
+ 4.321E-01 + 4.192E-05 =+ 6.818E-02 =+ 3.476E-01 + 1.957E-01 £ 9.320E-01 =+ 3.454E-01 =+ 4.209E+00

JDE21(2021) [72] 3.476E+00 4.398E-04 4.496E-01 2.542E+00 5.777E-01 1.604E+00 1.416E+00 4.059E+01
+ 6.350E+00 =+ 3.807E-04 =+ 3.700E-01 + 6.355E-01 4+ 2.246E-01 4 1.641E+00 4 3.359E-01 4 7.940E+00

MADDE(2021) [73] 1.736E+00 5.830E-04 9.538E-01 1.077E+00 8.049E-01 5.458E-01 1.350E+00 4.308E+01
=+ 3.300E-01 + 2.318E-04 + 2.897E-01 =+ 3.709E-01 + 1.997E-01  +7.264E-01 4+ 2.395E-01 4 4.974E+00

RNNOPT(2017) [11] 1.822E+03 2.297E+01 4.645E+01 3.609E+00 9.297E+03 8.431E+01 2.186E+00 1.142E+02
+0.000E+00 40.000E+00 +0.000E+00 +0.000E+00 +1.819E-12  +0.000E+00  40.000E+00  +0.000E+00

DEDDQN(2019) [7] 1.841E-03 4.224E-09 1.080E-02 2.480E+00 1.720E+00 1.574E+00 1.344E+00 4.039E+01
+1.841E-03 +4.069E-09 +7.097E-03 +5.250E-01 +4.164E-01 +9.236E-01 +2.839E-01 +4.264E+00

DEDQN(2021) [29] 9.538E+02 1.115E+01 2.709E+01 1.268E+01 4.880E+03 5.711E+01 3.286E+00 1.591E+02
+1.548E+02 +2.837E+00 +5.790E+00 +2.131E+00 +3.385E+03  £1.366E+01 +6.136E-01 +2.132E+01

LDEQ021) [28] 5.955E-01 5.159E-05 2.156E-01 2.024E+00 1.071E+00 4.292E-01 1.306E+00 3.616E+01
+5.103E-01 +3.700E-05 +1.238E-01 +1.812E-01 +1.603E-01 ~ +7.059E-01  +2.245E-01  +3.494E+00

RLPSO(2021) [74] 2.769E+02 1.481E+00 1.429E+01 3.629E+00 2.722E+00 1.597E+01 2.225E+00 6.525E+01
+7.000E+01 +9.514E-01 +2.968E+00 +1.115E+00 +2.998E-01 +1.719E+01 +3.550E-01 +7.460E+00

RLEPSO(2022) [30] 6.388E+00 2.554E-04 1.687E+00 1.387E+00 1.261E+00 7.703E+00 1.017E+00 2.413E+01
+6.093E+00 +1.396E-04 +7.471E-01 +4.516E-01 +2.497E-01 +1.223E+01 +2.993E-01  +7.015E+00

NRLPSO(2023) [57] 1.968E+02 6.449E-01 5.710E+00 3.367E+00 2.631E+00 7.478E+00 1.599E+00 7.007E+01
N +8.105E+01 +3.607E-01 +2.194E+00 +1.081E+00 +4.837E-01 +5.155E+00  +4.433E-01 +1.466E+01

LES(2023) [15] 1.099E+03 1.273E+01 3.812E+01 1.215E+01 8.044E+03 5.777E+01 4.099E+00 1.793E+02

N +1.516E+02 +2.222E+00 +6.523E+00 +2.095E+00 +4.741E+03  £2.074E+01 +9.875E-01 +2.481E+01

GLEET(2024) [31] 4.464E+00 1.130E-04 2.137E+00 8.624E-01 1.481E+00 8.632E+00 4.839E-01 2.717E+01
+7.370E+00 +8.072E-05 +1.618E+00 +3.202E-01 +1.765E-01 +1.209E+01 +2.181E-01  +8.473E+00

GLHF(2024) [13] 9.652E+02 1.074E+01 3.163E+01 1.027E+01 6.827E+03 4.923E+01 3.527E+00 1.582E+02
+1.286E+02 +1.796E+00 +5.541E+00 +1.857E+00 +4.036E+03  +£1.678E+01 +9.244E-01 +2.103E+01

RLDAS(2024) [37] 1.627E+00 3.740E-04 9.798E-01 1.650E+00 5.505E-01 4.698E-01 1.296E+00 3.630E+01
+1.073E+00 +2.542E-04 +5.450E-01 +4.859E-01 +3.074E-01  +7.563E-01  +2.623E-01  +1.035E+01

SYMBOL(2024) [33] 1.344E+01 5.332E-03 4.256E+00 1.383E+00 1.732E+00 5.611E+00 6.371E-01 3.188E+01
+9.453E+00 +2.537E-03 +2.238E+00 +4.880E-01 +2.436E-01 +4.981E+00  +3.070E-01 +1.164E+01

OPRO(2024) [17] 2.003E+03 3.007E+01 5.099E+01 1.434E+01 9.299E+03 9.031E+01 6.113E+00 1.812E+02
+ 1.562E+02 + 3.326E+00 =+ 9.258E+00 +6.317E+00 £ 4.804E+03 £ 2.184E+01 +£2.771E+00 =+ 2.562E+01

B20PT(2025) [17] 2.581E+02 2.510E+00 6.057E+00 8.728E-01 2.543E+00 1.130E+01 1.575E+00 5.814E+01
N +3.724E+01 +3.641E-01 +1.696E+00 +2.494E-01 +1.547E-01 +7.585E+00  +2.701E-01 +6.917E+00

RLDEAFL(2025) [36] 1.136E+01 1.487E-04 4.166E+00 2.535E+00 1.397E+00 5.452E+00 1.199E+00 3.231E+01
+1.345E+01 +9.165E-05 +2.214E+00 +1.036E+00 +3.326E-01 +6.106E+00  +6.034E-01 +7.111E+00

Rank 1:LDE, 2:DEDDQN, 3:RLDAS, 4:SHADE, 5:MADDE, 6:GLEET, 7:RLEPSO, 8:RLDEAFL, 9:JDE21,10:DE,
11:SYMBOL, 12:PSO, 13:B20PT, 14:NRLPSO, 15:RLPSO, 16:GLHF, 16:DEDQN, 18:RNNOPT, 19:LES, 20:0PRO
GLEET ——NRLPSO ——RLDEAFL ——LES - v~ GLHF - ¥ SYMBOL - ¥ OPRO - ¥~ ‘DE -~ DEDQN --#-"RLEPSO --#-JDE21 -#-MADDE ~* DEDDQN -%-LDE “#PSO % SHADE
1 08

(b)

Performance

1500 2000

Figure 6: Out-of-distribution generalization performance of baselines on: (a) bbob-noisy-30D; (b)
protein; (¢) uav; and (d) hpob.

MetaBBO since the synthetic problem instances within bbob-10D show certain similarity in landscape
features [75]. Several key observations can be obtained: 1) Overall, on 14 of all 16 testing instances,
MetaBBO baselines attain the best optimization results and advance traditional BBO baselines
by orders of magnitudes. 2) So far, the MetaBBO-RL baselines generally outperform MetaBBO-
SL, MetaBBO-NE and MetaBBO-ICL baselines. 3) We notice that a 2019 method DEDDQN [27]
outperforms other baselines in 6 of 18 testing instances and ranks the first place on average.

Out-of-distribution Test. Figure © presents comparative evaluation results across MetaBBO and
traditional BBO baselines using four out-of-distribution testsuites (bbob-noisy-30D, protein, uav,
and hpo-b), with the y-axis representing instance-normalized performance averages. Combining
the results of in-distribution test, several valuable insights are obtained: 1) Generally speaking,
traditional BBO algorithms such as DE, SHADE demonstrate empirical robustness across testsuites,
contrasting with MetaBBO baselines that appear to overestimate their generalization potential; 2) The
out-of-distribution performance of DEDDQN on protein is reversed from its good performance in the
in-distribution test, which might indicates that the overfitting issue should be addressed for future
MetaBBO researches. 3) Almost all of MetaBBO baselines show certain level of performance
oscillation in diverse testsuites, which further underscores that how to define and measure similarity
across diverse BBO problems is crucial to ensure MetaBBO’s generalization.
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Figure 7: Left: Learning efficiency comparison of MetaBBO baselines, larger is better. Middle:
Anti-NFL indicator of MetaBBO baselines, larger is better. Right: Domination relationship among
MetaBBO baselines considering learning efficiency and Anti-NFL indicator.

4.4 Other In-depth Analysis

Although there is continuous discussion on the fairness and objectivity of BBO benchmarks [76-78],
it is still an open challenge for optimization community to agree on a certain golden standard, let
along for the MetaBBO field. We hence provide the following discussions on the objective profiling
of efficiency and generalization of MetaBBO, and the impact analysis of extreme problem shift.

Learning Efficiency (RQ3). Following the computation detail introduced in Section =, we compute
the learning efficiency indicators of all baselines on all testsuites. Their average efficiency values is
shown in the left of Figure '. Combining the results with the average ranks of baselines in Table *, we
could conclude that RLDAS [32] is a remarkable MetaBBO baseline since it uses less computational
resource to achieve better optimization performance. In contrast, DEDDQN [27] achieves the best
performance while consuming hundreds of hours for training, which might not be favorable when
the computational resource is limited. It is also worthy to note that MetaBBO-NE approach such as
LES [15] and MetaBBO-ICL approach such as OPRO [17] hold the lowest efficiency due to the nested
evolutionary optimization and the expensive LLM calling, respectively.

Anti-NFL Performance (RQ3). The Anti-NFL indicator computed in Eq. = reflects the robustness
of a MetaBBO approach when being generalized to diverse BBO problems. The middle of Figure
reports the Anti-NFL indicators of MetaBBO baselines on all testsuites. The conclusions could be
obtained here seems to be different with the aforementioned performance metrics. Two MetaBBO
baselines GLHF [13] and LES [15] have much higher Anti-NFL values than others, while they hold
relatively low absolute performance (Table ). This point deserves in-depth analysis in future works.
While RLDAS has favorable performance and efficiency, its Anti-NFL is among the lowest due to its
meta-level policy’s architecture, which is not generalizable across different problem dimensions.

Combining the results of learning efficiency and Anti-NFL indicator, as illustrated in the right of
Figure ', we analyze the domination relationship of MetaBBO baselines. It can be observed that, so
far, no baseline participating in this case study dominates all the others. This reflects that there is
certain design tradeoff in existing MetaBBO between the efficiency and effectiveness.

Extreme Problem Shift Analysis (RQ4). We evaluate

MetaBBO’s adaptability through an extreme domain shift sce- i a3 —

nario: algorithms trained on low-dimensional synthetic prob- ’%

lems (bbob-10D) are directly deployed on high-dimensional g _
neuroevolution tasks (ne), a robotic control benchmark inte- = Secter

grated from EvoX [51] where optimizers must tune neural 1: Aol

networks (thousands of parameters) to maximize robotic re- L. 57 | TR FHEY
turns. The results from three Ant tasks (Ant-3, Ant-4, Ant- w5 ' g

5 with 4328, 5384, 6440 parameters) are reported in Fig- * ﬁ ===
ure -, which reveal that: 1) Certain MetaBBO methods (e.g., _x s - ~ /”*/
GLEET [31] with Transformer meta-policy) achieve perfor- = ak

mance parity or superiority over advanced BBO baselines

(CMAES [4] and GLPS0 [79]) despite the exclusive trainingon =

simple problems. 2) MetaBBO performance correlates with
policy architecture complexity—Transformer-based GLEET
maintains robustness across scaling dimensions, while MLP Figure 8: Comparison on neuroevolu-
(RLEPSO [30]) and LSTM (LDE [28]) agents degrade sharply tion task by return curves.

in higher-dimensional tasks.



5 Discussion

Takeaways. This work proposes MetaBox-v2 as a milestone upgrade for its predecessor, introducing
several key architecture adjustments that establish a comprehensive benchmark platform for the
MetaBBO research. The fundemental advancements not only enable unified development and
evaluation for various MetaBBO paradigms and diverse optimization problem types; but also support
streamlined parallel acceleration for training/evaluation by 10x-40x. With the expanded baseline
library (8 — 23) and testsuite library (3 — 18, 1900+ problem instances), we conduct a rigorous
case study, which discloses insights including but not limited to: 1) Current literature overestimates
MetaBBO capabilities through narrow evaluation practices, with MetaBox-v2 exposing substantial
performance gaps in cross-domain settings. 2) Out-of-distribution generalization demands special
attention, since our analysis reveals that overfitting persists across baseline algorithms. 3) Effective
MetaBBO assessment requires multidimensional analysis (optimization efficacy, learning efficiency,
generalization robustness) beyond traditional convergence metrics.

Future Work. We outline the following directions to continuously improve MetaBox-v2: 1) Maintain
cutting-edge benchmarks through continuous integration of emerging algorithms and problem suites,
with an open-source ecosystem welcoming community contributions; 2) Optimize the parallel
computing framework to achieve higher resource utilization; 3) Lower adoption barriers through
enhanced tutorials and beginner-friendly interfaces. We aim to establish MetaBox-v2 as both a
powerful research platform and an accessible educational resource for the MetaBBO field.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The contributions of MetaBox-v2 includes not only its motivations accumulated
from the users, but also the extensive development efforts of all authors. These aspects are
all reflected in abstract and introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We have provided a brief yet objective discussion on the limitations of
MetaBox-v2 in the end of the main text (Conclusion section).

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: This paper mainly introduce our proposed behcmarking platform MetaBox
v2.0, which does not include theoretical results.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided sufficient details about the experimental settings in Experi-
mental Results section and Appendix. Assisted by these reproduction details and the project
of MetaBox v2.0, one can easily reproduce the results and observations within this paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: MetaBox has not only opensourced its codes and assets on Github, but also
provided well-organized and detailed documentation for users to learn and use MetaBox
step by step. We have provided these resources links in the main text.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: These details can be found in the beginning of Experimental Results section
and in the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: MetaBox is closely related with optimization domain, hence the optimization
results presented in this paper all include error bars to reflect the statistical significance of
multiple independent runs.

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided this information in the beginning of Experimental Results
section.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, we have double-checked our paper and related code resources, which
conform with the Neur[PS Code of Ethics, in every respect.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

19


https://neurips.cc/public/EthicsGuidelines

11.

12.

Justification: Yes, we have added am informative discussion at the end of the main text to
list such potential issues, where we found that there is no critical negative societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible

release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited every existing assets we used in MetaBox in the main text.
Furthermore, we have included a separate section in Appendix to list these assets and their
corresponding project links & licenses.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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13.

14.

15.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have proposed several problem sets used for benchmarking MetaBBO
approaches. For the usage, problem specification and benchmarking procedure details, we
provide a comprehensive online documentation.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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