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Abstract

Supervised deep learning requires massive labeled datasets, but obtaining annotations is not
always easy or possible, especially for dense tasks like semantic segmentation. To overcome
this issue, numerous works explore Unsupervised Domain Adaptation (UDA), which uses a
labeled dataset from another domain (source), or Semi-Supervised Learning (SSL), which
trains on a partially labeled set. Despite the success of UDA and SSL, reaching supervised
performance at a low annotation cost remains a notoriously elusive goal. To address this,
we study the promising setting of Semi-Supervised Domain Adaptation (SSDA). We pro-
pose a simple SSDA framework that combines consistency regularization, pixel contrastive
learning, and self-training to e�ectively utilize a few target-domain labels. Our method
outperforms prior art in the popular GTAæCityscapes benchmark and shows that as little
as 50 target labels can su�ce to achieve near-supervised performance. Additional results on
SynthiaæCityscapes, GTAæBDD and SynthiaæBDD further demonstrate the e�ectiveness
and practical utility of the method. Lastly, we find that existing UDA and SSL methods
are not well-suited for the SSDA setting and discuss design patterns to adapt them.

1 Introduction

Semantic segmentation is a key task in computer vision with diverse applications ranging from autonomous
driving (Badrinarayanan et al., 2017) to medical image analysis (Ronneberger et al., 2015). Despite recent
progress in this area using supervised learning methods (Badrinarayanan et al., 2017; Ronneberger et al.,
2015; Xie et al., 2021), supervision remains challenging in practical applications due to the high labeling
cost and the need for specialized domain experts. Therefore, minimizing the labeling cost while maintaining
strong performance is critical. Common approaches for learning with unlabeled data are Unsupervised
Domain Adaptation (UDA), which uses additional data from another similar domain, and Semi-Supervised
Learning (SSL), which trains on a partially labeled set.

While UDA has demonstrated promising results on public benchmarks, its practical implementation remains
challenging. Although UDA methods do not require target annotations for training and leverage additional
labeled data from a source domain, they often require target labels for hyperparameter tuning (Saito et al.,
2021). Moreover, it is essential in industrial and medical applications to have a well-validated system, which
necessitates the collection of a target labeled set for validation purposes. In such cases, annotating a few
samples for training may not a significant overhead. Another setting to learn with missing labels is SSL,
which trains a model on a partially labeled dataset (Chen et al., 2021b; Alonso et al., 2021; Olsson et al.,
2021). However, SSL methods may underperform and risk overfitting when the number of labels is low.
While adding a source dataset can alleviate this problem, existing SSL methods are not designed to leverage
data from another domain, and studies like the one of Alonso et al. (2021) have shown only moderate
improvement. Despite the competitive performance of both UDA and SSL methods, they fall short of
supervised performance, as they achieve significantly lower accuracies than the fully supervised counterpart.

In this work, we study how to close the gap to supervised performance by exploiting the Semi-Supervised
Domain Adaptation (SSDA) setting, and show that it is possible to match supervised accuracy at a modest
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Table 1: Summary of settings. Types of data used in Semi-Supervised Learning (SSL), Unsupervised
Domain Adaptation (UDA) and Semi-Supervised Domain Adaptation (SSDA).

Data Source
Labeled

Target
Labeled

Target
Unlabeled

SSL 7 XXX XXX
UDA XXX 7 XXX
SSDA XXX XXX XXX

annotation cost. SSDA is essentially the combination of SSL and UDA, as it uses source labeled data, target
unlabeled data, and a few target labels (Tab. 1). Despite its practical value and performance potential
while alleviating annotation requirements, SSDA has received less attention (Berthelot et al., 2021). To
our knowledge, only two works present a semantic segmentation method tailored to SSDA (Wang et al.,
2020b; Chen et al., 2021a), and Alonso et al. (2021) propose an SSL method and try to extend it to SSDA.
Moreover, the existing UDA works do not explore incorporating a few target labels and are suboptimal in
an SSDA setting.

We introduce a simple and straightforward semantic segmentation framework tailored to SSDA, which uses
a combination of consistency regularization (CR) and pixel contrastive learning (PCL). The main goal of
the method is to achieve compact clusters of target representations, which facilitate the classification task,
while also learning a domain-robust feature extractor to leverage the source domain data. Moreover, we also
focus on e�ectively utilizing the few available target labels. Finally, we propose a self-training scheme that
improves training e�ciency by iteratively refining model and pseudolabels. Our comprehensive evaluation on
GTAæCityscapes demonstrates how the proposed method achieves state-of-the-art performance on SSDA
semantic segmentation, approaching the supervised performance with minimal annotation, using Æ 1/15 of
target labels (see Fig. 1). Additional results in other benchmarks, without further hyperparameter tuning,
confirm the e�ectiveness and high practical value of the method. We will make the code available upon
acceptance.

Speaker 

UDA SSDA

Option 3 for ICCV

Figure 1: GTAæCityscapes results (mIoU). Our method beats all baselines in the highlighted regime of
interest: SSDA with a low amount of target labels. We claim SSDA as an alternative to UDA where near-
supervised performance can be achieved at a low annotation cost. “Supervised" indicates a model trained
on the full target dataset (2975 images). Fractions represent ratio of target-domain samples labeled. Results
are an average of 3 runs on a DeepLabv2 + ResNet-101 network. See Tab. 2 for the results table.
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The main contributions of this paper are:

• We present a simple SSDA method for semantic segmentation that e�ectively utilizes the di�erent
kinds of data available, reaching a performance comparable to supervised learning.

• We demonstrate a significant improvement of SSDA over UDA even with only 50 target labels (+6.9
mIoU). We also find that existing UDA methods are suboptimal in SSDA and discuss potential
avenues for adapting them.

• We investigate the relationship between SSL and SSDA, and show an improvement over the former
(+9.0 mIoU at 50 labels) when e�ectively leveraging source domain data.

2 Related Work

2.1 Unsupervised Domain Adaptation (UDA) for semantic segmentation

Numerous approaches have been proposed for UDA in semantic segmentation. In recent years, these tech-
niques have been broadly classified into two main categories: adversarial training and self-training. Adver-
sarial training methods minimize the di�erence between the source and target domains through a minimax
game between a feature extractor and a domain discriminator (Ganin et al., 2016; Ho�man et al., 2018;
Vu et al., 2019; Wang et al., 2020a). Conversely, self-training methods involve producing pseudolabels for
the target domain data and aligning the two domains by means of domain mixing (Tranheden et al., 2021)
or source styling (Yang & Soatto, 2020). Pseudolabels can be carefully generated using prototypes (Zhang
et al., 2021; Liu et al., 2021) or adaptive confidence thresholds (Mei et al., 2020). An iterative self-training
algorithm that employs pseudolabels is explored by Zou et al. (2018) and Li et al. (2019). While all the
above-mentioned methods employ the Deeplab family of architectures (Chen et al., 2017b; 2018), recent stud-
ies have shown that self-training methods using Transformer-based networks have achieved state-of-the-art
performance (Hoyer et al., 2021a; 2022). Lastly, Hoyer et al. (2022) utilize high resolution and multi-scale
inputs with a module that can be applied on top of existing UDA methods. Even though several ideas
from UDA can potentially be employed in SSDA frameworks, out-of-the-box UDA methods are suboptimal
in SSDA (see 4.2.3), since they do not consider how to fully leverage the few, very valuable, target labels.
Therefore, to fully leverage the provided labels, we need to design frameworks tailored to SSDA.

2.2 Semi-Supervised Learning (SSL) for semantic segmentation

Learning on a partially labeled dataset has been largely explored for semantic segmentation. A commonly
used mechanism is consistency regularization, which aims to learn a model invariant to perturbations by
encouraging consistent predictions between augmentations of an unlabeled image. Relying on the cluster
and smoothness assumptions (Chapelle & Zien, 2005), it encourages compact clusters of representations
separated by low-density regions, where the decision boundary can lie. Some approaches use a mean teacher
to generate pseudolabels (Tarvainen & Valpola, 2017; French et al., 2019; Alonso et al., 2021; Liu et al.,
2022c), while others train a single model (Sohn et al., 2020; Zou et al., 2020) or perform cross-supervision
between two models (Chen et al., 2021b; Fan et al., 2022; Ke et al., 2020).

Iterative self-training consists of training for one round and using the resulting model to generate pseudolabels
to train a new model in the next round (Xie et al., 2020; Zoph et al., 2020; Zou et al., 2020; Teh et al.,
2022; Liu et al., 2022a). In contrast to consistency regularization, the pseudolabels are generated o�ine.
Despite its e�ectiveness, self-training can su�er from using noisy pseudolabels or perpetuate a model bias.
Unsupervised pixel contrastive learning has been used in SSL to encourage compact clusters of representations
(Alonso et al., 2021; Kwon & Kwak, 2022; Liu et al., 2022b). This mechanism pulls together positive pairs
of pixels in the latent space, while pulling negative pairs apart to increase separability. Moreover, supervised
pixel contrastive learning has been proposed as a regularizer of the embedding space to encourage better
clusterability (Wang et al., 2021; Pissas et al., 2022), boosting the performance of fully supervised methods.
Even if SSL frameworks may share some elements with SSDA methods, they should be properly modified
to account for domain adaptation in order to leverage source domain data. The interplay between DA and
SSL mechanisms, which we study in this work, is not trivial to predict and requires careful consideration.
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Figure 2: Framework overview. In each round, we train a student model f◊ with a combination of
supervised learning Lsup, consistency regularization (CR) LCR and pixel contrastive learning LPC. We use
a mean teacher f› to generate pseudotargets in CR, and stop its gradient. In subsequent rounds of self-
training, the target labeled set includes pseudolabels generated in the previous round.

2.3 Semi-Supervised Domain Adaptation (SSDA)

In SSDA the learner has access to source labels, target unlabeled data and a few target labels. SSDA is
less explored in the literature, only recently it has received more attention in image classification (Saito
et al., 2019; Berthelot et al., 2021; Qin et al., 2021; Kim & Kim, 2020). While most methods are based on
UDA’s core idea of domain alignment, (Mishra et al., 2021) notice that a few target labels are su�cient in
SSDA to forego domain alignment and focus on target feature clusterability instead. However, the dense
task of semantic segmentation is more complex than image classification, requiring SSDA methods to be
revisited and developed for this setting. Additional challenges of the task are the uncertainty in pixels (e.g.,
at boundaries between objects), which impedes the use of explicit entropy minimization (Saito et al., 2019),
and a large class imbalance.

So far, two frameworks have been devised for SSDA in semantic segmentation (Wang et al., 2020b; Chen
et al., 2021a), and one more considers the extension from SSL (Alonso et al., 2021). Wang et al. (2020b)
uses adversarial training to align the domains at two representation levels, local and global, but fails to
fully leverage the few target labels. Chen et al. (2021a) base their method on domain mixing and iterative
self-training, with the goal of aligning source and target domain representations. The domain mixup is
achieved with CutMix (Yun et al., 2019) and by mixing domains in the mini-batch. Lastly, Alonso et al.
(2021) propose an SSL framework with consistency regularization and pixel contrastive learning. They also
investigate the extension to SSDA by adding source data, but only find a moderate improvement since they
do not take domain alignment considerations.

3 Method

In this section, we present our framework for SSDA semantic segmentation. In SSDA, we have access to a
source labeled dataset Ds = {(xs

i
, y

s

i
)}Ns

i=1, a few target labeled samples Dt = {(xt

i
, y

t

i
)}Nt

i=1 and a set of target
unlabeled samples Du = {x

u

i
}Nu

i=1, where typically Nt π Nu.

The main goal of our framework is to encourage tight clustering of target representations, such that similar
pixels are clustered together in the latent space and the identity of each cluster is inferred from the few
labels, a key idea in SSL. Moreover, we consider domain alignment to better leverage source data, such that
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source and target representations are aligned and the model can generalize to both domains. A schematic
of the framework is depicted in Fig. 2. We use a student-teacher scheme, keeping a set of parameters ◊ for
the student model f◊ and parameters › for the teacher model f›. The teacher model f› is an exponential
moving average (EMA) of f◊ with coe�cient µ œ [0, 1], which provides more robust predictions (Tarvainen
& Valpola, 2017). The parameters of f› are updated by › = µ› + (1 ≠ µ)◊.

In the next subsections we present each of the components of the framework: a supervised objective (Sec.
3.1), consistency regularization (Sec. 3.2), pixel contrastive learning (Sec. 3.3) and an iterative self-training
scheme (Sec. 3.4). Finally, in Sec. 3.5 we discuss how to extend the framework to the neighboring settings
of UDA and SSL.

3.1 Supervised training on labeled data

The available source and target labels are used in a supervised fashion to minimize the cross-entropy with
respect to the model predictions. We use class weights to mitigate the class imbalance in semantic seg-
mentation datasets. Importantly, we mix source and target batches which helps in learning domain-robust
representations (Chen et al., 2021a). We define Lsup as

Lsup = ⁄s Q(f◊(xs), y
s) + ⁄t Q(f◊(xt), y

t), (1)

where Q(·, ·) is the weighted cross-entropy. With images of H ◊ W pixels, one-hot semantic labels as y and
C classes, Q(·, ·) is defined as

Q(ŷ, y) = ≠ 1
H · W

H·Wÿ

j=1

Cÿ

c=1
–c · yj,c · log(ŷj,c). (2)

Class weights –c are computed for Ds and Dt separately (see Sec. 8).

3.2 Consistency Regularization

Consistency regularization is an unsupervised mechanism that encourages tight and well-separated clusters
of representations by promoting consistent predictions between di�erent augmentations of an image. We
define LCR as the pixel-wise cross-entropy between the prediction of the student f◊ on a random strong
augmentation x

Õ and a one-hot pseudo-target generated by the teacher f› on the original image x. The
gradient is stopped on the pseudo-target such that f› does not receive any update. The consistency loss for
an image x is

ŷj = arg max f›(x)j , (3)

LCR(x) = 1
H · W

H·Wÿ

j=1
CE

!
f◊(xÕ)j , ŷj

"
, (4)

where CE(·, ·) is the standard cross-entropy loss. This objective leverages unlabeled target data Du. Details
on the transformations used for the random augmentations are provided in Sec. C.

3.3 Supervised Pixel Contrastive Learning

To further enhance target feature clusterability, we add a pixel contrastive objective for target labeled data
Dt. With this objecive, pixels of the same class are pushed together in the embedding space, forming more
compact clusters, while pixels of di�erent classes are pushed apart, forming low-density regions between
clusters. A projection head fproj produces pixel embeddings zj to be contrasted. The supervised contrastive
loss for pixel j is given by

LPC
j =

1

|Pj |
ÿ

z+
j

œPj

≠ log
exp(zj · z+

j /t)

exp(zj · z+
j /t) +

q

z≠
j

œNj

exp(zj · z≠
j /t)

, (5)
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where zj is contrasted with a set Pj of positive samples from the same class and a set Nj of negative samples
from di�erent classes. The symbol t denotes a temperature hyperparameter. A more complex version of
this module was introduced by Wang et al. (2021), but we found the memory bank or the pixel-to-region
contrast redundant in our preliminary experiments. Importantly, we apply this objective to target labeled
data only, and not unlabeled samples, as relying on ground-truth results in better learnt representations. At
each iteration we contrast a subset of pixels sampled from the current batch, up to Npix from each class,
using hard example sampling (Wang et al., 2021). Let A be the total number of pixels sampled from the Dt

batch, with A Æ Npix · C, then the pixel contrastive loss is defined by

LPC = 1
A

Aÿ

j=1
LPC

j
. (6)

Collecting equation 1, equation 4 and equation 6, the overall loss function to be minimized is given by

L = Lsup
Ds,Dt

+ ⁄1 LCR
Du

+ ⁄2 LPC
Dt

. (7)

We minimize L in each iteration of a self-training scheme, explained in the next section.

3.4 Iterative Self-training

In the few-labels regime, the lack of diversity in Dt is problematic. To mitigate that we employ an o�ine
self-training algorithm that leverages pseudolabels for unlabeled images in Du. A more diverse pool of labeled
samples increases the e�ciency of training. In a second stage of each iteration, we drop the pseudolabels,
which innevitably contain some noise, to fine-tune using only ground-truth annotations. The procedure
is summarized in Algorithm 1, where Mk represents a model trained in the k

th self-training round. The
quality of psuedolabels is critical in self-training. Following Li et al. (2019), we only annotate pixels with a
prediction confidence above a threshold · , and discard the pseudolabel on pixels with uncertain predictions.

Algorithm 1 Iterative Self-training
Train M0 on

#
Ds, Dt, Du

$
for nsteps. Û First training round

for k = {1, . . . , K} do Û Self-training rounds
{ŷ

u

i
}Nu

i=1 = generate_PL(Du, Mk≠1)
Dt+û Ω Dt fi {(xu

i
, ŷ

u

i
)}Nu

i=1
Train Mk on

#
Ds, Dt+û, Du

$
for steps [0, ndrop)

Train Mk on
#
Ds, Dt, Du

$
for steps [ndrop, nsteps)

end for

Return (MK≠1, MK). Û Use ensemble at test time

3.5 Adaptation to UDA and SSL

In this section we discuss how to adapt our SSDA framework to be used in the UDA and SSL settings. For
SSL we simply drop the source data and the supervised loss term becomes Lsup = ⁄t Q(f◊(xt), y

t). The
adaption to UDA has two caveats. Firstly, since we do not have target labeled data, we cannot apply the
pixel contrastive learning module on Dt. Therefore, we only use this module on Dt+û when pseudolabels
are available. Secondly, we modify the consistency regularization formulation to use the teacher’s class
probability predictions as pseudo-targets, instead of transforming them into a one-hot encoding. Thus,
equation 4 is replaced by

LCR
prob(x) = 1

H · W

H·Wÿ

j=1
CE

!
f◊(xÕ)j , f›(x)j

"
. (8)

We observed that using LCR
prob resulted in more stable training in UDA, while LCR was stable in SSDA and

yielded a slighlty better performance.
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4 Experiments

This section presents the experimental setup, SSDA results of the proposed framework, a comparison to
UDA and SSL methods, and ablation studies.

4.1 Implementation Details

Below we discuss the datasets and model architecture used. As for hyperparamters, we use a fixed training
configuration across all experiments and for all datasets, which is detailed in Tab. 8 in the Appendix.
Experiments are conducted on a single V100 GPU with 32 GB of memory.

4.1.1 Datasets

We use the popular GTAæCityscapes as our main semantic segmentation benchmark. Cityscapes, the target
dataset, has 2975 training and 500 validation images of European urban scenarios, manually annotated with
19 classes. As standard, we downsample the original resolution of 2048 ◊ 1024 pixels to 1024 ◊ 512 for
training. The source GTA dataset (Richter et al., 2016) contains 24966 computer-generated urban images
for training, which we downsample from 1914 ◊ 1052 to 1280 ◊ 720 pixels, as standard. Labels contain 33
semantic classes, we select only the 19 classes that coincide with Cityscapes, as Wang et al. (2020b).

Additionally, we experiment on the datasets of Synthia (source) and BDD (target). Synthia (Ros et al.,
2016) has 9400 synthetic images of 1280 ◊ 760 pixels. It is evaluated on 16 or 13 classes, also present in
Cityscapes. For BDD (Yu et al., 2020) we use the 7000 train and 1000 validation real images of US streets
at the original resolution of 1280 ◊ 720 pixels.

For all datasets, we perform random square crops of 512 ◊ 512 and horizontal flips at training time. For
evaluation, following standard procedure, we report the mean Intersection over Union (mIoU), averaged over
3 runs with di�erent random labeled/unlabeled training set split.

4.1.2 Architecture

We use a DeepLabv2 (Chen et al., 2017a) decoder and ResNet-101 backbone, for fair comparison with
previous works on SSDA (Wang et al., 2020b; Chen et al., 2021a; Alonso et al., 2021), and which is also
widely used in UDA benchmarks. The DeepLabv2 decoder uses an ASPP module to obtain multi-scale
representations. The ResNet backbone used is always pretrained on ImageNet. Following Wang et al.
(2021), the projection head fproj for pixel contrast transforms the 2048-dim features from the backbone into
256-dim normalized embeddings. It is composed of two 1 ◊ 1 convolutional layers interleaved with ReLU and
BatchNorm layers.

4.2 Results

4.2.1 SSDA on GTAæCityscapes

We present our main SSDA results on the widely used GTAæCityscapes benchmark in Tab. 2 and Fig. 1.
We compare our performance to the existing SSDA semantic segmentation methods. Moreover, to provide a
competitive baseline, we extend a state-of-the-art UDA method (DAFormer, Hoyer et al. (2021a)) to SSDA.
We also include results for training only on labeled target (T) or source and target (S+T) data, and a fully
supervised (FS) oracle trained on the entire 2975 target labeled samples.

Our framework outperforms all previous methods by a substantial margin and sets a new state-of-the-art in
the SSDA regime with few labels (1/60, 1/30 and 1/15 of labeled data). Furthermore, at the most challenging
setting of 50 (1/60) target labels, we beat most of the baselines when they use ◊4 or even ◊10 more labels.
Only when labels are more abundant, at 500 (1/6) target labels, does DAFormer outperform ours, which we
speculate is due to the specific measures it takes to generalize in Cityscapes, such as thing-class regularization.
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Table 2: GTAæCityscapes SSDA semantic segmentation results (mIoU) with a DeepLabv2 + ResNet-101
network. Our framework outperforms baselines in the SSDA low-label regime, achieving near fully supervised
(FS) performance at a low annotation cost. All results are averaged over 3 runs.

Target labels UDA 50 100 200 500 FS
Label ratio 0 1/60 1/30 1/15 1/6 1
Lsup (T) - 41.2 46.5 52.7 60.4 67.0
Lsup (S+T) - 52.4 54.3 57.8 61.4 65.8
ASS (Wang et al., 2020b) - - 54.2 56.0 60.2 65.9
Alonso et al. (2021) - - 59.9 62.0 64.2 67.3
DACS (Tranheden et al., 2021) * 52.1 - 61.0 63.1 64.8 -
Chen et al. (2021a) - - 61.2 60.5 64.3 65.3
DAFormer (Hoyer et al., 2021a) †

56.0 61.8 63.5 66.3 70.4 -
Ours 51.8 64.3 66.0 67.3 68.3 67.0

* SSDA results from Hoyer et al. (2021b)
† on DeepLabv2

Table 3: SSDA semantic segmentation results on GTAæCityscapes (mIoU) with a DAFormer network
(Transformer-based). We extend DAFormer to the SSDA setting and outperform it at the low-label regime,
but fall short of supervised (FS) performance. All results are averaged over 3 runs.

Setting UDA SSDA
Target labels 0 50 100 200 500
Label ratio 0 1/60 1/30 1/15 1/6

GTA æ Cityscapes (DAFormer) FS: 77.6 mIoU (Hoyer et al., 2021a)
DAFormer (Hoyer et al., 2021a) 68.3 66.2 69.8 71.2 74.4

Ours 55.5 68.2 71.4 72.1 73.5

Compared to supervised performance, with 100 target labels we already achieve an accuracy of 66.0 mIoU,
only 1.0 point shy of FS, and surpass it with 200 of labels. Thus, we demonstrate the potential of SSDA to
close the gap to supervised performance at a moderate annotation cost.

Our method greatly outperforms the previous works tailored to SSDA segmentation. In particular, we do
not find necessary to mix domains explicitly as in Chen et al. (2021a), the implicit mixing by using mixed
batches (see Sec. 4.3.1) and the domain robustness e�ect of consistency regularization (see Sec. 4.3.3) achieve
a better domain alignment. We also compare against DAFormer on their Transformer-based architecture
(for implementation details see App. E.2). We find that our method outperforms DAFormer in the semi-
supervised low-label regime (Tab. 3). However, the gap to supervised performance is still large, interesting
future work could be focused on SSDA methods tailored to Transfomers. As Hoyer et al. (2021a) show, this
network requires careful design to avoid overfitting to common classes and achieve stable training, which our
framework is missing and explains the gap in UDA performance.

4.2.2 SSDA on other datasets.

To show the generalization ability of the proposed method to other datasets, we perform experiments on
SynthiaæCityscapes, GTA æBDD and SynthiaæBDD, all of them syn2real semantic segmentation tasks.
We focus on the most challenging SSDA regime, with Æ 1/30 target labels. We use the same training
configuration as for GTAæCityscapes, without tuning any hyperparameter.
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Table 4: SSDA semantic segmentation results (mIoU) on additional benchmarks. Our method achieves
near fully supervised (FS) performance at a low annotation cost. All results are averaged over 3 runs on a
DeepLabv2 + ResNet-101 network.

SynthiaæCS, 16 (13) classes, FS: 68.9 (73.1) mIoU
Target labels 0 50 (1/60) 100 (1/30)
Lsup (S+T) 29.4 (33.6) 49.0 (58.4) 52.5 (61.8)
Ours - (-) 64.5 (73.9) 67.2 (75.7)
DAFormer (Hoyer et al., 2021a) † 53.4 (60.6) 62.4 (68.0) 64.6 (70.6)

GTAæBDD, 19 classes, FS: 55.8 mIoU
Target labels 0 100 (1/70) 233 (1/30)
Lsup (S+T) 33.2 48.3 51.5
Ours 43.1 52.5 54.5

SynthiaæBDD, 16 classes, FS: 56.6 mIoU
Lsup (S+T) 24.2 43.5 48.1
Ours - 54.5 57.6

† on DeepLabv2.

For all datasets, we show that our method is comparable to or outperforms fully supervised (FS) training us-
ing only 1/30 target labels (Tab. 4). Moreover, for SynthiaæCityscapes we also run experiments on DAFormer
to provide a competitive baseline, which we beat in all cases. The positive results in other datasets without
changing the hyperparameter configuration suggest high practical applicability of the method proposed.

4.2.3 UDA æ SSDA.

When no labels are available, our SSDA framework in a UDA setting (see Sec. 3.5) achieves 51.8 mIoU,
which is comparable to well-established methods such as DACS (Tranheden et al., 2021), but below recent
specialized methods. Compared to UDA state-of-the-art, with BAPA (Liu et al., 2021) achieving an accuracy
of 57.4 mIoU, our method improves by +6.9 mIoU using only 50 target labels. This result demonstrates
the high value of even just a few annotations and thus the potential of SSDA. In Sec. E.1 we present an
extended comparison to UDA methods, including those using high-resolution images (e.g., HRDA (Hoyer
et al., 2022)), which we omit here for a fair comparison.

Figure 3: SSL vs. SSDA semantic segmentation results (mIoU) on GTAæCityscapes for our method and
Alonso et al. (2021). We show a substantial improvement when using source data (SSDA) compared to SSL,
particularly in the low-label regime. The di�erence is less pronounced as more target labels are used. All
results are the average of 3 runs on a DeepLabv2 with ResNet-101 backbone.
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4.2.4 SSL æ SSDA.

To quantify the potential improvement of using a source domain, in this section compare our SSDA framework
to its SSL counterpart. To our knowledge, only Alonso et al. (2021) have compared these settings, which
demonstrated only a moderate improvement when using source data. However, we found that when using
a framework that takes measures to align domains, adding source domain data can substantially improve
performance. In Fig. 3 we show a direct comparison of SSL vs. SSDA between our method and Alonso et al.
(2021). Our method better leverages source data and obtains +9.0 mIoU at 50 labels (1/60) and +5.6 mIoU
at 100 labels (1/30). Interestingly, we observe a trend where the performance boost of SSDA decreases as
more target labels are available, shrinking to +0.5 mIoU at 500 labels. We conclude that a source dataset
is particularly beneficial when very few target labels are available, as it reduces the risk of SSL to overfit to
the few annotations.

4.3 Ablation studies

In this section we explore the impact of each component of the framework.

4.3.1 Framework ablation

In Tab. 5 we compare the performance of M0, a model trained on L (7) for one training round, to a number
of framework variants. We find that consistency regularization is by far the most important element, as
removing LCR results in ≠8 mIoU. We also find it important to use class weights to mitigate class imbalance
(≠2.3 mIoU), and to mix source and target data in the same batch in Lsup (≠0.8 mIoU), which encourages
domain mixing (Chen et al., 2021a) and helps learn a more domain-robust segmentor.

Pixel contrastive learning is also found to be a good regularizer, removing LPC results in ≠1.2 mIoU (Tab. 5).
Furthermore, we try two variants of pixel contrastive learning. Firstly, in “LPC: +Du" we adopt the con-
trastive learning module proposed by Alonso et al. (2021), which uses both labeled and unlabeled data, but
observe a performance drop (≠0.5 mIoU). We attribute the drop to incorrect contrastive pairs on unlabeled
pixels, while supervised pixel contrast only relies always on ground-truth. In the second variant, “LPC:
+Ds", we try adding source labeled data to pixel contrast, without success (≠0.5 mIoU). Some previous
SSDA works even discourage source clusterability (Qin et al., 2021), aiming for source clusters to enclose
target representations.

Finally, we report the improvement in performance between the model after the initial round of training
(M0) and the final ensemble model after iterative o�ine self-training (M1 + M2), which brings +2 mIoU.

Table 5: Ablation study of the proposed framework on SSDA GTAæCityscapes with 100 target labels
(1/30). � denotes di�erence in mIoU to the baseline M0. Experiments are on the initial round of training
(i.e., without iterative self-training). We note that consistency regularization is, by far, the most important
component. All results are the average of 3 runs on a DeepLabv2 + ResNet-101 architecture.

� mIoU Configuration Steps
≠8 56.0 No LCR 40k

≠2.3 61.7 Lsup: No class weight 40k
≠1.2 62.8 No LPC 40k
≠0.8 63.2 Lsup: No batch mix 40k
≠0.5 63.5 LPC: +Du (Alonso et al., 2021) 40k
≠0.5 63.5 LPC: +Ds 40k

0 64.0 M0 40k
+2 66.0 M1 + M2 120k
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Table 6: Impact of iterative self-training (rounds of 40k steps) vs. training for longer (one round of 120k
steps) on SSDA GTAæCityscapes with 50 target labels. Results are the average over 3 runs on a DeepLabv2
+ ResNet-101 network.

Steps Model
(Self-training) mIoU Model

(longer training) mIoU

40k M0 61.4 M0ú 60.9
80k M1 63.7 M0ú 62.9
120k M2 63.9 M0ú 63.5
120k M1 + M2 64.3 - -
* Learning rate decayed linearly during 120k steps

4.3.2 Iterative self-training

In Fig. 4 we break down the impact of self-training. The first round of self-training (between M0 and M1)
is the most e�ective, while the second round o�ers marginal to no improvement, indicating convergence of
the self-training algorithm. Finally, the ensemble of M1 and M2 yields the best final performance.

We hypothesize that the main benefit of using pseudolabels is increasing diversity in target samples, which
becomes more valuable at low labeling ratios, explaining the larger benefit at 50 target labels. It is also
positive to drop pseudolabels after ndrop steps, compared to its counterpart (indicated in Fig. 4 as “No PL
drop"), and fine-tune on ground-truth annotations.

In Tab. 6 we compare the self-training scheme to a single longer training round of 120k steps, for the case
of 50 target labels. We find that a self-training scheme was both more e�ective, as it o�ered a better final
performance (+0.8 mIoU), and more e�cient, since at 80k steps it already outperformed a single 120k steps
training round. The di�erent learning rate decay schedules explains the di�erence between M0 at 40k steps,
the more aggressive decay in self-training allows the model to fine-tune before.

4.3.3 Source styling and consistency regularization

Finally, we explored source styling to improve domain alignment. Source styling consists on transforming
source images to adopt the target domain style, thus reducing the domain gap in the input space. We tried

Figure 4: Evolution of performance during self-training from Algorithm 1. The first self-training round
(M0 æ M1) brings the largest improvement, the final ensemble (M1 + M2) provides the best perfor-
mance, and dropping pseudolabels for fine-tuning is beneficial. Results are an average over 3 runs for
GTAæCityscapes on a DeepLabv2 + ResNet-101 network. A tabular version can be found in Tab. 9.
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Table 7: Study of the interaction between source styling and consistency regularization (CR). We observe
how source styling is beneficial without CR, but harmful when combined with CR, as we hypothesize CR
already brings robustness to style. Results are mIoU on the initial round of training M0, an average of 3
runs for experiments on SSDA GTAæCityscapes using 100 target labels.

� mIoU LCR Source styling
0 56.0 No No

+1.4 57.4 No LAB (He et al., 2021)
+0.4 56.4 No photorealistic (Richter et al., 2022)

0 64.0 Yes No
≠0.3 63.7 Yes LAB (He et al., 2021)

≠1.2 62.8 Yes photorealistic (Richter et al., 2022)

two transformations, an online normalization of the LAB colorspace (He et al., 2021) (details in Sec. H) and
replacing the original GTA images to GTA stylized as Cityscapes via photorealistic enhancement (Richter
et al., 2022). In Tab. 7 we study the interaction of source styling with consistency regularization. When
LCR is not used, source styling helps, with LAB being most e�ective. Interestingly, source styling did not
help when combined with LCR. We hypothesize that, since consistency regularization encourages similar
predictions between images under strong augmentations, it may already be promoting a style-invariant model,
to a point where styling source data is redundant. On the other hand, artifacts introduced by styling could
be harming performance. This observation suggests that consistency regularization is not only promoting
compact clustering but also encouraging domain robustness.

5 Discussion

In this paper, we revisit the SSDA setting in semantic segmentation, which has significant practical implica-
tions for industrial and medical imaging applications. We propose a simple SSDA framework that e�ectively
uses the di�erent kinds of data available and achieves fully-supervised accuracy using only a fraction of the
target labels. Our method outperforms all SSDA baselines and demonstrates the high value of a hand-
ful of target labels to close the gap to supervised performance at a low annotation cost. Our results also
demonstrate the generalization ability of the method to other datasets, even without further hyperparameter
tuning. In addition, we provide insights into several important questions for segmentation practitioners and
researchers who aim to minimize annotation costs. These include results on the scalability of existing UDA
methods to the semi-supervised setting, as well as a comparison of SSDA and SSL in both low- and high-label
regimes. Furthermore, in the following paragraphs, we discuss the relation of SSDA to both UDA and SSL,
and propose ways to possibly adapt existing methods to SSDA.

We have demonstrated that existing UDA methods do not perform optimally in the semi-supervised regime,
requiring methods tailored to SSDA. To adapt UDA frameworks to SSDA, we propose to consider an objective
that emphasizes the tight clustering of target representations, which can be achieved through regularization
with supervised pixel contrastive learning. Our findings suggest that domain alignment is less important in
SSDA than achieving compact clusters of representations and then identifying them from few-shot samples,
as also found by Mishra et al. (2021) in image classification. Having demonstrated the potential of SSDA,
we encourage future DA research, mostly focused on UDA, to explore SSDA extensions and report results
for varying numbers of target labels, in an e�ort towards a unified learning framework for unlabeled data,
similar to Berthelot et al. (2021) for image classification.

Lastly, we observed that SSDA outperforms SSL in the low-label regime, but its advantage diminishes as
the number of target labels increases. Practitioners facing a performance-vs-cost trade-o� may be guided by
Fig. 3 to choose between compiling a source-domain dataset (SSDA) or assuming a larger annotation cost
and using SSL. Our experiments reveal that to e�ectively leverage a source dataset, an SSL method must
account for domain alignment. In Tab. 5, we demonstrate that mixing domains in the supervised batch and
using exclusively supervised pixel contrast can enhance SSDA performance.
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