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ABSTRACT

Denoising Diffusion Probabilistic Models have shown extraordinary ability on
various generative tasks. However, their slow inference speed renders them im-
practical in speech synthesis. This paper proposes a linear diffusion model (Lin-
Diff) based on an ordinary differential equation to simultaneously reach fast infer-
ence and high sample quality. Firstly, we employ linear interpolation between the
target and noise to design a diffusion sequence for training, while previously the
diffusion path that links the noise and target is a curved segment. When decreas-
ing the number of sampling steps (i.e., the number of line segments used to fit the
path), the ease of fitting straight lines compared to curves allows us to generate
higher quality samples from a random noise with fewer iterations. Secondly, To
reduce computational complexity and achieve effective global modeling of noisy
speech, LinDiff employs a patch-based processing approach that partitions the
input signal into small patches. The patch-wise token leverages Transformer ar-
chitecture for effective modeling of global information. Adversarial training is
used to further improve the sample quality with decreased sampling steps. We
test proposed method with speech synthesis conditioned on acoustic feature (Mel-
spectrograms). Experimental results verify that our model can synthesize high-
quality speech even with only one diffusion step. Both subjective and objective
evaluations demonstrate that our model can synthesize speech of a quality com-
parable to that of autoregressive models with faster synthesis speed (3 diffusion
steps).

1 INTRODUCTION

Deep generative models have made tremendous strides in the realm of speech synthesis. Overall,
contemporary speech synthesis techniques can be broadly categorized into two paradigms: meth-
ods that leverage likelihood-based modeling and methods based on generative adversarial networks
(GANs). For example, WaveNet (Oord et al., 2016), an autoregressive likelihood-based model, can
synthesize high-quality speech. However, it is also characterized by expensive computational cost at
inference time. Moreover, alternative approaches such as Flow-based model (Prenger et al., 2019)
and Variational AutoEncoders (VAE) (Kingma et al., 2019) have their own limitations on sample
quality. While GAN-based models (Goodfellow et al., 2020; Kumar et al., 2019; Kong et al., 2020a)
exhibit fast-paced speech synthesis, they are concurrently beset by training instability and limited
sample diversity.

An emerging group of generative models, Denoising Diffusion Probabilistic Models (DDPMs) (Ho
et al., 2020; Song et al., 2020), a likelihood-based model, have become increasingly popular in
speech synthesis. For instance, WaveGrad (Chen et al., 2020) and DiffWave (Kong et al., 2020b)
produce high-quality samples that match the quality of autoregressive methods. However, the it-
erative optimization in DDPMs significantly slows down sampling speed. To tackle this problem,
existing approaches either design an extra structure such as a noise schedule network (Lam et al.,
2022; Huang et al., 2022) or describe the random diffusion process with the ordinary differential
equation (ODE) (Liu et al., 2022). However, ODE-based diffusion still needs several steps to pro-
duce high-fidelity sample.

Inspired by rectified flow (Liu et al., 2022), We proposed a conditional diffusion model. During
the training process, we performs a linear interpolation between a target sample and initial standard
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Gaussian noise to construct the diffusion sequence and train the denoising network to fit the path
reversely. For the inference process, we reconstruct the target through the Euler sampling method
from a randomly sampled standard Gaussian noise.

In the light of the success of Vision Transformer (ViT) (Bao et al., 2022) for image synthesis, we
propose a similar structure for audio that turns continual sampling points into an audio patch and
apply Transformer (Vaswani et al., 2017) to build contextual connections for these tokens. We
then use a Time-Aware Location-Variable Convolution (Huang et al., 2022) module for fine-grained
detail restoration. As demonstrated in previous work (Xiao et al., 2022), the combination of DDPMs
and GANs has shown promising performance. In line with this, we incorporate adversarial training
into our method to enhance the quality of generated samples while reducing the number of required
iteration steps.

Overall, the main contributions of this paper are:

• A linear conditional diffusion algorithm with an ordinary differential equation is proposed
to reduce the steps required during inference. Experiments demonstrate this method can
synthesis relatively high-fidelity speech with limited steps.

• A Transformer-based architecture for audio denoising is introduced. As Transformer cap-
tures long in-context information efficiently, it enables rapid enlargement of the receptive
field. To the best of our knowledge, we are the first to apply Transformer for conditional
waveform generation (i.e., vocoder).

• Adopting implicit diffusion to combine Linear diffusion with adversarial training for further
reducing the steps for inference while maintaining the generated speech’s high quality.
Experiments show the introduction of adversarial training enables the proposed model to
synthesize relatively high-fidelity speech even with only 1 step.

2 BACKGROUND

Our proposed method is based on Flow-Matching (Lipman et al., 2023) and Rectified-Flow (Liu
et al., 2022). We first introduce Continuous Normalizing Flow (CNF) (Chen et al., 2019). Using
x ∈ Rd to represent data points in data space. Defining p : [0, 1] × Rd −→ Rd the time-dependent
probability density path. Defining v : [0, 1] × Rd −→ Rd the time-dependent vector field. Defining
ϕ : [0, 1]× Rd −→ Rd the time-dependent diffeomorphic map. These variables satisfy,

dϕt(x)

dt
= vt(ϕt(x)). (1)

A CNF is used to reshape a simple prior density p0 to a more complicated one via the push-forward
equation,

pt = [ϕt] ∗ p0, (2)

where ∗ is defined by,

[ϕt] ∗ p0(x) = p0(ϕ
−1(x))det[

∂ϕ−1
t

∂x
(x)]. (3)

Let x1 denote a random variable from unknown data distribution q(x1). It is assumed we only
have access to data samples from q(x1) but not the density function itself. Here we let pt be a
probability path such that p0 = p is a simple distribution (standard normal distribution) and let
p1 be approximately equal in distribution to q. Given target probability density path pt(x) and a
corresponding vector field ut(x) , which generates pt(x), (Lipman et al., 2023) define the Flow
Matching (FM) objective as,

LFM (θ) = Et,pt(x)||vt(x)− ut(x)||2, (4)

where θ denotes the learnable parameters of the CNF vector field vt (as defined before), t ∼ U [0, 1]
and x ∼ pt(x). Though FM objective is simple and attractive, it is intractable to use in practice on
its own since no prior knowledge for what an appropriate pt and ut are. (Lipman et al., 2023) build
pt, ut from conditional probability paths and vector fields. Specially, given a particular data sample
x1, using pt(x|x1) to denote a conditional probability path so that it satisfies p0(x|x1) = p(x) at
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t = 0. The authors design p1(x|x1) = N(x|x1, σ
2I), a normal distribution with X1 mean and a

sufficiently small standard deviation. Then we get following equations,

pt(x) =

∫
pt(x|x1)q(x1)dx1, (5)

where at time t = 1, as p1(x|x1) is defined to be a distribution concentrated around x1, we can take
this function as the unit impulse response function. Then the marginal probability p1 is a mixture
distribution that closely approximates the data distribution q,

pt(x) =

∫
pt(x|x1)q(x1)dx1 ≈ q(x). (6)

The authors also define a conditional vector field that generates pt(·|x1),

ut(x) =

∫
ut(x|x1)

pt(x|x1)q(x1)

pt(x)
dx1, (7)

(Lipman et al., 2023) proves that ut(x) defined before generates the marginal probability path pt()x.
They also define the Conditional Flow Matching objective (CFM),

LCFM (θ) = Et,q(x1),pt(x|x1)||vt(x)− ut(x|x1)||2, (8)

where t ∼ U [0, 1], x1 ∼ q(x1) and now x ∼ pt(x|x1). FM and CFM were proved have iden-
tical gradients. In other words, optimizing the CFM objective is equivalent to optimizing the FM
objective. (Lipman et al., 2023) compares this method with Score Matching (DDPM), finding it
has constant direction in time and is arguably simpler to fit with a parametric model. This means
decreasing the sampling steps in this method suffers less than in DDPM. In our method, we build
the probability path with each sample x1 with a stand normal distribution N(x|0, I) and optimize
the CFM objective.

3 METHOD

In this section, we present a comprehensive overview of our proposed methodology.

3.1 LINEAR DIFFUSION

Assumping the data x1 means target (ground truth audio or image), We use x0 to denote the original
noise sampled from p0(x|x1) ∼ N(x|0, I). We construct a probability path from x0 to x1 through
linear interpolation. In other words,

xt = t
x1 − x0

T
+ x0, (9)

where T = 1 and t ∼ [0, 1]. Also the probability path pt(x|x1) is,

pt(x|x1) = N(x|tx1, (1− t)2I), (10)

According to eq 1 the conditional vector field is,

ut(x|x1) =
x1 − x0

T
, (11)

Then LCFM satisfies the following equation,

LCFM (θ) = Et,q(x1),pt(x|x1)||vt(x)−
x1 − x0

T
||2, (12)

We interpolate 999 points between 0 and 1, thus building a probability path (diffusion path).

3.2 LINDIFF

LinDiff is a backbone that combines Transformer (Vaswani et al., 2017) and Convolutional Neural
Network for diffusion-based speech synthesis. We also apply discriminators for the training pro-
cess. Specifically, LinDiff parameterizes the noise prediction network vt(x) in Eq. 14. It takes the
diffusion step t, the condition c and the noisy audio arevt as inputs and predict the target speech
arevT .
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Figure 1: The overall architecture of LinDiff. TA-LN represents TimeAdaptive LayerNorm. Time-
Aware LVC represents Time-Aware Location-Variable Convolution module proposed by Huang
et al. (2022).

Audio Transformer block Inspired by the U-ViT backbone in diffusion models (Bao et al., 2022),
we introduce an Audio Transformer (AiT) block for speech synthesis. To achieve this, we partition
the input noise into smaller patches, treating each patch as a token. Subsequently, we apply a linear
transformation to obtain patch embeddings, which are then fed into the Audio Transformer block. In
our experimentation, we explore various patch sizes and find that reducing the patch size improves
model performance. However, it is important to note that this improvement comes at the expense of
increased computational cost due to the higher number of patches. Thus, a trade-off between model
performance and computational efficiency must be carefully considered when selecting the optimal
patch size. In our implementation, we set the patch size to be 64.

Feature fusion For each time step t, we follow paper (Zeng et al., 2021) to embed the step into
an 128-dimensional positional encoding vector et and then apply linear transformation to turn it
into diffusion-step embedding temb. We propose Time-Adaptive Layer Norm to fuse the step in-
formation. Supposing the noise audio feature is x and LN denote layer normalization (Ba et al.,
2016).

TALN(x, temb) = g(temb) · LN(x) + b(temb). (13)
To fuse the accoustic feature, a cross attention module was employed. We first use linear transfor-
mation to turn it into hidden features. And then the input noisy audio feature sequence will assume
the role of query, interacting with the Mel hidden feature sequence.

Post Conv Due to partitioning the input sequence into small patches, the resolution of the model
is limited and the output sequence obtained through AiT losses much high-frequency information.
However, as the human ear is sensitive to speech, we here add a Post Convolution module to process
the details of the output. We follow Huang et al. (2022) to use a Time-Aware Location-Variable
Convolution module with some simple Conv1d layer as our Post Conv module. Experimental results
demonstrate that this approach improves the quality of the audio.

3.3 TRAINING LOSS

The aim of this work is to propose a model with fast inference speed, high-quality speech generation
capability and training stability. However, reducing the number of sampling steps in our models

4



Under review as a conference paper at ICLR 2024

led to a decrease in the quality of generated speech, similar to the findings in existing literature.
To address this issue, we draw inspiration from the DiffGAN (Xiao et al., 2022) and introduce the
adversarial training scheme into our model. This allows us to maintain high-quality speech while
reducing the number of iterations. Additionally, the presence of the diffusion process improves the
stability of adversarial training. For the existing work, (Xiao et al., 2022) parameterize the denoising
function as an implicit denoising model. We follow this way. Specifically, instead of calculating
arevt+1 directly from arevt , we first predict arevT (The target waveform) and then obtain arevt+1 with
following formulation (as we interpolate 999 points between origin noise and target):

arevt+1 = arevt + (arevT − arev0 )
1

1000
. (14)

Our discriminator is denoted as Dϕ(a
rev
T ), where arevT denotes the predicted blurry audio. We apply

three discriminators from different perspectives on arevT predicted from each time step. One of
the discriminators examines the samples from a spectral perspective, while the other two adopt the
multi-scale and multi-period discriminators utilized in HiFiGAN (Kong et al., 2020a), both of them
perform discrimination in the time domain.

Our loss consists of three parts: diffusion loss, frequency-domain reconstruction loss, and adversar-
ial loss.

We use wav to represent the target. The Diffusion loss is,

Ldiff = MSE(wavgt − arevT ), (15)

This seems to be different from eq 12. As we directly predict the target, the vector field can be
obtained indirectly through,

vt(x) =
arevT − arev0

T
, (16)

So Eq 15 and Eq 12 are actually equivalent.

We use STFT to represent Short-time Fourier Transform. Then Frequency-domain reconstruction
loss:

Ls = MSE(STFT(wavgt)− STFT(arevT )), (17)
We set four pairs of (window size, hop length, n fft) and randomly choose one of them to carry
out the STFT to alleviate overfitting issue.

We assume Dϕ(a
rev
T ) to represent the discriminator. For the generator, adversarial loss:

Lg
adv = (1−Dϕ(a

rev
T ))2. (18)

We use sg(·) to represent stop gradient, then for the discriminator:

Ld
adv = D2

ϕ(sg(a
rev
T )) + (1−Dϕ(a

true
T ))2. (19)

Total loss for generator is:
Lgen = Lg

adv + Ls + Ldiff . (20)
It is worth mentioning that our discriminator is composed of three sub-discriminators, resulting in
a relatively high computational cost that slows down the training process. In order to expedite the
training, the discriminator is updated every 5 training steps. To maintain a balanced adversarial
training process for the generator, a weight of 0.2 was added on its adversarial loss.

3.4 ALGORITHM

We present a concise summary of the pseudocode outlining the training and inference processes of
our model. The training process 1 consists of three stages. In the first stage, we sample short audio
clips and train the model without adversarial training. In the second stage, we introduce adversarial
training while still using short audio clips, and we update the discriminator’s weights at each step.
In the third stage, we sample long audio clips for training. Regarding the inference process 2,
we begin by randomly sampling noise from a Gaussian standard distribution. Assuming the Mel
spectrogram’s size is T × 80, the sampled noise has a size of (256× T )× 1, which corresponds to
the result of the Short-Time Fourier Transform (STFT) applied during the generation of the training
dataset.
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Algorithm 1 LinDiff Training Algorithm
1: Input: Speech and correlated Mel-spectrograms (aT , condition), Random Gaussian noise

arev0 , Total diffusion steps T
2: repeat
3: Randomly select a step t ∈ [0, T )
4: Calculate arevt with sampled t, noise arev0 and ground truth wavform aT according to Eq 9
5: Predict the target arevT = f(arevt , condition, t)
6: if Stage 2 then
7: Calculate the discriminator’s loss Ld

adv = D2
ϕ(sg(a

rev
T )) + (1−Dϕ(aT ))

2

8: Perform backpropagation on Ld
adv and update the weights of the discriminator

9: Calculate LinDiff’s loss Lgen = (1 − Dϕ(a
rev
T ))2 + MSE(arevT ,aT ) +

MSE(STFT(arevT ),STFT(aT ))
10: Perform backpropagation on Lgen and update the weights of LinDiff
11: end if
12: if Stage 3 then
13: if Step%5 == 0 then
14: Calculate the discriminator’s loss Ld

adv = D2
ϕ(sg(a

rev
T )) + (1−Dϕ(aT ))

2

15: Perform backpropagation on Ld
adv and update the weights of the discriminator

16: end if
17: Calculate LinDiff’s loss Lgen = (1 − Dϕ(a

rev
T ))2 + MSE(arevT ,aT ) + 0.2 ×

MSE(STFT(arevT ),STFT(aT ))
18: Perform backpropagation on Lgen and update the weights of LinDiff
19: end if
20: until convergence

Algorithm 2 LinDiff inference algorithm
1: Input: Random noise arev0 , Mel-spectrogram (condition), Total diffusion steps T
2: Set t = 0
3: for t < T do
4: Predict blurry target arevT = f(at, condition, t)
5: Caculate arevt+1 with arevt ,arevT and arev0 according to Eq 14
6: t = t+ 0.001 (as we interpolate 999 points between origin noise and target)
7: end for
8: return arevT

4 EXPERIMENTS

4.1 SETUP

Datasets In this study, we evaluated the proposed model on two distinct datasets. The first dataset
is the LJ Speech dataset (Ito & Johnson, 2017), which is composed of 13,100 audio clips at a
sampling rate of 22050 Hz, spoken by a single speaker reading passages from 7 non-fiction books.
This dataset spans approximately 24 hours of audio in total. The second dataset is the LibriTTS
dataset (Zen et al., 2019), which contains 585 hours of speech data from 2484 speakers. In all
of the experiments, we utilized a 16-bit, 22050 Hz sampling rate. For the speech synthesis task,
we used 80-band Mel-spectrograms as the condition. These spectrograms were extracted using
Hann windowing with a frame shift of 12.5-ms, frame length of 50-ms, and a 1024-point Fourier
transform.

Model Configurations The LinDiff model comprises three key components: a patch-embedding
module, an Audio Transformer, and a Post-Conv module. Specifically, we utilize a patch size
of 64 and apply a linear transformation to the patch-embedding module, which generates a 256-
dimensional embedding. The Audio Transformer component of the model consists of four layers,
with each layer having a hidden dimension of 256 and four attention heads for both self-attention
and cross-attention. The MLP within the Audio Transformer layers utilizes Conv1d. The Post-Conv
module uses Conv1d and Time-Aware Location-Variable Convolution with 32 channels.
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Table 1: Comparison with other convential nerual vocoders in terms of quality and synthesis speed
with the model trained on single-speaker dataset, LJSpeech.

Quality Speed
Model MOS (↑) MCD (↓) V/UV (↓) F0 CORR (↑) RTF (↓)

GT 4.47±0.07 / / / /

WaveNet (MOL) 4.23±0.06 1.74 6.87% 0.89 91.27
WaveGlow 3.79±0.09 2.83 17.18% 0.68 0.049

HIFI-GAN V1 3.94±0.08 2.08 8.98% 0.77 0.003
WaveGrad (noise schedule) 3.88±0.07 2.76 10.31% 0.69 0.051

FastDiff (4 steps) 4.05±0.07 2.56 8.59% 0.79 0.025

LinDiff (1 steps) 3.99±0.06 2.17 9.12% 0.74 0.004
LinDiff (3 steps) 4.12±0.07 1.96 8.75% 0.79 0.013

LinDiff (100 steps) 4.18±0.05 1.92 7.78% 0.82 0.520

Training and Evaluation For this particular experiment, we trained the LinDiff model until it
reached 200k steps using the Adam optimizer (Kingma & Ba, 2017) with β1 = 0.9, β2 = 0.98, ϵ =
10−9. Both models were trained on 4 NVIDIA GeForce RTX 3090 GPUs, using randomly sampled
audio clips that matched the maximum transformer length (we set it 3600, which means max audio
length is 3600 ∗ 64/22050 = 10.44 s), with a total batch size of 16. Initially, we trained the model
for 10k steps without adversarial training. Every 5 steps, we update the weights of the discriminator
and add a weight of 0.2 to LinDiff’s adversarial loss to speed up the training process.

For the subjective evaluation of our system, we employ mean opinion scores (MOS) to assess the
naturalness of the generated speech. The MOS were rated on a 1-to-5 scale and we report them
along with the 95% confidence intervals (CI). In addition, we perform objective evaluations using
several metrics, including Mel-cepstrum distortion (Kubichek, 1993) (MCD), error rate of voic-
ing/unvoicing flags (V/UV), and correlation factor of F0 (F0 CORR) between the synthesized speech
and the ground truth. To explore the diversity between the generated and real speeches, we calculate
the Number of Statistically-Different Bins (NDB) and JensenShannon divergence (JSD). Further-
more, we evaluate the inference speed of our system on a single NVIDIA GeForce RTX 3090 GPU
using the real-time factor (RTF).

4.2 COMPARISON WITH OTHER MODELS

We compared the proposed model in audio quality, diversity and sampling speed with other speech
synthesis model, including 1) WaveNet(Oord et al., 2016), an autoregressive generative model. 2)
WaveGlow(Prenger et al., 2019), a flow-based model. 3) HIFI-GAN V1(Kong et al., 2020a), a GAN-
based model. 4) WaveGrad(Chen et al., 2020) and FastDiff(Huang et al., 2022), recently proposed
DDPMs-based model.

The audio quality and sampling speed results are presented in Table 1. Our proposed method demon-
strates the ability to synthesize high-fidelity speech with a limited number of steps. Even with just 3
steps, our model can generate speech of comparable quality to that produced by the autoregressive
model, WaveNet (Oord et al., 2016). However, the inference speed surpasses that of WaveNet and
other conventional vocoders. In fact, its speed is on par with HIFI-GAN while outperforming it
in terms of the quality of generated samples. Regarding sample diversity, Table 2 shows that al-
though LinDiff still lags behind the autoregressive model, WaveNet, it achieves greater variety in
the generated speeches compared to other conventional vocoders.

4.3 ZERO-SHOT EXPERIMENT

To further investigate the capabilities of our model, we trained it on the multi-speaker dataset, Lib-
riTTS. We evaluated it using the Mel-spectrograms extracted from LJSpeech. Since the speakers in
LJSpeech were not used during the training of this experiment, this task is referred to as Zero-shot
speech generation. The results are presented in table 3 below. It is evident from the table that all
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Table 2: Comparison with other convential nerual vocoders in terms of diversity with the model
trained on single-speaker dataset, LJSpeech.

Model NDB (↓) JSD (↓)

GT / /

WaveNet (MOL) 42 0.002
WaveGlow 115 0.011

HIFI-GAN V1 69 0.004

WaveGrad (noise schedule) 122 0.007
FastDiff (4 steps) 65 0.005

LinDiff (1 steps) 81 0.005
LinDiff (3 steps) 71 0.004

LinDiff (100 steps) 58 0.004

Table 3: Comparison with other conventional nerual vocoders in terms of speech quality with the
model trained on multi-speaker dataset. Zero-Shot MOS means we test the model on speakers that
is not included in the training set.

Model MOS (↑,Seen speaker) Zero-Shot MOS (↑)

GT 4.47±0.07 4.47±0.07

WaveNet (MOL) 4.10±0.08 4.03±0.07
WaveGlow 3.64±0.06 3.56±0.07

HIFI-GAN V1 3.94±0.08 3.89±0.06

WaveGrad (noise schedule) 3.74±0.07 3.71±0.06
FastDiff (4 steps) 3.95±0.07 3.90±0.08

LinDiff (1 steps) 3.73±0.08 3.68±0.07
LinDiff (3 steps) 3.83±0.08 3.71±0.08

LinDiff (100 steps) 3.92±0.07 3.85±0.06

models perform worse when tasked with generating speech from multiple speakers. Our proposed
transformer-based model suffers a significant performance drop in this scenario. The reason may
be, in the case of a single-speaker dataset, the token embedding space is smaller than that of a multi-
speaker dataset, as we split the input audio into small patch tokens. Therefore, modeling the latter is
more challenging.

4.4 ABLATION STUDY

We conducted separate experiments to evaluate the performance of our model after removing the
Post conv layer or discarding adversarial training. The results shows performance decrease. This
is particularly evident in the spectrogram analysis of synthesized speech, which exhibits harmonic
noise patterns as distinct horizontal lines when either component is removed. In addition, we explore
different sampling steps’ influence on the final results. We compare the synthesized audio with 1
step and 100steps. Fig 2 shows the results. We also investigate the impact of patch size on our
model. The results, as presented in Table 4, confirm that smaller patch sizes indeed yield higher
quality samples. However, considering sampling efficiency, it is advisable to choose a sufficiently
large patch size. After careful consideration, we select a patch size of 64 as it strikes the best balance
between sample quality and sampling speed.

5 DIFFERENCE WITH GAN

Actually, the one step diffusion model (we mean during training using one step) is just a GAN
model, we name it LinDiff (GAN). We compared it with the model trained with 1000steps. both the
quality and diversity of the generated samples are evaluated. Results can be found in table 5. The
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Table 4: Ablation study results. Comparison of models with different configs. We set sampling steps
to 100 in this experiment.

Model MOS (↑) MCD (↓) V/UV (↓) F0 CORR (↑)

LinDiff origin (patch 64) 4.18±0.05 1.92 7.78% 0.82
LinDiff w/o Post-Conv 3.84±0.06 2.98 9.36% 0.72

LinDiff w/o adv training 3.74±0.08 2.91 10.39% 0.76

LinDiff (patch 128) 3.65±0.08 2.87 16.57% 0.67
LinDiff (patch 256) 3.34±0.05 3.34 17.89% 0.59

Figure 2: Visualization of spectrograms from the ground truth audio and predicted audio with 100
steps and 3 steps.

sample generated from LinDiff (GAN) has limited diversity (the Statistically-Different Bins (NDB)
and JensenShannon divergence (JSD) reflects). This proves the combination improves the diversity
significantly.

6 CONCLUSION

In this work, we present LinDiff, a novel conditional diffusion model designed for fast and high-
fidelity speech synthesis. By leveraging an Ordinary Differential Equation (ODE), we construct
a diffusion path that offers improved fitting capabilities with reduced sampling steps compared
to previous DDPMs. Moreover, LinDiff incorporates Transformer and CNN architectures. The
Transformer model captures global information at a coarse-grained level, while the Convolutional
layers handle fine-grained details. Additionally, we employ generative adversarial training to fur-
ther enhance sampling speed and improve the quality of synthesized speech. Experimental results
demonstrate that the proposed method can synthesis speech of comparable quality to autoregressive
models, with a Real-Time Factor (RTF) of 0.013, making it significantly faster than real-time usage.
(Le et al., 2023)

Table 5: Comparison between LinDiff (GAN) with LinDiff.
Model MOS (↑) NDB (↓) JSD (↓)

LinDiff (GAN) 4.01±0.05 99 0.007
LinDiff (1 steps, trained with 1000 steps) 3.99±0.06 81 0.005
LinDiff (3 steps, trained with 1000 steps) 4.12±0.07 71 0.004

LinDiff (100 steps, trained with 1000 steps) 4.18±0.05 58 0.004
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