
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a DeLTa Workshop Paper at ICLR 2025

FUNDAMENTAL LIMITS OF PROMPT TUNING TRANS-
FORMERS: UNIVERSALITY, CAPACITY AND EFFICIENCY

Anonymous authors
Paper under double-blind review

ABSTRACT

We investigate the statistical and computational limits of prompt tuning for
transformer-based foundation models. Our key contributions are prompt tuning on
single-head transformers with only a single self-attention layer: (i) is universal,
and (ii) supports efficient (even almost-linear time) algorithms under the Strong
Exponential Time Hypothesis (SETH). Statistically, we prove that prompt tuning
on such simplest possible transformers are universal approximators for sequence-
to-sequence Lipschitz functions. In addition, we provide an exponential-in-dL
and -in-(1/ϵ) lower bound on the required soft-prompt tokens for prompt tuning
to memorize any dataset with 1-layer, 1-head transformers. Computationally, we
identify a phase transition in the efficiency of prompt tuning, determined by the
norm of the soft-prompt-induced keys and queries, and provide an upper bound
criterion. Beyond this criterion, no sub-quadratic (efficient) algorithm for prompt
tuning exists under SETH. Within this criterion, we showcase our theory by proving
the existence of almost-linear time prompt tuning inference algorithms. These
fundamental limits provide important necessary conditions for designing expressive
and efficient prompt tuning methods for practitioners.

1 INTRODUCTION

We investigate the statistical and computational limits of prompt tuning for transformer-based
foundation models. These models are gigantic transformer-based architectures (Bommasani et al.,
2021), pretrained on vast datasets, are pivotal across multiple fields (Touvron et al., 2023b;a; Brown
et al., 2020; Floridi and Chiriatti, 2020; Yang et al., 2023; Wu et al., 2023; Nguyen et al., 2024;
Zhou et al., 2024; 2023; Ji et al., 2021; Thirunavukarasu et al., 2023; Singhal et al., 2023; Moor
et al., 2023). Despite their power, the significant cost of pretraining these models often makes them
prohibitive outside certain industrial labs. Thus, most practitioners resort to fine-tuning methods to
tailor these models to specific needs (Zheng et al., 2024; Ding et al., 2022). However, fine-tuning large
models with billions or trillions of parameters is still often resource-intensive (Minaee et al., 2024).
Prompt tuning mitigates this by adapting a learnable prompt with a limited set of parameters (tokens),
preserving the pretrained model weights and allowing adaptation to new tasks or data without any
retraining (Lester et al., 2021; Liu et al., 2021). It saves substantial computational resources and time.
However, despite its empirical successes (Gao et al., 2024; Shi and Lipani, 2024; Fu et al., 2024;
Chen et al., 2023; Wang et al., 2023b; Khattak et al., 2023; Jia et al., 2022; Liu et al., 2022; 2021),
the theoretical aspects of prompt tuning are still underexplored, relatively (Wang et al., 2023a; Petrov
et al., 2024). This work provides a timely theoretical analysis of the statistical and computational
limits of prompt tuning, aiming to explain its successes and offer principled guidance for future
prompt tuning methods in terms of performance and computational cost.

Let X,Y ∈ Rd×L be the input and the corresponding label sequences, respectively. For i ∈ [L], we
denote X:,i ∈ Rd as the i-th token (column) of X . Let [·, ·] denote sequential concatenation.

Definition 1.1 (Prompt Tuning). Let τ be a pretrained transformer. Let P ∈ Rd×Lp be a length-
Lp prompt weight (termed soft-prompt) prepended to input prompt X such that Xp := [P,X] ∈
Rd×(Lp+L). For any downstream task with finetuning dataset S = {(X(i), Y (i))}i∈[N], the problem

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a DeLTa Workshop Paper at ICLR 2025

of prompt tuning is to find a prompt weight P ⋆ by solving the following optimization problem

P ⋆ := argmin
P

N∑
i=1

ℓ
(
τ
(
X(i)

p

)
:,Lp:

, Y (i)
)
, for some loss ℓ : Rd×L × Rd×L → R+. (1.1)

In this work, we aim to study Definition 1.1 statistically and computationally.

Statistically, we explore the expressive power of prompt tuning a transformer of the simplest config-
uration. Formally, we investigate whether it is possible to approximate any sequence-to-sequence
function f through prompt tuning with a pretrained single-head, single-layer transformer τ such that

dα
(
τ([P ⋆, ·]):,Lp

, f
)
≤ ϵ, for some ϵ > 0, (1.2)

where approximation error ϵ between two functions is dα(f1, f2) := (
∫
∥f1(X)− f2(X)∥ααdX)1/α.

Here, ∥·∥α denotes entrywise ℓα-norm, i.e., ∥X∥α = (
∑d

i=1

∑L
j=1 |Xi,j |α)1/α. Specifically, while

Wang et al. (2023a, Theorem 1) report the universality of prompt tuning transformers with O((Lp +

L)(1/ϵ)d) attention layers with 2 heads of hidden dimension1 1 and O((1/ϵ)d(Lp+L)) FFN layers
with 4 MLP neurons, we ask the following question:

Question 1. Is it possible to improve (Wang et al., 2023a) toward the universality of prompt tuning
on single-head single-layer pretrained transformers?

To answer Question 1, we first refine previous results of attention contextual mapping (Lemma 2.2)
and establish a chaining reduction for bounding approximation error of prompt tuning (Section 2.3).

Computationally, we investigate the computational hardness of prompt tuning in transformer-based
foundation models using fine-grained complexity theory (Williams, 2018). We observe that the
computational hardness of prompt tuning ties to the quadratic time complexity of the transformer
attention heads. Although designing algorithms to bypass this Ω(L2) computation time is tempting,
to the best of our knowledge, there lacks formal results to support and describe such approaches in
a comprehensive fashion. To bridge this gap, we pose below questions and develop a foundational
theory to characterize the complexity of prompt tuning for large transformer-based models:

Question 2. Is it possible to improve the Ω(L2) time with a bounded approximation error?

Question 3. More aggressively, is it possible to do such computations in almost linear time L1+o(1)?

In this work, we answer both Questions 2 and 3 for the forward inference of prompt tuning. To answer
them, we explore approximate prompt tuning computations with precision guarantees. To be concrete,
let WK ,WQ,WV ∈ Rd×d be attention weights such that Q = WV X ∈ Rd×L, K = WKX ∈ Rd×L

and V = WV X ∈ Rd×L. Recall the Attention Mechanism
Z = V Softmax

(
KTQβ

)
= (WV X)D−1 exp

(
XTWT

KWQXβ
)
∈ Rd×L, (1.3)

with the inverse temperature β > 0 and D := diag
(
exp
(
X⊤W⊤

KWQXβ
)
1L

)
. Here, exp(·) is

entry-wise exponential function. For simplicity of presentation, we set β = 1 in this work.

Formally, we study the following approximation problem for prompt tuning inference. Let Qp =

WQXp ∈ Rd×(Lp+L), Kp = WKXp ∈ Rd×(Lp+L), and Vp = WKXp ∈ Rd×(Lp+L).

Problem 1 (Approximate Prompt Tuning Inference APTI). Let δF > 0 and B > 0. Given
Qp,Kp, Vp ∈ Rd×(L+Lp) with guarantees that max{∥Qp∥max, ∥Kp∥max, ∥Vp∥max} ≤ B,
we aim to study an approximation problem APTI(d, L, Lp, B, δF), aiming to approximate
Vp Softmax

(
KT

p Qp

)
with a matrix Z̃ such that

∥Z̃ − Vp Softmax
(
KT

p Qp

)
∥max ≤ δF ,

Here, for a matrix M ∈ Ra×b, we write ∥M∥max := maxi,j |Mi,j |.

In this work, we aim to investigate the computational limits of all possible efficient algorithms for
APTI(d, L, Lp, B, δF) under realistic setting δF = 1/poly(L).

Contributions. We study the fundamental limits of prompt tuning. Our contributions are threefold:
1For attention weights WV ,WK ,WQ ∈ Rs×d, hidden dimension is s.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a DeLTa Workshop Paper at ICLR 2025

• Universality. We prove that prompt tuning transformers with the simplest configurations —
single-head, single-layer attention — are universal approximators for Lipschitz sequence-to-
sequence functions. Additionally, we reduce the required number of FFN layers in the prompt
tuning transformer to 2. These results improve upon (Wang et al., 2023a), which requires deep
transformers with O((Lp + L)(1/ϵ)d) attention layers and O((1/ϵ)d(Lp+L)) FFN layers.

• Memorization. We show that prompt tuning such simple transformers (1-head, 1-layer attention
and 2 FNN layers) is capable of complete memorization of datasets without any assumption on the
data. Moreover, we establish an exponential-in-dL and -in-(1/ϵ) lower bound on the required soft-
prompt tokens for any dataset, where d, L are the data dimension and sequence length, respectively,
and ϵ is the approximation error. Our results improve upon those of (Wang et al., 2023a), which
consider datasets with only two-token sequences and focus solely on memorizing the final token.

• Efficiency. We address Question 2 by identifying a phase transition behavior in efficiency based on
the norm of soft-prompt-induced queries and keys (Theorem A.1). This establishes an efficiency
criterion for prompt tuning inference, enabling efficient (sub-quadratic) algorithms when the
criterion is met. Additionally, we address Question 3 by pushing the limits of efficiency in prompt
tuning toward nearly-linear time under this criterion (Theorem A.2).

Organization. Section 2 presents a statistical analysis on prompt tuning’s universality and memory
capacity. Appendix A explore the computational limits of inference with prompt tuning. The appendix
includes the related works (Appendix B.1) and the detailed proofs of the main text.

Notations. We use lower case letters to denote vectors and upper case letters to denote matrices. The
index set {1, ..., I} is denoted by [I], where I ∈ N+. We write ℓα-norm as ∥·∥α. Throughout this
paper, we denote input, label sequences as X,Y ∈ Rd×L and prompt sequences as P ∈ Rd×Lp .

2 STATISTICAL LIMITS OF PROMPT TUNING: UNIVERSALITY AND CAPACITY

To better understand the expressive power of prompt tuning, we explore its universality (Sections 2.3
and 2.4) and memory capacity (Section 2.5) on a transformer of simplest configurations.

Overview of Our Results. Let T h,s,r denote transformers with h heads, s hidden size, and r MLP
neurons, and let ϵ represent the approximation error tolerance. Let X ∈ Rd×L and P ∈ Rd×Lp be
the input and soft-prompt defined in Definition 1.1, respectively. We answer Question 1 affirmatively,
and present three results for transformer models with 1-head, 1-layer attention layers:

Lemma 2.1 (1-Head, 1-Layer Attention with Any-Rank Weight Matrices Is Contextual Mapping,
Informal Version of Lemma 2.2). A 1-head, 1-layer attention mechanism with weight matrices
WK ,WQ,WV of any rank is able to associate each input sequence with a unique label sequence.

Theorem 2.1 (Universality of Prompt Tuning T 1,1,4 Transformers with O(ϵ−d(Lp+L)) FFN Layers,
Informal Version of Theorem 2.3). Prompt tuning transformers with 1 head, a hidden size of 1, and
O(ϵ−d(Lp+L)) FFN layers of width 4 are universal approximators for Lipschitz seq-to-seq functions.

Theorem 2.2 (Universality of Prompt Tuning T 1,1,r=O(ϵ−d(Lp+L)) Transformers with 2 FFN Layers ,
Informal Version of Theorem 2.4). Prompt tuning transformers with 1 head, a hidden size of 1, and 2
FFN layers of width O(ϵ−d(Lp+L)) are universal approximators for Lipschitz seq-to-seq functions.

Comparing with Prior Works. Our results improve previous works in three aspects:

• Any Weight Matrices. While Kajitsuka and Sato (2024) shows that a self-attention layer with
rank-1 weight matrices serves as a contextual map, we improve this to weight matrices of any rank.

• Transformers with 1-Head, 1-Layer Attention. While Wang et al. (2023a) shows that prompt
tuning on transformers of O((Lp + L)(1/ϵ)d) attention layers with at least 2 attention heads, we
achieve the universality of prompt tuning transformers with only single-head-single-layer attention.

• Only 2 FFN Layers. We identify a width-depth tradeoff of universality. While Wang et al. (2023a)
achieves prompt tuning universality with transformers of O((1/ϵ)d(Lp+L)) FFN layers, we show
that the same universality holds with 1-head, 1-layer transformers of only 2 FFN layers.

2.1 PRELIMINARIES AND PROBLEM SETUP

We first present the ideas we build on.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a DeLTa Workshop Paper at ICLR 2025

Let Z ∈ Rd×L denote the input embeddings of attention layer and s denote the hidden dimension.

Transformer Block. Let h-head self-attention layer as a function f (SA) : Rd×L → Rd×L,

f (SA) (Z) = Z +

h∑
i=1

W i
Of

(Att)
i (Z,Z) ∈ Rd×L, (2.1)

where W i
O ∈ Rd×s and f

(Att)
i is the size-s self-attention mechanism for the i-th head

f
(Att)
i (Z:,k, Z) = (W i

V Z) Softmax
[
(W i

KZ)⊤(W i
QZ:,k)

]
∈ Rs.

Here, f (Att)
i : Rd×Rd×L 7→ Rs acts token-wise, and W i

V ,W
i
K ,W i

Q ∈ Rs×d are the weight matrices.
Next, we define the r-neuron feed-forward layer function as f (FF) ∈ F (FF) : Rd×L 7→ Rd×L and the
output at k-th token is

f (FF)(Z):,k = Z:,k +W (2)ReLU(W (1)Z:,k + b(1)) + b(2), (2.2)

where W (1) ∈ Rr×d and W (2) ∈ Rd×r are weight matrices, and b(1), b(2) ∈ Rr are the bias terms.

Definition 2.1 (Transformer Block). We define a transformer block of h-head, s-size and r-neuron
as f (T h,s,r) (Z) = f (FF)

(
f (SA) (Z)

)
: Rd×L 7→ Rd×L.

Now, we define the transformer networks as compositions of transformer blocks.

Definition 2.2 (Transformer Network Function Class). Let T h,s,r denote the transformer network
function class where each function τ ∈ T h,s,r consists of transformer blocks f (T h,s,r) with h heads of
size s and r MLP hidden neurons: T h,s,r := {τ : Rd×L 7→ Rd×L | τ = f (T h,s,r)(f (T h,s,r)(· · ·))}.

Prompt Tuning Pretrained Transformer Models. In this work, we consider the prompt tuning
problem Definition 1.1 with a pretrained transformer network τ ∈ T h,s,r.

Problem Setup. To answer Question 1, we focus on the universal approximation of prompt tuning
pretrained transformer models. We start by stating the target functions of our approximation.

Definition 2.3 (Target Function Class). Let FC be the C-Lipschitz (under p-norm) target function
class of continuous sequence-to-sequence. Let fseq2seq ∈ FC : [0, 1]d×L 7→ [0, 1]d×L denote
continuous sequence-to-sequence functions on a compact set of sequence.

Explicitly, for any fseq2seq ∈ FC and two input sequences Z,Z ′ ∈ Rd×L, we have
∥fseq2seq(Z)− fseq2seq (Z

′)∥
α
≤ C∥Z − Z ′∥α. In this work, we adopt fseq2seq as our approximation

target function. Concretely, we investigate whether it is possible to approximate any C-Lipschitz
sequence-to-sequence function fseq2seq through prompt tuning with a pretrained single-head, single-
layer transformer model. Namely, we reformulate Question 1 into the following problem.

Problem 2. Is it possible to find a pretrained transformer model τ ∈ T 1,1,r such that, for any
fseq2seq ∈ FC , prompt tuning τ satisfies dα

(
τ([P, ·]):,Lp:, fseq2seq

)
≤ ϵ for some ϵ > 0? Here,

dα(f1, f2) :=

(∫
∥f1(Z)− f2(Z)∥ααdZ

)1/α

,

measures the difference between functions f1 and f2 in the token-wise ℓα-norm.

2.2 ANY-RANK SINGLE-LAYER ATTENTION IS A CONTEXTUAL MAPPING FUNCTION

As stated in the previous technical overview, a key element of our proof is the concept of contextual
mapping in attention (Kajitsuka and Sato, 2024; Yun et al., 2020). Contextual mapping enables
transformers to move beyond simple token-wise manipulation and capture the full context of a
sequence. Through this, identical tokens within different input sequences become distinguishable.
In this subsection, we present new results on the contextual mapping property of attention. These
results allow us to use feed-forward neural networks to map each input sequence to its corresponding
label sequence, thereby achieving universal approximation in Section 2.3.

Background: Contextual Mapping. Let Z, Y ∈ Rd×L be the input embeddings and output label
sequences, respectively. Let Z :,i ∈ Rd be the i-th token (column) of each Z embedding sequence.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a DeLTa Workshop Paper at ICLR 2025

Definition 2.4 (Vocabulary). We define the i-th vocabulary set for i ∈ [N] by V(i) =
⋃

k∈[L] Z
(i)
:,k ⊂

Rd, and the whole vocabulary set V is defined by V =
⋃

i∈[N] V(i) ⊂ Rd.

Note that while “vocabulary” typically refers to the tokens’ codomain, here it refers to the set of
all tokens within a single sequence. To facilitate our analysis, we introduce the idea of input token
separation following (Kajitsuka and Sato, 2024; Kim et al., 2022; Yun et al., 2020).

Definition 2.5 (Tokenwise Separateness). Let Z(1), . . . , Z(N) ∈ Rd×L be embeddings. Then,
Z(1), . . . , Z(N) are called tokenwise (γmin, γmax, δ)-separated if the following conditions hold.

(i) For any i ∈ [N] and k ∈ [L], ∥Z(i)
:,k∥ > γmin holds.

(ii) For any i ∈ [N] and k ∈ [L], ∥Z(i)
:,k∥ < γmax holds.

(iii) For any i, j ∈ [N] and k, l ∈ [L] if Z(i)
:,k ̸= Z

(j)
:,l , then ∥Z(i)

:,k − Z
(j)
:,l ∥ > δ holds.

Note that when only conditions (ii) and (iii) hold, we denote this as (γ, δ)-separateness. Moreover, if
only condition (iii) holds, we denote it as (δ)-separateness.

To clarify condition (iii), we consider cases where there are repeated tokens between different input
sequences. Next, we define contextual mapping. Contextual mapping describes a function’s ability to
capture the context of each input sequence as a whole and assign a unique ID to each input sequence.

Definition 2.6 (Contextual Mapping). A function q : Rd×L → Rd×L is said to be a (γ, δ)-contextual
mapping for a set of embeddings Z(1), . . . , Z(N) ∈ Rd×L if the following conditions hold:
1. Contextual Sensitivity γ. For any i ∈ [N] and k ∈ [L], ∥q(Z(i)):,k∥ < γ holds.

2. Approximation Error δ. For any i, j ∈ [N] and k, l ∈ [L] such that V(i) ̸= V(j) or Z(i)
:,k ̸= Z

(j)
:,l ,

∥q(Z(i)):,k − q(Z(j)):,l∥ > δ holds.
Note that q

(
Z(i)

)
for i ∈ [N] is called a context ID of Z(i).

Any-Rank Attention is Contextual Mapping. Now we present the result showing that a softmax-
based 1-head, 1-layer attention block with any-rank weight matrices is a contextual mapping.

Lemma 2.2 (Any-Rank Attention as a (γ, δ)-Contextual Mapping, modified from Theorem 2 of (Kajit-
suka and Sato, 2024)). Let Z(1), . . . , Z(N) ∈ Rd×L be embeddings that are (γmin, γmax, ϵ)-tokenwise
separated, with the vocabulary set V =

⋃
i∈[N] V(i) ⊂ Rd. Additionally, assume no duplicate word

tokens in each sequence, i.e., Z(i)
:,k ̸= Z

(i)
:,l for any i ∈ [N] and k, l ∈ [L]. Then, there exists a 1-layer,

single-head attention mechanism with weight matrices W (O) ∈ Rd×s and WV ,WK ,WQ ∈ Rs×d

that serves as a (γ, δ)-contextual mapping for the embeddings Z(1), . . . , Z(N), where:

γ = γmax +
ϵ

4
and δ = exp

(
−5ϵ−1|V|4dκγmax logL

)
, with κ := γmax/γmin.

Lemma 2.2 indicates that any-rank self-attention function distinguishes input tokens Z(i)
:,k = Z

(j)
:,l

such that V(i) ̸= V(j). In other words, it distinguishes two identical tokens within a different context.

Remark 2.1 (Comparing with Existing Works). In comparison with (Kajitsuka and Sato, 2024),
they provide a proof for the case where all self-attention weight matrices WV ,WK ,WQ ∈ Rs×d are
strictly rank-1. However, this is almost impossible in practice for any pre-trained transformer-based
models. Here, by considering self-attention weight matrices of rank ρ where 1 ≤ ρ ≤ min(d, s), we
show that single-head, single-layer self-attention with matrices of any rank is a contextual mapping,
pushing the universality of (prompt tuning) transformers towards more practical scenarios.

Next, we utilize Lemma 2.2 to prove the universality and memory capacity of prompt tuning on
transformer networks with single layer self-attention.

2.3 UNIVERSALITY OF PROMPT TUNING T 1,1,4
A WITH O((1/ϵ)d(Lp+L)) FFN LAYERS

In this section, we prove the universality of prompt tuning by showing that there exists a simple
transformer of single-layer self-attention τ ∈ T 1,1,4

A such that for any fseq2seq ∈ FC , prompt
tuning on τ approximates this function up to some error ϵ > 0. Consider simple transformers

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a DeLTa Workshop Paper at ICLR 2025

τ ∈ T 1,1,4
A consisting of a single-head, single-layer, size-one self-attention function f (SA) ∈ F (SA),

and O((1/ϵ)d(Lp+L)) feed-forward layers f (FF) ∈ F (FF), each with 4 MLP hidden neurons:

T 1,1,4
A := {τ : Rd×L 7→ Rd×L | τ = f

(FF)
ℓ1

◦ . . . ◦ f (FF)
1 ◦ f (SA) ◦ f (FF)

ℓ2
◦ . . . ◦ f (FF)

1 }. (2.3)

Proof Strategy. We employ a chained reduction of piece-wise constant approximations:

(A1) We start by quantizing the input and output domain of fseq2seq ∈ FC into a quantized function

f seq2seq : Gδ,L 7→ Gδ,L, where Gδ,L = {0, δ, 2δ, . . . , 1− δ}d×L.

Here, f seq2seq,FC denote the quantized function and function class. This is basically performing
a piece-wise constant approximation with bounded error δ.

(A2) Next, we construct a surrogate quantized sequence-to-sequence function

hseq2seq : Gδ,(Lp+L) → Gδ,(Lp+L), where Gδ,(Lp+L) = {0, δ, 2δ, . . . , 1− δ}d×(Lp+L).

Here hseq2seq takes prompts and embeddings Zp = [P,Z] as inputs. Crucially, its Lp-imputed
output approximates any f seq2seq ∈ FC by using various soft prompts P .

(A3) Finally, we show that there exist transformers τ ∈ T 1,1,4
A approximating hseq2seq to any precision.

By simple reduction from hseq2seq, f seq2seq and fseq2seq, we achieve the universality of prompt
tuning on T 1,1,4

A with O((1/ϵ)d(Lp+L)) FFN layers, where ϵ is the approximation error.
Remark 2.2. We remark that while (A1) shares some similarity with (Wang et al., 2023a) by the
nature of quantization approach to transformer’s universality (Yun et al., 2020), (A2) and (A3) differ
significantly in techniques and results. See the opening of this section for an overview.

For (A1) and (A2), we introduce the next lemma, showing the quantized f seq2seq is approximated by
Lp-imputed version of some quantized sequence-to-sequence function

hseq2seq : Gδ,(Lp+L) → Gδ,(Lp+L), where Gδ,(Lp+L) = {0, δ, 2δ, . . . , 1− δ}d×(Lp+L).

Lemma 2.3 (Universality of Prompt Tuning Surrogate Function hseq2seq). Consider a C-Lipschitz
sequence-to-sequence function class FC , where each function fseq2seq : [0, 1]d×L → [0, 1]d×L.
There exists a sequence-to-sequence function hseq2seq : Gδ,(Lp+L) → Gδ,(Lp+L) with Gδ,(Lp+L) =

{0, δ, 2δ, . . . , 1 − δ}d×(Lp+L) such that, for any fseq2seq ∈ FC , we can find a prompt P ∈ Rd×Lp

that satisfies:
dp
(
h([P, ·]):,Lp:, fseq2seq

)
≤ ϵ/2,

where the prompt sequence length Lp ≥ Lλ, with λ = (2ϵ−1C(dL)1/α)dL.

For (A3), we present the next lemma demonstrating that τ ∈ T 1,1,4
A approximates hseq2seq up to

any desired precision. The technical contribution involves using the contextual mapping property of
any-rank 1-layer, 1-head attention (Lemma 2.2) to preserve the piece-wise constant approximation.

Lemma 2.4 (Transformer τ ∈ T 1,1,4
A Approximate hseq2seq to Any Precision). For any given

quantized sequence-to-sequence function hseq2seq : Gδ,(Lp+L) → Gδ,(Lp+L) with Gδ,(Lp+L) =

{0, δ, 2δ, . . . , 1 − δ}d×(Lp+L), there exists a transformer τ ∈ T 1,1,4
A with positional embedding

E ∈ Rd×(Lp+L), such that τ = h([P, ·]):,Lp: .

Proof. See Appendix F.2 for a detailed proof.

Combining the above leads to our main result: the universality of prompt tuning a τ ∈ T 1,1,4
A

transformer.

Theorem 2.3 (Prompt Tuning τ ∈ T 1,1,4
A Transformer is Universal Seq2Seq Approximator). Let

1 ≤ p < ∞ and ϵ > 0. There exists a transformer τ ∈ T 1,1,4
A with single self-attention layer, such

that for any fseq2seq ∈ FC there exists a prompt P ∈ Rd×Lp with dα
(
τ([P, ·]):,Lp

, fseq2seq
)
≤ ϵ.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a DeLTa Workshop Paper at ICLR 2025

Intuitively, Theorem 2.3 indicates that even the simplest transformer with 1-head, 1-layer attention
has enough expressive power through prompt tuning to approximate any Lipschitz seq2seq function.

2.4 WIDTH-DEPTH TRADEOFF: UNIVERSALITY OF PROMPT TUNING T 1,1,r=O((1/ϵ)d(Lp+L))

ONLY NEEDS 2 FFN LAYERS

In Section 2.3, we achieve the universality of prompt tuning simple transformers with many FFN
layers. In this section, we explore the possibility of further simplifying such transformer blocks by
reducing the number of FFN layers. Surprisingly, we show that 2 FFN layers are enough.

We start showing with the required number of FFN layers for τ ∈ T 1,1,4
A transformers to achieve

universality through prompt tuning. For clarity, we denote the transformer of 4 MLP neurons by TA
(i.e., (2.3)).

Lemma 2.5. (Required Number of FFN Layers) For a transformer τ ∈ T 1,1,4
A , defined in (2.3), to

be a universal approximator through prompt tuning, it requires O((1/ϵ)d(Lp+L)) FFN layers.

Now, we prove the universality of prompt tuning on another simple transformer block with signifi-
cantly smaller FFN depth than T 1,1,4

A from Section 2.3. This suggests a trade-off between the depth
and width of the transformer. Let transformers τ ∈ T 1,1,r

B consist of a single-head, single-layer,
size-one self-attention f (SA) and 2 feed-forward layers, f (FF)

1 and f
(FF)
2 , each with r MLP hidden

neurons: T 1,1,r
B := {τ : Rd×L 7→ Rd×L | τ = f

(FF)
2 ◦ f (SA) ◦ f (FF)

1 }.

Proof Strategy. We follow a similar proof strategy as in Section 2.3. However, this section differs
as we use the construction technique from (Kajitsuka and Sato, 2024) to build a transformer with
single-head, single-layer, size-one self-attention, and two FFN layers. This outcome is achieved by
summing multiple shifted ReLU functions to map the inputs to the desired outputs with precision
guarantees. Additionally, this approach allows for a reduction in the number of FFN layers by
compensating with an increase in the number of neurons in the MLP.

Theorem 2.4 (Prompt Tuning Transformers with Single-Head, Single-Layer Attention and Two
Feed-Forward Layers). Let 1 ≤ p < ∞ and ϵ > 0. There exists a transformer τ ∈ T 1,1,r

B with a
single self-attention layer and r = O

(
(1/ϵ)d(Lp+L)

)
MLP neurons, such that for any fseq2seq ∈ FC ,

there exists a prompt P ∈ Rd×Lp satisfying: dp
(
τ([P, ·]):,Lp , fseq2seq

)
≤ ϵ.

2.5 MEMORY CAPACITY OF PROMPT TUNING

Based on our universality results, we show the memory capacity of prompt tuning on simple trans-
former networks with single-head single-layer self-attention. We start with the definition.

Definition 2.7 (Prompt Tuning Memorization). Given a dataset S = {(X(i), Y (i))}Ni=1 with
X(i), Y (i) ∈ Rd×L, a pretrained transformer τ ∈ T memorizes S through prompt tuning if there
exists a prompt P ∈ Rd×Lp such that: maxi∈[N]

∥∥τ([P,X(i)]):,Lp
− Y (i)

∥∥
α
≤ ϵ for all i ∈ [N].

We now prove the existence of a transformer τ ∈ T 1,1,r
B that memorizes any dataset S through prompt

tuning. This result is easy to extend to transformers τ ∈ T 1,1,4
A .

Theorem 2.5 (Memorization Capacity of Prompt Tuning). Consider a dataset S = {(X(i), Y (i))}Ni=1,
where X(i), Y (i) ∈ [0, 1]d×L. Assume the corresponding embedding sequences Z(1), . . . , Z(N) are
generated from a C-Lipschitz function. Then, there exists a single-layer, single-head attention
transformer τ ∈ T 1,1,r

B with r = O
(
(1/ϵ)d(Lp+L)

)
and a soft-prompt P ∈ Rd×Lp such that,

for any i ∈ [N]:
∥∥∥τ([P,Z(i)]):,Lp

− Y (i)
∥∥∥
α
≤ ϵ,

where Lp ≥ Lλ with λ =
(
2ϵ−1C(dL)1/α

)dL
.

Remark 2.3. Theorem 2.5 shows that a carefully constructed simple transformer is capable of
memorizing any dataset through prompt tuning. In contrast, (Wang et al., 2023a, Theorem 3) is
limited to datasets with only two tokens per example and defines memorization as memorizing only
the last token. Additionally, we provide a lower bound on the prompt sequence length required to
memorize any dataset, based on its dimensions and the desired accuracy.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a DeLTa Workshop Paper at ICLR 2025

Remark 2.4. In (Wang et al., 2023a, Theorem 2), they construct a dataset and prove it to be
unmemorizable by prompt tuning on a transformer with single-layer self-attention. However, their
case differs as they require full-rank self-attention weight matrices and a specific form for the feed-
forward layer. They design the dataset by exploiting the invertibility of the weight matrices and using
a weak feed-forward layer, preventing the transformer from mapping contextual embeddings to the
correct labels. We discuss these limitations in the expressive power of prompt tuning in Appendix J.
In contrast, we prove that a transformer with single-layer self-attention and weight matrices of any
rank is capable of achieving memorization through prompt tuning.

3 DISCUSSION AND CONCLUDING REMARKS

We study the fundamental limits of prompt tuning transformer-based pretrained models (i.e., foun-
dation models) in two aspects: statistical and computational. Statistically, we show the universality
of prompt tuning transformer models with 1-head, 1-layer attention layers (Theorem 2.3 and Theo-
rem 2.4). Recall that d is the token dimension, L is the input sequence length, Lp is the soft-prompt
length, and ϵ is the approximation error. Our results significantly relax previous requirements for
thick layers, reducing from O((Lp+L)(1/ϵ)d) layers to 1 attention layer, and from O((1/ϵ)d(Lp+L))
layers to 2 FFN layers for prompt tuning universality. In addition, we prove the memorization capacity
of prompt tuning and derive an exponential-in-dL and -in-1/ϵ lower bound on required soft-prompt
tokens (Theorem 2.5). Different from (Wang et al., 2023a) where the analysis of capacity is solely
on datasets of two-token sequences and focuses on only memorizing the last token, we demonstrate
a complete memorization of prompt tuning on any general dataset. Computationally, we establish
an efficient criterion of all possible prompt tuning inference for the norm of soft-prompt induced
keys and queries (Theorem A.1). In addition, we showcase our theory by proving the existence of
nearly-linear time prompt tuning algorithms (Theorem A.2).

Practical Implications from Statistical Limits (Section 2). We analyze the universality of prompt
tuning transformers with minimal structures and its memorization capacity on general datasets.

• Universality (Theorem 2.4). Our results show that the universality of prompt tuning pretrained
transformer is achievable on as simple as a single-layer, single-head attention transformer. This
demonstrates that universality in prompt-tuning isn’t limited to large, complex foundation models.

• Width-Depth Tradeoff (Section 2.4). Our results highlight a trade-off in the design choices for
the depth and width of FFN (MLP) layers: (i) O((1/ϵ)d(L+Lp) FFN layers of width 4 or (ii) 2 FFN
layers of width O((1/ϵ)d(L+Lp). In practice, (i) and (ii) differ in memory usage, parallelization,
and optimization preferences, leading to distinct application scenarios.

• Memorization (Section 2.5). Our memorization results apply to general datasets, whereas prior
results are limited to specialized cases. This makes our results go beyond specialized theoretical
analysis and align more with practical applications with a suggested long soft-prompt length.

Practical Implications from Computational Limits (Appendix A). We analyze the O(L2) bot-
tleneck of prompt tuning transformers and provides useful guidance for designing efficient prompt
tuning (approximation) methods with precision guarantees. Let Qp = WQXp, Kp = WKXp, and
Vp = WV Xp with Xp = [P,X] ∈ Rd×(Lp+L). Here L and Lp are the input and soft-prompt length.

• Self- and Cross-Attention. Our computational results apply to both self-attention and
cross-attention prompt tuning. This is because the norm bound conditions depend on
max{|Qp|, |Kp|, |Vp|}, which are valid for both self- and cross-attention inputs.

• Necessary Conditions for Subquadratic Prompt Tuning (Theorem A.1). Our result suggests
proper normalization on soft-prompt and weight matrices are required to ensure subquadratic
prompt tuning inference, i.e., max{∥Qp∥max, ∥Kp∥max, ∥Vp∥max} ≤ O(

√
log(Lp + L)).

• Necessary Conditions for Almost Linear Time Prompt Tuning (Theorem A.2). Our result sug-
gests more strict normalization on soft-prompt and weight matrices are required to ensure almost lin-
ear time prompt tuning inference, i.e., max{∥Qp∥max, ∥Kp∥max, ∥Vp∥max} ≤ o(

√
log(Lp + L)).

Suitable normalizations for the above can be implemented using pre-activation layer normalization
(Xiong et al., 2020; Wang et al., 2019) to control ∥Xp∥max, or outlier-free attention activation
functions (Hu et al., 2024a) to control ∥WK∥max, ∥WQ∥max, ∥WV ∥max.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a DeLTa Workshop Paper at ICLR 2025

REFERENCES

Silas Alberti, Niclas Dern, Laura Thesing, and Gitta Kutyniok. Sumformer: Universal approximation
for efficient transformers. In Topological, Algebraic and Geometric Learning Workshops 2023,
pages 72–86. PMLR, 2023.

Josh Alman and Zhao Song. Fast attention requires bounded entries. Advances in Neural Information
Processing Systems (NeurIPS), 36, 2023.

Kavosh Asadi and Michael L Littman. An alternative softmax operator for reinforcement learning.
In International Conference on Machine Learning (ICML), pages 243–252. PMLR, 2017.

Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou. Birth of a
transformer: A memory viewpoint. Advances in Neural Information Processing Systems, 36, 2024.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportuni-
ties and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Guangyi Chen, Weiran Yao, Xiangchen Song, Xinyue Li, Yongming Rao, and Kun Zhang. PLOT:
Prompt learning with optimal transport for vision-language models. In The Eleventh International
Conference on Learning Representations (ICLR), 2023.

Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx, Jesper Nederlof, Yoshio Okamoto,
Ramamohan Paturi, Saket Saurabh, and Magnus Wahlström. On problems as hard as cnf-sat. ACM
Transactions on Algorithms (TALG), 12(3):1–24, 2016.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Delta tuning: A comprehensive study of parameter
efficient methods for pre-trained language models. arXiv preprint arXiv:2203.06904, 2022.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale pre-trained
language models. Nature Machine Intelligence, 5(3):220–235, 2023.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. A survey on in-context learning. arXiv preprint arXiv:2301.00234, 2022.

Luciano Floridi and Massimo Chiriatti. Gpt-3: Its nature, scope, limits, and consequences. Minds
and Machines, 30:681–694, 2020.

Shuai Fu, Xiequn Wang, Qiushi Huang, and Yu Zhang. Nemesis: Normalizing the soft-prompt vectors
of vision-language models. In The Twelfth International Conference on Learning Representations
(ICLR), 2024.

Ziqi Gao, Xiangguo Sun, Zijing Liu, Yu Li, Hong Cheng, and Jia Li. Protein multimer structure pre-
diction via prompt learning. In The Twelfth International Conference on Learning Representations
(ICLR), 2024.

Alexander Havrilla and Wenjing Liao. Understanding scaling laws with statistical and approximation
theory for transformer neural networks on intrinsically low-dimensional data. In The Thirty-eighth
Annual Conference on Neural Information Processing Systems, 2024.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models.
arXiv preprint arXiv:2402.12354, 2024.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Conference
on Learning Representations (ICLR), 2022.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a DeLTa Workshop Paper at ICLR 2025

Jerry Yao-Chieh Hu, Donglin Yang, Dennis Wu, Chenwei Xu, Bo-Yu Chen, and Han Liu. On sparse
modern hopfield model. In Thirty-seventh Conference on Neural Information Processing Systems
(NeurIPS), 2023.

Jerry Yao-Chieh Hu, Pei-Hsuan Chang, Robin Luo, Hong-Yu Chen, Weijian Li, Wei-Po Wang,
and Han Liu. Outlier-efficient hopfield layers for large transformer-based models. In Forty-first
International Conference on Machine Learning (ICML), 2024a.

Jerry Yao-Chieh Hu, Thomas Lin, Zhao Song, and Han Liu. On computational limits of modern
hopfield models: A fine-grained complexity analysis. In Forty-first International Conference on
Machine Learning (ICML), 2024b.

Jerry Yao-Chieh Hu, Maojiang Su, En-Jui Kuo, Zhao Song, and Han Liu. Computational limits of
low-rank adaptation (lora) for transformer-based models. arXiv preprint arXiv:2406.03136, 2024c.

Jerry Yao-Chieh Hu, Dennis Wu, and Han Liu. Provably optimal memory capacity for modern
hopfield models: Transformer-compatible dense associative memories as spherical codes. In
Thirty-eighth Conference on Neural Information Processing Systems (NeurIPS), 2024d.

Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal of Computer and
System Sciences, 62(2):367–375, 2001.

Yanrong Ji, Zhihan Zhou, Han Liu, and Ramana V Davuluri. Dnabert: pre-trained bidirectional
encoder representations from transformers model for dna-language in genome. Bioinformatics, 37
(15):2112–2120, 2021.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
Ser-Nam Lim. Visual prompt tuning. In European Conference on Computer Vision, pages 709–727.
Springer, 2022.

Haotian Jiang and Qianxiao Li. Approximation theory of transformer networks for sequence modeling.
arXiv preprint arXiv:2305.18475, 2023.

Tokio Kajitsuka and Issei Sato. Are transformers with one layer self-attention using low-rank
weight matrices universal approximators? In The Twelfth International Conference on Learning
Representations (ICLR), 2024.

Muhammad Uzair Khattak, Hanoona Rasheed, Muhammad Maaz, Salman Khan, and Fahad Shahbaz
Khan. Maple: Multi-modal prompt learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 19113–19122, 2023.

Junghwan Kim, Michelle Kim, and Barzan Mozafari. Provable memorization capacity of transformers.
In The Eleventh International Conference on Learning Representations, 2022.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Chiwun Yang. Toward infinite-long prefix in transformer.
arXiv preprint arXiv:2406.14036, 2024.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. Advances in Neural Information Processing Systems, 35:1950–1965, 2022.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
processing. ACM Computing Surveys, 55(9):1–35, 2023.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang.
P-tuning v2: Prompt tuning can be comparable to fine-tuning universally across scales and tasks.
arXiv preprint arXiv:2110.07602, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a DeLTa Workshop Paper at ICLR 2025

Sadegh Mahdavi, Renjie Liao, and Christos Thrampoulidis. Memorization capacity of multi-head
attention in transformers. arXiv preprint arXiv:2306.02010, 2023.

Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard Socher, Xavier
Amatriain, and Jianfeng Gao. Large language models: A survey. arXiv preprint arXiv:2402.06196,
2024.

Michael Moor, Oishi Banerjee, Zahra Shakeri Hossein Abad, Harlan M Krumholz, Jure Leskovec,
Eric J Topol, and Pranav Rajpurkar. Foundation models for generalist medical artificial intelligence.
Nature, 616(7956):259–265, 2023.

Eric Nguyen, Michael Poli, Marjan Faizi, Armin Thomas, Michael Wornow, Callum Birch-Sykes,
Stefano Massaroli, Aman Patel, Clayton Rabideau, Yoshua Bengio, et al. Hyenadna: Long-range
genomic sequence modeling at single nucleotide resolution. Advances in neural information
processing systems, 36, 2024.

Samet Oymak, Ankit Singh Rawat, Mahdi Soltanolkotabi, and Christos Thrampoulidis. On the role of
attention in prompt-tuning. In International Conference on Machine Learning, pages 26724–26768.
PMLR, 2023.

Rui Pan, Xiang Liu, Shizhe Diao, Renjie Pi, Jipeng Zhang, Chi Han, and Tong Zhang. Lisa:
Layerwise importance sampling for memory-efficient large language model fine-tuning. arXiv
preprint arXiv:2403.17919, 2024.

Sejun Park, Jaeho Lee, Chulhee Yun, and Jinwoo Shin. Provable memorization via deep neural
networks using sub-linear parameters. In Conference on Learning Theory (COLT), pages 3627–
3661. PMLR, 2021.

Aleksandar Petrov, Philip HS Torr, and Adel Bibi. When do prompting and prefix-tuning work? a
theory of capabilities and limitations. arXiv preprint arXiv:2310.19698, 2023.

Aleksandar Petrov, Philip HS Torr, and Adel Bibi. Prompting a pretrained transformer can be a
universal approximator. arXiv preprint arXiv:2402.14753, 2024.

Hubert Ramsauer, Bernhard Schafl, Johannes Lehner, Philipp Seidl, Michael Widrich, Thomas Adler,
Lukas Gruber, Markus Holzleitner, Milena Pavlovic, Geir Kjetil Sandve, et al. Hopfield networks
is all you need. arXiv preprint arXiv:2008.02217, 2020.

Zhengxiang Shi and Aldo Lipani. DePT: Decomposed prompt tuning for parameter-efficient fine-
tuning. In The Twelfth International Conference on Learning Representations (ICLR), 2024.

Zhenmei Shi, Junyi Wei, Zhuoyan Xu, and Yingyu Liang. Why larger language models do in-context
learning differently? arXiv preprint arXiv:2405.19592, 2024.

Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mahdavi, Jason Wei, Hyung Won Chung, Nathan
Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl, et al. Large language models encode
clinical knowledge. Nature, 620(7972):172–180, 2023.

Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura Gutierrez, Ting Fang
Tan, and Daniel Shu Wei Ting. Large language models in medicine. Nature medicine, 29(8):
1930–1940, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F Wong, and Lidia S Chao.
Learning deep transformer models for machine translation. arXiv preprint arXiv:1906.01787,
2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a DeLTa Workshop Paper at ICLR 2025

Yihan Wang, Jatin Chauhan, Wei Wang, and Cho-Jui Hsieh. Universality and limitations of prompt
tuning. Advances in Neural Information Processing Systems (NeurIPS), 36, 2023a.

Zhen Wang, Rameswar Panda, Leonid Karlinsky, Rogerio Feris, Huan Sun, and Yoon Kim. Multi-
task prompt tuning enables parameter-efficient transfer learning. In The Eleventh International
Conference on Learning Representations (ICLR), 2023b.

Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen, Hanxiao Liu,
Da Huang, Denny Zhou, et al. Larger language models do in-context learning differently. arXiv
preprint arXiv:2303.03846, 2023.

Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping, and Tom Goldstein.
Hard prompts made easy: Gradient-based discrete optimization for prompt tuning and discovery.
Advances in Neural Information Processing Systems, 36, 2024.

Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity. In
Proceedings of the international congress of mathematicians: Rio de janeiro 2018, pages 3447–
3487. World Scientific, 2018.

Dennis Wu, Jerry Yao-Chieh Hu, Teng-Yun Hsiao, and Han Liu. Uniform memory retrieval with
larger capacity for modern hopfield models. In Forty-first International Conference on Machine
Learning (ICML), 2024a.

Dennis Wu, Jerry Yao-Chieh Hu, Weijian Li, Bo-Yu Chen, and Han Liu. Stanhop: Sparse tandem hop-
field model for memory-enhanced time series prediction. In The Twelfth International Conference
on Learning Representations (ICLR), 2024b.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark Dredze, Sebastian Gehrmann, Prabhan-
jan Kambadur, David Rosenberg, and Gideon Mann. Bloomberggpt: A large language model for
finance. arXiv preprint arXiv:2303.17564, 2023.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture.
In International Conference on Machine Learning, pages 10524–10533. PMLR, 2020.

Zhuoyan Xu, Zhenmei Shi, and Yingyu Liang. Do large language models have compositional ability?
an investigation into limitations and scalability. In First Conference on Language Modeling
(CoLM), 2024.

Hongyang Yang, Xiao-Yang Liu, and Christina Dan Wang. Fingpt: Open-source financial large
language models. arXiv preprint arXiv:2306.06031, 2023.

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. Are trans-
formers universal approximators of sequence-to-sequence functions? In International Conference
on Learning Representations (ICLR), 2020.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, and Zheyan Luo. Llamafactory: Unified
efficient fine-tuning of 100+ language models. arXiv preprint arXiv:2403.13372, 2024.

Zhihan Zhou, Yanrong Ji, Weijian Li, Pratik Dutta, Ramana Davuluri, and Han Liu. Dnabert-2: Effi-
cient foundation model and benchmark for multi-species genome. arXiv preprint arXiv:2306.15006,
2023.

Zhihan Zhou, Winmin Wu, Harrison Ho, Jiayi Wang, Lizhen Shi, Ramana V Davuluri, Zhong Wang,
and Han Liu. Dnabert-s: Learning species-aware dna embedding with genome foundation models.
arXiv preprint arXiv:2402.08777, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a DeLTa Workshop Paper at ICLR 2025

Appendix

A Computational Limits of Prompt Tuning 14
A.1 Preliminaries: Strong Exponential Time Hypothesis (SETH) 14
A.2 Efficiency Criterion for Prompt Tuning Inference 14
A.3 Prompt Tuning Can Be as Fast as Almost-Linear Time 14

B Related Works, Limitations and Broader Impact 15
B.1 Related Works . 15
B.2 Limitations and Broader Impact . 16

C Additional Theoretical Results: Universality of Transformers with 1-Layer, 1-Head,
Any-Rank Self-Attention 17

D Background: Boltzmann Operator and Attention Mechanism 19
D.1 Essential Properties of Boltzmann Operator . 19
D.2 Distance Preservation of Boltzmann Operator . 20

E Proofs of Section 2.2 23
E.1 Proofs of Lemma 2.2 . 23

F Proofs of Section 2.3 28
F.1 Proofs of Lemma 2.3 . 28
F.2 Proofs of Lemma 2.4 . 30
F.3 Proofs of Theorem 2.3 . 31

G Proofs of Section 2.4 32
G.1 Proof of Lemma 2.5 . 32
G.2 Proof of Theorem 2.4 . 32

H Proofs of Section 2.5 36
H.1 Proof of Theorem 2.5 . 36

I Proofs of Computational Limits of Prompt Tuning (Appendix A) 37
I.1 Proof of Theorem A.1 . 37
I.2 Proof of Theorem A.2 . 37

J Limitations of Prompt Tuning Transformers 38
J.1 Discussion on the Limitations of Prompt Tuning 38
J.2 Examples of Prompt Tuning Failures . 39

K Supplementary Proofs for Appendix D 40
K.1 Lemma D.1 . 40
K.2 Lemma D.2 . 40
K.3 Lemma D.3 . 41
K.4 Lemma D.4 . 42
K.5 Lemma D.5 . 42
K.6 Lemma D.6 . 42
K.7 Lemma D.7 . 42
K.8 Lemma D.8 . 43
K.9 Lemma D.9 . 44
K.10 Lemma E.1 . 45

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a DeLTa Workshop Paper at ICLR 2025

A COMPUTATIONAL LIMITS OF PROMPT TUNING

We analyze the computational limits of inference of prompt tuning Problem 1 using fine-grained
complexity theory. Specifically, recall that Xp = [P,X] ∈ Rd×(Lp+L) with Qp = WQXp ∈
Rd×(Lp+L), Kp = WKXp ∈ Rd×(Lp+L), and Vp = WKXp ∈ Rd×(Lp+L). We study approximate
prompt tuning inference with precision guarantees under δF = 1/poly(Lp + L).

Problem 1 (Approximate Prompt Tuning Inference APTI). Let δF > 0 and B > 0. Given
Qp,Kp, Vp ∈ Rd×(L+Lp) with guarantees that max{∥Qp∥max, ∥Kp∥max, ∥Vp∥max} ≤ B,
we aim to study an approximation problem APTI(d, L, Lp, B, δF), aiming to approximate
Vp Softmax

(
KT

p Qp

)
with a matrix Z̃ such that

∥Z̃ − Vp Softmax
(
KT

p Qp

)
∥max ≤ δF ,

Here, for a matrix M ∈ Ra×b, we write ∥M∥max := maxi,j |Mi,j |.

A.1 PRELIMINARIES: STRONG EXPONENTIAL TIME HYPOTHESIS (SETH)
Our hardness results are built on a common conjecture. Impagliazzo and Paturi (2001) introduce the
Strong Exponential Time Hypothesis (SETH) as a stronger form of the P ̸= NP conjecture. It suggests
that our current best SAT algorithms are optimal and is a popular conjecture for proving fine-grained
lower bounds for a wide variety of algorithmic problems (Cygan et al., 2016; Williams, 2018).

Hypothesis 1 (SETH). For every ϵ > 0, there is a positive integer k ≥ 3 such that k-SAT on formulas
with n variables cannot be solved in O(2(1−ϵ)n) time, even by a randomized algorithm.

Below, we rely on SETH to facilitate the fine-grained reduction for lower bound result (Theorem A.1).

A.2 EFFICIENCY CRITERION FOR PROMPT TUNING INFERENCE

We answer Question 2 affirmatively by identifying a phase transition behavior in the efficiency of all
possible algorithms for Prompt Tuning Inference problem APTI (Problem 1), based on on the norm
of Qp = WQXp, Kp = WKXp, and Vp = WV Xp with Xp = [P,X] ∈ Rd×(Lp+L).

Theorem A.1 (Norm-Based Efficiency Phase Transition). Let ∥Qp∥max ≤ B, ∥Kp∥max ≤ B and
∥Vp∥max ≤ B with B = O(

√
log(Lp + L)). Assuming Hypothesis 1, for every q > 0, there are

constants C,Ca, Cb > 0 such that: there is no O((Lp + L)2−q)-time (sub-quadratic) algorithm for
the problem APTI(L,Lp, d = C log(Lp + L), B = Cb

√
log(Lp + L), δF = (Lp + L)−Ca).

Remark A.1. Theorem A.1 suggests an efficiency threshold for the upper bound of ∥Qp∥max,
∥Kp∥max, ∥Vp∥max: B = O(

√
log(Lp + L)). Only below this threshold are efficient algorithms for

Problem 1 possible , i.e. solving APIT in (Lp + L)2−Ω(1) (sub-quadratic) time is possible.

A.3 PROMPT TUNING CAN BE AS FAST AS ALMOST-LINEAR TIME

We answer Question 3 affirmatively by proving the existence of almost-linear time efficient algorithms
for Prompt Tuning Inference problem APTI (Problem 1) based on low-rank approximation.

Theorem A.2 (Almost-Linear Prompt Tuning Inference). The prompt tuning inference problem
APTI(L,Lp, d = O(log(Lp + L)), B = o(

√
log(Lp + L)), δF = 1/poly(Lp + L)) can be solved

in time Tmat((Lp + L), (Lp + L)o(1), d) = (Lp + L)1+o(1).

Theorem A.2 provides a formal example of the efficient criterion Theorem A.1 for APTI using low-
rank approximation within a controllable approximation error. This is applicable under Theorem A.1
when the efficiency criterion is met. Specifically, to achieve nearly-linear (Lp+L)1+o(1) time prompt
tuning inference with bounded error ϵ = 1/poly(Lp + L), we require B = o(

√
log (Lp + L)).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a DeLTa Workshop Paper at ICLR 2025

B RELATED WORKS, LIMITATIONS AND BROADER IMPACT

B.1 RELATED WORKS

Context-based Fine-tuning and Soft-prompt Tuning. Recently, resource-efficient fine-tuning
strategies (Ding et al., 2023; 2022), such as LoRA (Pan et al., 2024; Hayou et al., 2024; Hu et al.,
2024c; 2022), emerge as powerful alternatives to conventional full fine-tuning. In contrast, context-
based fine-tuning techniques, like hard-prompt tuning (Wen et al., 2024), in-context learning (Xu
et al., 2024; Shi et al., 2024; Wei et al., 2023; Dong et al., 2022; Brown et al., 2020), and prefix-tuning
(Liang et al., 2024; Li and Liang, 2021), adapt pretrained models to specific tasks without modifying
underlying model parameters (Brown et al., 2020; Li and Liang, 2021; Liu et al., 2022). One of the
most effective methods is soft-prompt tuning (Liu et al., 2023), which uses real-valued embeddings
to guide model outputs. This approach leverages the expressive power of continuous spaces to
fine-tune responses, avoiding extensive parameter updates and making it both efficient and less
resource-intensive than traditional fine-tuning methods (Lester et al., 2021; Liu et al., 2022).

Universality of Transformers. The universality of transformers refers to their ability to serve as
universal approximators. This means that transformers theoretically model any sequence-to-sequence
function to a desired degree of accuracy. Yun et al. (2020) show that transformers universally
approximate sequence-to-sequence functions by stacking numerous layers of feed-forward functions
and self-attention functions. In a different approach, Jiang and Li (2023) affirm the universality
of transformers by utilizing the Kolmogorov-Albert representation Theorem. Furthermore, Alberti
et al. (2023) demonstrate universal approximation for architectures that incorporate non-standard
attention mechanisms. Most recently, Kajitsuka and Sato (2024) show that transformers with one
self-attention layer are a universal approximator. Of independent interest, recent work by Havrilla and
Liao (2024) examines the generalization and approximation of transformers under Hölder smoothness
and low-dimensional subspace assumptions.

Our paper is motivated by and builds upon works of Yun et al. (2020); Kajitsuka and Sato (2024).
Specifically, we study the universality of prompt tuning transformers using the analysis framework
by Yun et al. (2020). Furthermore, we extend the contextual mapping property of 1-rank attention
by Kajitsuka and Sato (2024) to any-rank attention. This allows us to establish the universality of
prompt tuning transformers in the simplest configuration — single-layer, single-head attention.

Analysis on Prompt Tuning. Prompt tuning has been successful in various applications. However,
the theoretical analysis of it is less developed. Petrov et al. (2023) discuss different kinds of context-
based learning, and experimentally show when prompt tuning is successful in adapting to new tasks.
In this work, we tackle the prompt tuning problem from a theoretical perspective. Oymak et al. (2023)
identify the cases where the attention layer with prompt tuning is more expressive than a self-attention
layer. They utilize prompt tokens dependent on weight matrices. In addition, they require weight
matrices to be full rank. Conversely, our study explores the expressive power of prompt tuning
under more general conditions, without relying on such assumptions. Wang et al. (2023a) show the
universality of prompt tuning transformers with an increasing number of layers in proportion to the
input data dimension and the quantization grid. Petrov et al. (2024) prove the universality of prompt
tuning on transformers with the number of layers linear in the input sequence length. Liang et al.
(2024) study the convergence guarantee for prompt tuning with ultra-long soft-prompt in the Neural
Tangent Kernel region (NTK). On the other hand, we focus on approximation and computation
properties of prompt tuning transformers with single-layer-single-head self-attention.

Our work builds on (Wang et al., 2023a), as both quantize the input and output domains of sequence-
to-sequence functions to establish universal approximation. However, this work differs in three
aspects. First, while Wang et al. (2023a) require transformers with a number of layers proportional
to the input data dimension and two attention heads, we demonstrate the universality of prompt
tuning with the simplest transformer: a single-layer, single-head attention transformer. Second, we
present the first study to show complete data memorization through prompt tuning, providing a lower
bound on the required soft-prompt tokens for a single-layer, single-head transformer to memorize any
dataset. Lastly, we provide the first comprehensive analysis of the computational limits, proving the
existence of nearly-linear time prompt tuning inference algorithms.

Memory Capacity of Transformer. Even though there has not been much analysis on the memory
capacity of prompt tuning, there are many works on the memorization of transformers itself. Kim et al.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a DeLTa Workshop Paper at ICLR 2025

(2022) prove 2n self-attention blocks are sufficient for the memorization of finite samples, where
n denotes the sequence length of data. Mahdavi et al. (2023) show that a multi-head-attention with
h heads is able to memorize O(hn) examples. Kajitsuka and Sato (2024) prove the memorization
capacity for a single-layer transformer. They demonstrate that for N sequence-to-sequence data
examples, each with dimension d × n, the number of parameters required for memorization is
O(nNd+d2). Another area of research introduces a distinct type of memory capacity for transformers
by linking transformer attention mechanisms with dense associative memory models, specifically
modern Hopfield networks (Bietti et al., 2024; Hu et al., 2024a;b;d; 2023; Wu et al., 2024a;b;
Ramsauer et al., 2020).

The closest work to ours is (Wang et al., 2023a), where they discuss the required prompt tokens for
prompt tuning on memorizing a special sequence-to-sequence dataset. In the special dataset, the
examples are required to have exactly two tokens each. In addition, they discussed the memorization
of only the last token of each data sequence. In contrast, we provide the first analysis on general
cases where prompt tuning memorizes the whole sequence for each example in a general dataset with
no assumption on the data. In addition, our work is the first to provide the lower bound on the re-
quired soft-prompt tokens for memorization.

B.2 LIMITATIONS AND BROADER IMPACT

Limitations. By the formal nature of this work, our results do not lead to practical implementations.
However, we anticipate that our findings will offer valuable insights for future prompt tuning methods.

Moreover, our memorization findings indicate an exponential dependence on the data sequence
length L and approximation precision 1/ϵ. Although resource-efficient, this exponential dependence
implies that prompt tuning pretrained transformers may not be an optimal method for encoding or
memorizing information. This leads to two fundamental possibilities:

• While not investigated in this work, there may be an information-theoretic lower bound that
highlights the limitations of our current memory capacity results for prompt tuning.

• If we prove that no upper bound can match this lower bound, it would reveal a fundamental
limitation of prompt tuning: it is not an information-efficient learning method (or machine).

We plan to investigate these issues in future work.

Broader Impact. This theoretical work aims to shed light on the foundations of large transformer-
based models and is not expected to have negative social impacts.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a DeLTa Workshop Paper at ICLR 2025

C ADDITIONAL THEORETICAL RESULTS: UNIVERSALITY OF
TRANSFORMERS WITH 1-LAYER, 1-HEAD, ANY-RANK SELF-ATTENTION

Lemma 2.2 shows that any-rank single-layer, single-head attention is contextual mapping. A di-
rect consequence is the universality of transformers with 1-layer, 1-head, any-rank2 self-attention
following Kajitsuka and Sato (2024). We believe this result may be of independent interest.

Theorem C.1. Let 1 ≤ α < ∞ and ϵ > 0. For any fseq2seq ∈ FC , there exists a transformer with
single-layer, single-head attention and any-rank weight matrices τ ∈ T 1,1,4

A (or τ ∈ T 1,1,r
B with

r = O((1/ϵ)dL)) with positional embedding E ∈ Rd×L such that dα (τ, fseq2seq) ≤ ϵ.

Proof Sketch. This proof is inspired by (Yun et al., 2020) and similar to the proof of Lemma F.2.

There are mainly three steps:

1. Given an input data X ∈ Rd×L, we first apply positional encoding E, which is given as

E =

0 1 2 . . . L− 1
0 1 2 . . . L− 1
...

...
...

. . .
...

0 1 2 . . . L− 1

 .

Then a series of feed-forward layers in the modified Transformer network quantizes X + E to a
quantized sequence M ∈ Gδ,L. Here, we define the grid

Gδ,L := [0 : δ : 1− δ]d × [1 : δ : 2− δ]d × · · · × [L− 1 : δ : L− δ]d,

where [a : ε : b] := {a, a+ ε, a+ 2ε, . . . , b− ε, b}. Note that with the positional encoding, our
contextual mapping through self-attention won’t be limited to permutation equivalent functions.

2. Next, by utilizing Lemma 2.2, the single self-attention layer in the modified transformer takes the
input M and implements a contextual mapping q : Rd×L 7→ Rd×L.

3. Finally, a series of feed-forward layers map elements of the contextual embedding q(M) to the
desired output value of fseq2seq(X).

We remark that Step 2 distinguishes us from prior works by utilizing the fact that any-rank attention
is a contextual mapping Lemma 2.2. This improves the result of (Kajitsuka and Sato, 2024), which
requires an attention layer of rank one.

Proof of Theorem C.1. First, we apply the positional encoding E ∈ Rd×L on the input sequence
X ∈ Rd×L, so that each token has a different domain. The positional encoding E is given as

E =

0 1 2 . . . L− 1
0 1 2 . . . L− 1
...

...
...

. . .
...

0 1 2 . . . L− 1

 .

We next use feed-forward layers f (FF) to implement a quantization map to quantize the input X +E
in to its discrete version M ∈ Gδ,L . The grid Gδ,L is defined as

Gδ,L := [0 : δ : 1− δ]d × [1 : δ : 2− δ]d × · · · × [L− 1 : δ : L− δ]d,

where [a : ε : b] := {a, a+ ε, a+ 2ε, . . . , b− ε, b}. Note that the first column of X +E is in [0, 1]d,
the second is in [1, 2]d, and so on. Here, we write the quantization mapping as

[0, 1]d × · · · × [L− 1, L]d 7→ [0 : δ : 1− δ]d × · · · × [L− 1 : δ : L− δ]d.

Inspired by the construction recipe by (Yun et al., 2020), this task is realized by dL/δ feed-forward
layers. We add dL/δ layers of f (FF) with the following form, for k = 0, δ, . . . , L−δ and i = 1, . . . , d

2By any-rank attention, we refer to an attention head with generic weights of arbitrary rank.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a DeLTa Workshop Paper at ICLR 2025

:

Z 7→ Z + e(i)ϕ

((
e(i)
)T

Z − kδ1T
n

)
, ϕ(t) =

{
0 t < 0 or t ≥ δ

−t+ 1 0 ≤ t < δ
, (C.1)

where e(1) = (1, 0, 0, ..., 0) ∈ Rd and ϕ(t) ∈ Φ is an entrywise function, where the set of activation
functions Φ consists of all piece-wise linear functions with at least one piece being constant and at
most three pieces. Furthermore, any activation function ϕ ∈ Φ is realized by 4 MLP neurons. Each
layer in the form of (C.1) quantizes Xi,: (the i-th row) in [kδ, kδ + δ) to kδ. We denote output after
the feed-forward layers as M ∈ Gδ,L.

Next, in order to utilize Lemma 2.2, we observe that the quantized output M from the previous step
has no duplicate tokens, since each column has a unique domain. Also, we see that M is token-wise(√

d,
√
d(L− δ),

√
dδ
)

-separated. This is easily observed as we have, for any k, l ∈ L,

∥M:,k∥ >
√
d,

∥M:,k∥ <
√
d(L− δ),

∥M:,k −M:,l∥ >
√
dδ.

As a result, with Lemma 2.2, we arrive at a (Γ,∆)-contextual mapping q : Rd×L 7→ Rd×L where

Γ =
√
d(L− δ) +

√
dδ

4
=

√
d(L− 3δ

4
),

∆ = exp
(
−5|V|4d ln(n)L2/δ

)
.

Now we have successfully mapped each input sequence X + E to unique contextual embeddings
q(M) ∈ Rd×L. We next associate each unique embeddings to a corresponding expected output of
fseq2seq(X).

We use feed-forward layers to map each token of q(M) to the desired [0, 1]d. As in (Yun et al.,
2020, C.3), with a method similar to (C.1), we need one layer for each unique value of q(M) for
each M ∈ Gδ,L. There are in total (1/δ)dL possibilities of M and each corresponds to some output
of hseq2seq([P, ·]). Since we only focus on the last L tokens of output, we require O

(
L(1/δ)dL

)
=

O
(
δ−dL

)
layers to map these distinct numbers to expected outputs.

This completes the proof for transformers τ ∈ T 1,1,4
A . The proof for transformers τ ∈ T 1,1,r

B follows
the same recipe, and we refer to the proof of Lemma G.2 for details.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a DeLTa Workshop Paper at ICLR 2025

D BACKGROUND: BOLTZMANN OPERATOR AND ATTENTION MECHANISM
Here, we present some auxiliary definitions and lemmas to prepare our proofs.

To demonstrate that a single-layer self-attention mechanism with matrices of any rank acts as a
contextual map, we follow (Kajitsuka and Sato, 2024; Asadi and Littman, 2017). Specifically, we
utilize the connection between self-attention mechanisms and the Boltzmann operator Boltz.

In this section, we introduce non-original but still necessary auxiliary lemmas. We defer the proofs to
Appendix K for completeness. Below, we start with the definition of the Boltzmann operator Boltz.

Boltzmann Operator. Following (Asadi and Littman, 2017; Kajitsuka and Sato, 2024), we associate
the Softmax function with the Boltzmann operator Boltz defined below:

Definition D.1 (Softmax and Boltz). Let z = (z1, . . . , zn) ∈ Rn and the function Softmax : Rn →
Rn operate element-wise: Softmax (z)i = exp (zi) /

∑n
j=1 exp (zj). Denote p = (p1, . . . , pn) :=

Softmax (z) ∈ Rn with pi = Softmax (z)i. The Boltzmann operator Boltz : Rn 7→ R is defined as

Boltz(z) = z⊤ Softmax(z) = z⊤p =

n∑
i=1

zipi. (D.1)

To give a brief overview to this section, in Appendix D.1, we first introduced the essential properties
of Boltz. Next, in Appendix D.2, we utilized these properties to further illustrate the Boltz operator’s
ability to maintain the separation between inputs.

In the following, we present the essential properties of Boltz in Appendix D.1.

D.1 ESSENTIAL PROPERTIES OF BOLTZMANN OPERATOR

Before characterizing the Boltzmann operator Boltz, we introduce some useful functions and essential
properties of Boltz from (Kajitsuka and Sato, 2024) to facilitate our proofs.

We first recall the partition function and the (Gibbs) entropy function from statistical physics,

Z(z) =

n∑
i=1

exp(zi), and S(p) = −
n∑

i=1

pi ln(pi). (D.2)

Then, the next lemma presents the relation between the Boltzmann operator Boltz, partition function
Z and entropy S.

Lemma D.1 (Boltz,Z and S). With the definitions given above and a vector z = (z1, . . . , zn) ∈ Rn,
the Boltzmann operator Boltz also takes the form

Boltz(z) = −S(p) + lnZ(z).

Proof. See Appendix K.1 for a detailed proof.

Next, we recall that Boltz decreases monotonically when the maximum entry is sufficiently distant
from the other entries.

Lemma D.2 (Monotonically Decrease, Lemma 4 of (Kajitsuka and Sato, 2024)). Given a vector
z = (z1, . . . , zn) ∈ Rn, the Boltzmann operator Boltz(z) monotonically decreases in the direction
of zi when maxj∈[n] zj − zi > lnn+ 1, that is,

∂

∂zi
Boltz(z) = pi (1 + ln pi + S(p)) < 0.

Proof. See Appendix K.2 for a detailed proof.

The next lemma shows the concavity of Boltz when the max entry and the rest of the entries are
distant enough.

Lemma D.3 (Concave, Lemma 5 of (Kajitsuka and Sato, 2024)). Given a vector z = (z1, . . . , zn) ∈
Rn, the Boltzmann operator Boltz(z) is concave with respect to zi when maxj∈[n] zj−zi > lnn+3,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a DeLTa Workshop Paper at ICLR 2025

that is,
∂2

∂z2i
Boltz(z) < 0.

Proof. See Appendix K.3 for a detailed proof.

To ease the later calculation and better understand the characteristics of the Boltzmann operator, the
next lemma shows the bounds of the output of Boltz when given inputs with certain constraints.

Lemma D.4 (Lower Bound of Boltz with (δ)-Separated Input). Given a tokenwise (δ)-separated
vector z = (z1, . . . , zn) ∈ Rn with n ≥ 2 and δ > lnn+ 1. Also let the entries of z be sorted in a
decreasing order with no duplicate entry, that is, for any i, j ∈ [n], i < j ,

zi − zj > δ.

Then Boltzmann operator Boltz(z) is lower bounded by
Boltz(z) > Boltz(z′)

where z′ = (z1, z1 − δ, . . . , z1 − δ) .

Proof. See Appendix K.4 for a detailed proof.

Next, we present another property of Boltz, which states that when two vectors share the same first n
entries but differ in dimension, the output of Boltz for the lower-dimensional vector will be larger.

Lemma D.5 (Boltz Value Comparison). Given two tokenwise (δ)-separated vectors z =
(z1, . . . , zn) ∈ Rn, z′ = (z′1, . . . , z

′
m) ∈ Rm with m > n ≥ 2 and δ > lnn + 1. Also let the

entries of z, z′ be sorted in a decreasing order with no duplicate entry. In addition, let the first n
entries of z′ be z , that is,

(z′1, . . . , z
′
n) = z.

Then, we have
Boltz(z) > Boltz(z′).

Proof. See Appendix K.5 for a detailed proof.

With a solid understanding of Boltz established, we leverage its properties to demonstrate that Boltz
preserves the separation between two distinct input tokens.

D.2 DISTANCE PRESERVATION OF BOLTZMANN OPERATOR

In this section, by utilizing the above properties, we show that when given well separated input
tokens, the output of Boltz is also separated. We start by examining specific cases with more stringent
constraints on the inputs, and subsequently expand our discussion to more general scenarios.

We first discuss the case when the two input vector has no same entries.

Lemma D.6 (Input of Complete Different Entries, Lemma 7 of (Kajitsuka and Sato, 2024)). Let
n ≥ 2 and consider two vectors a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Rn. In addition, assume the
following conditions hold:
• Decreasing order entries: The entries of a and b are sorted in strictly decreasing order,

a1 > a2 > · · · > an and b1 > b2 > · · · > bn.

• Tokenwise (δ)-separateness: For any i, j ∈ [n], if ai ̸= bj

|ai − bj | > δ,

and if i < j,
ai − aj > δ,

bi − bj > δ,

where δ ≥ 4 lnn.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a DeLTa Workshop Paper at ICLR 2025

• Initial dominance: The largest element in ais strictly greater than the largest element in b,
a1 > b1.

Under these assumptions, we have

Boltz(a)− Boltz(b) > (lnn)2e−(a1−b1).

Proof Sketch. To find the lower bound of Boltz(a) − Boltz(b), we first find some lower bound of
Boltz(a) and some upper bound of Boltz(b) that ease the computation. From Lemma D.4, we have
that Boltz(a) > Boltz(a′) where a′ = (a1, a1 − δ, . . . , a1 − δ) . In addition, by definition of Boltz
the upper bound of Boltz(b) is Boltz(b) ≤ b1 . As a result, we evaluate Boltz(a′)− b1 to complete
the proof. See Appendix K.6 for a detailed proof.

Next, we show that when two inputs are different only by one last entry, their Boltz outputs are still
different with a certain distance.
Lemma D.7 (Input of One Entry Difference, Lemma 6 of (Kajitsuka and Sato, 2024)). Consider
n ≥ 2, and two vectors a = (a1, . . . , an−1, an), b = (b1, . . . bn−1, bn) ∈ Rn. In addition, assume
the following conditions hold:
• Identical first n− 1 entries: The first n− 1 entries of a is the same as b,

ai = bi∀i ∈ [n− 1].

• Strict inequality for last entry: The last entry of a is strictly greater than that of b,
an > bn.

• Well separated: The last entry an is sufficiently smaller than the maximum of the first n− 1 entries
of a,

max
i∈[n−1]

ai − an > lnn+ 3.

Then the difference of Boltz(a) between Boltz(b) is lower bounded as

Boltz(b)− Boltz(a) > (an − bn) (δ + an − bn − lnn− 1) · ebn∑n
i=1 e

bi
.

Proof. See Appendix K.7 for a detailed proof.

Now, we consider a more general case, where the top k entries are the same.

Lemma D.8 (Input of Matching Top k Entries, Lemma 7 of (Kajitsuka and Sato, 2024)). Let
n ≥ 2 and consider two vectors a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Rn. In addition, assume the
following conditions hold:
• Decreasing order entries: The entries of a and b are sorted in strictly decreasing order,

a1 > a2 > · · · > an and b1 > b2 > · · · > bn.

• Tokenwise (δ)-separateness: For any i, j ∈ [n], if ai ̸= bj

|ai − bj | > δ,

and if i < j,
ai − aj > δ,

bi − bj > δ,

where δ ≥ 4 lnn.
• Identical first k entries: Let a, b have the same top-k entries for k ∈ [n− 1], which is

(a1, . . . , ak) = (b1, . . . , bk)

• (k + 1)-th dominance: The largest element in ais strictly greater than the largest element in b,
ak+1 > bk+1.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a DeLTa Workshop Paper at ICLR 2025

Under these assumptions, we have

|Boltz(a)− Boltz(b)| > ln2(n) · e−(a1−bk+1).

Proof Sketch. As the top-k entries of a, b are the same, and all entries are (δ)-separated while sorted
in a decreasing order, when ak+1 > bk+1, we have

Boltz(b) > Boltz(a).

To understand the intuition behind this, first recognize that Boltz calculates a weighted sum of
elements, assigning higher weights to larger entries. Additionally, the total sum of all weights equals
one. Consequently, when all entries are distinct and arranged in descending order, a larger (k + 1)-th
entry, shares more weight from the top k greatest terms, compared to a smaller (k + 1)-th entry. This
results in a lower weighted sum.

Next, we compute the value of Boltz(b)−Boltz(a). By Lemma D.5, we have that Boltz(a) is upper
bounded by Boltz(aup), where

aup = (a1, a2, . . . , ak, ak+1) .

Also, similar to Lemma D.4, Boltz(b) is lower bounded by Boltz(blo), where
blo = (a1, a2, . . . , ak, bk+1, bk+1, . . . , bk+1) .

Computing Boltz(blo)−Boltz(aup) is easier than directly calculating Boltz(b)−Boltz(a) as we are
able to decompose Boltz(blo) and utilize Lemma D.7 to arrive at the final bound. See Appendix K.8
for a detailed proof.

Finally, by utilizing the results above, we show that the Boltzmann operator is a mapping that projects
input sequences to scalar values while preserving some distance.

Lemma D.9 (Boltz Preserves Distance, Lemma 1 of (Kajitsuka and Sato, 2024)). Given (γ, δ)-
tokenwise separated vectors z(1), . . . , z(N) ∈ Rn with no duplicate entries in each vector, that
is

z(i)s ̸= z
(i)
t ,

where i ∈ [N] and s, t ∈ [n], s ̸= t. Also, let
δ ≥ 4 lnn.

Then, the outputs of the Boltzmann operator are (γ, δ′)-separated:∣∣∣Boltz(z(i))∣∣∣ ≤ γ, (D.3)∣∣∣Boltz(z(i))− Boltz
(
z(j)
)∣∣∣ > δ′ = ln2(n) · e−2γ (D.4)

for all i, j ∈ [N], i ̸= j.

Proof. See Appendix K.9 for a detailed proof.

We have now established that the Boltz operator has the property of preserving the distances between
inputs.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a DeLTa Workshop Paper at ICLR 2025

E PROOFS OF SECTION 2.2
In this section, by relating Softmax with Boltz, we show that the one layer of single head self-
attention with weight matrices of any rank is a contextual mapping.

We first introduce a helper lemma.

Lemma E.1 (Lemma 13 of (Park et al., 2021)). For any finite subset X ⊂ Rd, there exists at least
one unit vector u ∈ Rd such that

1

|X |2

√
8

πd
∥x− x′∥ ≤

∣∣u⊤ (x− x′)
∣∣ ≤ ∥x− x′∥

for any x, x′ ∈ X .

Proof. See Appendix K.10 for a detailed proof.

E.1 PROOFS OF LEMMA 2.2
With Lemma E.1, we develop a method to configure weight matrices of a self-attention layer.

Lemma E.2 (Construction of Weight Matrices). Given a dataset with a (γmin, γmax, ϵ)-separated
finite vocabulary V ⊂ Rd, there exist rank-ρ weight matrices WK ,WQ ∈ Rs×d such that∣∣∣(WKva)

⊤
(WQvc)− (WKvb)

⊤
(WQvc)

∣∣∣ > δ,

for any δ > 0, any min (d, s) ≥ ρ ≥ 1, and any va, vb, vc ∈ V with va ̸= vb. Specifically, the
matrices are constructed as follows:

WK =

ρ∑
i=1

piq
⊤
i ∈ Rs×d, WQ =

ρ∑
j=1

p′jq
′⊤
j ∈ Rs×d,

where for at least one i, qi, q′i ∈ Rd are unit vectors satisfying Lemma E.1, and pi, p
′
i ∈ Rs satisfy∣∣p⊤i p′i∣∣ = 5(|V|+ 1)4d

δ

ϵγmin
.

Proof of Lemma E.2. We build our proof upon (Kajitsuka and Sato, 2024).

We start the proof by applying Lemma E.1 to V ∪ {0}. We obtain at least one unit vector q ∈ Rd

such that for any va, vb ∈ V ∪ {0} and va ̸= vb, we have
1

(|V|+ 1)2d0.5
∥va − vb∥ ≤

∣∣q⊤ (va − vb)
∣∣ ≤ ∥va − vb∥.

By choosing vb = 0, we have that for any vc ∈ V
1

(|V|+ 1)2d0.5
∥vc∥ ≤

∣∣q⊤vc∣∣ ≤ ∥vc∥. (E.1)

For convenience, we denote the set of all unit vector q that satisfies (E.1) as Q, where

Q :=
{
q ∈ Rd | 1

(|V|+ 1)2d0.5
∥vc∥ ≤

∣∣q⊤vc∣∣ ≤ ∥vc∥
}
.

Next, we choose some arbitrary vector pairs pi, p′i ∈ Rs that satisfy∣∣p⊤i p′i∣∣ = (|V|+ 1)4d
δ

ϵγmin
. (E.2)

We construct the weight matrices by setting

WK =

ρ∑
i=1

piq
⊤
i ∈ Rs×d,

WQ =

ρ∑
j=1

p′jq
′⊤
j ∈ Rs×d,

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a DeLTa Workshop Paper at ICLR 2025

where for at least one i, pi, p′i satisfies (E.2) and qi, q
′
j ∈ Q. We arrive at∣∣∣(WKva)

⊤
(WQvc)− (WKvb)

⊤
(WQvc)

∣∣∣
=
∣∣∣(va − vb)

⊤
(WK)

⊤
(WQvc)

∣∣∣
=

∣∣∣∣∣∣(va − vb)
⊤

(
ρ∑

i=1

qip
⊤
i

) ρ∑
j=1

p′jq
′⊤
j vc

∣∣∣∣∣∣
=

∣∣∣∣∣∣
(

ρ∑
i=1

(va − vb)
⊤
qip

⊤
i

) ρ∑
j=1

p′jq
′⊤
j vc

∣∣∣∣∣∣
=

∣∣∣∣∣∣
ρ∑

i=1

ρ∑
j=1

(va − vb)
⊤
qip

⊤
i p

′
jq

′⊤
j vc

∣∣∣∣∣∣
=

ρ∑
i=1

ρ∑
j=1

∣∣∣(va − vb)
⊤
qi

∣∣∣ · ∣∣p⊤i p′j∣∣ · ∣∣q′⊤j vc
∣∣

≥ 1

(|V|+ 1)2d0.5
∥va − vb∥ · (|V|+ 1)4d

δ

ϵγmin
· 1

(|V|+ 1)2d0.5
∥vc∥

(
By (E.1) and (E.2)

)
> δ.

(
By (γmin, γmax, ϵ)-separateness of V

)
This completes the proof. Note that the inequality (E.2) holds here because when we sum over all
i, j, it will include cases of i = j.

Now we present the result showing that a softmax-based 1-layer attention block is a contextual
mapping.

Lemma E.3 (Lemma 2.2 Restated). Let Z(1), . . . , Z(N) ∈ Rd×L be embeddings that are
(γmin, γmax, ϵ)-tokenwise separated, with the vocabulary set V =

⋃
i∈[N] V(i) ⊂ Rd. Addition-

ally, assume no duplicate word tokens in each sequence, i.e., Z(i)
:,k ̸= Z

(i)
:,l for any i ∈ [N] and

k, l ∈ [L]. Then, there exists a 1-layer, single-head attention mechanism with weight matrices
W (O) ∈ Rd×s and WV ,WK ,WQ ∈ Rs×d that serves as a (γ, δ)-contextual mapping for the em-
beddings Z(1), . . . , Z(N), where: γ = γmax + ϵ

4 , and δ = exp
(
−5ϵ−1|V|4dκγmax logL

)
, with

κ := γmax/γmin.

Remark E.1 (Comparing with Existing Works). In comparison with (Kajitsuka and Sato, 2024),
they provided a proof for the case where all self-attention weight matrices WV ,WK ,WQ ∈ Rs×d

are strictly rank-1. However, this is almost impossible for any pre-trained transformer based models.
Here, by considering self-attention weight matrices of rank-ρ where min (d, s) ≥ ρ ≥ 1, we are able
to show that singe-head-single-layer self-attention with matrices of any rank is a contextual mapping.

Remark E.2. In (Kajitsuka and Sato, 2024), γ and δ are chosen as follows:

Γ = γmax +
ϵ

4
, ∆ =

2(lnL)2ϵ2γmin

γ2
max(|V|+ 1)4(2 lnL+ 3)πd

exp

(
−(|V|+ 1)4

(2 lnL+ 3)πdγ2
max

4ϵγmin

)
.

Since the exponential term dominates the polynomial terms, in Lemma 2.2, we simplify ∆ to
exp
(
−Θ(ϵ−1|V|4dκγmax lnL)

)
.

Proof Sketch. We generalize the results of (Kajitsuka and Sato, 2024, Theorem 2) where all weight
matrices have to be rank-1. We eliminate the rank-1 requirement, and extend the lemma for weights
of any rank ρ . This is achieved by constructing the weight matrices as a outer product sum

∑ρ
i uiv

⊤
i ,

where ui ∈ Rs, vi ∈ Rd. Specifically, we divide the proof into two parts:

• We first construct a softmax-based self-attention that maps different input tokens to unique contex-
tual embeddings, by configuring weight matrices according to Lemma E.2.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a DeLTa Workshop Paper at ICLR 2025

• Secondly, for the identical tokens within a different context, we utilize the tokenwise separateness
guaranteed by Lemma E.2 and Lemma D.9 which shows Boltz preserves some separateness.

As a result, we prove that the self-attention function distinguishes input embeddings Z(i)
:,k = Z

(j)
:,l

such that V(i) ̸= V(j).

Proof of Lemma 2.2. We build our proof upon (Kajitsuka and Sato, 2024). We construct a self-
attention layer that is a contextual mapping. There are mainly two things to prove. We first show that
the attention later we constructed maps different tokens to unique ids. Secondly, we prove that the
self-attention function distinguishes duplicate input tokens within different context. For the first part,
we show that our self-attention layer satisfies:

∥Ψ∥ =

∥∥∥∥WO

(
WV Z

(i)
)
Softmax

[(
WKZ(i)

)⊤ (
WQZ

(i)
:,k

)]∥∥∥∥ <
ϵ

4
, (E.3)

for i ∈ [N] and k ∈ [n]. Since with (E.3), it is easy to show that∥∥∥∥F (SA)
S

(
Z(i)

)
:,k

−F (SA)
S

(
Z(j)

)
:,l

∥∥∥∥ =
∥∥∥Z(i)

:,k − Z
(j)
:,l +

(
Ψ(i) −Ψ(j)

)∥∥∥ (E.4)

≥
∥∥∥Z(i)

:,k − Z
(j)
:,l

∥∥∥− ∥∥∥Ψ(i) −Ψ(j)
∥∥∥

≥
∥∥∥Z(i)

:,k − Z
(j)
:,l

∥∥∥− ∥∥∥Ψ(i)
∥∥∥− ∥∥∥Ψ(j)

∥∥∥
> ϵ− ϵ

4
− ϵ

4
=

ϵ

2
,

(
By ϵ-separatedness of Z and E.3

)
for any i, j ∈ [N] and k, l ∈ [n] such that Z(i)

:,k ̸= Z
(j)
:,l . Now, we prove (E.3) by utilizing Lemma E.2.

We define the weight matrices as

WK =

ρ∑
i=1

piq
⊤
i ∈ Rs×d,

WQ =

ρ∑
j=1

p′jq
′⊤
j ∈ Rs×d,

where pi, p
′
j ∈ Rs and qi, q

′
j ∈ Rd. In addition, let δ = 4 lnn and p1, p

′
1 ∈ Rs be an arbitrary vector

pair that satisfies ∣∣p⊤1 p′1∣∣ = (|V|+ 1)4d
δ

ϵγmin
. (E.5)

Then by Lemma E.2, there is some unit vector q1, q′1 such that we have,∣∣∣(WKva)
⊤
(WQvc)− (WKvb)

⊤
(WQvc)

∣∣∣ > δ, (E.6)

for any va, vb, vc ∈ V with va ̸= vb. In addition, for the other two weight matrices WO ∈ Rd×s and
WV ∈ Rs×d, we set

WV =

ρ∑
i=1

p′′i q
′′⊤
i ∈ Rs×d, (E.7)

where q′′ ∈ Rd, q′′1 = q1 and p′′i ∈ Rs is some nonzero vector that satisfies

∥WOp
′′
i ∥ =

ϵ

4ργmax
, (E.8)

for any i ∈ [ρ]. As a result, we now bound Ψ as:

∥Ψ∥ =

∥∥∥∥WO

(
WV Z

(i)
)
Softmax

[(
WKZ(i)

)⊤ (
WQZ

(i)
:,k

)]∥∥∥∥
=

∥∥∥∥∥
n∑

k′=1

skk′WO

(
WV Z

(i)
)
:,k′

∥∥∥∥∥ (
Denote skk′ = Softmax

[(
WKZ(i)

)⊤ (
WQZ

(i)
:,k

)]
k′

)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a DeLTa Workshop Paper at ICLR 2025

=

n∑
k′=1

skk′

∥∥∥∥WO

(
WV Z

(i)
)
:,k′

∥∥∥∥
≤ max

k′∈[n]

∥∥∥∥WO

(
WV Z

(i)
)
:,k′

∥∥∥∥ (∑n
k′=1 s

k
k′ = 1

)
= max

k′∈[n]

∥∥∥∥∥WO

(
ρ∑

i=1

p′′i q
′′⊤
i

)
Z

(i)
:,k′

∥∥∥∥∥ (
By Lemma E.2

)
=

ρ∑
i=1

∥WOp
′′
i ∥ · max

k′∈[n]

∣∣∣q′′⊤i Z
(i)
:,k′

∣∣∣ (
By (E.8)

)
=

ϵ

4γmax
· max
k′∈[n]

∥∥∥Z(i)
:,k′

∥∥∥ (
By (E.8) and ∥q′′i ∥ = 1

)
<

ϵ

4
.

Next, for the second part, we prove that with the weight matrices WO,WV ,WK ,WQ configured
above, the attention layer distinguishes duplicate input tokens with different context, Z(i)

:,k = Z
(j)
:,l

with V(i) ̸= V(j). We choose any i, j ∈ [N] and k, l ∈ [n] such that Z(i)
:,k = Z

(j)
:,l and V(i) ̸= V(j). In

addition, we define a(i), a(j) as

a(i) =
(
WKZ(i)

)⊤ (
WQZ

(i)
:,k

)
∈ Rn,

a(j) =
(
WKZ(j)

)⊤ (
WQZ

(j)
:,l

)
∈ Rn.

From (E.6) we have that a(i) and a(j) are tokenwise (γ, δ)-separated where γ is computed by∣∣∣a(i)k′

∣∣∣ = ∣∣∣∣(WKZ
(i)
:,k′

)⊤ (
WQZ

(i)
:,k

)∣∣∣∣
=

∣∣∣∣∣∣
(

ρ∑
i=1

piq
⊤
i Z

(i)
:,k′

)⊤
 ρ∑

j=1

p′jq
′⊤
j Z

(i)
:,k

∣∣∣∣∣∣
=

∣∣∣∣∣∣
(

ρ∑
i=1

Z
(i)⊤
:,k′ qip

⊤
i

) ρ∑
j=1

p′jq
′⊤
j Z

(i)
:,k

∣∣∣∣∣∣
=

∣∣∣∣∣∣
ρ∑

i=1

ρ∑
j=1

Z
(i)⊤
:,k′ qip

⊤
i p

′
jq

′⊤
j Z

(i)
:,k

∣∣∣∣∣∣
=

ρ∑
i=1

ρ∑
j=1

∣∣∣Z(i)⊤
:,k′ qi

∣∣∣∣∣p⊤i p′j∣∣∣∣∣q′⊤j Z
(i)
:,k

∣∣∣
≤ (|V|+ 1)4d

δ

ϵγmin
γ2
max.

(
By (E.5) and ∥qi∥ =

∥∥q′j∥∥ = 1
)

Therefore,

γ = (|V|+ 1)4d
δγ2

max

ϵγmin
.

Now, since V(i) ̸= V(j) and there is no duplicate token in Z(i) and Z(j) respectively, we use
Lemma D.9 and obtain that∣∣∣Boltz(a(i))− Boltz

(
a(j)
)∣∣∣ = ∣∣∣∣(a(i))⊤ Softmax

[
a(i)
]
−
(
a(j)
)⊤

Softmax
[
a(j)
]∣∣∣∣ (E.9)

> δ′

= (lnn)2e−2γ .

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a DeLTa Workshop Paper at ICLR 2025

As we assumed Z
(i)
:,k = Z

(j)
:,l , we have∣∣∣∣(a(i))⊤ Softmax
[
a(i)
]
−
(
a(j)
)⊤

Softmax
[
a(j)
]∣∣∣∣ (E.10)

=

∣∣∣∣(Z(i)
:,k

)⊤
(WQ)

⊤
WK

(
Z(i) Softmax

[
a(i)
]
− Z(j) Softmax

[
a(j)
])∣∣∣∣

=

∣∣∣∣∣∣
(
Z

(i)
:,k

)⊤ ρ∑
j=1

q′jp
′⊤
j

(ρ∑
i=1

piq
⊤
i

)(
Z(i) Softmax

[
a(i)
]
− Z(j) Softmax

[
a(j)
])∣∣∣∣∣∣(

By Lemma E.2
)

=

ρ∑
i=1

ρ∑
j=1

∣∣∣q′⊤j Z
(i)
:,k

∣∣∣ · ∣∣p′⊤j pi
∣∣ · ∣∣∣(q⊤i Z(i)

)
Softmax

[
a(i)
]
−
(
q⊤i Z

(j)
)
Softmax

[
a(j)
]∣∣∣

≤
ρ∑

i=1

γmax · (|V|+ 1)4
πd

8

δ

ϵγmin
·
∣∣∣(q⊤i Z(i)

)
Softmax

[
a(i)
]
−
(
q⊤i Z

(j)
)
Softmax

[
a(j)
]∣∣∣.(

By (E.5)
)

By combining (E.9) and (E.10), we have
ρ∑

i=1

∣∣∣(q⊤i Z(i)
)
Softmax

[
a(i)
]
−
(
q⊤i Z

(j)
)
Softmax

[
a(j)
]∣∣∣ > δ′

(|V|+ 1)4
ϵγmin

dδγmax
. (E.11)

Now we arrive at the lower bound of the difference between the self-attention outputs of Z(i), Z(j)

as: ∥∥∥∥F (SA)
S

(
Z(i)

)
:,k

−F (SA)
S

(
Z(j)

)
:,l

∥∥∥∥ (E.12)

=
∥∥∥WO

(
WV Z

(i)
)
Softmax

[
a(i)
]
−WO

(
WV Z

(j)
)
Softmax

[
a(j)
]∥∥∥

=

ρ∑
i=1

∥WOp
′′
i ∥ ·

∣∣∣(q′′⊤i Z(i)
)
Softmax

[
a(i)
]
−
(
q′′⊤i Z(j)

)
Softmax

[
a(j)
]∣∣∣(

WV =
∑ρ

i=1 p
′′
i q

′′⊤
i

)
>

ϵ

4γmax

δ′

(|V|+ 1)4
ϵγmin

dδγmax
.

(
By (E.8) and (E.11)

)
where δ = 4 lnn and δ′ = ln2(n)e−2γ with γ = (|V|+ 1)4dδγ2

max/(ϵγmin). Note that we are able
to use (E.11) in the last inequality of (E.12) because (E.11) is guaranteed by q1, and we set q′′1 = q1
when constructing WV in (E.7).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a DeLTa Workshop Paper at ICLR 2025

F PROOFS OF SECTION 2.3

We consider the continuous sequence-to-sequence functions on a compact set of sequence as fseq2seq :

[0, 1]d×L 7→ [0, 1]d×L. Furthermore, consider the function class of continuous sequence-to-sequence
FC which is C-Lipschitz in ℓα norm. Explicitly, for any fseq2seq ∈ FC and two input embeddings
Z,Z ′, we have

∥fseq2seq(Z)− fseq2seq (Z
′)∥

α
≤ C∥Z − Z ′∥α.

In addition, we consider simple transformers τ ∈ T 1,1,4
A which consist of single-head single-layer

size-one self-attention f (SA) ∈ F (SA) and ℓ1 + ℓ2 feed-forward layers f (FF) ∈ F (FF) each with 4
MLP hidden neurons:

T 1,1,4
A := {τ : Rd×L 7→ Rd×L|τ = f

(FF)
ℓ1

◦ . . . ◦ f (FF)
1 ◦ f (SA) ◦ f (FF)

ℓ2
◦ . . . ◦ f (FF)

1 }.
Finally, define the approximation error for some given functions f1, f2 as:

dα (f1, f2) =

(∫
∥f1(Z)− f2(Z)∥ααdZ

) 1
α

. (F.1)

In this section, we prove the universality of prompt tuning by showing that there exists a simple
transformer of single-layer self-attention τ ∈ T 1,1,4

A such that for any fseq2seq ∈ FC , prompt tuning
on g approximates this function up to some error ϵ > 0.

The proof follows the construction base recipe of (Yun et al., 2020) and (Wang et al., 2023a).
We start by quantizing the input and output domain of FC such that — for each fseq2seq ∈ FC ,
we obtain a quantized function f seq2seq : Gδ,L 7→ Gδ,L where Gδ,L = {0, δ, 2δ, . . . , 1 − δ}d×L.
Here, f seq2seq,FC denote the seq2seq function and quantized function class, respectively. This
is basically performing a piece-wise constant approximation, i.e., the values inside a quantized
grid assume the same value. Next, we build a surrogate quantized sequence-to-sequence function
hseq2seq : Gδ,(Lp+L) → Gδ,(Lp+L) with Gδ,(Lp+L) = {0, δ, 2δ, . . . , 1 − δ}d×(Lp+L) that takes the
concatenation of prompts P and embeddings Z as inputs. Importantly, we let “the last L tokes”
of this quantized function hseq2seq approximates any f seq2seq ∈ FC by taking different prompts P .
Finally, we construct some transformer τ ∈ T 1,1,4

A to approximate hseq2seq. This leads to a chaining
reduction of approximations, which implies τ ∈ T 1,1,4

A approximates fseq2seq up to any accuracy ϵ.

F.1 PROOFS OF LEMMA 2.3

We start by building quantized sequence-to-sequence functions hseq2seq : Gδ,(Lp+L) → Gδ,(Lp+L)

with quantized prompts to approximate f seq2seq. Next, we approximate hseq2seq with transformer
functions τ ∈ T 1,1,4

A . To achieve this, we use the feed-forward layer for quantizing the input and
output domain of transformers. Also, we utilize self-attention layer as contextual mapping. As a result,
we construct a transformer for prompt tuning to approximate any continuous sequence-to-sequence
function.

First, we introduce the lemma below which shows that, the quantized sequence-to-sequence function
f seq2seq is approximated by some sequence-to-sequence function hseq2seq : Gδ,(Lp+L) → Gδ,(Lp+L)

where Gδ,(Lp+L) = {0, δ, 2δ, . . . , 1− δ}d×(Lp+L).

Lemma F.1 (Lemma 2.3 Restated). Consider a C-Lipschitz sequence-to-sequence function class
FC with functions fseq2seq : [0, 1]d×L → [0, 1]d×L. There exist a sequence-to-sequence function
hseq2seq : Gδ,(Lp+L) → Gδ,(Lp+L) with Gδ,(Lp+L) = {0, δ, 2δ, . . . , 1 − δ}d×(Lp+L) where for any
fseq2seq ∈ FC , we can find some P ∈ Rd×Lp , such that dα

(
h([P, ·]):,Lp:, fseq2seq

)
≤ ϵ/2, where the

prompt sequence length Lp ≥ Lλ, λ =
(

1
ϵ 2C(dL)

1
α

)dL
.

Proof of Lemma F.1. We first quantize the input and output sequence domain of FC by quantizing
[0, 1]d×L into a grid space Gδ,L = {0, δ, 2δ, . . . , 1 − δ}d×L. Observe that there are n =

(
1
δ

)dL
different matrices in the grid space Gδ,L. Now, consider all the possible input to output mappings, we

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a DeLTa Workshop Paper at ICLR 2025

have m = nn piece-wise constant functions f seq2seq ∈ FC . We define f seq2seq : Gδ,L 7→ Gδ,L as

f seq2seq (Z) =

{
f seq2seq (Z) Z ∈ Gδ,L

f seq2seq (Z
⋆) otherwise

,

where ki,jδ < Zi,j , Z
⋆
i,j ≤ (ki,j + 1) δ, while Z⋆ ∈ Gδ,L and ki.j ∈ {0, 1, ..., 1/δ − 1}. We set the

function class for the quantized space as FC =
{
f
(1)
seq2seq, f

(2)
seq2seq, . . . , f

(m)
seq2seq

}
. Then, by utilizing

the C-Lipschitzness, we have that for any fseq2seq ∈ FC , there is a piece-wise constant approximation
function f seq2seq ∈ FC that satisfies

dα(f seq2seq, fseq2seq) =

(∫ ∥∥f seq2seq(Z)− fseq2seq(Z)
∥∥α
α
dZ

)1/α (
By (F.1)

)
≤
(∫

(Cδ)
α
dL · dZ

)1/α (
By C-Lipschitzness

)
= Cδ(dL)

1
α .

By choosing δ = δ⋆ such that Cδ(dL)
1
α ≤ ϵ/2, we have

dα(f seq2seq, fseq2seq) ≤
ϵ

2
. (F.2)

Next, we quantize the prompts P ∈ Rd×Lp . We consider a set of quantized prompts in grid space
Gδ,Lp = {0, δ, 2δ, . . . , 1 − δ}d×Lp . This gives us mp =

(
1
δ

)dLp different quantized prompts. We
denote this set of prompts as P =

{
P (1), P (2), . . . , P (mp)

}
.

Since there are m = nn =
(

1
δdL

) 1

δdL functions in FC , the required prompt length Lp to index all m
functions in FC is This gives

Lp ≥ L

(
1

δ

)dL

≥ L

(
1

ϵ
2C(dL)

1
α

)dL

.
(
Since we choose δ such that Cδ(dL)

1
α ≤ ϵ/2

)
Finally, we define some quantized function hseq2seq : Gδ,(Lp+L) → Gδ,(Lp+L) where Gδ,(Lp+L) =

{0, δ, 2δ, . . . , 1− δ}d×(Lp+L), and let

hseq2seq

([
P (i), Z

])
:,Lp:

= f
(i)
seq2seq(Z). (F.3)

In addition, we set the first Lp columns of hseq2seq to be zero, which is

hseq2seq

([
P (i), Z

])
:,:Lp

= 0,

for all Z ∈ [0, 1]d×L, P ∈ Gδ,Lp
. Furthermore, let

hseq2seq ([P,Z]):,Lp:
=

{
hseq2seq ([P,Z]):,Lp:

P ∈ P
hseq2seq ([P

⋆, Z]):,Lp:
otherwise

,

where ki,jδ < Pi,j , P
⋆
i,j ≤ (ki,j + 1) δ, while P ⋆ ∈ P and ki.j ∈ {0, 1, ..., 1/δ − 1}.

As a result, we show that with a properly chosen grid granularity δ = δ1, for any sequence-to-
sequence function fseq2seq ∈ FC , we build a quantized function h with prompt P that approximates
fseq2seq with error ϵ/2,

dα
(
hseq2seq([P, ·]):,Lp:, fseq2seq

)
= dα

(
f seq2seq, fseq2seq

)
≤ ϵ/2.

This completes the proof.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a DeLTa Workshop Paper at ICLR 2025

F.2 PROOFS OF LEMMA 2.4

Here we show τ ∈ T 1,1,4
A approximates the surrogate quantized seq2seq function hseq2seq up to any

precision. To do this, we utilize Lemma 2.2 to construct a transformer τ ∈ T 1,1,4
A . Then we show

that this transformer τ approximates quantized sequence-to-sequence functions hseq2seq([P, ·]).

Lemma F.2 (Lemma 2.4 Restated). For any given quantized sequence-to-sequence function hseq2seq :

Gδ,(Lp+L) → Gδ,(Lp+L) with Gδ,(Lp+L) = {0, δ, 2δ, . . . , 1− δ}d×(Lp+L), there exists a transformer
τ ∈ T 1,1,4

A with positional encoding E ∈ Rd×(Lp+L), such that τ = h([P, ·]):,Lp: .

Proof Sketch. This lemma is inspired by (Wang et al., 2023a, Lemma 2). There are mainly three
steps:

1. Given an input data with prompt [P,Z] ∈ Rd×(Lp+L), we first apply positional encoding E,
which is given as

E =

0 1 2 . . . Lp + L− 1
0 1 2 . . . Lp + L− 1
...

...
...

. . .
...

0 1 2 . . . Lp + L− 1

 .

Then a series of feed-forward layers in the modified Transformer network quantizes [P,Z] + E
to a quantized sequence M ∈ Gδ,(Lp+L). Here, we define the grid

Gδ,(Lp+L) := [0 : δ : 1− δ]d × [1 : δ : 2− δ]d × · · · × [Lp + L− 1 : δ : Lp + L− δ]d,

where [a : ε : b] := {a, a+ ε, a+ 2ε, . . . , b− ε, b}. Note that with the positional encoding, our
contextual mapping through self-attention won’t be limited to permutation equivalent functions.

2. Next, by utilizing Lemma 2.2, the single self-attention layer in the modified transformer takes the
input M and implements a contextual mapping q : Rd×(L+Lp) 7→ Rd×(L+Lp).

3. Finally, a series of feed-forward layers map elements of the contextual embedding q(M) to the
desired output value of hseq2seq([P,Z]).

We remark that Step 2 distinguishes us from prior works by utilizing the fact that any-rank attention
is a contextual mapping Lemma 2.2. This dramatically improves the result of (Wang et al., 2023a),
which requires a depth of dL/ϵ layers, to just a single layer.

Proof of Lemma F.2. First, we apply the positional encoding E ∈ Rd×(Lp+L) on the input sequence
with prompt sequence [P,Z] ∈ Rd×(Lp+L), so that each token has a different domain. The positional
encoding E is given as

E =

0 1 2 . . . Lp + L− 1
0 1 2 . . . Lp + L− 1
...

...
...

. . .
...

0 1 2 . . . Lp + L− 1

 .

We next use feed-forward layers f (FF) to implement a quantization map to quantize the input
[P,Z] + E in to its discrete version M ∈ Gδ,(Lp+L) . The grid Gδ,(Lp+L) is defined as

Gδ,(Lp+L) := [0 : δ : 1− δ]d × [1 : δ : 2− δ]d × · · · × [Lp + L− 1 : δ : Lp + L− δ]d,

where [a : ε : b] := {a, a + ε, a + 2ε, . . . , b − ε, b}. Note that the first column of [P,Z] + E is in
[0, 1]d, the second is in [1, 2]d, and so on. Here, we write the quantization mapping as

[0, 1]d × · · · × [Lp + L− 1, Lp + L]d 7→ [0 : δ : 1− δ]d × · · · × [Lp + L− 1 : δ : Lp + L− δ]d,

where [a : ε : b] := {a, a+ ε, a+2ε, . . . , b− ε, b}. Inspired by the construction recipe by (Yun et al.,
2020), this task is realized by d(Lp +L)/δ feed-forward layers. We add d(Lp +L)/δ layers of f (FF)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a DeLTa Workshop Paper at ICLR 2025

with the following form, for k = 0, δ, . . . , (Lp + L)− δ and i = 1, . . . , d :

Z 7→ Z + e(i)ϕ

((
e(i)
)T

Z − kδ1T
n

)
, ϕ(t) =

{
0 t < 0 or t ≥ δ

−t+ 1 0 ≤ t < δ
, (F.4)

where e(1) = (1, 0, 0, ..., 0) ∈ Rd and ϕ(t) ∈ Φ is an entrywise function, where the set of activation
functions Φ consists of all piece-wise linear functions with at least one piece being constant and at
most three pieces. Furthermore, any activation function ϕ ∈ Φ is realized by 4 MLP neurons. Each
layer in the form of (F.4) quantizes Xi,: (the i-th row) in [kδ, kδ + δ) to kδ. We denote output after
the feed-forward layers as M ∈ Gδ,(Lp+L).

Next, in order to utilize Lemma 2.2, we observe that the quantized output M from the previous step
has no duplicate tokens, since each column has a unique domain. Also, we see that M is token-wise(√

d,
√
d(L′ − δ),

√
dδ
)

-separated where L′ = Lp + L. This is easily observed as we have, for any
k, l ∈ [Lp + L],

∥M:,k∥ >
√
d,

∥M:,k∥ <
√
d(Lp + L− δ),

∥M:,k −M:,l∥ >
√
dδ.

As a result, with Lemma 2.2, we arrive at a (Γ,∆)-contextual mapping q : Rd×(Lp+L) 7→ Rd×(Lp+L)

where

Γ =
√
d(L′ − δ) +

√
dδ

4
=

√
d(L′ − 3δ

4
),

∆ = exp
(
−5|V|4d ln(n)L′2/δ

)
.

Now we have successfully mapped each input sequence [P,Z] + E to unique context ID q(M) ∈
Rd×(Lp+L). We next associate each unique embeddings to a corresponding expected output of
h([P, ·]).
Finally, we use feed-forward layers to map each token of q(M) to the desired [0, 1]d. As in (Yun
et al., 2020, C.3), with a method similar to (F.4), we need one layer for each unique value of q(M)
for each M ∈ Gδ,(Lp+L). There are in total (1/δ)d(Lp+L) possibilities of M and each corresponds
to some output of hseq2seq([P, ·]). Since we only focus on the last L tokens of output, we require
O
(
L(1/δ)d(Lp+L)

)
= O

(
δ−d(Lp+L)

)
layers to map these distinct numbers to expected outputs.

This completes the proof.

F.3 PROOFS OF THEOREM 2.3

With Lemma F.2, we are able to find a transformer τ ∈ T 1,1,4
A such that τ([P,Z]) = h([P,Z]).

Finally, we arrive at the theorem that shows that a transformer of one single-head self-attention layer
is a universal approximator for sequence-to-sequence functions.

Theorem F.1 (Theorem 2.3 Restated). Let 1 ≤ p < ∞ and ϵ > 0, there exist a transformer τ ∈ T 1,1,4
A

with single self-attention layer and quantization granularity δ, such that for any fseq2seq ∈ FC there
exists a prompt P ∈ Rd×Lp with dα

(
τ([P, ·]):,Lp , fseq2seq

)
≤ ϵ.

Proof of Theorem 2.3. Combining Lemma F.1 and Lemma F.2, we arrive at a transformer τ ∈ T 1,1,4
A ,

with prompt P ∈ Gδ,Lp
, such that for any sequence-to-sequence fseq2seq ∈ FC ,

dα

(
τ ([P, ·]):,Lp:

, fseq2seq

)
≤ dα

(
τ ([P, ·]):,Lp:

, hseq2seq ([P, ·]):,Lp:

)
+ dα

(
hseq2seq ([P, ·]):,Lp:

, fseq2seq

)
≤ ϵ.

This completes the proof.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a DeLTa Workshop Paper at ICLR 2025

G PROOFS OF SECTION 2.4
G.1 PROOF OF LEMMA 2.5

For the transformer τ ∈ T 1,1,4
A in the previous section Appendix F, we compute the required number

of FFN layers.

Lemma G.1 (Lemma 2.5 Restated). For a transformer τ ∈ T 1,1,4
A , as introduced in Section 2.3, to

be a universal approximator through prompt tuning, it requires O(ϵ−d(Lp+L)) of FFN layers.

Proof. As shown in the final step of the proof for Lemma F.2, we require O
(
δ−d(Lp+L)

)
layers

to map these distinct numbers to expected outputs. Recall that in (F.2), we have the relation of
quantization granularity δ and function approximation error ϵ as Cδ(dL)

1
α ≤ ϵ/2. We write the

number of feed-forward layers as O
(
2L(C(dL)

1
α /ϵ)d(Lp+L)

)
= O

(
ϵ−d(Lp+L)

)
, where C is the

Lipschitz constant and α is from the ℓα-norm we use for measuring the approximation error.

G.2 PROOF OF THEOREM 2.4

In this section, we prove the universality of prompt tuning on another simple transformer architecture
with a smaller depth than T 1,1,4

A from Section 2.3. This provides us a case for trade off between the
depth and width of the transformer.

Consider transformers τ ∈ T 1,1,r
B which consist of single-head single-layer size-one self-attention

f (SA) and two feed-forward layers f (FF)
1 , f

(FF)
2 each with r MLP hidden neurons:

T 1,1,r
B := {g : Rd×L 7→ Rd×L|τ = f

(FF)
2 ◦ f (SA) ◦ f (FF)

1 }.
We prove the universality of prompt tuning by showing that there exists a transformer network
τ ∈ T 1,1,r

B such that for any fseq2seq ∈ FC , prompt tuning on τ approximates this function up to
some error ϵ > 0.

Similar to the proof of Theorem F.1, we start by quantizing the input and output domain of FC to
obtain quantized functions

f seq2seq : Gδ,L 7→ Gδ,L,

where
Gδ,L = {0, δ, 2δ, . . . , 1− δ}d×L.

This is basically performing a piece-wise constant approximation. Next, we build a quantized
sequence-to-sequence function

hseq2seq : Gδ,(Lp+L) → Gδ,(Lp+L) with Gδ,(Lp+L) = {0, δ, 2δ, . . . , 1− δ}d×(Lp+L),

that takes the concatenation of prompts P and embeddings Z as inputs. This quantized function
hseq2seq approximates any f seq2seq ∈ FC by taking different prompts P . Finally, we construct some
transformer τ ∈ T 1,1,r

B to approximate hseq2seq.

First, we utilize the results from Lemma F.1, which shows that the quantized sequence-to-sequence
function f seq2seq is approximated by some sequence-to-sequence function

hseq2seq : Gδ,(Lp+L) → Gδ,(Lp+L) with Gδ,(Lp+L) = {0, δ, 2δ, . . . , 1− δ}d×(Lp+L).

Next, in Lemma G.2, we utilize Lemma 2.2 to construct a transformer τ ∈ T 1,1,r
B . Then, we use the

transformer to approximate quantized sequence-to-sequence functions hseq2seq([P, ·]).

Lemma G.2 (Transformer Construction). For any given quantized sequence-to-sequence function

hseq2seq : Gδ,(Lp+L) → Gδ,(Lp+L) with Gδ,(Lp+L) = {0, δ, 2δ, . . . , 1− δ}d×(Lp+L),

there exists a transformer τ ∈ T 1,1,r
B with positional embedding E ∈ Rd×(Lp+L), such that

dα
(
τ, h([P, ·]):,Lp:

)
≤ ϵ/2.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a DeLTa Workshop Paper at ICLR 2025

Proof Sketch. The proof of this lemma follows a similar idea as Lemma F.2. Nonetheless, by applying
the construction technique from (Kajitsuka and Sato, 2024), we employ a transformer configuration
that utilizes just two feed-forward layers.

The proof consists of three steps:

1. Given an input data with prompt [P,Z] ∈ Rd×(Lp+L), we first apply positional encoding E,
which is given as

E =

0 1 2 . . . Lp + L− 1
0 1 2 . . . Lp + L− 1
...

...
...

. . .
...

0 1 2 . . . Lp + L− 1

 .

Then a series of feed-forward layers in the modified Transformer network quantizes [P,Z] + E
to a quantized sequence M ∈ Gδ . Here, we define the grid

Gδ = [δ : δ : 1]d × [1 + δ : δ : 2]d × · · · × [Lp + L− 1 + δ : δ : Lp + L]d,

where [a : ε : b] := {a, a+ ε, a+ 2ε, . . . , b− ε, b}. Note that with the positional encoding, our
contextual mapping through self-attention won’t be limited to permutation equivalent functions.

2. Next, by utilizing Lemma 2.2, the single self-attention layer in the modified transformer takes the
input M and implements a contextual mapping q : Rd×(L+Lp) 7→ Rd×(L+Lp).

3. Finally, a series of feed-forward layers map elements of the contextual embedding q(M) to the
desired output value of hseq2seq([P,Z]).

Proof of Lemma G.2. First, we apply the positional encoding E ∈ Rd×(Lp+L) on the input sequence
with prompt sequence [P,Z] ∈ Rd×(Lp+L), so that each token of has a different domain. The
positional encoding E is given as

E =

0 1 2 . . . Lp + L− 1
0 1 2 . . . Lp + L− 1
...

...
...

. . .
...

0 1 2 . . . Lp + L− 1

 .

We next use the first feed-forward layer f (FF)
1 to implement a quantization map to quantize the input

[P,Z] + E into its discrete version M ∈ Gδ . Here, we define the grid

Gδ = [δ : δ : 1]d × [1 + δ : δ : 2]d × · · · × [Lp + L− 1 + δ : δ : Lp + L]d,

where [a : ε : b] := {a, a + ε, a + 2ε, . . . , b − ε, b}. Note that the first column of [P,Z] + E is in
[0, 1]d, the second is in [1, 2]d, and so on. Here, we write the quantization mapping as

[0, 1]d × · · · × [Lp + L− 1, Lp + L]d 7→ [δ : δ : 1− δ]d × · · · × [Lp + L− 1 : δ : Lp + L]d,

where [a : ε : b] := {a, a + ε, a + 2ε, . . . , b − ε, b}. Following (Kajitsuka and Sato, 2024), this
quantization task is done by constructing the feed-forward layer as a θ-approximated step function.
Consider a real value piece-wise constant function f (Step) : R 7→ R, for any small θ > 0, z ∈ R, we
have the θ-approximation as

f (Step)(z) ≈
(Lp+L)(1/δ−1)∑

t=0

(ReLU (z/θ − tδ/θ)− ReLU (z/θ − 1− tδ/θ)) δ (G.1)

=

0 z < 0

δ 0 ≤ z < δ
...

...
L+ Lp L+ Lp − δ ≤ z

,

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a DeLTa Workshop Paper at ICLR 2025

which is a series of small step functions, each beginning their rise at tδ and ending at θ + tδ. Here,
we show the first two terms t = 0, 1 for clarity:

t = 0 : (ReLU (z/θ)− ReLU (z/θ − 1)) δ =

0 z < 0

zδ/θ 0 ≤ z < θ

δ θ ≤ z

,

t = 1 : (ReLU (z/θ − δ/θ)− ReLU (z/θ − 1− δ/θ)) δ =

0 z < δ

zδ/θ δ ≤ z < θ + δ

δ θ + δ ≤ z

.

With (G.1), it is straightforward that we extend it to Rd×L. As a result, we have the first feed-forward
layer f (FF)

1 as

f
(FF)
1 (Z)i,j =

(Lp+L)(1/δ−1)∑
t=0

(ReLU (Zi,j/θ − tδ/θ)− ReLU (Zi,j/θ − 1− tδ/θ)) δ (G.2)

≈ f (Step) (Zi,j) ,

where i ∈ [d], j ∈ [Lp+L], 0 < δ < 1 and θ > 0. With (G.2), we are able to quantize each sequence
[P,Z] + E to a quantized version M ∈ Gδ .

Next, in order to utilize Lemma 2.2, we observe that the quantized input M from the previous step
has no duplicate tokens, since each column has a unique domain. Also, we see that M is token-wise(√

d,
√
d(L′ − δ),

√
dδ
)

-separated where L′ = Lp + L. This is easily observed as we have, for any
k, l ∈ [Lp + L],

∥M:,k∥ >
√
d,

∥M:,k∥ <
√
d(Lp + L− δ),

∥M:,k − L:,l∥ >
√
dδ.

As a result, with Lemma 2.2, the single self-attention layer implements a contextual mapping
q : Rd×(L+Lp) 7→ Rd×(L+Lp), we arrive at a (Γ,∆)-contextual mapping where

Γ =
√
d(L′ − δ) +

√
dδ

4
=

√
d(L′ − 3δ

4
),

∆ = exp
(
−5|V|4d ln(n)L′2/δ

)
.

Now we have successfully mapped each input sequence [P,Z] +E to a unique context ID q(M) ∈
Rd×(Lp+L). We next associate each unique embeddings to a corresponding expected output of
hseq2seq([P, ·]).
We associate each unique contextual embeddings to the corresponding output of h([P, ·]) using
the second feed-forward layer f (FF)

2 . As in (Kajitsuka and Sato, 2024, A.5), this is achieved by
constructing a bump function fbump : Rd×(Lp+L) 7→ Rd×(Lp+L) for each possible output from the
last step q(M (i)), i ∈ [(1/δ)d(Lp+L)]. Each bump function fbump is realized by 3d(Lp + L) MLP
neurons. Therefore, we need 3d(Lp + L)(1/δ)d(Lp+L) MLP neurons to construct the feed-forward
layer f (FF)

2 , so that each contextual embedding is mapped to the expected output of hseq2seq([P, ·]). A
bump function fbump for a quantized sequence A ∈ Gδ is written as:

fbump (Q) =
h([P,A])

d(Lp + L)

d∑
i=1

Lp+L∑
j=1

[ReLU (K(Qi,j −Ai,j)− 1)− ReLU (K(Qi,j −Ai,j))

+ReLU (K(Qi,j −Ai,j) + 1)],

where Q ∈ Rd×(Lp+L) is some context ID scalar K > 0. Furthermore, recall that in (F.2), we
have the relation of quantization granularity δ and function approximation error ϵ as Cδ(dL)

1
α ≤

ϵ/2. We express the number of neurons in terms of ϵ as O
(
d(Lp + L)(C(dL)

1
α /ϵ)d(Lp+L)

)
=

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a DeLTa Workshop Paper at ICLR 2025

O
(
ϵ−d(Lp+L)

)
, where C is the Lipschitz constant and α is from the ℓα-norm we use for measuring

the approximation error.

As a result, by choosing the appropriate step function approximation θ, we arrive at
dp
(
hseq2seq([P, ·]):,Lp:, τ

)
≤ ϵ/2.

This completes the proof.

Finally, we arrive at the theorem that shows that prompt tuning on some transformers with single-head
single-attention layer and two feed-forward layers is a universal approximator for sequence-to-
sequence functions.

Theorem G.1 (Theorem 2.4 Restated). Let 1 ≤ p < ∞ and ϵ > 0, there exist a transformer
τ ∈ T 1,1,r

B with single self-attention layer, r = O(d(Lp + L)) MLP neurons and quantization
granularity δ, such that for any fseq2seq ∈ FC there exists a prompt P ∈ Rd×Lp with

dα
(
τ([P, ·]):,Lp

, fseq2seq
)
≤ ϵ.

Proof of Theorem 2.4. Combining Lemma F.1 and Lemma G.2, we arrive at a transformer τ ∈ T 1,1,r
B ,

with prompt P ∈ Gδ,Lp , such that for any sequence-to-sequence fseq2seq ∈ FC ,

dα

(
τ ([P, ·]):,Lp:

, fseq2seq

)
≤ dα

(
τ ([P, ·]):,Lp:

, h ([P, ·]):,Lp:

)
+ dα

(
hseq2seq ([P, ·]):,Lp:

, fseq2seq

)
≤ ϵ.

This completes the proof.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a DeLTa Workshop Paper at ICLR 2025

H PROOFS OF SECTION 2.5
In this section, we show the memorization capacity of prompt tuning on transformer networks with
single layer self attention. We now prove that there exist a transformer τ ∈ T 1,1,r

B , such that for any
dataset S, the transformer τ memorizes S through prompt tuning.

H.1 PROOF OF THEOREM 2.5

Theorem H.1 (Theorem 2.5 Restated). Consider a dataset S = {(X(i), Y (i))}Ni=1, where
X(i), Y (i) ∈ [0, 1]d×L. Assume the coresponding embedding sequences Z(1), . . . , Z(N) are gener-
ated from a C-Lipschitz function. Then, there exists a single-layer, single-head attention transformer
τ ∈ T 1,1,r

B with r = O
(
(1/ϵ)d(Lp+L)

)
and a soft-prompt P ∈ Rd×Lp such that, for any i ∈ [N]:∥∥∥τ([P,Z(i)]):,Lp

− Y (i)
∥∥∥
α
≤ ϵ,

where Lp ≥ Lλ, with λ =
(
2ϵ−1C(dL)1/α

)dL
.

Proof Sketch. We first find some sequence-to-sequence function f⋆
seq2seq : [0, 1]d×L 7→ [0, 1]d×L,

such that for any i ∈ [N], f⋆
seq2seq

(
Z(i)

)
= Y (i). Next, we complete the proof by utilizing the results

of Theorem 2.4 to construct a transformer τ ∈ T 1,1,r
B that is capable of approximating f⋆

seq2seq through
prompt tuning.

Proof of Theorem 2.5. From the sequence-to-sequence function class FC , there exist some function
f⋆

seq2seq : [0, 1]d×L 7→ [0, 1]d×L such that, f⋆
seq2seq

(
Z(i)

)
= Y (i) for any i ∈ [N].

Next, since we utilize positional encoding, no information would be lost in the quantization step of
Theorem 2.4. By utilizing the results of Theorem 2.4, we construct a transformer τ ∈ T 1,1,r

B such
that

dα
(
τ([P, ·]):,Lp

, f⋆
seq2seq

)
=

(∫ ∥∥τ([P,Z]):,Lp
− f⋆

seq2seq(Z)
∥∥α
α
dZ

) 1
α

≤ ϵ.

As a result, we arrive at

max
i∈[N]

∥∥∥τ([P,Z(i)]):,Lp: − Y (i)
∥∥∥
α
≤ ϵ.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a DeLTa Workshop Paper at ICLR 2025

I PROOFS OF COMPUTATIONAL LIMITS OF PROMPT TUNING (APPENDIX A)
We first introduce some helper definition and lemmas from fine-grained complexity theory (Alman
and Song, 2023).

Definition I.1 (Approximate Attention Computation AttC(n, d,B, ϵa), Definition 1.2 in (Alman and
Song, 2023)). Let ϵa > 0 and B > 0 be parameters. Given three matrices Q,K, V ∈ Rn×d, with the
guarantees that ∥Q∥max ≤ B, ∥K∥max ≤ B, and ∥V ∥max ≤ B, AttC(n, d,B, ϵa) outputs a matrix
T ∈ Rn×d which is approximately equal to Att(Q,K, V) := D−1AV , meaning,

∥T −D−1AV ∥max ≤ ϵa, with A := exp
(
QK⊤) and D := diag(A1n)

Here, for a matrix M ∈ Rn×n, we write ∥M∥max := maxi,j |Mi,j |.

Lemma I.1 (Fine-Grained Upper bound, Theorem 1.4 in (Alman and Song, 2023)). AAttC(n, d =
O(log n), B = o(

√
log n), ϵa = 1/poly(n)) can be solved in time Tmat(n, n

o(1), d) = n1+o(1).

Lemma I.2 (Fine-Grained Lower bound, see Theorem 1.3 in (Alman and Song, 2023)). Assuming
SETH, for every q > 0, there are constants C,Ca, Cb > 0 such that: there is no O(n2−q) time
algorithm for the problem AAttC(n, d = C log n,B = Cb

√
log n, ϵa = n−Ca).

I.1 PROOF OF THEOREM A.1
Proof of Theorem A.1. Recall the Prompt Tuning Inference Problem APTI from Problem 1.

Problem 1 (Approximate Prompt Tuning Inference APTI(d, L, Lp, δF)). Let δF > 0 and B > 0.
Given three Qp,Kp, Vp ∈ Rd×(L+Lp) with guarantees that ∥Qp∥max ≤ B, ∥Kp∥max ≤ B and
∥Vp∥max ≤ B, we aim to study an approximation problem APTI(d, L, Lp, B, δF), that approximates
Vp Softmax

(
KT

p Qp

)
with a matrix Z̃ such that

∥∥Z̃ − Vp Softmax
(
KT

p Qp

) ∥∥
max

≤ δF , where, for
a matrix M ∈ Ra×b, we write ∥M∥max := maxi,j |Mi,j |.

We rewrite
Vp Softmax

(
KT

p Qp

)
= V D−1 exp

(
KT

p Qp

)
.

By transpose-invariance property of ∥·∥max, we observe
∥∥∥Z̃ − Vp Softmax

(
KT

p Qp

)∥∥∥
max

≤ δF is

equivalent to
∥∥T −D−1AV

∥∥
max

with the following identifications between APIT and ATTC:

• (Lp + L) = n, d = d, B = B, δF = ϵa

• Z̃ = T , Vp = V , Kp = K, Qp = Q

By
∥∥ [·]:,Lp:

∥∥
max

≤ ∥·∥max, we complete the proof via a simple reduction from fine-grained upper
bound result Lemma I.1.

I.2 PROOF OF THEOREM A.2
Proof of Theorem A.2. Using the same identifications as in the proof of Theorem A.1, we complete
the proof with Lemma I.2.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a DeLTa Workshop Paper at ICLR 2025

J LIMITATIONS OF PROMPT TUNING TRANSFORMERS
In Section 2, we demonstrate that through prompt tuning, even a transformer with the simplest
architecture can serve as a universal approximator. However, to achieve this, it is necessary to
construct a specific transformer tailored for the task. In this section, we explore how prompts
influence the output of a pretrained transformer model. Additionally, we investigate the boundaries
of prompt tuning on arbitrary pretrained transformer model by analyzing its underlying mechanisms.

J.1 DISCUSSION ON THE LIMITATIONS OF PROMPT TUNING

For simplicity, consider a single-layer transformer function class with 1 head of size s and r MLP
hidden neurons:

T 1,s,r
C := {τ : Rd×L 7→ Rd×L|τ = f (FF)

(
f (SA) (·)

)
}.

The tokenwise output of the transformer τ with input [P,X] ∈ Rd×(Lp+L) is

τ ([P,X]):,i = f (FF)
(
f (Att) ([P,X]:,i, [P,X]) + [P,X]:,i

)
,

where [P,X] is the concatenation of a prompt P ∈ Rd×Lp and a data X ∈ Rd×L. By taking the
inverse of feed-forward function f (FF−1) : Rd 7→ Rd, we have

f (Att) (x, [P,X]) ∈ f (FF−1) (y)− x, (J.1)
where x = X:,i and y is the corresponding label token for x.

Next, to better understand how the prompt P affect the output of the transformer, we focus on the
output token of the attention layer corresponding to some data token x = X:,i,

f (Att) (x, [P,X]) (J.2)

= WO (WV [P,X]) Softmax
[
(WK [P,X])

⊤
(WQx)

]

= WO (WV [P,X])

exp

[
(WK [P,X]:,1)

⊤
(WQx)

]
...

exp
[(
WK [P,X]:,(L+Lp)

)⊤
(WQx)

]

∑L+Lp

j=1 exp
[
(WK [P,X]:,j)

⊤
(WQx)

]
=

∑L+Lp

i=1 WO (WV [P,X]:,i) exp
[
(WK [P,X]:,i)

⊤
(WQx)

]
∑L+Lp

j=1 exp
[
(WK [P,X]:,j)

⊤
(WQx)

]
=

∑Lp

i=1 exp
[
(WKP:,i)

⊤
(WQx)

]
f (Att) (x, P)∑L+Lp

j=1 exp
[
(WK [P,X]:,j)

⊤
(WQx)

] +

∑m
i=1 exp

[
(WKX:,i)

⊤
(WQx)

]
f (Att) (x,X)∑L+Lp

j=1 exp
[
(WK [P,X]:,j)

⊤
(WQx)

]
=

Ψ(P, x)

Ψ ([P,X], x)
f (Att) (x, P) +

Ψ (X,x)

Ψ ([P,X], x)
f (Att) (x,X) ,

where Ψ(·, ·, ·) is a positive scalar and defined as

Ψ(A, z) =
∑
i

exp
(
(WKA:,i)

⊤
(WQz)

)
.

Combining (J.1) and (J.2), we have(
Ψ(P, x)

Ψ ([P,X], x)
f (Att) (x, P) +

Ψ (X,x)

Ψ ([P,X], x)
f (Att) (x,X)

)
∈ f (FF)−1 (y)− x. (J.3)

Essentially, with all parameters for the feed-forward and self-attention layers fixed, prompt tun-
ing finds the prompt P ⋆ such that (J.3) holds for each input-label pair (x, y). In (J.3), note
that while Ψ(·, ·, ·) are positive scalars, the attention terms f (Att)(·) are vectors. The initial term

Ψ(P,x)
Ψ([P,X],x)f

(Att)(x, P) depends entirely on P , highlighting the strong effect of prompt tuning on
shaping the model’s outputs by guiding the attention mechanism. In contrast, P ’s influence on the

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a DeLTa Workshop Paper at ICLR 2025

second term Ψ(X,x)
Ψ([P,X],x)f

(Att)(x,X) is limited to scaling, preserving the original attention pattern
between x and X . Thus, prompt tuning biases the attention function’s output but does not alter the
intrinsic attention pattern between x and X .

This manipulation highlights prompt tuning’s ability to subtly refine and leverage the pretrained
model’s knowledge without disrupting its core attention dynamics. However, it constrains prompt
tuning’s expressiveness, as it cannot change the direction of the attention output vector f (Att)(x,X).
Thus, prompt tuning is limited to realigning latent knowledge within the model, failing to learn new
knowledge, which would require altering the model’s core attention dynamics.

In Section 2.5, we discuss the cases where prompt tuning is able to memorize some general data
set. Here, on the other hand, we also provide an example where prompt tuning on some general
transformers fails to memorize some simple data set.

J.2 EXAMPLES OF PROMPT TUNING FAILURES

The memorization ability in Theorem 2.5 is based on some specific transformers we carefully
constructed for the memorization task. However, as we discussed in Appendix J, there exists
limitations for prompt tuning on when learning new knowledge. Here, we provide an example where
prompt tuning on some arbitrary transformers fails to memorize. We first introduce some assumptions
on the relation between our transformer and dataset.

Assumption J.1. We assume that all output tokens
(
Y (i)

)
:,k

are in the range set of f (FF). We assume

that WQ,WK ,WV ,WO are full rank matrices and that f (SA)
(
X(i)

)
are distinct for i = 1, 2, . . . , n.

Now, we show that transformers through prompt tuning fails to memorize some simple data set.

Corollary J.0.1 (Prompt Tuning Fails to Memorize, Theorem 2 of (Wang et al., 2023a)). For
any pretrained single layer transformer τ ∈ T , there exist a sequence-to-sequence dataset
S =

{(
X(1) =

[
x
(1)
1 , x⋆

]
, Y (1) =

[
y
(1)
1 , y

(1)
2

])
,
(
X(2) =

[
x
(2)
1 , x⋆

]
, Y (2) = [y

(2)
1 , y

(2)
2

])
}, and

we cannot find a prompt P ∈ Rd×Lp with any Lp > 0 such that τ ([P, xi]) = yi holds for any
i = 1, 2. The vectors x0, x1, x2 are denoted post positional encodings.

Remark J.1. The most important aspect of this dataset is the shared token x⋆. As shown in
Appendix J.1, to learn the first example

(
X(1), Y (1)

)
, we are able to find a prompt P , such that(

Ψ(P, x⋆)

Ψ
(
[P,X(1)], x⋆

)f (Att) (x⋆, P) +
Ψ
(
X(1), x⋆

)
Ψ
(
[P,X(1)], x⋆

)f (Att)
(
x⋆, X(1)

))
∈ f (FF)−1

(
y
(1)
2

)
− x⋆.

However, now the vector f (Att) (x⋆, P) is fixed as prompt P has been chosen. This prevents us from
finding a prompt to cater to the second example, which is written as(

Ψ(P, x⋆)

Ψ
(
[P,X(2)], x⋆

)f (Att) (x⋆, P) +
Ψ
(
X(2), x⋆

)
Ψ
(
[P,X(2)], x⋆

)f (Att)
(
x⋆, X(2)

))
∈ f (FF)−1

(
y
(2)
2

)
− x⋆.

Thus, the expressive power of prompt tuning is limited.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a DeLTa Workshop Paper at ICLR 2025

K SUPPLEMENTARY PROOFS FOR APPENDIX D
Here we restate some proofs of the properties of Boltzmann operator from (Kajitsuka and Sato, 2024)
for completeness.

K.1 LEMMA D.1

Proof of Lemma D.1. By taking ln on pi defined in Definition D.1, we see

ln pi = zi − ln

n∑
j=1

ezj = zi − lnZ(z). (K.1)

Also, by the definition of Boltz, we have

Boltz(z) =

n∑
i=1

zipi

=

n∑
i=1

pi ln (piZ(z))
(
By (K.1)

)
=

n∑
i=1

pi ln pi +

n∑
i=1

pi lnZ(z)

= − S(p) + lnZ(z).

This completes the proof.

K.2 LEMMA D.2

Proof of Lemma D.2. We restate the proof from (Kajitsuka and Sato, 2024) for completeness.

We first observe that
∂

∂zj
pi =

∂

∂zj

(
ezi∑n

k=1 e
zk

)
(K.2)

=
δije

zj (
∑n

k=1 e
zk)− eziezj

(
∑n

k=1 e
zk)

2

=
δije

zj∑n
k=1 e

zk
− eziezj

(
∑n

k=1 e
zk)

2

= pj (δij − pi) ,

where δij is the delta function, i.e., δij = 1 only when i = j.

Next we have

∂

∂zi
Boltz(z) =

∂

∂zi

 n∑
j=1

zjpj

=

n∑
j=1

∂zj
∂zi

pj +

n∑
j=1

zj
∂pj
∂zi

= pi +

n∑
j=1

zjpi (δji − pj)
(
By (K.2)

)
= pi (1 + zi − Boltz (z))

(
By (D.1)

)
= pi (1 + zi + S(p)− lnZ(z)) .

(
By Lemma D.1

)
Since pi > 0, we only need to focus on the second term

1 + zi + S(p)− lnZ(z) < 0.

This means
zi < lnZ(z)− S(p)− 1

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a DeLTa Workshop Paper at ICLR 2025

By using maxj∈[n] zj ≤ lnZ(z) (Boyd and Vandenberghe, 2004, p. 72) and S(p) ≤ lnn, we have
that, when

zi < lnZ(z)− S(p)− 1,

is satisfied, the Boltzmann operator Boltz(z) monotonically decreases in the direction of zi.

K.3 LEMMA D.3

Proof of Lemma D.3. We restate the proof from (Kajitsuka and Sato, 2024) for completeness.

Observe that

∂S(p)
∂zi

=
∂

∂zi

−
n∑

j=1

pj ln pj

 (K.3)

= −
n∑

j=1

∂pj
∂zi

ln pj + pj
∂

∂zi
ln pj

= −
n∑

j=1

pi (δji − pj) ln pj + pi (δji − pj)
(
By (K.2)

)
= − pi

n∑
j=1

[δji (ln pj + 1)− pj ln pj − pj]

= − pi (ln pi + 1 + S(p)− 1)
(
By δii = 1,S(p) =

∑
pj ln pj ,

∑
pj = 1

)
= − pi (ln pi + S(p)) .

Now, we prove the concavity by taking the derivative once again from Lemma D.2, which is

∂2

∂z2i
Boltz(z) =

∂

∂zi
pi (1 + ln pi + S(p))

(
By Lemma D.2

)
=

∂pi
∂zi

· (1 + ln pi + S(p)) + pi ·
∂

∂zi
(1 + ln pi + S(p))

= pi (1− pi) (1 + ln pi + S(p)) + pi

[
pi (1− pi)

pi
− pi (ln pi + S(p))

]
(
By (K.2) and (K.3)

)
= pi [(1− 2pi) (ln pi + S(p) + 1) + 1]

= pi [(1− 2pi) (zi − lnZ(z) + S(p) + 1) + 1]
(
By (K.1)

)
Since pi > 0, we analyze the second term. Consider pi < 1

2 , we have

zi − lnZ(z) + S(p) + 1 <
−1

1− 2pi
.

By using maxj∈[n] zj ≤ lnZ(z) (Boyd and Vandenberghe, 2004, p. 72) and S(p) ≤ lnn, we have

zi < max
j∈[n]

zj − lnn+
−2 + 2pi
1− 2pi

.

Since −2+2pi

1−2pi
is unbounded below in domain 1

2 > pi > 0, we focus on discussing cases where
1
4 > pi > 0. We now have

−2 >
−2 + 2pi
1− 2pi

< −3.

As a result, the Boltzmann operator Boltz(z) is concave with respect to zi for any
zi < max

j∈[n]
zj − lnn− 3.

This completes the proof.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a DeLTa Workshop Paper at ICLR 2025

K.4 LEMMA D.4

Proof of Lemma D.4. From Lemma D.2, we know that Boltz(z) monotonically decreases in the
direction of zi when zi < z1 − lnn − 1. Since z is tokenwise (δ)-separated and has no duplicate
entry, given z1, the minimum of Boltz(z) happens at z⋆ = (z1, z1 − δ, z1 − 2δ, . . . , z1 − (n− 1)δ)
where δ > lnn+ 1. By Lemma D.2, we see that

Boltz(z) > Boltz(z⋆) > Boltz(z′).

K.5 LEMMA D.5

Proof of Lemma D.5. For any z′, we find some z⋆ ∈ Rm, where
z⋆ =

(
z′1, . . . , z

′
m−1,−∞

)
.

By Lemma D.2, we have
Boltz(z⋆) > Boltz(z′).

In addition, for any n, we are able to find some z⋆ with last (m− n) entries being (−∞). As a result,
we have

Boltz(z) = Boltz(z⋆) > Boltz(z′).

K.6 LEMMA D.6

Proof of Lemma D.6. We restate the proof from (Kajitsuka and Sato, 2024) for completeness.

Let a′ ∈ Rn be
a′ = (a1, a1 − δ, . . . , a1 − δ) . (K.4)

From Lemma D.4, we know that Boltz(a) > Boltz(a′). In addition, we have:
Boltz(a′)

=

n∑
i=1

(
a′i

ea
′
i∑n

j=1 e
a′
j

)

=
a1e

a1 + (n− 1) (a1 − δ) ea1−δ

ea1 + (n− 1)ea1−δ

(
By (K.4)

)
=

a1 + (n− 1) (a1 − δ) e−δ

1 + (n− 1)e−δ

= a1 −
(n− 1)δe−δ

1 + (n− 1)e−δ
.

Also, we know that Boltz(b) ≤ b1, since entries of b is sorted in a decreasing order. Therefore,
Boltz(a)− Boltz(b)

≥ Boltz(a′)− b1

> a1 −
(n− 1)δe−δ

1 + (n− 1)e−δ
− (a1 − δ)

(
By b1 < a1 − δ

)
= δ − (n− 1)δe−δ

1 + (n− 1)e−δ

=
δ

1 + (n− 1)e−δ

(
By δ > 2 lnn+ 3.

)
≥ lnn.

Note that lnn > (lnn)2e−(a1−b1), because a1 − b1 > lnn implies lnn · e−(a1−b1) < 1.

K.7 LEMMA D.7

Proof of Lemma D.7. We restate the proof from (Kajitsuka and Sato, 2024) for completeness.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a DeLTa Workshop Paper at ICLR 2025

With the concavity given in Lemma D.3 and first-order Taylor approximation, we have

Boltz (b1, . . . , bn−1, t) + (an − t) · ∂

∂t
Boltz (b1, . . . , bn−1, t) > Boltz (b1, . . . , bn−1, an) ,

for t < an.

Then, by setting t = bn, we obtain
Boltz (b1, . . . , bn−1, t)− Boltz (b1, . . . , bn−1, an)

= Boltz(b)− Boltz(a)

> (an − bn)

(
− ∂

∂t
Boltz (b1, . . . , bn−1, t)

∣∣∣∣
t=bn

)
= (an − bn) [−pn (1 + ln pn + S(p))]

(
By Lemma D.2

)
> (an − bn)

[
−pn

(
1 + bn −max

i∈[n]
bi + lnn

)]
> (an − bn) pn (δ + an − bn − lnn− 1)

= (an − bn)
ebn∑n
i=1 e

bi
(δ + an − bn − lnn− 1) .

This completes the proof.

K.8 LEMMA D.8

Proof of Lemma D.8. We restate the proof from (Kajitsuka and Sato, 2024) for completeness.

Let
aup := (a1, a2, . . . , ak, ak+1) ∈ Rk+1,

blo := (a1, a2, . . . , ak, bk+1, bk+1, . . . , bk+1) ∈ Rn.

Then, Lemma D.2 implies that
Boltz(a) < Boltz(aup),

boltz(b) > Boltz(blo).

Thus we only have to bound Boltz(blo)− Boltz(aup).

Let

γk :=

k∑
l=1

ale
al and ξk :=

k∑
l=1

eal .

Next, decompose Boltz(blo):

Boltz(blo) =
γk + (n− k)bk+1e

bk+1

ξk + (n− k)ebk+1

=
γk + bk+1e

bk+1+ln(n−k)

ξk + ebk+1+ln(n−k)

=
γk + (bk+1 + ln(n− k)) ebk+1+ln(n−k)

ξk + ebk+1+ln(n−k)
− ln(n− k) · ebk+1+ln(n−k)

ξk + ebk+1+ln(n−k)

= Boltz (a1, . . . , ak, bk+1 + ln(n− k))− ln(n− k) · ebk+1+ln(n−k)

ξk + ebk+1+ln(n−k)
.

Therefore, we have
Boltz(blo)− Boltz(aup) (K.5)

= Boltz (a1, . . . , ak, bk+1 + ln(n− k))− Boltz(aup)−
ln(n− k) · ebk+1+ln(n−k)

ξk + ebk+1+ln(n−k)
.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a DeLTa Workshop Paper at ICLR 2025

Note that by Lemma D.7, we also have
boltz (a1, . . . , ak, bk+1 + ln(n− k))− Boltz(aup) (K.6)

> (ak+1 − bk+1 − ln(n− k)) (δ + ak+1 − bk+1 − ln(n− k)− ln(k + 1)− 1)

· ebk+1+ln(n−k)

ξk + ebk+1+ln(n−k)

> (δ − lnn)(2δ − 2 lnn− 1) · ebk+1+ln(n−k)

ξk + ebk+1+ln(n−k)
.

(
By δ-separatedness

)
> 4 ln2(n) · ebk+1+ln(n−k)

ξk + ebk+1+ln(n−k)
.

(
By assumption δ > 4 lnn

)
Now we plug (K.6) into (K.5) to obtain

Boltz(blo)− Boltz(aup)

= Boltz (a1, . . . , ak, bk+1 + ln(n− k))− Boltz(aup)−
ln(n− k) · ebk+1+ln(n−k)

ξk + ebk+1+ln(n−k)

>
ebk+1+ln(n−k)

ξk + ebk+1+ln(n−k)
· (4 ln2(n)− ln(n− k))

>
ebk+1+ln(n−k)

ξk + ebk+1+ln(n−k)
· 2 ln2(n).

Also, for the denominator, we have

ξk + ebk+1+ln(n−k) <

k+1∑
l=1

eal
(
By ak+1 > bk+1 + ln(n− k)

)

< ea1

k+1∑
l=1

e−(l−1)δ (
By al < a1 − (l − 1)δ

)
< 2ea1 .

(
By δ > ln 2

)
Therefore, we arrive at

Boltz(b)− Boltz(aup) >
ebk+1+ln(n−k)

ξk + ebk+1+ln(n−k)
· 2(lnn)2

>
ebk+1+ln(n−k)

2ea1
· 2(lnn)2

> (lnn)2e−(a1−bk+1).

This implies that

Boltz(b)− Boltz(a) > (lnn)2e−(a1−bk+1).

This completes the proof.

K.9 LEMMA D.9

Proof of Lemma D.9. We restate the proof from (Kajitsuka and Sato, 2024) for completeness.

First, we observe that Boltz is permutation invariant by definition. In addition, there are no duplicate
entries in each vector zi. Therefore, w.l.o.g. we write the vectors in entrywise decreasing order
z
(i)
1 > . . . > z

(i)
n for any i ∈ [N]. We prove (D.3) by utilizing the first constraint of (γ, δ)-tokenwise

separateness of z(i), which is ∣∣∣z(i)s

∣∣∣ < γ,

for any i ∈ [N] and s ∈ [n]. Since z
(i)
n < Boltz(z(i)) < z

(i)
1 , we have∣∣∣Boltz(z(i))∣∣∣ < max

(∣∣∣z(i)1

∣∣∣, ∣∣∣z(i)n

∣∣∣) < γ.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a DeLTa Workshop Paper at ICLR 2025

Next, we prove the δ′-separateness. Consider i ∈ [N] and s ∈ [n], w.l.o.g. we assume that there
exists k ∈ {0, . . . , n− 1} such that(

z
(i)
1 , . . . , z

(i)
k

)
=
(
z
(j)
1 , . . . , z

(j)
k

)
and ak+1 > bk+1.

Then, by combining Lemma D.8 and Lemma D.6, we have

|Boltz(z(i))− Boltz(z(j))|

> (lnn)2e
−
(
z
(i)
1 −z

(j)
k+1

)
> (lnn)2e−2γ .

(
a1 − bk+1 < 2r since (γ, δ)-separated

)
This completes the proof.

K.10 LEMMA E.1

Proof of Lemma E.1. We restate the proof from (Park et al., 2021) for completeness.

We first note that the second inequality is simple because u is a unit vector. Next, we prove the first
inequality. We focus on the cases where |X | = N ≥ 2 and d ≥ 2. We first prove that for any vector
v ∈ Rd, a unit vector u ∈ Rd uniformly randomly drawn from the hypersphere Sd−1 satisfies

Pr

(∣∣u⊤v
∣∣ < ∥v∥

N2

√
8

πd

)
<

2

N2
. (K.7)

With (K.7), we define V := {x− x′ : x, x′ ∈ X}. Then, the union bound implies

Pr

(⋃
v∈V

{∣∣u⊤v
∣∣ < ∥v∥

N2

√
8

πdx

})
≤
∑
v∈V

Pr

(∣∣u⊤v
∣∣ < ∥v∥

N2

√
8

πdx

)
<

N(N − 1)

2
· 2

N2
< 1,

and thus there exists at least one unit vector u that satisfies the lower bound.

We start the prove with

Pr

(∣∣u⊤v
∣∣ < ∥v∥

N2

√
8

πd

)

= Pr

(
|u1| <

1

N2

√
8

πd

)

= 2Pr

(
0 < u1 <

1

N2

√
8

πd

) (
By symmetry of the uniform distribution

)
=

2

Area (Sd−1)
·
∫ π

2

cos−1
(

1
N2

√
8
πd

) Area
(
Sd−2

)
· (sin(ϕ))d−2dϕ

= 2 ·
Area

(
Sd−2

)
Area (Sd−1)

·
∫ π

2

cos−1
(

1
N2

√
8
πd

)(sin(ϕ))d−2dϕ

=
2√
π
·
(d− 1) Γ

(
d
2 + 1

)
dΓ
(
d
2 + 1

2

) ·
∫ π

2

cos−1
(

1
N2

√
8
πd

)(sin(ϕ))d−2dϕ

<

√
2

π
· (d− 1)

√
d+ 2

d
·
∫ π

2

cos−1
(

1
N2

√
8
πd

) 1dϕ (
By Gautschi inequality and sin(π) ≤ 1

)
≤
√

2d

π

∫ π
2

cos−1
(

1
N2

√
8
πd

) 1dϕ (
Since d ≥ 1

)

=

√
2d

π

(
π

2
− cos−1

(
1

N2

√
8

πd

))

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a DeLTa Workshop Paper at ICLR 2025

=

√
2d

π
sin−1

(
1

N2

√
8

πd

)

≤
√

2d

π
· π
2
· 1

N2

√
8

πd

=
2

N2
.

(
ϕ ≤ π

2
sin(ϕ), ∀0 ≤ ϕ ≤ π

2

)
This completes the proof.

46

	Introduction
	Statistical Limits of Prompt Tuning: Universality and Capacity
	Preliminaries and Problem Setup
	Any-Rank Single-Layer Attention is a Contextual Mapping Function
	Universality of Prompt Tuning with FFN Layers
	Width-Depth Tradeoff: Universality of Prompt Tuning Only Needs 2 FFN Layers
	Memory Capacity of Prompt Tuning

	Discussion and Concluding Remarks
	Computational Limits of Prompt Tuning
	Preliminaries: Strong Exponential Time Hypothesis (SETH)
	Efficiency Criterion for Prompt Tuning Inference
	Prompt Tuning Can Be as Fast as Almost-Linear Time

	Related Works, Limitations and Broader Impact
	Related Works
	Limitations and Broader Impact

	Additional Theoretical Results: Universality of Transformers with 1-Layer, 1-Head, Any-Rank Self-Attention
	Background: Boltzmann Operator and Attention Mechanism
	Essential Properties of Boltzmann Operator
	Distance Preservation of Boltzmann Operator

	Proofs of
	Proofs of

	Proofs of
	Proofs of
	Proofs of
	Proofs of

	Proofs of
	Proof of
	Proof of

	Proofs of
	Proof of

	Proofs of Computational Limits of Prompt Tuning (
	Proof of
	Proof of

	Limitations of Prompt Tuning Transformers
	Discussion on the Limitations of Prompt Tuning
	Examples of Prompt Tuning Failures

	Supplementary Proofs for
	
	
	
	
	
	
	
	
	
	

