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ABSTRACT

Current single-image super-resolution (SISR) models struggle to generalize to
real-world degradations. To address this challenge, we propose LDP, an inno-
vative lightweight denoising autoencoder (DAE) plug-in. It improves the gener-
alization ability of SR models via low-resolution (LR) images prediction-based
cyclic regularization. LDP models the SISR degradation process within the DAE
framework. It leverages a property of diffusion models, where after noise is added,
high-resolution (HR) images and LR features become aligned, so that denoising
noisy HR features is equivalent to denoising noisy LR features. During the cor-
ruption process, noise is added independently to each HR patch. During the de-
noising process, a convolutional denoiser uses learned filters to approximate blur
kernels. In addition, LR degradation is used to distinguish different LR from the
same HR. LDP can be applied to SR models in two modes: as a training loss to
improve reconstruction quality, or as an inference post-processing step to correct
artifacts. Extensive experiments demonstrate that LDP substantially improves the
generalization of existing SR models to unseen degradations.

(a) Arbitrary SR model
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Figure 1: Our LDP is a lightweight denoising autoencoder-based plug-in that can be seamlessly
integrated into arbitrary SR models, operating as a training-time loss or an inference-time module.

1 INTRODUCTION

Single Image Super-Resolution (SISR) aims to reconstruct high-resolution (HR) images from their
low-resolution (LR) counterparts. SISR is widely applied in various fields, such as medical imag-
ing Li et al. (2024a) and remote sensing Dong et al. (2024). Deep learning has advanced SISR
architectures from Convolutional Neural Network (CNN) Dong et al. (2014) to Transformer Liang
et al. (2021); Chen et al. (2023b) and State-Space Model Guo et al. (2024; 2025), achieving higher
reconstruction accuracy. Meanwhile, generative methods, including Generative Adversarial Net-
work (GAN) Chen et al. (2022) and Diffusion Model Wang et al. (2024); Yue et al. (2025); Zhang
et al. (2025), have been explored to improve perceptual quality.
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Despite advances in SR architectures, existing models struggle to generalize to unseen degradations.
Recent approaches leverage data augmentation and self-supervised learning techniques to tackle this
challenge. Data augmentation approaches typically fall into two categories: generating synthetic
distortions Zhang et al. (2021a); Wang et al. (2021), or employing generative models Li et al. (2022);
Chen et al. (2025) to synthesize paired data from unpaired LR and HR images. However, these
methods may harm performance Zhang et al. (2023) or are limited to in-distribution datasets. Self-
supervised approaches rely on either image-specific training Shocher et al. (2018); Ulyanov et al.
(2018) or test-time adaptation Hussein et al. (2020); Zhou et al. (2023); Chen et al. (2024), utilizing
internal image statistics and priors. However, they suffer from high computational cost or the need
for model-specific adaptation. Addressing unseen degradations efficiently remains a key challenge.

To address these limitations, we propose LDP, a lightweight denoising autoencoder (DAE) plug-in.
It improves the generalization ability of SR models via LR prediction-based cyclic regularization.
LDP models the SISR degradation process within the DAE framework. It leverages a property of
diffusion models, where after noise is added, high-resolution (HR) images and LR features become
aligned Wang et al. (2023b), making denoising noisy HR features equivalent to denoising noisy LR
features. LDP takes high-resolution images (ground-truth HR or SR outputs) as input for degradation
modeling, with LR high-frequency components as a condition to distinguish different LR images
from the same HR. During the corruption process, LDP introduces patch-dependent Gaussian noise.
This enables the model to learn fine-grained degradation in local patches, rather than assuming the
same degradation for the whole image. During the denoising process, a lightweight convolutional
denoiser learns the blur kernels associated with the degradation model. Built on these designs, LDP
accurately generates corresponding LR image and generalizes well to unseen degradations. LDP
applies to SR models in two modes: as a training-time loss function to improve reconstruction
quality, or as an inference-time post-processing step that corrects artifacts independently of training.
Extensive experiments verify that LDP significantly improves the generalization ability of existing
SR models on unknown complex degradations.

Overall, our contributions are three-fold:

• We propose LDP, an innovative lightweight denoising autoencoder plug-in for single-image super-
resolution that enhances the generalization of existing SR models.

• LDP is a conditional degradation model that generates LR images from HR inputs by explicitly
conditioning on LR high-frequency components. LDP operates in two modes: as a degradation-
aware training-time loss function, or as an inference-time correction module (e.g., Posterior Sam-
pling for diffusion models).

• LDP enhances reconstruction quality during training as a loss function and mitigates artifacts at
inference independently of training. Both modes improve SR model generalization to unknown
complex degradations.

2 RELATED WORK

2.1 IMPROVING GENERALIZATION IN SR

The limited generalization ability of SR models to unseen degradations remains a major challenge
for real-world applications. Existing SR methods address this issue using two main approaches:
data augmentation and self-supervised learning. Data augmentation methods seek to bridge the
training–inference gap by creating synthetic data with degradations that approximate real-world
scenarios. One line of works explicitly model degradations using predefined operations. BSR-
GAN Zhang et al. (2021a) generates complex degradations by sequentially combining downsam-
pling, blur, noise, and compression in random order, producing varied LR images for training.
RealESRGAN Wang et al. (2021) introduces higher-order degradations to reflect real-world degra-
dation chains. While BSRGAN and RealESRGAN enable non-blind SR models to handle blind
scenarios through multi-degradation training, such strategies may compromise performance on in-
distribution benchmarks Zhang et al. (2023). Alternatively, implicit modeling methods leverage
generative models to synthesize paired data from real LR and unpaired HR images. GAN Yuan
et al. (2018); Li et al. (2022); Yin et al. (2023) or diffusion-based Chen et al. (2025) methods learn
degradation priors to create realistic training pairs. However, their generalization remains limited to
in-distribution data. Self-supervised learning enables SISR training using only LR images without
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paired HR supervision. ZSSR Shocher et al. (2018) and DIP Ulyanov et al. (2018) exploit internal
patterns or implicit priors without external data. CorrectFilter Hussein et al. (2020); Zhou et al.
(2023) aligns inputs with the training distribution of pre-trained models. Lway Chen et al. (2024)
uses a degradation model to synthesize LR images from SR outputs for test-time fine-tuning. Al-
though effective, these methods are computationally expensive or require model-specific adaptation.

2.2 CONSTRAINING THE SR SOLUTION SPACE VIA DEGRADATION MODELING

Degradation modeling, applied jointly with the SR model, introduces structural constraints that en-
sure reconstructed LR outputs align with the LR input, effectively narrowing the solution space to
favor LR-consistent reconstructions. DRN Guo et al. (2020) adds a degradation branch that projects
SR outputs back to the LR domain, enforcing reconstruction consistency and improving stability.
DualSR Emad et al. (2021) introduces a dual-path framework where a GAN-based downsampler
and an upsampler are jointly trained with cycle consistency to model and reverse image-specific
degradations. SCL-SASR Chen et al. (2023a) adopts a similar bidirectional design under MAP es-
timation, coupling SR and degradation networks to adapt to test-time degradations. Lway Chen
et al. (2024) introduces test-time adaptation with pre-trained degradation models to fine-tune SR
models, increasing generalization to unseen degradations. Despite their benefits, these methods
face several limitations: DRN handles only bicubic downsampling; DualSR and SCL-SASR re-
quire image-specific optimization or joint training; and Lway introduces significant computational
overhead due to its large model size. In contrast, our method supports a wide range of degrada-
tions through an explicitly modeled degradation process within a lightweight denoising autoencoder
framework. Our degradation modeling framework is adaptable to various training settings, from
large-scale supervised learning to image-specific fine-tuning, and can also be applied directly at test
time. The framework is lightweight and does not incur significant computational cost.

Degradation modeling is also applied during inference in diffusion-based image restoration to en-
force LR consistency. ILVR Choi et al. (2021) guides the sampling process of DDPM Ho et al.
(2020) using a reference image to maintain low-frequency consistency across the denoising steps.
DR2 Wang et al. (2023b) shows that injecting additional Gaussian noise makes LR and HR distribu-
tions less distinguishable, allowing noise-corrupted LR images to be treated as noise-corrupted HR
images during sampling. MCG Chung et al. (2022) ensures samples stay close to the data manifold
by projecting the gradient of the measurement function onto its tangent space. DPS Chung et al.
(2023) further leverages the degradation process to connect the LR observation to the predicted
clean image at each step. In our method, LDP degrades each predicted clean image during diffusion
inference, treating it as SR to produce a predicted LR image. We then enforce LR cyclic consistency
by applying the tailored loss LFT

sym (Eq. 16), which penalizes the discrepancy between the predicted
LR and the ground-truth LR. This degradation-aware constraint enhances fidelity by suppressing
artifacts and promoting structural consistency in the SR results.

3 PROPOSED METHOD

Section 3.1 outlines the motivation behind LDP. Section 3.2 introduces the overall framework of
LDP. Section 3.3 then details its training and inference modes, describing LDP’s own training, its
application in fine-tuning SR models, and its role as a post-processing step for diffusion models.

3.1 MOTIVATION

To improve the generalization of existing SR models on unknown complex degradations, we adopt
a degradation modeling approach applied jointly with the SR model. This introduces structural
constraints that ensure the reconstructed LR outputs are aligned with the LR input, effectively nar-
rowing the solution space to favor LR-consistent reconstructions. Our LDP integrates degradation
modeling Yue et al. (2022) into the denoising autoencoder, reinterpreting denoising as a controllable
degradation applied to HR images. In the classical degradation formulation, this can be expressed
as:

y = ((x+ n)⊗ k) ↓s, (1)

where x ∈ RH×W×3 is the HR image, y ∈ RH
s ×W

s ×3 is the LR image, n is the noise, k is the
blur kernel, and s is the downsampling scale. We further leverage a property of diffusion models,

3
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Figure 2: (a) LDP Framework. LRhf predicts degradation C ′, guiding the noise-perturbed HR
features to generate the LR output via denoising and downsampling. (b) Degradation Prediction.
Stacked RB generate weights from LRhf and multiply them with PD to produce C ′. (c) Noise
Addition. Patch-dependent noise is added to HR features at random timesteps. (d) Denoiser. A
lightweight CNN denoises HRt conditioned on z using CRBs with AdaLN.

whereby after noise is added, HR features and LR features become aligned Wang et al. (2023b),
making denoising noisy HR features equivalent to denoising noisy LR features. This allows us
to perform degradation modeling on HR images using a denoising autoencoder. However, there
remains a challenge: since the SR task is inherently ill-posed, a condition is required to differentiate
between different LR images generated from the same HR image under varying degradations. This
condition must satisfy three criteria: (1) it cannot be the LR image itself, otherwise the network
might take shortcuts and fail to learn meaningful degradations; (2) it must be discriminative for
different LR images corresponding to the same HR image; and (3) it should be simple and easy to
obtain. We define this condition as LRhf , obtained by subtracting the s′-fold downsampled-then-
upsampled LR image from the original LR image. In summary, we use a denoising autoencoder to
perform degradation modeling on the input HR image, with the condition LRhf controlling the type
of degradation in the output. During application, this approach constrains the super-resolution (SR)
model to produce outputs whose LR reconstructions (via our LDP) are consistent with the original
LR input, thus enforcing LR cyclic consistency and effectively guiding the SR model.

3.2 FRAMEWORK

Figure 2 (a) illustrates the framework of our proposed LDP, which consists of four main modules:
the Degradation Prediction Module (DPM), Noise Addition Module (NAM), Denoiser Module and
Downsample Module. Designed as a denoising autoencoder, LDP functions as a conditional degra-
dation model that generates LR images from HR inputs by conditioning on LR high-frequency
components. To facilitate both implementation and interpretability, we adopt the noise corruption
process from diffusion models Ho et al. (2020). The overall process of LDP is formulated as:

xt = NAM(x, t), (2)

y′ = D(Denoiser(xt|DPM(yhf ), t)), (3)

Where y′ is the predicted LR images, and yhf is the LR high-frequency component. t is a patch-
dependent timestep, xt is the noised HR features, NAM(·) is the Noise Addition Module, DPM(·)
is the Degradation Prediction Module and D(·) is the Downsample Module.
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Degradation Prediction Module. Figure 2 (b) shows the DPM diagram. Its input is the high-
frequency component of the LR image, computed by subtracting the s’-fold downsampled-then-
upsampled LR image from the original LR image, which can be formulated as:

yhf = y − y ↓s′ ↑s′ , (4)

where ↓s′ and ↑s′ denote the downsampling and upsampling operations with scale factor s′, re-
spectively. To extract degradation information, we use prompts to encode degradation-specific de-
tails Potlapalli et al. (2023). First, a weight map w is derived from yhf , and then resized to match the
spatial dimensions of x (i.e., H ×W ). This resized weight map is multiplied element-wise with the
Degradation Prompt PD. It forms a degradation map C ′ ∈ RH×W×C and serves as the condition
for the denoiser. The process can be formulated as:

w = (RB4 ◦ RB3◦ ↓2 ◦RB2 ◦ RB1) ◦ Conv(yhf ), (5)

C ′ = PD ⊗ Resize(w,H,W ), (6)

where RB(·) denotes a residual block consisting of two 3 × 3 convolutional layers with a SiLU
activation in between, Conv(·) represents a convolutional layer, ◦ denotes function composition ap-
plied sequentially from right to left, and ⊗ denotes element-wise multiplication. The downsampling
operator ↓2 further reduces spatial resolution and disrupts local structures. The degradation prompt
PD ∈ RNp×C is jointly learned to encode degradation-specific information.

Noise Addition and Denoiser Module. Our framework integrates degradation modeling Yue et al.
(2022) into the denoising autoencoder, reinterpreting denoising as a controllable degradation applied
to HR images. During the corruption process, we perturb HR images using a patch-wise noise
schedule. Specifically, following the diffusion noise schedule, each patch xi ∈ RP×P×C is assigned
a random timestep ti, and its noisy version is obtained as:

x
(ti)
i =

√
α̂ti xi +

√
1− α̂ti ϵi, ϵi ∼ N (0, I), (7)

where α̂ti denotes the cumulative product of noise scheduling coefficients at time ti and ϵi is stan-
dard Gaussian noise. This patch-wise formulation enables each image region to undergo a different
level of degradation, allowing the model to better capture spatially varying corruption. The final
noisy image is denoted as xt.

During the denoising process, a lightweight CNN acting as the denoiser module estimates the blur
kernel and extracts intermediate feature F conditioned on the degradation map C ′. The feature F are
then downsampled to produce the predicted LR image. Specifically, the denoiser module comprises
L Condition Residual Blocks (CRBs) that leverage Adaptive Layer Normalization (AdaLN) Perez
et al. (2018); Li et al. (2024b) for conditional modulation. For each P × P patch, the assigned
timestep ti is embedded and combined with C ′ to produce a patch-specific condition z. This condi-
tion is passed through a SiLU activation and a linear layer to generate modulation parameters α, β,
and γ corresponding to scaling, bias, and gating. In the residual path, features are first normalized
via LayerNorm and modulated by α and β, then processed by a residual block, gated with γ, and
finally added back to the input. The CRB can be formulated as:

temb = TEmb(t), (8)

α, β, γ = Linear(SiLU(C ′ + temb)), (9)

x′
t = α⊗ (LN(Fi−1)) + β, (10)

Fi = γ ⊗RB(x′
t) + Fi−1, (11)

where TEmb(·) is the timestep embedder, Fi−1 is the output of the previous CRB, and the initial
feature is set as F0 = xt. The RB(·) in the final CRB is simplified to a single convolutional layer.

Downsample Module. The module adjusts the feature map to match the spatial resolution of the
original LR image. Features F are first downsampled by a factor of s, then processed by a residual
block and a convolutional layer:

y′ = Conv(RB(F ↓s)). (12)

Here, RB and the final convolutional layer are used to enhance feature representation and maintain
smooth transitions between downsampled regions.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.3 TRAINING AND INFERENCE MODES OF LDP

Training LDP. Following Lway Chen et al. (2024), LDP is trained by supervising only the high-
frequency components of the predicted LR images. We apply the Discrete Wavelet Transform
(DWT) to decompose the predicted LR image y′ into four subbands (LL, LH, HL, HH). The high-
frequency subbands (LH, HL, HH) are then summed and normalized to form a weight map M ,
which is subsequently used to compute both the L1 loss and the LPIPS loss Zhang et al. (2018):

LT
sym = λ1L1(M ⊗ y′,M ⊗ y) + λ2LLPIPS(M ⊗ y′,M ⊗ y), (13)

where λ1 and λ2 are the corresponding loss weights.

Fine-Tuning SR Models with LDP. In fine-tuning, the original loss of pretrained SR models is aug-
mented with a frequency loss Xie et al. (2023) that supervises the amplitude and phase components
of SR and HR images in the frequency domain:

Lfre =
1

HW

H−1∑
u=0

W−1∑
v=0

D(F(x′)(u, v),F(x)(u, v)), (14)

D(F(x′),F(x)) =
(
(R (F(x′))−R (F(x)))

2
+ (I (F(x′))− I (F(x)))

2
)γ/2

, (15)

where x and x′ are the HR image and SR result, F(x) denotes the 2D Fourier transform of x, and
R(·) and I(·) denote its real and imaginary parts. γ controls the sharpness of the frequency distance
and is set to 1 by default. (u, v) indexes the frequency domain. In addition, LDP enforces cycle
consistency by reconstructing the LR image from the SR output and minimizing a symmetric loss:

LFT
sym = λ1L1(M

′⊗y′,M ′⊗y)+λ2LLPIPS(M
′⊗y′,M ′⊗y)+λ3Lfre(M

′⊗y′,M ′⊗y), (16)

where M ′ = τ ·M , τ scales the high-frequency weight map M by a scalar τ .

Diffusion Posterior Sampling with LDP. Our LDP can also be applied during inference in diffusion
models via Diffusion Posterior Sampling (DPS) Chung et al. (2023), which uses the gradient of a
data fidelity term to guide sampling and better align the results with the LR input:

∇xt log pt(xt|y) ≃ sθ∗(xt, t)− ρ∇xtLFT
sym(LDP (x̂0, yhf ), y), (17)

where sθ∗(xt, t) denotes the score function (the noise predictor in DDPM Ho et al. (2020)), and
LDP (·) represents our LDP degradation model. x̂0 denotes the predicted clean image at each time
step, and we treat it as the SR output. In latent diffusion models, x̂0 is first decoded into the pixel
space before computing the gradient.

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

Training LDP. We train LDP on LSDIR Li et al. (2023) dataset using BSRGAN Zhang et al. (2021a)
to synthesize diverse degradation datasets. For a scale factor of s = 4, the key hyperparameters are
s′ = 2, L = 3, P = 16, Np = 32, λ1 = λ2 = 1, and C = 64, resulting in 642k parameters. We
use the Adam Kingma & Ba (2015) optimizer with β1 = 0.9 and β2 = 0.99, with a fixed learning
rate of 0.001. The batch size is 12, with 256 × 256 HR patches. The timesteps ti are sampled
from [500, 1000] to align the noisy HR and LR features. We adopt the diffusion batch multiplier Li
et al. (2024b) with a value of 4 to perform multiple noise realizations per HR image. Training is
conducted on a single NVIDIA RTX A6000 for 60K iterations, taking approximately 16 hours.

Fine-Tuning SR Models. We fine-tune existing SR models on the DF2K dataset (DIV2K Agustsson
& Timofte (2017) and Flickr2K Lim et al. (2017)) using BSRGAN degradation patterns, with our
LDP employed as an auxiliary loss. Details are provided in the Appendix D.

Testing. For synthetic testing, we generate five distinct datasets from the DIV2K validation set
using bsrgan plus (BSRGAN Zhang et al. (2021a) and Real-ESRGAN Wang et al. (2021)),
corresponding to the following degradation types: (1) downsampling, (2) noise, (3) blur, (4) JPEG
compression, and (5) hybrid degradations following bsrgan plus defaults. For real-world testing,
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Table 1: Performance of multiple degrada-
tion models in LR prediction on synthetic
multi-degradation datasets.

Methods Metrics Down Noise Blur JPEG Hybrid

DRN
PSNR↑ 32.05 27.25 26.38 29.65 27.03
SSIM↑ 0.9539 0.7812 0.8273 0.9270 0.8098
LPIPS↓ 0.0794 0.2474 0.3207 0.0826 0.3360

DualSR
PSNR↑ 19.58 18.77 19.36 18.57 19.36
SSIM↑ 0.4814 0.4712 0.4911 0.4612 0.4883
LPIPS↓ 0.1408 0.1399 0.1844 0.1492 0.2130

LDP
PSNR↑ 29.15 26.71 28.41 28.01 27.94
SSIM↑ 0.9283 0.8978 0.9159 0.9243 0.9173
LPIPS↓ 0.0985 0.1248 0.1417 0.0877 0.1025

Table 2: Similarity between the LR images
generated by multiple degradation models
and the downsampled SR images.

Methods Metrics Down Noise Blur JPEG Hybrid

DRN
PSNR↑ 34.02 31.57 34.99 31.35 35.10
SSIM↑ 0.9638 0.9590 0.9692 0.9587 0.9679
LPIPS↓ 0.0365 0.0436 0.0306 0.0467 0.0296

DualSR
PSNR↑ 22.58 20.79 22.57 20.46 22.85
SSIM↑ 0.6689 0.6502 0.7044 0.6356 0.7164
LPIPS↓ 0.1264 0.1040 0.1262 0.1279 0.1175

LDP
PSNR↑ 28.41 25.93 25.04 27.42 26.28
SSIM↑ 0.8895 0.7508 0.7596 0.8886 0.7597
LPIPS↓ 0.1551 0.3043 0.3278 0.1293 0.3586

Figure 3: Qualitative results of multiple degradation models for LR prediction on synthetic datasets.
(Zoom in for details)

we evaluate on RealSR Cai et al. (2019), RealSRSet Zhang et al. (2021b), and DPED Ignatov et al.
(2017) datasets. We evaluate using PSNR, SSIM Wang et al. (2004), and LPIPS Zhang et al. (2018)
as reference metrics, and NIQE Mittal et al. (2012), MANIQA Yang et al. (2022), CLIPIQA Wang
et al. (2023a), MUSIQ Ke et al. (2021), and QAlign Wu et al. (2024) as non-reference metrics. For
diffusion models, synthetic datasets are center-cropped to 512× 512, and real-world datasets follow
the StableSR Wang et al. (2024).

4.2 EFFECTIVENESS OF LDP IN LR PREDICTION

To thoroughly evaluate the effectiveness of the proposed LDP, we conduct extensive experiments
under five degradation scenarios and compare it with two existing degradation models, DRN Guo
et al. (2020) and DualSR Emad et al. (2021). In this experiment, we first generate SR images us-
ing SwinIR Liang et al. (2021), and then apply the degradation models provided by LDP, DRN,
and DualSR to obtain predicted LR images from the SR outputs. These predictions are compared
with the LR inputs to the SR model, and the results are reported in Table 1. In addition, Table 2
reports the similarity between the LR images produced by each degradation model and the down-
sampled SR images. A higher similarity indicates that the degradation model collapses into trivial
downsampling rather than applying the specific degradations implied by the input LR. As shown in
the tables, LDP performs consistently well across all degradation types. Importantly, the similarity
between the LDP-generated LR and the downsampled SR is significantly lower than that between
the LDP-generated LR and the input LR, demonstrating that LDP does not degenerate into simple
downsampling. In contrast, DRN behaves almost identically to bicubic downsampling: because its
inputs include only HR (SR results) images without any conditional signals, it fails to map an SR
image to the multiple possible LR variants implied by different degradations. DualSR also strug-
gles to properly handle diverse degradation types, particularly under complex mixed settings. As
illustrated in Fig. 3, LDP effectively degrades high-frequency structures, further validating its abil-
ity to generate perceptually realistic LR images even under challenging degradations. In contrast,
DRN and DualSR largely produce LR outputs that resemble simple downsampled versions of the
SR images, indicating that they fail to apply the intended degradations.
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Table 3: Performance improvements of blind SR models across diverse architectures using our
proposed LDP on synthetic multi-degradation benchmarks. We generate synthetic benchmarks from
the DIV2K validation set using five types of degradation: (1) Downsampling (Down), (2) Noise, (3)
Blur, (4) JPEG, and (5) Hybrid degradations following bsrgan plus defaults.

Datasets Scale Metrics FeMaSR +LDP StableSR +LDP SwinIR +LDP MambaIR +LDP

Down
×4 PSNR↑ 24.22 25.06 (+0.84) 20.35 21.73 (+1.38) 25.44 25.86 (+0.42) 26.58 26.63 (+0.05)
×4 SSIM↑ 0.6793 0.7105 (+0.0312) 0.4998 0.5642 (+0.0644) 0.7210 0.7242 (+0.0032) 0.7393 0.7403 (+0.0010)
×4 LPIPS↓ 0.2637 0.2490 (-0.0147) 0.3746 0.2870 (-0.0876) 0.2579 0.2538 (-0.0041) 0.2054 0.2005 (-0.0049)

Noise
×4 PSNR↑ 22.82 23.84 (+1.02) 19.95 21.48 (+1.53) 24.34 25.04 (+0.70) 26.11 26.34 (+0.23)
×4 SSIM↑ 0.6519 0.6957 (+0.0438) 0.4569 0.5599 (+0.1030) 0.7130 0.7198 (+0.0068) 0.7382 0.7411 (+0.0029)
×4 LPIPS↓ 0.2788 0.2624 (-0.0164) 0.4279 0.3040 (-0.1239) 0.2676 0.2659 (-0.0017) 0.2279 0.2219 (-0.0060)

Blur
×4 PSNR↑ 24.12 24.42 (+0.30) 19.98 21.50 (+1.52) 24.03 24.67 (+0.64) 24.99 25.33 (+0.34)
×4 SSIM↑ 0.6639 0.6787 (+0.0148) 0.4373 0.5437 (+0.1064) 0.6764 0.6833 (+0.0069) 0.6892 0.6942 (+0.0050)
×4 LPIPS↓ 0.3168 0.3199 (+0.0031) 0.5112 0.4763 (-0.0349) 0.3197 0.3168 (-0.0029) 0.2768 0.2751 (-0.0017)

JPEG
×4 PSNR↑ 22.92 23.87 (+0.95) 20.17 21.91 (+1.74) 24.55 25.27 (+0.72) 26.36 26.59 (+0.23)
×4 SSIM↑ 0.6696 0.7068 (+0.0372) 0.5141 0.5943 (+0.0802) 0.7301 0.7372 (+0.0071) 0.7497 0.7538 (+0.0041)
×4 LPIPS↓ 0.2633 0.2508 (-0.0125) 0.3682 0.2767 (-0.0915) 0.2535 0.2506 (-0.0029) 0.2113 0.2063 (-0.0050)

Hybrid
×4 PSNR↑ 23.40 23.72 (+0.32) 19.27 21.43 (+2.16) 23.52 24.35 (+0.83) 24.35 24.71 (+0.36)
×4 SSIM↑ 0.6211 0.6392 (+0.0181) 0.3656 0.5197 (+0.1541) 0.6458 0.6492 (+0.0034) 0.6587 0.6636 (+0.0049)
×4 LPIPS↓ 0.3453 0.3516 (+0.0063) 0.5727 0.4461 (-0.1266) 0.3634 0.3571 (-0.0063) 0.3244 0.3210 (-0.0034)

Figure 4: Qualitative results on synthetic datasets with ×4 scale factor. (Zoom in for details)

4.3 IMPROVING EXISTING SR MODELS VIA FINE-TUNING WITH LDP

We evaluate LDP on Blind SR models, including the GAN-based FeMaSR Chen et al. (2022),
Diffusion-based StableSR Wang et al. (2024), Transformer-based SwinIR Liang et al. (2021), and
Mamba-based MambaIR Guo et al. (2024). In these experiments, LDP is applied only during the
fine-tuning stage and is not used at inference.

Improving SR Models on Synthetic Benchmarks. Quantitative and qualitative results are pre-
sented in Tab. 3 and Fig. 4 (Fig. 7 in Appendix). As listed in Tab. 3, incorporating LDP consistently
improves all baseline models across all degradation types. Among them, MambaIR+LDP achieves
the best overall performance. SwinIR and StableSR also benefit significantly from LDP. StableSR,
in particular, shows substantial relative gains under challenging conditions such as Blur and Hybrid.
These results highlight LDP’s effectiveness in narrowing the solution space via cycle consistency,
enabling stronger generalization to unknown degradations. Although FeMaSR+LDP outperforms
the original model in most metrics, its LPIPS values in Blur and Hybrid remain higher. As shown in
Fig. 4, LDP effectively reduces GAN artifacts and corrects texture distortions, significantly improv-
ing perceptual quality. The low LPIPS scores of the original FeMaSR are likely due to severe GAN
artifacts misinterpreted as texture.

Improving SR Models on Real-World Benchmarks. Quantitative and qualitative results are pre-
sented in Tab. 4 and Fig. 5 (Fig. 8 in Appendix). Table 4 shows that incorporating LDP consis-
tently improves the performance of existing blind SR models across almost all datasets and metrics,
demonstrating its enhanced generalization to unseen degradations. For FeMaSR, LDP suppresses
GAN-induced artifacts, producing more stable, natural outputs. This can lower no-reference met-
rics, e.g., the CLIPIQA score drops on RealSR, as such metrics may favor visually striking but
structurally inaccurate results. As shown in Fig. 5, the visual results explain the numerical improve-
ments, with LDP mitigating ringing and GAN-induced artifacts, thereby enhancing visual fidelity
and contributing to the better no-reference metrics scores.

4.4 LDP FOR POSTERIOR SAMPLING OF PRETRAINED DIFFUSION MODELS

We evaluated how LDP enhances pre-trained diffusion models through posterior sampling, in-
cluding LDM Rombach et al. (2022), StableSR Wang et al. (2024), ResShift Yue et al. (2025),
and UPSR Zhang et al. (2025). Quantitative and qualitative results are presented in Tab. 5 and
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Table 4: Performance improvements of blind SR models across diverse architectures using our
proposed LDP on real-world benchmarks.

Datasets Scale Metrics FeMaSR +LDP StableSR +LDP SwinIR +LDP MambaIR +LDP

RealSR

×4 NIQE↓ 4.708 5.533 (+0.825) 7.446 6.331 (-1.115) 4.773 4.838 (+0.065) 5.330 5.350 (+0.020)
×4 MANIQA↑ 0.3430 0.3654 (+0.0224) 0.3303 0.3548 (+0.0245) 0.3510 0.3742 (+0.0232) 0.2882 0.3374 (+0.0492)
×4 CLIPIQA↑ 0.5645 0.4482 (-0.1163) 0.4886 0.5213 (+0.0327) 0.4739 0.5478 (+0.0739) 0.3989 0.4642 (+0.0653)
×4 MUSIQ↑ 58.94 60.70 (+1.76) 52.99 59.26 (+6.27) 59.67 61.91 (+2.24) 51.87 57.85 (+5.98)
×4 QAlign↑ 3.695 3.860 (+0.165) 2.347 2.646 (+0.299) 3.820 3.877 (+0.057) 3.631 3.766 (+0.135)

DPED

×4 NIQE↓ 5.045 5.704 (+0.659) 7.616 7.228 (-0.388) 4.982 4.821 (-0.161) 5.983 5.430 (-0.553)
×4 MANIQA↑ 0.3102 0.2719 (-0.0383) 0.3056 0.2970 (-0.0086) 0.2637 0.2832 (+0.0195) 0.2334 0.2767 (+0.0433)
×4 CLIPIQA↑ 0.5570 0.3610 (-0.1960) 0.3968 0.3843 (-0.0125) 0.3402 0.4538 (+0.1136) 0.3083 0.3850 (+0.0767)
×4 MUSIQ↑ 49.14 44.07 (-5.07) 42.97 45.08 (+2.11) 42.10 45.91 (+3.81) 35.25 44.64 (+9.39)
×4 QAlign↑ 3.429 3.262 (-0.167) 2.033 2.311 (+0.278) 2.988 3.090 (+0.102) 3.192 3.248 (+0.056)

RealSRSet

×4 NIQE↓ 5.236 5.952 (+0.716) 6.090 5.586 (-0.504) 5.424 5.441 (+0.017) 5.726 5.893 (+0.167)
×4 MANIQA↑ 0.4006 0.4002 (-0.0004) 0.3904 0.4012 (+0.0108) 0.3740 0.3938 (+0.0198) 0.2978 0.3555 (+0.0577)
×4 CLIPIQA↑ 0.6874 0.5683 (-0.1191) 0.6057 0.6214 (+0.0157) 0.5843 0.6376 (+0.0533) 0.4793 0.5428 (+0.0635)
×4 MUSIQ↑ 64.65 64.07 (-0.58) 60.15 62.84 (+2.69) 63.60 65.33 (+1.73) 55.96 61.28 (+5.32)
×4 QAlign↑ 3.776 3.870 (+0.094) 2.916 3.247 (+0.331) 2.749 3.322 (+0.573) 3.434 3.632 (+0.198)

Figure 5: Qualitative results on real-world benchmarks with ×4 scale factor. (Zoom in for details)

Fig. 6 (Fig. 9 in Appendix). As listed in Tab. 5, after applying LDP, the baselines show improve-
ments across nearly all metrics on most datasets. For instance, StableSR demonstrates notable gains
in MANIQA, CLIPIQA, and MUSIQ scores after applying LDP, while ResShift and UPSR also
achieve higher metric values in most cases. For StableSR, we applied the noise-subtraction tech-
nique (Appendix E), which accounts for the differences from Tab. 4. As showed in Fig. 6, our LDP
effectively reduces texture artifacts while preserving structural consistency.

5 ABLATION STUDY

In ablation study, we examine the loss components, patch size, frequency band selection, scale factor
for high-frequency acquisition, performance of LDP under severe degradations, and computational
burden of LDP. Further details are provided in Appendix F.

Ablation of Loss Terms in the Fine-Tuning Stage. Table 6 presents the impact of different loss
components in LFT

sym (Equ. 16) and Lfre (Equ. 14) during fine-tuning of pretrained SwinIR models,
evaluated on the synthetic Hybrid dataset. In all experiments, we set τ = 100 and the weight of
each loss term is set to 1. All variants using any combination of the proposed losses outperform
the baseline. Incorporating both symmetric and frequency losses (LDPV5–LDPV7) consistently
improves perceptual quality (lower LPIPS) and reconstruction accuracy (higher PSNR and SSIM),
with LDPV7 achieving the best overall performance, highlighting the complementary nature of these
loss components. The LDP parameters can be universally configured as τ = 100 and λ1 = λ2 =
λ3 = 1 for any super-resolution model, leading to improved generalization performance.

Ablation of the weight of tau. Table 7 presents the impact of different weight of tau when fine-
tuning SwinIR. All values of tau outperform the baseline, with tau = 100 achieving the best overall
performance.

6 LIMITATIONS AND CONCLUSION

We propose LDP, a lightweight denoising autoencoder plug-in. By integrating HR images and the
high-frequency component of LR, the model achieves realistic degradation modeling while main-
taining efficiency. Experiments show LDP significantly improves the generalization of existing SR
models on unseen degradations after fine-tuning, and enables test-time artifact correction. However,
LDP has two main limitations: (1) in posterior sampling, it lacks generative ability and only per-
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Table 5: Improving Diffusion models via posterior sampling with LDP on real-world benchmarks.

Datasets Scale Metrics LDM +LDP StableSR +LDP ResShift +LDP UPSR +LDP

RealSR

×4 NIQE↓ 6.651 6.830 (+0.179) 5.948 5.636 (-0.312) 8.021 8.027 (+0.006) 4.854 4.834 (-0.020)
×4 MANIQA↑ 0.2904 0.2810 (-0.0094) 0.3552 0.3644 (+0.0092) 0.3487 0.3486 (-0.0001) 0.3901 0.3908 (+0.0007)
×4 CLIPIQA↑ 0.4564 0.4319 (-0.0245) 0.4840 0.5031 (+0.0191) 0.5353 0.5354 (+0.0001) 0.5278 0.5361 (+0.0083)
×4 MUSIQ↑ 52.09 50.37 (-1.72) 55.11 56.56 (+1.45) 56.85 56.85 64.82 64.70 (-0.12)
×4 QAlign↑ 2.685 2.610 (-0.075) 2.607 2.716 (+0.109) 3.036 3.036 3.218 3.231 (+0.013)

DPED

×4 NIQE↓ 8.724 8.770 (+0.046) 6.456 6.267 (-0.189) 9.429 9.415 (-0.014) 6.266 6.281 (+0.015)
×4 MANIQA↑ 0.2381 0.2418 (+0.0037) 0.3255 0.3341 (+0.0086) 0.3107 0.3104 (-0.0003) 0.3151 0.3163 (+0.0012)
×4 CLIPIQA↑ 0.3718 0.3681 (-0.0037) 0.4041 0.4053 (+0.0012) 0.4875 0.4879 (+0.0004) 0.4094 0.4026 (-0.0068)
×4 MUSIQ↑ 32.92 32.55 (-0.37) 45.55 49.25 (+3.70) 44.63 44.59 (-0.04) 46.47 46.52 (+0.05)
×4 QAlign↑ 1.901 1.917 (+0.016) 2.302 2.343 (+0.041) 2.422 2.423 (+0.001) 2.271 2.257 (-0.014)

RealSRSet

×4 NIQE↓ 6.349 6.258 (-0.091) 4.898 4.687 (-0.211) 6.979 7.011 (+0.032) 4.864 4.878 (+0.014)
×4 MANIQA↑ 0.3407 0.3470 (+0.0063) 0.4411 0.4573 (+0.0162) 0.4004 0.4004 0.4647 0.4720 (+0.0073)
×4 CLIPIQA↑ 0.5439 0.5311 (-0.0128) 0.6384 0.6584 (+0.0200) 0.6656 0.6658 (+0.0002) 0.6709 0.6753 (+0.0044)
×4 MUSIQ↑ 58.54 59.52 (+0.98) 62.73 62.96 (+0.23) 66.05 66.06 (+0.01) 69.68 69.74 (+0.06)
×4 QAlign↑ 3.046 3.089 (+0.043) 3.193 3.192 (-0.001) 3.561 3.560 (-0.001) 3.705 3.656 (-0.049)

Figure 6: Qualitative results of LDP enhances diffusion models through posterior sampling at ×4
scale SR. (Zoom in for details)

Table 6: Ablation study of the loss terms used in the fine-tuning
stage of pretrained SwinIR models.

Methods LSym
1 LSym

LPIPS LSym
fre LSR

fre PSNR↑ SSIM↑ LPIPS↓
baseline × × × × 23.52 0.6458 0.3634
LDPV1 × × × ✓ 23.99 0.6481 0.3591
LDPV2 ✓ ✓ × × 24.08 0.6406 0.3585
LDPV3 × × ✓ × 24.01 0.6404 0.3582
LDPV4 ✓ ✓ ✓ × 24.13 0.6406 0.3609
LDPV5 ✓ ✓ × ✓ 24.33 0.6499 0.3578
LDPV6 × × ✓ ✓ 24.28 0.6500 0.3580
LDPV7 ✓ ✓ ✓ ✓ 24.35 0.6492 0.3571

Table 7: Ablation study of the
τ weight.

tau PSNR↑ SSIM↑ LPIPS↓
- 23.52 0.6458 0.3634

0.1 24.15 0.6547 0.3601
1 24.27 0.6547 0.3595
10 24.30 0.6500 0.3596

100 24.35 0.6492 0.3571

forms texture rectification; (2) It does not support unpaired degradation modeling, as the generated
LR image inevitably retains information from the input LR high-frequency components.
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A THE USE OF LARGE LANGUAGE MODELS

We used Large Language Models to assist or polish the writing, without involving our experiments,
figures, or other core contributions.

B ANONYMIZED LINK TO OUR CODE

Our code is available on an anonymous link for open-source access
https://anonymous.4open.science/r/LDP-3CAC/.

C CREATION OF SYNTHETIC TESTING DATASETS

We adopt the bsrgan plus degradation model Zhang et al. (2021a); Wang et al. (2021) to con-
struct synthetic multi-degradation datasets from the DIV2K validation set. Specifically, the full
bsrgan plus pipeline is used to generate the hybrid degradation dataset, while four individual
datasets (Downsample, Blur, Noise, and JPEG) are created by applying only the corresponding
components of bsrgan plus.

Downsample. For the downsample mode, four types of interpolation methods are employed:
Ds

nearest, D
s
bilinear, Ds

bicubic and Ds
down−up, where s is the scale factor. For the Ds

nearest method,
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there is a probability that a centered 21×21 isotropic Gaussian kernel is shifted by 0.5×(s−1) pixels
using a 2D linear grid interpolation technique. This step is taken to correct a potential misalignment
of 0.5× (s− 1) pixels towards the upper-left corner that may occur during the downsampling pro-
cess. In the Ds

down−up = D
s/a
downD

a
up, the HR image is first downsampled by a scale factor of s/a

and then upsampled by a scale factor of a. The interpolation methods for both downsampling and
upsampling are randomly selected from nearest neighbor, bilinear, or bicubic interpolation. Addi-
tionally, with a probability of 0.25, the HR image is initially resized to half of its original dimensions
using a randomly selected interpolation technique. Following this resizing, s is set to s/2 for the
subsequent downsampling operation.

Noise. For the noise mode, a shuffle order of 5 operations is generated. These operations include:
(1) Gaussian noise with a standard deviation in [2, 25], including grayscale, multivariate, and color
variants with probabilities of 0.4, 0.2, and 0.4, respectively; (2) Speckle noise, applied multiplica-
tively with the same probability setting as Gaussian noise; (3) Poisson noise, added either globally
or in grayscale with equal probability after scaling and rounding; (4) JPEG compression with a ran-
dom quality factor in [30, 95]; and (5) downsampling by a factor of s using a randomly selected
interpolation method (nearest, bilinear, or bicubic).

Blur. For the blur mode, a random sequence of two operations is applied: (1) blurring the image
twice using randomly generated kernels with scale factor s, with a 50% chance of selecting an
anisotropic Gaussian kernel , and otherwise using an isotropic Gaussian kernel, with kernel size and
width also randomized; and (2) downsampling by a factor of s using a randomly chosen interpolation
method (nearest-neighbor, bilinear, or bicubic).

JPEG. For the JPEG mode, a random sequence of two operations is applied: (1) simulating JPEG
compression artifacts by converting the image to uint8 format, compressing it using a randomly
sampled quality factor between 30 and 95, and then decompressing it; and (2) downsampling the
image by a factor of s using a randomly selected interpolation method (nearest-neighbor, bilinear,
or bicubic).

D DETAILS OF FINE-TUNING PRETRAINED SUPER-RESOLUTION MODELS

All pretrained SR models were obtained from their respective official GitHub repositories. Fine-
tuning was performed using the DF2K dataset, which combines DIV2K Agustsson & Timofte (2017)
and Flickr2K Lim et al. (2017), with BSRGAN Zhang et al. (2021a) employed as the degradation
model. In this setting, LDP is applied only during the fine-tuning stage and is not used at inference.

FeMaSR. We directly fine-tuned the second-stage model of FeMaSR using its original loss func-
tions: L1 loss, LPIPS loss, GAN loss, and a codebook-specific loss. In addition, we incorporated
the frequency loss Lfre (Equ. 14) and the fine-tuning symmetry loss LFT

sym (Equ. 16). The hy-
perparameters were set as follows: λfre = 1, λ1 = λ2 = λ3 = 0.1, and τ = 1. The model
was fine-tuned for 100,000 iterations. Notably, even a brief fine-tuning of 1,000 iterations signifi-
cantly reduces GAN-induced artifacts. Longer training durations allow the discriminator to better
converge, thereby enhancing the generation of realistic and detailed textures. Experimental results
demonstrate that when employing GAN loss, extended fine-tuning is typically necessary to ensure
stable convergence of the discriminator.

StableSR. To fine-tune StableSR, we follow the original loss settings with two additional loss terms:
the frequency loss Lfre (Equ. 14) and the fine-tuning symmetry loss LFT

sym (Equ. 16). Since Sta-
bleSR is a latent diffusion model, it is necessary to use the decoder to transform the latent features
back into the RGB space. Specifically, at each diffusion step, based on DDPM Ho et al. (2020) or
DDIM Song et al. (2021), the model predicts the clean image x̂0 from the noisy input. We first apply
the decoder to convert x̂0 into a RGB image X ′, which is then used to compute the frequency loss
Lfre(X

′, x) for frequency modulation. Subsequently, X ′ along with the high-frequency component
of LR yhf is fed into our LDP module to generate a predicted LR image y′. We then apply the
symmetry loss LFT

sym(y′, y) to further guide the super-resolution process. The hyper-parameters are
set λfre = 0.1, λ1 = λ2 = λ3 = 0.1 and τ = 1. The model was fine-tuned for 2,000 iterations.
The inference code is the same as the original StableSR with the DDPM step set as 200.
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SwinIR and MambaIR. To fine-tune SwinIR and MambaIR, we use L1, LLPIPS and
Lfre (Equ. 14) to constrain HR and SR result, while use LFT

sym to constrain LR and the predicted
LR from our LDP. The hyper-parameters are set λfre = 10, λ1 = λ2 = λ3 = 1 and τ = 100. he
models were fine-tuned for 1,000 iterations.

E DIFFUSION POSTERIOR SAMPLING WITH LDP

We evaluated how LDP enhances pre-trained diffusion models through posterior sampling, includ-
ing LDM Rombach et al. (2022), StableSR Wang et al. (2024), ResShift Yue et al. (2025), and
UPSR Zhang et al. (2025). Posterior sampling, as formulated in Eq. 17, is carried out without any
fine-tuning. In this setting, quantitative metrics may show limited improvement. However, visual re-
sults demonstrate a notable reduction in artifacts and enhanced fidelity in the outputs of the diffusion
models. For all four baseline models, the LDP parameters are set to τ = 100 and λ1 = λ2 = λ3 = 1.
As all selected models are latent diffusion model, we should first use the Decoder to transfor the la-
tent feature back to the color space. Specifically, for every diffusion step, according DDPM Ho
et al. (2020) or DDIM Song et al. (2021), the model will get the predicted clean image x̂0 from
the model output. We decode x̂0 into the RGB image X ′, which is then combined with the high-
frequency component of LR images yhf and passed into our LDP module to generate a predicted
LR image y′. The fine-tuning symmetry loss LFT

sym(y′, y) is subsequently applied to further guide
the super-resolution model.

LDM. We use the SR version of LDM with 50 DDIM steps, we apply LDP only every 5 steps
during the last 25 steps of the sampling process. This is because LDM has already undergone
super-resolution training, so the predicted clean image x̂0 in the early stages of the DDPM process
are sufficiently close to the LR input. However, as the diffusion process progresses, the generated
SR images may gradually diverge from the LR features, thereby necessitating additional guidance.
Moreover, applying the DPS operation increases inference time. While applying it at every step
could further improve the fidelity of the generated results, the computational overhead becomes
prohibitive.

StableSR. We found that the SR result of StableSR exhibits a noticeable repeat-spot artifact, as il-
lustrated in Fig. 4 and Fig. 7. We note that the artifact can be removed by subtracting noise during
inference Bansal et al. (2023), a technique compatible with the inference process of StableSR. How-
ever, in our experiments, this artifact removal method was applied only in the posterior sampling
setting and not during inference with fine-tuned models. Specifically, we set P (x, t) as the noise
diffusion process at time t. In each denoising step, the update can be formulated as:

xt−1 = xt−1 − λ ∗ (P(x̂0, t) +P(x̂0, t− 1)), (18)
where we set λ = 0.01. We adopt 200 DDPM steps, but our LDP are applied in the last 100 steps,
and only every 10 steps. For the same reasons as in LDM. We observe that applying LDP directly
to StableSR without this technique tends to exacerbate the repeat-spot artifact. In contrast, applying
the artifact removal prior to LDP further enhances StableSR’s performance. We hypothesize that
this is because StableSR possesses strong generative capability, producing super-resolved images
that deviate from the LR input. Consequently, when LDP is used to enforce consistency between
the SR and LR images, it may inadvertently suppress the model’s generative ability.

ResShift. We adopt the journal version of ResShift, requiring only four steps to generate SR results,
with LDP applied at each step.

UPSR. UPSR generates SR results in only five steps, with LDP applied at each step.

F EXTENDED ABLATION STUDY

Ablation of the Patch Sise in Noise Addition Module. Table 8 presents an ablation study investi-
gating the effect of patch size in the patch-wise noise addition process of diffusion. We systemati-
cally vary the patch size in 1, 4, 8, 16 and evaluate each configuration on the fine-tuning pretrained
SwinIR model (baseline) using the synthetic Hybrid dataset. Experimental results demonstrate that
any patch configuration surpasses the baseline. When the patch size equals one, it implies that uni-
form noise is added across the entire image. Since a patch size of 16 attains the highest PSNR and
the lowest LPIPS, we set P = 16 in our LDP.
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Table 8: Ablation study of the Patch Size of
LDP.

Methods patch PSNR↑ SSIM↑ LPIPS↓
baseline - 23.52 0.6458 0.3634
LDPp2 1 24.43 0.6505 0.3567
LDPp4 4 24.45 0.6519 0.3567
LDPp8 8 24.34 0.6520 0.3572
LDPp16 16 24.46 0.6513 0.3566

Table 9: Ablation study of the frequency band
used in LFT

sym.

Methods DWTfre PSNR↑ SSIM↑ LPIPS↓
baseline baseline 23.52 0.6458 0.3634
LDPLF LL 24.35 0.6472 0.3573
LDPHF LH+HL+HH 24.35 0.6492 0.3571
LDPALL ALL 24.33 0.6430 0.3574

Ablation of the Frequency Band in LFT
sym. Table 9 presents an ablation study on DWT frequency-

band supervision. In this experiment, the pretrained SwinIR model (baseline) is fine-tuned and
evaluated on the synthetic Hybrid dataset. The variants LDPLF , LDPHF , and LDPALL apply
supervision to the LL (low-frequency), LH/HL/HH (high-frequency), and all DWT sub-bands. Both
LDPLF and LDPHF improve PSNR from 23.52 to 24.35, with LDPHF achieving slightly higher
SSIM and the lowest LPIPS. In contrast, LDPALL yields comparable PSNR and LPIPS but slightly
lower SSIM, suggesting that focused supervision on specific frequency bands is more effective than
supervising all sub-bands indiscriminately.

Table 10: Ablation study of the scale factor in LR residual acquisition phase.

Methods s′ PSNR↑ SSIM↑ LPIPS↓
baseline - 23.52 0.6458 0.3634
LDPsf2 2 24.35 0.6492 0.3571
LDPsf4 4 24.31 0.6490 0.3576
LDPsf8 8 24.24 0.6495 0.3582
LDPsf16 16 24.21 0.6496 0.3585

Ablation of the Scale Factor in the LR Residual Acquisition Phase. To investigate how the scale
factor s′ affects performance, we conduct an ablation study by varying s′ during the fine-tuning of
a pretrained SwinIR model (baseline) using the synthetic Hybrid dataset. This factor determines
the high-frequency components extracted from LR images. As listed in Tab. 10, all LDP variants
outperform the baseline, with the best performance achieved at s′ = 2. As s′ increases, PSNR and
LPIPS consistently decline, while SSIM steadily improves. This is because larger s′ values introduce
stronger but less reliable high-frequency components into the LDP input. These components may
amplify edge-like patterns that enhance SSIM but do not faithfully reflect true HR details, thereby
increasing prediction errors and perceptual inconsistencies. As a result, the quality of the supervision
signal deteriorates, weakening the fine-tuning effectiveness and degrading overall SR performance.
These findings highlight the importance of selecting an appropriate s′ to balance structural sharpness
and reconstruction fidelity.

LDP contributions to existing SR models evaluated on severely degraded test dataset. To
evaluate our method on severely degraded LR images, we regard pretrained SwinIR as baseline
and test SwinIR+LDP in our main text. We still use the bsrgan plus Zhang et al. (2021a); Wang
et al. (2021) Zhang et al. (2021a); Wang et al. (2021) degradation setting, while changing the
maximum length (wd2) of the Gaussian blur kernel (please refer to the bsrgan plus code), we set
wd2 ∈ [8, 16, 32, 64, 484]. By default, wd2 is set to 8 and applied in the synthetic Hybrid dataset.
As reported in Tab. 11, the results demonstrate that our method retains strong generalization un-
der server Gaussian blur. Because the training signal is the residual obtained by subtracting the
downsample-upsample from the original LR, the residual is never zero even when a heavy blur re-
moves substantial high-frequency content, thereby providing a distinctive cue for identifying the
LR corresponding to the same HR image. Tab. 12 further reports the LR-prediction evaluation of
LDP. Even under severe blur (wd2 = 484), the predicted LR remains highly consistent with its initial
counterpart, achieving 26.87 dB PSNR, 0.89 SSIM, and 0.1618 LPIPS. These results underscore the
robustness of our LDP.

The computational burden of LDP when it is employed for posterior sampling. We assess
the integration of LDP into the diffusion posterior sampling Chung et al. (2023) framework built
upon StableSR under the synthetic Hybrid dataset, where Eq. 18 is applied to suppress artifacts.
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Table 11: Ablation study on severely Gaussian
blur degraded LR images. wd2 is the maximum
length of Gaussian blur in bsrgan plus degrada-
tion process.

Methods wd2 PSNR↑ SSIM↑ LPIPS↓
baseline 8 23.52 0.6458 0.3634
+LDP 8 24.21 0.6496 0.3585

baseline 16 22.99 0.6296 0.3974
+LDP 16 23.78 0.6319 0.3932

baseline 32 22.82 0.6188 0.3967
+LDP 32 23.76 0.6238 0.3935

baseline 64 22.27 0.5971 0.4363
+LDP 64 23.15 0.6023 0.4341

baseline 484 21.24 0.5740 0.4810
+LDP 484 22.09 0.5812 0.4759

Table 12: Performance of LDP in LR predic-
tion on severely Gaussian-degraded LR im-
ages.

wd2 PSNR↑ SSIM↑ LPIPS↓
8 29.81 0.9169 0.1009

16 27.61 0.9123 0.1231
32 27.51 0.9087 0.1215
64 27.32 0.9053 0.1325

484 26.87 0.8900 0.1618

Table 13: Inference time of posterior sampling with LDP in Diffusion models and its impact on
performance.

per image (s) baseline LDPtV1 LDPtV2 LDPtV3
Times 19 178 99 28

PSNR↑ 19.71 19.90 19.72 19.72
SSIM↑ 0.3756 0.3848 0.3718 0.3705
LPIPS↓ 0.5118 0.5020 0.5115 0.5057

Four configurations are compared: (1) baseline: the original StableSR baseline with 200 DDPM
denoising iterations; (2) LDPtV1: LDP applied at every step across all 200 iterations; (3) LDPtV2:
LDP applied only during the last 100 iterations; and (4) LDPtV3: LDP applied once every ten
steps within the last 100 iterations. The quantitative results are reported in Tab. 13. Applying DPS
at every step significantly improves the performance of diffusion models, but incurs prohibitive
inference overhead. In contrast, applying LDP once every ten steps during the final 100 iterations
introduces only a modest runtime increase, while still yielding performance gains over the baseline.
We emphasize that no acceleration techniques such as half-precision were used during testing. All
models were run in full precision on the GPU, and additional speed-ups may be achieved with
alternative strategies.

Table 14: Comparison of training cost and efficiency between the proposed LDP and other plug-in
methods.

Methods GPU memory (MiB) Time per Iteration (s) PSNR↑ SSIM↑ LPIPS↓
SwinIR 15575 1.413 23.64 0.6098 0.4541

SwinIR+LDP 22405 2.094 23.96 0.6050 0.4468
SwinIR+Lway 200768 22.55 21.11 0.6024 0.5126

Evaluating training cost and efficiency of LDP against other plug-in methods.

We report the training cost and efficiency of incorporating LDP as a loss component of SwinIR
under the synthetic Hybrid dataset, in comparison with Lway Chen et al. (2024). Since the official
Lway code is not publicly available, we re-implemented it following their GitHub guidelines. Using
Lway as a loss component is equivalent to the original Lway paper, where the pre-trained model
is 100% fine-tuned. Three configurations are compared: (1) SwinIR: SwinIR trained from scratch
with L1 + Lfre; (2) S+LDP: SwinIR trained with L1 + Lfre + LFT

sym. Predicted LR comes from
LDP. (2) S+Lway: SwinIR trained with L1 + Lfre + LFT

sym. Predicted LR comes from Lway. As
reported in Tab 14, LDP increases SwinIR’s training GPU memory from 15,575 MiB to 22,405
MiB, extends the per-iteration runtime from 1.413 s to 2.094 s, and consequently raises the compute
cost for 50,000 iterations from 21.23 h to 31.26 h. In exchange, PSNR and LPIPS improve, and
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SSIM changes marginally. In contrast, Lway does not improve model performance within the same
training time and consumes even more GPU memory.

G EXTENDED QUALITATIVE RESULTS

More visual results of the blind SR models on both synthetic and real-world benchmarks are pro-
vided in Fig. 7 and Fig. 8, respectively. Additional qualitative results of diffusion posterior sampling
are presented in Fig. 9. With the assistance of LDP, existing SR models demonstrate a clear abil-
ity to suppress artifacts, preserve LR features, and generalize better to unseen degradation types.
However, this approach also reveals a limitation: for models such as FeMaSR, which treat certain
artifacts as part of the texture, LDP struggles to preserve the model’s original ability to generate
detailed textures while removing artifacts. This highlights a trade-off between artifact suppression
and texture fidelity in models that implicitly rely on artifact patterns for texture synthesis.

H ETHICS STATEMENT

Our work focuses on single-image super-resolution and synthetic degradation modeling using pub-
licly available or properly licensed images. No human subjects or sensitive personal data are in-
volved. The LDP model is intended for research and image enhancement, and we acknowledge that
generative image processing can be misused. We encourage responsible use and compliance with
relevant legal and ethical guidelines.

I REPRODUCIBILITY STATEMENT

Our code is provided in Appendix B. The training details of our proposed LDP are described in
Section 4.1 of the main text. The generation process of the synthetic multi-degradation datasets
is presented in Appendix C. Experimental details of fine-tuning existing SR models with LDP are
given in Appendix D, while Appendix E provides the details of applying LDP for posterior sampling
with pre-trained diffusion models.
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Figure 7: Qualitative results on synthetic multi-degradation datasets with ×4 scale factor. (Zoom in
for details)
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Figure 8: Qualitative results on real-world datasets with ×4 scale factor. (Zoom in for details)
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Figure 9: Qualitative results of LDP enhances diffusion models through posterior sampling at ×4
scale SR. (Zoom in for details)
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