

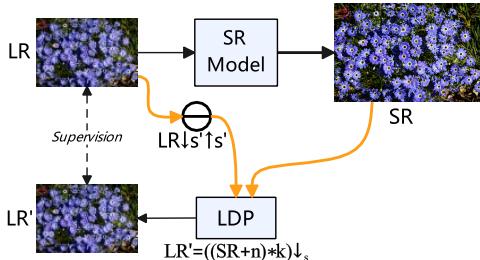
000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LDP: A LIGHTWEIGHT DENOISING PLUGIN ENHANCING GENERALIZATION IN SINGLE-IMAGE SUPER-RESOLUTION

006 **Anonymous authors**

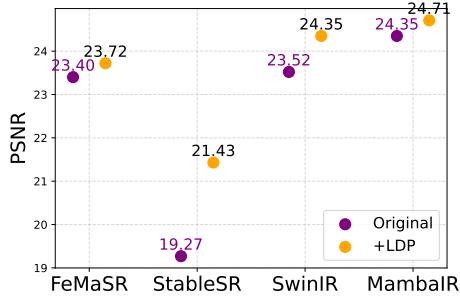
007 Paper under double-blind review

ABSTRACT

013 Current single-image super-resolution (SISR) models struggle to generalize to
014 real-world degradations. To address this challenge, we propose LDP, an inno-
015 vative lightweight denoising autoencoder (DAE) plug-in. It improves the gener-
016 alization ability of SR models via low-resolution (LR) images prediction-based
017 cyclic regularization. LDP models the SISR degradation process within the DAE
018 framework. It leverages a property of diffusion models, where after noise is added,
019 high-resolution (HR) images and LR features become aligned, so that denoising
020 noisy HR features is equivalent to denoising noisy LR features. During the cor-
021 ruption process, noise is added independently to each HR patch. During the de-
022 noising process, a convolutional denoiser uses learned filters to approximate blur
023 kernels. In addition, LR degradation is used to distinguish different LR from the
024 same HR. LDP can be applied to SR models in two modes: as a training loss to
025 improve reconstruction quality, or as an inference post-processing step to correct
026 artifacts. Extensive experiments demonstrate that LDP substantially improves the
027 generalization of existing SR models to unseen degradations.



(a) Arbitrary SR model



(b) Boosts over baselines (DIV2K-Hybrid)

041 Figure 1: Our LDP is a lightweight denoising autoencoder-based plug-in that can be seamlessly
042 integrated into arbitrary SR models, operating as a training-time loss or an inference-time module.

1 INTRODUCTION

047 Single Image Super-Resolution (SISR) aims to reconstruct high-resolution (HR) images from their
048 low-resolution (LR) counterparts. SISR is widely applied in various fields, such as medical imag-
049 ing Li et al. (2024a) and remote sensing Dong et al. (2024). Deep learning has advanced SISR
050 architectures from Convolutional Neural Network (CNN) Dong et al. (2014) to Transformer Liang
051 et al. (2021); Chen et al. (2023b) and State-Space Model Guo et al. (2024; 2025), achieving higher
052 reconstruction accuracy. Meanwhile, generative methods, including Generative Adversarial Net-
053 work (GAN) Chen et al. (2022) and Diffusion Model Wang et al. (2024); Yue et al. (2025); Zhang
et al. (2025), have been explored to improve perceptual quality.

Despite advances in SR architectures, existing models struggle to generalize to unseen degradations. Recent approaches leverage data augmentation and self-supervised learning techniques to tackle this challenge. Data augmentation approaches typically fall into two categories: generating synthetic distortions Zhang et al. (2021a); Wang et al. (2021), or employing generative models Li et al. (2022); Chen et al. (2025) to synthesize paired data from unpaired LR and HR images. However, these methods may harm performance Zhang et al. (2023) or are limited to in-distribution datasets. Self-supervised approaches rely on either image-specific training Shocher et al. (2018); Ulyanov et al. (2018) or test-time adaptation Hussein et al. (2020); Zhou et al. (2023); Chen et al. (2024), utilizing internal image statistics and priors. However, they suffer from high computational cost or the need for model-specific adaptation. Addressing unseen degradations efficiently remains a key challenge.

To address these limitations, we propose LDP, a lightweight denoising autoencoder (DAE) plug-in. It improves the generalization ability of SR models via LR prediction-based cyclic regularization. LDP models the SISR degradation process within the DAE framework. It leverages a property of diffusion models, where after noise is added, high-resolution (HR) images and LR features become aligned Wang et al. (2023b), making denoising noisy HR features equivalent to denoising noisy LR features. LDP takes high-resolution images (ground-truth HR or SR outputs) as input for degradation modeling, with LR high-frequency components as a condition to distinguish different LR images from the same HR. During the corruption process, LDP introduces patch-dependent Gaussian noise. This enables the model to learn fine-grained degradation in local patches, rather than assuming the same degradation for the whole image. During the denoising process, a lightweight convolutional denoiser learns the blur kernels associated with the degradation model. Built on these designs, LDP accurately generates corresponding LR image and generalizes well to unseen degradations. LDP applies to SR models in two modes: as a training-time loss function to improve reconstruction quality, or as an inference-time post-processing step that corrects artifacts independently of training. Extensive experiments verify that LDP significantly improves the generalization ability of existing SR models on unknown complex degradations.

Overall, our contributions are three-fold:

- We propose LDP, an innovative lightweight denoising autoencoder plug-in for single-image super-resolution that enhances the generalization of existing SR models.
- LDP is a conditional degradation model that generates LR images from HR inputs by explicitly conditioning on LR high-frequency components. LDP operates in two modes: as a degradation-aware training-time loss function, or as an inference-time correction module (e.g., Posterior Sampling for diffusion models).
- LDP enhances reconstruction quality during training as a loss function and mitigates artifacts at inference independently of training. Both modes improve SR model generalization to unknown complex degradations.

2 RELATED WORK

2.1 IMPROVING GENERALIZATION IN SR

The limited generalization ability of SR models to unseen degradations remains a major challenge for real-world applications. Existing SR methods address this issue using two main approaches: data augmentation and self-supervised learning. Data augmentation methods seek to bridge the training–inference gap by creating synthetic data with degradations that approximate real-world scenarios. One line of works explicitly model degradations using predefined operations. BSRGAN Zhang et al. (2021a) generates complex degradations by sequentially combining downsampling, blur, noise, and compression in random order, producing varied LR images for training. RealESRGAN Wang et al. (2021) introduces higher-order degradations to reflect real-world degradation chains. While BSRGAN and RealESRGAN enable non-blind SR models to handle blind scenarios through multi-degradation training, such strategies may compromise performance on in-distribution benchmarks Zhang et al. (2023). Alternatively, implicit modeling methods leverage generative models to synthesize paired data from real LR and unpaired HR images. GAN Yuan et al. (2018); Li et al. (2022); Yin et al. (2023) or diffusion-based Chen et al. (2025) methods learn degradation priors to create realistic training pairs. However, their generalization remains limited to in-distribution data. Self-supervised learning enables SISR training using only LR images without

108 paired HR supervision. ZSSR Shocher et al. (2018) and DIP Ulyanov et al. (2018) exploit internal
 109 patterns or implicit priors without external data. CorrectFilter Hussein et al. (2020); Zhou et al.
 110 (2023) aligns inputs with the training distribution of pre-trained models. Lway Chen et al. (2024)
 111 uses a degradation model to synthesize LR images from SR outputs for test-time fine-tuning. Al-
 112 though effective, these methods are computationally expensive or require model-specific adaptation.
 113

114 2.2 CONSTRAINING THE SR SOLUTION SPACE VIA DEGRADATION MODELING

115 Degradation modeling, applied jointly with the SR model, introduces structural constraints that en-
 116 sure reconstructed LR outputs align with the LR input, effectively narrowing the solution space to
 117 favor LR-consistent reconstructions. DRN Guo et al. (2020) adds a degradation branch that projects
 118 SR outputs back to the LR domain, enforcing reconstruction consistency and improving stability.
 119 DualSR Emad et al. (2021) introduces a dual-path framework where a GAN-based downsample
 120 and an upsample are jointly trained with cycle consistency to model and reverse image-specific
 121 degradations. SCL-SASR Chen et al. (2023a) adopts a similar bidirectional design under MAP es-
 122 timation, coupling SR and degradation networks to adapt to test-time degradations. Lway Chen
 123 et al. (2024) introduces test-time adaptation with pre-trained degradation models to fine-tune SR
 124 models, increasing generalization to unseen degradations. Despite their benefits, these methods
 125 face several limitations: DRN handles only bicubic downsampling; DualSR and SCL-SASR re-
 126 quire image-specific optimization or joint training; and Lway introduces significant computational
 127 overhead due to its large model size. In contrast, our method supports a wide range of degradations
 128 through an explicitly modeled degradation process within a lightweight denoising autoencoder
 129 framework. Our degradation modeling framework is adaptable to various training settings, from
 130 large-scale supervised learning to image-specific fine-tuning, and can also be applied directly at test
 131 time. The framework is lightweight and does not incur significant computational cost.

132 Degradation modeling is also applied during inference in diffusion-based image restoration to en-
 133 force LR consistency. ILVR Choi et al. (2021) guides the sampling process of DDPM Ho et al.
 134 (2020) using a reference image to maintain low-frequency consistency across the denoising steps.
 135 DR2 Wang et al. (2023b) shows that injecting additional Gaussian noise makes LR and HR distribu-
 136 tions less distinguishable, allowing noise-corrupted LR images to be treated as noise-corrupted HR
 137 images during sampling. MCG Chung et al. (2022) ensures samples stay close to the data manifold
 138 by projecting the gradient of the measurement function onto its tangent space. DPS Chung et al.
 139 (2023) further leverages the degradation process to connect the LR observation to the predicted
 140 clean image at each step. In our method, LDP degrades each predicted clean image during diffusion
 141 inference, treating it as SR to produce a predicted LR image. We then enforce LR cyclic consistency
 142 by applying the tailored loss $\mathcal{L}_{\text{sym}}^{\text{FT}}$ (Eq. 16), which penalizes the discrepancy between the predicted
 143 LR and the ground-truth LR. This degradation-aware constraint enhances fidelity by suppressing
 144 artifacts and promoting structural consistency in the SR results.

145 3 PROPOSED METHOD

146 Section 3.1 outlines the motivation behind LDP. Section 3.2 introduces the overall framework of
 147 LDP. Section 3.3 then details its training and inference modes, describing LDP’s own training, its
 148 application in fine-tuning SR models, and its role as a post-processing step for diffusion models.
 149

150 3.1 MOTIVATION

151 To improve the generalization of existing SR models on unknown complex degradations, we adopt
 152 a degradation modeling approach applied jointly with the SR model. This introduces structural
 153 constraints that ensure the reconstructed LR outputs are aligned with the LR input, effectively nar-
 154 rowing the solution space to favor LR-consistent reconstructions. Our LDP integrates degradation
 155 modeling Yue et al. (2022) into the denoising autoencoder, reinterpreting denoising as a controllable
 156 degradation applied to HR images. In the classical degradation formulation, this can be expressed
 157 as:

$$y = ((x + n) \otimes k) \downarrow_s, \quad (1)$$

158 where $x \in \mathbb{R}^{H \times W \times 3}$ is the HR image, $y \in \mathbb{R}^{\frac{H}{s} \times \frac{W}{s} \times 3}$ is the LR image, n is the noise, k is the
 159 blur kernel, and s is the downsampling scale. We further leverage a property of diffusion models,

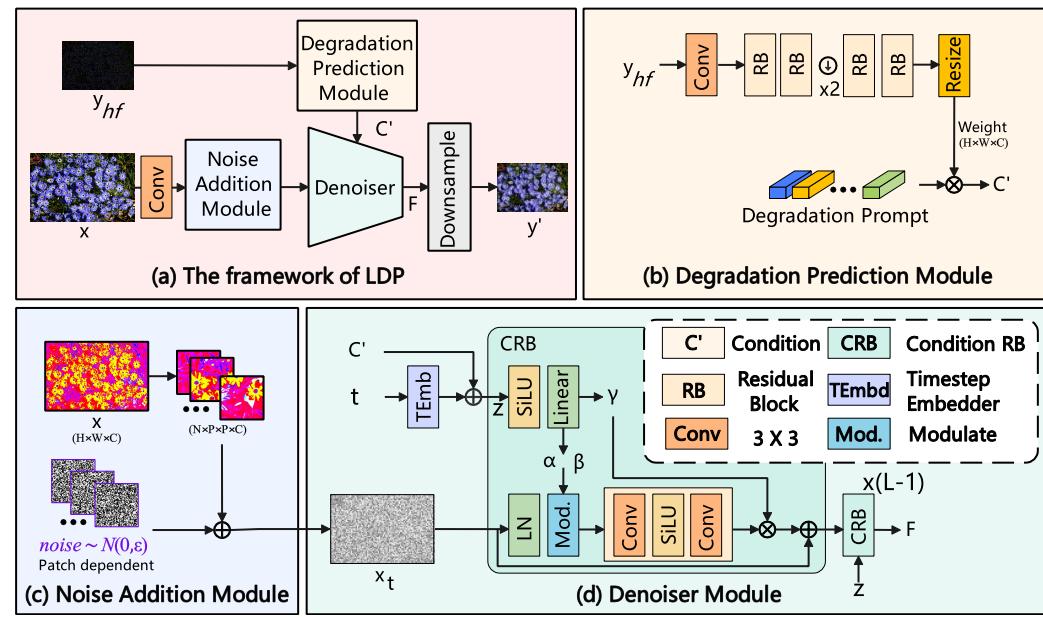


Figure 2: (a) **LDP Framework.** LR_{hf} predicts degradation C' , guiding the noise-perturbed HR features to generate the LR output via denoising and downsampling. (b) **Degradation Prediction.** Stacked RB generate weights from LR_{hf} and multiply them with P_D to produce C' . (c) **Noise Addition.** Patch-dependent noise is added to HR features at random timesteps. (d) **Denoiser.** A lightweight CNN denoises HR_t conditioned on z using CRBs with AdaLN.

whereby after noise is added, HR features and LR features become aligned Wang et al. (2023b), making denoising noisy HR features equivalent to denoising noisy LR features. This allows us to perform degradation modeling on HR images using a denoising autoencoder. However, there remains a challenge: since the SR task is inherently ill-posed, a condition is required to differentiate between different LR images generated from the same HR image under varying degradations. This condition must satisfy three criteria: (1) it cannot be the LR image itself, otherwise the network might take shortcuts and fail to learn meaningful degradations; (2) it must be discriminative for different LR images corresponding to the same HR image; and (3) it should be simple and easy to obtain. We define this condition as LR_{hf} , obtained by subtracting the s' -fold downsampled-then-upsampled LR image from the original LR image. In summary, we use a denoising autoencoder to perform degradation modeling on the input HR image, with the condition LR_{hf} controlling the type of degradation in the output. During application, this approach constrains the super-resolution (SR) model to produce outputs whose LR reconstructions (via our LDP) are consistent with the original LR input, thus enforcing LR cyclic consistency and effectively guiding the SR model.

3.2 FRAMEWORK

Figure 2 (a) illustrates the framework of our proposed LDP, which consists of four main modules: the Degradation Prediction Module (DPM), Noise Addition Module (NAM), Denoiser Module and Downsample Module. Designed as a denoising autoencoder, LDP functions as a conditional degradation model that generates LR images from HR inputs by conditioning on LR high-frequency components. To facilitate both implementation and interpretability, we adopt the noise corruption process from diffusion models Ho et al. (2020). The overall process of LDP is formulated as:

$$x_t = NAM(x, t), \quad (2)$$

$$y' = D(Denoiser(x_t | DPM(y_{hf}), t)), \quad (3)$$

Where y' is the predicted LR images, and y_{hf} is the LR high-frequency component. t is a patch-dependent timestep, x_t is the noised HR features, $NAM(\cdot)$ is the Noise Addition Module, $DPM(\cdot)$ is the Degradation Prediction Module and $D(\cdot)$ is the Downsample Module.

216 **Degradation Prediction Module.** Figure 2 (b) shows the DPM diagram. Its input is the high-
 217 frequency component of the LR image, computed by subtracting the s' -fold downsampled-then-
 218 upsampled LR image from the original LR image, which can be formulated as:
 219

$$220 \quad y_{hf} = y - y \downarrow_{s'} \uparrow_{s'}, \quad (4)$$

221 where $\downarrow_{s'}$ and $\uparrow_{s'}$ denote the downsampling and upsampling operations with scale factor s' , re-
 222 spectively. To extract degradation information, we use prompts to encode degradation-specific de-
 223 tails Potlapalli et al. (2023). First, a weight map w is derived from y_{hf} , and then resized to match the
 224 spatial dimensions of x (i.e., $H \times W$). This resized weight map is multiplied element-wise with the
 225 Degradation Prompt P_D . It forms a degradation map $C' \in \mathbb{R}^{H \times W \times C}$ and serves as the condition
 226 for the denoiser. The process can be formulated as:
 227

$$228 \quad w = (\text{RB}_4 \circ \text{RB}_3 \circ \downarrow_2 \circ \text{RB}_2 \circ \text{RB}_1) \circ \text{Conv}(y_{hf}), \quad (5)$$

$$229 \quad C' = P_D \otimes \text{Resize}(w, H, W), \quad (6)$$

230 where $\text{RB}(\cdot)$ denotes a residual block consisting of two 3×3 convolutional layers with a SiLU
 231 activation in between, $\text{Conv}(\cdot)$ represents a convolutional layer, \circ denotes function composition ap-
 232 plied sequentially from right to left, and \otimes denotes element-wise multiplication. The downsampling
 233 operator \downarrow_2 further reduces spatial resolution and disrupts local structures. The degradation prompt
 234 $P_D \in \mathbb{R}^{N_p \times C}$ is jointly learned to encode degradation-specific information.
 235

236 **Noise Addition and Denoiser Module.** Our framework integrates degradation modeling Yue et al.
 237 (2022) into the denoising autoencoder, reinterpreting denoising as a controllable degradation applied
 238 to HR images. During the corruption process, we perturb HR images using a patch-wise noise
 239 schedule. Specifically, following the diffusion noise schedule, each patch $x_i \in \mathbb{R}^{P \times P \times C}$ is assigned
 240 a random timestep t_i , and its noisy version is obtained as:
 241

$$241 \quad x_i^{(t_i)} = \sqrt{\hat{\alpha}_{t_i}} x_i + \sqrt{1 - \hat{\alpha}_{t_i}} \epsilon_i, \quad \epsilon_i \sim \mathcal{N}(0, \mathbf{I}), \quad (7)$$

242 where $\hat{\alpha}_{t_i}$ denotes the cumulative product of noise scheduling coefficients at time t_i and ϵ_i is stan-
 243 dard Gaussian noise. This patch-wise formulation enables each image region to undergo a different
 244 level of degradation, allowing the model to better capture spatially varying corruption. The final
 245 noisy image is denoted as x_t .
 246

247 During the denoising process, a lightweight CNN acting as the denoiser module estimates the blur
 248 kernel and extracts intermediate feature F conditioned on the degradation map C' . The feature F are
 249 then downsampled to produce the predicted LR image. Specifically, the denoiser module comprises
 250 L Condition Residual Blocks (CRBs) that leverage Adaptive Layer Normalization (AdaLN) Perez
 251 et al. (2018); Li et al. (2024b) for conditional modulation. For each $P \times P$ patch, the assigned
 252 timestep t_i is embedded and combined with C' to produce a patch-specific condition z . This condi-
 253 tion is passed through a SiLU activation and a linear layer to generate modulation parameters α , β ,
 254 and γ corresponding to scaling, bias, and gating. In the residual path, features are first normalized
 255 via LayerNorm and modulated by α and β , then processed by a residual block, gated with γ , and
 256 finally added back to the input. The CRB can be formulated as:
 257

$$258 \quad t_{emb} = \text{TEmb}(t), \quad (8)$$

$$259 \quad \alpha, \beta, \gamma = \text{Linear}(\text{SiLU}(C' + t_{emb})), \quad (9)$$

$$260 \quad x'_t = \alpha \otimes (\text{LN}(F_{i-1})) + \beta, \quad (10)$$

$$261 \quad F_i = \gamma \otimes \text{RB}(x'_t) + F_{i-1}, \quad (11)$$

262 where $\text{TEmb}(\cdot)$ is the timestep embedder, F_{i-1} is the output of the previous CRB, and the initial
 263 feature is set as $F_0 = x_t$. The $\text{RB}(\cdot)$ in the final CRB is simplified to a single convolutional layer.
 264

265 **Downsample Module.** The module adjusts the feature map to match the spatial resolution of the
 266 original LR image. Features F are first downsampled by a factor of s , then processed by a residual
 267 block and a convolutional layer:
 268

$$269 \quad y' = \text{Conv}(\text{RB}(F \downarrow_s)). \quad (12)$$

270 Here, RB and the final convolutional layer are used to enhance feature representation and maintain
 271 smooth transitions between downsampled regions.
 272

270 3.3 TRAINING AND INFERENCE MODES OF LDP
271

272 **Training LDP.** Following Lway Chen et al. (2024), LDP is trained by supervising only the high-
273 frequency components of the predicted LR images. We apply the Discrete Wavelet Transform
274 (DWT) to decompose the predicted LR image y' into four subbands (LL, LH, HL, HH). The high-
275 frequency subbands (LH, HL, HH) are then summed and normalized to form a weight map M ,
276 which is subsequently used to compute both the L1 loss and the LPIPS loss Zhang et al. (2018):
277

$$\mathcal{L}_{sym}^T = \lambda_1 \mathcal{L}_1(M \otimes y', M \otimes y) + \lambda_2 \mathcal{L}_{LPIPS}(M \otimes y', M \otimes y), \quad (13)$$

278 where λ_1 and λ_2 are the corresponding loss weights.
279

280 **Fine-Tuning SR Models with LDP.** In fine-tuning, the original loss of pretrained SR models is aug-
281 mented with a frequency loss Xie et al. (2023) that supervises the amplitude and phase components
282 of SR and HR images in the frequency domain:
283

$$\mathcal{L}_{fre} = \frac{1}{HW} \sum_{u=0}^{H-1} \sum_{v=0}^{W-1} D(\mathcal{F}(x')(u, v), \mathcal{F}(x)(u, v)), \quad (14)$$

$$D(\mathcal{F}(x'), \mathcal{F}(x)) = \left((\mathcal{R}(\mathcal{F}(x')) - \mathcal{R}(\mathcal{F}(x)))^2 + (\mathcal{I}(\mathcal{F}(x')) - \mathcal{I}(\mathcal{F}(x)))^2 \right)^{\gamma/2}, \quad (15)$$

289 where x and x' are the HR image and SR result, $\mathcal{F}(x)$ denotes the 2D Fourier transform of x , and
290 $\mathcal{R}(\cdot)$ and $\mathcal{I}(\cdot)$ denote its real and imaginary parts. γ controls the sharpness of the frequency distance
291 and is set to 1 by default. (u, v) indexes the frequency domain. In addition, LDP enforces cycle
292 consistency by reconstructing the LR image from the SR output and minimizing a symmetric loss:
293

$$\mathcal{L}_{sym}^{FT} = \lambda_1 \mathcal{L}_1(M' \otimes y', M' \otimes y) + \lambda_2 \mathcal{L}_{LPIPS}(M' \otimes y', M' \otimes y) + \lambda_3 \mathcal{L}_{fre}(M' \otimes y', M' \otimes y), \quad (16)$$

294 where $M' = \tau \cdot M$, τ scales the high-frequency weight map M by a scalar τ .
295

296 **Diffusion Posterior Sampling with LDP.** Our LDP can also be applied during inference in diffusion
297 models via Diffusion Posterior Sampling (DPS) Chung et al. (2023), which uses the gradient of a
298 data fidelity term to guide sampling and better align the results with the LR input:
299

$$\nabla_{x_t} \log p_t(x_t | y) \simeq s_{\theta^*}(x_t, t) - \rho \nabla_{x_t} \mathcal{L}_{sym}^{FT}(LDP(\hat{x}_0, y_{hf}), y), \quad (17)$$

300 where $s_{\theta^*}(x_t, t)$ denotes the score function (the noise predictor in DDPM Ho et al. (2020)), and
301 $LDP(\cdot)$ represents our LDP degradation model. \hat{x}_0 denotes the predicted clean image at each time
302 step, and we treat it as the SR output. In latent diffusion models, \hat{x}_0 is first decoded into the pixel
303 space before computing the gradient.
304

305 4 EXPERIMENT
306308 4.1 IMPLEMENTATION DETAILS
309

310 **Training LDP.** We train LDP on LSDIR Li et al. (2023) dataset using BSRGAN Zhang et al. (2021a)
311 to synthesize diverse degradation datasets. For a scale factor of $s = 4$, the key hyperparameters are
312 $s' = 2$, $L = 3$, $P = 16$, $N_p = 32$, $\lambda_1 = \lambda_2 = 1$, and $C = 64$, resulting in 642k parameters. We
313 use the Adam Kingma & Ba (2015) optimizer with $\beta_1 = 0.9$ and $\beta_2 = 0.99$, with a fixed learning
314 rate of 0.001. The batch size is 12, with 256×256 HR patches. The timesteps t_i are sampled
315 from $[500, 1000]$ to align the noisy HR and LR features. We adopt the diffusion batch multiplier Li
316 et al. (2024b) with a value of 4 to perform multiple noise realizations per HR image. Training is
317 conducted on a single NVIDIA RTX A6000 for 60K iterations, taking approximately 16 hours.
318

319 **Fine-Tuning SR Models.** We fine-tune existing SR models on the DF2K dataset (DIV2K Agustsson
320 & Timofte (2017) and Flickr2K Lim et al. (2017)) using BSRGAN degradation patterns, with our
321 LDP employed as an auxiliary loss. Details are provided in the Appendix D.
322

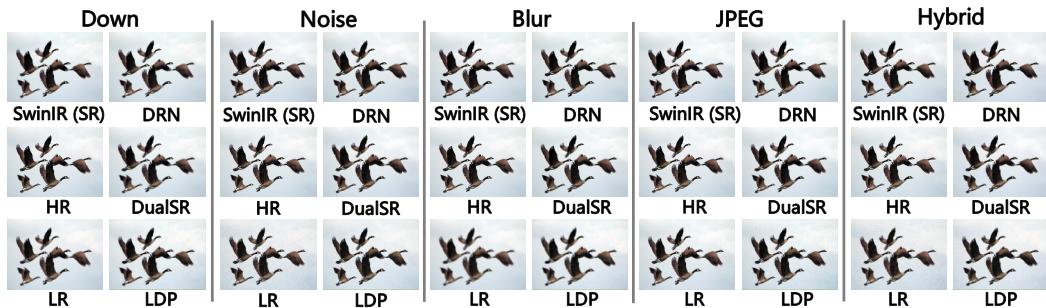
323 **Testing.** For synthetic testing, we generate five distinct datasets from the DIV2K validation set
324 using `bsrgan_plus` (BSRGAN Zhang et al. (2021a) and Real-ESRGAN Wang et al. (2021)),
325 corresponding to the following degradation types: (1) downsampling, (2) noise, (3) blur, (4) JPEG
326 compression, and (5) hybrid degradations following `bsrgan_plus` defaults. For real-world testing,
327

324
325
326
327
Table 1: Performance of multiple degra-
328 dation models in LR prediction on synthetic
329 multi-degradation datasets.

Methods	Metrics	Down	Noise	Blur	JPEG	Hybrid
DRN	PSNR↑	32.05	27.25	26.38	29.65	27.03
	SSIM↑	0.9539	0.7812	0.8273	0.9270	0.8098
	LPIPS↓	0.0794	0.2474	0.3207	0.0826	0.3360
DualSR	PSNR↑	19.58	18.77	19.36	18.57	19.36
	SSIM↑	0.4814	0.4712	0.4911	0.4612	0.4883
	LPIPS↓	0.1408	0.1399	0.1844	0.1492	0.2130
LDP	PSNR↑	29.15	26.71	28.41	28.01	27.94
	SSIM↑	0.9283	0.8978	0.9159	0.9243	0.9173
	LPIPS↓	0.0985	0.1248	0.1417	0.0877	0.1025

330
331
332
333
334
335
Table 2: Similarity between the LR images
336 generated by multiple degradation models
337 and the downsampled SR images.

Methods	Metrics	Down	Noise	Blur	JPEG	Hybrid
DRN	PSNR↑	34.02	31.57	34.99	31.35	35.10
	SSIM↑	0.9638	0.9590	0.9692	0.9587	0.9679
	LPIPS↓	0.0365	0.0436	0.0306	0.0467	0.0296
DualSR	PSNR↑	22.58	20.79	22.57	20.46	22.85
	SSIM↑	0.6689	0.6502	0.7044	0.6356	0.7164
	LPIPS↓	0.1264	0.1040	0.1262	0.1279	0.1175
LDP	PSNR↑	28.41	25.93	25.04	27.42	26.28
	SSIM↑	0.8895	0.7508	0.7596	0.8886	0.7597
	LPIPS↓	0.1551	0.3043	0.3278	0.1293	0.3586



346
347 Figure 3: Qualitative results of multiple degradations models for LR prediction on synthetic datasets.
348 **(Zoom in for details)**

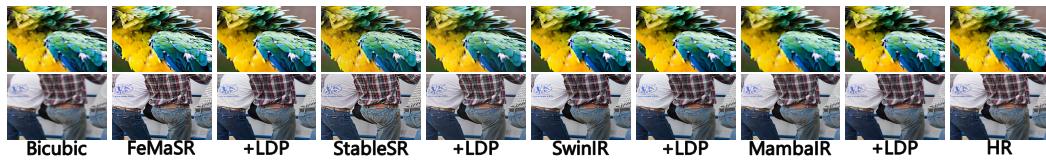
349
350
351 we evaluate on RealSR Cai et al. (2019), RealSRSet Zhang et al. (2021b), and DPED Ignatov et al.
352 (2017) datasets. We evaluate using PSNR, SSIM Wang et al. (2004), and LPIPS Zhang et al. (2018)
353 as reference metrics, and NIQE Mittal et al. (2012), MANIQA Yang et al. (2022), CLIPQA Wang
354 et al. (2023a), MUSIQ Ke et al. (2021), and QAlign Wu et al. (2024) as non-reference metrics. For
355 diffusion models, synthetic datasets are center-cropped to 512×512 , and real-world datasets follow
356 the StableSR Wang et al. (2024).

358 4.2 EFFECTIVENESS OF LDP IN LR PREDICTION

359
360 To thoroughly evaluate the effectiveness of the proposed LDP, we conduct extensive experiments
361 under five degradation scenarios and compare it with two existing degradation models, DRN Guo
362 et al. (2020) and DualSR Emad et al. (2021). In this experiment, we first generate SR images us-
363 ing SwinIR Liang et al. (2021), and then apply the degradation models provided by LDP, DRN,
364 and DualSR to obtain predicted LR images from the SR outputs. These predictions are compared
365 with the LR inputs to the SR model, and the results are reported in Table 1. In addition, Table 2
366 reports the similarity between the LR images produced by each degradation model and the down-
367 sampled SR images. A higher similarity indicates that the degradation model collapses into trivial
368 downscaling rather than applying the specific degradations implied by the input LR. As shown in
369 the tables, LDP performs consistently well across all degradation types. Importantly, the similarity
370 between the LDP-generated LR and the downsampled SR is significantly lower than that between
371 the LDP-generated LR and the input LR, demonstrating that LDP does not degenerate into simple
372 downscaling. In contrast, DRN behaves almost identically to bicubic downscaling: because its
373 inputs include only HR (SR results) images without any conditional signals, it fails to map an SR
374 image to the multiple possible LR variants implied by different degradations. DualSR also strug-
375 gles to properly handle diverse degradation types, particularly under complex mixed settings. As
376 illustrated in **Fig. 3**, LDP effectively degrades high-frequency structures, further validating its abil-
377 ity to generate perceptually realistic LR images even under challenging degradations. In contrast,
378 DRN and DualSR largely produce LR outputs that resemble simple downsampled versions of the
379 SR images, indicating that they fail to apply the intended degradations.

378
379
380
381
382
383 Table 3: Performance improvements of blind SR models across diverse architectures using our
384 proposed LDP on synthetic multi-degradation benchmarks. We generate synthetic benchmarks from
385 the DIV2K validation set using five types of degradation: (1) Downsampling (Down), (2) Noise, (3)
386 Blur, (4) JPEG, and (5) Hybrid degradations following bsrgan_plus defaults.

Datasets	Scale	Metrics	FeMaSR	+LDP	StableSR	+LDP	SwinIR	+LDP	MambaIR	+LDP
Down	×4	PSNR↑	24.22	25.06 (+0.84)	20.35	21.73 (+1.38)	25.44	25.86 (+0.42)	26.58	26.63 (+0.05)
	×4	SSIM↑	0.6793	0.7105 (+0.0312)	0.4998	0.5642 (+0.0644)	0.7210	0.7242 (+0.0032)	0.7393	0.7403 (+0.0010)
	×4	LPIPS↓	0.2637	0.2490 (-0.0147)	0.3746	0.2870 (-0.0876)	0.2579	0.2538 (-0.0041)	0.2054	0.2005 (-0.0049)
Noise	×4	PSNR↑	22.82	23.84 (+1.02)	19.95	21.48 (+1.53)	24.34	25.04 (+0.70)	26.11	26.34 (+0.23)
	×4	SSIM↑	0.6519	0.6957 (+0.0438)	0.4569	0.5599 (+0.1030)	0.7130	0.7198 (+0.0068)	0.7382	0.7411 (+0.0029)
	×4	LPIPS↓	0.2788	0.2624 (-0.0164)	0.4279	0.3040 (-0.1239)	0.2676	0.2659 (-0.0017)	0.2279	0.2219 (-0.0060)
Blur	×4	PSNR↑	24.12	24.42 (+0.30)	19.98	21.50 (+1.52)	24.03	24.67 (+0.64)	24.99	25.33 (+0.34)
	×4	SSIM↑	0.6639	0.6787 (+0.0148)	0.4373	0.5437 (+0.1064)	0.6764	0.6833 (+0.0069)	0.6892	0.6942 (+0.0050)
	×4	LPIPS↓	0.3168	0.3199 <i>(+0.0031)</i>	0.5112	0.4763 (-0.0349)	0.3197	0.3168 (-0.0029)	0.2768	0.2751 (-0.0017)
JPEG	×4	PSNR↑	22.92	23.87 (+0.95)	20.17	21.91 (+1.74)	24.55	25.27 (+0.72)	26.36	26.59 (+0.23)
	×4	SSIM↑	0.6696	0.7068 (+0.0372)	0.5141	0.5943 (+0.0802)	0.7301	0.7372 (+0.0071)	0.7497	0.7538 (+0.0041)
	×4	LPIPS↓	0.2633	0.2508 (-0.0125)	0.3682	0.2767 (-0.0915)	0.2535	0.2506 (-0.0029)	0.2113	0.2063 (-0.0050)
Hybrid	×4	PSNR↑	23.40	23.72 (+0.32)	19.27	21.43 (+2.16)	23.52	24.35 (+0.83)	24.35	24.71 (+0.36)
	×4	SSIM↑	0.6211	0.6392 (+0.0181)	0.3656	0.5197 (+0.1541)	0.6458	0.6492 (+0.0034)	0.6587	0.6636 (+0.0049)
	×4	LPIPS↓	0.3453	0.3516 <i>(+0.0063)</i>	0.5727	0.4461 (-0.1266)	0.3634	0.3571 (-0.0063)	0.3244	0.3210 (-0.0034)

400 Figure 4: Qualitative results on synthetic datasets with $\times 4$ scale factor. **(Zoom in for details)**
401402

4.3 IMPROVING EXISTING SR MODELS VIA FINE-TUNING WITH LDP

403 We evaluate LDP on Blind SR models, including the GAN-based FeMaSR Chen et al. (2022),
404 Diffusion-based StableSR Wang et al. (2024), Transformer-based SwinIR Liang et al. (2021), and
405 Mamba-based MambaIR Guo et al. (2024). In these experiments, LDP is applied only during the
406 fine-tuning stage and is not used at inference.

407 **Improving SR Models on Synthetic Benchmarks.** Quantitative and qualitative results are pre-
408 sented in Tab. 3 and Fig. 4 (Fig. 7 in **Appendix**). As listed in Tab. 3, incorporating LDP consistently
409 improves all baseline models across all degradation types. Among them, MambaIR+LDP achieves
410 the best overall performance. SwinIR and StableSR also benefit significantly from LDP. StableSR,
411 in particular, shows substantial relative gains under challenging conditions such as Blur and Hybrid.
412 These results highlight LDP’s effectiveness in narrowing the solution space via cycle consistency,
413 enabling stronger generalization to unknown degradations. Although FeMaSR+LDP outperforms
414 the original model in most metrics, its LPIPS values in Blur and Hybrid remain higher. As shown in
415 Fig. 4, LDP effectively reduces GAN artifacts and corrects texture distortions, significantly impro-
416 ving perceptual quality. The low LPIPS scores of the original FeMaSR are likely due to severe GAN
417 artifacts misinterpreted as texture.

418 **Improving SR Models on Real-World Benchmarks.** Quantitative and qualitative results are pre-
419 sented in Tab. 4 and Fig. 5 (Fig. 8 in **Appendix**). Table 4 shows that incorporating LDP consis-
420 tently improves the performance of existing blind SR models across almost all datasets and metrics,
421 demonstrating its enhanced generalization to unseen degradations. For FeMaSR, LDP suppresses
422 GAN-induced artifacts, producing more stable, natural outputs. This can lower no-reference met-
423 rics, e.g., the CLIPQA score drops on RealSR, as such metrics may favor visually striking but
424 structurally inaccurate results. As shown in Fig. 5, the visual results explain the numerical improve-
425 ments, with LDP mitigating ringing and GAN-induced artifacts, thereby enhancing visual fidelity
426 and contributing to the better no-reference metrics scores.

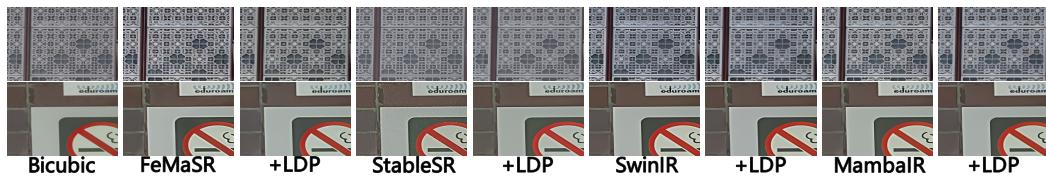
427

4.4 LDP FOR POSTERIOR SAMPLING OF PRETRAINED DIFFUSION MODELS

428 We evaluated how LDP enhances pre-trained diffusion models through posterior sampling, in-
429 cluding LDM Rombach et al. (2022), StableSR Wang et al. (2024), ResShift Yue et al. (2025),
430 and UPSR Zhang et al. (2025). Quantitative and qualitative results are presented in Tab. 5 and

432 Table 4: Performance improvements of blind SR models across diverse architectures using our
 433 proposed LDP on real-world benchmarks.
 434

Datasets	Scale	Metrics	FeMaSR	+LDP	StableSR	+LDP	SwinIR	+LDP	MambaIR	+LDP
RealSR	×4	NIQE↓	4.708	5.533 (+0.825)	7.446	6.331 (-1.115)	4.773	4.838 (+0.065)	5.330	5.350 (+0.020)
	×4	MANIQA↑	0.3430	0.3654 (+0.0224)	0.3303	0.3548 (+0.0245)	0.3510	0.3742 (+0.0232)	0.2882	0.3374 (+0.0492)
	×4	CLIPQA↑	0.5645	0.4482 (-0.1163)	0.4886	0.5213 (+0.0237)	0.4739	0.5478 (+0.0739)	0.3989	0.4642 (+0.0653)
	×4	MUSIQ↑	58.94	60.70 (+1.76)	52.99	59.26 (+6.27)	59.67	61.91 (+2.24)	51.87	57.85 (+5.98)
	×4	QAlign↑	3.695	3.860 (+0.165)	2.347	2.646 (+0.299)	3.820	3.877 (+0.057)	3.631	3.766 (+0.135)
DPED	×4	NIQE↓	5.045	5.704 (+0.659)	7.616	7.228 (-0.388)	4.982	4.821 (-0.161)	5.983	5.430 (-0.553)
	×4	MANIQA↑	0.3102	0.2719 (-0.0383)	0.3056	0.2970 (-0.0086)	0.2637	0.2832 (+0.0195)	0.2334	0.2767 (+0.0433)
	×4	CLIPQA↑	0.5570	0.3610 (-0.1960)	0.3968	0.3843 (-0.0125)	0.3402	0.4538 (+0.1136)	0.3083	0.3850 (+0.0767)
	×4	MUSIQ↑	49.14	44.07 (-5.07)	42.97	45.08 (+2.11)	42.10	45.91 (+3.81)	35.25	44.64 (+9.39)
	×4	QAlign↑	3.429	3.262 (-0.167)	2.033	2.311 (+0.278)	2.988	3.090 (+0.102)	3.192	3.248 (+0.056)
RealSRSet	×4	NIQE↓	5.236	5.952 (+0.716)	6.090	5.586 (-0.504)	5.424	5.441 (+0.017)	5.726	5.893 (+0.167)
	×4	MANIQA↑	0.4006	0.4002 (-0.0004)	0.3904	0.4012 (+0.0108)	0.3740	0.3938 (+0.0198)	0.2978	0.3555 (+0.0577)
	×4	CLIPQA↑	0.6874	0.5683 (-0.1191)	0.6057	0.6214 (+0.0157)	0.5843	0.6376 (+0.0533)	0.4793	0.5428 (+0.0635)
	×4	MUSIQ↑	64.65	64.07 (-0.58)	60.15	62.84 (+2.69)	63.60	65.33 (+1.73)	55.96	61.28 (+5.32)
	×4	QAlign↑	3.776	3.870 (+0.094)	2.916	3.247 (+0.331)	2.749	3.322 (+0.573)	3.434	3.632 (+0.198)



446 Figure 5: Qualitative results on real-world benchmarks with $\times 4$ scale factor. (Zoom in for details)
 447
 448
 449
 450
 451

452 Fig. 6 (Fig. 9 in **Appendix**). As listed in Tab. 5, after applying LDP, the baselines show improvements
 453 across nearly all metrics on most datasets. For instance, StableSR demonstrates notable gains
 454 in MANIQA, CLIPQA, and MUSIQ scores after applying LDP, while ResShift and UPSR also
 455 achieve higher metric values in most cases. For StableSR, we applied the noise-subtraction tech-
 456 nique (Appendix E), which accounts for the differences from Tab. 4. As showed in Fig. 6, our LDP
 457 effectively reduces texture artifacts while preserving structural consistency.
 458

5 ABLATION STUDY

463 In ablation study, we examine the loss components, patch size, frequency band selection, scale factor
 464 for high-frequency acquisition, performance of LDP under severe degradations, and computational
 465 burden of LDP. Further details are provided in Appendix F.
 466

467 **Ablation of Loss Terms in the Fine-Tuning Stage.** Table 6 presents the impact of different loss
 468 components in \mathcal{L}_{sym}^{FT} (Equ. 16) and \mathcal{L}_{fre} (Equ. 14) during fine-tuning of pretrained SwinIR models,
 469 evaluated on the synthetic Hybrid dataset. In all experiments, we set $\tau = 100$ and the weight of
 470 each loss term is set to 1. All variants using any combination of the proposed losses outperform
 471 the baseline. Incorporating both symmetric and frequency losses (LDPV5–LDPV7) consistently
 472 improves perceptual quality (lower LPIPS) and reconstruction accuracy (higher PSNR and SSIM),
 473 with LDPV7 achieving the best overall performance, highlighting the complementary nature of these
 474 loss components. The LDP parameters can be universally configured as $\tau = 100$ and $\lambda_1 = \lambda_2 =$
 475 $\lambda_3 = 1$ for any super-resolution model, leading to improved generalization performance.
 476

477 **Ablation of the weight of τ_{au} .** Table 7 presents the impact of different weight of τ_{au} when fine-
 478 tuning SwinIR. All values of τ_{au} outperform the baseline, with $\tau_{au} = 100$ achieving the best overall
 479 performance.
 480

6 LIMITATIONS AND CONCLUSION

482 We propose LDP, a lightweight denoising autoencoder plug-in. By integrating HR images and the
 483 high-frequency component of LR, the model achieves realistic degradation modeling while main-
 484 taining efficiency. Experiments show LDP significantly improves the generalization of existing SR
 485 models on unseen degradations after fine-tuning, and enables test-time artifact correction. However,
 486 LDP has two main limitations: (1) in posterior sampling, it lacks generative ability and only per-

Table 5: Improving Diffusion models via posterior sampling with LDP on real-world benchmarks.

Datasets	Scale	Metrics	LDM	+LDP	StableSR	+LDP	ResShift	+LDP	UPSR	+LDP
RealSR	×4	NIQE↓	6.651	6.830 (+0.179)	5.948	5.636 (-0.312)	8.021	8.027 (+0.006)	4.854	4.834 (-0.020)
	×4	MANIQA↑	0.2904	0.2810 (-0.0094)	0.3552	0.3644 (+0.0092)	0.3487	0.3486 (-0.0001)	0.3901	0.3908 (+0.0007)
	×4	CLIPQA↑	0.4564	0.4319 (-0.0245)	0.4840	0.5031 (+0.0191)	0.5353	0.5354 (+0.0001)	0.5278	0.5361 (+0.0083)
	×4	MUSIQ↑	52.09	50.37 (-1.72)	55.11	56.56 (+1.45)	56.85	56.85	64.82	64.70 (-0.12)
	×4	QAlign↑	2.685	2.610 (-0.075)	2.607	2.716 (+0.109)	3.036	3.036	3.218	3.231 (+0.013)
DPED	×4	NIQE↓	8.724	8.770 (+0.046)	6.456	6.267 (-0.189)	9.429	9.415 (-0.014)	6.266	6.281 (+0.015)
	×4	MANIQA↑	0.2381	0.2418 (+0.0037)	0.3255	0.3341 (+0.0086)	0.3107	0.3104 (-0.0003)	0.3151	0.3163 (+0.0012)
	×4	CLIPQA↑	0.3718	0.3681 (-0.0037)	0.4041	0.4053 (+0.0012)	0.4875	0.4879 (+0.0004)	0.4094	0.4026 (-0.0068)
	×4	MUSIQ↑	32.92	32.55 (-0.37)	45.55	49.25 (+3.70)	44.63	44.59 (-0.04)	46.47	46.52 (+0.05)
	×4	QAlign↑	1.901	1.917 (+0.016)	2.302	2.343 (+0.041)	2.422	2.423 (+0.001)	2.271	2.257 (-0.014)
RealSRSet	×4	NIQE↓	6.349	6.258 (-0.091)	4.898	4.687 (-0.211)	6.979	7.011 (+0.032)	4.864	4.878 (+0.014)
	×4	MANIQA↑	0.3407	0.3470 (+0.0063)	0.4411	0.4573 (+0.0162)	0.4004	0.4004	0.4647	0.4720 (+0.0073)
	×4	CLIPQA↑	0.5439	0.5311 (-0.0128)	0.6384	0.6584 (+0.0200)	0.6656	0.6658 (+0.0002)	0.6709	0.6753 (+0.0044)
	×4	MUSIQ↑	58.54	59.52 (+0.98)	62.73	62.96 (+0.23)	66.05	66.06 (+0.01)	69.68	69.74 (+0.06)
	×4	QAlign↑	3.046	3.089 (+0.043)	3.193	3.192 (-0.001)	3.561	3.560 (-0.001)	3.705	3.656 (-0.049)

Figure 6: Qualitative results of LDP enhances diffusion models through posterior sampling at $\times 4$ scale SR. (Zoom in for details)

Table 6: Ablation study of the loss terms used in the fine-tuning stage of pretrained SwinIR models.

Methods	\mathcal{L}_1^{Sym}	$\mathcal{L}_{LPIPS}^{Sym}$	\mathcal{L}_{fre}^{Sym}	\mathcal{L}_{fre}^{SR}	PSNR↑	SSIM↑	LPIPS↓
baseline	×	×	×	×	23.52	0.6458	0.3634
LDPV1	×	×	×	✓	23.99	0.6481	0.3591
LDPV2	✓	✓	×	×	24.08	0.6406	0.3585
LDPV3	×	×	✓	×	24.01	0.6404	0.3582
LDPV4	✓	✓	✓	×	24.13	0.6406	0.3609
LDPV5	✓	✓	×	✓	24.33	0.6499	0.3578
LDPV6	×	×	✓	✓	24.28	0.6500	0.3580
LDPV7	✓	✓	✓	✓	24.35	0.6492	0.3571

forms texture rectification; (2) It does not support unpaired degradation modeling, as the generated LR image inevitably retains information from the input LR high-frequency components.

REFERENCES

Eirikur Agustsson and Radu Timofte. NTIRE 2017 challenge on single image super-resolution: Dataset and study. In *IEEE Conference on Computer Vision and Pattern Recognition Workshops*, pp. 1122–1131, 2017.

Arpit Bansal, Eitan Borgnia, Hong-Min Chu, Jie Li, Hamid Kazemi, Furong Huang, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Cold diffusion: Inverting arbitrary image transforms without noise. In *Advances in Neural Information Processing Systems*, 2023.

Jianrui Cai, Hui Zeng, Hongwei Yong, Zisheng Cao, and Lei Zhang. Toward real-world single image super-resolution: A new benchmark and a new model. In *IEEE International Conference on Computer Vision*, pp. 3086–3095, 2019.

Chaofeng Chen, Xinyu Shi, Yipeng Qin, Xiaoming Li, Xiaoguang Han, Tao Yang, and Shihui Guo. Real-world blind super-resolution via feature matching with implicit high-resolution priors. In *ACM International Conference on Multimedia*, pp. 1329–1338, 2022.

Table 7: Ablation study of the τ weight.

tau	PSNR↑	SSIM↑	LPIPS↓
-	23.52	0.6458	0.3634
0.1	24.15	0.6547	0.3601
1	24.27	0.6547	0.3595
10	24.30	0.6500	0.3596
100	24.35	0.6492	0.3571

540 Haoyu Chen, Wenbo Li, Jinjin Gu, Jingjing Ren, Haoze Sun, Xueyi Zou, Zhensong Zhang, Youliang Yan, and
 541 Lei Zhu. Low-res leads the way: Improving generalization for super-resolution by self-supervised learning.
 542 In *IEEE Conference on Computer Vision and Pattern Recognition*, pp. 25857–25867, 2024.

543 Honggang Chen, Xiaohai He, Hong Yang, Yuanyuan Wu, Linbo Qing, and Ray E. Sheriff. Self-supervised
 544 cycle-consistent learning for scale-arbitrary real-world single image super-resolution. *Expert Systems with*
 545 *Applications*, 212:118657, 2023a.

546 Xiangyu Chen, Xintao Wang, Jiantao Zhou, Yu Qiao, and Chao Dong. Activating more pixels in image super-
 547 resolution transformer. In *IEEE Conference on Computer Vision and Pattern Recognition*, pp. 22367–22377,
 548 2023b.

549 Yuying Chen, Mingde Yao, Wenbo Li, Renjing Pei, Jingjing Zhao, and Wenqi Ren. Unsupervised diffusion-
 550 based degradation modeling for real-world super-resolution. In *Proceedings of the AAAI Conference on*
 551 *Artificial Intelligence*, pp. 2348–2356, 2025.

552 Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune Gwon, and Sungroh Yoon. ILVR: conditioning
 553 method for denoising diffusion probabilistic models. In *IEEE International Conference on Computer Vision*,
 554 pp. 14347–14356, 2021.

555 Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. Improving diffusion models for inverse
 556 problems using manifold constraints. In *Advances in Neural Information Processing Systems*, 2022.

557 Hyungjin Chung, Jeongsol Kim, Michael Thompson McCann, Marc Louis Klasky, and Jong Chul Ye. Dif-
 558 fusion posterior sampling for general noisy inverse problems. In *International Conference on Learning*
 559 *Representations*, 2023.

560 Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learning a deep convolutional network for
 561 image super-resolution. In *European conference on computer vision*, pp. 184–199, 2014.

562 Runmin Dong, Shuai Yuan, Bin Luo, Mengxuan Chen, Jinxiao Zhang, Lixian Zhang, Weijia Li, Juepeng
 563 Zheng, and Haohuan Fu. Building bridges across spatial and temporal resolutions: Reference-based super-
 564 resolution via change priors and conditional diffusion model. In *IEEE Conference on Computer Vision and*
 565 *Pattern Recognition*, pp. 27674–27684, 2024.

566 Mohammad Emad, Maurice Peemen, and Henk Corporaal. DualSR: Zero-shot dual learning for real-world
 567 super-resolution. In *IEEE Winter Conference on Applications of Computer Vision*, pp. 1629–1638, 2021.

568 Hang Guo, Jinmin Li, Tao Dai, Zhihao Ouyang, Xudong Ren, and Shu-Tao Xia. MambaIR: A simple baseline
 569 for image restoration with state-space model. In *European conference on computer vision*, pp. 222–241,
 570 2024.

571 Hang Guo, Yong Guo, Yaohua Zha, Yulun Zhang, Wenbo Li, Tao Dai, Shu-Tao Xia, and Yawei Li. Mam-
 572 bairv2: Attentive state space restoration. In *IEEE Conference on Computer Vision and Pattern Recognition*,
 573 2025.

574 Yong Guo, Jian Chen, Jingdong Wang, Qi Chen, Jiezheng Cao, Zeshuai Deng, Yanwu Xu, and Mingkui Tan.
 575 Closed-loop matters: Dual regression networks for single image super-resolution. In *IEEE Conference on*
 576 *Computer Vision and Pattern Recognition*, pp. 5406–5415, 2020.

577 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Advances in Neural*
 578 *Information Processing Systems*, 2020.

579 Shady Abu Hussein, Tom Tirer, and Raja Giryes. Correction filter for single image super-resolution: Robusti-
 580 fying off-the-shelf deep super-resolvers. In *IEEE Conference on Computer Vision and Pattern Recognition*,
 581 pp. 1425–1434, 2020.

582 Andrey Ignatov, Nikolay Kobyshev, Radu Timofte, Kenneth Vanhoey, and Luc Van Gool. DSLR-Quality photos
 583 on mobile devices with deep convolutional networks. In *IEEE International Conference on Computer Vision*,
 584 pp. 3297–3305, 2017.

585 Junjie Ke, Qifei Wang, Yilin Wang, Peyman Milanfar, and Feng Yang. MUSIQ: multi-scale image quality
 586 transformer. In *IEEE/CVF International Conference on Computer Vision*, pp. 5128–5137, 2021.

587 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *International Conference*
 588 *on Learning Represent*, 2015.

589 Guangyuan Li, Chen Rao, Juncheng Mo, Zhanjie Zhang, Wei Xing, and Lei Zhao. Rethinking diffusion model
 590 for multi-contrast MRI super-resolution. In *IEEE Conference on Computer Vision and Pattern Recognition*,
 591 pp. 11365–11374, 2024a.

594 Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image generation
 595 without vector quantization. In *Advances in Neural Information Processing Systems*, 2024b.

596

597 Xiaoming Li, Chaofeng Chen, Xianhui Lin, Wangmeng Zuo, and Lei Zhang. From face to natural image:
 598 Learning real degradation for blind image super-resolution. In *European conference on computer vision*, pp.
 599 376–392, 2022.

600 Yawei Li, Kai Zhang, Jingyun Liang, Jie Zhang, Ce Liu, Rui Gong, Yulun Zhang, Hao Tang, Yun Liu,
 601 Denis Demanolx, Rakesh Ranjan, Radu Timofte, and Luc Van Gool. LSDIR: A large scale dataset for
 602 image restoration. In *IEEE Conference on Computer Vision and Pattern Recognition Workshops*, pp. 1775–
 603 1787, 2023.

604 Jingyun Liang, Jie Zhang, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. SwinIR: Image
 605 restoration using swin transformer. In *IEEE International Conference on Computer Vision*, pp. 1833–1844,
 606 2021.

607 Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced deep residual net-
 608 works for single image super-resolution. In *IEEE Conference on Computer Vision and Pattern Recognition
 609 Workshops*, pp. 136–144, 2017.

610 Anish Mittal, Rajiv Soundararajan, and Alan C Bovik. Making a “completely blind” image quality analyzer.
 611 *IEEE Signal Processing Letters*, 20(3):209–212, 2012.

612 Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C. Courville. Film: Visual reasoning
 613 with a general conditioning layer. In *Proceedings of the AAAI Conference on Artificial Intelligence*, pp.
 614 3942–3951, 2018.

615 Vaishnav Potlapalli, Syed Waqas Zamir, Salman H. Khan, and Fahad Shahbaz Khan. Promptir: Prompting for
 616 all-in-one image restoration. In *Advances in Neural Information Processing Systems*, 2023.

617

618 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution im-
 619 age synthesis with latent diffusion models. In *IEEE Conference on Computer Vision and Pattern Recognition*,
 620 pp. 10674–10685, 2022.

621

622 Assaf Shocher, Nadav Cohen, and Michal Irani. ”Zero-Shot” super-resolution using deep internal learning. In
 623 *IEEE Conference on Computer Vision and Pattern Recognition*, pp. 3118–3126, 2018.

624

625 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *International
 626 Conference on Learning Representations*, 2021.

627

628 Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. Deep image prior. In *IEEE Conference on Computer
 629 Vision and Pattern Recognition*, pp. 9446–9454, 2018.

630

631 Jianyi Wang, Kelvin C. K. Chan, and Chen Change Loy. Exploring CLIP for assessing the look and feel of
 632 images. In *AAAI Conference on Artificial Intelligence*, pp. 2555–2563, 2023a.

633

634 Jianyi Wang, Zongsheng Yue, Shangchen Zhou, Kelvin C. K. Chan, and Chen Change Loy. Exploiting diffusion
 635 prior for real-world image super-resolution. *International Journal of Computer vision*, 2024.

636

637 Xintao Wang, Liangbin Xie, Chao Dong, and Ying Shan. Real-ESRGAN: Training real-world blind super-
 638 resolution with pure synthetic data. In *International Conference on Computer Vision Workshops*, pp. 1905–
 639 1914, 2021.

640

641 Zhixin Wang, Ziyi Zhang, Xiaoyun Zhang, Huangjie Zheng, Mingyuan Zhou, Ya Zhang, and Yanfeng Wang.
 642 DR2: diffusion-based robust degradation remover for blind face restoration. In *IEEE Conference on Com-
 643 puter Vision and Pattern Recognition*, pp. 1704–1713, 2023b.

644

645 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error
 646 visibility to structural similarity. *IEEE Transactions on Image Processing*, 13(4):600–612, 2004.

647

648 Haoning Wu, Zicheng Zhang, Weixia Zhang, Chaofeng Chen, Chunyi Li, Liang Liao, Annan Wang, Erli Zhang,
 649 Wenxiu Sun, Qiong Yan, Xiongkuo Min, Guangtai Zhai, and Weisi Lin. Q-align: Teaching Lmms for visual
 650 scoring via discrete text-defined levels. In *International Conference on Machine Learning*, 2024.

651

652 Jiahao Xie, Wei Li, Xiaohang Zhan, Ziwei Liu, Yew-Soon Ong, and Chen Change Loy. Masked frequency
 653 modeling for self-supervised visual pre-training. In *International Conference on Learning Representations*,
 654 2023.

648 Sidi Yang, Tianhe Wu, Shuwei Shi, Shanshan Lao, Yuan Gong, Mingdeng Cao, Jiahao Wang, and Yujiu Yang.
 649 Maniqa: Multi-dimension attention network for no-reference image quality assessment. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1191–1200, 2022.
 650

651 Zhicun Yin, Ming Liu, Xiaoming Li, Hui Yang, Longan Xiao, and Wangmeng Zuo. MetaF2N: Blind image
 652 super-resolution by learning efficient model adaptation from faces. In *IEEE International Conference on
 653 Computer Vision*, pp. 12987–12998, 2023.
 654

655 Yuan Yuan, Siyuan Liu, Jiawei Zhang, Yongbing Zhang, Chao Dong, and Liang Lin. Unsupervised image
 656 super-resolution using cycle-in-cycle generative adversarial networks. In *IEEE International Conference on
 657 Computer Vision Workshops*, pp. 701–710, 2018.
 658

659 Zongsheng Yue, Qian Zhao, Jianwen Xie, Lei Zhang, Deyu Meng, and Kwan-Yee K. Wong. Blind image super-
 660 resolution with elaborate degradation modeling on noise and kernel. In *IEEE Conference on Computer Vision
 661 and Pattern Recognition*, pp. 2118–2128, 2022.
 662

663 Zongsheng Yue, Jianyi Wang, and Chen Change Loy. Efficient diffusion model for image restoration by residual
 664 shifting. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 47(1):116–130, 2025.
 665

666 Kai Zhang, Jingyun Liang, Luc Van Gool, and Radu Timofte. Designing a practical degradation model for
 667 deep blind image super-resolution. In *IEEE International Conference on Computer Vision*, pp. 4791–4800,
 668 2021a.
 669

670 Kai Zhang, Jingyun Liang, Luc Van Gool, and Radu Timofte. Designing a practical degradation model for
 671 deep blind image super-resolution. In *IEEE International Conference on Computer Vision*, pp. 4791–4800,
 672 2021b.
 673

674 Leheng Zhang, Weiyi You, Kexuan Shi, and Shuhang Gu. Uncertainty-guided perturbation for image super-
 675 resolution diffusion model. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 676 17980–17989, 2025.
 677

678 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness
 679 of deep features as a perceptual metric. In *IEEE Conference on Computer Vision and Pattern Recognition*,
 680 pp. 586–595, 2018.
 681

682 Ruofan Zhang, Jinjin Gu, Haoyu Chen, Chao Dong, Yulun Zhang, and Wenming Yang. Crafting training degra-
 683 dation distribution for the accuracy-generalization trade-off in real-world super-resolution. In *International
 684 Conference on Machine Learning*, pp. 41078–41091, 2023.
 685

686 Hongyang Zhou, Xiaobin Zhu, Jianqing Zhu, Zheng Han, Shi-Xue Zhang, Jingyan Qin, and Xu-Cheng Yin.
 687 Learning correction filter via degradation-adaptive regression for blind single image super-resolution. In
 688 *IEEE International Conference on Computer Vision*, pp. 12331–12341, 2023.
 689

690 A THE USE OF LARGE LANGUAGE MODELS

691 We used Large Language Models to assist or polish the writing, without involving our experiments,
 692 figures, or other core contributions.

693 B ANONYMIZED LINK TO OUR CODE

694 Our code is available on an anonymous link for open-source access
<https://anonymous.4open.science/r/LDP-3CAC/>.

695 C CREATION OF SYNTHETIC TESTING DATASETS

696 We adopt the `bsrgan_plus` degradation model Zhang et al. (2021a); Wang et al. (2021) to con-
 697 struct synthetic multi-degradation datasets from the DIV2K validation set. Specifically, the full
 698 `bsrgan_plus` pipeline is used to generate the hybrid degradation dataset, while four individual
 699 datasets (Downsample, Blur, Noise, and JPEG) are created by applying only the corresponding
 700 components of `bsrgan_plus`.

701 **Downsample.** For the downsample mode, four types of interpolation methods are employed:
 $D_{nearest}^s$, $D_{bilinear}^s$, $D_{bicubic}^s$ and $D_{down-up}^s$, where s is the scale factor. For the $D_{nearest}^s$ method,

702 there is a probability that a centered 21×21 isotropic Gaussian kernel is shifted by $0.5 \times (s-1)$ pixels
 703 using a 2D linear grid interpolation technique. This step is taken to correct a potential misalignment
 704 of $0.5 \times (s-1)$ pixels towards the upper-left corner that may occur during the downsampling pro-
 705 cess. In the $D_{down-up}^s = D_{down}^{s/a} D_{up}^a$, the HR image is first downsampled by a scale factor of s/a
 706 and then upsampled by a scale factor of a . The interpolation methods for both downsampling and
 707 upsampling are randomly selected from nearest neighbor, bilinear, or bicubic interpolation. Addi-
 708 tionally, with a probability of 0.25, the HR image is initially resized to half of its original dimensions
 709 using a randomly selected interpolation technique. Following this resizing, s is set to $s/2$ for the
 710 subsequent downsampling operation.

711 **Noise.** For the noise mode, a shuffle order of 5 operations is generated. These operations include:
 712 (1) Gaussian noise with a standard deviation in [2, 25], including grayscale, multivariate, and color
 713 variants with probabilities of 0.4, 0.2, and 0.4, respectively; (2) Speckle noise, applied multiplica-
 714 tively with the same probability setting as Gaussian noise; (3) Poisson noise, added either globally
 715 or in grayscale with equal probability after scaling and rounding; (4) JPEG compression with a ran-
 716 dom quality factor in [30, 95]; and (5) downsampling by a factor of s using a randomly selected
 717 interpolation method (nearest, bilinear, or bicubic).

718 **Blur.** For the blur mode, a random sequence of two operations is applied: (1) blurring the image
 719 twice using randomly generated kernels with scale factor s , with a 50% chance of selecting an
 720 anisotropic Gaussian kernel, and otherwise using an isotropic Gaussian kernel, with kernel size and
 721 width also randomized; and (2) downsampling by a factor of s using a randomly chosen interpolation
 722 method (nearest-neighbor, bilinear, or bicubic).

723 **JPEG.** For the JPEG mode, a random sequence of two operations is applied: (1) simulating JPEG
 724 compression artifacts by converting the image to `uint8` format, compressing it using a randomly
 725 sampled quality factor between 30 and 95, and then decompressing it; and (2) downsampling the
 726 image by a factor of s using a randomly selected interpolation method (nearest-neighbor, bilinear,
 727 or bicubic).

729 730 D DETAILS OF FINE-TUNING PRETRAINED SUPER-RESOLUTION MODELS

731 All pretrained SR models were obtained from their respective official GitHub repositories. Fine-
 732 tuning was performed using the DF2K dataset, which combines DIV2K Agustsson & Timofte (2017)
 733 and Flickr2K Lim et al. (2017), with BSRGAN Zhang et al. (2021a) employed as the degradation
 734 model. In this setting, LDP is applied only during the fine-tuning stage and is not used at inference.

735 **FeMaSR.** We directly fine-tuned the second-stage model of FeMaSR using its original loss func-
 736 tions: L1 loss, LPIPS loss, GAN loss, and a codebook-specific loss. In addition, we incorporated
 737 the frequency loss \mathcal{L}_{fre} (Equ. 14) and the fine-tuning symmetry loss \mathcal{L}_{sym}^{FT} (Equ. 16). The hy-
 738 perparameters were set as follows: $\lambda_{fre} = 1$, $\lambda_1 = \lambda_2 = \lambda_3 = 0.1$, and $\tau = 1$. The model
 739 was fine-tuned for 100,000 iterations. Notably, even a brief fine-tuning of 1,000 iterations signifi-
 740 cantly reduces GAN-induced artifacts. Longer training durations allow the discriminator to better
 741 converge, thereby enhancing the generation of realistic and detailed textures. Experimental results
 742 demonstrate that when employing GAN loss, extended fine-tuning is typically necessary to ensure
 743 stable convergence of the discriminator.

744 **StableSR.** To fine-tune StableSR, we follow the original loss settings with two additional loss terms:
 745 the frequency loss \mathcal{L}_{fre} (Equ. 14) and the fine-tuning symmetry loss \mathcal{L}_{sym}^{FT} (Equ. 16). Since Sta-
 746 bleSR is a latent diffusion model, it is necessary to use the decoder to transform the latent features
 747 back into the RGB space. Specifically, at each diffusion step, based on DDPM Ho et al. (2020) or
 748 DDIM Song et al. (2021), the model predicts the clean image \hat{x}_0 from the noisy input. We first apply
 749 the decoder to convert \hat{x}_0 into a RGB image X' , which is then used to compute the frequency loss
 750 $\mathcal{L}_{fre}(X', x)$ for frequency modulation. Subsequently, X' along with the high-frequency component
 751 of LR y_{hf} is fed into our LDP module to generate a predicted LR image y' . We then apply the
 752 symmetry loss $\mathcal{L}_{sym}^{FT}(y', y)$ to further guide the super-resolution process. The hyper-parameters are
 753 set $\lambda_{fre} = 0.1$, $\lambda_1 = \lambda_2 = \lambda_3 = 0.1$ and $\tau = 1$. The model was fine-tuned for 2,000 iterations.
 754 The inference code is the same as the original StableSR with the DDPM step set as 200.

756 **SwinIR and MambaIR.** To fine-tune SwinIR and MambaIR, we use \mathcal{L}_1 , \mathcal{L}_{LPIPS} and
 757 \mathcal{L}_{fre} (Equ. 14) to constrain HR and SR result, while use \mathcal{L}_{sym}^{FT} to constrain LR and the predicted
 758 LR from our LDP. The hyper-parameters are set $\lambda_{fre} = 10$, $\lambda_1 = \lambda_2 = \lambda_3 = 1$ and $\tau = 100$. The
 759 models were fine-tuned for 1,000 iterations.
 760

761 E DIFFUSION POSTERIOR SAMPLING WITH LDP 762

763 We evaluated how LDP enhances pre-trained diffusion models through posterior sampling, including
 764 LDM Rombach et al. (2022), StableSR Wang et al. (2024), ResShift Yue et al. (2025), and
 765 UPSR Zhang et al. (2025). Posterior sampling, as formulated in Eq. 17, is carried out without any
 766 fine-tuning. In this setting, quantitative metrics may show limited improvement. However, visual re-
 767 sults demonstrate a notable reduction in artifacts and enhanced fidelity in the outputs of the diffusion
 768 models. For all four baseline models, the LDP parameters are set to $\tau = 100$ and $\lambda_1 = \lambda_2 = \lambda_3 = 1$.
 769 As all selected models are latent diffusion model, we should first use the Decoder to transfor the la-
 770 tent feature back to the color space. Specifically, for every diffusion step, according DDPM Ho
 771 et al. (2020) or DDIM Song et al. (2021), the model will get the predicted clean image \hat{x}_0 from
 772 the model output. We decode \hat{x}_0 into the RGB image X' , which is then combined with the high-
 773 frequency component of LR images y_{hf} and passed into our LDP module to generate a predicted
 774 LR image y' . The fine-tuning symmetry loss $\mathcal{L}_{sym}^{FT}(y', y)$ is subsequently applied to further guide
 775 the super-resolution model.
 776

776 **LDM.** We use the SR version of LDM with 50 DDIM steps, we apply LDP only every 5 steps
 777 during the last 25 steps of the sampling process. This is because LDM has already undergone
 778 super-resolution training, so the predicted clean image \hat{x}_0 in the early stages of the DDPM process
 779 are sufficiently close to the LR input. However, as the diffusion process progresses, the generated
 780 SR images may gradually diverge from the LR features, thereby necessitating additional guidance.
 781 Moreover, applying the DPS operation increases inference time. While applying it at every step
 782 could further improve the fidelity of the generated results, the computational overhead becomes
 783 prohibitive.
 784

784 **StableSR.** We found that the SR result of StableSR exhibits a noticeable repeat-spot artifact, as il-
 785 lustrated in Fig. 4 and Fig. 7. We note that the artifact can be removed by subtracting noise during
 786 inference Bansal et al. (2023), a technique compatible with the inference process of StableSR. How-
 787 ever, in our experiments, this artifact removal method was applied only in the posterior sampling
 788 setting and not during inference with fine-tuned models. Specifically, we set $P(x, t)$ as the noise
 789 diffusion process at time t . In each denoising step, the update can be formulated as:
 790

$$x_{t-1} = x_{t-1} - \lambda * (\mathbf{P}(\hat{x}_0, t) + \mathbf{P}(\hat{x}_0, t-1)), \quad (18)$$

791 where we set $\lambda = 0.01$. We adopt 200 DDPM steps, but our LDP are applied in the last 100 steps,
 792 and only every 10 steps. For the same reasons as in LDM. We observe that applying LDP directly
 793 to StableSR without this technique tends to exacerbate the repeat-spot artifact. In contrast, applying
 794 the artifact removal prior to LDP further enhances StableSR’s performance. We hypothesize that
 795 this is because StableSR possesses strong generative capability, producing super-resolved images
 796 that deviate from the LR input. Consequently, when LDP is used to enforce consistency between
 797 the SR and LR images, it may inadvertently suppress the model’s generative ability.
 798

798 **ResShift.** We adopt the journal version of ResShift, requiring only four steps to generate SR results,
 799 with LDP applied at each step.
 800

800 **UPSR.** UPSR generates SR results in only five steps, with LDP applied at each step.
 801

802 F EXTENDED ABLATION STUDY 803

804 **Ablation of the Patch Sise in Noise Addition Module.** Table 8 presents an ablation study investi-
 805 gating the effect of patch size in the patch-wise noise addition process of diffusion. We systemati-
 806 cally vary the patch size in 1, 4, 8, 16 and evaluate each configuration on the fine-tuning pretrained
 807 SwinIR model (baseline) using the synthetic Hybrid dataset. Experimental results demonstrate that
 808 any patch configuration surpasses the baseline. When the patch size equals one, it implies that uni-
 809 form noise is added across the entire image. Since a patch size of 16 attains the highest PSNR and
 the lowest LPIPS, we set $P = 16$ in our LDP.
 810

810
811 Table 8: Ablation study of the Patch Size of
812 LDP.

Methods	<i>patch</i>	PSNR↑	SSIM↑	LPIPS↓
baseline	-	23.52	0.6458	0.3634
LDPp2	1	24.43	0.6505	0.3567
LDPp4	4	24.45	0.6519	0.3567
LDPp8	8	24.34	0.6520	0.3572
LDPp16	16	24.46	0.6513	0.3566

813
814 Table 9: Ablation study of the frequency band
815 used in \mathcal{L}_{sym}^{FT} .

Methods	DWT_{fre}	PSNR↑	SSIM↑	LPIPS↓
baseline	baseline	23.52	0.6458	0.3634
LDP_{LF}	LL	24.35	0.6472	0.3573
LDP_{HF}	LH+HL+HH	24.35	0.6492	0.3571
LDP_{ALL}	ALL	24.33	0.6430	0.3574

820 **Ablation of the Frequency Band in \mathcal{L}_{sym}^{FT} .** Table 9 presents an ablation study on DWT frequency-
821 band supervision. In this experiment, the pretrained SwinIR model (baseline) is fine-tuned and
822 evaluated on the synthetic Hybrid dataset. The variants LDP_{LF} , LDP_{HF} , and LDP_{ALL} apply
823 supervision to the LL (low-frequency), LH/HL/HH (high-frequency), and all DWT sub-bands. Both
824 LDP_{LF} and LDP_{HF} improve PSNR from 23.52 to 24.35, with LDP_{HF} achieving slightly higher
825 SSIM and the lowest LPIPS. In contrast, LDP_{ALL} yields comparable PSNR and LPIPS but slightly
826 lower SSIM, suggesting that focused supervision on specific frequency bands is more effective than
827 supervising all sub-bands indiscriminately.

828 Table 10: Ablation study of the scale factor in LR residual acquisition phase.

Methods	<i>s'</i>	PSNR↑	SSIM↑	LPIPS↓
baseline	-	23.52	0.6458	0.3634
LDPsf2	2	24.35	0.6492	0.3571
LDPsf4	4	24.31	0.6490	0.3576
LDPsf8	8	24.24	0.6495	0.3582
LDPsf16	16	24.21	0.6496	0.3585

830 **Ablation of the Scale Factor in the LR Residual Acquisition Phase.** To investigate how the scale
831 factor s' affects performance, we conduct an ablation study by varying s' during the fine-tuning of
832 a pretrained SwinIR model (baseline) using the synthetic Hybrid dataset. This factor determines
833 the high-frequency components extracted from LR images. As listed in Tab. 10, all LDP variants
834 outperform the baseline, with the best performance achieved at $s' = 2$. As s' increases, PSNR and
835 LPIPS consistently decline, while SSIM steadily improves. This is because larger s' values introduce
836 stronger but less reliable high-frequency components into the LDP input. These components may
837 amplify edge-like patterns that enhance SSIM but do not faithfully reflect true HR details, thereby
838 increasing prediction errors and perceptual inconsistencies. As a result, the quality of the supervision
839 signal deteriorates, weakening the fine-tuning effectiveness and degrading overall SR performance.
840 These findings highlight the importance of selecting an appropriate s' to balance structural sharpness
841 and reconstruction fidelity.

842 **LDP contributions to existing SR models evaluated on severely degraded test dataset.** To
843 evaluate our method on severely degraded LR images, we regard pretrained SwinIR as baseline
844 and test SwinIR+LDP in our main text. We still use the bsrgan_plus Zhang et al. (2021a); Wang
845 et al. (2021) Zhang et al. (2021a); Wang et al. (2021) degradation setting, while changing the
846 maximum length (wd2) of the Gaussian blur kernel (please refer to the bsrgan_plus code), we set
847 $wd2 \in [8, 16, 32, 64, 484]$. By default, $wd2$ is set to 8 and applied in the synthetic Hybrid dataset.
848 As reported in Tab. 11, the results demonstrate that our method retains strong generalization
849 under server Gaussian blur. Because the training signal is the residual obtained by subtracting the
850 downsample-upsample from the original LR, the residual is never zero even when a heavy blur re-
851 moves substantial high-frequency content, thereby providing a distinctive cue for identifying the
852 LR corresponding to the same HR image. Tab. 12 further reports the LR-prediction evaluation of
853 LDP. Even under severe blur ($wd2 = 484$), the predicted LR remains highly consistent with its initial
854 counterpart, achieving 26.87 dB PSNR, 0.89 SSIM, and 0.1618 LPIPS. These results underscore the
855 robustness of our LDP.

856 **The computational burden of LDP when it is employed for posterior sampling.** We assess
857 the integration of LDP into the diffusion posterior sampling Chung et al. (2023) framework built
858 upon StableSR under the synthetic Hybrid dataset, where Eq. 18 is applied to suppress artifacts.

864
865
866
867
868
869 Table 11: Ablation study on severely Gaussian
870 blur degraded LR images. $wd2$ is the maximum
871 length of Gaussian blur in bsrgan_plus degrada-
872 tion process.
873
874
875
876
877
878
879
880

Methods	$wd2$	PSNR↑	SSIM↑	LPIPS↓
baseline	8	23.52	0.6458	0.3634
+LDP	8	24.21	0.6496	0.3585
baseline	16	22.99	0.6296	0.3974
+LDP	16	23.78	0.6319	0.3932
baseline	32	22.82	0.6188	0.3967
+LDP	32	23.76	0.6238	0.3935
baseline	64	22.27	0.5971	0.4363
+LDP	64	23.15	0.6023	0.4341
baseline	484	21.24	0.5740	0.4810
+LDP	484	22.09	0.5812	0.4759

881
882 Table 13: Inference time of posterior sampling with LDP in Diffusion models and its impact on
883 performance.
884
885
886
887
888

per image (s)	baseline	LDPPtV1	LDPPtV2	LDPPtV3
Times	19	178	99	28
PSNR↑	19.71	19.90	19.72	19.72
SSIM↑	0.3756	0.3848	0.3718	0.3705
LPIPS↓	0.5118	0.5020	0.5115	0.5057

889 Four configurations are compared: (1) baseline: the original StableSR baseline with 200 DDPM
890 denoising iterations; (2) LDPPtV1: LDP applied at every step across all 200 iterations; (3) LDPPtV2:
891 LDP applied only during the last 100 iterations; and (4) LDPPtV3: LDP applied once every ten
892 steps within the last 100 iterations. The quantitative results are reported in Tab. 13. Applying DPS
893 at every step significantly improves the performance of diffusion models, but incurs prohibitive
894 inference overhead. In contrast, applying LDP once every ten steps during the final 100 iterations
895 introduces only a modest runtime increase, while still yielding performance gains over the baseline.
896 We emphasize that no acceleration techniques such as half-precision were used during testing. All
897 models were run in full precision on the GPU, and additional speed-ups may be achieved with
898 alternative strategies.
899

900
901 Table 14: Comparison of training cost and efficiency between the proposed LDP and other plug-in
902 methods.
903
904

Methods	GPU memory (MiB)	Time per Iteration (s)	PSNR↑	SSIM↑	LPIPS↓
SwinIR	15575	1.413	23.64	0.6098	0.4541
SwinIR+LDP	22405	2.094	23.96	0.6050	0.4468
SwinIR+Lway	200768	22.55	21.11	0.6024	0.5126

905 906 907 908 Evaluating training cost and efficiency of LDP against other plug-in methods.

909 We report the training cost and efficiency of incorporating LDP as a loss component of SwinIR
910 under the synthetic Hybrid dataset, in comparison with Lway Chen et al. (2024). Since the official
911 Lway code is not publicly available, we re-implemented it following their GitHub guidelines. Using
912 Lway as a loss component is equivalent to the original Lway paper, where the pre-trained model
913 is 100% fine-tuned. Three configurations are compared: (1) **SwinIR**: SwinIR trained from scratch
914 with $L_1 + L_{fre}$; (2) **S+LDP**: SwinIR trained with $L_1 + L_{fre} + \mathcal{L}_{sym}^{FT}$. Predicted LR comes from
915 LDP. (2) **S+Lway**: SwinIR trained with $L_1 + L_{fre} + \mathcal{L}_{sym}^{FT}$. Predicted LR comes from Lway. As
916 reported in Tab 14, LDP increases SwinIR’s training GPU memory from 15,575 MiB to 22,405
917 MiB, extends the per-iteration runtime from 1.413 s to 2.094 s, and consequently raises the compute
918 cost for 50,000 iterations from 21.23 h to 31.26 h. In exchange, PSNR and LPIPS improve, and
919

920
921
922 Table 12: Performance of LDP in LR prediction
923 on severely Gaussian-degraded LR images.
924
925
926

$wd2$	PSNR↑	SSIM↑	LPIPS↓
8	29.81	0.9169	0.1009
16	27.61	0.9123	0.1231
32	27.51	0.9087	0.1215
64	27.32	0.9053	0.1325
484	26.87	0.8900	0.1618

918 SSIM changes marginally. In contrast, Lway does not improve model performance within the same
919 training time and consumes even more GPU memory.
920

921 G EXTENDED QUALITATIVE RESULTS 922

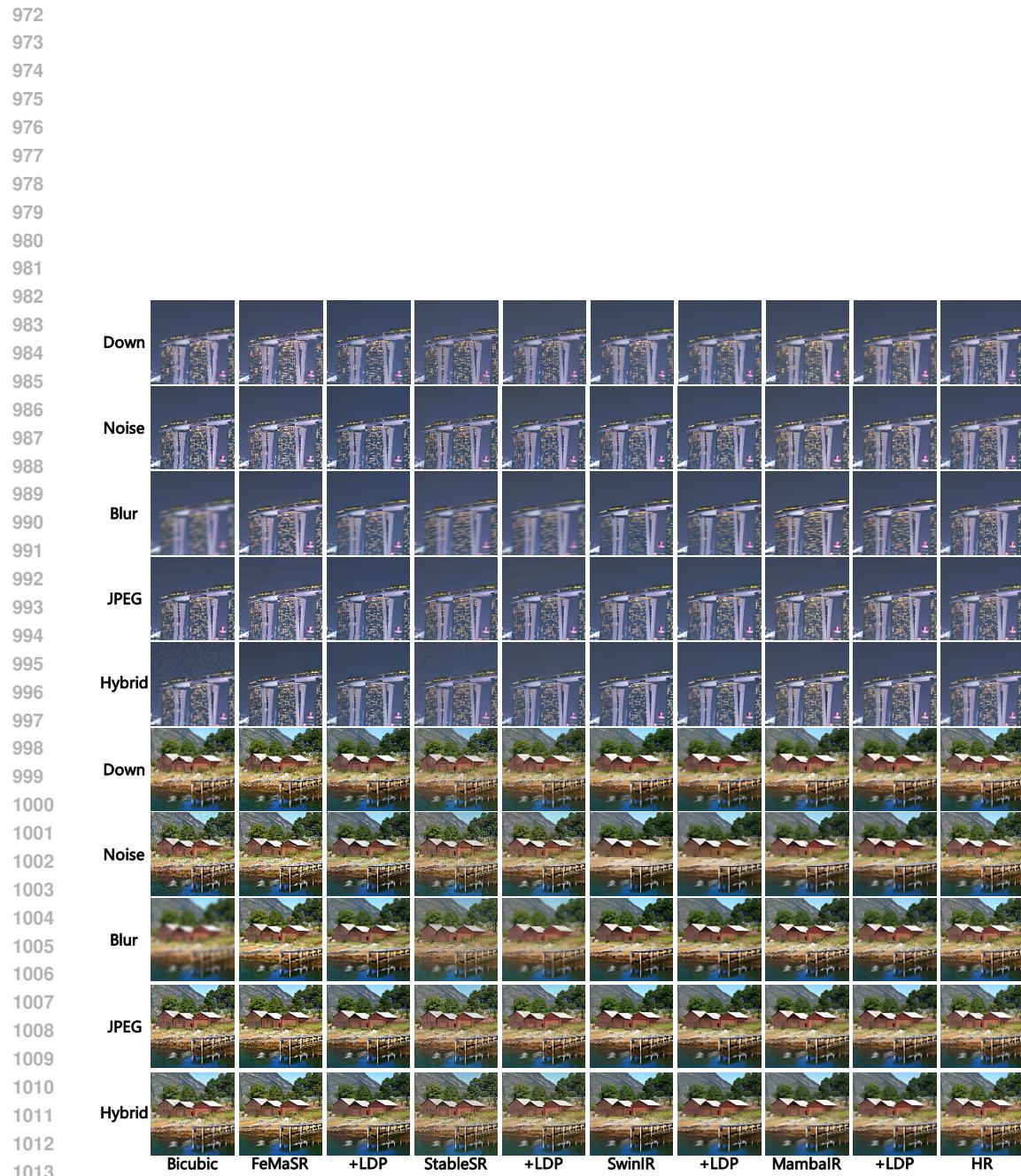
923 More visual results of the blind SR models on both synthetic and real-world benchmarks are pro-
924 vided in Fig. 7 and Fig. 8, respectively. Additional qualitative results of diffusion posterior sampling
925 are presented in Fig. 9. With the assistance of LDP, existing SR models demonstrate a clear abil-
926 ity to suppress artifacts, preserve LR features, and generalize better to unseen degradation types.
927 However, this approach also reveals a limitation: for models such as FeMaSR, which treat certain
928 artifacts as part of the texture, LDP struggles to preserve the model’s original ability to generate
929 detailed textures while removing artifacts. This highlights a trade-off between artifact suppression
930 and texture fidelity in models that implicitly rely on artifact patterns for texture synthesis.
931

932 H ETHICS STATEMENT 933

934 Our work focuses on single-image super-resolution and synthetic degradation modeling using pub-
935 licly available or properly licensed images. No human subjects or sensitive personal data are in-
936 volved. The LDP model is intended for research and image enhancement, and we acknowledge that
937 generative image processing can be misused. We encourage responsible use and compliance with
938 relevant legal and ethical guidelines.
939

940 I REPRODUCIBILITY STATEMENT 941

942 Our code is provided in Appendix B. The training details of our proposed LDP are described in
943 Section 4.1 of the main text. The generation process of the synthetic multi-degradation datasets
944 is presented in Appendix C. Experimental details of fine-tuning existing SR models with LDP are
945 given in Appendix D, while Appendix E provides the details of applying LDP for posterior sampling
946 with pre-trained diffusion models.
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971



1014 Figure 7: Qualitative results on synthetic multi-degradation datasets with $\times 4$ scale factor. (Zoom in
1015 for details)

1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Figure 8: Qualitative results on real-world datasets with $\times 4$ scale factor. (Zoom in for details)

1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

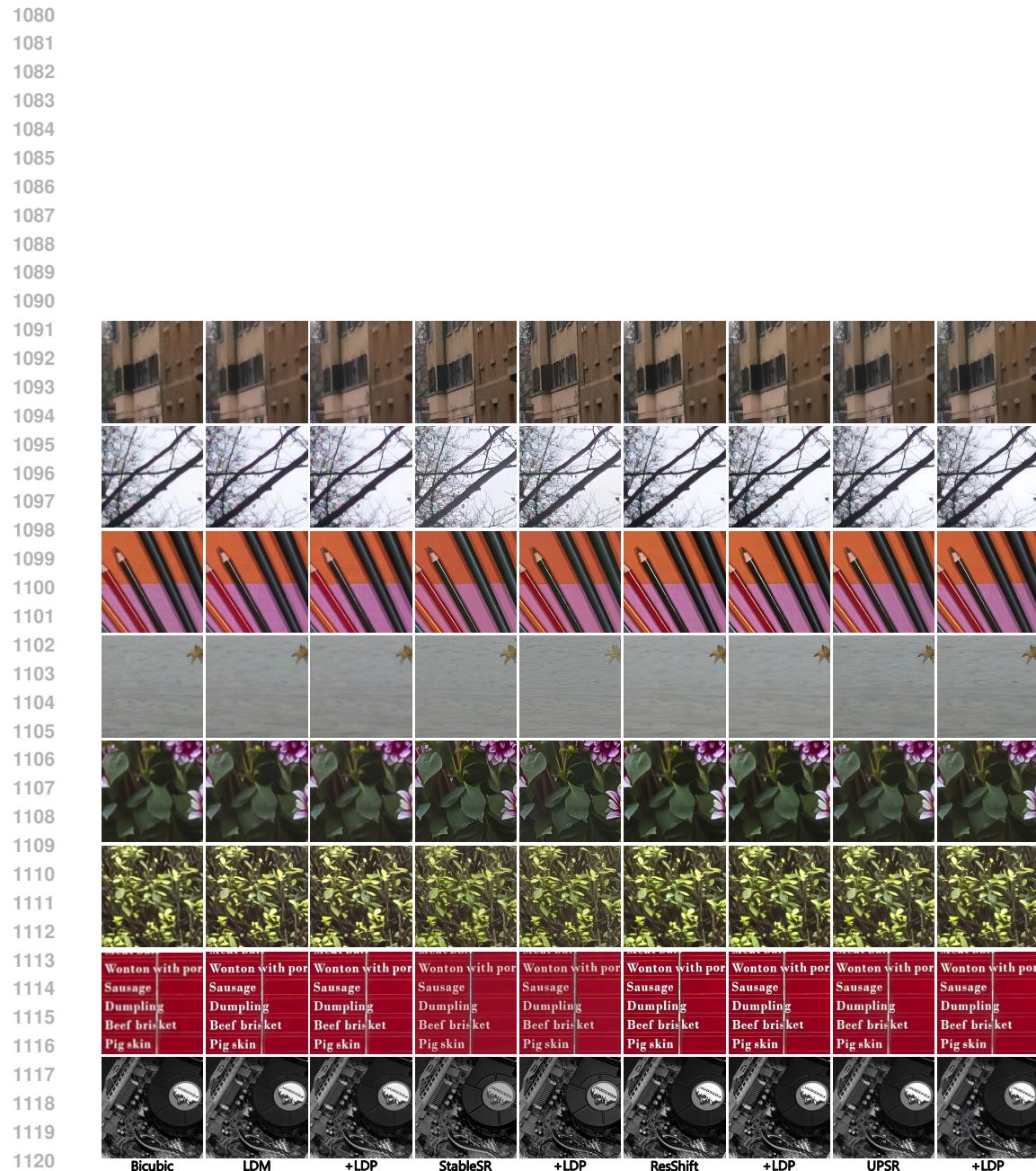


Figure 9: Qualitative results of LDP enhances diffusion models through posterior sampling at $\times 4$ scale SR. (Zoom in for details)