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Abstract
We present an application of neural-symbolic001
learning to argument mining. We use Logic002
Tensor Networks to train neural models to003
jointly fit the data and satisfy specific domain004
rules. Our experiments on a corpus of scien-005
tific abstracts indicate that including symbolic006
rules during the training process improves clas-007
sification performance, compliance with the008
rules, and robustness of the results.009

1 Introduction010

Argument Mining (AM) stemmed from Natural011

Language Processing (NLP) and Knowledge Rep-012

resentation and Reasoning (Cabrio and Villata,013

2018), with the goal of automatically extracting ar-014

guments and their relations from natural language015

texts (Lippi and Torroni, 2016). Like in most areas016

of NLP, deep learning has recently pushed the en-017

velope also in AM. Yet, many challenges still stand018

open, as argumentation involves tasks such as rea-019

soning, debate and persuasion, which cannot be eas-020

ily addressed by deep architectures alone, sophisti-021

cated as they may be. For that reason, Galassi et al.022

(2019) argue that a combination of symbolic and023

sub-symbolic approaches could leverage significant024

advances in AM. They illustrate the point using025

two neural-symbolic (NeSy) frameworks, DEEP-026

PROBLOG (Manhaeve et al., 2021) and Grounding-027

Specific Markov Logic Networks (Lippi and Fras-028

coni, 2009), albeit without empirical evaluations.029

Unfortunately, many of the existing NeSy frame-030

works are under continuous development and their031

applications are often limited to a few case stud-032

ies in a single domain. Pacheco and Goldwasser033

(2021) analyze existing NeSy frameworks, observ-034

ing that they are not specifically designed to sup-035

port a variety of NLP tasks, and critically lack of036

a series of important features. We shall add to the037

list of shortcomings a lack of support for collective038

classification (Sen et al., 2008). This is a funda-039

mental feature for AM, since argument analysis is040

typically context-dependent, meaning that classi- 041

fying each argumentative component (or relation) 042

requires considering not only the attributes of that 043

component or relation, but also those of other con- 044

nected components and relations. To address these 045

limitations, Pacheco and Goldwasser (2021) intro- 046

duce the DRAIL NeSy framework and show its 047

application in the AM domain. To the best of our 048

knowledge, no other NeSy approaches to AM have 049

been investigated so far. 050

The present study focuses on neural-symbolic 051

methods for AM. Besides the in-depth contribution, 052

its aim is to pave the way for a broader application 053

of such methods in the NLP domain. We address 054

AM using a different NeSy framework, namely 055

Logic Tensor Networks. We focus on the classifica- 056

tion of argumentative component and prediction of 057

links between component pairs. Importantly, LTNs 058

allow us to easily decouple the symbolic and sub- 059

symbolic parts of the model, and enable collective 060

classification during training. Our results indicate 061

that the introduction of logic rules improves clas- 062

sification performance, compliance with the rules, 063

and robustness of the results. To the best of our 064

knowledge, this is the first application of LTNs to 065

NLP. 066

2 Logic Tensor Networks (LTNs) 067

Logic Tensor Networks (LTNs) (Serafini and 068

d’Avila Garcez, 2016; Donadello et al., 2017) 069

integrate first-order many-valued logical rea- 070

soning (Bergmann, 2008) with tensor net- 071

works (Socher et al., 2013). The framework is 072

implemented in TensorFlow (Abadi et al., 2016). 073

LTNs belong to the “tensorization” class of undi- 074

rect NeSy approaches (De Raedt et al., 2020) which 075

embed First-Order Logic (FOL) entities, such as 076

constants and facts, into real-valued tensors. The 077

framework enables to combine data-driven ma- 078

chine learning with background knowledge ex- 079

pressed through first-order fuzzy logic represen- 080
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tations. Therefore, one can use FOL to impose soft081

constraints at training time and investigate proper-082

ties at test time. Once trained, neural architectures083

can be used independently of the framework. One084

can also use LTNs as a verification tool, to assess085

the ability of any given network to respect any086

given property, expressed as an FOL query.087

LTN variables are an abstract representation of088

data. They must be linked to a set of real-valued089

vectors, which are all the possible groundings of090

that variable. A single data point of this set can be091

represented using LTN constants. LTN functions092

represent operations over variables and produce093

real-valued vectors. The evaluation is done by a set094

of TensorFlow operations, e.g., a neural network,095

defined together with the function. LTN predicates096

are a special class of functions whose output is a097

single real value between 0 and 1, which represents098

the degree of truth of the predicate. They can be099

used to represent classes of objects as well as prop-100

erties that may hold between multiple objects. The101

learning setting is defined in terms of LTN axioms,102

i.e., formulas that specify logic conditions in terms103

of predicates, functions, and variables and can be104

used to assign labels to data and to specify soft con-105

straints. Axioms can include logical connectives106

(∧, ∨, ∼,⇒)1 and quantifiers (∀, ∃).107

Reasoning is performed in the form of approxi-108

mate satisfiability, which means that the optimiza-109

tion process aims to maximize the level of satisfia-110

bility of a grounded theory, by minimizing the loss111

function (Serafini and d’Avila Garcez, 2016).112

3 Argument Mining with LTNs113

We frame component classification and link predic-114

tion as two classification tasks. To address them,115

we define two neural networks: NNCOMP and116

NNLINK. The first network takes a component117

and produces a probability distribution over the118

possible component classes. The second one re-119

ceives two components and outputs a single value120

between 0 and 1, which represents the probability121

of there being an argumentative link between them.122

Data-driven optimization is defined through123

three elements for each class of both tasks: a vari-124

able, a predicate, and an axiom. The variable is125

associated with all the data of the training set that126

belong to that class. The predicate is linked to the127

corresponding output of our networks. The axiom128

combines the previous elements and defines the129

1The symbol ∼ stands for logical negation.

optimization objective. For example, given a class 130

‘claim’ of components, we define an x variable, a 131

CLAIM predicate, and the following axiom: 132

∀x : CLAIM(x) (1) 133

The rule-driven optimization is defined via vari- 134

ables linked to all the training data and through 135

specific axioms that express the rules. For example, 136

to enforce the antisymmetric property of links we 137

define two variables (x and y), associate them with 138

all the components of the training set, and specify 139

the following axiom: 140

∀x, y : LINK(x, y)⇒∼ LINK(y, x) (2) 141

4 Experimental Setting 142

Before we describe our experimental setup, a word 143

is in order about the implementation of LTNs we 144

used, which does not expose APIs to easily con- 145

figure some aspects of the training procedure. In 146

the current implementation, when a predicate is de- 147

fined in LTN over a set of variables, all the possible 148

groundings of such variables are used as part of 149

the same batch. This is necessary in order for the 150

LTN to evaluate the predicate’s truth degree. To 151

clarify: given two components A and B, suppose 152

one wants to determine if A and B are linked. This 153

means evaluating LINK(A,B). In the current im- 154

plementation, A and B need to belong to the same 155

batch. Now, if we take a third component C and 156

we want to determine LINK(A,C), A and C need to 157

belong to the same batch. Also, Equation 3 creates 158

a dependency between CLAIM and LINK, thus the 159

optimization step must also consider the value of 160

CLAIM(A), CLAIM(B) and CLAIM(C) alongside 161

the value of the two LINK predicates. Since this 162

applies to any pair of components, eventually all 163

the data need to belong to the same batch. Accord- 164

ingly, one cannot use mini-batches during training, 165

which limits the scalability of the approach. Al- 166

though this is not a theoretical limitation, it had a 167

practical impact on our experimental setting, since 168

it forced us to experiment with small-sized corpus, 169

sentence embeddings, and neural architectures. 170

4.1 Data 171

The AbstRCT Corpus (Mayer et al., 2020, 2021) 172

consists of 659 abstracts of scientific papers regard- 173

ing randomized control trials for the treatment of 174

specific diseases. The corpus includes three topical 175

datasets: neoplasm, glaucoma, and mixed. The 176
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first one is divided into training, test, and valida-177

tion splits, while the others are designed to be tests178

sets. The corpus contains about 4,000 argumen-179

tative components divided into two classes: EVI-180

DENCE and CLAIM. Out of nearly 25,000 possi-181

ble pairs of components that belong to the same182

document, about 10% are connected through a di-183

rect link. Claims only point to other claims. See184

Appendix A for further details.185

Sentence embeddings are created from 25-size186

pre-trained GloVe embeddings (Pennington et al.,187

2014), by averaging over the words of the sentence.188

This simple method yields a low-dimensional rep-189

resentation with no need to train new embeddings190

or to rely on dimensionality reduction techniques.191

4.2 Method192

To evaluate whether the use of symbolic rules193

within a neural model benefits argument mining194

tasks, which is the aim of this work, we compare195

the results obtained by two different models, that196

differ only in the way they are trained. NEURAL is197

the model trained in the usual way, i.e., by only ex-198

ploiting its sub-symbolic component. NESY is the199

model obtained by training the same architecture200

using also LTN axioms. We did not include compar-201

isons with other state-of-the-art neural-symbolic ar-202

chitectures, because we could find none that could203

be taken off-the-shelf and used in our experiments.204

For the NEURAL approach, we use three predi-205

cates, corresponding to the classes of the dataset:206

LINK, EV IDENCE, and CLAIM . For the207

NESY approach, we include axioms reflecting prop-208

erties of the corpus, stipulating that (i) no sym-209

metric link can exist (Eq. 2), and (ii) claims can210

be linked only to other claims (Eq. 3). The lat-211

ter axiom connects the two tasks, thus inducing a212

joint-learning setting.213
214

∀x, y : LINK(x, y)215

∧ CLAIM(x)⇒ CLAIM(y) (3)216

To avoid overfitting, we early-stop the process217

using the F1 score of link prediction on the valida-218

tion set, with a patience of 1,000 epochs. We focus219

on link prediction because it is considered the most220

challenging task, and arguably the one that would221

benefit the most from the introduction of rules.222

We evaluate the two models along the following223

dimensions:224

• Performance: we measure the F1 metrics re-225

garding link prediction and component classi-226

fication, to assess whether the rules improve 227

the performance of the models; 228

• Robustness: we compute the degree of agree- 229

ment between the networks, to assess if the 230

use of rules increases robustness against the 231

intrinsic randomness of the training process; 232

• Compliance: we test whether the prediction 233

of the models respects the desired properties. 234

4.3 Architecture 235

The aforementioned issues with the current LTNs 236

implementation and our limited computational re- 237

sources prevented us from integrating LTNs with 238

NLP state-of-the-art models. However, we can still 239

operate a meaningful comparison between NEU- 240

RAL and NESY, all else being equal. Accordingly, 241

we define a simple network composed of three 242

stacked fully-connected layers followed by a soft- 243

max classification layer. To obtain more robust 244

results with respect to the non-deterministic ele- 245

ments of the training procedure (Goodfellow et al., 246

2016), we follow Galassi et al. (2021) and train 247

an ensemble of 20 networks both for NNCOMP 248

and NNLINK, and evaluate the aggregated output. 249

We implemented and compared two aggregation 250

methods. Majority voting (MAJ) is a common one. 251

However, it provides a categorical output, prevent- 252

ing a probabilistic interpretation of the prediction. 253

Our alternative method is the average of the output 254

of the networks (AVG). That, however, is known to 255

be vulnerable to outliers. 256

4.4 Results 257

Table 1 summarizes the results of our experiments.2 258

For the classification tasks, we report the macro- 259

F1 score for component classification and the F1 260

score for the link class. Agreement is measured by 261

Krippendorff’s α, while the degree of truth of the 262

properties is given as the ratio between the number 263

of instances where the clause holds and the number 264

of instances where only its left-hand side holds. 265

As far as the AM tasks, the difference between 266

the MAJ and AVG approaches is negligible in the 267

NESY setting, while it is more evident in the NEU- 268

RAL setting for link prediction, where the majority 269

voting achieves better performance. 270

As expected, rules seems to especially benefit 271

link prediction, where the networks trained with 272

2Since our focus is on evaluating the effect of rules, in our
tables we did not include the performance results of state-of-
the-art approaches, as these figures would be misleading.
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Classification Agreement Properties
Dataset Split Approach Comp. Link Comp. Link Eq. 2 Eq. 3

Neoplasm Val.
NEURAL 83 - 84 42 - 41 77 66 88 - 84 92 - 83
NESY 84 - 85 44 - 43 81 71 99 - 98 99 - 99

Neoplasm Test
NEURAL 79 - 80 34 - 31 77 64 87 - 81 96 - 85
NESY 79 - 78 35 - 35 79 70 99 - 96 99 - 94

Glaucoma Test
NEURAL 82 - 82 45 - 43 75 66 93 - 90 89 - 74
NESY 81 - 82 47 - 45 75 71 ≈100 - 98 99 - 90

Mixed Test
NEURAL 81 - 81 38 - 34 75 64 89 - 85 95 - 86
NESY 81 - 80 39 - 40 76 69 ≈100 - 97 97 - 96

Table 1: Percentage scores obtained on the AbstRCT corpus. For classification and compliance, we report both the
result obtained by the MAJ approach (before the dash) and by the AVG approach (after the dash).

rules perform consistently better than those trained273

without. Conversely, the latter perform marginally274

better on component classification, in a few cases.275

The results are, however, comparable.276

The use of rules clearly benefits robustness,277

boosting the agreement by at least 5 points for link278

prediction and a few points for component clas-279

sification. This is also confirmed by the smaller280

difference between AVG and MAJ.281

The greatest improvement regards the compli-282

ance with the rules. The NESY approach satisfies283

the properties almost perfectly in the MAJ setting,284

and achieves results above 90% in the AVG one.285

The baseline is consistently less compliant, and286

performs significantly worse in the AVG setting.287

All these results hold for the three test sets.288

5 Discussion289

We presented the first application of LTN to NLP,290

and one of the few applications of NeSy approaches291

to AM. In our opinion, there are several advantages292

in such an approach.293

From an analysis/interpretation perspective, log-294

ical rules play an active role not only during train-295

ing but also at inference time, offering a means to296

investigate the behavior of the models.297

From a user perspective, the definition of train-298

ing rules and queries requires only a basic knowl-299

edge of FOL, which may contribute to reducing300

the divide between system architects and domain301

experts, who do not need to be also experts in ma-302

chine learning, NeSy systems, or deep networks.303

From an architectural perspective, the decou-304

pling between symbolic and neural components305

allows changing either of them without any direct306

impact on the other, except for the definition of key 307

concepts such as the predicates/labels of the prob- 308

lem. Such a modularity may be highly beneficial in 309

the context of AM, where one could use the same 310

neural architecture with different corpora by ex- 311

pressing different symbolic rules. Indeed, the struc- 312

tural diversity of datasets and labeling schemes is 313

a known issue in AM research, often leading to 314

tailored solutions (Lippi and Torroni, 2016). 315

Performance-wise, the introduction of two sym- 316

bolic rules increased link prediction performance 317

without hindering component classification perfor- 318

mance, whereas it boosted robustness and largely 319

improved compliance. While the networks used 320

in our experiments are much simpler than state- 321

of-the-art models, and clearly they do not achieve 322

comparable performance, we speculate that rules 323

may benefit advanced models as well. 324

On the down side, we shall remark that one ma- 325

jor challenge for this kind of approaches is scala- 326

bility to larger domains, and the fact that they are 327

not specifically designed for NLP tasks, so their 328

development is yet in its infancy. 329

As future work, we are considering the weight- 330

ing of soft rules, so as to distinguish between rules 331

expressing preferences (or theories) and those ex- 332

pressing constraints. Another direction regards the 333

recognition of properties that are not explicit in 334

the training data but can be defined through logical 335

rules. This could allow the network to infer infor- 336

mation regarding components or relations without 337

labeled training data: for example, finding which 338

claim is the major claim of a document, or which 339

components agree with each other. 340
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A Corpus and architectural choices 432

The scalability issues have influenced most of our 433

choices in terms of experimental setting. 434

• Needing low-dimensionality features, we used 435

GloVe embeddings rather than more advanced 436

methods cause it offers low-dimensional (25- 437

size) pre-trained word embedding. 438

• Due to our limited computational resources, 439

it was impossible for us to use state-of-the- 440

art architectures with millions of parameters. 441

We have therefore used simple neural archi- 442

tectures with a limited number of parameters. 443

• We have taken into account other AM datasets 444

(among which UKP persuasive essays and the 445

Cornell eRulemaking Corpus), but the large 446

number of document in the training set made 447
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Dataset Neoplasm Glaucoma Mixed
Split Train Valid. Test Test Test

Documents 350 50 100 100 100

Components 2,267 326 686 594 600
Evidence 1,537 218 438 404 338
Claim 730 108 248 190 212

Couples 14,286 2,030 4,380 3,332 3,332
Links 1,418 219 424 367 329

Table 2: AbstRCT dataset composition.

impossible to use them. For this reason we448

have chosen to use AbstRCT, which has a449

limited number of documents, but also is the450

only corpus we are aware of that offers three451

multiple test sets, allowing general evaluation.452

The AbstRCT corpus is available at https:453

//gitlab.com/tomaye/abstrct. Its com-454

position is reported in Table 2. Some of the docu-455

ments of the neoplasm and glaucoma test set are456

also included into the mixed set.457

We applied GloVe embeddings directly on the458

words of the documents, without pre-processing459

step, and we have used random embeddings for out-460

of-vocabulary words. GloVe word embeddings can461

be downloaded at https://nlp.stanford.462

edu/projects/glove/.463

We use a neural network made of three stacked464

fully-connected layers of size 10, 20, and 10, fol-465

lowed by a softmax classification layer with two466

outputs: CLAIM or EVIDENCE for NNCOMP and467

LINK or NOLINK for NNLINK. We use ReLU as468

activation function, and employ dropout with prob-469

ability p = 0.4 after each layer. The two models470

have 712 (NNCOMP) and 962 (NNLINK) trainable471

parameters.472

B Infrastructure and Runtime Details473

We have performed all our experiments on the fol-474

lowing infrastructure: ASRock Z370 Pro4 moth-475

erboard, GeForce GTX 1080 Ti GPU, Intel Core476

i7-8700K @ 3.70GHz CPU.477

Using the baseline approach, the average train-478

ing time for each network is less than one minute.479

Using our NeSy approach, the average training480

time for each network is 14 minutes, with a stan-481

dard deviation of about 3 minutes. Inference can be482

performed on the whole ensemble of 20 networks483

in less than 30 seconds in all the considered test484

datasets and approaches.485
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