
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LEARNING A FAST MIXING EXOGENOUS BLOCK MDP
USING A SINGLE TRAJECTORY

Anonymous authors
Paper under double-blind review

ABSTRACT

In order to train agents that can quickly adapt to new objectives or reward
functions, efficient unsupervised representation learning in sequential decision-
making environments can be important. Frameworks such as the Exogenous
Block Markov Decision Process (Ex-BMDP) have been proposed to formalize
this representation-learning problem (Efroni et al., 2022b). In the Ex-BMDP
framework, the agent’s high-dimensional observations of the environment have
two latent factors: a controllable factor, which evolves deterministically within a
small state space according to the agent’s actions, and an exogenous factor, which
represents time-correlated noise, and can be highly complex. The goal of the rep-
resentation learning problem is to learn an encoder that maps from observations
into the controllable latent space, as well as the dynamics of this space. Efroni
et al. (2022b) has shown that this is possible with a sample complexity that de-
pends only on the size of the controllable latent space, and not on the size of the
noise factor. However, this prior work has focused on the episodic setting, where
the controllable latent state resets to a specific start state after a finite horizon.
By contrast, if the agent can only interact with the environment in a single con-
tinuous trajectory, prior works have not established sample-complexity bounds.
We propose STEEL, the first provably sample-efficient algorithm for learning the
controllable dynamics of an Ex-BMDP from a single trajectory, in the function
approximation setting. STEEL has a sample complexity that depends only on the
sizes of the controllable latent space and the encoder function class, and (at worst
linearly) on the mixing time of the exogenous noise factor. We prove that STEEL
is correct and sample-efficient, and demonstrate STEEL on two toy problems.

1 INTRODUCTION

This work considers the unsupervised representation learning problem in sequential control envi-
ronments. Suppose an agent (e.g., a robot) is able to make observations and take actions in an en-
vironment for some period of time, but does not yet have an externally-defined task to accomplish.
We want the agent to learn a model of the environment that may be useful for many downstream
tasks: the question is then how to efficiently explore the environment to learn such a model.

Sequential decision-making tasks are often modeled as Markov Decision Processes (MDPs). In the
unsupervised setting, an MDP consists of a set of possible observations X , a set of possible actions
A, a distribution over initial observations π0 ∈ P(X), and a transition function T : X×A → P(X).
The agent does not have direct access to T . Instead, at each timestep t, the agent observes xt ∈ X
and selects action at. The next observation xt+1 is then sampled as xt+1 ∼ T (xt, at).

In the totally generic MDP setting, the only model learning possible is to directly learn the transition
function T . However, if the space of possible observations is large, this task becomes intractable.
Therefore, prior works have attempted to simplify the problem by assuming that the MDP has some
underlying structure, which a learning algorithm can exploit. One such structural assumption is
the Ex-BMDP (Exogenous Block MDP) framework, introduced by Efroni et al. (2022b). The Ex-
BMDP framework captures situations where the space of observations X is very large, but the parts
of the environment that the agent has control over can be represented by a much smaller latent state.

An Ex-BMDP has an observation space X , a controllable (or endogenous) latent state space S, and
an exogenous state space E . In the version of this setting that we consider, the controllable state

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

st ∈ S evolves deterministically according to a latent transition function T : S × A → S. That
is: st+1 = T (st, at). The exogenous state et ∈ E represents time correlated noise: it evolves
stochastically, independently of actions, according to a transition function Te : E → P(E). That
is: et+1 ∼ Te(et). Neither s nor e is directly observed. Instead, the observation xt is sampled as
xt ∼ Q(st, et), where Q ∈ S × E → P(X) is the emission function. We make a block assumption
onQ with respect to S: that is, we assume that for distinct latent states s, s′ ∈ S, the sets of possible
observations that can be sampled from Q(s, ·) and Q(s′, ·) are disjoint. In other words, there exists
a deterministic partial inverse ofQ, which is ϕ∗ : X → S, such that if x ∼ Q(s, e), then ϕ∗(x) = s.
Hence, it is always possible in principle to infer s from x. 1

As in the general MDP setting, the agent only directly observes xt ∈ X , and chooses actions at
in response. However, rather than attempting to learn the full transition dynamics T of the system
(which is determined by T , Te, and Q together), the objective of the agent is instead to efficiently
model only the latent encoder ϕ∗ and the latent transition function T . Together, these models allow
the agent to plan or learn in downstream tasks using the encoded representations ϕ∗(x), modeling
only the parts of the environment that the agent can actually control (the latent state s ∈ S) while
ignoring the potentially-complex dynamics of time-correlated noise.

Specifically, the aim of efficient representation learning in this setting is to learn ϕ∗ and T , using a
number of environment steps of exploration that is dependent only on |S| and the size of the function
class F that the encoder ϕ∗ belongs to, and is not dependent on the size of X or E . This allows X
and E to be very large or potentially even infinite, but still allows for representation learning to
be tractable. Efroni et al. (2022b) proposes an algorithm, PPE, with this property. However, PPE
only works in a finite-horizon setting, where the agent interacts with the environment in episodes of
fixed length H . After each episode, the controllable state (almost) always resets to a deterministic
start state s0 ∈ S at the beginning of each episode. In this work, we instead consider the single-
trajectory, no-reset setting, where the agent interacts with the environment in a single episode of
unbounded length, with no ability to reset the state. This better models real-world cases, where,
for example, expensive human intervention would be required to “reset” the environment that a
robot trains in: we would rather not require this intervention. This no-reset Ex-BMDP setting was
previously considered by Lamb et al. (2023) and Levine et al. (2024), however, the algorithms
presented in those works do not have sample-complexity guarantees.

By contrast, the algorithm presented in this work is guaranteed to learn ϕ∗ and T using samples
polynomial in |S| and log |F|, with no dependence on |E| and |X |. We only require that the mixing
time of the exogenous noise is bounded. In other words, the requirement is that tmix, the mixing
time of the Markov chain on E induced by Te, is at most some known quantity t̂mix. Note that we
do not require that the endogenous state s mixes quickly under any particular policy (although we
do require – as do Lamb et al. (2023) and Levine et al. (2024) – that all states in S are eventually
reachable from one another). In this setting, we derive an algorithm with the following asymptotic
sample complexity (where O∗(f(x)) := O(f(x) log(f(x)))):

O∗
(
ND|S|2|A| · log |F|

δ
+ |S||A|t̂mix · log

N |F|
δ

+
|S|2D

ϵ
· log |F|

δ
+
|S|t̂mix

ϵ
· log |F|

δ

)
, (1)

where N is a predetermined upper-bound on |S|, δ is the failure rate of the algorithm, D is the
maximum distance between any two latent states in S (at most |S|), and ϵ is the minimum accuracy
of the output learned encoder ϕ on any latent state class s ∈ S . Note that this expression is at worst
polynomial in |S|, and linear in t̂mix and log |F|.
Our algorithm proceeds iteratively, at each iteration taking a certain sequence of actions repeatedly
in a loop. Because the latent state dynamics T are deterministic, this process is guaranteed to (after
some transient period) enter a cycle of latent states, of bounded length. Because the latent states in
this cycle are repeatedly re-visited, the algorithm is then able to predictably collect many samples
of the same latent state, without the need to “re-set” the environment. Furthermore, because this
looping can be continued indefinitely, the algorithm can “wait out” the mixing time of the exogenous
dynamics, in order to collect near-i.i.d. samples of each latent state. We call our algorithm Single-
Trajectory Exploration for Ex-BMDPs via Looping, or STEEL. In summary, we:

1Unlike most prior works on Ex-BMDPs, we do not make a block assumption on E : we allow the same x to
be emitted by Q(s, e) and Q(s, e′), for distinct e, e′. Technically, then, our Ex-BMDP framework represents
a restricted class of Partially-Observed MDPs (POMDPs), rather than MDPs, because the complete state is not
encoded within the observed X .

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

No- Sample- Function Nondeterministic Partially- Nondeterministic
Reset Complexity Approx- Reset Observed Latent

Setting Guarantees imation State Exogenous State Transitions
STEEL ✓ ✓ ✓ ✓ ✓ ✗

(Efroni’22b) ✗ ✓ ✓ ✗ ? ✗
(Lamb’23) ✓ ✗ ✓ ✓ ? ✗
(Levine’24) ✓ ✗ ✓ ✓ ? ✗
(Efroni’22a) ✗ ✓ ✗ ✓ ✗ ✓

Table 1: Comparison to Prior Works for learning Ex-BMDP Latent Dynamics

• introduce STEEL, the first provably sample-efficient algorithm for learning Ex-BMDPs in
a general function-approximation setting from a single trajectory,

• prove the correctness and sample complexity of STEEL, and

• empirically test STEEL on two toy problems to demonstrate its efficacy.

2 RELATED WORKS

2.1 REPRESENTATION LEARNING FOR EX-BMDP AND EXO-MDPS

The Ex-BMDP model was originally introduced by Efroni et al. (2022b), who propose the PPE algo-
rithm to learn the endogenous state encoder ϕ(·) and latent transition dynamics T of an Ex-BMDP.
PPE has explicit sample-complexity guarantees that are polynomial in |S| and log |F|: crucially, the
sample complexity does not depend explicitly on |E| or |X |. However, unlike the method proposed
in this work, PPE is restricted to the episodic, finite horizon setting with (nearly) deterministic re-
sets. After each episode, the endogenous state is (nearly) always reset to the same starting latent
state s0 ∈ S, and the exogenous state e0 ∈ E is i.i.d. resampled from a fixed starting distribution.
Similarly to this work, PPE assumes that the latent transition dynamics T are (close to) determinis-
tic. Because both s0 and T are nearly deterministic, PPE can collect i.i.d. samples of observations
x associated with any latent state s ∈ S simply by executing the same sequence of actions starting
from s0 after each reset. By contrast, in our setting, we cannot reset the Ex-BMDP state, so it is
more challenging to collect samples of a given latent state s.

Other works have considered the Ex-BMDP setting without latent state resets. Lamb et al. (2023)
and Levine et al. (2024) consider a setting similar to ours, where the agent interacts with the environ-
ment in a single trajectory. However, these methods do not provide sample-complexity guarantees,
and instead are only guaranteed to converge to the correct encoder in the limit of infinite samples.

Efroni et al. (2022a) considers a related “Exo-MDP” setting, and proposes the ExoRL algorithm. In
this setting, while the environment is episodic, the latent state s0 resets to a starting value sampled
randomly from a fixed distribution after each episode. Additionally, the latent transition dynamics
may be non-deterministic. However, unlike our work, Efroni et al. (2022a) does not consider the
general function-approximation setting for state encoders. Instead, the observation x is explicitly
factorized into d factors, and the controllable state s consists of some unknown subset of k of these
factors: the representation learning problem is reduced to identifying which k of the d factors are
action-dependent. ExoRL guarantees a sample-complexity polynomial in 2k = |S| and log(d).2

Recently, Mhammedi et al. (2024) have proposed an algorithm for provably sample-efficient policy
optimization in the episodic Ex-BMDP setting with rewards, that can handle nondeterministic latent
dynamics. However, the algorithm requires simulator access to the environment: this means that the
agent is able to reset the environment to any observation x ∈ X that has been previously observed.
This requirement is considerably stronger than even the requirement of deterministic resets to a
single latent state found in Efroni et al. (2022b).

2Because ExoRL allows for nondeterministic starting latent states, one might be able to adapt the method
to the infinite-horizon no-reset setting by considering the single episode as a chain of “pseudo-episodes” with
nondeterministic start state (c.f., Xu et al. (2024)). However, to do so, one would have to ensure that s mixes
sufficiently between episodes, which may be challenging given that s is not directly observed and has un-
known, controllable dynamics. Even still, the resulting algorithm would not apply to the general function-
approximation setting which we consider.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

In addition to our main claim that our proposed algorithm is the first provably sample-efficient
algorithm for representation learning in the single-trajectory Ex-BMDP setting, another property of
our method is that we do not make a “block” assumption on the exogenous state e. For a fixed s ∈ S,
in our setting, the same observation x ∈ X may be emitted by multiple distinct exogenous states
e, e′ ∈ E . Prior works (Efroni et al., 2022b;a; Lamb et al., 2023; Levine et al., 2024) have stated
assumptions that require that e may be uniquely inferred from x.3 Removing this restriction allows
one to model a greater range of phenomena. For example, suppose an agent can turn on or turn off
a “noisy TV”: i.e., the agent can control whether or not some source of temporally-correlated noise
is observable. This is allowed in our version of the Ex-BMDP formulation, but is not allowed if
e must be fully inferable from x. One prior work, Wu et al. (2024), also (implicitly) removes the
block restriction on the exogenous state e. That work extends Ex-BMDP representation learning
to the partially-observed state setting, with the assumption that the observation history within some
known window is sufficient to infer the latent state s. However, Wu et al. (2024) does not provide
any sample-complexity guarantees. Wang et al. (2022) and Kooi et al. (2023) consider similar
settings with continuous controllable latent state. However, the proposed methods require explicitly
modeling the exogenous noise state e, and there are no sample complexity guarantees. Trimponias
& Dietterich (2023) considers the sample-efficiency of reward-based reinforcement learning in Ex-
BMDPs assuming known endogenous and exogenous state encoders; however, it does not address
the sample complexity of the representation learning problem.

2.2 REPRESENTATION LEARNING FOR BLOCK MDPS AND LOW-RANK MDPS

The Ex-BMDP framework can be considered as a generalization of the Block MDP framework
(Dann et al., 2018; Du et al., 2019). Like the Ex-BMDP setting, the Block MDP setting models
environments where the observed state space X of the overall MDP is much larger than an action-
dependent latent state space S. Some works in the Block MDP framework (Mhammedi et al., 2023;
Misra et al., 2020) also allow for nondeterministic latent state transitions: that is st+1 ∼ Ts(st, at).
However, unlike the Ex-BMDP setting, there is no exogenous latent state e ∈ E or exogenous
dynamics Te: the observation is simply sampled as xt ∼ Q(st). In other words, the Block MDP
setting does not allow for time correlated noise outside of the modelled latent state s. Therefore,
even when stochastic latent-state transition are allowed, any time-correlated noise must be captured
in S , and so impacts the sample complexity (which is typically polynomial in |S|).
The Low-Rank MDP framework can also be considered as an extension the Block MDP framework,
but is an orthogonal extension to the Ex-BMDP framework. In Low Rank MDPs, there exist func-
tions ϕ : X ×A → Rd and µ : X → Rd, such that Pr(xt+1 = x′|xt = x, at = a) = ϕ(x, a)Tµ(x′).
The sample complexity depends only polynomially on d and logarithmically on the size of the func-
tion classes for the state encoders ϕ and µ; it should not depend explicitly on |X |. Works under this
framework include Agarwal et al. (2020); Uehara et al. (2022) and Cheng et al. (2023). Other works
in the Low Rank MDP framework use a reward signal and only explicitly learn part of the represen-
tation (the encoder ϕ), including Mhammedi et al. (2023) and Jiang et al. (2017); see Mhammedi
et al. (2023) for a recent, thorough comparison of these works. Note that while BMDPs can be
formulated as low-rank MDPs with d = |S|, this does not hold for Ex-BMDPs: the rank of the
transition probabilities on X depends on |E| – as noted by Efroni et al. (2022b).

3 NOTATION AND ASSUMPTIONS

• The Ex-BMDP, M , has observation space X , with discrete endogenous states S that
have deterministic, controllable dynamics, and possibly continuous exogenous states E
with nondeterministic dynamics that do not depend on actions. Concretely, we have
that st+1 = T (st, at), where T is a deterministic function, and et+1 ∼ Te(et). Let
xt ∼ Q(st, et), for xt ∈ X , st ∈ S, et ∈ E , with the block assumption on S. That is, a
given x ∈ X can be emitted only by one particular s ∈ S, which we define as ϕ∗(xt) = st.
We assume that M is accessed in one continuous trajectory. The initial endogenous state is
an arbitrary sinit ∈ S, and the initial exogenous state einit ∼ πinit

E , where πinit
E ∈ P(E).

• The exogenous dynamics on E are irreducible and aperiodic, with stationary distribution
πE . There is a known upper bound t̂mix on the mixing time tmix, where (as defined in

3Although it is not immediately clear why this restriction is necessary for the proposed algorithms.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Levin & Peres (2017) and elsewhere) tmix := tmix(1/4), where tmix(ϵ) is defined such that:

∀e ∈ E , ∥Pr(et+tmix(ϵ) = e′|et = e)− πE(e
′)∥TV ≤ ϵ. (2)

This assumption bounds how “temporally correlated” the noise in the Ex-BMDP is: it
ensures that the exogenous noise state et at time t is relatively unlikely to affect et+t̂mix

.

• We have a known upper bound on the number of endogenous latent states, N ≥ |S|.
Additionally, we assume that all endogenous latent states can be reached from one another
in at most D steps, for some finite D (note that we do not assume that all pairs of states
in S can be reached from one another in exactly D steps). We assume that there is a
known upper bound on this diameter: D̂ ≥ D. Trivially, if all endogenous latent states are
reachable from one another then D ≤ N − 1, so if a tighter bound is not available then we
can use D̂ := N − 1. (In fact, it is not very important to use a tight bound here: D̂ does
not appear in the asymptotic sample complexity.)

• There is an encoder hypothesis class F : X → {0, 1}, with realizablity for one-vs-rest
classification of endogenous states. That is,

∀s ∈ S, ∃f ∈ F : ∀x ∈ X , f(x) = 1ϕ∗(x)=s. (3)

In other words, for every latent state s ∈ S , there is some function f ∈ F such that
f(x) = 1 if and only if ϕ∗(x) = s.

• The algorithm has access to a training oracle for F , which, given two finite multi-sets D0

and D1 each with elements from X , returns a classifier f ∈ F . The only requirement that
we have for this oracle is that, if there exist any classifiers F∗ ⊂ F , such that, for f∗ ∈ F∗,
∀x ∈ D0, f∗(x) = 0 and ∀x ∈ D1, f∗(x) = 1, then the oracle will return some member
of F∗. Note that an optimizer that minimizes the 0-1 loss on D0 ∪ D1 will satisfy this
requirement. However, it is not strictly necessary to minimize the 0-1 loss in particular.

• General notation: Let M(A) be the set of all multisets of the set A. Let ⊥ represent an
undefined value. For lists x, y, let x · y represent their concatenation: that is, [a, b] · [c, d] =
[a, b, c, d]. For multisets A and B, let A ⊎ B be their union, where their multiplicities are
additive. Let % be the modulo operator, so that a%b ≡ a (mod b) and 0 ≤ a%b ≤ b− 1.

4 ALGORITHM

The STEEL algorithm is presented in full in Appendix A; in this section, we give a high-level
overview of the algorithm, and present bounds on its sample-complexity. We state the sample-
complexity and correctness of STEEL in the following theorem, which is proved in Appendix B.

Theorem 1. For an Ex-BMDP M = ⟨X ,A,S, E ,Q, T, Te, πinit
E ⟩ starting at an arbitrary endoge-

nous latent state sinit ∈ S , with |S| ≤ N , where the exogenous Markov chain Te has mix-
ing time at most t̂mix, and where all states in S are reachable from one another in at most D̂
steps; and corresponding encoder function class F such that Equation 3 holds, the algorithm
STEEL(M,F , N, D̂, t̂mix, δ, ϵ) will output a learned endogenous state space S ′, transition model
T ′, and encoder ϕ′, such that, with probability at least 1− δ,

• |S ′| = |S|, and under some bijective function σ : S → S ′, it holds that

∀s ∈ S, a ∈ A : σ(T (s, a)) = T ′(σ(s), a), and, (4)

• Under the same bijection σ,

∀s ∈ S, Pr
x∼Q(s,e),

e∼πE

(ϕ′(x) = σ(ϕ∗(x))) ≥ 1− ϵ, (5)

where πE is the stationary distribution of Te.

Furthermore, the number of steps that STEEL executes on M scales as:

O∗
(
ND|S|2|A| · log |F|

δ
+ |S||A|t̂mix · log

N |F|
δ

+
|S|2D

ϵ
· log |F|

δ
+
|S|t̂mix

ϵ
· log |F|

δ

)
,

where O∗(f(x)) := O(f(x) log(f(x))).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

1. â = [D] 2. â = [L] 3. â = [L, U] 4. â = [L, U, R] 5. â = [L, U, D] 6. â = [L, R, U]

7. â = [L, R, R] 8. â = [L, R, D] 9. â = [L, L, R, D] 10. â = [U, D, D] 11. â = [U, D, R, U]
12. â = [U, D, R,

U, L, D]

Figure 1: STEEL discovers the latent dynamics S and T by iteratively adding cycles to the learned
dynamics graph. In this simple example, the initially-unknown “true” dynamics consist of 6 states
arranged in a grid, where the agent can move (U)p, (D)own, (L)eft, or (R)ight. STEEL takes 12
iterations to discover the full dynamics: each pane corresponds to an iteration, and shows the still-
unknown parts of the dynamics graph in grey, the already-known parts of the dynamics graph in
black, and the cycle being explored in red. States are represented as circles and transitions as arrows.

We now present a high-level overview of STEEL. The algorithm proceeds in three phases. In the
first phase, the algorithm learns the transition dynamics; in the second phase, it collects additional
samples of observations of each latent state in S; in the final phase, the encoder ϕ′ is learned.

STEEL Phase 1: Learning latent dynamics. In the first phase, STEEL constructs a learned latent
state space S ′ and learned transition dynamics T ′ by iteratively adding cycles to the known transition
graph. At each iteration, a sequence of actions â is chosen such that, starting anywhere in the known
T ′, taking the actions in â is guaranteed to traverse a transition not already in T ′. (We explain the
process of constructing â below.)

STEEL then takes the actions in â repeatedly, collecting a sequence of observations xCF . Because
the transitions in T are deterministic, this sequence of transitions must eventually (after at most
|S||â| steps) enter a cycle of latent states, of length ncyc|â|, for some ncyc ≤ |S|. Because â was
chosen to always escape the known transitions in T ′, this cycle cannot be contained in T ′, so adding
the states and transitions of the new cycle to S ′ and T ′ is guaranteed to expand the known dynamics
graph by at least one edge: this process will discover the full transition dynamics after at most |S||A|
iterations. See Figure 1 for an example of how STEEL constructs S ′ and T ′ by adding cycles to the
dynamics. Throughout this process, STEEL also collects a dataset D(s) ∈ M(X) for each newly-
discovered latent state s ∈ S ′, such that all observations in D(s) has latent state s. The observations
within each datasetD(s) are collected at least t̂mix steps apart from one another, so they are near-i.i.d.

Constructing â. To ensure that â always escapes the known transition graph given by T ′, at each
iteration, STEEL uses a recurrent procedure to construct â. At the beginning of this procedure, â is
initialized as empty, and a set of latent states B is initialized with all of the learned states in S ′. At
each step of the procedure, B represents the set of known states s ∈ S ′ that can be reached by starting
at any arbitrary state s′ ∈ S ′ and taking the action sequence given by the partially-constructed action
list â, following the known dynamics in T ′. At each step, STEEL chooses a state s ∈ B, and plans
the shortest path from s to any unknown transition in T ′. The corresponding sequence of actions, â′,
is then appended to â, and B is updated by replacing each state b ∈ B with the state that results from
starting at b and taking the sequence of actions â′, according to the learned partial transition function
T ′. If this path reaches an unknown transition in T ′, then b is removed from B and not replaced. By
construction, we know that the state s will be removed, so B will shrink by at least one state at each
step of the process. By the end, B is empty, and we are guaranteed that taking action sequence â
from any state in S ′ will lead to an unknown transition in T ′, as desired. Note that at each step, the
shortest distance to an unknown transition has length at most D + 1, and the procedure continues
for at most |S| steps, so |â| ≤ |S ′| · (D + 1).

Identifying latent states.At each iteration, to identify the distinct latent states in the cycle, STEEL
uses a subroutine called CycleFind. CycleFind additionally collects the datasets D(s) for each
newly-discovered latent state. CycleFind itself has two phases:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

x x x

â

…

â

…

â

…

â

…

â

…

â

…

â

…

â

…x x x

â

… x x x x x x

n’cyc |â| n’cyc |â| n’cyc |â|

x x x x x x x x x x x x

n’cyc |â| n’cyc |â| n’cyc |â|

x x x x x x x x

n’cyc |â| n’cyc |â|

D1

n’cyc > ncyc:
â

…

â

…

â

…

â

…

â

…

â

…

â

…

â

…

â

…

â

…

â

…

â

…

â

…

â

…

â

…

â

…

â

…

â

…

â

…

â

…

â

…

â

…

â

…

⸢t̂mix/(n’cyc |â|)⸣⋅(n’cyc |â|)

D0

⸢t̂mix/(n’cyc |â|)⸣⋅(n’cyc |â|) ⸢t̂mix/(n’cyc |â|)⸣⋅(n’cyc |â|)

x x x

â

…

â

…

â

…

â

…

â

…

â

…

â

…

â

…x x x

â

… x x x x x x

n’cyc |â| n’cyc |â| n’cyc |â|

x x x x x x x x x x x x

n’cyc |â| n’cyc |â| n’cyc |â|

x x x x x x x

n’cyc |â| n’cyc |â|

D1

n’cyc = ncyc:
â

…

â

…

â

…

â

…

â

…

â

…

â

…

â

…

â

…

â

…

â

…

â

…

â

…

â

…

â

…

â

…

â

…

â

…

â

…

â

…

â

…

â

…

D0

⸢t̂mix/(n’cyc |â|)⸣⋅(n’cyc |â|)

n’cyc |â| n’cyc |â|

⸢t̂mix/(n’cyc |â|)⸣⋅(n’cyc |â|) ⸢t̂mix/(n’cyc |â|)⸣⋅(n’cyc |â|) ⸢t̂mix/(n’cyc |â|)⸣⋅(n’cyc |â|)

n’cyc = 4; ncyc = 3: D0 and D1 contain the same latent states

n’cyc = 3; ncyc = 3: D1 contains only the red latent state; D0 does not contain this latent state

Figure 2: CycleFind determines the period of the cycle in xCF . See Section 4 under “CycleFind
Phase 1.” We show the sequence xCF sampled from M : specifically, we show every |â|’th obser-
vation, where the same actions â are taken between each one. The observations’ latent states are
color-coded as red, blue, and green: a pattern repeats every 3|â| steps, so ncyc = 3. D1 consists of
the first observation in each (n′

cyc|â|)-cycle, and D0 the other observations taken between executions
of â. (Spans of length ≥ t̂mix are skipped to ensure certain subsets of the datasets are near-i.i.d.)

CycleFind Phase 1: Finding the cycle’s periodicity. To identify the latent states in the cycle in
xCF , CycleFind first determines cycle’s period, ncyc|â|. To find ncyc, CycleFind tests all possible
values of ncyc from N to 1, in decreasing order. To check whether some candidate value, n′

cyc, is in
fact ncyc, CycleFind constructs two datasets, D0 and D1 from xCF = [x1, ...]. These datasets are
constructed so that if n′

cyc = ncyc, then D1 contains observations of only one controllable latent state
s, and D0 contains no observations of s. Therefore, if one attempts to train a classifier f to perfectly
distinguish all observations in D0 from those in D1, then such a classifier is unlikely to exist in F
if n′

cyc > ncyc, but is guaranteed to exist if n′
cyc = ncyc, by the realizability assumption. In this way,

CycleFind uses the training oracle to determine ncyc.

Specifically, the datasets used are (see Figure 2 for illustration.):

D0 := {xt̄mix+(2t̄mix+n′
cyc|â|)i+j·|â|+offs.| i ∈ {0, ..., k − 1}, j ∈ {1, ..., n′

cyc − 1}} (6)

D1 := {x(2t̄mix+n′
cyc·|â|)i+offs.| i ∈ {0, ..., k − 1}} (7)

where t̄mix := ⌈t̂mix/(n
′
cyc · |â|)⌉ · n′

cyc · |â| is t̂mix rounded up to the nearest multiple of n′
cyc · |â|; the

number of samples needed for D1 is k (which depends on log(|F |), log(δ), and other parameters);
and offs. := max((N − 1) · |â|, t̂mix) is a constant offset to ensure that the Ex-BMDP endogenous
state has entered the terminal cycle induced by â, and that the exogenous state has mixed.

To see why D1 and D0 are perfectly distinguishable only if n′
cyc = ncyc, consider the sequence

of repeated latent states that compose the cycle, [scyc
0 , ..., scyc

ncyc·|â|−1]. If we only consider every
|â|’th state in the cycle, then the resulting sequence, [scyc

0 , scyc
|â| , ..., s

cyc
(ncyc−1)·|â|], cannot contain any

repeated states.4 Therefore,
∀n,m, n ≡ m (mod ncyc)⇔ ϕ∗(x|â|n+offs.) = ϕ∗(x|â|m+offs.), (8)

and in particular, if n′
cyc = ncyc, then n ≡ m (mod n′

cyc) ⇔ ϕ∗(x|â|n+offs.) = ϕ∗(x|â|m+offs.).
Then, through modular arithmetic, we can conclude that D1 contains observations of only one latent
state of the cycle, while D0 contains observations of all of the other latent states.

4Otherwise, due to the deterministic dynamics and repeated application of the same actions â, the en-
dogenous dynamics would immediately enter an even shorter cycle the first time a state is repeated in
[scyc

0 , scyc
|â|, ..., s

cyc
(ncyc−1)·|â|], implying a shorter period.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Meanwhile, if n′
cyc > ncyc, then for each observation in D1, there is a corresponding observation in

D0 with the same latent state, that is nearly-identically and independently distributed (i.e, they are
collected ≥ t̂mix steps apart). In particular, consider the (unknown) subset D(j′)

0 ⊆ D0, defined as:

D
(j′)
0 := {xt̄mix+(2t̄mix+n′

cyc|â|)i+j′·|â|+offs.| i ∈ {0, ..., k − 1}} (9)

where j′ := (−⌈t̂mix/(n
′
cyc · |â|)⌉ · n′

cyc − 1)%ncyc + 1. From arithmetic and applying Equation 8,

we see that all observations in D
(j′)
0 and all observations in D1 have the same endogenous latent

state. Additionally, all observations in D
(j′)
0 and D1 are collected at least t̂mix steps apart.

CycleFind Phase 2: Identifying latent states in the cycle. Once ncyc is known, CycleFind
can identify the latent states which re-occur every ncyc|â| steps in xCF . These latent states are
not necessarily distinct from each other, and may also have been discovered already in a previous
iteration of CycleFind. Therefore, CycleFind extracts from xCF datasets D′

i for each position in the
cycle: i ∈ {0, ..., ncyc|â| − 1}. CycleFind also uses datasets D(s) collected in previous iterations
representing the already-discovered states in S ′. CycleFind determines whether two datasets (either
collected in this call to CycleFind, or collected in previous calls) represent the same latent state by
attempting to learn a classifier f ∈ F that distinguishes them: if they both consist of near-i.i.d.
samples of the same latent state, then it is highly unlikely that such a classifier exists.

To ensure the near-i.i.d. property “well enough,” we only need that samples are separated by t̂mix
steps within each individualD′

i; and that, when trying to distinguish two datasetsD′
i,D′

j which were
both collected during this round of CyceFind, there are two (sufficiently large) subsets ofD′

i andD′
j

respectively such that all samples in the two subsets are collected at least t̂mix steps apart – ensuring
this second condition only doubles the number of samples we must collect. Thus, we do not need
to “wait” t̂mix steps between collecting each usable sample from xCF ; rather, we collect a usable
sample for each latent state once for every roughly 2max(t̂mix, ncyc|â|) steps. This is why t̂mix does
not appear in the largest term (in |S|) of our asymptotic sample complexity.

If it is determined that some Di represents a newly-discovered latent state, then a new state s′ is
inserted into S ′ and D′(s′) is initialized as Di. Once all states in [scyc

0 , ..., scyc
ncyc·|â|−1] have been

identified, the action sequence â can be used to add them to the learned transition dynamics T ′.

STEEL Phase 2: Collecting additional samples to train encoder.5 Once we have the complete
latent dynamics graph, the determinism of the latent dynamics allows us to use open-loop planning
to efficiently re-visit each latent state, in order to collect enough samples to learn a highly-accurate
encoder. Note that we can navigate to any arbitrary latent state in D steps, so we can visit every
latent state in |S|D steps. STEEL collects datasets D(s) for each latent state s where, within each
D(s), the samples are collected at least t̂mix steps apart: therefore, it can add one sample to each
dataset D(s) at worst roughly every max(|S|D, t̂mix) steps.

STEEL Phase 3: Training the encoder. Finally, STEEL trains the encoder. Specifically, for each
latent state s ∈ S ′, it trains a binary classifier fs ∈ F to distinguish D(s) from ⊎s′∈S′\{s}D(s′). To
ensure that only the correct binary classifier, fσ(ϕ∗(x))(x), returns 1, we ensure that each fs has an
accuracy of 1−ϵ/|S| on each latent state. We guarantee the accuracy of each classifier on each latent
state separately and apply a union bound: note that because we use a union bound here, we do not
need the samples in different datasets D(s), D(s′) to be independent, which is why we are able to
collect samples more frequently that every t̂mix steps. Finally, we define ϕ′(x) := argmaxs fs(x).

5 SIMULATION EXPERIMENTS

We test the STEEL algorithm on two toy problems: an infinite-horizon environment inspired by
the “combination lock” environment from Efroni et al. (2022b), and a version of the ”multi-maze”

5In some scenarios, one might not need to learn an encoder at all. Note that the latent state s of the agent is
known at the last environment timestep t of Phase 1 of STEEL. At this point, the full latent dynamics are already
known. Thus, if the agent is “deployed” only once, immediately after training such that the latent state does
not reset, then one could keep track of s in an entirely open-loop manner while planning or learning rewards,
without ever needing to use an encoder. In this case, the sample complexity terms involving ϵ disappear.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Combination Lock Environment
Latent Dynamics

0
1

0
1

1

0

0

1

0

1

0

1

0

1

0

1

0

1

0

1

1

0

1

0

1

0

0

1

1

0

0

1

1

0

1

0

0

1 {0,1}

Observed Transition Example

xt :

at = 0

→

xt+1 :

(b) Multi-Maze Environment
Latent Dynamics

R
U

L

D

R
U

L

D

R
U

L

D

R

U

L

D

R
U

L

D

R
U

L

D

R
U

L

D

R

U

L

D

R
U

L

D

R
U

L
D

R
U

L
D

R
U

L
D

R

U

L

D

R
U

L
D

R
U

L
D

R
U

L
D

R

U

L
D

R
U

L

D

R
U

L
D

R
U

L
D

R

U

L
D

R
U

L

D

R
U

L
D

R
U

L
D

R

U

L
D

R

U

L

D

R
U

L
D

R

U

L
D

R

U

L
D

R

U

L

D

R

U

L
D

R
U

L
D

R

U

L
D

R

U

L

D

R

U

L

D

R
U

L

D

R
U

L
D

R
U

L

D

R

U

L

D

R
U

L

D

R
U

L

D

R
U

L
D

R

U

L

D

R
U

L

D

R
U

L
D

R
U

L
D

R

U

L
D

R
U

L

D

R
U

L
D

R
U

L
D

R

U

L
D

R
U

L

D

R
U

L
D

R
U

L
D

R
U

L
D

R

U

L

D

R
U

L
D

R
U

L
D

R
U

L
D

R

U

L
D

R

U

L

D

R

U

L
D

R

U

L
D

R

U

L
D

R

U

L

D

R

U

L
D

R

U

L
D

R

U

L
D

Observed Transition Example

xt :

xt+1 :

. ↓ at = U

Figure 3: Visualisations of the simulation experiment environments. For both environments, we
show the ground-truth latent dynamics T (in the case of the combination lock, we show an arbitrary
instance of T , for some [a∗0, ...a

∗
K−1]), and an example transition in the observed space X .

environment from Lamb et al. (2023). In our combination lock environment, A = {0, 1}, S =
{0, ..,K − 1}, and there is some sequence of “correct” actions [a∗0, ...a

∗
K−1], such that T (i, a∗i) =

i + 1, but T (i, 1 − a∗i) = 0. In other words, in order to progress through the states, the agent must
select the correct next action from the (arbitrary) sequence [a∗0, ...a

∗
K−1]; otherwise, the latent state

is reset to 0. The observation space X = {0, 1}L, where L ≫ K. Some arbitrary subset of size K
of the components in X are indicators for each latent state in S: that is, ∀i ∈ S,∃j ∈ {0, ..., L−1} :
(xt)j = 1 ↔ st = i. The other L − K components in X are independent two-state Markov
chains with states {0,1}, each with different arbitrary transition probabilities (bounded such that no
transition probability for any of the two-state chains is less than 0.1). Because each component is
time-correlated, they all must be contained in E , so |E| = 2L−K . In the multi-maze environment,
the agent learns to navigate a four-room maze (similar to the one in Sutton et al. (1999)) using
actions A = {Up, Down, Left, Right}. The latent state space has size |S| = 68. However, the
observation x ∈ X in fact consists of nine copies of this maze, each containing a different apparent
“agent.” Eight of these “agents” move according to random actions: the true controllable agent is
only present in one of the mazes. Because the eight distractor mazes can be in any configuration
and have temporally-persistent state, we have that |E| = 688. For both environments, we use the
hypothesis class F := {(x → (x)i|i ∈ {0,dim(X) − 1}}. In other words, the hypothesis class
assumes that for each latent state s, there is some component of i of the observations such that
ϕ∗(x) = s if and only if (x)i = 1. The two environments are visualized in Figure 3 .

There are four sources of potential variability in these simulation experiments: (1) the random ele-
ments of the environments’ dynamics, Te, Q, and einit; (2) the starting latent state sinit; (3) steps in
Algorithm 1 that allow for arbitrary choices (e.g., the choice of action â = [a] in the first invocation
of CycleFind); and (4) the parameters of the environment, such as the “correct” action sequence
[a∗0, ...a

∗
K−1] in the combination lock. STEEL is designed in such a way that, with high probability

(i.e., if the algorithm succeeds), no choice that the algorithm makes in terms of control flow or ac-

Combo. Lock Combo. Lock Combo. Lock
(K = 20) (K = 30) (K = 40) Multi-Maze

Fixed Env. Accuracy 20/20 20/20 20/20 20/20
Fixed Env. Steps 1886582±0 4286241±0 7914856±0 41003875±0

Variable Env. Accuracy 20/20 20/20 20/20 20/20
Variable Env. Steps 2.00·106 4.78·106 9.59·106 4.13·107

±1.28·105 ±4.36·105 ±1.13·106 ±1.11·106

Table 2: Success rate and number of steps taken for STEEL on both simulation environments. For
all experiments, we set δ = ϵ = .05. For the combination lock experiments, we set L = 512, and
use the (intentionally loose) upper bounds N = D̂ = K + 10 (= |S|+ 10) and t̂mix = 40. For the
multi-maze environment, we use N = D̂ = 80 (> |S| = 68), and t̂mix = 300. See Appendix D for
how we chose the (loose) bounds t̂mix ≥ tmix.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

tions will depend on exogenous noise.6 Therefore, if we hold (2-4) constant, we expect the number
of environment steps taken to be constant, regardless of the exogenous noise. To verify this, we test
both environments for 20 simulations, in both a “fixed environment” setting with (2-4) held con-
stant, and a “variable environment” setting with (2-4) set randomly. We test the combination lock
environment with latent states K ∈ {20, 30, 40}. We measure the success rate in exactly learning
ϕ∗(x) and T (up to permutation) and the number of steps taken. Results are shown in Table 2.

STEEL correctly learned the latent dynamics T and optimal encoder ϕ∗ in every simulation run;
and we verify that the step counts do not depend on exogenous noise. In the combination lock
experiments for large K, which are hard exploration problems, the total step counts were many
orders of magnitude smaller than either the size of the observation space (≈ 10154); or the reciprocal-
probability of a uniformly-random policy navigating from state 0 to state K − 1 (≈ 1012 for K =
40). This shows that STEEL is effective at learning latent dynamics for hard exploration problems
under high-dimensional, time-correlated noise. For the multi-maze experiment (which is not a hard
exploration task), STEEL took a few orders of magnitude greater steps than reported in Lamb et al.
(2023) or Levine et al. (2024) for the same environment (≈ 103 − 104 steps). However, unlike
these prior methods, STEEL is guaranteed to discover the correct encoder with high probability;
this requires the use of conservative bounds when defining sample counts d, nsamp. cyc. and nsamp. in
Algorithms 1 and 2, and in making other adversarial assumptions in the design of the algorithm that
ensure that it is correct and sample-efficient even in pathological cases. Additionally, note that the
encoder hypothesis class F used in this experiment has no spatial priors. By contrast, Lamb et al.
(2023) choose a neural-network encoder for this environment with strong spatial priors that favor
focusing attention on a single maze, using sparsely-gated patch encodings (and Levine et al. (2024)
use this same network architecture in order to compare to Lamb et al. (2023)) – this difference in
priors over representations may also account for some of the gap in apparent sample efficiency.

In Appendix F, we present an additional set of experiments on a family of tabular Ex-BMDPs which
are known to be particularly challenging to “multistep inverse” methods, such as those proposed by
Lamb et al. (2023) and Levine et al. (2024). We find that, for sufficiently large instances of these
environments, STEEL can in fact empirically outperform these prior “practical” methods.

6 LIMITATIONS AND CONCLUSION

A major limitation of STEEL that may constrain its real-world applicability is its strict determinism
assumption on T . In the episodic setting, Efroni et al. (2022b) can get away with allowing rare devi-
ations from deterministic latent transitions (no more often on average than once every 4|S| episodes)
because the environment resets “erase” these deviations before they can propagate for too long. By
contrast, in the single-trajectory setting, the STEEL algorithm is fragile to even rare deviations in
latent dynamics; ameliorating this issue may require significant changes to the algorithm.

A second barrier to practical applicability of STEEL is the need for an optimal training oracle for
F . While this is tractable for, e.g., linear models (with the realizability assumption ensuring linear
separability), it becomes computationally intractable for anything much more complicated. How-
ever, this kind of assumption is common in sample-complexity results; and could be worked around
in adapting STEEL to practical settings.7

Two additional limitations to our work are the assumption of reachability of all endogenous latent
states s ∈ S, and the requirement that an upper-bound on the mixing time of the exogenous noise
be known a priori. However, in Appendix E, we argue that these assumptions are in fact necessary,
for any algorithm in the single-trajectory, no-resets Ex-BMDP setting.

Finally, the core assumption that S is finite and small is of course a major limitation: sample-
efficient reinforcement learning in combinatorial and continuous state spaces is a broad area of
ongoing and future work. Despite these limitations, STEEL represents what we hope is an important
contribution to representation learning in scenarios where resetting the environment during training
is not possible, and observations are impacted by high-dimensional, time-correlated noise.

6This property is theoretically important because it ensures that the decision to collect a given observation
is independent of all previous observations, given the ground truth dynamics and initial latent state.

7Similarly to how Efroni et al. (2022b) adapts PPE to practical settings in their experimental section.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy, and Wen Sun. Flambe: Structural com-
plexity and representation learning of low rank mdps. Advances in neural information processing
systems, 33:20095–20107, 2020.

Yuan Cheng, Ruiquan Huang, Yingbin Liang, and Jing Yang. Improved sample complexity for
reward-free reinforcement learning under low-rank MDPs. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
jpsw-KuOi7r.

Christoph Dann, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E
Schapire. On oracle-efficient pac rl with rich observations. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Infor-
mation Processing Systems, volume 31. Curran Associates, Inc., 2018.

Simon Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav Dudik, and John Langford.
Provably efficient rl with rich observations via latent state decoding. In International Conference
on Machine Learning, pp. 1665–1674. PMLR, 2019.

Yonathan Efroni, Dylan J Foster, Dipendra Misra, Akshay Krishnamurthy, and John Langford.
Sample-efficient reinforcement learning in the presence of exogenous information. In Confer-
ence on Learning Theory, pp. 5062–5127. PMLR, 2022a.

Yonathan Efroni, Dipendra Misra, Akshay Krishnamurthy, Alekh Agarwal, and John Langford.
Provably filtering exogenous distractors using multistep inverse dynamics. In International Con-
ference on Learning Representations, 2022b. URL https://openreview.net/forum?
id=RQLLzMCefQu.

Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E. Schapire. Contex-
tual decision processes with low Bellman rank are PAC-learnable. In Doina Precup and Yee Whye
Teh (eds.), Proceedings of the 34th International Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, pp. 1704–1713. PMLR, 06–11 Aug 2017. URL
https://proceedings.mlr.press/v70/jiang17c.html.

Jacob Eeuwe Kooi, Mark Hoogendoorn, and Vincent Francois-Lavet. Interpretable (un)controllable
features in MDP’s. In Sixteenth European Workshop on Reinforcement Learning, 2023. URL
https://openreview.net/forum?id=VZFgkZV3a5.

Alex Lamb, Riashat Islam, Yonathan Efroni, Aniket Rajiv Didolkar, Dipendra Misra, Dylan J Foster,
Lekan P Molu, Rajan Chari, Akshay Krishnamurthy, and John Langford. Guaranteed discovery
of control-endogenous latent states with multi-step inverse models. Transactions on Machine
Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/forum?
id=TNocbXm5MZ.

D.A. Levin and Y. Peres. Markov Chains and Mixing Times. MBK. American Mathematical So-
ciety, 2017. ISBN 9781470429621. URL https://books.google.com/books?id=
f208DwAAQBAJ.

Alexander Levine, Peter Stone, and Amy Zhang. Multistep inverse is not all you need. Reinforce-
ment Learning Journal, 1, 2024.

Zakaria Mhammedi, Dylan J Foster, and Alexander Rakhlin. Representation learning with multi-
step inverse kinematics: An efficient and optimal approach to rich-observation rl. In International
Conference on Machine Learning, pp. 24659–24700. PMLR, 2023.

Zakaria Mhammedi, Dylan J Foster, and Alexander Rakhlin. The power of resets in online rein-
forcement learning. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=7sACcaOmGi.

Dipendra Misra, Mikael Henaff, Akshay Krishnamurthy, and John Langford. Kinematic state ab-
straction and provably efficient rich-observation reinforcement learning. In Hal Daumé III and
Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine Learning, vol-
ume 119 of Proceedings of Machine Learning Research, pp. 6961–6971. PMLR, 13–18 Jul 2020.
URL https://proceedings.mlr.press/v119/misra20a.html.

11

https://openreview.net/forum?id=jpsw-KuOi7r
https://openreview.net/forum?id=jpsw-KuOi7r
https://openreview.net/forum?id=RQLLzMCefQu
https://openreview.net/forum?id=RQLLzMCefQu
https://proceedings.mlr.press/v70/jiang17c.html
https://openreview.net/forum?id=VZFgkZV3a5
https://openreview.net/forum?id=TNocbXm5MZ
https://openreview.net/forum?id=TNocbXm5MZ
https://books.google.com/books?id=f208DwAAQBAJ
https://books.google.com/books?id=f208DwAAQBAJ
https://openreview.net/forum?id=7sACcaOmGi
https://proceedings.mlr.press/v119/misra20a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–
211, 1999.

George Trimponias and Thomas G Dietterich. Reinforcement learning with exogenous states and
rewards. arXiv preprint arXiv:2303.12957, 2023.

Masatoshi Uehara, Xuezhou Zhang, and Wen Sun. Representation learning for online and offline
RL in low-rank MDPs. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=J4iSIR9fhY0.

Tongzhou Wang, Simon Du, Antonio Torralba, Phillip Isola, Amy Zhang, and Yuandong Tian.
Denoised MDPs: Learning world models better than the world itself. In Kamalika Chaud-
huri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Pro-
ceedings of the 39th International Conference on Machine Learning, volume 162 of Proceed-
ings of Machine Learning Research, pp. 22591–22612. PMLR, 17–23 Jul 2022. URL https:
//proceedings.mlr.press/v162/wang22c.html.

Kenneth S Williams. The n th power of a 2× 2 matrix. Mathematics Magazine, 65(5):336–336,
1992.

Lili Wu, Ben Evans, Riashat Islam, Raihan Seraj, Yonathan Efroni, and Alex Lamb. Generalizing
multi-step inverse models for representation learning to finite-memory pomdps. arXiv preprint
arXiv:2404.14552, 2024.

Wanqiao Xu, Shi Dong, and Benjamin Van Roy. Posterior sampling for continuing environments.
Reinforcement Learning Journal, 1, 2024.

12

https://openreview.net/forum?id=J4iSIR9fhY0
https://proceedings.mlr.press/v162/wang22c.html
https://proceedings.mlr.press/v162/wang22c.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A FULL ALGORITHM

The STEEL algorithm is presented here in full as Algorithm 1, with a major subroutine, CycleFind,
split out as Algorithm 2.

Algorithm 1: STEEL
Input: Access to Ex-BMDP M , access to training oracle for function class F , knowledge of upper

bounds N , D̂, t̂mix, parameters δ, ϵ.
Initialize learned latent state set S ′, initially empty;
Initialize table of collected datasets for each latent state: D : S ′ →M(X);
Initialize learned latent dynamics: T ′ : (S ′ ∪ {⊥})×A → (S ′ ∪ {⊥}). (When a state s is added to S ′,

we initially set ∀a ∈ A, T (s, a) := ⊥. Also, we set ∀a ∈ A, T (⊥, a) := ⊥ as a permanent
definition.);
// Phase 1: Discover latent dynamics T.
Chose arbitrary a ∈ A;
S ′,D, T ′, scurr. ← CycleFind([a],S ′,D, T ′); // Special case for first iteration
while ∃s ∈ S ′, a ∈ A : T ′(s, a) := ⊥. do

Initialize B ← S ′; and initialize action list â← [];
while B non-empty do

Chose arbitrary s ∈ B.; B ← B \ {s};
Let â′ := a minimum-length sequence of actions such that
T ′(T ′(T ′(...T ′(s, â′

1), â
′
2), â

′
3), ..., â

′
|â′|) = ⊥. (This can be found using Dijkstra’s algorithm.);

â← â · â′;
B ← {s′′ ∈ S ′ | ∃ s′ ∈ B : T ′(T ′(T ′(...T ′(s′, â′

0), â
′
1), â

′
2), ..., â

′
|â′|−1) = s′′};

S ′,D, T ′, scurr. ← CycleFind(â,S ′,D, T ′);
// Phase 2: Collect additional latent samples to train encoder.

Let d := ⌈ 3|S
′| ln(16|S′|2|F|/δ)

ϵ
⌉;

while ∃s ∈ S ′ : |D(s)| < d do
Let C := {s ∈ S ′||D(s)| ≤ d ∧ s ̸= scurr.};
Use T ′ to plan a cycle of actions ā starting at scurr. that visits all states C and then returns to scurr., by

greedily applying Dijkstra’s algorithm repeatedly;
If |ā| < t̂mix, use T ′ to extend ā by repeatedly inserting the shortest-length self-loop of some state

visited in ā into ā until |ā| ≥ t̂mix ;
Execute all actions in ā once without collecting data;
while ∀s ∈ C : |D(s)| < d do

for a in ā0, ..., ā|ā|−1 do
Take action a on M ;
scurr. ← T ′(scurr., a);
if scurr. is being visited for the first time in this execution through ā then

Let xcurr. := the observed state of M ;
D(scurr.)← D(scurr.) ⊎ {xcurr.};

// Phase 3: Train latent state encoder ϕ′.
for s ∈ S ′ do

Let D0 := ⊎s′∈S′\{s}D(s′); D1 := D(s);
Apply training oracle to D0 from D1, yielding fs ∈ F ;

return S ′, T ′, and ϕ′(x) := argmaxs fs(x);

B PROOFS

B.1 STEEL

Here, we explain the STEEL algorithm (Algorithm 1), and prove the correctness of Theorem 1.
STEEL proceeds in three phases: in the first phase, we learn a tabular representation of the endoge-
nous latent states S and associated dynamics T of the Ex-BMDP. For each s ∈ S , we also begin to
collect a dataset D(s), where for each x ∈ D(s), we have that ϕ∗(x) = s, and additionally where
all samples in D :=

⋃
s∈S D(s) were collected from the Ex-BMDP M at least t̂mix time steps apart.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Algorithm 2: CycleFind Subroutine
Input: Action list â; current learned state set S ′, datasets D, and transition dynamics T ′. Also, access to

Ex-BMDP M , access to training oracle for function class F , knowledge of upper bounds N , t̂mix,
and D̂, and parameters δ, ϵ.

// Phase 1: find length of cycle, ncyc · |â|.

Let nsamp. cyc. :=

⌈
ln

(
δ

4|A|·N·(N−1)·|F|

)/
ln

(
9
16

) ⌉
;

Let cinit := (2t̂mix + 3N · |â| − 2) · nsamp. cyc. − t̂mix −N · |â|+ 1 +max((N − 1) · |â|, t̂mix);
Collect a sequence of observation xCF := [x1, ...xcinit] from M by taking the actions in â repeatedly in a

loop, for a total of cinit actions. (Action âi% |â| is taken after observing xi.);
Let x̄i := xi·|â|+max((N−1)·|â|,t̂mix)

;
Initialize ncyc ← 1; // Default value if no other n′

cyc is ncyc
for n′

cyc in [N, N-1...,3,2] do
Let q := ⌈t̂mix/(n

′
cyc · |â|)⌉, r := q · n′

cyc, k := ⌊ cinit+r·|â|−max((N−1)·|â|,t̂mix)
2r·|â|+n′

cyc·|â|
⌋;

Let D0 := {x̄r+(2r+n′
cyc)i+j | i ∈ {0, ..., k − 1}, j ∈ {1, ..., n′

cyc − 1}};
Let D1 := {x̄(2r+n′

cyc)i
| i ∈ {0, ..., k − 1}};

Apply training oracle to D0 from D1, yielding f ∈ F ;
if (∀x ∈ D0, f(x) = 0 and ∀x ∈ D0, f(x) = 1) then

ncyc ← n′
cyc;

break;
// Phase 2: Assemble datasets for observations from cycle, identify

new latent states, and update S ′, D, and T ′.

Let nsamp. :=

⌈
ln

(
δ

4|A|·N4·(D̂+1)·|F|

)/
ln

(
9
16

) ⌉
;

Let c := 2 · ncyc · |â| ·
(
(nsamp. − 1) ·

⌈
t̂mix

|â|·ncyc

⌉
+ 1

)
+ t̂mix +max((N − ncyc) · |â|, t̂mix);

Extend the sequence of observation xCF to length at least c by taking the actions â repeatedly in a loop on
M , for max(0, c− cinit) additional steps, so that xCF = [x1, ...xc];

Let n0 := max((N − ncyc) · |â|, t̂mix) , n′
0 := n0 + (nsamp. − 1) · |â| · ncyc ·

⌈
t̂mix

|â|·ncyc

⌉
+ |â| · ncyc + t̂mix;

∀i ∈ {0, ..., ncyc · |â| − 1}, Let:
D′

i =
{
xj |∃k ∈ {0, ..., nsamp. − 1}, ∃ offset ∈ {n0, n

′
0} :

j = k · |â| · ncyc ·
⌈

t̂mix

|â| · ncyc

⌉
+ offset + (i− offset)%(ncyc · |â|

}
;

for i ∈ {0, ..., ncyc · |â| − 1} do
Initialize StateAlreadyFound? ← False;
for s ∈ S ′ do

Let D0 := D(s); D1 := D′
i;

Apply training oracle to D0 from D1, yielding f ∈ F ;
if not (∀x ∈ D0, f(x) = 0 and ∀x ∈ D0, f(x) = 1) then

scyc
i ← s;

(Optionally; and only if D(s) was not initialized or modified already during this call to
CycleFind:) D(s)← D(s) ⊎ D′

i;
StateAlreadyFound? ← True;
break;

if not StateAlreadyFound? then
Insert new state s′ into S ′;
D(s′)← D′

i;
scyc
i ← s′;

for i ∈ {0, ..., ncyc · |â| − 1} do
T ′(scyc

i , ai%|â|)← scyc
(i+1)%(|â|·ncyc)

;
scurr. := scyc

max(c,cinit)%(ncyc·|â|);
return S ′,D, T ′, scurr.;

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Then, in the second phase, we use the learned dynamics model T ′ to efficiently collect additional
samples for each learned latent state s ∈ S ′ and add them to D(s), until |D(s)| ≥ d, where:

d := ⌈3|S
′| ln(16|S ′|2|F|/δ)

ϵ
⌉. (10)

Finally, in the third phase, we use D to learn an encoder ϕθ, which approximates ϕ∗ with high
probability when the exogenous state e of the Ex-BMDP is sampled from its stationary distribution
πe.

STEEL relies on the CycleFind subroutine, which is described in detail and proven correct in Section
B.1.1. This subroutine is given a list of actions â and the previously-learned states S ′, datasets D,
and dynamics T ′. It identifies and collects samples of all latent states in some state cycle which
is traversed by taking the actions â repeatedly, and also identifies the latent state transitions in this
cycle.

We restate Theorem 1 here:
Theorem 1. For an Ex-BMDP M = ⟨X ,A,S, E ,Q, T, Te, πinit

E ⟩ starting at an arbitrary endoge-
nous latent state sinit ∈ S , with |S| ≤ N , where the exogenous Markov chain Te has mix-
ing time at most t̂mix, and where all states in S are reachable from one another in at most D̂
steps; and corresponding encoder function class F such that Equation 3 holds, the algorithm
STEEL(M,F , N, D̂, t̂mix, δ, ϵ) will output a learned endogenous state space S ′, transition model
T ′, and encoder ϕ′, such that, with probability at least 1− δ,

• |S ′| = |S|, and under some bijective function σ : S → S ′, it holds that

∀s ∈ S, a ∈ A : σ(T (s, a)) = T ′(σ(s), a), and, (4)

• Under the same bijection σ,

∀s ∈ S, Pr
x∼Q(s,e),

e∼πE

(ϕ′(x) = σ(ϕ∗(x))) ≥ 1− ϵ, (5)

where πE is the stationary distribution of Te.

Furthermore, the number of steps that STEEL executes on M scales as:

O∗
(
ND|S|2|A| · log |F|

δ
+ |S||A|t̂mix · log

N |F|
δ

+
|S|2D

ϵ
· log |F|

δ
+
|S|t̂mix

ϵ
· log |F|

δ

)
,

where O∗(f(x)) := O(f(x) log(f(x))).

For the sake of our proof, we will treat the ground-truth properties of the Ex-BMDP, such as the
latent dynamics T , as (unknown, arbitrary) fixed quantities, not as random variables. Similarly, we
will treat the initial latent state sinit as an arbitrary but fixed quantity, rather than a random variable.
Furthermore, in the proof, we will treat decisions that are specified (implicitly or explicitly) as
“arbitrary” in Algorithms 1 and 2 (such as the choice of the action â = [a] in the first invocation of
CycleFind, or the choice of “shortest” paths in cases of ties when Dijkstra’s algorithm is used) as
being made deterministically, such as by a pseudorandom process – crucially, we require that these
choices are made in a way that does not depend of the observations of the Ex-BMDP.

This leaves the exogenous noise transitions Te, the emission function Q, and the initial exogenous
latent state einit as the only sources of randomness in the algorithm. We notate the sample space
over these three processes together as Ω. Throughout the algorithm, we will ensure that decisions
such as control flow choices, choices of actions, and choices of how to assemble datasets, are made
deterministically, independently of Ω, with high probability. That is, unless the algorithm fails, these
decisions will be fully determined by s0, T , and algorithm parameters. While whether or not the
algorithm fails will depend (solely) on Ω, we will ultimately bound the total probability of failure as
less that δ by union bound, so that at each step in the proof, we can treat the algorithm’s choices as
statistically independent of Ω.

STEEL begins by repeatedly applying the CycleFind subroutine. CycleFind identifies a cycle in the
latent dynamics T of the Ex-BMDP, and collects observations of the states in that cycle. In Phase 1

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

of STEEL, throughout these application of CycleFind, the algorithm maintains a representation of
the learned Ex-BMDP “so far”, in the form of an incomplete set of learned states S ′, learned latent
dynamics T ′ : (S ′ ∪ {⊥})×A → (S ′ ∪ {⊥}), and a table of datasets corresponding to each latent
state D : S ′ →M(X).
We first describe the CycleFind subroutine in detail:

B.1.1 CYCLEFIND SUBROUTINE

Here, we describe CycleFind, and prove its correctness. CycleFind accepts as input a list of actions
â := [â0, ..., â|â|−1], and the Ex-BMDP M starting at an arbitrary state x0. CycleFind also takes the
representation of the learned Ex-BMDP “so far”, in the form S ′,D and T ′. We assume that, for each
s ∈ S ′ all of the previously-observed observations in D(s′) were collected with gaps of at least t̂mix
steps between them. Also, we assume that ∀s ∈ S ′, |D(s)| ≥ nsamp., where, in terms of the upper
bounds N ≥ |S| and t̂mix ≥ tmix, and total failure probability δ,

nsamp. :=

⌈
ln

(
δ

4|A| ·N4 · (D̂ + 1) · |F|

)/
ln

(
9

16

)⌉
. (11)

CycleFind first proceeds to take the actions â0, ..., â|â|−1 repeatedly in a loop. CycleFind then uses
this collected sequence of observations (which may need to be extended by cycling through â for
additional iterations) to learn new states and update S ′, D, and T ′.

We will show that sequence of latent states visited by CycleFind is eventually periodic; that is, it
guaranteed to eventually get stuck in a cycle of latent states, with a period in the form ncyc · |â|, for
some ncyc ≤ N . The goal of CycleFind is to:

1. Identify the period of this cycle. (That is, determine ncyc.)
2. Use this period to extract from the sequence of observed states some new multisets of ob-

servations D′
i ∈ M(X) for i ∈ {0, ..., ncyc · |â| − 1}, which each contain only one unique

latent state, corresponding to the position i in the cycle. These multisets will only con-
tain observations collected at least t̂mix timesteps apart, so will be close-to-i.i.d. samples.
(Depending on ncyc, we may need to perform additional cycles of data collection at this
step.)

3. Identify which of these multisets D′
i have the same latent states that have been previously

identified in S ′, and which have a new latent state, and determine among the new multisets
which ones have the same latent states to each other, and which are distinct. This allows us
to update S ′ andD with the new samples fromD′

i, while maintaining the property that ∀s ∈
S ′,∀x, x′ ∈ D(s), ϕ∗(x) = ϕ∗(x′), and ∀s, s′ ∈ S ′,∀x ∈ D(s), x′ ∈ D(s′), ϕ∗(x) ̸=
ϕ∗(x′).) We also update the learned transitions T ′.

4. Return the updated learned state set S ′, datasets D, transition function T ′, and the current
latent state of M , scurr. ∈ S ′.

Specifically, CycleFind has the following property:
Proposition 1. For any action sequence â of length at most (D + 1)N , there exists at least one
sequence of ground-truth states in S, [scyc∗0 , scyc∗1 , ..., scyc∗|â|·ncyc−1], for some ncyc ≤ N , such that
∀i ∈ {0, 1, ..., |â| · ncyc − 1}, T (scyc∗i , âi%|â|) = scyc∗(i+1)%(|â|·ncyc)

. Given a sequence of actions
â, learned partial state set S ′, transition dynamics T ′, and datasets D which meet the following
inductive assumptions:

• There exists an injective mapping σ−1 : S ′ → S such that

∀s ∈ S ′, a ∈ A, T ′(s, a) = ⊥ ∨ σ−1(T ′(s, a)) = T (σ−1(s), a) (12)

and additionally,
∀s ∈ S ′,∀x ∈ D(s), ϕ∗(x) = σ−1(s). (13)

• ∀s ∈ S ′, |D(s)| ≥ nsamp.; and for each s, the samples in D(s) were all sampled from M

at least t̂mix steps apart. Additionally, the choice to add any sample x to D(s) was made

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

fully deterministically (as a function of T , sinit., the timestep t at which x was collected,
and algorithm parameters), and independently of the random processes captured by Ω.

• The choice of action sequence â is similarly fully deterministic and independent of Ω.

then, with probability at least:

1− δ

2 · |A| ·N (14)

CycleFind will return updated S ′, D, T ′, and scurr. which meet the same inductive assumptions, and
for which additionally:

• The image of the updated S ′(new), σ
−1(S ′(new)) is a (non-strict) superset of σ−1(S ′), which

additionally includes all unique states in some [scyc∗0 , scyc∗1 , ..., scyc∗|â|·ncyc−1].

• The transition matrix T ′
(new) is a (non-strict) superset of the old transition matrix T ′ (in the

sense that its domain is now S ′(new) ⊇ S ′(old), and if T ′
(old)(s, a) ̸= ⊥ then T ′

(new)(s, a) ̸=
⊥), and T ′

(new) additionally includes the transitions corresponding to the cycle; that is:

∀i,∃s, s′ ∈ S ′ :σ−1(s) = scyc∗i ∧ σ−1(s) = scyc∗(i+1)%(|â|·ncyc)
∧

T ′
(new)(s, âi%|â|) = s′.

(15)

• The final observation x sampled by CycleFind from M is such that σ−1(scurr.) = ϕ∗(x).

Additionally, CycleFind will take at most:

max
(
(2t̂mix + 3N · |â| − 2) · nsamp. cyc. −N · |â|, 2 · (t̂mix + |S| · |â| − 1) · nsamp. + 1

)
+max(N · |â| − |â| − t̂mix, 0) + 1 actions,

(16)

where nsamp. is defined in Equation 11 and nsamp. cyc. is defined in Equation 18.

Proof. Determining ncyc:

CycleFind initially takes cinit actions, where, in terms of the upper bounds N ≥ |S| and t̂mix ≥ tmix,

cinit := (2t̂mix + 3N · |â| − 2) · nsamp. cyc. − t̂mix −N · |â|+ 1 +max((N − 1) · |â|, t̂mix), (17)

where

nsamp. cyc. :=

⌈
ln

(
δ

4|A| ·N · (N − 1) · |F|

)/
ln

(
9

16

)⌉
. (18)

CycleFind first takes action â0, then â1, then â2, etc, until taking action â|â|−1, at which point it
repeats the process starting at â0, for a total of cinit steps. The observation after each of these actions
is recorded as xCF := [x1, ..., xcinit]. Let sCF := [s1, ..., scinit] be the (initially unknown) latent states
corresponding to these observations; that is, ϕ∗(x) for each x in xCF . (For indexing purposes, x0

and s0 will refer to the observation and latent state, respectively, of the Ex-BMDP before the first
action was taken by CycleFind. However, these will not be used by the algorithm.)

First, we show that sCF must in fact end in a cycle of period ncyc · |â|, for some ncyc ≤ N . Let
sper. consist of every |â|’th element in sCF starting at an offset m := max(0, t̂mix − (N − 1) · |â|);
that is, sper. := [sm, sm+|â|, sm+2|â|, ..., sm+⌊(cinit−m)/|â|⌋|â|]. Note that the evolution from one
state to the next in sper. is deterministic, because it is caused by the same sequence of actions,
[â(m+1)% |â|, â(m+2)% |â|, ..., â(m+|â|)% |â|], being taken after each state. That is, if sm+i·|â| = s
and sm+j·|â| = s and sm+(i+1)·|â| = s′, then sm+(j+1)·|â| = s′. As a consequence, if sm+i·|â| = s,
and the next occurrence of the latent state s in the sequence sper. is sm+(i+t)·|â| = s, then all
subsequent states in the sequence sper. will consist of repetitions of the sequence of sm+(i+1)·|â|
through sm+(i+t)·|â|.

Then sper. must consist of some sequence of ‘transient’ latent states which occur only once at the
beginning of the sequence, followed by a repeated cycle. Because these states never re-occur, the
transient part lasts length ntrn ≤ N − 1.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Then, the period of the cycle is ncyc, where ntrn + ncyc ≤ N . Note that the cycle in sper. contains
no repeated states. (Otherwise, the span between the first two repetitions of a state in the cyclic
sequence in sper. will itself repeat indefinitely, so we can analyse this smaller cycle as the cycle of
length ncyc.)

There is a corresponding cycle in sCF , of length ncyc · |â|. To see this, note that for all i ≥ ntrn,
we have that sm+i|â| = sm+i|â|+ncyc·|â|. Furthermore, for all j in {0, ...|â| − 1}, the sequence of
actions taken between sm+i|â| and sm+i|â|+j is the same as the sequence of actions taken between
sm+i|â|+ncyc·|â| and sm+i|â|+j+ncyc·|â|. Therefore sm+i|â|+j = sm+i|â|+j+ncyc·|â|. Thus, for any gen-
eral i′ ≥ ntrn|â| (which always can be written as i′ = i|â|+ j) we have that sm+i′ = sm+i′+ncyc·|â|.
However, this cycle may contain repeated states.

In order to avoid the transient part of sCF , and to prevent sampling observations with ex-
ogenous noise that is correlated to samples taken in previous iterations of CycleFind, we skip
the first max((N − 1) · |â|, t̂mix) transitions in sCF . For convenience, we will let s̄i :=
si·|â|+max((N−1)·|â|,t̂mix)

, and similarly x̄i := xi·|â|+max((N−1)·|â|,t̂mix)
. Note that the sequence

[s̄0, s̄1, ...] is equivalent to sper. after skipping the first N − 1 ≥ ntrn. elements of the sequence.

Because the cycle in sper. contains no repeated states, we have that

∀i, j ∈ N, s̄i = s̄j ⇔ i ≡ j (mod ncyc) (19)

In order to find ncyc, we test the hypothesis that ncyc = n′
cyc, for each n′

cyc ∈ {N, ..., 2}, in order,
until we identify ncyc. If none of the tests pass, then we know that ncyc = 1. The test for each
hypothesis ncyc = n′

cyc has a zero false-negative rate. Consequently, the loop will always end before
ncyc > n′

cyc, so at each iteration, it must always be the case that ncyc ≤ n′
cyc. A failure can only

occur if the test that ncyc = n′
cyc has a false positive, when in fact ncyc < n′

cyc.

Each test proceeds as follows:

• Let q := ⌈t̂mix/(n
′
cyc · |â|)⌉ and r := q · n′

cyc.

• Let k := ⌊ cinit+r·|â|−max((N−1)·|â|,t̂mix)
2r·|â|+n′

cyc·|â|
⌋

• Let D0 := {x̄r+(2r+n′
cyc)i+j | i ∈ {0, ..., k − 1}, j ∈ {1, ..., n′

cyc − 1}}.

• Let D1 := {x̄(2r+n′
cyc)i
| i ∈ {0, ..., k − 1}}.

• Use the training oracle to try to learn to distinguish D0 from D1, yielding f ∈ F .

• If ncyc = n′
cyc, then,

– Note that, because ncyc|r
∀i ∈ N, (2r + n′

cyc)i ≡ 0 (mod ncyc), (20)

but

∀i ∈ N, j ∈ {1, ..., n′
cyc − 1},

r + (2r + n′
cyc)i+ j ≡ j ̸≡ 0 (mod ncyc),

(21)

– Consequently, by Equation 19, all elements of D1 will have the same latent state, and
none of the elements of D0 have this latent state. By realizability, f will have 100%
accuracy on the training set. (This is the “true positive” case of the test.)

• Conversely, if ncyc < n′
cyc, there is only a small chance that any classifier f will have 100%

accuracy on the training set.

– Define j′ as the (unknown) value j′ := (−r − 1)%ncyc +1. Noting, by assumption,
that ncyc < n′

cyc, we have that j′ ∈ {1, .., n′
cyc − 1}. Then, ∀i ∈ {0, ..., k − 1}, we

have that x̄r+(2r+n′
cyc)i+j′ ∈ D0, while x̄(2r+n′

cyc)i
∈ D1. However, we also have that:

r + (2r + n′
cyc)i+ j′ ≡ (2r + n′

cyc)i (mod ncyc) (22)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

which by Equation 19 implies that
s̄r+(2r+n′

cyc)i+j′ = s̄(2r+n′
cyc)i

. (23)

– Now, we can define D
(j′)
0 ⊆ D0 as

D
(j′)
0 := {x̄r+(2r+n′

cyc)i+j′ | i ∈ {0, ..., k − 1}}. (24)

– Fix any arbitrary classifier f ′ ∈ F .
– In order for f ′ to have 100% accuracy on the training set, we must have f ′(x) = 1 for

all x ∈ D1, and f ′(x) = 0 for all x ∈ D
(j′)
0 .

– Note that all observations in D1⊎D(j′)
0 are collected at least tmix steps apart from one

another. (Specifically, x̄r+(2r+n′
cyc)i+j′ is collected (r+ j′) · |â| ≥ r · |â| ≥ tmix steps

after x̄(2r+n′
cyc)i

, and (r+n′
cyc− j′) · |â| ≥ r · |â| ≥ tmix steps before x̄(2r+n′

cyc)(i+1).)

– Because, additionally, D(j′)
0 and D1 are defined independently of Ω, by Lemma 1 we

have:

∀t ∈{t′|x̄t′ ∈ D1 ⊎D
(j′)
0 },

ps − 1/4 ≤ Pr(f ′(x̄t) = 1|(D1 ⊎D
(j′)
0)<t, ϕ

∗(x̄t) = s) ≤ ps + 1/4
(25)

where (D1 ⊎D
(j′)
0)<t refers to the samples in D1 ⊎D

(j′)
0 collected before x̄t and:

∀s ∈ S, ps := Pr(f ′(x) = 1|x ∼ Q(s, e), e ∼ πE). (26)
Then, by Equation 26, the probability that f ′ returns 1 on all samples in D1, and 0 on
all samples in D

(j′)
0 is at most:

Πk−1
i=0 (ps̄(2r+n′

cyc)i
+ 1/4) ·Πk−1

i=0 (1− (ps̄r+(2r+n′
cyc)i+j′ − 1/4)). (27)

By Equation 23, this is:

Πk−1
i=0 (ps̄(2r+n′

cyc)i
+ 1/4) ·Πk−1

i=0 (1− (ps̄(2r+n′
cyc)i
− 1/4)). (28)

Rearranging gives us:

FPR(f ′) ≤ Πk−1
i=0 (−p2s̄(2r+n′

cyc)i
+ ps̄(2r+n′

cyc)i
+ 5/16). (29)

Because ∀p, −p2 + p+ 5/16 ≤ 9/16, we can upper-bound this as:

FPR(f ′) ≤ Πk−1
i=0 (−p2s̄(2r+n′

cyc)i
+ ps̄(2r+n′

cyc)i
+ 5/16) ≤

(
9

16

)k

(30)

– As a uniform convergence bound:

FPR(f) ≤ |F|
(

9

16

)k

(31)

• Finally, we take a union bound over all values of n′
cyc. To do this, we must lower bound k

for all values of n′
cyc. First, note that

t̂mix +N |â| − 1 ≥ t̂mix + n′
cyc|â| − 1 ≥ r|â| (32)

Then:

k = ⌊ (t̂mix +N · |â| − 1) · (2 · nsamp. cyc. − 1) +N · |â| · nsamp. cyc. + r · |â|
2r · |â|+ n′

cyc · |â|
⌋

≥ ⌊r · |â| · (2 · nsamp. cyc. − 1) +N · |â| · nsamp. cyc. + r · |â|
2r · |â|+N · |â| ⌋

≥ ⌊nsamp. cyc.⌋
≥ nsamp. cyc..

(33)

So we have that, by union bound over all values of n′
cyc:

FPR(f) ≤ (N − 1)|F|
(

9

16

)nsamp. cyc.

(34)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Collecting D′
i:

We now know that sCF eventually enters a cycle of length ncyc · |â|, where ncyc is known. This is
the latent-state cycle [scyc∗0 , scyc∗1 , ..., scyc∗|â|·ncyc−1] mentioned in Proposition 1.

Depending on the value of ncyc, we might now need to extend xCF (and, respectively sCF) by
making additional loops through â, until the length of xCF is at least c, where:

c := 2 · ncyc · |â| ·
(
(nsamp. − 1) ·

⌈
t̂mix

|â| · ncyc

⌉
+ 1

)
+ t̂mix +max((N − ncyc) · |â|, t̂mix). (35)

This will entail taking an additional max(c − cinit, 0) steps on M . Note that in the worst case, this
means that CycleFind takes a total of at most:

max(cinit, c) ≤ max
(
(2t̂mix + 3N · |â| − 2) · nsamp. cyc. −N · |â|,

2 · (t̂mix + |S| · |â| − 1) · nsamp. + 1
)

+max(N · |â| − |â| − t̂mix, 0) + 1 actions.

(36)

We now define how to collect two datasets for each position in the cycle in sCF , DA
i and DB

i for
each i ∈ {0, ..., ncyc · |â| − 1}. Specifically we take:

DA
i =

{
xj |∃k ∈ {0, ..., nsamp. − 1} :

j = k ·
(
|â| · ncyc ·

⌈
t̂mix

|â| · ncyc

⌉)
+ n0 + (i− n0)%

(
ncyc · |â|

)} (37)

where we let
n0 := max((N − ncyc) · |â|, t̂mix), (38)

and

DB
i =

{
xj |∃k ∈ {0, ..., nsamp. − 1} :

j = k ·
(
|â| · ncyc ·

⌈
t̂mix

|â| · ncyc

⌉)
+ n′

0 + (i− n′
0)%

(
ncyc · |â|

)} (39)

where

n′
0 := n0 + (nsamp. − 1) ·

(
|â| · ncyc ·

⌈
t̂mix

|â| · ncyc

⌉)
+ |â| · ncyc + t̂mix. (40)

Note that, because we know that sCF enters a cycle of length ncyc · |â| after at most (N−ncyc) · |â| ≤
n0 transitions, we have that,

∀i, j ≥ n0, i ≡ j (mod ncyc · |â|)→ si = sj . (41)

Therefore, because:

k ·
(
|â| · ncyc ·

⌈
t̂mix

|â| · ncyc

⌉)
+ n0 + (i− n0)%

(
ncyc · |â|

)
≡ i (mod ncyc · |â|) (42)

(and a similar equivalence holds for n′
0), we have that, for any fixed i, all observations in DA

i ⊎ DB
i

must share the same latent state. Also, for any fixed i, all observations in DA
i and DB

i are collected
at least t̂ steps apart. Additionally, DA

i and DB
i are defined solely in terms of ncyc and â, and so

the selection of samples to put in these sets only depends on the sequence of latent states s that the
Ex-BMDP traverses, and is therefore defined deterministically and independently of of Ω (assuming
ncyc is correctly determined). We therefore define

D′
i := DA

i ⊎ DB
i , (43)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

x … x

Di
A

Dj
A

Di
B

Dj
B

D’i
D’j

≥ t̂mix

Di
A and Dj

B are nearly-independentD’i and D’j are each near-i.i.d.

⸢ t̂mix ⸣
⋅(n’cyc |â|)

n’cyc |â|

⸢ t̂mix ⸣
⋅(n’cyc |â|)

n’cyc |â|

⸢ t̂mix ⸣
⋅(n’cyc |â|)

n’cyc |â|

⸢ t̂mix ⸣
⋅(n’cyc |â|)

n’cyc |â|

⸢ t̂mix ⸣
⋅(n’cyc |â|)

n’cyc |â|

⸢ t̂mix ⸣
⋅(n’cyc |â|)

n’cyc |â|

Figure 4: Illustration of the sampling procedure for datasets D′
i. The first goal is to ensure that

for each cycle position i, the samples in D′
i are sampled tmix steps apart from each other, and are

therefore nearly i.i.d. We also want to ensure that for any pair of cycle positions i, j, there is a large
subset of D′

i that only contains samples retrieved at least tmix steps apart from some large subset of
D′

j . (This second goal is meant to guarantee that if D′
i and D′

j represent the same latent state, then
it is unlikely that any classifier exists than can separate the two subsets perfectly, which would be
strictly necessary to perfectly separate D′

i and D′
j). However, it is not necessary for all samples in

∪iDi to be collected tmix steps apart. Therefore, we collect an observation of each cycle position
i ∈ {0, ncyc · |â|}, all together, every t̂mix steps (rounded up to the cycle period). We continue until
nsamp observations of each position are collected; then wait t̂mix steps and collect nsamp additional
observations of each cycle position. This process ensures that D′

i and D′
j contain complementary

subsets DA
i and DB

j , each with at least nsamp samples, such all samples in DA
i ∪ DB

j are near-i.i.d.

and note that all elements in this set both share the same latent state and were collected at least t̂
steps apart from one another.

Additionally, for any fixed pair i, j, all observations in DA
i ⊎ DB

j are collected at least t̂ steps apart
from one another.

Using the c samples in xCF , this allows us to construct DA
i and DB

i , for each i ∈ {0, ncyc · |â| − 1},
where |DA

i | = |DB
i | = nsamp.. See Figure 4 for an illustration of the sampling procedure.

Identifying new latent states from D′:

At this point, each set D′
i consists of observations of a single latent state s, but two such sets D′

i
and D′

j may represent the same latent state, and D′
i may contain the same latent state as some

previously-collected D(s) for some s ∈ S ′.
In order to identify the newly-discovered latent states to add to S ′, and appropriately update D(·)
and T ′, we proceed as follows:

• For i ∈ {0, ..., ncyc · |â| − 1}:

– For each s ∈ S ′, use the training oracle to learn a classifier f ∈ F , with D0 := D(s)
and D1 := D′

i. If f can distinguish D0 from D1 with 100% training set accuracy, then
we conclude (with high probability) that D(s) and D′

i represent two different latent
states. Otherwise, we conclude that D(s) and D′

i both represent the same latent state.
– If D′

i is identified as representing some already-discovered latent state s ∈ S ′ then
discard D′

i. (Or, we can update D(s) by merging the samples in D′
i into it; this choice

does not affect our analysis – however, we should avoid doing this if D(s) was either
defined, or already updated, during this call of CycleFind: this is because two datasets
D′

i and D′
j from the same iteration of CycleFind may contain observations that were

sampled fewer than t̂mix steps apart from each other, which would break the inductive

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

assumption on D(s) if they are both merged into D(s).) Record this latent state s as:

scyc
i := s (44)

– Otherwise, if D′
i does not represent the any latent state s ∈ S ′, then D′

i (and D′′
i)

represents a newly-discovered state. We update S ′ by inserting a new state s′ into it,
and update D(s) by associating s′ with D′

i :

S ′ ← S ′ ∪ {s′}
D(s′) := D′

i

(45)

Finally, we also record this new latent state as :

scyc
i := s′ (46)

• To analyse the success rate of using the training oracle to determine if a given D(s) and D′
i

represent the same latent state, consider the following:

– If D(s) and D′
i contain different latent states, then f will be able to distinguish D0

from D1, deterministically, with 100% accuracy on the training set (due to our realiz-
ability assumption.)

– Otherwise, D(s) and D′
i both contain samples entirely of the same latent state, s.

Then, either:
* The latent state s was identified before the current run of the CycleFind subroutine.

Therefore, some subset of samples D′
0 ⊆ D0 = D(s) were added to D(s) before

the current run of CycleFind, such that |D′
0| ≥ nsamp. Let D′

1 := D1 = D′
i, and

note also that all samples in D′
0 ⊎D′

1 were collected at least t̂mix steps apart from
one another. (This is by inductive hypothesis forD(s), by construction forD′

i, and
by the fact that each run of CycleFind starts by “wasting” at least t̂mix steps.)

* The latent state s was identified during the current run of CycleFind, such that
D(s) = D′

j for some j < i. Then let D′
0 := DA

j ⊆ D0 and D′
1 := DB

i ⊆ D1.
Note that |D′

0|, |D′
1| ≥ nsamp., and all observations in D′

0 ⊎D′
1 were collected at

least t̂mix steps apart from one another.
* In either case, the choice of samples to include in D′

0 ⊎D′
1 was made determinis-

tically and independently of Ω (by construction and/or assumption).
We define ps as in Equation 72. Note that the samples in D′

0 and D′
1 were observed at

least t̂mix steps apart, at deterministically-chosen timesteps. Then Lemma 1 is applica-
ble, and we have that the probability that an arbitrary f ′ ∈ F returns 1 on all samples
from D1 ⊇ D′

1; and also returns 0 on all samples from D0 ⊇ D′
0 is at most:

(ps + 1/4)nsamp. · (1− (ps − 1/4))nsamp. =

(−p2s + ps + 5/16)nsamp. ≤
(

9

16

)nsamp. (47)

As a uniform convergence bound, we then have that:

FPR(f) ≤ |F|
(

9

16

)nsamp.

(48)

• Note that at all iterations, |S ′| ≤ |S|, so we train at most |S|·ncyc · |â| classifiers. Therefore,
by union bound, the total failure rate is bounded by:

Pr(fail) ≤ |S| · ncyc · |â| · |F|
(

9

16

)nsamp.

(49)

• Note that the states scyc
i now represent the latent states associated with the cyclic part of

xCF . Because we know the actions in the cycle, we can use this information to update
T ′. Specifically, ∀i ∈ {0, 1, ..., |â| · ncyc − 1}, the action taken after scyc

i and before
scyc
(i+1)%(|â|·ncyc)

is âi%|â|. We can then update:

T ′(scyc
i , ai%|â|)← scyc

(i+1)%(|â|·ncyc)
(50)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Return the updated S ′,D, and T ′, as well as scurr.:

Returning the updated S ′,D, and T ′ is straightforward. Note that the choice to assign or merge a
given D′

i in to a given D(s) depends only on the latent states s in the datasets, and so is independent
of Ω.

We have then shown that, if CycleFind succeeds, then states [scyc
0 , .., scyc

ncyc·|â|−1], have been added
to S ′, if they were not present already. These states correspond to the states in the cycle
[scyc∗0 , .., scyc∗ncyc·|â|−1], and the corresponding transitions have been added to T ′; furthermore, the
datasets D(s) have been updated appropriately.

To determine the learned latent state of the Ex-BMDP M after CycleFind is run, simply note that
this is equivalently the state corresponding to the observation xc, which we know belongs to dataset
D′

c%(ncyc |̇â|)
. We then know that this observation must have the same latent state as the rest of

D′
c%(ncyc |̇â|)

; that is, the observation scyc
c%(ncyc·|â|).

The total failure rate for the CycleFind algorithm can be bounded by union bound from the failure
rates of Parts 1 and 3 of the algorithm; that is, Equations 34 and 49. That is:

Pr(fail) ≤ (N − 1) · |F|
(

9

16

)nsamp. cyc.

+ |S| · ncyc · |â| · |F|
(

9

16

)nsamp.

≤ (N − 1) · |F| δ

4|A|N(N − 1)|F| +N3 · (D + 1) · |F| δ

4|A|N4(D̂ + 1)|F|

≤ δ

2|A| ·N .

(51)

All claims of Proposition 1 have therefore been proven.

B.1.2 STEEL PHASE 1

Note that given a fixed â, there might be multiple different state cycles that could be discovered
by CycleFind. However, only one will actually be discovered, depending on the state that the Ex-
BMDP starts in as well as the not-yet-discovered parts of the state dynamics. For example, consider
an Ex-BMDP A := {L,R}, S := {1̂, 2̂} with the following latent dynamics:

1̂ 2̂

R

RL L

If we set â := [L], then, depending on the initial state, CycleFind will either collect samples of 1̂
and discover its self-loop transition, or collect samples of 2̂ and discover its self-loop transition.

In order to learn the complete latent dynamics of the Ex-BMDP, we maintain a representation T ′ of
the partial transition graph that has been discovered so far, and iteratively apply CycleFind using, at
each step, an action sequence â that is guaranteed to produce a cycle that is not entirely contained in
the partial graph discovered so far.

Note that this is not as simple as choosing a sequence of actions that leads to an unknown state
transition from the final latent state of the Ex-BMDP reached in the previous iteration of CycleFind.
For example, consider the following partially-learned latent state dynamics (with A := {L,R}):

1̂ 2̂

3̂4̂

R

R

RR
L

L

LL

Here, the only unknown transition from an known state is the effect of the ‘R’ action from 4̂. Suppose
we know from the previous iteration of CycleFind that the current latent state of the Ex-BMDP is

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

scurr. = 3̂. Naively, it might seem as if running CycleFind with â = [R,R] would learn some new
transition dynamics or states, because it would navigate through the unknown transition. However,
this might not be the case in fact. In particular, the ‘R’-transition from 4̂ might only be visited
transiently. For example, suppose the full latent dynamics of the Ex-BMDP are as follows (with the
currently unknown parts shown in gray):

1̂ 2̂

3̂4̂5̂

6̂

R

R

RR

L

L

LLR

L

R

L

Then, if we run CycleFind with â = [R,R], it will converge to a cycle between the nodes 1̂ and 2̂:

1̂ 2̂

3̂4̂5̂

6̂

R

R

RR

L

L

LLR

L

R

L

RR

R

R R

R

Note that the states (1̂ and 2̂) and associated transitions that CycleFind converges on were already
explored, so we learn no new information from this application of CycleFind.

Instead, at each iteration, we design â so that no cycle of the actions â can be entirely contained
within the currently-known partial transition graph. We show that the length of the resulting â is at
most (D + 1)|S|.
We proceed as follows. Note that in the first iteration, before any latent states are known, we can
simply use â = [a] for some arbitrary a ∈ A. Otherwise, we use the following algorithm:

• Initialize B with all of the previously-learned latent states (that is, B ← S ′.)
• While B is non-empty:

– Remove some latent state s from B.
– Use Dijkstra’s algorithm to compute a shortest path in the partial transition graph that

starts at s and ends at any not-yet-defined transition. (that, is, any transition for which
T ′(·, ·) = ⊥). (Note this must be possible. Otherwise, because all states can reach
each other in the full latent dynamics, if there were no such undiscovered edge in the
same connected component as s, then we would know that we have already found the
complete latent dynamics.) Also note that the shortest path through such an edge can
have length at most D + 1, simply because:

* The length of the shortest path from s to the state with the undefined edge in the
full transition graph T is at most D.

* Suppose that some transition on this shortest path is missing in the partial transition
graph T ′. Concretely, let d be the first state along this path such that the transition
out of it is missing. Then, we have a path from s to d of length less than D, and
we know that d is itself missing a transition. Then d can be used in place of the
original state with the undefined edge: it has a missing transition, and it is at most
D steps, in T ′, from s.

– Let â′ be the list of actions on the path we have found from s through an undefined
edge. Note that taking actions â′ from s will result in taking an unknown transition,
and that |â′| ≤ D + 1.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

– Replace B with the set of states that can result from starting at any state s′ ∈ B
and then taking actions â′, according to the learned partial transition graph T ′. For
a given s′ ∈ B, if this path leads to an unknown transition, do not insert any state
corresponding to s′ into the new B .

– Concatenate â′ to the end of â.

Note that at every iteration, |B| decreases by at least 1, so the algorithm runs for at most |S ′| iter-
ations, so the final length of â is at most (D + 1)|S ′|. Also note that, by construction, taking all
actions in â will traverse an unknown transition at some point, starting at any latent state that has
been learned so far. As a consequence, any cycle traversed by taking â repeatedly must involve at
least one transition (and possibly some states) that are not yet included in the partial transition graph.
Therefore, applying CycleFind using an â constructed in this way is guaranteed to learn at least one
new transition. Therefore, to fully learn the transition dynamics, we must apply CycleFind at most
|A| · |S| times.

Also, note that the process of constructing â at each iteration depends only on the partial latent
dynamics model T ′, which in turn depends only on the choices of â in previous invocations of
CycleFind, and ultimately these depend only on the starting latent state sinit and the ground-truth
dynamics T . Therefore â is at every iteration independent of Ω, as required by Proposition 1.

Then, assuming CycleFind succeeds at each invocation, by the end of Phase 1, STEEL will have
discovered the complete state set S and transition function T , up to permutation.

B.1.3 STEEL PHASE 2

In the next phase, once we have completely learned T ′ (that is, once there are no state-action pairs
s ∈ S ′, a ∈ A for which T ′(s, a) is undefined), we collect additional samples of each latent state,
until the total number of samples collected for each is at least d, where:

d := ⌈3|S
′| ln(16|S ′|2|F|/δ)

ϵ
⌉. (52)

We can leverage the fact that we now have a complete latent transition graph as well as knowledge
of the current latent state scurr. from the last iteration of CycleFind.

To do this, we proceed as follows:

• Use T ′ to plan a sequence of actions ā such that:

– t̂mix ≤ |ā| ≤ max(|S| ·D, t̂mix +D), and
– Taking the actions in ā starting at scurr. traverses a cycle. That is,

T ′(T ′(T ′(...T ′(scurr., ā0), ā1), ā2), ..., ā|ā|−1)) = scurr. (53)

and,
– Taking the actions in ā starting at scurr. visits all latent states in s ∈ S ′ \ {scurr.} such

that |D(s)| ≤ d at least once.

Note that planning such a sequence ā always must be possible. For example, starting
at scurr., we can greedily plan a route to the nearest as-of-yet-unvisited latent state s ∈
S ′ \{scurr.} such that |D(s)| ≤ d and repeat until all such states have been visited, and then
navigate back to scurr.. This takes at most |S ′| · D steps. If this sequence has length less
than t̂mix, then we can insert a self-loop at any state in the sequence (such as the state with
the shortest self-loop) and repeat this self-loop as many times as necessary until |ā| ≥ t̂mix.
Because all self-loops are of length at most D + 1, this can “overshoot” by at most D, so
we have that |ā| ≤ max(|S| ·D, t̂mix +D).

• Execute the actions in ā on M once without collecting data, in order to ensure that within
each set D(s), the newly-collected observations are collected at least t̂mix steps after obser-
vations added in previous phases of STEEL.

• Repeatedly take the actions ā on M , collecting the observation of each latent state s the
first time in the cycle that it is visited and inserting the observation into D(s), until ∀s ∈
S ′, |D(s)| ≥ d. Note that for a given latent state s, we collect observations of s exactly

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

|ā| steps apart. Because |â| ≥ t̂mix, this ensures that the observation added to D(s) are
collected at least t̂mix steps apart. Because each D(s) will already contain at least one
sample (from CycleFind), this process will take at most d− 1 iterations.

• Note that if for some state s ∈ S ′, |D(s)| reaches d during some iteration of taking the
actions ā, then for the next iteration, we can re-plan a shorter ā that does not necessar-
ily visit s. However, when we do this, we must execute the newly-planned cycle ā once
without collecting data, in order to ensure that all observation added to any particular D(s)
are collected at least t̂mix steps apart. This could require at most |S| additional iterations
through some ā.

This process will ensure that ∀s ∈ S ′, |D(s)| ≥ d, in at most

(d− 1 + |S|) ·max(D + t̂mix, |S| ·D) steps. (54)

Also, note that all samples collected during this phase are sorted into the appropriate dataset D(s)
entirely by open-loop planning on T ′, so the choice of samples in each D(s) remains independent
of Ω, and, in principle, can be a deterministic function of sinit.

B.1.4 STEEL PHASE 3

Finally, for each learned latent state s ∈ S ′, we train a classifier fs to distinguish D0 :=
⊎s′∈S′\{s}D(s′) from D1 := D(s). This set of classifiers allows us to perform one-versus-rest
classification to identify the latent state of any observation x, by defining:

ϕ′(x) := argmax
s

fs(x). (55)

Along with the learned transition dynamics T ′, this should be a sufficient representation of the latent
dynamics.

We want to guarantee that when the exogenous state e of the Ex-BMDP is at equilibrium (that is, is
sampled from its stationary distribution), for any latent state s, if x ∼ Q(s, e), then the probability
that fs(x) = 1 and, ∀ s′ ̸= s, f(s′) = 0 is at least 1 − ϵ. By union bound, we can do this by
ensuring that the accuracy of each classifier fs, on each latent state s′ ∈ S, is at least 1− ϵ/|S|. By
realizability, we know that ∀s, there exists some classifier f∗

s ∈ F for which f∗
s (s) = 1 iff ϕ∗(x) =

s. Therefore, we need to upper-bound the probability that ∃ f ′ ∈ F , for which ∀x ∈ D1, f(x) = 1
and ∀x ∈ D0, f(x) = 0, but for which either

Pr
x∼Q(s,e);e∼π

(f ′(x) = 0) ≥ ϵ

|S| (56)

Or, for any s′ ̸= s,
Pr

x∼Q(s′,e);e∼π
(f ′(x) = 1) ≥ ϵ

|S| . (57)

For all s, all samples in D(s) are collected at least tmix samples apart at timesteps chosen determin-
istically and independently of Ω. Therefore, for any single fixed classifier f ,we can use Lemma 2
and the fact that ∀s, |D(s)| ≥ d to bound the false-positive rates in Equations 56 and 57 as:

Pr

(
∀x ∈ D(s), f ′(x) = 1

∧
Pr

x∼Q(s,e);e∼π
f ′(x) = 0 ≥ ϵ

|S|

)
≤ 8e−

ϵ·d
3|S| . (58)

and, ∀s′ ∈ S ′ \ {s},

Pr

(
∀x ∈ D(s′), f ′(x) = 0

∧
Pr

x∼Q(s′,e);e∼π
f ′(x) = 1 ≥ ϵ

|S|

)
≤ 8e−

ϵ·d
3|S| . (59)

Taking the union bound bound over s and all latent states s′ ∈ S ′ \ {s} gives a total false positive
rate for learning f ′ as fs as:

FPR(f ′, s) ≤ 8|S|e− ϵ·d
3|S| . (60)

Taking the union bound over all f ∈ F gives:

FPR(fs) ≤ 8|S||F|e− ϵ·d
3|S| . (61)

Finally, taking the union bound over each classifier fs gives:

FPR ≤ 8|S|2|F|e− ϵ·d
3|S| . (62)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

B.1.5 BOUNDING THE OVERALL FAILURE RATE AND SAMPLE COMPLEXITY

Here, we bound the overall failure rate of the STEEL algorithm. We do this by separately bounding
the failure rate of the first phase of the algorithm (the repeated applications of CycleFind) and the
final phase of the algorithm, the learning of classifiers fs. We let each of these failure rates be at
most δ/2. Therefore, we must have, over the at most |S| · |A| iterations of CycleFind, a failure rate
of at most

δ

2
≥ |S| · |A| · Pr(CycleFind Fails). (63)

This is satisfied by Proposition 1 (noting that N ≥ |S|). The number of samples needed for these
|S| · |A| iterations of CycleFind, each with |â| ≤ |S| · (D + 1), is (by Equation 36) at most:

|S| · |A| ·
(
max

(
(2t̂mix + 3N · |S| · (D + 1)− 2) · nsamp. cyc. −N · |S| · (D + 1),

2 · (t̂mix + |S|2 · (D + 1)− 1) · nsamp. + 1
)

+max((N − 1) · |S| · (D + 1)− t̂mix, 0) + 1

) (64)

Which is upper-bounded by:

|S| · |A| ·
(
max

(
(2t̂mix + 3N · |S| · (D + 1)− 2) · nsamp. cyc.,

2 · (t̂mix + |S|2 · (D + 1)− 1) · nsamp.

+ 2 +max((N − 1) · |S| · (D + 1)− t̂mix, 0)
)) (65)

where nsamp. is given by Equation 11 and nsamp. cyc. is given by Equation 18. Meanwhile, the overall
failure rate of the second phase is at most

δ

2
≥ 8|S|2|F|e− ϵ·d

3|S| . (66)

Solving for d in Equation 66 gives:
3|S| ln(16|S|2|F|/δ)

ϵ
≤ d. (67)

Which is indeed satisfied by Equation 52, given that the structure of the latent dynamics were cor-
rectly learned using CycleFind in the first phase of the algorithm, so that |S ′| = |S|.
By Equation 54, we then know that the number of samples needed for this phase is at most:

max(D + t̂mix, |S| ·D) ·
(
⌈3|S| ln(16|S|

2|F|/δ)
ϵ

⌉ − 1 + |S|
)
. (68)

Combining the number of samples over both phases and simplifying gives us an overall upper-bound
of the number of required samples of:

max(D + t̂mix, |S| ·D)·
(
3|S| ln(16|S|2|F|/δ)

ϵ
+ |S|

)
+

|S| · |A| ·
(
max

(
(2t̂mix + 3N · |S| · (D + 1)− 2)·

(ln
(
4|A| ·N · (N − 1) · |F|/δ

)
/ ln(16/9) + 1),

2 · (t̂mix + |S|2 · (D + 1)− 1)·
(ln
(
4|A| ·N4 · (D̂ + 1) · |F|/δ

)
/ ln(16/9) + 1)

+ 2 +max((N − 1) · |S| · (D + 1)− t̂mix, 0)
))

(69)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

This gives us a big-O sample complexity of (using that D̂ ≤ N and |S| ≤ N):

O
(
|S|2 ·N ·D · |A| · (log |A|+ log(N) + log |F|+ log(1/δ))+

|S| · |A| · t̂mix · (log |A|+ log(N) + log |F|+ log(1/δ))+

|S|2 ·D · (1/ϵ) · (log(|S|) + log |F|+ log(1/δ))+

|S| · t̂mix · (1/ϵ) · (log(|S|) + log |F|+ log(1/δ))
) (70)

Using the notation O∗(f(x)) := O(f(x) log(f(x))), we can write this as:

O∗
(
ND|S|2|A| · log |F|

δ
+ |S||A|t̂mix · log

N |F|
δ

+
|S|2D

ϵ
· log |F|

δ
+
|S|t̂mix

ϵ
· log |F|

δ

)
. (71)

Therefore, we have shown that, with high probability, STEEL returns (up to permutation) the correct
latent dynamics for the Ex-BMDP, and a high-accuracy latent-state encoder ϕ′, within the sample-
complexity bound stated in Theorem 1. This completes the proof.

C USEFUL LEMMATA

Lemma 1. Consider an Ex-BMDP M = ⟨X ,A,S, E ,Q, T, Te, πinit
E ⟩ starting at an arbitrary latent

endogenous state sinit ∈ S . Let Ω represent the sample space of the three sources of randomness in
M : that is, Te, Q, and the initial exogenous latent state einit. Assume that all actions on M are
taken deterministically and independently of Ω. Let f ∈ X → {0, 1} be a fixed arbitrary function,
and for each s ∈ S let

ps := Pr(f(x) = 1|x ∼ Q(s, e), e ∼ πE). (72)

where πE is the stationary distribution of Te. Consider a trajectory sampled from this Ex-BMDP de-
noted as xtraj := x′

0, x
′
1, x

′
2..., with endogenous latent states straj := s′0, s

′
1, s

′
2... (so that s′0 = sinit),

and exogenous states etraj := e′0, e
′
1, e

′
2... . Then, for any fixed t1, t2 ∈ N, selected independently of

Ω, where t2 − t1 ≥ tmix, we have that:

ps − 1/4 ≤ Pr(f(x′
t2) = 1|x′

≤t1 , s
′
t2 = s) ≤ ps + 1/4, (73)

where x′
≤t1

denotes the observations in the trajectory xtraj up to and including x′
t1 .

Note that this does not necessarily hold if t1, t2 depend on Ω.

Proof. From the definition of mixing time:

∀e ∈ E , ∥Pr(e′t2 = ·|e′t1 = e)− πE∥TV ≤
1

4
. (74)

Then,

∀e ∈ E ,
∣∣∣Pr(f(x) = 1|x ∼ Q(s′t2 , e′), e′ ∼ πE)− Pr

x∼Q(s′t2
,e′t2

)
(f(x) = 1|e′t1 = e)

∣∣∣ ≤ 1

4
. (75)

Because e′t2 depends on x′
≤t1

only through e′t1 , we have:∣∣∣Pr(f(x) = 1|x ∼ Q(s′t2 , e′), e′ ∼ πE)− Pr
x∼Q(s′t2

,e′t2
)
(f(x) = 1|x′

≤t1)
∣∣∣ ≤ 1

4
. (76)

Then by Equation 72, ∣∣∣ps′t2 − Pr
x∼Q(s′t2

,e′t2
)
(f(x) = 1|x′

≤t1)
∣∣∣ ≤ 1

4
, (77)

which directly implies Equation 73. Note that this is does not hold if t1 and t2 can depend on Ω. For
example, if we define t2 := (min t such that f(x′

t) = 0 and t ≥ t1 + tmix), then trivially Equation
73 may not apply.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Lemma 2. Consider an irreducible, aperiodic Markov chain Te on states E with mixing time tmix
and stationary distribution πE , and an arbitrary function f : E → {0, 1}. Suppose Pre∼πE (f(e) =
1) ≤ 1−ϵ. Consider a fixed sequence of N timesteps t1, ..., tN , where ∀i, ti− ti−1 ≥ tmix. Now, for
a trajectory e0, ..., etN sampled from the Markov chain, starting at an arbitrary e0, we have that:

Pr(

N⋂
i=1

f(eti) = 1) ≤ 8e−
ϵ·N
3 . (78)

Proof. Define ϵ′ as:
ϵ′ := Pr

e∼πE
(f(e) = 0). (79)

Note that we know that ϵ′ ≥ ϵ. Now, fix any i ≥ tmix. Let M i denote the linear operator on state
distributions corresponding to taking i steps of the Markov chain: that is, M iπ gives the distribution
after i time steps. Also, let Π be the linear operator defined as:

Ππ :=

(∫
e ∈E

π(e)de

)
πe. (80)

Define the linear operator ∆i as:
∆i := M i −Π. (81)

By linearity and noting that both M i and Π are stochastic operators, we have that, for any π,∫
e∈E

(∆iπ)(e)de = 0. (82)

Also, from the definition of mixing time, we have, for any function π:

∥∆iπ∥1 ≤
1

2
∥π∥1. (83)

(To see this, for any e ∈ E consider the unit vector e⃗. Then, note that:

∥∆ie⃗∥1 = 2 · ∥πe −M ie⃗∥TV ≤
1

2
. (84)

Then, for any π, we have:

∥∆iπ∥1 = ∥
∫
e∈E

π(e)∆ie⃗ de∥1 ≤
∫
e∈E
|π(e)|∥∆ie⃗∥1de ≤

1

2
∥π∥1.) (85)

Because πe is a stationary distribution of M i, we also have that:

∆iπe = (|M i −Π)πe = πe − πe = 0. (86)

Additionally, let Γ be the linear operator defined as:

Γπ :=

∫
e∈E

π(e)f(e)e⃗ de (87)

In other words, (Γπ)(e) := f(e) · π(e). One useful fact about this operator is that, for any function
π0 such that

∫
e∈E π0(e)de = 0, we have that∫

e∈E
(Γπ0)(e)de ≤

1

2
∥π0∥1. (88)

(To see this, note that we have:∫
e∈E

(Γπ0)(e)de+

∫
e∈E

((I − Γ)π0)(e)de = 0, (89)

and also that, because Γπ0 and (I − Γ)π0 are nonzero for disjoint e’s:

∥Γπ0∥1 + ∥(I − Γ)π0)∥1 = ∥π0∥1. (90)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Then, we also have: ∣∣∣ ∫
e∈E

(Γπ0)(e)de
∣∣∣ ≤ ∥Γπ0∥1, (91)

and ∣∣∣ ∫
e∈E

(Γπ0)(e)de
∣∣∣ = ∣∣∣ ∫

e∈E
((I − Γ)π0)(e)de

∣∣∣ ≤ ∥(I − Γ)π0∥1. (92)

Combining these equations and inequalities yields Equation 88.)

Now, consider the operator M iΓ. This operator, when applied to a probability distribution π, yields
the (unnormalized) probability density that results from applying Te to e′ i times, where e′ is sampled
from π conditioned on f(e′) = 1. More precisely, it is the density of e ∼ T i

e (e
′), scaled down by

the probability that f(e′) = 1. In other words, it is given by:

(M iΓπ)(e) = p(ei = e|e ∼ T i
e (e

′) ∧ f(e′) = 1 ∧ e′ ∼ π) · Pr
e′∼π

(f(e′) = 1). (93)

Now, consider any vector v. Note that v always can be uniquely decomposed as follows:

v := aπe + bv̄ where
∫
e∈E

v̄(e)de = 0 and ∥v̄∥1 = 1 and b ≥ 0. (94)

(Specifically, we must set a :=
∫
e∈E v(e)de and b := ∥v − aπe∥1 and v̄ := (v − aπe)/b.)

Assume that v is such that a ≥ 0. Now, consider the equation:

v′ = M iΓv (95)

If we consider the above decomposition, we have:

a′πe + b′v̄′ = M iΓ(aπe + bv̄) (96)

Note that this can be re-written as:

a′πe + b′v̄′ = ΠΓ(aπe + bv̄) + ∆iΓ(aπe + bv̄). (97)

Note that by Equation 80, the image of Π can be written in the form a′πe, while, by Equation 82,
the image of ∆i can be written as b′v̄, where b′ and v̄ are constrained as in Equation 97. Then, we
have (using Equation 80):

a′ =

∫
e ∈E

(Γ(aπe + bv̄))(e)de = a

∫
e ∈E

(Γπe))(e)de+ b

∫
e ∈E

(Γv̄))(e)de (98)

and:

b′ = ∥∆iΓ(aπe + bv̄)∥1 ≤ a∥∆iΓπe∥1 + b∥∆iΓv̄∥1. (99)

Now, from Equation 98, we have:

a′ = a

∫
e ∈E

(Γπe)(e)de+ b

∫
e ∈E

(Γv̄)(e)de

≤ a

∫
e ∈E

(Γπe)(e)de+
b

2
∥v̄∥1 (by Equation 88)

≤ a(1− ϵ′) +
b

2
∥v̄∥1 (by Equation 79)

≤ a(1− ϵ′) +
b

2
(by definition of v̄)

(100)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

And, from Equation 99, we have:
b′ ≤ a∥∆iΓπe∥1 + b∥∆iΓv̄∥1
≤ a∥∆i(I − (I − Γ))πe∥1 + b∥∆iΓv̄∥1
≤ a∥∆iπe∥1 + a∥∆i(I − Γ)πe∥1 + b∥∆iΓv̄∥1
≤ a∥∆i(I − Γ)πe∥1 + b∥∆iΓv̄∥1 (by Equation 86)

≤ a

2
∥(I − Γ)πe∥1 +

b

2
∥Γv̄∥1 (by Equation 83)

≤ aϵ′

2
+

b

2
∥Γv̄∥1 (by Equation 79)

≤ aϵ′

2
+

b

2
∥v̄∥1 (by Equation 90)

≤ aϵ′

2
+

b

2
(by definition of v̄.)

(101)

We can summarize these results as: [
a′

b′

]
≤
[
1− ϵ′ 1

2
ϵ′

2
1
2

] [
a
b

]
. (102)

where there “≤” sign applies elementwise. Also, because the elements of this matrix are all non-
negative, we have: [

x′

y′

]
≤
[
x
y

]
=⇒

[
1− ϵ′ 1

2
ϵ′

2
1
2

] [
x′

y′

]
≤
[
1− ϵ′ 1

2
ϵ′

2
1
2

] [
x
y

]
. (103)

Now, let πt1 represent the probability distribution of the Markov chain at timestep t1, and πtN+tmix

be the probability distribution at timestep tN + tmix. Applying Equation 93 repeatedly gives us that:
M tmixΓM tN−tN−1ΓM tN−1−tN−2Γ ...M t2−t1Γπt1 =

πtN+tmix · Pr(f(et1) = 1) · Pr(f(et2) = 1|f(et1) = 1) ...

Pr(f(etN−1
) = 1| ∩N−2

i=1 f(eti) = 1) · Pr(f(etN) = 1| ∩N−1
i=1 f(eti) = 1)

(104)

This gives us that:∫
e∈E

(M tmixΓM tN−tN−1Γ ...M t2−t1Γπt1)(e)de = Pr(∩Ni=1f(eti) = 1) (105)

where the right-hand side is the probability that we are ultimately trying to bound.

Now, let v0 := πt1 ; for 1 ≤ i ≤ N−1, let vi := M ti+1−tiΓM ti−ti−1Γ...Γπt1 ; and finally let vN :=
M tmixΓM tN−tN−1Γ...Γπt1 . Let ai and bi represent the components a and b in the decomposition
given in Equation 94 of vi. Note that:

aN=

∫
e∈E

(M tmixΓM tN−tN−1Γ ...M t2−t1Γπt1)(e)de= Pr(∩Ni=1f(eti) = 1). (106)

Also, note that ∀j ∈ [1, N], we have that vj = M iΓvj−1, for some i ≥ tmix. Therefore, by Equation
102, [

ai
bi

]
≤
[
1− ϵ′ 1

2
ϵ′

2
1
2

] [
ai−1

bi−1

]
. (107)

(Additionally, each ai represents a probability, and so ai ≥ 0, so Equation 102 is applicable.) Now,
due to the relation shown in Equation 103, we can apply this inequality recursively:[

ai
bi

]
≤
[
1− ϵ′ 1

2
ϵ′

2
1
2

] [
ai−1

bi−1

]∧[
ai−1

bi−1

]
≤
[
1− ϵ′ 1

2
ϵ′

2
1
2

] [
ai−2

bi−2

]
=⇒[

ai
bi

]
≤
[
1− ϵ′ 1

2
ϵ′

2
1
2

] [
ai−1

bi−1

]∧
[
1− ϵ′ 1

2
ϵ′

2
1
2

] [
ai−1

bi−1

]
≤
[
1− ϵ′ 1

2
ϵ′

2
1
2

] [
1− ϵ′ 1

2
ϵ′

2
1
2

] [
ai−2

bi−2

]
=⇒[

ai
bi

]
≤
[
1− ϵ′ 1

2
ϵ′

2
1
2

] [
ai−1

bi−1

]
≤
[
1− ϵ′ 1

2
ϵ′

2
1
2

] [
1− ϵ′ 1

2
ϵ′

2
1
2

] [
ai−2

bi−2

]
(108)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

So that we have: [
aN
bN

]
≤
([

1− ϵ′ 1
2

ϵ′

2
1
2

])N [
a0
b0

]
. (109)

The matrix
[
1− ϵ′ 1

2
ϵ′

2
1
2

]
has eigenvalues (3

2−ϵ′)±
√

ϵ′2+ 1
4

2 ; we can use the closed-form solution to the

Nth power of an arbitrary 2 × 2 matrix given by Williams (1992) to exactly write this upper-bound
on aN :

aN ≤
[(32 − ϵ′) +

√
ϵ′2 + 1

4

2

N

1√
ϵ′2 + 1

4

[
1− ϵ′ − (3

2−ϵ′)−
√

ϵ′2+ 1
4

2
1
2

]T

−

 (32 − ϵ′)−
√
ϵ′2 + 1

4

2

N

1√
ϵ′2 + 1

4

[
1− ϵ′ − (3

2−ϵ′)+
√

ϵ′2+ 1
4

2
1
2

]T] [
1
b0

]
.

Where we are also using that πt1 is a normalized probability distribution, so a0 = 1. Simplifying:

aN ≤
[(32 − ϵ′) +

√
ϵ′2 + 1

4

2

N

1√
ϵ′2 + 1

4

1

4
− 3ϵ′

2
+

√
ϵ′2 + 1

4

2
+

b0
2

−

 (32 − ϵ′)−
√
ϵ′2 + 1

4

2

N

1√
ϵ′2 + 1

4

1

4
− 3ϵ′

2
−

√
ϵ′2 + 1

4

2
+

b0
2

]

This gives us:

aN ≤
[∣∣∣∣∣∣

(32 − ϵ′) +
√
ϵ′2 + 1

4

2

∣∣∣∣∣∣
N

1√
ϵ′2 + 1

4

∣∣∣∣∣∣14 − 3ϵ′

2
+

√
ϵ′2 + 1

4

2
+

b0
2

∣∣∣∣∣∣
+

∣∣∣∣∣∣
(32 − ϵ′)−

√
ϵ′2 + 1

4

2

∣∣∣∣∣∣
N

1√
ϵ′2 + 1

4

∣∣∣∣∣∣14 − 3ϵ′

2
−

√
ϵ′2 + 1

4

2
+

b0
2

∣∣∣∣∣∣
] (110)

Note that because πt1 is a normalized probability distribution, we have that b0 is at most 2 (with
this maximum achieved when πt1 has disjoint support from πe.) Numerically one can see that, for
ϵ′ ∈ [0, 1],

−.7 <
1

4
− 3ϵ′

2
+

√
ϵ′2 + 1

4

2
≤ .5 (111)

−1.9 <
1

4
− 3ϵ′

2
−

√
ϵ′2 + 1

4

2
≤ 0 (112)

Additionally, we can bound 1√
ϵ′2+ 1

4

≤ 2. Then this gives us:

aN ≤
[
4

∣∣∣∣∣∣
(32 − ϵ′) +

√
ϵ′2 + 1

4

2

∣∣∣∣∣∣
N

+ 4

∣∣∣∣∣∣
(32 − ϵ′)−

√
ϵ′2 + 1

4

2

∣∣∣∣∣∣
N]

(113)

Because, for ϵ′ ∈ [0, 1],
∣∣∣∣ (3

2−ϵ′)−
√

ϵ′2+ 1
4

2

∣∣∣∣ < ∣∣∣∣ (3
2−ϵ′)+

√
ϵ′2+ 1

4

2

∣∣∣∣, and using Equation 106, we can

bound:

Pr(

N⋂
i=1

f(eti) = 1) ≤ 8

 (32 − ϵ′) +
√
ϵ′2 + 1

4

2

N

(114)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

This bound is clearly somewhat unwieldy; to obtain a more manageable bound, it is helpful to
consider the asymptotic behavior near ϵ′ = 0. Letting δ := Pr(

⋂N
i=1 f(eti) = 1), we have:

ln δ ≤ ln 8 +N ln
(32 − ϵ′) +

√
ϵ′2 + 1

4

2
(115)

For ϵ′ small, we have ϵ′2 ≪ 1
4 , so

√
ϵ′2 + 1

4 ≈ 1
2 . Then:

ln δ ≲ ln 8 +N ln

(
1− ϵ′

2

)
(116)

Then, using the standard approximation ln(1− x) ≈ −x gives us:

ln δ ≲ ln 8− Nϵ′

2
. (117)

This approximation would give us δ ≲ 8e−
Nϵ′
2 . However, while this holds approximately for small

ϵ′, it does not hold exactly. Despite this, it does suggest a form for our final bound. If we try 8e−
Nϵ′
3 ,

we find that it holds that:

(32 − ϵ′) +
√
ϵ′2 + 1

4

2
≤ e−

ϵ′
3 on the interval 0 ≤ ϵ′ ≤ 0.44. (118)

Combining with Equation 114, this implies that

δ ≤ 8e−
Nϵ′
3 on the interval 0 ≤ ϵ′ ≤ 0.44. (119)

For very large ϵ′, we can use a much simpler bound on Pr(
⋂N

i=1 f(eti) = 1). Recall that:

δ = Pr

(
N⋂
i=1

f(eti) = 1

)
=Pr

(
f(etN) = 1

∣∣∣∣∣
N−1⋂
i=1

f(eti) = 1

)

·Pr
(
f(etN−1

) = 1

∣∣∣∣∣
N−2⋂
i=1

f(eti) = 1

)
· ...
·Pr(f(et2) = 1|f(et1) = 1) · Pr(f(et1) = 1)

(120)

However, because ∀i, ti − ti−1 ≥ tmix, we have that:

∀i > 1, Pr

f(eti) = 1

∣∣∣∣∣
i−1⋂
j=1

f(etj) = 1

 ≤ Pr
e∼πe

(f(e) = 1) +
1

4
=

5

4
− ϵ′ (121)

Combining these equations gives us:

δ ≤
(
5

4
− ϵ′

)N−1

· Pr(f(et1) = 1)

≤
(
5

4
− ϵ′

)N−1

=

(
5

4
− ϵ′

)−1(
5

4
− ϵ′

)N

≤ 8

(
5

4
− ϵ′

)N
(122)

Where we used that ϵ′ ≤ 1 in the last step. Finally, it holds that:(
5

4
− ϵ′

)
≤ e−

ϵ′
3 on the interval 0.37 ≤ ϵ′ ≤ 1. (123)

This then implies that:
δ ≤ 8e−

Nϵ′
3 on the interval 0.37 ≤ ϵ′ ≤ 1. (124)

Combining with Equation 119, we have that

∀ϵ′ ∈ [0, 1], Pr

(
N⋂
i=1

f(eti)

)
≤ 8e−

Nϵ′
3 (125)

Because ϵ′ ≥ ϵ, we have:

Pr

(
N⋂
i=1

f(eti)

)
≤ 8e−

Nϵ′
3 ≤ 8e−

Nϵ
3 . (126)

which was to be proven.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

D UPPER-BOUNDING MIXING TIMES FOR EXAMPLES

Here, we prove that the values of t̂mix used in the simulation experiments are in fact (somewhat
loose) upper bounds on the true mixing times of Te for these environments. While in practice, the
true mixing times would not be known a priori, it is important for the validity of our examples that
the true tmix is in fact ≤ t̂mix.

We use the following following well-known fact:

For distributions A := A1 ⊗A2 ⊗ ...⊗An and B := B1 ⊗ B2 ⊗ ...⊗ Bn:

∥A − B∥TV ≤
n∑

i=1

∥Ai − Bi∥TV (127)

First, we deal with the combination lock experiment. We can write the transition matrix for any
arbitrary two-state Markov chain as [

1− ϵ0 ϵ1
ϵ0 1− ϵ1

]
(128)

where 0 ≤ {ϵ0, ϵ1} ≤ 1. Note that in our particular example, we have 0.1 ≤ {ϵ0, ϵ1} ≤ 0.9.

This matrix has eigenvalues 1 and 1 − ϵ0 − ϵ1, and the stationary distribution (the eigenvector
corresponding to the eigenvalue 1) is

π∞ := [ϵ1/(ϵ0 + ϵ1), ϵ0/(ϵ0 + ϵ1)]
T . (129)

Using the closed-form formula for the n’th power of a two-state Markov Chain given by Williams
(1992), we have:([

1− ϵ0 ϵ1
ϵ0 1− ϵ1

])n

=
1

ϵ0 + ϵ1

[[
ϵ1 ϵ1
ϵ0 ϵ0

]
− (1− ϵ0 − ϵ1)

n

[
−ϵ0 ϵ1
ϵ0 −ϵ1

]]
(130)

To compute the mixing time, we compute the state distribution πn, n timesteps after each starting
state: ([

1− ϵ0 ϵ1
ϵ0 1− ϵ1

])n [
1
0

]
=

1

ϵ0 + ϵ1

[
ϵ1 + (1− ϵ0 − ϵ1)

nϵ0
ϵ0 − (1− ϵ0 − ϵ1)

nϵ0

]
(131)

and, ([
1− ϵ0 ϵ1
ϵ0 1− ϵ1

])n [
0
1

]
=

1

ϵ0 + ϵ1

[
ϵ1 − (1− ϵ0 − ϵ1)

nϵ1
ϵ0 + (1− ϵ0 − ϵ1)

nϵ1

]
(132)

Note that the TV distance between either of these distributions and the stationary distribution π is at
most

∥πn − π∞∥TV ≤
|(1− ϵ0 − ϵ1)|n max(ϵ0, ϵ1)

(ϵ0 + ϵ1)
≤ |(1− ϵ0 − ϵ1)|n. (133)

The parameters {ϵ0, ϵ1} for each two-state Markov chain are chosen uniformly at random, such that
0.1 ≤ {ϵ0, ϵ1} ≤ 0.9. Therefore, 0 ≤ |(1 − ϵ0 − ϵ1)| ≤ 0.8. Then, for any individual chain, we
have:

∥πn − π∞∥TV ≤ |(1− ϵ0 − ϵ1)|n ≤ 0.8n (134)

In the combination lock experiments, there are up to L = 512 of these noise Markov chains; the
probability distribution over the exogenous noise E is the product distribution over these chains.
Then we use Equation 127 to bound the total TV distance for the chain Te to its stationary distribu-
tion πE ; that is:

∥πtotal
n − πE∥TV ≤ 512 · 0.8n. (135)

Then, by the definition of mixing time, we have:

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

tmix ≤ minn, such that 512 · 0.8n ≤ 1

4
(136)

Which gives us:

tmix ≤
⌈− log(2048)

log(0.8)

⌉
= 35. (137)

So the value that we use in the experiment, t̂mix = 40, is a valid upper bound.

For the multi-maze experiment, the exogenous noise state consists of eight identical mazes, with
agents moving uniformly at random in each of them. Unlike the “combination lock” example, where
the individual components of the exogenous noise are conditioned on parameters ϵ0, ϵ1, which can
vary, in the multi-maze example the individual mazes always represent instances of exactly the same,
specific Markov chain. Let the transition matrix of this chain be M , with stationary distribution πM .
Then, by Equation 127, for the whole exogenous state Te, we have:

tmix =minn, such that ∀s0, ∥(Te)ns0 − πE∥ ≤
1

4

=minn, such that ∀s(1)0 , s
(2)
0 , ...s

(8)
0 ,
∥∥∥Mns

(1)
0 ⊗Mns

(2)
0 ⊗ ...⊗Mns

(8)
0 −

πM ⊗ πM ⊗ ...⊗ πM

∥∥∥ ≤ 1

4

≤minn, such that ∀s0,
8∑

i=1

∥Mns0 − πM∥ ≤
1

4

=minn, such that ∀s0, ∥Mns0 − πM∥ ≤
1

32

(138)

Which is to say that tmix for the entire exogenous noise chain is upper-bounded by tmix(1/32)
for the individual maze chain M . Furthermore, while the state space for the entire chain is of size
|E| = 688, the individual maze chain M operates on a state of size 68. This is small enough that
it is tractable to exactly compute tmix(1/32) for M using numerical techniques. We performed the
computation (source code is provided with the supplementary materials), and found that

minn, such that ∀s0, ∥Mns0 − πM∥ ≤
1

32
= 293. (139)

Therefore, for the full exogenous noise chain Te, we have that tmix ≤ 293. Then the value that we
use in the experiment, t̂mix = 300, is a valid upper bound.

E DISCUSSION OF ASSUMPTIONS

In this section, we argue that two major assumptions of the STEEL algorithm are necessary as-
sumptions. In other words, if we remove these assumptions, then, we argue, achieving similar
guarantees to our algorithm would become effectively impossible for any algorithm to accomplish
in the single-trajectory, no-resets Ex-BMDP setting (at least without making additional assumptions
to compensate). These assumptions are (1) reachability: the assumption that all endogenous states
s ∈ S are reachable from one another in T ; and (2) the availability of a known upper bound on the
exogenous state mixing time tmix.

E.1 REACHABILITY

Here, we argue that any algorithm for single-trajectory, no-resets representation learning of Ex-
BMDPs must necessarily make a reachability assumption: that all endogenous latent states must be
reachable from one another. At a high level, we argue that, if all latent states are not reachable from
one another, then an algorithm must visit states in a particular order in order to explore the entire
dynamics with a single trajectory. However, because the latent dynamics are not known a priori, it
is impossible for an algorithm to guarantee that it visits states in the appropriate order.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

More formally, recall that the reachability assumption is that for any pair of latent states s1, s2, there
exists both a path from s1 to s2 and a path from s2 to s1. Consider any Ex-BMDP M where this
condition does not hold, such that |A| ≥ 2, and any learning algorithm A. Firstly, if there is any pair
of states s1 and s2 where neither can reach the other, then clearly a single trajectory is insufficient to
learn the Ex-BMDP, because it cannot visit both s1 and s2. Therefore, we restrict to the case where,
for each pair of states, either both are reachable from each other, or (without loss of generality) s2
is reachable from s1 but s1 is not reachable from s2.

Consider every edge (s, a, s′) of the state transition graph defined by the state transition function
T . If, for all such edges, s is reachable from s′, then the reachability assumption holds on the
entire dynamics (because all single “steps” are invertible by some sequence of actions, so for any
pair s1, s2, the path from s1 to s2 implies the existence of a path from s2 to s1). Therefore, if
reachability does not hold, then there exists some edge (s, a, s′) such that s is not reachable from
s′. Now, consider the first time that the algorithm A encounters the state s. Regardless of the details
of A, there must exist some action a′ such that, on this first encounter, the probability of A taking
action a′ is at least 1/|A|.
Therefore, if a′ = a, then probability that the algorithm A never revisits s, and so never takes any
other action from s apart from a′, is at least 1/|A|. Then, with substantial probability, the algorithm
A never explores the |A| − 1 other possible transitions from s, and cannot possibly learn the full
dynamics of the Ex-BMDP. (To be more precise, the algorithm’s output will not depend at all on
the ground-truth value of T (s, a′′) for a′′ ∈ A \ {a}, and so is highly unlikely to return the correct
values for these transitions on arbitrary Ex-BMDPs.)

Alternatively, if a′ ̸= a, then consider the alternative Ex-BMDP M ′, which is identical to M in
every way (in terms of dynamics, exogenous state, emission function, etc.), except that the effects
of actions a and a′ on the latent state s are swapped. Note that before first encountering the latent
state s, the MDPs M and M ′ will produce identically-distributed sequences of observations, so the
algorithm A will behave identically on them, and have identical internal memory/state. Then, when
first encountering s, the algorithm M on A will take action a′ with substantial probability, and then
transition to s′ and be unable to revisit s.

Therefore, for any Ex-BMDP M that violates reachability, any algorithm A is either likely to fail
on M , or to fail on a slightly-modified version of M . In any case, no such algorithm will be able to
succeed with high probability on any general class of Ex-BMDPs that does not require reachability.

E.2 KNOWN UPPER BOUND ON THE MIXING TIME tMIX

Here, we argue that the assumption that an upper bound on the mixing time is provided is also
necessary. We argue that:

1. Any general, provably sample-efficient algorithm for learning, with high probability, an
Ex-BMDP from a single trajectory must necessarily require an upper bound on the mixing
time of the exogenous noise to be provided a priori (unless some other information about
the exogenous noise is provided.)

2. The runtime of any algorithm for learning an Ex-BMDP must, in the worst case, include
some term that scales at least linearly with the mixing time of the exogenous noise.

At a high level, we argue that, with a single trajectory, it can be impossible to distinguish between
a static exogenous dynamics (i.e., where only one exogenous state exists) and an extremely slow-
mixing exogenous dynamics, in time sublinear in the mixing time. For any proposed algorithm that
does not have access to a bound on the mixing time, and any Ex-BMDP with a single exogenous
state (that is, a Block MDP), we can construct an extremely slow-mixing Ex-BMDP that behaves
identically to the Block MDP with substantial probability during the entire duration of the runtime
of the learning algorithm, but which at equilibrium has a quite different distribution of observations.
This will make the learned encoder fail on the Ex-BMDP at equilibrium.

More precisely, to show (1): suppose the converse is true: that there exists some algorithm A that
learns Ex-BMDP latent dynamics and state encoders, which is not provided any upper-bound on the
mixing time of the exogenous noise of the Ex-BMDP, or any other information about the exogenous
noise distribution. We assume that A can learn the correct endogenous dynamics, as well as an

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

encoder with accuracy (for every endogenous state, under the stationary exogenous distribution)
of at least 1 − ϵ, with probability at least 1 − δ, for small values of ϵ and δ. Then, consider any
Ex-BMDP M1 and related parameterized family of Ex-BMDPs M2(γ),M3(γ) with the following
properties:

• M1 has N endogenous latent states s1, ..., sN with some transition function T , a single
exogenous latent state e1, and an emission function Q(s, e1). (In other words, M1 is any
Block MDP).

• M2(γ) has the same endogenous states and transition probabilities as M1, but has two
exogenous latent states e1, e2. The state e1 transitions to e2, and e2 transitions to e1, each
with probability γ. Note that the stationary distribution of the exogenous state is uniform
over e1 and e2. We also assume that the initial exogenous state distribution is uniform
over e1 and e2. Regardless of γ, the emission function of M2(γ) is defined such that
∀si, QM2

(si, e1) = QM1
(si, e1).

• M3(γ) is identical to M3(γ), except that its emission function is defined as
∀si, QM3

(si, e1) := QM1
(si, e1), but ∀si, QM3

(si, e2) := QM2
(s(i+1) mod N , e2). In other

words, when the exogenous state is equal to e2, the emission distributions for the endoge-
nous states are permuted in M3 compared to M2.

We also assume that the encoder hypothesis class can represent the inverses of QM1
, QM2

, and
QM3

. However, note that by construction, any fixed encoder ϕ(·) which has accuracy at least 1− ϵ
on M2(γ) (for every endogenous state, under the stationary exogenous distribution) can only have
accuracy at most 0.5 + ϵ on M3(γ), because, when the exogenous state is e2, any time that the
encoder returns the correct latent state for M2(γ), it will return the incorrect latent state for M3(γ).

Now, consider what happens when we run the algorithm A on M1. The number of environment
steps that A takes on M1 forms some distribution; let t be the 90’th percentile of this distribution,
so that with probability 0.9, A stops sampling before step t.

Now, we can set γ := 1 − 0.91/t, so that, with probability 0.9, the endogenous state of M2(γ) or
M3(γ) do not change before step t. Therefore, by union bound, on M2(γ) or M3(γ), if the initial
exogenous state is e1, then with probability at least 0.8, the exogenous state will stay constant at e1
up to timestep t, and the algorithm A, seeing exactly the same distribution of observations as if the
MDP was M1, will halt before timestep t.

Considering the 50% probability that the exogenous state starts at e1, this gives at least a 40%
chance that A applied to M2(γ) or M3(γ) never encounter the exogenous state e2. In this case, the
distribution of encoders output by A should be the same for the two Ex-BMDPs: let this distribution
be G. (That is, G is the conditional distribution of encoders output by A when applied to M2(γ) or
M3(γ), given that A never encounters e2.) However, because A fails on M2(γ) with probability at
most δ, we can conclude that at least (1− 0.4−1δ) of the encoders from the distribution G represent
successes of A on M2(γ).

Because A on M3(γ) also draws from G with probability at least 0.4, we can conclude that at least
0.4−δ of the time, A on M3(γ) produces an encoder that is highly accurate on M2(γ). As discussed
above, any encoder that is highly-accurate on M2(γ) cannot be highly accurate on M3(γ), so A must
fail on M3 with substantial probability.

Therefore, we can conclude that for any algorithm A that has no “hint” about the exogenous dynam-
ics (such as knowing the mixing time), there exists some γ such that A cannot possibly succeed with
high probability on both M2(γ) and M3(γ).

To show point (2), simply note that in this construction, in order to ensure that e2 is observed
with probability (1 − δ), an algorithm must observe at least the first ⌈log(2δ)/ log(1 − γ)⌉
timesteps. Meanwhile, the mixing time of the two-state Markov chain exogenous state is given
by ⌈−1/ log2(1 − 2γ)⌉. For a fixed δ and as γ approaches 0, the ratio between these quantities
approaches a constant: therefore, the number of steps required to ensure that e2 is observed with
high probability is linear in the mixing time.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

F DOUBLE-PRIME LOOP EXPERIMENTS

In this section, we present additional experiments which demonstrate that, on some types on Ex-
BMDPs, the STEEL algorithm can empirically outperform the algorithms proposed in Lamb et al.
(2023) and Levine et al. (2024), which do not have sample-complexity guarantees. We show that
there are certain structures of Ex-BMDP latent dynamics which are difficult for these prior methods
to learn efficiently, but on which STEEL performs well. Specifically, we look at a family of “double-
prime loop” tabular Ex-BMDPs which are discussed by Levine et al. (2024). First, though, we
describe the algorithms proposed by Lamb et al. (2023) and Levine et al. (2024), and motivate why
certain dynamics structures such as “double-prime loops” present a challenge to these methods.

F.1 BACKGROUND

F.1.1 AC-STATE AND ACDF ALGORITHMS

Lamb et al. (2023) and Levine et al. (2024) both propose algorithms to learn endogenous state
encoders in the Ex-BMDP framework.

Lamb et al. (2023) first proposed the AC-State algorithm, which aims to learn an encoder ϕ : X →
N, such that, under some one-to-one permutation σ, σ(ϕ(x)) = ϕ∗(x). To accomplish this task,
AC-State optimizes ϕ using a multistep inverse dynamics objective.

Specifically, in the theoretical treatment, AC-State tries to find the encoder ϕ which optimizes the
following objective:

L(ϕ) := min
g∈N×N×N→P(A)

E
k∼{1,...,K}

E
(xt,at,xt+k)∼D

− log
(
g
(
ϕ(xt), ϕ(xt+k), k

)[
at
])

ϕAC-State := argmin
L(ϕ)=minϕ′ L(ϕ′)

|Range(ϕ)|
(140)

In other words, the loss L(ϕ) is minimized on tuples (xt, at, xt+k) sampled from a trajectory, con-
sisting of an observation xt, the following action at, and the observation k steps in the future, xt+k.

the encoder ϕ(x) is trained to retain any information about the observations ϕ(xt) and ϕ(xt+k) that
is useful for predicting at. Specifically, an inverse-dynamics model g is simultaneously trained with
ϕ to predict at given ϕ(xt), ϕ(xt+k), and k. The loss L(ϕ) is then taken as the minimum loss for ϕ
over all such functions g.

However, note that, based on this loss function alone, the identity encoder ϕ(x) := x achieves the
minimum possible value of L(ϕ).8 Therefore, in order to filter exogenous information, the final
encoder returned by AC-State is the minimal range encoder that minimizes the loss function.

Lamb et al. (2023) claims that, if the data D is collected by a policy π(x) that only depends on x
through ϕ∗(x) (that is, the policy ignores exogenous noise); and the maximum segment length K is
at least the endogenous dynamics diameter D; and the endogenous dynamics are deterministic, then
the final encoder ϕAC-State returned will correctly encode the endogenous latent state (in the limit of
infinite data; and with sufficient function approximation).

When applied in practice, ϕ and g are learned neural networks, and a vector quantization bottleneck
is used to restrict the range of ϕ (so the output of ϕ is a quantized vector, rather than an integer.)

Levine et al. (2024) subsequently show that, in some cases, the AC-State objective in Equation 140
is not sufficient to learn a correct latent state encoder of an Ex-BMDP, even with unbounded amounts
of data. Levine et al. (2024) identify specific flaws in the proofs of Lamb et al. (2023), and propose
a modified loss function to address these flaws. In particular,

1. The maximum segment length K required to correctly learn the endogenous encoder must
in some cases be larger than D; a corrected upper bound on the necessary segment length
of 2D2 +D is given.

8Assuming X is countable.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

2. If the endogenous dynamics are periodic, then the multistep inverse objective can be in-
sufficient, for any choice of K. Levine et al. (2024) then propose to add an auxiliary loss
function to the loss in Equation 140, namely a latent forward dynamics loss:

Lforward(ϕ) := min
h∈N×A→P(N)

E
(xt,at,xt+1)∼D

− log
(
h
(
ϕ(xt), at

)[
ϕ(xt+1)

])
. (141)

This loss term enforces that the transitions in the learned endogenous latent state space are
deterministic; Levine et al. (2024) prove that enforcing this constraint is sufficient, when
combined with the multistep inverse loss, to ensure that a correct endogenous representa-
tions are learned even when the endogenous latent dynamics are periodic. Levine et al.
(2024) name the AC-State algorithm with this modified loss function ACDF.

Note that because D is in general unknown a priori, K must be treated as a hyperparameter of
the algorithm, so point (1) above is primarily of theoretical interest, but may aid in setting this
hyperparameter if there is some prior knowledge of D.

So far, we have only described the learning objectives of the two proposed algorithms: now, we
address how these algorithms collect the trajectory from which the tuples (xt, at, xt+k) are sampled.
Recall that a condition on the correctness of AC-State (and ACDF) is that the data-collection policy
does not depend on the noise in the observation, but only on the endogenous latent state. This
condition naturally raises the question of how exactly an algorithm intended to discover ϕ∗ can take
actions that depend only on ϕ∗(x), without already knowing ϕ∗ in the first place.

Lamb et al. (2023) performs experiments using two data-collection policies: (1). a uniformly ran-
dom policy, which meets the condition simply by ignoring the observation x entirely; and (2) a
goal-seeking policy, which aims to maximize latent state coverage. For the latter policy, the data
is collected simultaneously with training ϕ, and the partially-trained encoder ϕt is used to (imper-
fectly) filter out exogenous noise and plan in (an approximation of) the endogenous latent space.
Lamb et al. (2023) explicitly acknowledge that this bootstrapping approach breaks the condition
that the action at depends only on the true endogenous state ϕ∗(xt), which is necessary in their
proof of the correctness of their algorithm. Despite this, they observe that the approach seems to
work well empirically. Meanwhile, Levine et al. (2024) only use uniformly random actions in their
experiments.

For now, we will assume that data is collected under a uniformly-random policy. We will return to
discussing the latent-state-coverage maximizing approach proposed by Lamb et al. (2023) later, in
Section F.3.

F.1.2 DOUBLE-PRIME LOOPS

To specifically demonstrate that K ≈ O(D2) can be necessary to learn a correct encoder, even
when a forward dynamics loss is also being used, Levine et al. (2024) give a concrete example. This
example is the family of tabular “double-prime loop” Ex-BMDPs. For any two primes p, q, with
p < q, let the Ex-BMDP DoublePrime(p, q) be defined as follows:

• S =
{
0, 1, ..., (q − 1), 0′, 1′, ..., (q − 1)′

}
; A = {0, 1}; E = {e0}.

• X = S; Q(s, e0) = s; Te(e0) = e0.

• The endogenous latent state transition function T is defined as:

T (s, a) =

(s+ 1)% q if s ∈ {1, ..., q − 1} or (s = 0 and a = 0)

((s+ 1)% q)′ if s ∈ {1′, ..., (q − 1)′} or (s = 0′ and a = 0)

(q − p+ 1)′ if (s = 0 and a = 1)

(q − p+ 1) if (s = 0′ and a = 1).

(142)

In other words, DoublePrime(p, q) is a noise-free Ex-BMDP, where all of the dynamics are de-
terministic, and the latent state s is directly observed as x. The dynamics consist of two connected
loops, each of q states. The actions are generally ignored and the agent continues to progress through
a loop, except for in states 0 and 0′, where taking the action 1 transports the agent to the other loop,
at position q − p+ 1. As an example, the dynamics of DoublePrime(11, 13) are shown in Figure 5.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

0

1

2

3

45
6

7

8

9

10
11 12

0′

1′

2′

3′

4′ 5′

6′

7′

8′

9′

10′

11′12′

0

0

0/1 0/1

0/1

0/1

0/1

0/1

0/1

0/1

0/1

0/1

0/1

0/1

0/1

0/10/1

0/1

0/1

0/1

0/1

0/1

0/1

0/1

0/1

0/1

1

1

Figure 5: Latent dynamics of DoublePrime(11, 13).

0∗

1∗

2∗

3∗

4∗5∗
6∗

7∗

8∗

9∗

10∗
11∗ 12∗

0

0/1

0/1

0/1
0/10/1

0/1

0/1

0/1

0/1

0/1 0/1
0/1

1

Figure 6: Latent dynamics of SinglePrime(11, 13).

There is also a related family of “single-prime loop” Ex-BMDPs. Let SinglePrime(p, q) be defined
as (borrowing notation from Levine et al. (2024)):

• S =
{
0∗, 1∗, ..., (q − 1)∗

}
; A = {0, 1}; E = {e0}; Te(e0) = e0.

• X =
{
0, 1, ..., (q − 1), 0′, 1′, ..., (q − 1)′

}
.

• Q(s∗, e0) =
{
s with probability 1/2

s′ with probability 1/2.

• The endogenous latent state transition function T is defined as:

T (s∗, a) =

{
((s+ 1)% q)∗ if s ∈ {1∗, ..., (q − 1)∗} or (s = 0∗ and a = 0)

(q − p+ 1)∗ if (s = 0∗ and a = 1).
(143)

In other words, SinglePrime(p, q) has the same observation space X and action space A as
DoublePrime(p, q), but fewer controllable latent states. In SinglePrime(p, q), when the agent is
at latent state st = i∗, either the observation xt = i or the observation xt = i′ is emitted, each with
probability 0.5. The agent progreses through the loop of latent states regardless of actions, except
in latent state 0∗, where taking action 1 transitions the latent state to (q − p + 1)∗. (See Figure
6 for an example.) Note that if we ignore the distinction between the observations i and i′, then
DoublePrime(p, q) and SinglePrime(p, q) appear to have identical observed dynamics.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Let ϕDP (x) := x be the optimal encoder for DoublePrime(p, q), and

ϕSP (x) := i∗ if x = i or x = i′ (144)

be the optimal encoder for SinglePrime(p, q).

Levine et al. (2024) show that, on the Ex-BMDP DoublePrime(p, q) under a uniformly random
behavioral policy, in the limit of infinite training data, the encoders ϕDP and ϕSP have exactly the
same loss under the loss function in Equation 140, with K ≤ (q − 1)p. Note that if p and q are
close, then (q − 1)p ≈ D2/4. Because Equation 140 prefers the smallest-range encoder among
encoders with identical losses, this means that AC-State will incorrectly return ϕSP (which only
has q distinct outputs, rather than 2q.). Futhermore, the forward-dynamics loss suggested by Levine
et al. (2024) does not help in this case: it will be zero for both encoders under data generated by
DoublePrime(p, q).

It is important to note that SinglePrime(p, q) and DoublePrime(p, q) have truly distinct controllable
latent dynamics: in DoublePrime(p, q), given sufficient lead-time, the agent can (eventually) control
whether it is in state 1′ or 1 at a future time step, while an agent in SinglePrime(p, q) can never
control this. Therefore, AC-State is making an error if it returns ϕSP rather than ϕDP .

Levine et al. (2024) only considers the case of unlimited data, and only introduces the double-prime
loop Ex-BMDPs to make the point that the hyperparameter K must be set very high in some cases.
Here, however, we will also show empirically that, even when using a carefully-tuned and very large
value of K, AC-State and ACDF can take many samples to correctly learn these dynamics.

F.1.3 TABULAR EXPERIMENTS IN LEVINE ET AL. (2024)

Levine et al. (2024) empirically compare AC-State (Lamb et al., 2023) to their proposed ACDF
method, and empirically explore the effect of the hyperparameter K. To do so from a purely
statistical perspective (i.e., controlling for differences in optimization), in one set of experiments,
Levine et al. (2024) perform tests on small tabular Ex-BMDPs, including SinglePrime(3, 5) and
DoublePrime(3, 5). For these experiments, the final learned ϕAC-State (or ϕACDF) is found by ex-
haustively computing the losses in Equations 140 and 141 on all possible encoders ϕ ∈ X →
{0, ..., |X | − 1} (up to a relabeling perturbation of the output). For each encoder ϕ, the multistep
inverse model g (and, for ACDF, the forward model h) is estimated as a tabular function based on
the collected data:

g(s, s′, k)[a] :=
of instances of (xt,at,xt+k) such that ϕ(xt)=s;at=a; and ϕ(xt+k)=s′

of instances of (xt,at,xt+k) such that ϕ(xt)=s and ϕ(xt+k)=s′ . (145)

However, due to overfitting, this tabular definition of g, if used naively, would always lead to the
identity encoder ϕ(x) := x having the lowest empirical loss, regardless of the true latent encoder.
Therefore, Levine et al. (2024) collect two trajectories for each experiment, and uses one to fit g and
h for each possible encoder ϕ, and the other to evaluate the loss on each ϕ in order to determine
the final output encoder ϕAC-State or ϕACDF). We will call these sets of tuples the fitting set and
optimization set, repectively.

Because the number of possible encoders grows very quickly with |X |, Levine et al. (2024) limit
these experiments to very small tabular Ex-BMDPs, with |X | ≤ 10.

With this background out of the way, we describe our experiments:

F.2 EXPERIMENTS

F.2.1 SETUP

Given that Levine et al. (2024) describe how learning the correct latent state encoder for
DoublePrime(p, q) using a multistep-inverse loss requires taking into account specific long-duration
dependencies between states, we hypothesized that learning such an encoder using multistep-inverse
methods may be considerably less sample-efficient that doing so using STEEL, particularly for large
p and q. We therefore adapted the tabular Ex-BMDP experimental setup from the released code of
Levine et al. (2024) and tested the algorithms head-to-head.

However, for large p and q, the process of exhaustively searching all possible encoders (that is, all
partitions of 2q elements) quickly becomes intractable. Therefore, we restricted the hypothesis space

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

of encoders to only include the two hypotheses ϕSP and ϕDP . Note that this modification makes
the learning task strictly “easier.” For a fair comparison, we also restricted the hypothesis class for
STEEL to the minimum-possible set of “one-versus-rest” classifiers that would ensure realizability
for both DoublePrime(p, q) and SinglePrime(p, q). In particular, this is 3q classifiers f ∈ F : for
each i ∈ {0, ..., 1− q}, F includes a hypothesis which distinguishes i from all other observations, a
hypothesis which distinguishes i′ from all other observations, and a hypothesis which distinguishes
i or i′ from all other observations.

We make the following further modifications to the experimental protocol from Levine et al. (2024):

• When assessing the “minimum-range” minimal loss encoder as in Equation 140, Levine
et al. (2024) include an empirical “fudge factor”: their protocol returns the minimum-
range encoder that achieves a loss within 0.1% of the true minimum loss over all possible
encoders. We found that even without this fudge factor, the multistep-inverse methods
were still heavily biased towards returning ϕSR, when applied either to SinglePrime(p, q);
or to DoublePrime(p, q) with too-small K or too-few samples. This observation has a
simple statistical explanation: if, in the “infinite sample” limit, Pr(at|st = i, st+1 = j) =
Pr(at|st = i′, st+1 = j′), then fitting g(i, j, k) to both samples of (xt = i, at, xt+k = j)
and samples of (xt = i′, at, xt+k = j′) from the “fitting set” will lead to a higher-quality
multistep inverse model g, and therefore lower loss on the “optimization set”, compared to
using only the (smaller number of) samples of (xt = i, at, xt+k = j) alone. We therefore
remove the fudge factor entirely, and in fact return ϕGR in the case of exact numerical ties.

• Because the forward-model loss in Equation 141 is zero for both ϕSR and ϕGR for any
dataset collected from DoublePrime(p, q), we do not use it in our experiments: that is,
we regard AC-State and ACDF as equivalent in this setting, and refer to AC-State alone
from here onward. (Technically, the forward model loss would help identify the correct
encoder ϕSR in data generated from SinglePrime(p, q). However, as mentioned above,
ϕSR is already returned essentially “by default” by AC-State, so this loss term turns out to
be unnecessary.)

• To better match the spirit of “learning an Ex-BMDP from a single trajectory”, we collect
the “fitting” and “optimization” sets from one single trajectory, one after the other, with
each corresponding to half of the trajectory: we regard the total sample complexfity as the
length of the entire trajectory. Within of these two sub-trajectories, we collect all available
tuples (xt, at, xt+k) for all k ≤ K. There are therefore slightly fewer tuples with k = K
than with k = 1: we weight all tuples equally in the loss (rather than weighting all values
of k equally; Lamb et al. (2023) is unclear about the “correct” behavior here, and it is not
theoretically important).

• Based on Equation 145, g(s, s′, k)[a] can be zero, which, by Equation 140, can lead to
an infinite loss on a sample in the “optimization” set. In order to avoid this, Levine et al.
(2024) set g(s, s′, k)[a] to an arbitrary floor value of 10−7. As a more principled and scale-
invariant solution, we use standard Laplace (“add-one”) smoothing when fitting g.

We empirically compare the sample-efficiency of STEEL to AC-State on these problems with
(p, q) = (3, 5), (5, 7), (11, 13), (17, 19), (29, 31), and (41, 43).

In our comparison, we run each algorithm under the “best” choice of hyperparameters. For AC-
State, the conduct a large hyperparameter search to find the optimal K, while for STEEL, we
simply choose a single set of hyperparameters that will succeed on both DoublePrime(p, q) and
SinglePrime(p, q) based on our prior knowledge of the problems. Specifically:

• For AC-State, for each tested value of (p, q), we first collect 20 validation trajectories of
DoublePrime(p, q) (under a uniformly random policy), for increasing dataset sizes starting
at T = 100 steps. At each tested dataset size T , we compute the optimal ϕAC-State for
each of the 20 trajectories, with each possible value of K from K = 1 to K = 50, 000.
We first repeatedly increase the dataset size T by factors of 10. Once we first identify a
T = 10m such that, for at least some K, AC-State correctly returns ϕAC-State = ϕDP for all
20 trajectories, we then test with T = {2·10m−1, 3·10m−1, ..., 9·10m−1}. At the earliest of
these timesteps at which, for some K, a correct encoder is learned for all 20 trajectories, we
record the median such K as the “tuned” value Kopt of this hyperparameter. (See Figure 7

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

(p, q) (3,5) (5,7) (11,13) (17,19) (29,31) (41,43)
Max Steps for STEEL 5.97 · 104 1.49 · 105 9.07 · 105 2.60 · 106 1.10 · 107 2.83 · 107

Max Steps for AC-State 4 · 103 4 · 104 1 · 106 8 · 106 1 · 108 5 · 108
Max Steps: (AC-State / STEEL) ≈ 0.07 ≈ 0.3 ≈ 1 ≈ 3 ≈ 9 ≈ 18

Median Steps (STEEL, DoublePrime) 2.50 · 104 7.48 · 104 5.23 · 105 1.08 · 106 1.74 · 106 3.29 · 106

Median Steps (AC-State, DoublePrime) 3 · 103 3 · 104 8 · 105 7 · 106 9 · 107 5 · 108
Median Steps: (AC-State / STEEL) ≈ 0.1 ≈ 0.4 ≈ 1.5 ≈ 6 ≈ 50 ≈ 150

Table 3: Comparison of the empirical sample complexity of STEEL and AC-State on prime-loop
MDPs. See text of Section F.2.2.

for the results of the hyperparameter search.) At this point, we perform the actual test:
we evaluate the success rate of AC-State on DoublePrime(p, q), using only K = Kopt,
for values of T starting at T = 10m−1 and increasing by increments of 10m−1, on 20 new
trajectories for each tested dataset size. We stop when this test-time accuracy reaches 20/20
on trajectories from DoublePrime(p, q), at some Tmax. Finally, we verify that AC-State can
also consistently, correctly learn ϕSP on data from SinglePrime(p, q) with K = Kopt and
a trajectory length of Tmax, for 20 trajectories. (This always held in practice.9)

• For STEEL, we set N = D̂ = 2q (to match the maximum number of states in
DoublePrime(p, q) or SinglePrime(p, q)); t̂mix = 1 (because neither DoublePrime(p, q)
nor SinglePrime(p, q) have time-correlated noise); ϵ = 0.49 (because, due to the simple
emission distributions Q of SinglePrime and DoublePrime, a 51% encoder accuracy on
each latent state implies a 100% encoder accuracy); and γ = 0.95. We test for 20 trials
each of SinglePrime(p, q) and DoublePrime(p, q). All of these tests returned the correct
encoders, so the only metric we needed to consider was the number of environment steps
taken for each run.

F.2.2 RESULTS

Our top-line results are reported in Table 3.Our first reported statistic is the “Max Steps”: the number
of environment steps at which all 20 out of 20 tested trajectories for each of DoublePrime(p, q) and
SinglePrime(p, q) returned the correct encoder. (For STEEL, this is simply the maximum steps taken
over all 40 trajectories; for AC-State, this is the Tmax discovered in the test-time search described
in the previous section.) We see that, while for small instances (|S| ≤ 14) of DoublePrime(p, q),
AC-State is more sample-efficient than STEEL, STEEL scales efficiently to larger instances of the
problem.

Further, we noticed an interesting trend in the data. AC-State tended to transition very abruptly
from learning the wrong encoder on all tests of DoublePrime to learning the correct encoder on all
tests as T increased (as can be observed in the hyperparameter search in Figure 7). By contrast, the
distribution of steps taken for STEEL on DoublePrime(p, q) was highly skewed: most trials took
significantly fewer than the maximum observed number of steps. We therefore also compare the
median number of steps taken to learn a correct encoder for DoublePrime(p, q). For STEEL, this
is computed as simply the median length of the 20 DoublePrime(p, q) trajectories tested. For AC-
State, it is the first timestep T in the test-time search where AC-State with K = Kopt learns a correct
encoder for at least 10 of the 20 trajectories. Here, we find that, especially for large (p, q), STEEL’s
advantage over AC-State becomes even more pronounced.

F.3 EXPLORATION POLICIES WITH AC-STATE

So far, we have only compared STEEL to AC-State, where AC-State uses a uniformly random
exploration policy. This may seem unfair: STEEL takes decidedly nonrandom actions, and Lamb

9We avoided more extensive testing with SinglePrime(p, q), both because, as discussed above, AC-State
tends to “default” to returning the encoder ϕSP , which is correct for SinglePrime(p, q); and also because
the deterministic dynamics of DoublePrime(p, q) allowed us to take some computational “shortcuts” when
evaluating the loss function in Equation 140 on data from DoublePrime(p, q) for very large K, which were not
possible for SinglePrime(p, q). This made more exhaustive experimentation on DoublePrime(p, q) significantly
more tractable than it would be on SinglePrime(p, q).

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

1
103

2
103

3
103

4
103

5
103

6
103

7
103

8
103

9
103

10
103

Trajectory Length T

1
20
40
60
80

100
120
140
160
180

K

Hyperparameter Search, p = 3, q = 5

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

on
 D

ou
bl

eP
rim

e(
p,

q)
1
104

2
104

3
104

4
104

5
104

6
104

7
104

8
104

9
104

10
104

Trajectory Length T

1
60

120
180
240
300
360
420
480
540

K

Hyperparameter Search, p = 5, q = 7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

on
 D

ou
bl

eP
rim

e(
p,

q)

1
105

2
105

3
105

4
105

5
105

6
105

7
105

8
105

9
105

10
105

Trajectory Length T

1
200
400
600
800

1000
1200
1400
1600
1800

K

Hyperparameter Search, p = 11, q = 13

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

on
 D

ou
bl

eP
rim

e(
p,

q)

1
106

2
106

3
106

4
106

5
106

6
106

7
106

8
106

9
106

10
106

Trajectory Length T

1
800

1600
2400
3200
4000
4800
5600
6400
7200

K

Hyperparameter Search, p = 17, q = 19

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

on
 D

ou
bl

eP
rim

e(
p,

q)

1
107

2
107

3
107

4
107

5
107

6
107

7
107

8
107

9
107

10
107

Trajectory Length T

1
3000
6000
9000

12000
15000
18000
21000
24000
27000

K

Hyperparameter Search, p = 29, q = 31

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

on
 D

ou
bl

eP
rim

e(
p,

q)

1
108

2
108

3
108

4
108

5
108

6
108

7
108

8
108

9
108

10
108

Trajectory Length T

1
5000

10000
15000
20000
25000
30000
35000
40000
45000

K

Hyperparameter Search, p = 41, q = 43

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

on
 D

ou
bl

eP
rim

e(
p,

q)

Figure 7: Results from the hyperparameter search for the maximum-step-count parameter K in
Equation 140. The objective is to find a K which leads to a high success rate in learning the correct
latent state encoder for DoublePrime(p, q), for the lowest possible number of environment steps.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

et al. (2023) proposes an active exploration method for AC-State (albeit, as mentioned in Section
F.1.1 above, a method without strict theoretical grounding).

However, there is reason to believe that exploration policies similar to the one proposed by Lamb
et al. (2023) would be unlikely to help correctly identify the dynamics of DoublePrime(p, q).

To start with, the stated goal of the the exploration policy in Lamb et al. (2023) is to “achieve
high coverage of the control-endogenous state space.” A natural question to ask is: how poorly do
uniformly random policies perform at achieving this goal? To quantify this, we examined the state
coverage for a single 106-step trajectory on DoublePrime(41, 43), and computed the ratio of the
state visitation of the most-visited state to the state visitation of the least-visited state. Surprisingly,
this was ≈ 2. In other words, DoublePrime is not a hard exploration problem, and so techniques
designed to improve state coverage would seem to be unlikely to provide much of a benefit over a
uniformly random policy.

Still, we will now examine the specific exploration technique proposed by Lamb et al. (2023). At a
high level, the technique proceeds as follows:

• Throughout data collection, the agent maintains an approximate version of the encoder
ϕ′ obtained by optimizing the AC-State loss (Equation 140), and an approximate transi-
tion function T ′, obtained through counting. The algorithm also maintains state visitation
counts for each of the learned latent states encoded by ϕ′.

• At the start of each round of exploration (time t), the agent selects a goal learned-latent
state sg , with probability inversely proportional to the visitation count. The agent then
takes a single random action at, and then, starting at time t + 1, plans shortest-path to sg ,
and computes the number of steps k′ it will take to get to sg . Then, the agent proceeds to
navigate to sg in a closed-loop manner, using both ϕ′ and T ′. After k′ steps, regardless of
whether sg is reached, a new goal is set, and the process starts over.

• The encoder ϕ is only trained on the tuples (xt, at, xt+k′+1) which begin with a random
action and end with a goal state.

We performed some preliminary experiments using an adapted version of this algorithm on small
instances of DoublePrime(p, q), (with (p, q) = (5, 7) and (11, 13)) and, while not conclusive, our
tests showed roughly equivalent performance to using random actions. Specifically, for any choice of
K from 1 to 5, 000, our version of this active exploration algorithm achieved 20/20 correct encoders
on DoublePrime(5, 7) at T = 5× 104 steps, but not at T = 4× 104 (compared to random actions,
which does achieve this at T = 4 × 104 steps.) Meanwhile, on DoublePrime(11, 13), the active
exploration method achieved 20/20 correct encoders at T = 2 × 106 steps, but not at T = 1 × 106

(compared to random actions, which does achieve this at T = 1× 106 steps.)

We now briefly explain the modifications we made to this exploration algorithm from Lamb et al.
(2023) for our (preliminary) tests. Examining the original algorithm, we immediately notice an
issue: the encoder is only trained with segments of length k = k′ + 1, which (assuming ϕ′ and
T ′ are anywhere close to accurate) will only scale linearly with D. However, properly learning the
encoder for the DoublePrime environments requires examining longer segments of trajectories than
the diameter of the dynamics graph. Therefore, in order adapt this exploration method to the setting
we consider, we eliminate this part of the algorithm and train ϕ on the entire collected trajectory, as
in Equation 140.

Furthermore, we give the exploration method what should be a large, unnatural advantage, by plan-
ning, choosing goals, and assessing state visitation on the true ground truth dynamics T , with the
ground-truth state encoder ϕ. This represents what should be the “best possible” case for the algo-
rithm. It also enables us to test in this setting without having to optimize ϕ continuously during data
collection, and to assess many values of the hyperparameter K (which would impact the intermedi-
ate encoder ϕ) simultaneously on a single collected trajectory.

In our implementation, we reset the state visitation counts between collecting the “fitting” and “opti-
mization” portions of the trajectory, in order to ensure that they are distributed in the same way. We
also take uniformly random actions in cases where both actions produce a path of the same length
to the goal. Otherwise, we simply take the shortest available path to the goal state, and, when it is
reached, pick a new goal and take one random action.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

F.4 DISCUSSION

It is important to note that the DoublePrime environments are not hard-exploration environments,
nor do they have any time-correlated noise, nor do they have rich observations. In fact, adding
time-correlated noise or rich observations would likely only scale the sample-complexity of STEEL
on these environments only modestly (linearly in t̂mix and log(|F|)). Rather, STEEL outperforms
AC-State on large instances of these environments because the environments’ transition dynamics
are arranged in a way that is in a sense “adversarial” to multistep-inverse methods. By contrast,
because STEEL has well-understood sample-complexity

46

	Introduction
	Related Works
	Representation Learning for Ex-BMDP and Exo-MDPs
	Representation Learning for Block MDPs and Low-Rank MDPs

	Notation and Assumptions
	Algorithm
	Simulation Experiments
	Limitations and Conclusion
	Full Algorithm
	Proofs
	STEEL
	CycleFind Subroutine
	STEEL Phase 1
	STEEL Phase 2
	STEEL Phase 3
	Bounding the overall failure rate and sample complexity

	Useful Lemmata
	Upper-bounding mixing times for examples
	Discussion of assumptions
	Reachability
	Known upper bound on the mixing time tmix

	Double-Prime Loop Experiments
	Background
	AC-State and ACDF algorithms
	Double-Prime Loops
	Tabular Experiments in levine2024multistep

	Experiments
	Setup
	Results

	Exploration policies with AC-State
	Discussion

