000 001 002 003 LEARNING A FAST MIXING EXOGENOUS BLOCK MDP USING A SINGLE TRAJECTORY

Anonymous authors

033 034 035 Paper under double-blind review

ABSTRACT

011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 In order to train agents that can quickly adapt to new objectives or reward functions, efficient unsupervised representation learning in sequential decisionmaking environments can be important. Frameworks such as the Exogenous Block Markov Decision Process (Ex-BMDP) have been proposed to formalize this representation-learning problem [\(Efroni et al., 2022b\)](#page-10-0). In the Ex-BMDP framework, the agent's high-dimensional observations of the environment have two latent factors: a *controllable* factor, which evolves deterministically within a small state space according to the agent's actions, and an *exogenous* factor, which represents time-correlated noise, and can be highly complex. The goal of the representation learning problem is to learn an encoder that maps from observations into the controllable latent space, as well as the dynamics of this space. [Efroni](#page-10-0) [et al.](#page-10-0) [\(2022b\)](#page-10-0) has shown that this is possible with a sample complexity that depends only on the size of the *controllable* latent space, and not on the size of the noise factor. However, this prior work has focused on the episodic setting, where the controllable latent state resets to a specific start state after a finite horizon. By contrast, if the agent can only interact with the environment in a single continuous trajectory, prior works have not established sample-complexity bounds. We propose **STEEL**, the first provably sample-efficient algorithm for learning the controllable dynamics of an Ex-BMDP from a single trajectory, in the function approximation setting. STEEL has a sample complexity that depends only on the sizes of the *controllable* latent space and the encoder function class, and (at worst linearly) on the *mixing time* of the exogenous noise factor. We prove that STEEL is correct and sample-efficient, and demonstrate STEEL on two toy problems.

1 INTRODUCTION

036 037 038 039 040 This work considers the *unsupervised representation learning* problem in sequential control environments. Suppose an agent (e.g., a robot) is able to make observations and take actions in an environment for some period of time, but does not yet have an externally-defined task to accomplish. We want the agent to learn a *model* of the environment that may be useful for many downstream tasks: the question is then how to efficiently explore the environment to learn such a model.

041 042 043 044 045 Sequential decision-making tasks are often modeled as *Markov Decision Processes* (MDPs). In the unsupervised setting, an MDP consists of a set of possible observations \mathcal{X} , a set of possible actions A, a distribution over initial observations $\pi_0 \in \mathcal{P}(\mathcal{X})$, and a transition function $\mathcal{T} : \mathcal{X} \times \mathcal{A} \to \mathcal{P}(\mathcal{X})$. The agent does not have direct access to $\mathcal T$. Instead, at each timestep t, the agent observes $x_t \in \mathcal X$ and selects action a_t . The next observation x_{t+1} is then sampled as $x_{t+1} \sim \mathcal{T}(x_t, a_t)$.

046 047 048 049 050 051 052 In the totally generic MDP setting, the only model learning possible is to directly learn the transition function $\mathcal T$. However, if the space of possible observations is large, this task becomes intractable. Therefore, prior works have attempted to simplify the problem by assuming that the MDP has some underlying structure, which a learning algorithm can exploit. One such structural assumption is the Ex-BMDP (Exogenous Block MDP) framework, introduced by [Efroni et al.](#page-10-0) [\(2022b\)](#page-10-0). The Ex-BMDP framework captures situations where the space of observations $\mathcal X$ is very large, but the parts of the environment that the agent has control over can be represented by a much smaller latent state.

053 An Ex-BMDP has an observation space X , a controllable (or *endogenous*) latent state space S , and an exogenous state space \mathcal{E} . In the version of this setting that we consider, the controllable state **054 055 056 057 058 059 060 061 062** $s_t \in S$ evolves *deterministically* according to a latent transition function $T : S \times A \rightarrow S$. That is: $s_{t+1} = T(s_t, a_t)$. The exogenous state $e_t \in \mathcal{E}$ represents *time correlated noise*: it evolves stochastically, *independently of actions*, according to a transition function $\mathcal{T}_e : \mathcal{E} \to \mathcal{P}(\mathcal{E})$. That is: $e_{t+1} \sim \mathcal{T}_e(e_t)$. Neither s nor e is directly observed. Instead, the observation x_t is sampled as $x_t \sim Q(s_t, e_t)$, where $Q \in S \times \mathcal{E} \to \mathcal{P}(\mathcal{X})$ is the *emission function*. We make a *block* assumption on Q with respect to S: that is, we assume that for distinct latent states $s, s' \in S$, the sets of possible observations that can be sampled from $Q(s, \cdot)$ and $Q(s', \cdot)$ are disjoint. In other words, there exists a deterministic partial inverse of Q, which is $\phi^* : \mathcal{X} \to \mathcal{S}$, such that if $x \sim \mathcal{Q}(s, e)$, then $\phi^*(x) = s$. Hence, it is always possible in principle to infer s from x .^{[1](#page-1-0)}

063 064 065 066 067 068 069 As in the general MDP setting, the agent only directly observes $x_t \in \mathcal{X}$, and chooses actions a_t in response. However, rather than attempting to learn the full transition dynamics $\mathcal T$ of the system (which is determined by T , T_e , and Q together), the objective of the agent is instead to efficiently model only the *latent encoder* ϕ^* and the *latent transition function* T. Together, these models allow the agent to plan or learn in downstream tasks using the encoded representations $\phi^*(x)$, modeling only the parts of the environment that the agent can actually control (the latent state $s \in S$) while ignoring the potentially-complex dynamics of time-correlated noise.

070 071 072 073 074 075 076 077 078 079 080 081 082 Specifically, the aim of *efficient* representation learning in this setting is to learn ϕ^* and T, using a number of environment steps of exploration that is dependent only on $|\mathcal{S}|$ and the size of the function class F that the encoder ϕ^* belongs to, and is *not* dependent on the size of X or E. This allows X and $\mathcal E$ to be very large or potentially even infinite, but still allows for representation learning to be tractable. [Efroni et al.](#page-10-0) [\(2022b\)](#page-10-0) proposes an algorithm, PPE, with this property. However, PPE only works in a finite-horizon setting, where the agent interacts with the environment in episodes of fixed length H. After each episode, the controllable state (almost) always resets to a deterministic start state $s_0 \in S$ at the beginning of each episode. In this work, we instead consider the *singletrajectory, no-reset setting*, where the agent interacts with the environment in a single episode of unbounded length, with no ability to reset the state. This better models real-world cases, where, for example, expensive human intervention would be required to "reset" the environment that a robot trains in: we would rather not require this intervention. This no-reset Ex-BMDP setting was previously considered by [Lamb et al.](#page-10-1) [\(2023\)](#page-10-1) and [Levine et al.](#page-10-2) [\(2024\)](#page-10-2), however, the algorithms presented in those works do not have sample-complexity guarantees.

083 084 085 086 087 088 089 090 By contrast, the algorithm presented in this work is guaranteed to learn ϕ^* and T using samples polynomial in $|S|$ and $\log |\mathcal{F}|$, with no dependence on $|\mathcal{E}|$ and $|\mathcal{X}|$. We only require that the *mixing time* of the exogenous noise is bounded. In other words, the requirement is that t_{mix} , the mixing time of the Markov chain on $\mathcal E$ induced by $\mathcal T_e$, is at most some known quantity $\dot{t}_{\rm mix}$. Note that we do *not* require that the *endogenous* state s mixes quickly under any particular policy (although we do require – as do [Lamb et al.](#page-10-1) (2023) and [Levine et al.](#page-10-2) (2024) – that all states in S are *eventually* reachable from one another). In this setting, we derive an algorithm with the following asymptotic sample complexity (where $\mathcal{O}^*(f(x)) := \mathcal{O}(f(x) \log(f(x)))$):

$$
\mathcal{O}^*\left(ND|\mathcal{S}|^2|\mathcal{A}|\cdot\log\frac{|\mathcal{F}|}{\delta}+|\mathcal{S}||\mathcal{A}|\hat{t}_{\text{mix}}\cdot\log\frac{N|\mathcal{F}|}{\delta}+\frac{|\mathcal{S}|^2D}{\epsilon}\cdot\log\frac{|\mathcal{S}||\mathcal{S}|}{\delta}\right)
$$

091 092

$$
\mathcal{O}^*\left(ND|\mathcal{S}|^2|\mathcal{A}|\cdot\log\frac{|\mathcal{F}|}{\delta}+|\mathcal{S}||\mathcal{A}|\hat{t}_{\text{mix}}\cdot\log\frac{N|\mathcal{F}|}{\delta}+\frac{|\mathcal{S}|^2D}{\epsilon}\cdot\log\frac{|\mathcal{F}|}{\delta}+\frac{|\mathcal{S}|\hat{t}_{\text{mix}}}{\epsilon}\cdot\log\frac{|\mathcal{F}|}{\delta}\right),\tag{1}
$$

093 094 095 096 where N is a predetermined upper-bound on $|S|$, δ is the failure rate of the algorithm, D is the maximum distance between any two latent states in S (at most $|S|$), and ϵ is the minimum accuracy of the output learned encoder ϕ on any latent state class $s \in \mathcal{S}$. Note that this expression is at worst polynomial in $|S|$, and linear in t_{mix} and $\log |\mathcal{F}|$.

097 098 099 100 101 102 103 104 Our algorithm proceeds iteratively, at each iteration taking a certain sequence of actions repeatedly in a loop. Because the latent state dynamics T are deterministic, this process is guaranteed to (after some transient period) enter a cycle of latent states, of bounded length. Because the latent states in this cycle are repeatedly re-visited, the algorithm is then able to predictably collect many samples of the same latent state, without the need to "re-set" the environment. Furthermore, because this looping can be continued indefinitely, the algorithm can "wait out" the mixing time of the exogenous dynamics, in order to collect near-i.i.d. samples of each latent state. We call our algorithm Single-Trajectory Exploration for Ex-BMDPs via Looping, or STEEL. In summary, we:

¹⁰⁵ 106 107 ¹Unlike most prior works on Ex-BMDPs, we do *not* make a block assumption on \mathcal{E} : we allow the same x to be emitted by $Q(s, e)$ and $Q(s, e')$, for distinct e, e' . Technically, then, our Ex-BMDP framework represents a restricted class of Partially-Observed MDPs (POMDPs), rather than MDPs, because the complete state is not encoded within the observed X .

133 134 135 136 137 138 The Ex-BMDP model was originally introduced by [Efroni et al.](#page-10-0) [\(2022b\)](#page-10-0), who propose the PPE algorithm to learn the endogenous state encoder $\phi(\cdot)$ and latent transition dynamics T of an Ex-BMDP. PPE has explicit sample-complexity guarantees that are polynomial in $|\mathcal{S}|$ and $\log |\mathcal{F}|$: crucially, the sample complexity does not depend explicitly on $|\mathcal{E}|$ or $|\mathcal{X}|$. However, unlike the method proposed in this work, PPE is restricted to the *episodic, finite horizon setting* with (nearly) *deterministic resets*. After each episode, the endogenous state is (nearly) always reset to the *same* starting latent state $s_0 \in S$, and the exogenous state $e_0 \in \mathcal{E}$ is i.i.d. resampled from a fixed starting distribution. Similarly to this work, PPE assumes that the latent transition dynamics T are (close to) deterministic. Because both s_0 and T are nearly deterministic, PPE can collect i.i.d. samples of observations x associated with any latent state $s \in S$ simply by executing the same sequence of actions starting from s_0 after each reset. By contrast, in our setting, we cannot reset the Ex-BMDP state, so it is more challenging to collect samples of a given latent state s.

139 140 141 142 Other works *have* considered the Ex-BMDP setting without latent state resets. [Lamb et al.](#page-10-1) [\(2023\)](#page-10-1) and [Levine et al.](#page-10-2) [\(2024\)](#page-10-2) consider a setting similar to ours, where the agent interacts with the environment in a single trajectory. However, these methods do not provide sample-complexity guarantees, and instead are only guaranteed to converge to the correct encoder in the limit of infinite samples.

143 144 145 146 147 148 149 150 [Efroni et al.](#page-10-3) [\(2022a\)](#page-10-3) considers a related "Exo-MDP" setting, and proposes the ExoRL algorithm. In this setting, while the environment is episodic, the latent state s_0 resets to a starting value sampled randomly from a fixed *distribution* after each episode. Additionally, the latent transition dynamics may be non-deterministic. However, unlike our work, [Efroni et al.](#page-10-3) [\(2022a\)](#page-10-3) does not consider the general function-approximation setting for state encoders. Instead, the observation x is explicitly factorized into d factors, and the controllable state s consists of some unknown subset of k of these factors: the representation learning problem is reduced to identifying which k of the d factors are action-dependent. ExoRL guarantees a sample-complexity polynomial in $2^k = |\mathcal{S}|$ $2^k = |\mathcal{S}|$ and $\log(d)$.²

151 152 153 154 155 156 Recently, [Mhammedi et al.](#page-10-4) [\(2024\)](#page-10-4) have proposed an algorithm for provably sample-efficient policy optimization in the episodic Ex-BMDP setting with rewards, that can handle nondeterministic latent dynamics. However, the algorithm requires *simulator access* to the environment: this means that the agent is able to reset the environment to *any observation* $x \in \mathcal{X}$ that has been previously observed. This requirement is considerably stronger than even the requirement of deterministic resets to a single latent state found in [Efroni et al.](#page-10-0) [\(2022b\)](#page-10-0).

¹⁵⁸ 159 160 161 ²Because ExoRL allows for nondeterministic starting latent states, one might be able to adapt the method to the infinite-horizon no-reset setting by considering the single episode as a chain of "pseudo-episodes" with nondeterministic start state (c.f., [Xu et al.](#page-11-0) [\(2024\)](#page-11-0)). However, to do so, one would have to ensure that s mixes sufficiently between episodes, which may be challenging given that s is not directly observed and has unknown, controllable dynamics. Even still, the resulting algorithm would not apply to the general functionapproximation setting which we consider.

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 In addition to our main claim that our proposed algorithm is the first provably sample-efficient algorithm for representation learning in the single-trajectory Ex-BMDP setting, another property of our method is that we do not make a "block" assumption on the *exogenous* state e. For a fixed $s \in S$, in our setting, the same observation $x \in \mathcal{X}$ may be emitted by multiple distinct exogenous states $e, e' \in \mathcal{E}$. Prior works [\(Efroni et al., 2022b](#page-10-0)[;a;](#page-10-3) [Lamb et al., 2023;](#page-10-1) [Levine et al., 2024\)](#page-10-2) have stated assumptions that require that e may be uniquely inferred from x^3 x^3 . Removing this restriction allows one to model a greater range of phenomena. For example, suppose an agent can turn on or turn off a "noisy TV": i.e., the agent can control whether or not some source of temporally-correlated noise is observable. This is allowed in our version of the Ex-BMDP formulation, but is not allowed if e must be fully inferable from x. One prior work, [Wu et al.](#page-11-1) [\(2024\)](#page-11-1), also (implicitly) removes the block restriction on the exogenous state e. That work extends Ex-BMDP representation learning to the partially-observed state setting, with the assumption that the observation history within some known window is sufficient to infer the latent state s. However, [Wu et al.](#page-11-1) [\(2024\)](#page-11-1) does not provide any sample-complexity guarantees. [Wang et al.](#page-11-2) [\(2022\)](#page-11-2) and [Kooi et al.](#page-10-5) [\(2023\)](#page-10-5) consider similar settings with *continuous* controllable latent state. However, the proposed methods require explicitly modeling the exogenous noise state e , and there are no sample complexity guarantees. [Trimponias](#page-11-3) [& Dietterich](#page-11-3) [\(2023\)](#page-11-3) considers the sample-efficiency of reward-based reinforcement learning in Ex-BMDPs assuming known endogenous and exogenous state encoders; however, it does not address the sample complexity of the representation learning problem.

180 181

2.2 REPRESENTATION LEARNING FOR BLOCK MDPS AND LOW-RANK MDPS

182 183 184 185 186 187 188 189 190 191 The Ex-BMDP framework can be considered as a generalization of the Block MDP framework [\(Dann et al., 2018;](#page-10-6) [Du et al., 2019\)](#page-10-7). Like the Ex-BMDP setting, the Block MDP setting models environments where the observed state space X of the overall MDP is much larger than an action-dependent latent state space S. Some works in the Block MDP framework [\(Mhammedi et al., 2023;](#page-10-8) [Misra et al., 2020\)](#page-10-9) also allow for nondeterministic latent state transitions: that is $s_{t+1} \sim \mathcal{T}_s(s_t, a_t)$. However, unlike the Ex-BMDP setting, there is no exogenous latent state $e \in \mathcal{E}$ or exogenous dynamics \mathcal{T}_e : the observation is simply sampled as $x_t \sim \mathcal{Q}(s_t)$. In other words, the Block MDP setting does not allow for *time correlated noise outside of the modelled latent state* s. Therefore, even when stochastic latent-state transition are allowed, any time-correlated noise must be captured in S, and so impacts the sample complexity (which is typically polynomial in $|\mathcal{S}|$).

192 193 194 195 196 197 198 199 200 201 202 The Low-Rank MDP framework can also be considered as an extension the Block MDP framework, but is an *orthogonal* extension to the Ex-BMDP framework. In Low Rank MDPs, there exist functions $\phi: \mathcal{X} \times \mathcal{A} \to \mathbb{R}^d$ and $\mu: \mathcal{X} \to \mathbb{R}^d$, such that $\Pr(x_{t+1} = x'|x_t = x, a_t = a) = \phi(x, a)^T \mu(x').$ The sample complexity depends only polynomially on d and logarithmically on the size of the function classes for the state encoders ϕ and μ ; it should not depend explicitly on $|\mathcal{X}|$. Works under this framework include [Agarwal et al.](#page-10-10) [\(2020\)](#page-10-10); [Uehara et al.](#page-11-4) [\(2022\)](#page-11-4) and [Cheng et al.](#page-10-11) [\(2023\)](#page-10-11). Other works in the Low Rank MDP framework use a reward signal and only explicitly learn part of the representation (the encoder ϕ), including [Mhammedi et al.](#page-10-8) [\(2023\)](#page-10-8) and [Jiang et al.](#page-10-12) [\(2017\)](#page-10-12); see [Mhammedi](#page-10-8) [et al.](#page-10-8) [\(2023\)](#page-10-8) for a recent, thorough comparison of these works. Note that while BMDPs can be formulated as low-rank MDPs with $d = |\mathcal{S}|$, this does not hold for Ex-BMDPs: the rank of the transition probabilities on X depends on $|\mathcal{E}|$ – as noted by [Efroni et al.](#page-10-0) [\(2022b\)](#page-10-0).

203 204

3 NOTATION AND ASSUMPTIONS

• The Ex-BMDP, M , has observation space X , with discrete endogenous states S that have deterministic, controllable dynamics, and possibly continuous exogenous states $\mathcal E$ with nondeterministic dynamics that do not depend on actions. Concretely, we have that $s_{t+1} = T(s_t, a_t)$, where T is a deterministic function, and $e_{t+1} \sim T_e(e_t)$. Let $x_t \sim \mathcal{Q}(s_t, e_t)$, for $x_t \in \mathcal{X}, s_t \in \mathcal{S}, e_t \in \mathcal{E}$, with the *block assumption* on S. That is, a given $x \in \mathcal{X}$ can be emitted only by one particular $s \in \mathcal{S}$, which we define as $\phi^*(x_t) = s_t$. We assume that M is accessed in one continuous trajectory. The initial endogenous state is an arbitrary $s_{\text{init}} \in \mathcal{S}$, and the initial exogenous state $e_{\text{init}} \sim \pi_{\mathcal{E}}^{\text{init}}$, where $\pi_{\mathcal{E}}^{\text{init}} \in \mathcal{P}(\mathcal{E})$.

• The exogenous dynamics on $\mathcal E$ are *irreducible and aperiodic*, with stationary distribution $\pi_{\mathcal{E}}$. There is a known upper bound \hat{t}_{mix} on the *mixing time* t_{mix} , where (as defined in

³Although it is not immediately clear why this restriction is necessary for the proposed algorithms.

²¹⁴ 215

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 [Levin & Peres](#page-10-13) [\(2017\)](#page-10-13) and elsewhere) $t_{mix} := t_{mix}(1/4)$, where $t_{mix}(\epsilon)$ is defined such that: $\forall e \in \mathcal{E}, \quad \| \Pr(e_{t+t_{\text{mix}}(\epsilon)} = e' | e_t = e) - \pi_{\mathcal{E}}(e') \|_{TV} \leq \epsilon.$ (2) This assumption bounds how "temporally correlated" the noise in the Ex-BMDP is: it ensures that the exogenous noise state e_t at time t is relatively unlikely to affect $e_{t+\hat{t}_{\text{mix}}}$. • We have a known upper bound on the number of endogenous latent states, $N \geq |\mathcal{S}|$. Additionally, we assume that all endogenous latent states can be reached from one another in at most D steps, for some finite D (note that we *do not* assume that all pairs of states in S can be reached from one another in *exactly* D steps). We assume that there is a known upper bound on this diameter: $\hat{D} \geq D$. Trivially, if all endogenous latent states are reachable from one another then $D \leq N - 1$, so if a tighter bound is not available then we can use $\ddot{D} := N - 1$. (In fact, it is not very important to use a tight bound here: \ddot{D} does not appear in the *asymptotic* sample complexity.) • There is an encoder hypothesis class $\mathcal{F}: \mathcal{X} \to \{0, 1\}$, with realizablity for one-vs-rest classification of endogenous states. That is, $\forall s \in \mathcal{S}, \exists f \in \mathcal{F} : \forall x \in \mathcal{X}, f(x) = \mathbb{1}_{\phi^*(x) = s}.$ (3) In other words, for every latent state $s \in S$, there is some function $f \in \mathcal{F}$ such that $f(x) = 1$ if and only if $\phi^*(x) = s$. • The algorithm has access to a training oracle for \mathcal{F} , which, given two finite multi-sets D_0 and D_1 each with elements from X, returns a classifier $f \in \mathcal{F}$. The only requirement that we have for this oracle is that, if there exist any classifiers $\mathcal{F}^* \subset \mathcal{F}$, such that, for $f^* \in \mathcal{F}^*$, $\forall x \in D_0, f^*(x) = 0$ and $\forall x \in D_1, f^*(x) = 1$, then the oracle will return some member of \mathcal{F}^* . Note that an optimizer that minimizes the 0-1 loss on $D_0 \cup D_1$ will satisfy this requirement. However, it is not strictly necessary to minimize the 0-1 loss in particular. • General notation: Let $\mathcal{M}(\mathcal{A})$ be the set of all multisets of the set \mathcal{A} . Let \perp represent an undefined value. For lists x, y, let $x \cdot y$ represent their concatenation: that is, $[a, b] \cdot [c, d] =$ $[a, b, c, d]$. For multisets A and B, let $A \oplus B$ be their union, where their multiplicities are additive. Let % be the modulo operator, so that $a\%b \equiv a \pmod{b}$ and $0 \le a\%b \le b-1$. 4 ALGORITHM The STEEL algorithm is presented in full in Appendix [A;](#page-12-0) in this section, we give a high-level overview of the algorithm, and present bounds on its sample-complexity. We state the samplecomplexity and correctness of STEEL in the following theorem, which is proved in Appendix [B.](#page-12-1)

Theorem 1. For an Ex-BMDP $M = \langle \mathcal{X}, \mathcal{A}, \mathcal{S}, \mathcal{E}, \mathcal{Q}, T, \mathcal{T}_e, \pi_{\mathcal{E}}^{init} \rangle$ starting at an arbitrary endoge*nous latent state* $s_{init} \in S$, with $|S| \leq N$, where the exogenous Markov chain \mathcal{T}_e has mix*ing time at most* \hat{t}_{mix} *, and where all states in* S *are reachable from one another in at most* D *steps; and corresponding encoder function class* F *such that Equation [3](#page-4-0) holds, the algorithm* $STEEL(M, \mathcal{F}, N, \hat{D}, \hat{t}_{mix}, \delta, \epsilon)$ will output a learned endogenous state space S', transition model T' , and encoder ϕ' , such that, with probability at least $1 - \delta$,

•
$$
|S'| = |S|
$$
, and under some bijective function $\sigma : S \to S'$, it holds that
 $\forall s \in S, a \in A : \sigma(T(s, a)) = T'(\sigma(s), a)$, and, (4)

• *Under the same bijection* σ*,*

$$
\forall s \in \mathcal{S}, \Pr_{\substack{x \sim \mathcal{Q}(s,e), \\ e \sim \pi_{\mathcal{E}}}} (\phi'(x) = \sigma(\phi^*(x))) \ge 1 - \epsilon,
$$
\n(5)

where $\pi_{\mathcal{E}}$ *is the stationary distribution of* \mathcal{T}_{e} *.*

Furthermore, the number of steps that STEEL executes on M *scales as:*

$$
\mathcal{O}^*\Big(ND|\mathcal{S}|^2|\mathcal{A}|\cdot\log\frac{|\mathcal{F}|}{\delta}+|\mathcal{S}||\mathcal{A}|\hat{t}_{\textit{mix}}\cdot\log\frac{N|\mathcal{F}|}{\delta}+\frac{|\mathcal{S}|^2D}{\epsilon}\cdot\log\frac{|\mathcal{F}|}{\delta}+\frac{|\mathcal{S}|\hat{t}_{\textit{mix}}}{\epsilon}\cdot\log\frac{|\mathcal{F}|}{\delta}\Big),
$$

where $\mathcal{O}^*(f(x)) := \mathcal{O}(f(x) \log(f(x))).$

Figure 1: STEEL discovers the latent dynamics S and T by iteratively adding cycles to the learned dynamics graph. In this simple example, the initially-unknown "true" dynamics consist of 6 states arranged in a grid, where the agent can move $(U)p$, $(D)own$, (L) eft, or (R) ight. STEEL takes 12 iterations to discover the full dynamics: each pane corresponds to an iteration, and shows the stillunknown parts of the dynamics graph in grey, the already-known parts of the dynamics graph in black, and the cycle being explored in red. States are represented as circles and transitions as arrows.

We now present a high-level overview of STEEL. The algorithm proceeds in three phases. In the first phase, the algorithm learns the transition dynamics; in the second phase, it collects additional samples of observations of each latent state in \tilde{S} ; in the final phase, the encoder ϕ' is learned.

293 294 295 296 297 STEEL Phase 1: Learning latent dynamics. In the first phase, STEEL constructs a learned latent state space S' and learned transition dynamics T' by iteratively adding *cycles* to the known transition graph. At each iteration, a sequence of actions \hat{a} is chosen such that, starting *anywhere* in the known T' , taking the actions in \hat{a} is guaranteed to traverse a transition not already in T' . (We explain the process of constructing \hat{a} below.)

298 299 300 301 302 303 304 305 306 307 STEEL then takes the actions in \hat{a} repeatedly, collecting a sequence of observations x_{CF} . Because the transitions in T are deterministic, this sequence of transitions must eventually (after at most $|\mathcal{S}||\hat{a}|$ steps) enter a *cycle* of latent states, of length $n_{\text{cyc}}|\hat{a}|$, for some $n_{\text{cyc}} \leq |\mathcal{S}|$. Because \hat{a} was chosen to always escape the known transitions in T' , this cycle cannot be contained in T' , so adding the states and transitions of the new cycle to S' and T' is guaranteed to expand the known dynamics graph by at least one edge: this process will discover the full transition dynamics after at most $|S||A|$ iterations. See Figure [1](#page-5-0) for an example of how STEEL constructs S' and T' by adding cycles to the dynamics. Throughout this process, STEEL also collects a dataset $\mathcal{D}(s) \in \mathcal{M}(\mathcal{X})$ for each newlydiscovered latent state $s \in \mathcal{S}'$, such that all observations in $\mathcal{D}(s)$ has latent state s. The observations within each dataset $\mathcal{D}(s)$ are collected at least \hat{t}_{mix} steps apart from one another, so they are near-i.i.d.

308 309 310 311 312 313 314 315 316 317 318 319 320 321 *Constructing* \hat{a} . To ensure that \hat{a} always escapes the known transition graph given by T' , at each iteration, STEEL uses a recurrent procedure to construct \hat{a} . At the beginning of this procedure, \hat{a} is initialized as empty, and a set of latent states β is initialized with all of the learned states in \mathcal{S}' . At each step of the procedure, B represents the set of known states $s \in S'$ that can be reached by starting at any arbitrary state $s' \in S'$ and taking the action sequence given by the partially-constructed action list \hat{a} , following the known dynamics in T'. At each step, STEEL chooses a state $s \in \mathcal{B}$, and plans the shortest path from s to any unknown transition in T' . The corresponding sequence of actions, \hat{a}' , is then appended to \hat{a} , and \hat{B} is updated by replacing each state $b \in \hat{B}$ with the state that results from starting at b and taking the sequence of actions \hat{a}' , according to the learned partial transition function T' . If this path reaches an unknown transition in T' , then b is removed from B and not replaced. By construction, we know that the state s will be removed, so β will shrink by at least one state at each step of the process. By the end, β is empty, and we are guaranteed that taking action sequence \hat{a} from any state in S' will lead to an unknown transition in T' , as desired. Note that at each step, the shortest distance to an unknown transition has length at most $D + 1$, and the procedure continues for at most $|\mathcal{S}|$ steps, so $|\hat{a}| \leq |\mathcal{S}'| \cdot (D+1)$.

322 323 *Identifying latent states*.At each iteration, to identify the distinct latent states in the cycle, STEEL uses a subroutine called CycleFind. CycleFind additionally collects the datasets $\mathcal{D}(s)$ for each newly-discovered latent state. CycleFind itself has two phases:

371 372

Figure 2: CycleFind determines the period of the cycle in x_{CF} . See Section [4](#page-4-1) under "CycleFind" **Phase 1."** We show the sequence x_{CF} sampled from M: specifically, we show every $|\hat{a}|$ 'th observation, where the same actions \hat{a} are taken between each one. The observations' latent states are color-coded as red, blue, and green: a pattern repeats every $3|\hat{a}|$ steps, so $n_{cyc} = 3$. D_1 consists of the first observation in each $(n_{cyc}^{\dagger}|\hat{a}|)$ -cycle, and D_0 the other observations taken between executions of \hat{a} . (Spans of length $\geq \hat{t}_{mix}$ are skipped to ensure certain subsets of the datasets are near-i.i.d.)

CycleFind Phase 1: Finding the cycle's periodicity. To identify the latent states in the cycle in x_{CF} , CycleFind first determines cycle's period, $n_{\text{cyc}}|a\rangle$. To find n_{cyc} , CycleFind tests all possible values of n_{cyc} from N to 1, in decreasing order. To check whether some candidate value, n_{cyc}^{\dagger} , is in fact n_{cyc} , CycleFind constructs two datasets, D_0 and D_1 from $x_{CF} = [x_1, ...]$. These datasets are constructed so that if $n'_{\rm cyc} = n_{\rm cyc}$, then D_1 contains observations of only one controllable latent state s, and D_0 contains no observations of s. Therefore, if one attempts to train a classifier f to perfectly distinguish all observations in D_0 from those in D_1 , then such a classifier is unlikely to exist in $\mathcal F$ if $n'_{\text{cyc}} > n_{\text{cyc}}$, but is guaranteed to exist if $n'_{\text{cyc}} = n_{\text{cyc}}$, by the realizability assumption. In this way, CycleFind uses the training oracle to determine n_{cyc} .

Specifically, the datasets used are (see Figure [2](#page-6-0) for illustration.):

$$
D_0 := \{ x_{\bar{t}_{\text{mix}}} + (2\bar{t}_{\text{mix}} + n'_{\text{cyc}} | \hat{a}|) i + j \cdot |\hat{a}| + \text{offs.} | i \in \{0, ..., k-1\}, j \in \{1, ..., n'_{\text{cyc}} - 1\} \}
$$
(6)

$$
D_1 := \{ x_{(2\bar{t}_{\text{mix}} + n'_{\text{cyc}} \cdot \mid \hat{a}\mid) i + \text{offs.}} | i \in \{0, ..., k - 1\} \}
$$
\n
$$
(7)
$$

where $\bar{t}_{\rm mix} := \lceil \hat{t}_{\rm mix}/(n'_{\rm cyc} \cdot |\hat{a}|) \rceil \cdot n'_{\rm cyc} \cdot |\hat{a}|$ is $\hat{t}_{\rm mix}$ rounded up to the nearest multiple of $n'_{\rm cyc} \cdot |\hat{a}|$; the number of samples needed for D_1 is k (which depends on $\log(|F|)$, $\log(\delta)$, and other parameters); and offs. := max $((N - 1) \cdot |\hat{a}|, t_{\text{mix}})$ is a constant offset to ensure that the Ex-BMDP endogenous state has entered the terminal cycle induced by \hat{a} , and that the exogenous state has mixed.

366 367 368 369 370 To see why D_1 and D_0 are perfectly distinguishable only if $n'_{\rm cyc} = n_{\rm cyc}$, consider the sequence of repeated latent states that compose the cycle, $[s_0^{\text{cyc}}, ..., s_{n_{\text{cyc}}}^{\text{cyc}}]$ $\lim_{n_{\text{cyc}} \cdot |\hat{a}|-1}$. If we only consider every $|\hat{a}|$ 'th state in the cycle, then the resulting sequence, $[s_0^{\text{cyc}}, s_{|\hat{a}|}^{\text{cyc}}]$ $s_{[a]}^{\text{cyc}},...,s_{(n_c)}^{\text{cyc}}$ $\frac{(\alpha_{\text{cyc}}-1)\cdot |\hat{a}|}{(\alpha_{\text{cyc}}-1)\cdot |\hat{a}|}$, cannot contain any repeated states.^{[4](#page-6-1)} Therefore,

$$
\forall n, m, \ n \equiv m \pmod{n_{\text{cyc}}} \Leftrightarrow \phi^*(x_{|\hat{a}|n+\text{offs.}}) = \phi^*(x_{|\hat{a}|m+\text{offs.}}),\tag{8}
$$

373 374 375 and in particular, if $n'_{\text{cyc}} = n_{\text{cyc}}$, then $n \equiv m \pmod{n'_{\text{cyc}}} \Leftrightarrow \phi^*(x_{|\hat{a}|n+\text{offs}}) = \phi^*(x_{|\hat{a}|m+\text{offs}})$. Then, through modular arithmetic, we can conclude that D_1 contains observations of only one latent state of the cycle, while D_0 contains observations of all of the other latent states.

³⁷⁶ 377 4 Otherwise, due to the deterministic dynamics and repeated application of the same actions \hat{a} , the endogenous dynamics would immediately enter an even shorter cycle the first time a state is repeated in $[s_0^{\text{cyc}}, s_{|\hat{a}|}^{\text{cyc}}, \ldots, s_{(n_{\text{cyc}}-1)\cdot|\hat{a}|}^{\text{cyc}}]$, implying a shorter period.

378 379 380 381 Meanwhile, if $n'_{\text{cyc}} > n_{\text{cyc}}$, then for each observation in D_1 , there is a corresponding observation in D_0 with the same latent state, that is nearly-identically and independently distributed (i.e, they are collected $\geq \hat{t}_{mix}$ steps apart). In particular, consider the (unknown) subset $D_0^{(j')}\subseteq D_0$, defined as:

$$
D_0^{(j')} := \{ x_{\bar{t}_{\min} + (2\bar{t}_{\min} + n'_{\text{cyc}}|\hat{a}|) i + j' \cdot |\hat{a}| + \text{offs.} | i \in \{0, ..., k - 1\} \}
$$
(9)

384 385 386 387 where $j' := (-\lceil \hat{t}_{mix}/(n'_{\text{cyc}} \cdot |\hat{a}|) \rceil \cdot n'_{\text{cyc}} - 1) \% n_{\text{cyc}} + 1$. From arithmetic and applying Equation [8,](#page-6-2) we see that all observations in $D_0^{(j')}$ and all observations in D_1 have the same endogenous latent state. Additionally, all observations in $D_0^{(j')}$ and D_1 are collected at least \hat{t}_{mix} steps apart.

388 389 390 391 392 393 394 395 396 CycleFind Phase 2: Identifying latent states in the cycle. Once n_{cyc} is known, CycleFind can identify the latent states which re-occur every $n_{\text{cyc}}|\hat{a}|$ steps in x_{CF} . These latent states are not necessarily distinct from each other, and may also have been discovered already in a previous iteration of CycleFind. Therefore, CycleFind extracts from x_{CF} datasets \mathcal{D}'_i for each position in the cycle: $i \in \{0, ..., n_{\text{cyc}} | \hat{a} \rangle - 1\}$. CycleFind also uses datasets $\mathcal{D}(s)$ collected in previous iterations representing the already-discovered states in S' . CycleFind determines whether two datasets (either collected in this call to CycleFind, or collected in previous calls) represent the same latent state by attempting to learn a classifier $f \in \mathcal{F}$ that distinguishes them: if they both consist of near-i.i.d. samples of the same latent state, then it is highly unlikely that such a classifier exists.

397 398 399 400 401 402 403 404 To ensure the near-i.i.d. property "well enough," we only need that samples are separated by \hat{t}_{mix} steps within each individual $\hat{\mathcal{D}}'_i$; and that, when trying to distinguish two datasets $\mathcal{D}'_i, \mathcal{D}'_j$ which were both collected during this round of CyceFind, there are two (sufficiently large) *subsets* of \mathcal{D}'_i and \mathcal{D}'_j respectively such that all samples in the two subsets are collected at least \hat{t}_{mix} steps apart – ensuring this second condition only doubles the number of samples we must collect. Thus, we do not need to "wait" t_{mix} steps between collecting each usable sample from x_{CF} ; rather, we collect a usable sample *for each latent state* once for every roughly $2 \max(t_{mix}, n_{cyc}|\hat{a}|)$ steps. This is why t_{mix} does not appear in the largest term (in $|\mathcal{S}|$) of our asymptotic sample complexity.

405 406 407 If it is determined that some \mathcal{D}_i represents a newly-discovered latent state, then a new state s' is inserted into S' and $\mathcal{D}'(s')$ is initialized as \mathcal{D}_i . Once all states in $[s_0^{\text{cyc}},...,s_{n_{\text{cyc}}}^{\text{cyc}}]$ $\frac{cyc}{n_{cyc} \cdot |\hat{a}| - 1}$ have been identified, the action sequence \hat{a} can be used to add them to the learned transition dynamics T' .

408 409 410 411 412 413 414 415 STEEL Phase 2: Collecting additional samples to train encoder.^{[5](#page-7-0)} Once we have the complete latent dynamics graph, the determinism of the latent dynamics allows us to use open-loop planning to efficiently re-visit each latent state, in order to collect enough samples to learn a highly-accurate encoder. Note that we can navigate to any arbitrary latent state in D steps, so we can visit every latent state in $|\mathcal{S}|D$ steps. STEEL collects datasets $\mathcal{D}(s)$ for each latent state s where, within each $\mathcal{D}(s)$, the samples are collected at least \hat{t}_{mix} steps apart: therefore, it can add one sample to *each* dataset $\mathcal{D}(s)$ at worst roughly every $\max(|\mathcal{S}|D,\hat{t}_{\text{mix}})$ steps.

416 417 418 419 420 421 422 STEEL Phase 3: Training the encoder. Finally, STEEL trains the encoder. Specifically, for each latent state $s \in S'$, it trains a binary classifier $f_s \in F$ to distinguish $\mathcal{D}(s)$ from $\overline{\Theta}_{s' \in S' \setminus \{s\}} \mathcal{D}(s')$. To ensure that *only* the correct binary classifier, $f_{\sigma(\phi^*(x))}(x)$, returns 1, we ensure that *each* f_s has an accuracy of 1−ϵ/|S| on *each* latent state. We guarantee the accuracy of each classifier on each latent state separately and apply a union bound: note that because we use a union bound here, we do not need the samples in different datasets $\mathcal{D}(s)$, $\mathcal{D}(s')$ to be independent, which is why we are able to collect samples more frequently that every \hat{t}_{mix} steps. Finally, we define $\phi'(x) := \arg \max_s f_s(x)$.

423

382 383

5 SIMULATION EXPERIMENTS

424 425 426

427

We test the STEEL algorithm on two toy problems: an infinite-horizon environment inspired by the "combination lock" environment from [Efroni et al.](#page-10-0) [\(2022b\)](#page-10-0), and a version of the "multi-maze"

⁴²⁸ 429 430 431 $⁵$ In some scenarios, one might not need to learn an encoder at all. Note that the latent state s of the agent is</sup> known at the last environment timestep t of Phase 1 of STEEL. At this point, the full latent dynamics are already known. Thus, if the agent is "deployed" only once, immediately after training such that the latent state does not reset, then one could keep track of s in an entirely open-loop manner while planning or learning rewards, without ever needing to use an encoder. In this case, the sample complexity terms involving ϵ disappear.

Figure 3: Visualisations of the simulation experiment environments. For both environments, we show the ground-truth latent dynamics T (in the case of the combination lock, we show an arbitrary instance of T, for some $[a_0^*,...a_{K-1}^*]$), and an example transition in the observed space X.

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 environment from [Lamb et al.](#page-10-1) [\(2023\)](#page-10-1). In our combination lock environment, $\mathcal{A} = \{0, 1\}$, $\mathcal{S} =$ $\{0, ..., K-1\}$, and there is some sequence of "correct" actions $[a_0^*, ... a_{K-1}^*]$, such that $T(i, a_i^*)$ $i + 1$, but $T(i, 1 - a_i^*) = 0$. In other words, in order to progress through the states, the agent must select the correct next action from the (arbitrary) sequence $[a_0^*,...a_{K-1}^*]$; otherwise, the latent state is reset to 0. The observation space $\mathcal{X} = \{0,1\}^L$, where $L \gg K$. Some arbitrary subset of size K of the components in X are indicators for each latent state in S: that is, $\forall i \in S$, $\exists j \in \{0, ..., L-1\}$: $(x_t)_i = 1 \leftrightarrow s_t = i$. The other $L - K$ components in X are independent two-state Markov chains with states $\{0,1\}$, each with different arbitrary transition probabilities (bounded such that no transition probability for any of the two-state chains is less than 0.1). Because each component is time-correlated, they all must be contained in \mathcal{E} , so $|\mathcal{E}| = 2^{L-K}$. In the multi-maze environment, the agent learns to navigate a four-room maze (similar to the one in [Sutton et al.](#page-11-5) [\(1999\)](#page-11-5)) using actions $\mathcal{A} = \{Up, Down, Left, Right\}.$ The latent state space has size $|\mathcal{S}| = 68$. However, the observation $x \in \mathcal{X}$ in fact consists of *nine copies* of this maze, each containing a different apparent "agent." Eight of these "agents" move according to random actions: the true controllable agent is only present in one of the mazes. Because the eight distractor mazes can be in any configuration and have temporally-persistent state, we have that $|\mathcal{E}| = 68^8$. For both environments, we use the hypothesis class $\mathcal{F} := \{(x \to (x)_i | i \in \{0, \dim(\mathcal{X}) - 1\}\}\)$. In other words, the hypothesis class assumes that for each latent state s , there is some component of i of the observations such that $\phi^*(x) = s$ if and only if $(x)_i = 1$. The two environments are visualized in Figure [3](#page-8-0).

466 467 468 469 470 471 There are four sources of potential variability in these simulation experiments: (1) the random elements of the environments' dynamics, \mathcal{T}_e , \mathcal{Q} , and e_{init} ; (2) the starting latent state s_{init} ; (3) steps in Algorithm [1](#page-12-2) that allow for arbitrary choices (e.g., the choice of action $\hat{a} = [a]$ in the first invocation of CycleFind); and (4) the parameters of the environment, such as the "correct" action sequence $[a_0^*,...a_{K-1}^*]$ in the combination lock. STEEL is designed in such a way that, with high probability (i.e., if the algorithm succeeds), *no choice that the algorithm makes* in terms of control flow or ac-

479 480 481

482 483 484 485 Table 2: Success rate and number of steps taken for STEEL on both simulation environments. For all experiments, we set $\delta = \epsilon = .05$. For the combination lock experiments, we set $L = 512$, and use the (intentionally loose) upper bounds $N = \hat{D} = K + 10 (= |\mathcal{S}| + 10)$ and $\hat{t}_{\text{mix}} = 40$. For the multi-maze environment, we use $N = \hat{D} = 80 (> |\mathcal{S}| = 68)$, and $\hat{t}_{mix} = 300$. See Appendix [D](#page-33-0) for how we chose the (loose) bounds $t_{\text{mix}} \geq t_{\text{mix}}$.

486 487 488 489 490 491 tions will depend on exogenous noise.^{[6](#page-9-0)} Therefore, if we hold $(2-4)$ constant, we expect the number of environment steps taken to be constant, regardless of the exogenous noise. To verify this, we test both environments for 20 simulations, in both a "fixed environment" setting with (2-4) held constant, and a "variable environment" setting with (2-4) set randomly. We test the combination lock environment with latent states $K \in \{20, 30, 40\}$. We measure the success rate in exactly learning $\phi^*(x)$ and T (up to permutation) and the number of steps taken. Results are shown in Table [2.](#page-8-1)

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 STEEL correctly learned the latent dynamics T and optimal encoder ϕ^* in every simulation run; and we verify that the step counts do not depend on exogenous noise. In the combination lock experiments for large K , which are hard exploration problems, the total step counts were many orders of magnitude smaller than either the size of the observation space ($\approx 10^{154}$); or the reciprocalprobability of a uniformly-random policy navigating from state 0 to state $K - 1 \approx 10^{12}$ for $K =$ 40). This shows that STEEL is effective at learning latent dynamics for hard exploration problems under high-dimensional, time-correlated noise. For the multi-maze experiment (which is *not* a hard exploration task), STEEL took a few orders of magnitude *greater* steps than reported in [Lamb et al.](#page-10-1) [\(2023\)](#page-10-1) or [Levine et al.](#page-10-2) [\(2024\)](#page-10-2) for the same environment ($\approx 10^3 - 10^4$ steps). However, unlike these prior methods, STEEL is *guaranteed* to discover the correct encoder with high probability; this requires the use of conservative bounds when defining sample counts d , n_{sample} , cyc . and n_{sample} in Algorithms [1](#page-12-2) and [2,](#page-13-0) and in making other adversarial assumptions in the design of the algorithm that ensure that it is correct and sample-efficient even in pathological cases. Additionally, note that the encoder hypothesis class $\mathcal F$ used in this experiment has no spatial priors. By contrast, [Lamb et al.](#page-10-1) [\(2023\)](#page-10-1) choose a neural-network encoder for this environment with strong spatial priors that favor focusing attention on a single maze, using sparsely-gated patch encodings (and [Levine et al.](#page-10-2) [\(2024\)](#page-10-2) use this same network architecture in order to compare to [Lamb et al.](#page-10-1) [\(2023\)](#page-10-1)) – this difference in priors over representations may also account for some of the gap in apparent sample efficiency.

509 510 511 512 In Appendix [F,](#page-37-0) we present an additional set of experiments on a family of tabular Ex-BMDPs which are known to be particularly challenging to "multistep inverse" methods, such as those proposed by [Lamb et al.](#page-10-1) [\(2023\)](#page-10-1) and [Levine et al.](#page-10-2) [\(2024\)](#page-10-2). We find that, for sufficiently large instances of these environments, STEEL can in fact empirically outperform these prior "practical" methods.

513 514

6 LIMITATIONS AND CONCLUSION

515 516

517 518 519 520 521 522 A major limitation of STEEL that may constrain its real-world applicability is its strict determinism assumption on T. In the episodic setting, [Efroni et al.](#page-10-0) [\(2022b\)](#page-10-0) can get away with allowing rare deviations from deterministic latent transitions (no more often on average than once every 4|S| *episodes*) because the environment resets "erase" these deviations before they can propagate for too long. By contrast, in the single-trajectory setting, the STEEL algorithm is fragile to even rare deviations in latent dynamics; ameliorating this issue may require significant changes to the algorithm.

523 524 525 526 527 A second barrier to practical applicability of STEEL is the need for an optimal training oracle for $\mathcal F$. While this is tractable for, e.g., linear models (with the realizability assumption ensuring linear separability), it becomes computationally intractable for anything much more complicated. However, this kind of assumption is common in sample-complexity results; and could be worked around in adapting STEEL to practical settings.^{[7](#page-9-1)}

528 529 530 531 Two additional limitations to our work are the assumption of reachability of all endogenous latent states $s \in S$, and the requirement that an upper-bound on the mixing time of the exogenous noise be known *a priori*. However, in Appendix [E,](#page-34-0) we argue that these assumptions are in fact *necessary*, for any algorithm in the single-trajectory, no-resets Ex-BMDP setting.

532 533 534 535 536 Finally, the core assumption that S is finite and small is of course a major limitation: sampleefficient reinforcement learning in combinatorial and continuous state spaces is a broad area of ongoing and future work. Despite these limitations, STEEL represents what we hope is an important contribution to representation learning in scenarios where resetting the environment during training is not possible, and observations are impacted by high-dimensional, time-correlated noise.

⁵³⁸ 539 ⁶This property is theoretically important because it ensures that the decision to collect a given observation is independent of all previous observations, given the ground truth dynamics and initial latent state.

⁷ Similarly to how [Efroni et al.](#page-10-0) [\(2022b\)](#page-10-0) adapts PPE to practical settings in their experimental section.

540 541 REFERENCES

- **542 543 544** Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy, and Wen Sun. Flambe: Structural complexity and representation learning of low rank mdps. *Advances in neural information processing systems*, 33:20095–20107, 2020.
- **545 546 547 548** Yuan Cheng, Ruiquan Huang, Yingbin Liang, and Jing Yang. Improved sample complexity for reward-free reinforcement learning under low-rank MDPs. In *The Eleventh International Conference on Learning Representations*, 2023. URL [https://openreview.net/forum?id=](https://openreview.net/forum?id=jpsw-KuOi7r) [jpsw-KuOi7r](https://openreview.net/forum?id=jpsw-KuOi7r).
- **549 550 551 552** Christoph Dann, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E Schapire. On oracle-efficient pac rl with rich observations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 31. Curran Associates, Inc., 2018.
- **553 554 555 556** Simon Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav Dudik, and John Langford. Provably efficient rl with rich observations via latent state decoding. In *International Conference on Machine Learning*, pp. 1665–1674. PMLR, 2019.
- **557 558 559** Yonathan Efroni, Dylan J Foster, Dipendra Misra, Akshay Krishnamurthy, and John Langford. Sample-efficient reinforcement learning in the presence of exogenous information. In *Conference on Learning Theory*, pp. 5062–5127. PMLR, 2022a.
- **560 561 562 563** Yonathan Efroni, Dipendra Misra, Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Provably filtering exogenous distractors using multistep inverse dynamics. In *International Conference on Learning Representations*, 2022b. URL [https://openreview.net/forum?](https://openreview.net/forum?id=RQLLzMCefQu) [id=RQLLzMCefQu](https://openreview.net/forum?id=RQLLzMCefQu).
- **564 565 566 567 568** Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E. Schapire. Contextual decision processes with low Bellman rank are PAC-learnable. In Doina Precup and Yee Whye Teh (eds.), *Proceedings of the 34th International Conference on Machine Learning*, volume 70 of *Proceedings of Machine Learning Research*, pp. 1704–1713. PMLR, 06–11 Aug 2017. URL <https://proceedings.mlr.press/v70/jiang17c.html>.
- **569 570 571 572** Jacob Eeuwe Kooi, Mark Hoogendoorn, and Vincent Francois-Lavet. Interpretable (un)controllable features in MDP's. In *Sixteenth European Workshop on Reinforcement Learning*, 2023. URL <https://openreview.net/forum?id=VZFgkZV3a5>.
- **573 574 575 576 577** Alex Lamb, Riashat Islam, Yonathan Efroni, Aniket Rajiv Didolkar, Dipendra Misra, Dylan J Foster, Lekan P Molu, Rajan Chari, Akshay Krishnamurthy, and John Langford. Guaranteed discovery of control-endogenous latent states with multi-step inverse models. *Transactions on Machine Learning Research*, 2023. ISSN 2835-8856. URL [https://openreview.net/forum?](https://openreview.net/forum?id=TNocbXm5MZ) [id=TNocbXm5MZ](https://openreview.net/forum?id=TNocbXm5MZ).
- **578 579 580** D.A. Levin and Y. Peres. *Markov Chains and Mixing Times*. MBK. American Mathematical Society, 2017. ISBN 9781470429621. URL [https://books.google.com/books?id=](https://books.google.com/books?id=f208DwAAQBAJ) [f208DwAAQBAJ](https://books.google.com/books?id=f208DwAAQBAJ).
- **581 582** Alexander Levine, Peter Stone, and Amy Zhang. Multistep inverse is not all you need. *Reinforcement Learning Journal*, 1, 2024.
- **583 584 585 586** Zakaria Mhammedi, Dylan J Foster, and Alexander Rakhlin. Representation learning with multistep inverse kinematics: An efficient and optimal approach to rich-observation rl. In *International Conference on Machine Learning*, pp. 24659–24700. PMLR, 2023.
- **587 588 589** Zakaria Mhammedi, Dylan J Foster, and Alexander Rakhlin. The power of resets in online reinforcement learning. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=7sACcaOmGi>.
- **590 591 592 593** Dipendra Misra, Mikael Henaff, Akshay Krishnamurthy, and John Langford. Kinematic state abstraction and provably efficient rich-observation reinforcement learning. In Hal Daumé III and Aarti Singh (eds.), *Proceedings of the 37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pp. 6961–6971. PMLR, 13–18 Jul 2020. URL <https://proceedings.mlr.press/v119/misra20a.html>.

- Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework for temporal abstraction in reinforcement learning. *Artificial intelligence*, 112(1-2):181– 211, 1999.
- George Trimponias and Thomas G Dietterich. Reinforcement learning with exogenous states and rewards. *arXiv preprint arXiv:2303.12957*, 2023.
- Masatoshi Uehara, Xuezhou Zhang, and Wen Sun. Representation learning for online and offline RL in low-rank MDPs. In *International Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=J4iSIR9fhY0>.
- Tongzhou Wang, Simon Du, Antonio Torralba, Phillip Isola, Amy Zhang, and Yuandong Tian. Denoised MDPs: Learning world models better than the world itself. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th International Conference on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*, pp. 22591–22612. PMLR, 17–23 Jul 2022. URL [https:](https://proceedings.mlr.press/v162/wang22c.html) [//proceedings.mlr.press/v162/wang22c.html](https://proceedings.mlr.press/v162/wang22c.html).
- Kenneth S Williams. The n th power of a 2× 2 matrix. *Mathematics Magazine*, 65(5):336–336, 1992.
- Lili Wu, Ben Evans, Riashat Islam, Raihan Seraj, Yonathan Efroni, and Alex Lamb. Generalizing multi-step inverse models for representation learning to finite-memory pomdps. *arXiv preprint arXiv:2404.14552*, 2024.
- Wanqiao Xu, Shi Dong, and Benjamin Van Roy. Posterior sampling for continuing environments. *Reinforcement Learning Journal*, 1, 2024.

A FULL ALGORITHM

649 650

648

The STEEL algorithm is presented here in full as Algorithm [1,](#page-12-2) with a major subroutine, CycleFind, split out as Algorithm [2.](#page-13-0)

652 653

651

654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 Algorithm 1: STEEL **Input:** Access to Ex-BMDP M, access to training oracle for function class \mathcal{F} , knowledge of upper bounds N, D, t_{mix} , parameters δ , ϵ . Initialize learned latent state set S' , initially empty; Initialize table of collected datasets for each latent state: $\mathcal{D}: \mathcal{S}' \to \mathcal{M}(\mathcal{X})$; Initialize learned latent dynamics: $T': (\mathcal{S}' \cup \{\perp\}) \times \mathcal{A} \to (\mathcal{S}' \cup \{\perp\})$. (When a state s is added to $\mathcal{S}',$ we initially set $\forall a \in \mathcal{A}, T(s, a) := \bot$. Also, we set $\forall a \in \mathcal{A}, T(\bot, a) := \bot$ as a permanent definition.);
// Phase 1 : Discover latent dynamics T . Chose arbitrary $a \in \mathcal{A}$; $\mathcal{S}', \mathcal{D}, T', s_{\text{curr.}} \leftarrow \text{CycleFind}([a], \mathcal{S}', \mathcal{D}, T'); \textit{ // Special case for first iteration}$ while $\exists s \in \mathcal{S}', a \in \mathcal{A} : T'(s, a) := \bot$. do Initialize $\mathcal{B} \leftarrow \mathcal{S}'$; and initialize action list $\hat{a} \leftarrow [\cdot]$; while B *non-empty* do Chose arbitrary $s \in \mathcal{B}$; $\mathcal{B} \leftarrow \mathcal{B} \setminus \{s\}$; Let $\hat{a}' :=$ a minimum-length sequence of actions such that $T'(T'(T'(...T'(s,\hat{a}'_1),\tilde{a}'_2),\hat{a}'_3),...,\hat{a}'_{|\hat{a}'|}) = \bot$. (This can be found using Dijkstra's algorithm.); $\hat{a} \leftarrow \hat{a} \cdot \hat{a}';$ $\mathcal{B} \leftarrow \{s'' \in \mathcal{S}' \mid \exists s' \in \mathcal{B} : T'(T'(T'(...T'(s', \hat{a}'_0), \hat{a}'_1), \hat{a}'_2), ..., \hat{a}'_{|\hat{a}'|-1}) = s''\};$ $\mathcal{S}', \mathcal{D}, T', s_{\text{curr.}} \leftarrow \text{CycleFind}(\hat{a}, \mathcal{S}', \mathcal{D}, T');$ // Phase 2: Collect additional latent samples to train encoder. Let $d := \lceil \frac{3|\mathcal{S}'|\ln(16|\mathcal{S}'|^2|\mathcal{F}|/\delta)}{\epsilon} \rceil;$ while $\exists s \in \mathcal{S}' : |\mathcal{D}(s)| < d$ do Let $\mathcal{C} := \{s \in \mathcal{S}'| |\mathcal{D}(s)| \leq d \wedge s \neq s_\text{curr.}\};$ Use T' to plan a cycle of actions \bar{a} starting at s_{curr} , that visits all states C and then returns to s_{curr} , by greedily applying Dijkstra's algorithm repeatedly; If $|\bar{a}| < \hat{t}_{\text{mix}}$, use \bar{T}' to extend \bar{a} by repeatedly inserting the shortest-length self-loop of some state visited in \bar{a} into \bar{a} until $|\bar{a}| \geq \hat{t}_{mix}$; Execute all actions in \bar{a} once without collecting data; while $\forall s \in C$: $|\mathcal{D}(s)| < d$ do **for** a in $\bar{a}_0, ..., \bar{a}_{|\bar{a}|-1}$ **do** Take action α on M ; $s_{\text{curr.}} \leftarrow T'(s_{\text{curr.}}, a);$ **if** s_{curr} is being visited for the first time in this execution through \bar{a} then Let $x_{\text{curr}} :=$ the observed state of M; $\mathcal{D}(s_{\text{curr.}}) \leftarrow \mathcal{D}(s_{\text{curr.}}) \oplus \{x_{\text{curr.}}\};$ // Phase 3: Train latent state encoder ϕ' . for $s \in \mathcal{S}'$ do Let $D_0 := \biguplus_{s' \in \mathcal{S}' \setminus \{s\}} \mathcal{D}(s')$; $D_1 := \mathcal{D}(s)$; Apply training oracle to D_0 from D_1 , yielding $f_s \in \mathcal{F}$; **return** S', T', and $\phi'(x) := \arg \max_s f_s(x);$

B PROOFS

B.1 STEEL

698 699 700 701 Here, we explain the STEEL algorithm (Algorithm [1\)](#page-12-2), and prove the correctness of Theorem [1.](#page-4-2) STEEL proceeds in three phases: in the first phase, we learn a tabular representation of the endogenous latent states S and associated dynamics T of the Ex-BMDP. For each $s \in S$, we also begin to collect a dataset $\mathcal{D}(s)$, where for each $x \in \mathcal{D}(s)$, we have that $\phi^*(x) = s$, and additionally where all samples in $\mathcal{D} := \bigcup_{s \in \mathcal{S}} \mathcal{D}(s)$ were collected from the Ex-BMDP M at least \hat{t}_{mix} time steps apart.

702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 Algorithm 2: CycleFind Subroutine **Input:** Action list \hat{a} ; current learned state set S', datasets D, and transition dynamics T'. Also, access to Ex-BMDP M, access to training oracle for function class \mathcal{F} , knowledge of upper bounds N , \hat{t}_{mix} , and \ddot{D} , and parameters δ , ϵ . // Phase 1: find length of cycle, $n_{\rm cyc} \cdot |\hat{a}|$. Let $n_{\text{ samp. cyc.}} := \left\lceil \ln \left(\frac{\delta}{4|\mathcal{A}| \cdot N \cdot (N-1) \cdot |\mathcal{F}|} \right) \Big/ \ln \left(\frac{9}{16} \right) \right\rceil$; Let $c_{\text{init}} := (2\hat{t}_{\text{mix}} + 3N \cdot |\hat{a}| - 2) \cdot n_{\text{samp. cyc.}} - \hat{t}_{\text{mix}} - N \cdot |\hat{a}| + 1 + \max((N - 1) \cdot |\hat{a}|, \hat{t}_{\text{mix}});$ Collect a sequence of observation $x_{CF} := [x_1, ... x_{c_{\text{init}}}]$ from M by taking the actions in \hat{a} repeatedly in a loop, for a total of c_{init} actions. (Action $\hat{a}_{i} \otimes_{|\hat{a}|}$ is taken after observing x_i .); Let $\bar{x}_i := x_{i \cdot |\hat{a}| + \max((N-1) \cdot |\hat{a}|, \hat{t}_{\text{mix}})};$ Initialize $n_{\text{cyc}} \leftarrow 1$; // Default value if no other n'_{cyc} is n_{cyc} for n ′ *cyc in [N, N-1...,3,2]* do $\text{Let } q := \lceil \hat{t}_{\text{mix}}/(n'_{\text{cyc}} \cdot |\hat{a}|) \rceil, r := q \cdot n'_{\text{cyc}}, k := \lfloor \frac{c_{\text{init}} + r \cdot |\hat{a}| - \max((N-1) \cdot |\hat{a}|, \hat{t}_{\text{mix}})}{2r \cdot |\hat{a}| + n'_{\text{cyc}} \cdot |\hat{a}|} \rfloor;$ Let $D_0 := \{ \bar{x}_{r+(2r+n'_{\text{cyc}}) i+j} | i \in \{0, ..., k-1\}, \ j \in \{1, ..., n'_{\text{cyc}} - 1\} \};$ Let $D_1 := \{ \bar{x}_{(2r+n'_{\text{cyc}}) i} | i \in \{0, ..., k-1\} \};$ Apply training oracle to D_0 from D_1 , yielding $f \in \mathcal{F}$; if $(\forall x \in D_0, f(x) = 0 \text{ and } \forall x \in D_0, f(x) = 1)$ then $n_{\text{cyc}} \leftarrow n'_{\text{cyc}};$ break; // Phase 2: Assemble datasets for observations from cycle, identify new latent states, and update \mathcal{S}^\prime , \mathcal{D} , and $T^\prime.$ Let $n_{\text{ samp.}} := \left\lceil \ln\left(\frac{\delta}{4|\mathcal{A}|\cdot N^4\cdot(\hat{D}+1)\cdot |\mathcal{F}|}\right) \Big/ \ln\left(\frac{9}{16}\right) \right\rceil$; $\text{Let } c := 2 \cdot n_\text{cyc} \cdot |\hat{a}| \cdot \left((n_\text{sample} - 1) \cdot \left\lceil \frac{\hat{t}_\text{mix}}{|\hat{a}| \cdot n_\text{cyc}} \right\rceil + 1 \right) + \hat{t}_\text{mix} + \max((N - n_\text{cyc}) \cdot |\hat{a}|, \hat{t}_\text{mix});$ Extend the sequence of observation x_{CF} to length at least c by taking the actions \hat{a} repeatedly in a loop on M, for max $(0, c - c_{\text{init}})$ additional steps, so that $x_{CF} = [x_1, ... x_c];$ $\text{Let } n_0 := \max((N - n_\text{cyc}) \cdot |\hat{a}|, \hat{t}_\text{mix}) \text{ , } n_0' := n_0 + (n_\text{sample} - 1) \cdot |\hat{a}| \cdot n_\text{cyc} \cdot \left\lceil \frac{\hat{t}_\text{mix}}{|\hat{a}| \cdot n_\text{cyc}} \right\rceil + |\hat{a}| \cdot n_\text{cyc} + \hat{t}_\text{mix};$ $\forall i \in \{0, ..., n_{\text{cyc}} \cdot |\hat{a}| - 1\},$ Let: $\mathcal{D}'_i = \Big\{ x_j | \exists k \in \{0,...,n_{\mathrm{samp.}}-1\}, \; \exists \text{ offset } \in \{n_0, n'_0\}: \Big\}.$ $j = k \cdot |\hat{a}| \cdot n_{\text{cyc}} \cdot \left\lceil \frac{\hat{t}_{\text{mix}}}{|\hat{a}| \cdot n_{\text{cyc}}} \right\rceil + \text{ offset } + (i-\text{ offset})\%(n_{\text{cyc}} \cdot |\hat{a}|\Big\};$ for $i \in \{0, ..., n_{cyc} \cdot |\hat{a}| - 1\}$ do Initialize StateAlreadyFound? ← False; for $s \in \mathcal{S}'$ do Let $D_0 := \mathcal{D}(s)$; $D_1 := \mathcal{D}'_i$; Apply training oracle to D_0 from D_1 , yielding $f \in \mathcal{F}$; if *not* $(\forall x \in D_0, f(x) = 0$ *and* $\forall x \in D_0, f(x) = 1)$ then $s_i^{\{\text{cyc}\}} \leftarrow s;$ (Optionally; and only if $\mathcal{D}(s)$ was not initialized or modified already during this call to CycleFind:) $\mathcal{D}(s) \leftarrow \mathcal{D}(s) \uplus \mathcal{D}'_i;$ StateAlreadyFound? ← True; break; if *not StateAlreadyFound?* then Insert new state s' into S' ; $\mathcal{D}(s') \leftarrow \mathcal{D}'_i;$ $s_i^{\rm cyc} \leftarrow s';$ for $i \in \{0, ..., n_{cyc} \cdot |\hat{a}| - 1\}$ do $T'(\overset{\text{cyc}}{s^c_i}, \overset{\text{cyc}}{a_i \otimes_{|\hat{a}|}}) \overset{\text{cyc}}{\leftarrow} \overset{\text{cyc}}{s^c_{(i+1) \% (|\hat{a}| \cdot n_\text{cyc})}};$ $s_{\text{curr.}} := s_{\max(c, c_{\text{init}})\%(n_{\text{cyc}} \cdot |\hat{a}|)}^{\text{cyc}}$ return $S', \mathcal{D}, T', s_{\text{curr}};$

756 757 758 Then, in the second phase, we use the learned dynamics model T' to efficiently collect additional samples for each learned latent state $s \in S'$ and add them to $\mathcal{D}(s)$, until $|\mathcal{D}(s)| \geq d$, where:

$$
d := \lceil \frac{3|\mathcal{S}'|\ln(16|\mathcal{S}'|^2|\mathcal{F}|/\delta)}{\epsilon} \rceil. \tag{10}
$$

759 760 761

762 763 764

Finally, in the third phase, we use $\mathcal D$ to learn an encoder ϕ_θ , which approximates ϕ^* with high probability when the exogenous state e of the Ex-BMDP is sampled from its stationary distribution π_e .

765 766 767 768 769 STEEL relies on the CycleFind subroutine, which is described in detail and proven correct in Section [B.1.1.](#page-15-0) This subroutine is given a list of actions \hat{a} and the previously-learned states S' , datasets D , and dynamics T'. It identifies and collects samples of all latent states in *some* state cycle which is traversed by taking the actions \hat{a} repeatedly, and also identifies the latent state transitions in this cycle.

770 We restate Theorem [1](#page-4-2) here:

771 772 773 774 775 776 Theorem 1. For an Ex-BMDP $M = \langle X, A, S, \mathcal{E}, \mathcal{Q}, T, \mathcal{T}_e, \pi_{\mathcal{E}}^{init} \rangle$ starting at an arbitrary endoge*nous latent state* $s_{init} \in S$, with $|S| \leq N$, where the exogenous Markov chain \mathcal{T}_e has mix*ing time at most* \hat{t}_{mix} *, and where all states in* S *are reachable from one another in at most* \hat{D} *steps; and corresponding encoder function class* F *such that Equation [3](#page-4-0) holds, the algorithm* $STEEL(M, \mathcal{F}, N, \hat{D}, \hat{t}_{mix}, \delta, \epsilon)$ will output a learned endogenous state space \mathcal{S}' , transition model T' , and encoder ϕ' , such that, with probability at least $1 - \delta$,

> • $|S'| = |S|$ *, and under some bijective function* $\sigma : S \rightarrow S'$ *, it holds that* $\forall s \in \mathcal{S}, a \in \mathcal{A} : \sigma(T(s, a)) = T'(\sigma(s), a), \text{ and},$ (4)

• *Under the same bijection* σ*,*

$$
\forall s \in \mathcal{S}, \Pr_{\substack{x \sim \mathcal{Q}(s,e), \\ e \sim \pi_{\mathcal{E}}}} (\phi'(x) = \sigma(\phi^*(x))) \ge 1 - \epsilon,
$$
\n(5)

where $\pi_{\mathcal{E}}$ *is the stationary distribution of* \mathcal{T}_{e} *.*

Furthermore, the number of steps that STEEL executes on M *scales as:*

$$
\mathcal{O}^{*}\Big(ND|\mathcal{S}|^{2}|\mathcal{A}|\cdot\log\frac{|\mathcal{F}|}{\delta}+|\mathcal{S}||\mathcal{A}|\hat{t}_{\textit{mix}}\cdot\log\frac{N|\mathcal{F}|}{\delta}+\frac{|\mathcal{S}|^{2}D}{\epsilon}\cdot\log\frac{|\mathcal{F}|}{\delta}+\frac{|\mathcal{S}|\hat{t}_{\textit{mix}}}{\epsilon}\cdot\log\frac{|\mathcal{F}|}{\delta}\Big),
$$

790 791 where $\mathcal{O}^*(f(x)) := \mathcal{O}(f(x) \log(f(x))).$

792 793 794 795 796 797 798 799 For the sake of our proof, we will treat the ground-truth properties of the Ex-BMDP, such as the latent dynamics T, as (unknown, arbitrary) *fixed quantities*, not as random variables. Similarly, we will treat the initial latent state s_{init} as an arbitrary but fixed quantity, rather than a random variable. Furthermore, in the proof, we will treat decisions that are specified (implicitly or explicitly) as "arbitrary" in Algorithms [1](#page-12-2) and [2](#page-13-0) (such as the choice of the action $\hat{a} = |a|$ in the first invocation of CycleFind, or the choice of "shortest" paths in cases of ties when Dijkstra's algorithm is used) as being made deterministically, such as by a pseudorandom process – crucially, we require that these choices are made in a way that does not depend of the observations of the Ex-BMDP.

800 801 802 803 804 805 806 807 808 This leaves the exogenous noise transitions \mathcal{T}_e , the emission function \mathcal{Q} , and the initial exogenous latent state e_{init} as the *only* sources of randomness in the algorithm. We notate the sample space over these three processes together as Ω . Throughout the algorithm, we will ensure that decisions such as control flow choices, choices of actions, and choices of how to assemble datasets, are made *deterministically, independently of* Ω, with high probability. That is, unless the algorithm *fails*, these decisions will be fully determined by s_0 , T , and algorithm parameters. While *whether or not* the algorithm fails will depend (solely) on Ω, we will ultimately bound the *total probability of failure* as less that δ by union bound, so that at each step in the proof, we can treat the algorithm's choices as statistically *independent* of Ω.

809 STEEL begins by repeatedly applying the CycleFind subroutine. CycleFind identifies a *cycle* in the latent dynamics T of the Ex-BMDP, and collects observations of the states in that cycle. In Phase 1

788 789

810 811 812 813 of STEEL, throughout these application of CycleFind, the algorithm maintains a representation of the learned Ex-BMDP "so far", in the form of an incomplete set of learned states S' , learned latent dynamics $T' : (\mathcal{S}' \cup \{\perp\}) \times \mathcal{A} \to (\mathcal{S}' \cup \{\perp\})$, and a table of datasets corresponding to each latent state $\mathcal{D}: \mathcal{S}' \to \mathcal{M}(\mathcal{X})$.

814 815 We first describe the CycleFind subroutine in detail:

816 817 B.1.1 CYCLEFIND SUBROUTINE

818 819 820 821 822 823 Here, we describe CycleFind, and prove its correctness. CycleFind accepts as input a list of actions $\hat{a} := [\hat{a}_0, ..., \hat{a}_{|\hat{a}|-1}]$, and the Ex-BMDP M starting at an arbitrary state x_0 . CycleFind also takes the representation of the learned Ex-BMDP "so far", in the form S' , D and T' . We assume that, for each $s \in S'$ all of the previously-observed observations in $\mathcal{D}(s')$ were collected with gaps of at least \hat{t}_{mix} steps between them. Also, we assume that $\forall s \in S', |\mathcal{D}(s)| \geq n_{\text{samp}}$, where, in terms of the upper bounds $N \geq |S|$ and $\hat{t}_{\text{mix}} \geq t_{\text{mix}}$, and total failure probability δ ,

$$
n_{\text{ samp.}} := \left\lceil \ln \left(\frac{\delta}{4|\mathcal{A}| \cdot N^4 \cdot (\hat{D} + 1) \cdot |\mathcal{F}|} \right) / \ln \left(\frac{9}{16} \right) \right\rceil. \tag{11}
$$

828 829 830 CycleFind first proceeds to take the actions $\hat{a}_0, ..., \hat{a}_{|\hat{a}|-1}$ repeatedly in a loop. CycleFind then uses this collected sequence of observations (which may need to be extended by cycling through \hat{a} for additional iterations) to learn new states and update $\mathcal{S}', \mathcal{D}$, and T' .

831 832 833 We will show that sequence of latent states visited by CycleFind is eventually periodic; that is, it guaranteed to eventually get stuck in a cycle of latent states, with a period in the form $n_{\rm cyc} \cdot |\hat{a}|$, for some $n_{\text{cyc}} \leq N$. The goal of CycleFind is to:

- 1. Identify the period of this cycle. (That is, determine n_{cyc} .)
- **836 837 838 839 840 841** 2. Use this period to extract from the sequence of observed states some new multisets of observations $\mathcal{D}'_i \in \mathcal{M}(\mathcal{X})$ for $i \in \{0, ..., n_{\text{cyc}} \cdot |\hat{a}|-1\}$, which each contain only one unique latent state, corresponding to the position i in the cycle. These multisets will only contain observations collected at least t_{mix} timesteps apart, so will be close-to-i.i.d. samples. (Depending on $n_{\rm cyc}$, we may need to perform additional cycles of data collection at this step.)
	- 3. Identify which of these multisets \mathcal{D}'_i have the same latent states that have been previously identified in \mathcal{S}' , and which have a new latent state, and determine among the new multisets which ones have the same latent states to each other, and which are distinct. This allows us to update S' and D with the new samples from \mathcal{D}'_i , while maintaining the property that $\forall s \in \mathbb{R}$ $\mathcal{S}', \forall x, x' \in \mathcal{D}(s), \phi^*(x) = \phi^*(x')$, and $\forall s, s' \in \mathcal{S}', \forall x \in \mathcal{D}(s), x' \in \mathcal{D}(s')$, $\phi^*(x) \neq$ $\phi^*(x')$.) We also update the learned transitions T'.
		- 4. Return the updated learned state set S', datasets D, transition function T' , and the current latent state of M , $s_{\text{curr}} \in \mathcal{S}'$.
- **850** Specifically, CycleFind has the following property:

Proposition 1. For any action sequence \hat{a} of length at most $(D + 1)N$, there exists at least one $sequence of ground-truth states in S, [s_0^{cyc*}, s_1^{cyc*}, ..., s_{|\hat{a}|\cdot n}^{cyc*}]$ $\binom{cyc*}{|\hat{a}| \cdot n_{cyc}-1}$, for some n_{cyc} ≤ N, such that $\forall i \in \{0, 1, ..., |\hat{a}| \cdot n_{\text{cyc}} - 1\}, \ T(s_i^{\text{cyc}*}, \hat{a}_i \text{c}_{\!delta|\hat{a}|}) = s_{(i+1)}^{\text{cyc}*}$ $\frac{cyc*}{(i+1)\%(|\hat{a}|\cdot n_{cyc})}$. Given a sequence of actions aˆ*, learned partial state set* S ′ *, transition dynamics* T ′ *, and datasets* D *which meet the following inductive assumptions:*

• *There exists an injective mapping* $\sigma^{-1} : \mathcal{S}' \to \mathcal{S}$ such that

$$
\forall s \in \mathcal{S}', a \in \mathcal{A}, \ T'(s, a) = \bot \lor \sigma^{-1}(T'(s, a)) = T(\sigma^{-1}(s), a)
$$
 (12)

and additionally,

860 861 862

834 835

> $\forall s \in \mathcal{S}', \forall x \in \mathcal{D}(s), \phi^*(x) = \sigma^{-1}$ (13)

- **863**
- [∀]^s ∈ S′ , |D(s)| ≥ n*samp.; and for each* s*, the samples in* D(s) *were all sampled from* M *at least* \hat{t}_{mix} *steps apart. Additionally, the choice to add any sample* x *to* $\mathcal{D}(s)$ *was made*

864 865 866

fully deterministically (as a function of T*,* sinit.*, the timestep* t *at which* x *was collected, and algorithm parameters), and independently of the random processes captured by* Ω*.*

• *The choice of action sequence* \hat{a} *is similarly fully deterministic and independent of* Ω *.*

then, with probability at least:

$$
1 - \frac{\delta}{2 \cdot |\mathcal{A}| \cdot N} \tag{14}
$$

CycleFind will return updated S', D, T', and s_{curr.} which meet the same inductive assumptions, and for which additionally:

- The image of the updated $\mathcal{S}'_{(new)}$, $\sigma^{-1}(\mathcal{S}'_{(new)})$ is a (non-strict) superset of $\sigma^{-1}(\mathcal{S}')$, which additionally includes all unique states in some $[s_0^{cyc*}, s_1^{cyc*}, ..., s_{|\hat{a}|\cdot n}^{cyc*}]$ |aˆ|·n*cyc*−1]*.*
- The transition matrix $T'_{(new)}$ is a (non-strict) superset of the old transition matrix T' (in the sense that its domain is now $\mathcal{S}'_{(new)} \supseteq \mathcal{S}'_{(old)}$, and if $T'_{(old)}(s, a) \neq \bot$ then $T'_{(new)}(s, a) \neq \bot$ \perp), and $T'_{(new)}$ additionally includes the transitions corresponding to the cycle; that is:

$$
\forall i, \exists s, s' \in \mathcal{S}' : \sigma^{-1}(s) = s_i^{cyc*} \wedge \sigma^{-1}(s) = s_{(i+1)\%(\vert \hat{a} \vert \cdot n_{cyc})}^{cyc*} \wedge
$$

$$
T'_{(new)}(s, \hat{a}_i \otimes_{\vert \hat{a} \vert}) = s'.
$$
 (15)

• *The final observation* x *sampled by CycleFind from* M *is such that* $\sigma^{-1}(s_{curr}) = \phi^*(x)$ *.*

Additionally, CycleFind will take at most:

$$
\max\left((2\hat{t}_{mix}+3N\cdot|\hat{a}|-2)\cdot n_{\text{sample cyc.}}-N\cdot|\hat{a}|,2\cdot(\hat{t}_{mix}+|\mathcal{S}|\cdot|\hat{a}|-1)\cdot n_{\text{sample.}}+1\right) + \max(N\cdot|\hat{a}|-|\hat{a}|-\hat{t}_{mix},0) + 1 \text{ actions},\tag{16}
$$

where n*samp. is defined in Equation [11](#page-15-1) and* n*samp. cyc. is defined in Equation [18.](#page-16-0)*

Proof. Determining n_{cyc} :

CycleFind initially takes c_{init} actions, where, in terms of the upper bounds $N \geq |S|$ and $\hat{t}_{\text{mix}} \geq t_{\text{mix}}$, $c_{\text{init}} := (2\hat{t}_{\text{mix}} + 3N \cdot |\hat{a}| - 2) \cdot n_{\text{sample cycle.}} - \hat{t}_{\text{mix}} - N \cdot |\hat{a}| + 1 + \max((N - 1) \cdot |\hat{a}|, \hat{t}_{\text{mix}}),$ (17) where

$$
n_{\text{ samp. cyc.}} := \left\lceil \ln \left(\frac{\delta}{4|\mathcal{A}| \cdot N \cdot (N-1) \cdot |\mathcal{F}|} \right) \Big/ \ln \left(\frac{9}{16} \right) \right\rceil. \tag{18}
$$

901 902 903 904 905 906 CycleFind first takes action \hat{a}_0 , then \hat{a}_1 , then \hat{a}_2 , etc, until taking action $\hat{a}_{|\hat{a}|-1}$, at which point it repeats the process starting at \hat{a}_0 , for a total of c_{init} steps. The observation after each of these actions is recorded as $x_{CF} := [x_1, ..., x_{c_{init}}]$. Let $s_{CF} := [s_1, ..., s_{c_{init}}]$ be the (initially unknown) latent states corresponding to these observations; that is, $\phi^*(x)$ for each x in x_{CF} . (For indexing purposes, x_0 and s_0 will refer to the observation and latent state, respectively, of the Ex-BMDP *before* the first action was taken by CycleFind. However, these will not be used by the algorithm.)

907 908 909 910 911 912 913 914 915 First, we show that s_{CF} must in fact end in a cycle of period $n_{cyc} \cdot |\hat{a}|$, for some $n_{cyc} \leq N$. Let s_{per} consist of every $|\hat{a}|$ 'th element in s_{CF} starting at an offset $m := \max(0, \tilde{t}_{\text{mix}} - (N - 1) \cdot |\hat{a}|);$ that is, $s_{per.} := [s_m, s_{m+|\hat{a}|}, s_{m+2|\hat{a}|}, ..., s_{m+|\frac{c_{\text{init}}-m}{\hat{a}}|, |\hat{a}|\hat{a}|].$ Note that the evolution from one state to the next in $s_{per.}$ is deterministic, because it is caused by the same sequence of actions, $[\hat{a}_{(m+1)\%|\hat{a}|}, \hat{a}_{(m+2)\%|\hat{a}|}, ..., \hat{a}_{(m+|\hat{a}|)\%|\hat{a}|}]$, being taken after each state. That is, if $s_{m+i|\hat{a}|} = s$ and $s_{m+j} \cdot |\hat{a}| = s$ and $s_{m+(i+1)} \cdot |\hat{a}| = s'$, then $s_{m+(j+1)} \cdot |\hat{a}| = s'$. As a consequence, if $s_{m+i} \cdot |\hat{a}| = s$, and the next occurrence of the latent state s in the sequence s_{per} is $s_{m+(i+t)\cdot|\hat{a}|} = s$, then all subsequent states in the sequence $s_{per.}$ will consist of repetitions of the sequence of $s_{m+(i+1)\cdot|\hat{a}|}$ through $s_{m+(i+t)\cdot|\hat{a}|}$.

916 917 Then $s_{per.}$ must consist of some sequence of 'transient' latent states which occur only once at the beginning of the sequence, followed by a repeated cycle. Because these states never re-occur, the transient part lasts length $n_{\text{trn}} \leq N - 1$.

918 919 920 921 Then, the period of the cycle is n_{cyc} , where $n_{\text{trn}} + n_{\text{cyc}} \leq N$. Note that the cycle in s_{per} contains no repeated states. (Otherwise, the span between the first two repetitions of a state in the cyclic sequence in s_{per} will itself repeat indefinitely, so we can analyse this smaller cycle as the cycle of length $n_{\rm cyc}$.)

922 923 924 925 926 927 928 There is a corresponding cycle in s_{CF} , of length $n_{cyc} \cdot |\hat{a}|$. To see this, note that for all $i \ge n_{trn}$, we have that $s_{m+i|\hat{a}|} = s_{m+i|\hat{a}|+n_{\text{cyc}}\cdot|\hat{a}|}$. Furthermore, for all j in $\{0, ...\hat{a}|-1\}$, the sequence of actions taken between $s_{m+i|\hat{a}|}$ and $s_{m+i|\hat{a}|+j}$ is the same as the sequence of actions taken between $s_{m+i|\hat{a}|+n_{\text{cyc}}\cdot|\hat{a}|}$ and $s_{m+i|\hat{a}|+j+n_{\text{cyc}}\cdot|\hat{a}|}$. Therefore $s_{m+i|\hat{a}|+j} = s_{m+i|\hat{a}|+j+n_{\text{cyc}}\cdot|\hat{a}|}$. Thus, for any general $i' \ge n_{\text{trn}} |\hat{a}|$ (which always can be written as $i' = i|\hat{a}| + j$) we have that $s_{m+i'} = s_{m+i'+n_{\text{cyc}} \cdot |\hat{a}|}$. However, this cycle *may* contain repeated states.

929 930 931 932 933 In order to avoid the transient part of s_{CF} , and to prevent sampling observations with exogenous noise that is correlated to samples taken in previous iterations of CycleFind, we skip the first $\max((N-1) \cdot |\hat{a}|, \hat{t}_{mix})$ transitions in s_{CF} . For convenience, we will let $\bar{s}_i :=$ $s_{i \cdot |\hat{a}| + \max((N-1) \cdot |\hat{a}|, \hat{t}_{\text{mix}})}$, and similarly $\bar{x}_i := x_{i \cdot |\hat{a}| + \max((N-1) \cdot |\hat{a}|, \hat{t}_{\text{mix}})}$. Note that the sequence $[\bar{s}_0, \bar{s}_1, \ldots]$ is equivalent to $s_{per.}$ after skipping the first $N - 1 \ge n_{trn.}$ elements of the sequence.

934 Because the cycle in s_{per} contains no repeated states, we have that

$$
\forall i, j \in \mathbb{N}, \ \ \bar{s}_i = \bar{s}_j \Leftrightarrow i \equiv j \pmod{n_{\text{cyc}}}
$$
\n⁽¹⁹⁾

937 938 939 940 941 942 In order to find n_{cyc} , we test the hypothesis that $n_{\text{cyc}} = n'_{\text{cyc}}$, for each $n'_{\text{cyc}} \in \{N, ..., 2\}$, in order, until we identify n_{cyc} . If none of the tests pass, then we know that $n_{\text{cyc}} = 1$. The test for each hypothesis $n_{\text{cyc}} = n'_{\text{cyc}}$ has a zero false-negative rate. Consequently, the loop will always end before $n_{\rm cyc} > n'_{\rm cyc}$, so at each iteration, it must always be the case that $n_{\rm cyc} \le n'_{\rm cyc}$. A failure can only occur if the test that $n_{\text{cyc}} = n'_{\text{cyc}}$ has a false positive, when in fact $n_{\text{cyc}} < n'_{\text{cyc}}$.

Each test proceeds as follows:

935 936

• Let
$$
q := \left[\hat{t}_{\text{mix}} / (n'_{\text{cyc}} \cdot |\hat{a}|) \right]
$$
 and $r := q \cdot n'_{\text{cyc}}$.

$$
\bullet\ \text{ Let }k:=\lfloor\tfrac{c_\text{init}+r\cdot|\hat{a}|-\max((N-1)\cdot|\hat{a}|, \hat{t}_\text{mix})}{2r\cdot|\hat{a}|+n'_{\text{cyc}}\cdot|\hat{a}|}\rfloor
$$

• Let
$$
D_0 := \{ \bar{x}_{r+(2r+n'_{\text{cyc}})i+j} | i \in \{0, ..., k-1\}, j \in \{1, ..., n'_{\text{cyc}}-1\} \}.
$$

• Let
$$
D_1 := \{ \bar{x}_{(2r+n'_{\text{cyc}})i} | i \in \{0, ..., k-1\} \}.
$$

- Use the training oracle to try to learn to distinguish D_0 from D_1 , yielding $f \in \mathcal{F}$.
	- If $n_{\rm cyc} = n'_{\rm cyc}$, then,
		- Note that, because $n_{\rm cyc}|r$

$$
\forall i \in \mathbb{N}, \ (2r + n'_{\text{cyc}})i \equiv 0 \pmod{n_{\text{cyc}}}, \tag{20}
$$

but

$$
\forall i \in \mathbb{N}, j \in \{1, ..., n'_{\text{cyc}} - 1\},\
$$

$$
r + (2r + n'_{\text{cyc}})i + j \equiv j \not\equiv 0 \pmod{n_{\text{cyc}}},
$$
 (21)

– Consequently, by Equation [19,](#page-17-0) all elements of D_1 will have the same latent state, and none of the elements of D_0 have this latent state. By realizability, f will have 100% accuracy on the training set. (This is the "true positive" case of the test.)

• Conversely, if $n_{\rm cyc} < n'_{\rm cyc}$, there is only a small chance that any classifier f will have 100% accuracy on the training set.

– Define j' as the (unknown) value j' := (−r − 1) % n_{cyc} +1. Noting, by assumption, that $n_{\text{cyc}} < n'_{\text{cyc}}$, we have that $j' \in \{1, ..., n'_{\text{cyc}} - 1\}$. Then, $\forall i \in \{0, ..., k - 1\}$, we have that $\bar{x}_{r+(2r+n'_{\text{cyc}})i+j'} \in D_0$, while $\bar{x}_{(2r+n'_{\text{cyc}})i} \in D_1$. However, we also have that:

$$
r + (2r + n'_{\rm cyc})i + j' \equiv (2r + n'_{\rm cyc})i \pmod{n_{\rm cyc}}
$$
 (22)

 $\sqrt{ }$

1026 1027 Collecting \mathcal{D}'_i :

1028 1029 We now know that s_{CF} eventually enters a cycle of length $n_{\text{cyc}} \cdot |\hat{a}|$, where n_{cyc} is known. This is the latent-state cycle $[s_0^{cyc*}, s_1^{cyc*}, ..., s_{|\hat{a}| \cdot n}^{cyc*}]$ $\binom{cyc*}{|\hat{a}|\cdot n_{\text{cyc}}-1}$ mentioned in Proposition [1.](#page-16-1)

1030 1031 1032 Depending on the value of $n_{\rm cyc}$, we might now need to extend x_{CF} (and, respectively s_{CF}) by making additional loops through \hat{a} , until the length of x_{CF} is at least c, where:

$$
c := 2 \cdot n_{\text{cyc}} \cdot |\hat{a}| \cdot \left((n_{\text{samp.}} - 1) \cdot \left\lceil \frac{\hat{t}_{\text{mix}}}{|\hat{a}| \cdot n_{\text{cyc}}} \right\rceil + 1 \right) + \hat{t}_{\text{mix}} + \max((N - n_{\text{cyc}}) \cdot |\hat{a}|, \hat{t}_{\text{mix}}). \tag{35}
$$

1036 1037 This will entail taking an additional max $(c - c_{\text{init}}, 0)$ steps on M. Note that in the worst case, this means that CycleFind takes a total of at most:

$$
\max(c_{\text{init}}, c) \le \max\left((2\hat{t}_{\text{mix}} + 3N \cdot |\hat{a}| - 2) \cdot n_{\text{samp. cyc.}} - N \cdot |\hat{a}|, \right.\n \left. 2 \cdot (\hat{t}_{\text{mix}} + |\mathcal{S}| \cdot |\hat{a}| - 1) \cdot n_{\text{samp.}} + 1\right)\n \left. + \max(N \cdot |\hat{a}| - |\hat{a}| - \hat{t}_{\text{mix}}, 0) + 1 \text{ actions.}\n \right)
$$
\n(36)

1043 1044 1045 We now define how to collect two datasets for each position in the cycle in s_{CF} , \mathcal{D}_i^A and \mathcal{D}_i^B for each $i \in \{0, ..., n_{\text{cyc}} \cdot |\hat{a}| - 1\}$. Specifically we take:

1046

1033 1034 1035

$$
\begin{array}{c} 1047 \\ 1048 \end{array}
$$

1049 1050

1051

1053

$$
\mathcal{D}_i^A = \left\{ x_j | \exists k \in \{0, ..., n_{\text{ samp.}} - 1\} : \right.
$$

$$
j = k \cdot \left(|\hat{a}| \cdot n_{\text{cyc}} \cdot \left\lceil \frac{\hat{t}_{\text{mix}}}{|\hat{a}| \cdot n_{\text{cyc}}} \right\rceil \right) + n_0 + (i - n_0) \% \left(n_{\text{cyc}} \cdot |\hat{a}| \right) \right\}
$$

$$
(37)
$$

1052 where we let

$$
n_0 := \max((N - n_{\text{cyc}}) \cdot |\hat{a}|, \hat{t}_{\text{mix}}),\tag{38}
$$

1054 and

$$
\mathcal{D}_i^B = \left\{ x_j | \exists k \in \{0, ..., n_{\text{samp.}} - 1\} : \right.
$$

$$
j = k \cdot \left(|\hat{a}| \cdot n_{\text{cyc}} \cdot \left\lceil \frac{\hat{t}_{\text{mix}}}{|\hat{a}| \cdot n_{\text{cyc}}} \right\rceil \right) + n'_0 + (i - n'_0) \% \left(n_{\text{cyc}} \cdot |\hat{a}| \right) \right\}
$$

$$
(39)
$$

1061 where

$$
n_0' := n_0 + (n_{\text{samp.}} - 1) \cdot \left(|\hat{a}| \cdot n_{\text{cyc}} \cdot \left\lceil \frac{\hat{t}_{\text{mix}}}{|\hat{a}| \cdot n_{\text{cyc}}} \right\rceil \right) + |\hat{a}| \cdot n_{\text{cyc}} + \hat{t}_{\text{mix}}.
$$
 (40)

Note that, because we know that s_{CF} enters a cycle of length $n_{\rm cyc} \cdot |\hat{a}|$ after at most $(N - n_{\rm cyc}) \cdot |\hat{a}| \leq$ n_0 transitions, we have that,

$$
\forall i, j \ge n_0, \ i \equiv j \pmod{n_{\text{cyc}} \cdot |\hat{a}|} \rightarrow s_i = s_j. \tag{41}
$$

Therefore, because:

$$
k \cdot \left(|\hat{a}| \cdot n_{\text{cyc}} \cdot \left\lceil \frac{\hat{t}_{\text{mix}}}{|\hat{a}| \cdot n_{\text{cyc}}} \right\rceil \right) + n_0 + (i - n_0) \% \left(n_{\text{cyc}} \cdot |\hat{a}| \right) \equiv i \pmod{n_{\text{cyc}} \cdot |\hat{a}|}
$$
(42)

1073 1074 1075 1076 1077 1078 1079 (and a similar equivalence holds for n'_0), we have that, for any fixed i, all observations in $\mathcal{D}_i^A \uplus \mathcal{D}_i^B$ must share the same latent state. Also, for any fixed i, all observations in \mathcal{D}_i^A and \mathcal{D}_i^B are collected at least \hat{t} steps apart. Additionally, \mathcal{D}_i^A and \mathcal{D}_i^B are defined solely in terms of n_{cyc} and \hat{a} , and so the selection of samples to put in these sets only depends on the sequence of *latent* states s that the Ex-BMDP traverses, and is therefore defined deterministically and independently of of Ω (assuming n_{cyc} is correctly determined). We therefore define

$$
\mathcal{D}'_i := \mathcal{D}_i^A \uplus \mathcal{D}_i^B,\tag{43}
$$

1063 1064 1065

1062

1066 1067 1068

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 Figure 4: Illustration of the sampling procedure for datasets \mathcal{D}'_i . The first goal is to ensure that for *each* cycle position i, the samples in \mathcal{D}'_i are sampled t_{mix} steps apart from each other, and are therefore nearly i.i.d. We *also* want to ensure that for any *pair* of cycle positions i , j , there is a large subset of \mathcal{D}'_i that only contains samples retrieved at least t_{mix} steps apart from some large subset of \mathcal{D}'_j . (This second goal is meant to guarantee that if \mathcal{D}'_i and \mathcal{D}'_j represent the same latent state, then it is unlikely that any classifier exists than can separate the two subsets perfectly, which would be strictly necessary to perfectly separate \mathcal{D}'_i and \mathcal{D}'_j . However, it is *not* necessary for all samples in $\cup_i \mathcal{D}_i$ to be collected t_{mix} steps apart. Therefore, we collect an observation of *each* cycle position $i \in \{0, n_{\text{cyc}} \cdot |\hat{a}|\}$, all together, every t_{mix} steps (rounded up to the cycle period). We continue until $n_{\text{ samp}}$ observations of each position are collected; then wait \hat{t}_{mix} steps and collect $n_{\text{ samp}}$ additional observations of each cycle position. This process ensures that \mathcal{D}'_i and \mathcal{D}'_j contain complementary subsets \mathcal{D}_i^A and \mathcal{D}_j^B , each with at least $n_{\text{ samp}}$ samples, such all samples in $\mathcal{D}_i^A \cup \mathcal{D}_j^B$ are near-i.i.d.

1106

1107 1108 1109 and note that all elements in this set both share the same latent state and were collected at least \hat{t} steps apart from one another.

1110 1111 Additionally, for any fixed **pair** i, j, all observations in $\mathcal{D}_i^A \oplus \mathcal{D}_j^B$ are collected at least \hat{t} steps apart from one another.

1112 1113 Using the *c* samples in x_{CF} , this allows us to construct \mathcal{D}_i^A and \mathcal{D}_i^B , for each $i \in \{0, n_{\text{cyc}} \cdot |\hat{a}| - 1\}$, where $|\mathcal{D}_i^A| = |\mathcal{D}_i^B| = n_{\text{samp}}$. See Figure [4](#page-20-0) for an illustration of the sampling procedure.

1114 1115 Identifying new latent states from \mathcal{D}' :

1116 1117 1118 At this point, each set \mathcal{D}'_i consists of observations of a single latent state s, but two such sets \mathcal{D}'_i and \mathcal{D}'_j may represent the same latent state, and \mathcal{D}'_i may contain the same latent state as some previously-collected $\mathcal{D}(s)$ for some $s \in \mathcal{S}'$.

1119 1120 In order to identify the newly-discovered latent states to add to \mathcal{S}' , and appropriately update $\mathcal{D}(\cdot)$ and T' , we proceed as follows:

1121 1122 1123

• For $i \in \{0, ..., n_{\text{cyc}} \cdot |\hat{a}| - 1\}$:

- For each $s \in S'$, use the training oracle to learn a classifier $f \in \mathcal{F}$, with $D_0 := \mathcal{D}(s)$ and $D_1 := D'_i$. If f can distinguish D_0 from D_1 with 100% training set accuracy, then we conclude (with high probability) that $\mathcal{D}(s)$ and \mathcal{D}'_i represent two different latent states. Otherwise, we conclude that $\mathcal{D}(s)$ and \mathcal{D}'_i both represent the same latent state.
- **1129 1130 1131 1132 1133** – If \mathcal{D}'_i is identified as representing some already-discovered latent state $s \in \mathcal{S}'$ then discard \mathcal{D}'_i . (Or, we can update $\mathcal{D}(s)$ by merging the samples in \mathcal{D}'_i into it; this choice does not affect our analysis – however, we should avoid doing this if $\mathcal{D}(s)$ was either defined, or already updated, during this call of CycleFind: this is because two datasets \mathcal{D}'_i and \mathcal{D}'_j from the same iteration of CycleFind may contain observations that were sampled fewer than \hat{t}_{mix} steps apart from each other, which would break the inductive

$$
T'(s_i^{\text{cyc}}, a_i \chi_{|\hat{a}|}) \leftarrow s_{(i+1)\%(|\hat{a}| \cdot n_{\text{cyc}})}^{\text{cyc}} \tag{50}
$$

1188 1189 Return the updated $\mathcal{S}', \mathcal{D}$, and T' , as well as s_{curr} :

1190 1191 1192 Returning the updated S', D , and T' is straightforward. Note that the choice to assign or merge a given \mathcal{D}'_i in to a given $\mathcal{D}(s)$ depends only on the latent states s in the datasets, and so is independent of Ω.

1193 1194 1195 1196 We have then shown that, if CycleFind succeeds, then states $[s_0^{\text{cyc}},..,s_{n_{\text{cv}}}^{\text{cyc}}]$ $\frac{cyc}{n_{cyc} \cdot |\hat{a}|-1}$, have been added to S' , if they were not present already. These states correspond to the states in the cycle $[s_0^{cyc*}, ..., s_{n_{cyc}}^{cyc*}]$ $\frac{cyc*}{ncyc}|a|-1$, and the corresponding transitions have been added to T'; furthermore, the datasets $\mathcal{D}(s)$ have been updated appropriately.

1197 1198 1199 1200 1201 To determine the learned latent state of the Ex-BMDP M after CycleFind is run, simply note that this is equivalently the state corresponding to the observation x_c , which we know belongs to dataset $\mathcal{D}'_{c\%(n_{\text{cyc}}|a|)}$. We then know that this observation must have the same latent state as the rest of $\mathcal{D}'_{c\%(n_{\text{cyc}}|\hat{a}|)}$; that is, the observation $s_{c\%}^{\text{cyc}}$ cyc $c\% (n_{\rm cyc} \!\cdot\!|\hat{a}|)$ '

1203 1204 The total failure rate for the CycleFind algorithm can be bounded by union bound from the failure rates of Parts 1 and 3 of the algorithm; that is, Equations [34](#page-18-2) and [49.](#page-21-0) That is:

$$
\Pr(\text{fail}) \le (N-1) \cdot |\mathcal{F}| \left(\frac{9}{16}\right)^{n_{\text{sample eye.}}} + |\mathcal{S}| \cdot n_{\text{cyc}} \cdot |\hat{a}| \cdot |\mathcal{F}| \left(\frac{9}{16}\right)^{n_{\text{sample}}} \le (N-1) \cdot |\mathcal{F}| \frac{\delta}{4|\mathcal{A}|N(N-1)|\mathcal{F}|} + N^3 \cdot (D+1) \cdot |\mathcal{F}| \frac{\delta}{4|\mathcal{A}|N^4(\hat{D}+1)|\mathcal{F}|} \qquad (51)\le \frac{\delta}{2|\mathcal{A}| \cdot N}.
$$

1212 All claims of Proposition [1](#page-16-1) have therefore been proven.

\Box

1214 B.1.2 STEEL PHASE 1

1215 1216 1217 1218 1219 Note that given a fixed \hat{a} , there might be multiple different state cycles that could be discovered by CycleFind. However, only one will *actually* be discovered, depending on the state that the Ex-BMDP starts in as well as the *not-yet-discovered parts of the state dynamics*. For example, consider an Ex-BMDP $\mathcal{A} := \{L, R\}, \mathcal{S} := \{\hat{1}, \hat{2}\}$ with the following latent dynamics:

1220

1213

1202

$$
1221
$$

1222 1223

ˆ1 ˆ2 L R L R

1224 1225 If we set $\hat{a} := [L]$, then, depending on the initial state, CycleFind will *either* collect samples of $\hat{1}$ and discover its self-loop transition, *or* collect samples of $\hat{2}$ and discover its self-loop transition.

1226 1227 1228 1229 In order to learn the complete latent dynamics of the Ex-BMDP, we maintain a representation T' of the partial transition graph that has been discovered so far, and iteratively apply CycleFind using, at each step, an action sequence \hat{a} that is guaranteed to produce a cycle that is *not* entirely contained in the partial graph discovered so far.

1230 1231 1232 Note that this is *not* as simple as choosing a sequence of actions that leads to an unknown state transition from the final latent state of the Ex-BMDP reached in the previous iteration of CycleFind. For example, consider the following partially-learned latent state dynamics (with $A := \{L, R\}$):

1241 Here, the only unknown transition from an known state is the effect of the 'R' action from $\overline{4}$. Suppose we know from the previous iteration of CycleFind that the current latent state of the Ex-BMDP is **1242 1243 1244 1245 1246** $s_{\text{curr}} = 3$. Naively, it might seem as if running CycleFind with $\hat{a} = [R, R]$ would learn some new transition dynamics or states, because it would navigate through the unknown transition. However, this might not be the case in fact. In particular, the 'R'-transition from $\hat{4}$ might only be visited *transiently*. For example, suppose the *full* latent dynamics of the Ex-BMDP are as follows (with the currently unknown parts shown in gray):

Then, if we run CycleFind with $\hat{a} = [R, R]$, it will converge to a cycle between the nodes 1 and 2:

1268 1269 1270 Note that the states (1 and 2) and associated transitions that CycleFind converges on were *already* explored, so we learn no new information from this application of CycleFind.

1271 1272 1273 Instead, at each iteration, we design \hat{a} so that *no cycle of the actions* \hat{a} *can be entirely contained within the currently-known partial transition graph.* We show that the length of the resulting \hat{a} is at most $(D+1)|S|$.

1274 1275 We proceed as follows. Note that in the first iteration, before any latent states are known, we can simply use $\hat{a} = [a]$ for some arbitrary $a \in \mathcal{A}$. Otherwise, we use the following algorithm:

- Initialize B with all of the previously-learned latent states (that is, $B \leftarrow S'$.)
- **1278** • While β is non-empty:

1276 1277

- Remove some latent state s from β .
- Use Dijkstra's algorithm to compute a shortest path in the partial transition graph that starts at s and ends at any not-yet-defined transition. (that, is, any transition for which $T'(\cdot, \cdot) = \bot$). (Note this must be possible. Otherwise, because all states can reach each other in the full latent dynamics, if there were no such undiscovered edge in the same connected component as s, then we would know that we have *already* found the complete latent dynamics.) Also note that the shortest path through such an edge can have length at most $D + 1$, simply because:
	- $*$ The length of the shortest path from s to the state with the undefined edge in the *full* transition graph T is at most D .
- * Suppose that some transition on this shortest path is missing in the partial transition graph T' . Concretely, let d be the first state along this path such that the transition out of it is missing. Then, we have a path from s to d of length less than D , and we know that d is itself missing a transition. Then d can be used in place of the original state with the undefined edge: it has a missing transition, and it is at most D steps, in T' , from s .
- **1294 1295** - Let \hat{a}' be the list of actions on the path we have found from s through an undefined edge. Note that taking actions \hat{a}' from s will result in taking an unknown transition, and that $|\hat{a}'| \leq D + 1$.

1296 1297 1298 1299 – Replace B with the set of states that can result from starting at any state $s' \in B$ and then taking actions \hat{a}' , according to the learned partial transition graph T' . For a given $s' \in \mathcal{B}$, if this path leads to an unknown transition, do not insert any state corresponding to s' into the new $\mathcal B$.

1300 1301

1316

1322 1323

- Concatenate \hat{a}' to the end of \hat{a} .

1302 1303 1304 1305 1306 1307 1308 1309 Note that at every iteration, $|\mathcal{B}|$ decreases by at least 1, so the algorithm runs for at most $|\mathcal{S}'|$ iterations, so the final length of \hat{a} is at most $(D + 1)|S'|$. Also note that, by construction, taking all actions in \hat{a} will traverse an unknown transition at some point, starting at *any* latent state that has been learned so far. As a consequence, any cycle traversed by taking \hat{a} repeatedly must involve at least one transition (and possibly some states) that are not yet included in the partial transition graph. Therefore, applying CycleFind using an \hat{a} constructed in this way is guaranteed to learn at least one new transition. Therefore, to fully learn the transition dynamics, we must apply CycleFind at most $|\mathcal{A}| \cdot |\mathcal{S}|$ times.

1310 1311 1312 1313 Also, note that the process of constructing \hat{a} at each iteration depends only on the partial latent dynamics model T' , which in turn depends only on the choices of \hat{a} in previous invocations of CycleFind, and ultimately these depend only on the starting latent state s_{init} and the ground-truth dynamics T. Therefore \hat{a} is at every iteration independent of Ω , as required by Proposition [1.](#page-16-1)

1314 1315 Then, assuming CycleFind succeeds at each invocation, by the end of Phase 1, STEEL will have discovered the complete state set S and transition function T , up to permutation.

1317 B.1.3 STEEL PHASE 2

1318 1319 1320 1321 In the next phase, once we have completely learned T' (that is, once there are no state-action pairs $s \in S'$, $a \in A$ for which $T'(s, a)$ is undefined), we collect additional samples of each latent state, until the total number of samples collected for each is at least d , where:

$$
d := \lceil \frac{3|\mathcal{S}'|\ln(16|\mathcal{S}'|^2|\mathcal{F}|/\delta)}{\epsilon} \rceil. \tag{52}
$$

1324 1325 We can leverage the fact that we now have a complete latent transition graph as well as knowledge of the current latent state s_{curr} from the last iteration of CycleFind.

1326 1327 To do this, we proceed as follows:

• Use T' to plan a sequence of actions \bar{a} such that:

 $\hat{t}_{\text{mix}} \leq |\bar{a}| \leq \max(|\mathcal{S}| \cdot D, \hat{t}_{\text{mix}} + D)$, and

– Taking the actions in \bar{a} starting at s_{curr} traverses a cycle. That is,

 $T'(T'(T'(...T'(s_{\text{curr}}, \bar{a}_0), \bar{a}_1), \bar{a}_2), ..., \bar{a}_{|\bar{a}|-1})) = s_{\text{curr}}$. (53)

and,

– Taking the actions in \bar{a} starting at s_{curr} visits all latent states in $s \in S' \setminus \{s_{\text{curr}}\}$ such that $|\mathcal{D}(s)| \leq d$ at least once.

Note that planning such a sequence \bar{a} always must be possible. For example, starting at s_{curr} , we can greedily plan a route to the nearest as-of-yet-unvisited latent state $s \in$ $S' \setminus \{s_{\text{curr.}}\}$ such that $|\mathcal{D}(s)| \leq d$ and repeat until all such states have been visited, and then navigate back to s_{curr} . This takes at most $|S'| \cdot D$ steps. If this sequence has length less than \hat{t}_{mix} , then we can insert a self-loop at any state in the sequence (such as the state with the shortest self-loop) and repeat this self-loop as many times as necessary until $|\bar{a}| \ge t_{\rm mix}$. Because all self-loops are of length at most $D + 1$, this can "overshoot" by at most D, so we have that $|\bar{a}| \leq \max(|\mathcal{S}| \cdot D, \tilde{t}_{\text{mix}} + D)$.

- Execute the actions in \bar{a} on M once without collecting data, in order to ensure that within each set $\mathcal{D}(s)$, the newly-collected observations are collected at least t_{mix} steps after observations added in previous phases of STEEL.
- **1348 1349** • Repeatedly take the actions \bar{a} on M, collecting the observation of each latent state s the first time in the cycle that it is visited and inserting the observation into $\mathcal{D}(s)$, until $\forall s \in$ $S', |\mathcal{D}(s)| \geq d.$ Note that for a given latent state s, we collect observations of s exactly

1350 1351 1352 1353 $|\bar{a}|$ steps apart. Because $|\hat{a}| \geq \bar{t}_{mix}$, this ensures that the observation added to $\mathcal{D}(s)$ are collected at least \hat{t}_{mix} steps apart. Because each $\mathcal{D}(s)$ will already contain at least one sample (from CycleFind), this process will take at most $d-1$ iterations.

1354 1355 1356 1357 1358 • Note that if for some state $s \in S'$, $|\mathcal{D}(s)|$ reaches d during some iteration of taking the actions \bar{a} , then for the next iteration, we can re-plan a shorter \bar{a} that does not necessarily visit s. However, when we do this, we must execute the newly-planned cycle \bar{a} once without collecting data, in order to ensure that all observation added to any particular $\mathcal{D}(s)$ are collected at least t_{mix} steps apart. This could require at most $|\mathcal{S}|$ additional iterations through some \bar{a} .

1360 This process will ensure that $\forall s \in S', |\mathcal{D}(s)| \ge d$, in at most

$$
(d-1+|\mathcal{S}|) \cdot \max(D+\hat{t}_{\text{mix}}, |\mathcal{S}| \cdot D) \text{ steps.}
$$
 (54)

1362 1363 1364 1365 Also, note that all samples collected during this phase are sorted into the appropriate dataset $\mathcal{D}(s)$ entirely by open-loop planning on T', so the choice of samples in each $\mathcal{D}(s)$ remains independent of Ω , and, in principle, can be a deterministic function of s_{init} .

1366 B.1.4 STEEL PHASE 3

1359

1361

1367

1371

1382 1383

1385 1386

1390 1391

1368 1369 1370 Finally, for each learned latent state $s \in S'$, we train a classifier f_s to distinguish $D_0 :=$ $\biguplus_{s' \in \mathcal{S}' \setminus \{s\}} \mathcal{D}(s')$ from $D_1 := \mathcal{D}(s)$. This set of classifiers allows us to perform one-versus-rest classification to identify the latent state of any observation x , by defining:

$$
\phi'(x) := \arg \max_{s} f_s(x). \tag{55}
$$

1372 1373 1374 Along with the learned transition dynamics T' , this should be a sufficient representation of the latent dynamics.

1375 1376 1377 1378 1379 1380 1381 We want to guarantee that when the *exogenous* state *e* of the Ex-BMDP is at equilibrium (that is, is sampled from its stationary distribution), for any latent state s, if $x \sim \mathcal{Q}(s, e)$, then the probability that $f_s(x) = 1$ and, $\forall s' \neq s$, $f(s') = 0$ is at least $1 - \epsilon$. By union bound, we can do this by ensuring that the accuracy of *each* classifier f_s , on each latent state $s' \in S$, is at least $1 - \epsilon/|S|$. By realizability, we know that $\forall s$, there exists some classifier $f_s^* \in \mathcal{F}$ for which $f_s^*(s) = 1$ iff $\phi^*(x) = \mathbb{F}$ s. Therefore, we need to upper-bound the probability that $\exists f' \in \mathcal{F}$, for which $\forall x \in D_1, f(x) = 1$ and $\forall x \in D_0, f(x) = 0$, but for which either

 x ∽

 x \sim

$$
\Pr_{\mathcal{Q}(s,e), e \sim \pi} (f'(x) = 0) \ge \frac{\epsilon}{|\mathcal{S}|} \tag{56}
$$

1384 Or, for any $s' \neq s$,

$$
\Pr_{\mathcal{Q}(s',e);e \sim \pi} (f'(x) = 1) \ge \frac{\epsilon}{|\mathcal{S}|}.
$$
\n(57)

1387 1388 1389 For all s, all samples in $\mathcal{D}(s)$ are collected at least t_{mix} samples apart at timesteps chosen deterministically and independently of Ω . Therefore, for any single fixed classifier f,we can use Lemma [2](#page-28-0) and the fact that $\forall s, |\mathcal{D}(s)| \geq d$ to bound the false-positive rates in Equations [56](#page-25-0) and [57](#page-25-1) as:

$$
\Pr\left(\forall x \in \mathcal{D}(s), \ f'(x) = 1 \bigwedge \Pr_{x \sim \mathcal{Q}(s,e); e \sim \pi} f'(x) = 0 \ge \frac{\epsilon}{|\mathcal{S}|}\right) \le 8e^{-\frac{\epsilon \cdot d}{3|\mathcal{S}|}}.\tag{58}
$$

1392 1393 and, $\forall s' \in \mathcal{S}' \setminus \{s\},\$

$$
\Pr\left(\forall x \in \mathcal{D}(s'),\ f'(x) = 0 \bigwedge\nolimits_{x \sim \mathcal{Q}(s',e);e \sim \pi} f'(x) = 1 \ge \frac{\epsilon}{|\mathcal{S}|}\right) \le 8e^{-\frac{\epsilon \cdot d}{3|\mathcal{S}|}}.\tag{59}
$$

1396 1397 Taking the union bound bound over s and all latent states $s' \in S' \setminus \{s\}$ gives a total false positive rate for learning f' as f_s as:

$$
\text{FPR}(f', s) \le 8|\mathcal{S}|e^{-\frac{\epsilon \cdot d}{3|\mathcal{S}|}}.\tag{60}
$$

1399 1400 Taking the union bound over all $f \in \mathcal{F}$ gives:

$$
\text{FPR}(f_s) \le 8|\mathcal{S}||\mathcal{F}|e^{-\frac{\epsilon \cdot d}{3|\mathcal{S}|}}.\tag{61}
$$

1402 Finally, taking the union bound over each classifier f_s gives:

$$
\text{FPR} \le 8|\mathcal{S}|^2|\mathcal{F}|e^{-\frac{\epsilon \cdot d}{3|\mathcal{S}|}}.\tag{62}
$$

1394 1395

1398

1401

1404 1405 B.1.5 BOUNDING THE OVERALL FAILURE RATE AND SAMPLE COMPLEXITY

1406 1407 1408 1409 1410 Here, we bound the overall failure rate of the STEEL algorithm. We do this by separately bounding the failure rate of the first phase of the algorithm (the repeated applications of CycleFind) and the final phase of the algorithm, the learning of classifiers f_s . We let each of these failure rates be at most $\delta/2$. Therefore, we must have, over the at most $|\mathcal{S}| \cdot |\mathcal{A}|$ iterations of CycleFind, a failure rate of at most

$$
\frac{\delta}{2} \ge |\mathcal{S}| \cdot |\mathcal{A}| \cdot \Pr(\text{CycleFind Fails}).\tag{63}
$$

1412 1413 1414 This is satisfied by Proposition [1](#page-16-1) (noting that $N \geq |\mathcal{S}|$). The number of samples needed for these $|S| \cdot |A|$ iterations of CycleFind, each with $|\hat{a}| \leq |S| \cdot (D+1)$, is (by Equation [36\)](#page-19-0) at most:

$$
|\mathcal{S}| \cdot |\mathcal{A}| \cdot \left(\max \left((2\hat{t}_{\text{mix}} + 3N \cdot |\mathcal{S}| \cdot (D+1) - 2) \cdot n_{\text{ samp. cyc.}} - N \cdot |\mathcal{S}| \cdot (D+1), \right. \right)
$$

$$
2 \cdot (\hat{t}_{\text{mix}} + |\mathcal{S}|^2 \cdot (D+1) - 1) \cdot n_{\text{ samp.}} + 1 \right) \tag{64}
$$

$$
+\max((N-1)\cdot|\mathcal{S}|\cdot(D+1)-\hat{t}_{\text{mix}},0)+1\bigg)
$$

1423 Which is upper-bounded by:

1411

1434

1436 1437

1442 1443

$$
|\mathcal{S}| \cdot |\mathcal{A}| \cdot \left(\max \left((2\hat{t}_{\text{mix}} + 3N \cdot |\mathcal{S}| \cdot (D+1) - 2) \cdot n_{\text{ samp. cyc.}}, \n2 \cdot (\hat{t}_{\text{mix}} + |\mathcal{S}|^2 \cdot (D+1) - 1) \cdot n_{\text{ samp.}} \n+ 2 + \max((N-1) \cdot |\mathcal{S}| \cdot (D+1) - \hat{t}_{\text{mix}}, 0) \right) \right)
$$
\n(65)

1431 1432 1433 where $n_{\text{ samp.}}$ is given by Equation [11](#page-15-1) and $n_{\text{ samp. cyc.}}$ is given by Equation [18.](#page-16-0) Meanwhile, the overall failure rate of the second phase is at most

δ

$$
\frac{\delta}{2} \ge 8|\mathcal{S}|^2|\mathcal{F}|e^{-\frac{\epsilon \cdot d}{3|\mathcal{S}|}}.\tag{66}
$$

1435 Solving for d in Equation [66](#page-26-0) gives:

$$
\frac{3|\mathcal{S}| \ln(16|\mathcal{S}|^2|\mathcal{F}|/\delta)}{\epsilon} \le d. \tag{67}
$$

1438 1439 1440 Which is indeed satisfied by Equation [52,](#page-24-0) given that the structure of the latent dynamics were correctly learned using CycleFind in the first phase of the algorithm, so that $|S'| = |S|$.

1441 By Equation [54,](#page-25-2) we then know that the number of samples needed for this phase is at most:

$$
\max(D + \hat{t}_{\text{mix}}, |\mathcal{S}| \cdot D) \cdot \left(\lceil \frac{3|\mathcal{S}| \ln(16|\mathcal{S}|^2|\mathcal{F}|/\delta)}{\epsilon} \rceil - 1 + |\mathcal{S}| \right). \tag{68}
$$

1444 1445 Combining the number of samples over both phases and simplifying gives us an overall upper-bound of the number of required samples of: $\sqrt{2}$ | $\sqrt{2$

$$
\max(D + \hat{t}_{mix}, |\mathcal{S}| \cdot D) \cdot \left(\frac{3|\mathcal{S}| \ln(16|\mathcal{S}|^2|\mathcal{F}|/\delta)}{\epsilon} + |\mathcal{S}| \right) +
$$

$$
|\mathcal{S}| \cdot |\mathcal{A}| \cdot \left(\max\left((2\hat{t}_{mix} + 3N \cdot |\mathcal{S}| \cdot (D + 1) - 2) \cdot \right) \right)
$$

$$
\left(\ln\left(4|\mathcal{A}| \cdot N \cdot (N - 1) \cdot |\mathcal{F}|/\delta \right) / \ln(16/9) + 1 \right),
$$

$$
2 \cdot (\hat{t}_{mix} + |\mathcal{S}|^2 \cdot (D + 1) - 1) \cdot \left(\ln\left(4|\mathcal{A}| \cdot N^4 \cdot (\hat{D} + 1) \cdot |\mathcal{F}|/\delta \right) / \ln(16/9) + 1 \right)
$$

$$
+ 2 + \max((N - 1) \cdot |\mathcal{S}| \cdot (D + 1) - \hat{t}_{mix}, 0) \right)
$$

1458 1459 1460 This gives us a big-O sample complexity of (using that $\hat{D} \leq N$ and $|\mathcal{S}| \leq N$): $\mathcal{O}(|\mathcal{S}|^2 \cdot N \cdot D \cdot |\mathcal{A}| \cdot (\log |\mathcal{A}| + \log (N) + \log |\mathcal{F}| + \log (1/\delta)) +$

1461 1462 $|\mathcal{S}| \cdot |\mathcal{A}| \cdot \hat{t}_{\text{mix}} \cdot (\log |\mathcal{A}| + \log(N) + \log |\mathcal{F}| + \log(1/\delta)) +$

$$
|S|^2 \cdot D \cdot (1/\epsilon) \cdot (\log(|S|) + \log |\mathcal{F}| + \log(1/\delta)) +
$$

1464

 $|\mathcal{S}| \cdot \hat{t}_{\mathrm{mix}} \cdot (1/\epsilon) \cdot \left(\log(|\mathcal{S}|) + \log |\mathcal{F}| + \log(1/\delta)\right) \Big)$

1467 Using the notation $\mathcal{O}^*(f(x)) := \mathcal{O}(f(x) \log(f(x)))$, we can write this as:

$$
\mathcal{O}^*\left(ND|\mathcal{S}|^2|\mathcal{A}|\cdot\log\frac{|\mathcal{F}|}{\delta}+|\mathcal{S}||\mathcal{A}|\hat{t}_{\text{mix}}\cdot\log\frac{N|\mathcal{F}|}{\delta}+\frac{|\mathcal{S}|^2D}{\epsilon}\cdot\log\frac{|\mathcal{F}|}{\delta}+\frac{|\mathcal{S}|\hat{t}_{\text{mix}}}{\epsilon}\cdot\log\frac{|\mathcal{F}|}{\delta}\right). (71)
$$

1471 1472 1473 Therefore, we have shown that, with high probability, STEEL returns (up to permutation) the correct latent dynamics for the Ex-BMDP, and a high-accuracy latent-state encoder ϕ' , within the samplecomplexity bound stated in Theorem [1.](#page-4-2) This completes the proof.

1475 1476 C USEFUL LEMMATA

1477 1478 1479 1480 1481 Lemma 1. *Consider an Ex-BMDP* $M = \langle X, A, S, \mathcal{E}, \mathcal{Q}, T, \mathcal{T}_e, \pi_{\mathcal{E}}^{init} \rangle$ *starting at an arbitrary latent endogenous state* $s_{\text{init}} \in \mathcal{S}$. Let Ω represent the sample space of the three sources of randomness in M*: that is,* Te*,* Q*, and the initial exogenous latent state* einit*. Assume that all actions on* M *are taken deterministically and independently of* Ω *. Let* $f \in \mathcal{X} \to \{0,1\}$ *be a fixed arbitrary function, and for each* $s \in S$ *let*

$$
p_s := \Pr(f(x) = 1 | x \sim \mathcal{Q}(s, e), e \sim \pi_{\mathcal{E}}). \tag{72}
$$

(70)

1484 1485 1486 1487 where $\pi_{\mathcal{E}}$ is the stationary distribution of \mathcal{T}_{e} . Consider a trajectory sampled from this Ex-BMDP denoted as $x_{traj} := x'_0, x'_1, x'_2...$, with endogenous latent states $s_{traj} := s'_0, s'_1, s'_2...$ (so that $s'_0 = s_{init}$), and exogenous states $e_{traj} := e'_0, e'_1, e'_2, \ldots$ *. Then, for any fixed* $t_1, t_2 \in \mathbb{N}$, selected independently of Ω *, where* $t_2 - t_1 \geq t_{mix}$ *, we have that:*

$$
p_s - 1/4 \le \Pr(f(x'_{t_2}) = 1 | x'_{\le t_1}, s'_{t_2} = s) \le p_s + 1/4,\tag{73}
$$

1490 where $x'_{\leq t_1}$ denotes the observations in the trajectory x_{traj} up to and including x'_{t_1} .

1491 *Note that this does not necessarily hold if* t_1 , t_2 *depend on* Ω *.*

Proof. From the definition of mixing time:

$$
\forall e \in \mathcal{E}, \|\Pr(e'_{t_2} = \cdot | e'_{t_1} = e) - \pi_{\mathcal{E}} \|\mathbf{v} \le \frac{1}{4}.\tag{74}
$$

Then,

$$
\forall e \in \mathcal{E}, \left| \Pr(f(x) = 1 | x \sim \mathcal{Q}(s_{t_2}', e'), e' \sim \pi_{\mathcal{E}}) - \Pr_{x \sim \mathcal{Q}(s_{t_2}', e_{t_2}')} (f(x) = 1 | e_{t_1}' = e) \right| \le \frac{1}{4}.
$$
 (75)

1502 Because e'_{t_2} depends on $x'_{\leq t_1}$ only through e'_{t_1} , we have:

$$
\left| \Pr(f(x) = 1 | x \sim \mathcal{Q}(s_{t_2}', e'), e' \sim \pi_{\mathcal{E}}) - \Pr_{x \sim \mathcal{Q}(s_{t_2}', e_{t_2}')} (f(x) = 1 | x_{\le t_1}') \right| \le \frac{1}{4}.
$$
 (76)

1506 1507 Then by Equation [72,](#page-27-1)

$$
\left| p_{s'_{t_2}} - \Pr_{x \sim \mathcal{Q}(s'_{t_2}, e'_{t_2})} (f(x) = 1 | x'_{\leq t_1}) \right| \leq \frac{1}{4},\tag{77}
$$

1510 1511 which directly implies Equation [73.](#page-27-0) Note that this is does not hold if t_1 and t_2 can depend on Ω . For example, if we define $t_2 := (\min t \text{ such that } f(x_t') = 0 \text{ and } t \ge t_1 + t_{\text{mix}})$, then trivially Equation [73](#page-27-0) may not apply.

1503 1504 1505

1508 1509

1465 1466

1468 1469 1470

1474

1482 1483

1488 1489

1512 1513 1514 1515 Lemma 2. *Consider an irreducible, aperiodic Markov chain* T_e *on states* $\mathcal E$ *with mixing time* t_{mix} *and stationary distribution* $\pi_{\mathcal{E}}$ *, and an arbitrary function* $f : \mathcal{E} \to \{0, 1\}$ *. Suppose* $Pr_{e \sim \pi_{\mathcal{E}}}(f(e) =$ 1) ≤ 1−ϵ*. Consider a fixed sequence of* N *timesteps* t1, ..., t^N *, where* ∀i, tⁱ −ti−¹ ≥ t*mix. Now, for a trajectory* $e_0, ..., e_{t_N}$ *sampled from the Markov chain, starting at an arbitrary* e_0 *, we have that:*

$$
\Pr(\bigcap_{i=1}^{N} f(e_{t_i}) = 1) \le 8e^{-\frac{\epsilon \cdot N}{3}}.
$$
\n(78)

1518 1519 1520

1522 1523

1527 1528 1529

1531

1534 1535

1537 1538 1539

1541 1542 1543

1545 1546 1547

1549 1550

1552 1553 1554

1516 1517

1521 *Proof.* Define ϵ' as:

$$
\epsilon' := \Pr_{e \sim \pi_{\mathcal{E}}} (f(e) = 0). \tag{79}
$$

1524 1525 1526 Note that we know that $\epsilon' \geq \epsilon$. Now, fix any $i \geq t_{\text{mix}}$. Let M^i denote the linear operator on state distributions corresponding to taking i steps of the Markov chain: that is, $M^i\pi$ gives the distribution after *i* time steps. Also, let Π be the linear operator defined as:

$$
\Pi \pi := \left(\int_{e \in \mathcal{E}} \pi(e) de \right) \pi_e.
$$
 (80)

1530 Define the linear operator Δ^i as:

$$
\Delta^i := M^i - \Pi. \tag{81}
$$

1532 1533 By linearity and noting that both M^i and Π are stochastic operators, we have that, for any π ,

$$
\int_{e \in \mathcal{E}} (\Delta^i \pi)(e) de = 0.
$$
\n(82)

1536 Also, from the definition of mixing time, we have, for any function π :

$$
\|\Delta^i \pi\|_1 \le \frac{1}{2} \|\pi\|_1. \tag{83}
$$

1540 (To see this, for any $e \in \mathcal{E}$ consider the unit vector \vec{e} . Then, note that:

$$
\|\Delta^i \vec{e}\|_1 = 2 \cdot \|\pi_e - M^i \vec{e}\|_{TV} \le \frac{1}{2}.\tag{84}
$$

1544 Then, for any π , we have:

$$
\|\Delta^i \pi\|_1 = \|\int_{e \in \mathcal{E}} \pi(e)\Delta^i \vec{e} \, de\|_1 \le \int_{e \in \mathcal{E}} |\pi(e)| \|\Delta^i \vec{e}\|_1 de \le \frac{1}{2} \|\pi\|_1. \tag{85}
$$

1548 Because π_e is a stationary distribution of M^i , we also have that:

$$
\Delta^i \pi_e = (|M^i - \Pi)\pi_e = \pi_e - \pi_e = 0.
$$
 (86)

1551 Additionally, let Γ be the linear operator defined as:

$$
\Gamma \pi := \int_{e \in \mathcal{E}} \pi(e) f(e) \vec{e} \, de \tag{87}
$$

1555 1556 In other words, $(\Gamma \pi)(e) := f(e) \cdot \pi(e)$. One useful fact about this operator is that, for any function π_0 such that $\int_{e \in \mathcal{E}} \pi_0(e) de = 0$, we have that

$$
\int_{e \in \mathcal{E}} (\Gamma \pi_0)(e) de \le \frac{1}{2} ||\pi_0||_1.
$$
\n(88)

1560 (To see this, note that we have:

$$
\int_{e \in \mathcal{E}} (\Gamma \pi_0)(e) de + \int_{e \in \mathcal{E}} ((I - \Gamma) \pi_0)(e) de = 0,
$$
\n(89)

1564 1565 and also that, because $\Gamma \pi_0$ and $(I - \Gamma) \pi_0$ are nonzero for disjoint *e*'s:

$$
\|\Gamma \pi_0\|_1 + \|(I - \Gamma)\pi_0)\|_1 = \|\pi_0\|_1.
$$
\n(90)

1557 1558 1559

1566 1567 Then, we also have:

$$
1568\\
$$

1569 1570

1572 1573 1574

1580 1581 1582

1571 and

$$
\left| \int_{e \in \mathcal{E}} (\Gamma \pi_0)(e) de \right| = \left| \int_{e \in \mathcal{E}} ((I - \Gamma) \pi_0)(e) de \right| \le ||(I - \Gamma) \pi_0||_1.
$$
 (92)

 $\left| \int_{e \in \mathcal{E}} (\Gamma \pi_0)(e) de \right| \leq ||\Gamma \pi_0||_1,$ (91)

1575 Combining these equations and inequalities yields Equation [88.](#page-28-1))

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ Z

1576 1577 1578 1579 Now, consider the operator $Mⁱ$. This operator, when applied to a probability distribution π , yields the *(unnormalized)* probability density that results from applying \mathcal{T}_e to e' *i* times, where e' is sampled from π conditioned on $f(e') = 1$. More precisely, it is the density of $e \sim \mathcal{T}_e^i(e')$, scaled down by the probability that $f(e') = 1$. In other words, it is given by:

$$
(M^{i}\Gamma \pi)(e) = p(e_i = e | e \sim \mathcal{T}_e^{i}(e') \land f(e') = 1 \land e' \sim \pi) \cdot \Pr_{e' \sim \pi}(f(e') = 1).
$$
 (93)

1583 Now, consider any vector v . Note that v always can be uniquely decomposed as follows:

$$
v := a\pi_e + b\bar{v} \text{ where } \int_{e \in \mathcal{E}} \bar{v}(e)de = 0 \text{ and } ||\bar{v}||_1 = 1 \text{ and } b \ge 0. \tag{94}
$$

1588 1589 (Specifically, we must set $a := \int_{e \in \mathcal{E}} v(e) de$ and $b := ||v - a\pi_e||_1$ and $\bar{v} := (v - a\pi_e)/b$.) Assume that v is such that $a \ge 0$. Now, consider the equation:

$$
v' = M^i \Gamma v \tag{95}
$$

1591 1592

1594 1595 1596

1598 1599

1604 1605 1606

1609 1610

1619

1590

1593 If we consider the above decomposition, we have:

$$
a'\pi_e + b'\bar{v}' = M^i \Gamma(a\pi_e + b\bar{v})\tag{96}
$$

1597 Note that this can be re-written as:

$$
a'\pi_e + b'\bar{v}' = \Pi\Gamma(a\pi_e + b\bar{v}) + \Delta^i\Gamma(a\pi_e + b\bar{v}).\tag{97}
$$

1600 1601 1602 1603 Note that by Equation [80,](#page-28-2) the image of Π can be written in the form $a'\pi_e$, while, by Equation [82,](#page-28-3) the image of Δ^i can be written as $\bar{b}'\bar{v}$, where b' and \bar{v} are constrained as in Equation [97.](#page-29-0) Then, we have (using Equation [80\)](#page-28-2):

$$
a' = \int_{e \in \mathcal{E}} (\Gamma(a\pi_e + b\bar{v}))(e)de = a \int_{e \in \mathcal{E}} (\Gamma \pi_e))(e)de + b \int_{e \in \mathcal{E}} (\Gamma \bar{v}))(e)de \tag{98}
$$

1607 1608 and:

$$
b' = \|\Delta^i \Gamma(a\pi_e + b\bar{v})\|_1 \le a \|\Delta^i \Gamma \pi_e\|_1 + b \|\Delta^i \Gamma \bar{v}\|_1. \tag{99}
$$

of \bar{v})

1611 Now, from Equation [98,](#page-29-1) we have:

1612
\n1613
\n1614
\n1615
\n1616
\n1617
\n1618
\n1619
\n1618
\n1619
\n1618
\n1619
\n1618
\n1619
\n1619
\n1610
\n1611
\n1612
\n
$$
\leq a \int_{e \in \mathcal{E}} (\Gamma \pi_e)(e) de + \frac{b}{2} ||\bar{v}||_1
$$
 (by Equation 88)
\n
$$
\leq a(1 - \epsilon') + \frac{b}{2} ||\bar{v}||_1
$$
 (by Equation 79)

$$
\leq a(1 - \epsilon') + \frac{b}{2}
$$
 (by definition

1620 1621 And, from Equation [99,](#page-29-2) we have:

1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 $b' \leq a \|\Delta^i \Gamma \pi_e\|_1 + b \|\Delta^i \Gamma \bar{v}\|_1$ $\leq a \|\Delta^i(I-(I-\Gamma))\pi_e\|_1 + b \|\Delta^i \Gamma \bar{v}\|_1$ $\leq a \|\Delta^i \pi_e\|_1 + a \|\Delta^i (I - \Gamma) \pi_e\|_1 + b \|\Delta^i \Gamma \overline{v}\|_1$ $\leq a \|\Delta^i (I - \Gamma)\pi_e\|_1 + b \|\Delta^i \Gamma \bar{v}\|_1$ (by Equation [86\)](#page-28-5) ≤ a $\frac{a}{2} \| (I - \Gamma) \pi_e \|_1 + \frac{b}{2}$ 2 (by Equation [83\)](#page-28-6) ≤ $a\epsilon'$ $\frac{1}{2}e^{\prime}+\frac{b}{2}$ $\frac{1}{2} \|\Gamma \bar{v}\|_1$ (by Equation [79\)](#page-28-4) ≤ $a\epsilon'$ $\frac{1}{2} + \frac{b}{2}$ $\frac{6}{2}$ $\|\bar{v}\|_1$ (by Equation [90\)](#page-28-7) ≤ $a\epsilon'$ $\frac{1}{2}e^{\prime}+\frac{b}{2}$ $\frac{6}{2}$ (by definition of \bar{v} .) (101) We can summarize these results as: $\lceil a' \rceil$ a'
 b' ≤ $\begin{bmatrix} 1 - \epsilon' & \frac{1}{2} \\ \epsilon' & 1 \end{bmatrix}$ $\frac{\epsilon'}{2}$ $\frac{1}{2}$ $\lceil a \rceil$ b 1 (102)

1638 1639 1640 where there "≤" sign applies elementwise. Also, because the elements of this matrix are all nonnegative, we have:

$$
\begin{bmatrix} x' \\ y' \end{bmatrix} \le \begin{bmatrix} x \\ y \end{bmatrix} \implies \begin{bmatrix} 1 - \epsilon' & \frac{1}{2} \\ \frac{\epsilon'}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix} \le \begin{bmatrix} 1 - \epsilon' & \frac{1}{2} \\ \frac{\epsilon'}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.
$$
 (103)

1643 1644 1645 Now, let π_{t_1} represent the probability distribution of the Markov chain at timestep t_1 , and $\pi_{t_N+t_{\text{mix}}}$ be the probability distribution at timestep $t_N + t_{mix}$. Applying Equation [93](#page-29-3) repeatedly gives us that: $M^{t_{\text{mix}}}\Gamma M^{t_N-t_{N-1}}\Gamma M^{t_{N-1}-t_{N-2}}\Gamma$ $M^{t_2-t_1}\Gamma_{\pi}$ =

$$
\pi_{t_N + t_{\text{mix}}} \cdot \Pr(f(e_{t_1}) = 1) \cdot \Pr(f(e_{t_2}) = 1 | f(e_{t_1}) = 1) \dots
$$
\n
$$
\Pr(f(e_{t_{N-1}}) = 1 | \cap_{i=1}^{N-2} f(e_{t_i}) = 1) \cdot \Pr(f(e_{t_N}) = 1 | \cap_{i=1}^{N-1} f(e_{t_i}) = 1) \tag{104}
$$

1649 This gives us that:

1641 1642

1646 1647 1648

1650 1651

1657 1658

1662

$$
\int_{e \in \mathcal{E}} (M^{t_{\text{mix}}} \Gamma M^{t_N - t_{N-1}} \Gamma \dots M^{t_2 - t_1} \Gamma \pi_{t_1})(e) de = \Pr(\bigcap_{i=1}^N f(e_{t_i}) = 1)
$$
\n(105)

1652 1653 where the right-hand side is the probability that we are ultimately trying to bound.

1654 1655 1656 Now, let $v_0 := \pi_{t_1}$; for $1 \le i \le N-1$, let $v_i := M^{t_{i+1}-t_i} \Gamma M^{t_i-t_{i-1}} \Gamma ... \Gamma \pi_{t_1}$; and finally let $v_N :=$ $M^{t_{\max}}\Gamma M^{t_N-t_{N-1}}\Gamma...\Gamma \pi_{t_1}$. Let a_i and b_i represent the components a and b in the decomposition given in Equation [94](#page-29-4) of v_i . Note that:

$$
a_N = \int_{e \in \mathcal{E}} (M^{t_{\text{mix}}} \Gamma M^{t_N - t_{N-1}} \Gamma \dots M^{t_2 - t_1} \Gamma \pi_{t_1})(e) de = \Pr(\bigcap_{i=1}^N f(e_{t_i}) = 1).
$$
 (106)

1659 1660 1661 Also, note that $\forall j \in [1, N]$, we have that $v_j = M^i \Gamma v_{j-1}$, for some $i \ge t_{\text{mix}}$. Therefore, by Equation [102,](#page-30-0)

$$
\begin{bmatrix} a_i \\ b_i \end{bmatrix} \le \begin{bmatrix} 1 - \epsilon' & \frac{1}{2} \\ \frac{\epsilon'}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} a_{i-1} \\ b_{i-1} \end{bmatrix}.
$$
\n(107)

1663 1664 1665 (Additionally, each a_i represents a probability, and so $a_i \geq 0$, so Equation [102](#page-30-0) is applicable.) Now, due to the relation shown in Equation [103,](#page-30-1) we can apply this inequality recursively:

1666
\n1666
\n1667
\n1668
\n1669
\n1670
\n1671
\n
$$
\begin{bmatrix}\na_i \\
b_i\n\end{bmatrix} \le \begin{bmatrix}\n1 - \epsilon' & \frac{1}{2} \\
\frac{\epsilon'}{2} & \frac{1}{2}\n\end{bmatrix} \begin{bmatrix}\na_{i-1} \\
b_{i-1}\n\end{bmatrix} \wedge \begin{bmatrix}\na_{i-1} \\
b_{i-1}\n\end{bmatrix} \le \begin{bmatrix}\n1 - \epsilon' & \frac{1}{2} \\
\frac{\epsilon'}{2} & \frac{1}{2}\n\end{bmatrix} \begin{bmatrix}\na_{i-1} \\
b_{i-1}\n\end{bmatrix} \wedge
$$

\n1670
\n1671
\n1671
\n1671
\n169
\n160
\n161
\n162
\n163
\n164
\n165
\n166
\n167
\n168
\n169
\n160
\n169
\n160
\n161
\n162
\n163
\n164
\n165
\n166
\n169
\n160
\n168
\n169
\n161
\n162
\n163
\n164
\n165
\n166
\n168
\n169
\n160
\n161
\n162
\n163
\n164
\n165
\n166
\n168
\n169
\n160
\n161
\n162
\n163
\n164
\n165
\n166
\n169
\n160
\n161
\n162
\n163
\n164
\n165
\n166
\n167
\n168
\n169
\n161
\n162
\n163
\n164
\n165
\n166
\n167
\n168
\n169
\n160
\n161
\n162
\n163
\n164
\n165
\n166
\n167
\n169
\n160
\n161
\n162
\n163

1672
\n1673
\n
$$
\begin{bmatrix} a_i \\ b_i \end{bmatrix} \le \begin{bmatrix} 1 - \epsilon' & \frac{1}{2} \\ \frac{\epsilon'}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} a_{i-1} \\ b_{i-1} \end{bmatrix} \le \begin{bmatrix} 1 - \epsilon' & \frac{1}{2} \\ \frac{\epsilon'}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 - \epsilon' & \frac{1}{2} \\ \frac{\epsilon'}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 - \epsilon' & \frac{1}{2} \\ \frac{\epsilon'}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} a_{i-2} \\ b_{i-2} \end{bmatrix}
$$

1674 1675 So that we have:

$$
\begin{array}{c} \text{1676} \\ \text{1677} \end{array}
$$

 $\lceil a_N \rceil$ b_N 1 $\leq \bigg(\begin{bmatrix} 1-\epsilon' & \frac{1}{2} \\ \frac{\epsilon'}{2} & \frac{1}{2} \end{bmatrix}$ $\frac{\epsilon'}{2}$ $\frac{1}{2}$ \bigcap^N $\bigcap^N a_0$ b_0 1 (109) The matrix $\begin{bmatrix} 1 - \epsilon' & \frac{1}{2} \\ \frac{\epsilon'}{2} & 1 \end{bmatrix}$ has eigenvalues $\frac{(\frac{3}{2}-\epsilon')\pm\sqrt{\epsilon'^2+\frac{1}{4}}}{2}$; we can use the closed-form solution to the

1679 1680 1681

1678

The matrix
$$
\left[\frac{\epsilon'}{2} - \frac{1}{2}\right]
$$
 has eigenvalues $\frac{2}{2}$, we can use the closed-form solution to the
\nNth power of an arbitrary 2 × 2 matrix given by Williams (1992) to exactly write this upper-bound
\non $a_N \le \left[\left(\frac{(\frac{3}{2} - \epsilon') + \sqrt{\epsilon'^2 + \frac{1}{4}}}{2}\right)^N - \frac{1}{\sqrt{\epsilon'^2 + \frac{1}{4}}} \right]^T$

$$
a_N \leq \left[\left(\frac{\frac{2}{2} - \epsilon' - \sqrt{\epsilon'^2 + \frac{1}{4}}} {2} \right) - \left(\frac{\left(\frac{3}{2} - \epsilon' \right) - \sqrt{\epsilon'^2 + \frac{1}{4}}} {2} \right)^N - \left(\frac{\left(\frac{3}{2} - \epsilon' \right) - \sqrt{\epsilon'^2 + \frac{1}{4}}} {2} \right)^N \frac{1}{\sqrt{\epsilon'^2 + \frac{1}{4}}} \left[1 - \epsilon' - \frac{\left(\frac{3}{2} - \epsilon' \right) + \sqrt{\epsilon'^2 + \frac{1}{4}}} {\frac{1}{2}} \right]^T \right] \left[\begin{matrix} 1 \\ b_0 \end{matrix} \right].
$$

Where we are also using that π_{t_1} is a normalized probability distribution, so $a_0 = 1$. Simplifying:

$$
a_N \le \left[\left(\frac{(\frac{3}{2} - \epsilon') + \sqrt{\epsilon'^2 + \frac{1}{4}}}{2} \right)^N \frac{1}{\sqrt{\epsilon'^2 + \frac{1}{4}}} \left(\frac{1}{4} - \frac{3\epsilon'}{2} + \frac{\sqrt{\epsilon'^2 + \frac{1}{4}}}{2} + \frac{b_0}{2} \right) - \left(\frac{(\frac{3}{2} - \epsilon') - \sqrt{\epsilon'^2 + \frac{1}{4}}}{2} \right)^N \frac{1}{\sqrt{\epsilon'^2 + \frac{1}{4}}} \left(\frac{1}{4} - \frac{3\epsilon'}{2} - \frac{\sqrt{\epsilon'^2 + \frac{1}{4}}}{2} + \frac{b_0}{2} \right) \right]
$$

This gives us:

$$
a_N \le \left[\left| \frac{\left(\frac{3}{2} - \epsilon'\right) + \sqrt{\epsilon'^2 + \frac{1}{4}}}{2} \right|^N \frac{1}{\sqrt{\epsilon'^2 + \frac{1}{4}}} \left| \frac{1}{4} - \frac{3\epsilon'}{2} + \frac{\sqrt{\epsilon'^2 + \frac{1}{4}}}{2} + \frac{b_0}{2} \right| \right]
$$
\n
$$
|\left(\frac{3}{2} - \epsilon'\right) - \sqrt{\epsilon'^2 + \frac{1}{4}}|^N \left| \frac{1}{4} - \frac{3\epsilon'}{2} + \frac{\sqrt{\epsilon'^2 + \frac{1}{4}}}{2} + \frac{b_0}{2} \right| \tag{110}
$$

$$
+\left|\frac{(\frac{3}{2}-\epsilon')-\sqrt{\epsilon'^2+\frac{1}{4}}}{2}\right|-\frac{1}{\sqrt{\epsilon'^2+\frac{1}{4}}}\left|\frac{1}{4}-\frac{3\epsilon'}{2}-\frac{\sqrt{\epsilon'^2+\frac{1}{4}}}{2}+\frac{b_0}{2}\right|\right]
$$

1708 1709 1710 Note that because π_{t_1} is a normalized probability distribution, we have that b_0 is at most 2 (with this maximum achieved when π_{t_1} has disjoint support from π_e .) Numerically one can see that, for $\epsilon' \in [0,1],$

$$
-.7 < \frac{1}{4} - \frac{3\epsilon'}{2} + \frac{\sqrt{\epsilon'^2 + \frac{1}{4}}}{2} \le .5\tag{111}
$$

$$
\begin{array}{c} 1713 \\ 1714 \\ 1715 \end{array}
$$

1719 1720 1721

1711 1712

$$
-1.9 < \frac{1}{4} - \frac{3\epsilon'}{2} - \frac{\sqrt{\epsilon'^2 + \frac{1}{4}}}{2} \le 0
$$
\n⁽¹¹²⁾

1716 1717 1718 Additionally, we can bound $\frac{1}{\sqrt{\epsilon'^2}}$ $\frac{1}{\epsilon'^2 + \frac{1}{4}} \leq 2$. Then this gives us:

$$
a_N \le \left[4 \left| \frac{\left(\frac{3}{2} - \epsilon'\right) + \sqrt{\epsilon'^2 + \frac{1}{4}}}{2} \right|^N + 4 \left| \frac{\left(\frac{3}{2} - \epsilon'\right) - \sqrt{\epsilon'^2 + \frac{1}{4}}}{2} \right|^N \right]
$$
(113)

1722 1723 1724 1725 Because, for $\epsilon' \in [0, 1]$, $\frac{\left(\frac{3}{2}-\epsilon'\right)-\sqrt{\epsilon'^2+\frac{1}{4}}}{2}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\left\langle \right\rangle$ $\frac{\left(\frac{3}{2}-\epsilon'\right)+\sqrt{\epsilon'^2+\frac{1}{4}}}{2}$, and using Equation [106,](#page-30-2) we can bound:

1726
1727
1727

$$
\Pr(\bigcap_{i=1}^{N} f(e_{t_i}) = 1) \le 8 \left(\frac{(\frac{3}{2} - \epsilon') + \sqrt{\epsilon'^2 + \frac{1}{4}}}{2} \right)^N
$$
(114)

1728 1729 1730 This bound is clearly somewhat unwieldy; to obtain a more manageable bound, it is helpful to consider the asymptotic behavior near $\epsilon' = 0$. Letting $\delta := \Pr(\bigcap_{i=1}^{N} f(e_{t_i}) = 1)$, we have:

$$
\ln \delta \le \ln 8 + N \ln \frac{\left(\frac{3}{2} - \epsilon'\right) + \sqrt{\epsilon'^2 + \frac{1}{4}}}{2} \tag{115}
$$

1733 1734 1735 For ϵ' small, we have $\epsilon'^2 \ll \frac{1}{4}$, so $\sqrt{\epsilon'^2 + \frac{1}{4}} \approx \frac{1}{2}$. Then:

$$
\ln \delta \lesssim \ln 8 + N \ln \left(1 - \frac{\epsilon'}{2} \right) \tag{116}
$$

1737 1738 Then, using the standard approximation $ln(1 - x) \approx -x$ gives us:

$$
\ln \delta \lesssim \ln 8 - \frac{N\epsilon'}{2}.\tag{117}
$$

1740 1741 1742 1743 1744 This approximation would give us $\delta \lesssim 8e^{-\frac{N\epsilon'}{2}}$. However, while this holds approximately for small ϵ' , it does not hold exactly. Despite this, it does suggest a form for our final bound. If we try $8e^{-\frac{Ne'}{3}}$, we find that it holds that:

$$
\frac{\left(\frac{3}{2} - \epsilon'\right) + \sqrt{\epsilon'^2 + \frac{1}{4}}}{2} \le e^{-\frac{\epsilon'}{3}}
$$
 on the interval $0 \le \epsilon' \le 0.44$. (118)

1746 1747 Combining with Equation [114,](#page-31-0) this implies that

$$
\delta \le 8e^{-\frac{Ne'}{3}} \text{ on the interval } 0 \le \epsilon' \le 0.44. \tag{119}
$$

1749 1750 For very large ϵ' , we can use a much simpler bound on $Pr(\bigcap_{i=1}^{N} f(e_{t_i}) = 1)$. Recall that:

· ...

$$
\delta = \Pr\left(\bigcap_{i=1}^{N} f(e_{t_i}) = 1\right) = \Pr\left(f(e_{t_N}) = 1 \middle| \bigcap_{i=1}^{N-1} f(e_{t_i}) = 1\right)
$$

$$
\Pr\left(f(e_{t_{N-1}}) = 1 \middle| \bigcap_{i=1}^{N-2} f(e_{t_i}) = 1\right)
$$
(120)

$$
\begin{array}{c} 1755 \\ 1756 \\ 1757 \end{array}
$$

1760 1761

1770 1771

1773

1776 1777

1780 1781

1731 1732

1736

1739

1745

1748

$$
\Pr(f(e_{t_2}) = 1 | f(e_{t_1}) = 1) \cdot \Pr(f(e_{t_1}) = 1)
$$

1758 1759 However, because $\forall i, \, t_i - t_{i-1} \geq t_{\text{mix}},$ we have that:

$$
\forall i > 1, \Pr\left(f(e_{t_i}) = 1 \middle| \bigcap_{j=1}^{i-1} f(e_{t_j}) = 1\right) \le \Pr_{e \sim \pi_e} \left(f(e) = 1\right) + \frac{1}{4} = \frac{5}{4} - \epsilon' \tag{121}
$$

1762 1763 Combining these equations gives us:

$$
\delta \le \left(\frac{5}{4} - \epsilon'\right)^{N-1} \cdot \Pr(f(e_{t_1}) = 1)
$$

$$
\le \left(\frac{5}{4} - \epsilon'\right)^{N-1} = \left(\frac{5}{4} - \epsilon'\right)^{-1} \left(\frac{5}{4} - \epsilon'\right)^{N} \le 8 \left(\frac{5}{4} - \epsilon'\right)^{N}
$$
 (122)

1769 Where we used that $\epsilon' \leq 1$ in the last step. Finally, it holds that:

$$
\left(\frac{5}{4} - \epsilon'\right) \le e^{-\frac{\epsilon'}{3}} \text{ on the interval } 0.37 \le \epsilon' \le 1. \tag{123}
$$

1772 This then implies that:

$$
\delta \le 8e^{-\frac{N\epsilon'}{3}} \text{ on the interval } 0.37 \le \epsilon' \le 1. \tag{124}
$$

ratio 119 we have that

1774 1775 Combining with Equation [119,](#page-32-0) we have that

$$
\forall \epsilon' \in [0, 1], \quad \Pr\left(\bigcap_{i=1}^{N} f(e_{t_i})\right) \le 8e^{-\frac{N\epsilon'}{3}} \tag{125}
$$

1778 1779 Because $\epsilon' \geq \epsilon$, we have:

$$
\Pr\left(\bigcap_{i=1}^{N} f(e_{t_i})\right) \le 8e^{-\frac{N\epsilon'}{3}} \le 8e^{-\frac{N\epsilon}{3}}.
$$
\n(126)

which was to be proven.

1782 1783 D UPPER-BOUNDING MIXING TIMES FOR EXAMPLES

1784 1785 1786 1787 Here, we prove that the values of t_{mix} used in the simulation experiments are in fact (somewhat loose) upper bounds on the true mixing times of \mathcal{T}_e for these environments. While in practice, the true mixing times would not be known *a priori*, it is important for the validity of our examples that the true t_{mix} is in fact $\leq t_{\text{mix}}$.

1788 1789 We use the following following well-known fact:

1790 For distributions $A := A_1 \otimes A_2 \otimes ... \otimes A_n$ and $B := B_1 \otimes B_2 \otimes ... \otimes B_n$:

$$
\|\mathcal{A} - \mathcal{B}\|_{TV} \le \sum_{i=1}^{n} \|\mathcal{A}_i - \mathcal{B}_i\|_{TV}
$$
\n(127)

1795 1796 First, we deal with the combination lock experiment. We can write the transition matrix for any arbitrary two-state Markov chain as

$$
\begin{bmatrix} 1 - \epsilon_0 & \epsilon_1 \\ \epsilon_0 & 1 - \epsilon_1 \end{bmatrix}
$$
 (128)

1801 where $0 \leq {\epsilon_0, \epsilon_1} \leq 1$. Note that in our particular example, we have $0.1 \leq {\epsilon_0, \epsilon_1} \leq 0.9$.

1802 1803 1804 This matrix has eigenvalues 1 and $1 - \epsilon_0 - \epsilon_1$, and the stationary distribution (the eigenvector corresponding to the eigenvalue 1) is

$$
\pi_{\infty} := [\epsilon_1/(\epsilon_0 + \epsilon_1), \epsilon_0/(\epsilon_0 + \epsilon_1)]^T.
$$
\n(129)

1807 1808 Using the closed-form formula for the n 'th power of a two-state Markov Chain given by [Williams](#page-11-6) [\(1992\)](#page-11-6), we have:

1809 1810 1811

1812

1815 1816

1805 1806

$$
\left(\begin{bmatrix}1-\epsilon_0 & \epsilon_1\\ \epsilon_0 & 1-\epsilon_1\end{bmatrix}\right)^n = \frac{1}{\epsilon_0+\epsilon_1} \begin{bmatrix}\epsilon_1 & \epsilon_1\\ \epsilon_0 & \epsilon_0\end{bmatrix} - (1-\epsilon_0-\epsilon_1)^n \begin{bmatrix}-\epsilon_0 & \epsilon_1\\ \epsilon_0 & -\epsilon_1\end{bmatrix}
$$
(130)

1813 1814 To compute the mixing time, we compute the state distribution π_n , n timesteps after each starting state:

$$
\left(\begin{bmatrix}1-\epsilon_0 & \epsilon_1\\ \epsilon_0 & 1-\epsilon_1\end{bmatrix}\right)^n \begin{bmatrix}1\\0\end{bmatrix} = \frac{1}{\epsilon_0 + \epsilon_1} \begin{bmatrix}\epsilon_1 + (1-\epsilon_0 - \epsilon_1)^n \epsilon_0\\ \epsilon_0 - (1-\epsilon_0 - \epsilon_1)^n \epsilon_0\end{bmatrix}
$$
(131)

and,

$$
\left(\begin{bmatrix}1-\epsilon_0 & \epsilon_1\\ \epsilon_0 & 1-\epsilon_1\end{bmatrix}\right)^n \begin{bmatrix}0\\1\end{bmatrix} = \frac{1}{\epsilon_0 + \epsilon_1} \begin{bmatrix}\epsilon_1 - (1-\epsilon_0 - \epsilon_1)^n \epsilon_1\\ \epsilon_0 + (1-\epsilon_0 - \epsilon_1)^n \epsilon_1\end{bmatrix}
$$
(132)

1822 1823 Note that the TV distance between either of these distributions and the stationary distribution π is at most

$$
\|\pi_n - \pi_\infty\|_{TV} \le \frac{|(1 - \epsilon_0 - \epsilon_1)|^n \max(\epsilon_0, \epsilon_1)}{(\epsilon_0 + \epsilon_1)} \le |(1 - \epsilon_0 - \epsilon_1)|^n. \tag{133}
$$

1827 1828 1829 The parameters $\{\epsilon_0, \epsilon_1\}$ for each two-state Markov chain are chosen uniformly at random, such that $0.1 \leq {\epsilon_0, \epsilon_1} \leq 0.9$. Therefore, $0 \leq |(1 - \epsilon_0 - \epsilon_1)| \leq 0.8$. Then, for any individual chain, we have:

$$
\|\pi_n - \pi_\infty\|_{TV} \le |(1 - \epsilon_0 - \epsilon_1)|^n \le 0.8^n \tag{134}
$$

1831 1832 1833 1834 In the combination lock experiments, there are up to $L = 512$ of these noise Markov chains; the probability distribution over the exogenous noise $\mathcal E$ is the *product distribution* over these chains. Then we use Equation [127](#page-33-1) to bound the *total* TV distance for the chain \mathcal{T}_e to its stationary distribution $\pi_{\mathcal{E}}$; that is:

$$
\|\pi_n^{\text{total}} - \pi_{\mathcal{E}}\|_{TV} \le 512 \cdot 0.8^n. \tag{135}
$$

Then, by the definition of mixing time, we have:

1821

1824 1825 1826

1830

$$
t_{\text{mix}} \le \min n, \text{ such that } 512 \cdot 0.8^n \le \frac{1}{4}
$$
 (136)

1839 Which gives us:

$$
\frac{1840}{1841}
$$

1842 1843

1851

1858

1862

1868 1869

1873 1874 1875

1836 1837 1838

$$
t_{\text{mix}} \le \left\lceil \frac{-\log(2048)}{\log(0.8)} \right\rceil = 35. \tag{137}
$$

1844 So the value that we use in the experiment, $\hat{t}_{mix} = 40$, is a valid upper bound.

1845 1846 1847 1848 1849 1850 For the multi-maze experiment, the exogenous noise state consists of eight identical mazes, with agents moving uniformly at random in each of them. Unlike the "combination lock" example, where the individual components of the exogenous noise are conditioned on parameters ϵ_0 , ϵ_1 , which can vary, in the multi-maze example the individual mazes always represent instances of *exactly the same, specific Markov chain.* Let the transition matrix of this chain be M, with stationary distribution π_M . Then, by Equation [127,](#page-33-1) for the whole exogenous state \mathcal{T}_e , we have:

1852
$$
t_{\text{mix}} = \min n
$$
, such that $\forall s_0, ||(T_e)^n s_0 - \pi_{\mathcal{E}}|| \le \frac{1}{4}$
\n1853 $= \min n$, such that $\forall s_0^{(1)}, s_0^{(2)}, \dots s_0^{(8)}, ||M^n s_0^{(1)} \otimes M^n s_0^{(2)} \otimes \dots \otimes M^n s_0^{(8)} -$
\n1855 π_{1856}
\n1857 $\pi_M \otimes \pi_M \otimes \dots \otimes \pi_M || \le \frac{1}{4}$ (138)
\n1858 $\le \min n$, such that $\forall s_0, \sum_{i=1}^8 ||M^n s_0 - \pi_M|| \le \frac{1}{4}$
\n1860 $= \min n$, such that $\forall s_0, ||M^n s_0 - \pi_M|| \le \frac{1}{32}$

1863 1864 1865 1866 1867 Which is to say that t_{mix} for the entire exogenous noise chain is upper-bounded by $t_{mix}(1/32)$ for the individual maze chain M . Furthermore, while the state space for the entire chain is of size $|\mathcal{E}| = 68^8$, the individual maze chain M operates on a state of size 68. This is small enough that it is tractable to exactly compute $t_{mix}(1/32)$ for M using numerical techniques. We performed the computation (source code is provided with the supplementary materials), and found that

$$
\min n, \text{ such that } \forall s_0, \|M^n s_0 - \pi_M\| \le \frac{1}{32} = 293. \tag{139}
$$

1870 1871 1872 Therefore, for the full exogenous noise chain \mathcal{T}_e , we have that $t_{mix} \leq 293$. Then the value that we use in the experiment, $t_{\text{mix}} = 300$, is a valid upper bound.

E DISCUSSION OF ASSUMPTIONS

1876 1877 1878 1879 1880 1881 1882 In this section, we argue that two major assumptions of the STEEL algorithm are *necessary* assumptions. In other words, if we remove these assumptions, then, we argue, achieving similar guarantees to our algorithm would become effectively impossible for *any* algorithm to accomplish in the single-trajectory, no-resets Ex-BMDP setting (at least without making *additional* assumptions to compensate). These assumptions are (1) reachability: the assumption that all endogenous states $s \in S$ are reachable from one another in T; and (2) the availability of a known upper bound on the exogenous state mixing time t_{mix} .

1883 1884 E.1 REACHABILITY

1885 1886 1887 1888 1889 Here, we argue that *any* algorithm for single-trajectory, no-resets representation learning of Ex-BMDPs must *necessarily* make a reachability assumption: that all endogenous latent states must be reachable from one another. At a high level, we argue that, if all latent states are *not* reachable from one another, then an algorithm must visit states in a particular order in order to explore the entire dynamics with a single trajectory. However, because the latent dynamics are not known *a priori*, it is impossible for an algorithm to guarantee that it visits states in the appropriate order.

1890 1891 1892 1893 1894 1895 1896 More formally, recall that the reachability assumption is that for any pair of latent states s_1, s_2 , there exists both a path from s_1 to s_2 and a path from s_2 to s_1 . Consider any Ex-BMDP M where this condition does not hold, such that $|\mathcal{A}| \geq 2$, and any learning algorithm A. Firstly, if there is any pair of states s¹ and s² where *neither* can reach the other, then clearly a single trajectory is insufficient to learn the Ex-BMDP, because it cannot visit both s_1 and s_2 . Therefore, we restrict to the case where, for each pair of states, either both are reachable from each other, or (without loss of generality) s_2 is reachable from s_1 but s_1 is not reachable from s_2 .

1897 1898 1899 1900 1901 1902 1903 1904 Consider every edge (s, a, s') of the state transition graph defined by the state transition function T. If, for all such edges, s is reachable from s' , then the reachability assumption holds on the entire dynamics (because all single "steps" are invertible by some sequence of actions, so for any pair s_1, s_2 , the path from s_1 to s_2 implies the existence of a path from s_2 to s_1). Therefore, if reachability does not hold, then there exists some edge (s, a, s') such that s is not reachable from s' . Now, consider the first time that the algorithm A encounters the state s . Regardless of the details of A, there must exist some action a' such that, on this first encounter, the probability of A taking action a' is at least $1/|\mathcal{A}|$.

- **1905 1906 1907 1908 1909 1910** Therefore, if $a' = a$, then probability that the algorithm A never revisits s, and so never takes any other action from s apart from a' , is at least $1/|\mathcal{A}|$. Then, with substantial probability, the algorithm A never explores the $|\mathcal{A}| - 1$ other possible transitions from s, and cannot possibly learn the full dynamics of the Ex-BMDP. (To be more precise, the algorithm's output will not depend *at all* on the ground-truth value of $T(s, a'')$ for $a'' \in A \setminus \{a\}$, and so is highly unlikely to return the correct values for these transitions on arbitrary Ex-BMDPs.)
- **1911 1912 1913 1914 1915 1916 1917** Alternatively, if $a' \neq a$, then consider the alternative Ex-BMDP M', which is identical to M in every way (in terms of dynamics, exogenous state, emission function, etc.), except that the effects of actions a and a' on the latent state s are swapped. Note that before first encountering the latent state s, the MDPs M and M' will produce identically-distributed sequences of observations, so the algorithm \vec{A} will behave identically on them, and have identical internal memory/state. Then, when first encountering s, the algorithm M on A will take action a' with substantial probability, and then transition to s' and be unable to revisit s .

1918 1919 1920 Therefore, for any Ex-BMDP M that violates reachability, any algorithm \hat{A} is either likely to fail on M , or to fail on a slightly-modified version of M . In any case, no such algorithm will be able to succeed with high probability on any general class of Ex-BMDPs that does not require reachability.

1921

1923

1922 E.2 KNOWN UPPER BOUND ON THE MIXING TIME t_{MIX}

1924 1925 Here, we argue that the assumption that an upper bound on the mixing time is provided is also necessary. We argue that:

- 1. Any general, provably sample-efficient algorithm for learning, with high probability, an Ex-BMDP from a single trajectory must necessarily require an upper bound on the mixing time of the exogenous noise to be provided *a priori* (unless some other information about the exogenous noise is provided.)
	- 2. The runtime of any algorithm for learning an Ex-BMDP must, in the worst case, include some term that scales at least linearly with the mixing time of the exogenous noise.
- **1931 1932**

1933 1934 1935 1936 1937 1938 1939 At a high level, we argue that, with a single trajectory, it can be impossible to distinguish between a static exogenous dynamics (i.e., where only one exogenous state exists) and an extremely slowmixing exogenous dynamics, in time sublinear in the mixing time. For any proposed algorithm that does not have access to a bound on the mixing time, and any Ex-BMDP with a single exogenous state (that is, a Block MDP), we can construct an extremely slow-mixing Ex-BMDP that behaves identically to the Block MDP with substantial probability during the entire duration of the runtime of the learning algorithm, but which at equilibrium has a quite different distribution of observations.

1940 This will make the learned encoder fail on the Ex-BMDP at equilibrium.

1941 1942 1943 More precisely, to show (1): suppose the converse is true: that there exists some algorithm A that learns Ex-BMDP latent dynamics and state encoders, which is not provided any upper-bound on the mixing time of the exogenous noise of the Ex-BMDP, or any other information about the exogenous noise distribution. We assume that A can learn the correct endogenous dynamics, as well as an

1944 1945 1946 1947 encoder with accuracy (for every endogenous state, under the stationary exogenous distribution) of at least $1 - \epsilon$, with probability at least $1 - \delta$, for small values of ϵ and δ . Then, consider any Ex-BMDP M_1 and related parameterized family of Ex-BMDPs $M_2(\gamma)$, $M_3(\gamma)$ with the following properties:

- M_1 has N endogenous latent states $s_1, ..., s_N$ with some transition function T, a single exogenous latent state e_1 , and an emission function $Q(s, e_1)$. (In other words, M_1 is any Block MDP).
- $M_2(\gamma)$ has the same endogenous states and transition probabilities as M_1 , but has two exogenous latent states e_1, e_2 . The state e_1 transitions to e_2 , and e_2 transitions to e_1 , each with probability γ . Note that the stationary distribution of the exogenous state is uniform over e_1 and e_2 . We also assume that the initial exogenous state distribution is uniform over e_1 and e_2 . Regardless of γ , the emission function of $M_2(\gamma)$ is defined such that $\forall s_i, Q_{M_2}(s_i, e_1) = Q_{M_1}(s_i, e_1).$
- $M_3(\gamma)$ is identical to $M_3(\gamma)$, except that its emission function is defined as $\forall s_i, Q_{M_3}(s_i, e_1) := Q_{M_1}(s_i, e_1)$, but $\forall s_i, Q_{M_3}(s_i, e_2) := Q_{M_2}(s_{(i+1) \bmod N}, e_2)$. In other words, when the exogenous state is equal to e_2 , the emission distributions for the endogenous states are permuted in M_3 compared to M_2 .

1965 1966 1967 1968 1969 We also assume that the encoder hypothesis class can represent the inverses of Q_{M_1} , Q_{M_2} , and Q_{M_3} . However, note that by construction, any fixed encoder $\phi(\cdot)$ which has accuracy at least $1 - \epsilon$ on $M_2(\gamma)$ (for every endogenous state, under the stationary exogenous distribution) can only have accuracy at most $0.5 + \epsilon$ on $M_3(\gamma)$, because, when the exogenous state is e_2 , any time that the encoder returns the correct latent state for $M_2(\gamma)$, it will return the incorrect latent state for $M_3(\gamma)$.

1970 1971 1972 1973 Now, consider what happens when we run the algorithm A on M_1 . The number of environment steps that A takes on M_1 forms some distribution; let t be the 90'th percentile of this distribution, so that with probability 0.9, \hat{A} stops sampling before step t .

1974 1975 1976 1977 1978 Now, we can set $\gamma := 1 - 0.9^{1/t}$, so that, with probability 0.9, the endogenous state of $M_2(\gamma)$ or $M_3(\gamma)$ do not change before step t. Therefore, by union bound, on $M_2(\gamma)$ or $M_3(\gamma)$, if the initial exogenous state is e_1 , then with probability at least 0.8, the exogenous state will stay constant at e_1 up to timestep t, and the algorithm A, *seeing exactly the same distribution of observations as if the* MDP was M_1 , will halt before timestep t .

1979 1980 1981 1982 1983 1984 1985 Considering the 50% probability that the exogenous state starts at e_1 , this gives at least a 40% chance that A applied to $M_2(\gamma)$ or $M_3(\gamma)$ never encounter the exogenous state e_2 . In this case, the distribution of encoders output by A should be the same for the two Ex-BMDPs: let this distribution be G. (That is, G is the conditional distribution of encoders output by A when applied to $M_2(\gamma)$ or $M_3(\gamma)$, given that A never encounters e_2 .) However, because A fails on $M_2(\gamma)$ with probability at most δ , we can conclude that at least $(1 - 0.4^{-1}\delta)$ of the encoders from the distribution $\mathcal G$ represent *successes* of A on $M_2(\gamma)$.

1986 1987 1988 1989 Because A on $M_3(\gamma)$ also draws from G with probability at least 0.4, we can conclude that at least $0.4-\delta$ of the time, A on $M_3(\gamma)$ produces an encoder that is highly accurate on $M_2(\gamma)$. As discussed above, any encoder that is highly-accurate on $M_2(\gamma)$ cannot be highly accurate on $M_3(\gamma)$, so A must fail on M_3 with substantial probability.

1990 1991 1992 Therefore, we can conclude that for any algorithm A that has no "hint" about the exogenous dynamics (such as knowing the mixing time), there exists some γ such that A cannot possibly succeed with high probability on both $M_2(\gamma)$ and $M_3(\gamma)$.

1993 1994 1995 1996 1997 To show point (2), simply note that in this construction, in order to ensure that e_2 is observed with probability $(1 - \delta)$, an algorithm must observe at least the first $\left[\log(2\delta)/\log(1 - \gamma)\right]$ timesteps. Meanwhile, the mixing time of the two-state Markov chain exogenous state is given by $\lceil -1/\log_2(1-2\gamma) \rceil$. For a fixed δ and as γ approaches 0, the ratio between these quantities approaches a constant: therefore, the number of steps required to ensure that e_2 is observed with high probability is linear in the mixing time.

1998 F DOUBLE-PRIME LOOP EXPERIMENTS

1999

2000 2001 2002 2003 2004 2005 2006 In this section, we present additional experiments which demonstrate that, on some types on Ex-BMDPs, the STEEL algorithm can empirically outperform the algorithms proposed in [Lamb et al.](#page-10-1) [\(2023\)](#page-10-1) and [Levine et al.](#page-10-2) [\(2024\)](#page-10-2), which do not have sample-complexity guarantees. We show that there are certain structures of Ex-BMDP latent dynamics which are difficult for these prior methods to learn efficiently, but on which STEEL performs well. Specifically, we look at a family of "doubleprime loop" tabular Ex-BMDPs which are discussed by [Levine et al.](#page-10-2) [\(2024\)](#page-10-2). First, though, we describe the algorithms proposed by [Lamb et al.](#page-10-1) [\(2023\)](#page-10-1) and [Levine et al.](#page-10-2) [\(2024\)](#page-10-2), and motivate why certain dynamics structures such as "double-prime loops" present a challenge to these methods.

2007 2008

2010

2009 F.1 BACKGROUND

2011 F.1.1 AC-STATE AND ACDF ALGORITHMS

2012 2013 2014 [Lamb et al.](#page-10-1) [\(2023\)](#page-10-1) and [Levine et al.](#page-10-2) [\(2024\)](#page-10-2) both propose algorithms to learn endogenous state encoders in the Ex-BMDP framework.

2015 2016 2017 [Lamb et al.](#page-10-1) [\(2023\)](#page-10-1) first proposed the AC-State algorithm, which aims to learn an encoder $\phi : \mathcal{X} \to$ N, such that, under some one-to-one permutation σ , $\sigma(\phi(x)) = \phi^*(x)$. To accomplish this task, AC-State optimizes ϕ using a *multistep inverse dynamics* objective.

2018 2019 Specifically, in the theoretical treatment, AC-State tries to find the encoder ϕ which optimizes the following objective:

2020 2021 2022

2023 2024 2025

2051

$$
\mathcal{L}(\phi) := \min_{g \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathcal{P}(\mathcal{A})} \mathbb{E}_{k \sim \{1, ..., K\}} \mathbb{E}_{x, a_t, x_{t+k} \sim \mathcal{D}} - \log \left(g(\phi(x_t), \phi(x_{t+k}), k) [a_t] \right)
$$
\n
$$
\phi_{\text{AC-State}} := \arg \min_{\mathcal{L}(\phi) = \min_{\phi'} \mathcal{L}(\phi')} |\text{Range}(\phi)| \tag{140}
$$

2026 2027 2028 In other words, the loss $\mathcal{L}(\phi)$ is minimized on tuples (x_t, a_t, x_{t+k}) sampled from a trajectory, consisting of an observation x_t , the following action a_t , and the observation k *steps in the future*, x_{t+k} .

2029 2030 2031 2032 the encoder $\phi(x)$ is trained to retain any information about the observations $\phi(x_t)$ and $\phi(x_{t+k})$ that is useful for predicting a_t . Specifically, an inverse-dynamics model g is simultaneously trained with ϕ to predict a_t given $\phi(x_t)$, $\phi(x_{t+k})$, and k. The loss $\mathcal{L}(\phi)$ is then taken as the minimum loss for ϕ over all such functions g.

2033 2034 2035 However, note that, based on this loss function alone, the identity encoder $\phi(x) := x$ achieves the minimum possible value of $\mathcal{L}(\phi)$.^{[8](#page-37-1)} Therefore, in order to filter exogenous information, the final encoder returned by AC-State is the *minimal range* encoder that minimizes the loss function.

2036 2037 2038 2039 2040 [Lamb et al.](#page-10-1) [\(2023\)](#page-10-1) claims that, if the data D is collected by a policy $\pi(x)$ that *only* depends on x through $\phi^*(x)$ (that is, the policy ignores exogenous noise); *and* the maximum segment length K is at least the endogenous dynamics diameter D; *and* the endogenous dynamics are deterministic, then the final encoder $\phi_{AC-State}$ returned will correctly encode the endogenous latent state (in the limit of infinite data; and with sufficient function approximation).

2041 2042 When applied in practice, ϕ and g are learned neural networks, and a vector quantization bottleneck is used to restrict the range of ϕ (so the output of ϕ is a quantized vector, rather than an integer.)

2043 2044 2045 2046 2047 [Levine et al.](#page-10-2) [\(2024\)](#page-10-2) subsequently show that, in some cases, the AC-State objective in Equation [140](#page-37-2) is not sufficient to learn a correct latent state encoder of an Ex-BMDP, even with unbounded amounts of data. [Levine et al.](#page-10-2) [\(2024\)](#page-10-2) identify specific flaws in the proofs of [Lamb et al.](#page-10-1) [\(2023\)](#page-10-1), and propose a modified loss function to address these flaws. In particular,

2048 2049 2050 1. The maximum segment length K required to correctly learn the endogenous encoder must in some cases be larger than D ; a corrected upper bound on the necessary segment length of $2D^2 + D$ is given.

⁸Assuming X is countable.

2. If the endogenous dynamics are *periodic*, then the multistep inverse objective can be insufficient, for any choice of K . [Levine et al.](#page-10-2) [\(2024\)](#page-10-2) then propose to add an auxiliary loss function to the loss in Equation [140,](#page-37-2) namely a *latent forward dynamics loss*:

2052 2053

$$
\mathcal{L}_{\text{forward}}(\phi) := \min_{h \in \mathbb{N} \times \mathcal{A} \to \mathcal{P}(\mathbb{N})} \mathbb{E}_{(x_t, a_t, x_{t+1}) \sim \mathcal{D}} - \log \left(h(\phi(x_t), a_t) \left[\phi(x_{t+1}) \right] \right). \tag{141}
$$

This loss term enforces that the transitions in the learned endogenous latent state space are deterministic; [Levine et al.](#page-10-2) [\(2024\)](#page-10-2) prove that enforcing this constraint is sufficient, when combined with the multistep inverse loss, to ensure that a correct endogenous representations are learned even when the endogenous latent dynamics are periodic. [Levine et al.](#page-10-2) [\(2024\)](#page-10-2) name the AC-State algorithm with this modified loss function ACDF.

2063 2064 2065 2066 Note that because D is in general unknown *a priori*, K must be treated as a hyperparameter of the algorithm, so point (1) above is primarily of theoretical interest, but may aid in setting this hyperparameter if there is some prior knowledge of D.

2067 2068 2069 2070 2071 2072 So far, we have only described the learning objectives of the two proposed algorithms: now, we address how these algorithms collect the trajectory from which the tuples (x_t, a_t, x_{t+k}) are sampled. Recall that a condition on the correctness of AC-State (and ACDF) is that the data-collection policy does not depend on the noise in the observation, but only on the endogenous latent state. This condition naturally raises the question of *how exactly* an algorithm intended to discover ϕ^* can take actions that depend only on $\phi^*(x)$, without already knowing ϕ^* in the first place.

2073 2074 2075 2076 2077 2078 2079 2080 2081 [Lamb et al.](#page-10-1) [\(2023\)](#page-10-1) performs experiments using two data-collection policies: (1). a *uniformly random* policy, which meets the condition simply by ignoring the observation x entirely; and (2) a goal-seeking policy, which aims to maximize latent state coverage. For the latter policy, the data is collected simultaneously with training ϕ , and the partially-trained encoder ϕ_t is used to (imperfectly) filter out exogenous noise and plan in (an approximation of) the endogenous latent space. [Lamb et al.](#page-10-1) [\(2023\)](#page-10-1) explicitly acknowledge that this bootstrapping approach *breaks* the condition that the action a_t depends only on the true endogenous state $\phi^*(x_t)$, which is necessary in their proof of the correctness of their algorithm. Despite this, they observe that the approach seems to work well empirically. Meanwhile, [Levine et al.](#page-10-2) [\(2024\)](#page-10-2) *only* use uniformly random actions in their experiments.

2082 2083 2084 2085 For now, we will assume that data is collected under a uniformly-random policy. We will return to discussing the latent-state-coverage maximizing approach proposed by [Lamb et al.](#page-10-1) [\(2023\)](#page-10-1) later, in Section [F.3.](#page-42-0)

2086 2087

F.1.2 DOUBLE-PRIME LOOPS

2088 2089 2090 2091 To specifically demonstrate that $K \approx \mathcal{O}(D^2)$ can be necessary to learn a correct encoder, even when a forward dynamics loss is *also* being used, [Levine et al.](#page-10-2) [\(2024\)](#page-10-2) give a concrete example. This example is the family of tabular "double-prime loop" Ex-BMDPs. For any two primes p, q , with $p < q$, let the Ex-BMDP DoublePrime (p, q) be defined as follows:

2092 2093 2094

•
$$
S = \{0, 1, ..., (q - 1), 0', 1', ..., (q - 1)'\}; \mathcal{A} = \{0, 1\}; \mathcal{E} = \{e_0\}.
$$

•
$$
\mathcal{X} = \mathcal{S}; \mathcal{Q}(s, e_0) = s; \mathcal{T}_e(e_0) = e_0.
$$

• The endogenous latent state transition function T is defined as:

$$
T(s,a) = \begin{cases} (s+1)\% q & \text{if } s \in \{1, ..., q-1\} \text{ or } (s=0 \text{ and } a=0) \\ ((s+1)\% q)' & \text{if } s \in \{1', ..., (q-1)'\} \text{ or } (s=0' \text{ and } a=0) \\ (q-p+1)' & \text{if } (s=0 \text{ and } a=1) \\ (q-p+1) & \text{if } (s=0' \text{ and } a=1). \end{cases}
$$
(142)

2100 2101

2102 2103 2104 2105 In other words, DoublePrime (p, q) is a noise-free Ex-BMDP, where all of the dynamics are deterministic, and the latent state s is directly observed as x. The dynamics consist of two connected loops, each of q states. The actions are generally ignored and the agent continues to progress through a loop, except for in states 0 and 0', where taking the action 1 transports the agent to the other loop, at position $q - p + 1$. As an example, the dynamics of DoublePrime(11, 13) are shown in Figure [5.](#page-39-0)

 in latent state 0^{*}, where taking action 1 transitions the latent state to $(q - p + 1)^*$. (See Figure [6](#page-39-1) for an example.) Note that if we ignore the distinction between the observations i and i' , then DoublePrime(p , q) and SinglePrime(p , q) appear to have identical observed dynamics.

2160 Let $\phi_{DP}(x) := x$ be the optimal encoder for DoublePrime (p, q) , and

2161 2162

$$
\phi_{SP}(x) := i^* \text{ if } x = i \text{ or } x = i'
$$
\n(144)

2163 be the optimal encoder for SinglePrime (p, q) .

2164 2165 2166 2167 2168 2169 2170 2171 [Levine et al.](#page-10-2) [\(2024\)](#page-10-2) show that, on the Ex-BMDP DoublePrime(p, q) under a uniformly random behavioral policy, *in the limit of infinite training data*, the encoders ϕ_{DP} and ϕ_{SP} have *exactly the same loss* under the loss function in Equation [140,](#page-37-2) with $K \leq (q-1)p$. Note that if p and q are close, then $(q - 1)p \approx D^2/4$. Because Equation [140](#page-37-2) prefers the smallest-range encoder among encoders with identical losses, this means that AC-State will incorrectly return ϕ_{SP} (which only has q distinct outputs, rather than 2q.). Futhermore, the forward-dynamics loss suggested by [Levine](#page-10-2) [et al.](#page-10-2) [\(2024\)](#page-10-2) does not help in this case: it will be zero for both encoders under data generated by DoublePrime (p, q) .

2172 2173 2174 2175 It is important to note that $SinglePrime(p, q)$ and $DoublePrime(p, q)$ have *truly distinct* controllable latent dynamics: in DoublePrime (p, q) , given sufficient lead-time, the agent can (eventually) control whether it is in state $1'$ or 1 at a future time step, while an agent in SinglePrime (p, q) can *never* control this. Therefore, AC-State is making an *error* if it returns ϕ_{SP} rather than ϕ_{DP} .

2176 2177 2178 2179 [Levine et al.](#page-10-2) [\(2024\)](#page-10-2) only considers the case of unlimited data, and only introduces the double-prime loop Ex-BMDPs to make the point that the hyperparameter K must be set very high in some cases. Here, however, we will *also* show empirically that, even when using a carefully-tuned and very large value of K , AC-State and ACDF can take many samples to correctly learn these dynamics.

2180

2191 2192

2206

2181 F.1.3 TABULAR EXPERIMENTS IN L[EVINE ET AL](#page-10-2). [\(2024\)](#page-10-2)

2182 2183 2184 2185 2186 2187 2188 2189 2190 [Levine et al.](#page-10-2) [\(2024\)](#page-10-2) empirically compare AC-State [\(Lamb et al., 2023\)](#page-10-1) to their proposed ACDF method, and empirically explore the effect of the hyperparameter K . To do so from a purely statistical perspective (i.e., controlling for differences in optimization), in one set of experiments, [Levine et al.](#page-10-2) [\(2024\)](#page-10-2) perform tests on small tabular Ex-BMDPs, including SinglePrime(3, 5) and DoublePrime(3, 5). For these experiments, the final learned $\phi_{AC\text{-State}}$ (or ϕ_{ACDF}) is found by ex-haustively computing the losses in Equations [140](#page-37-2) and [141](#page-38-0) on *all possible* encoders $\phi \in \mathcal{X} \to$ $\{0, ..., |\mathcal{X}| - 1\}$ (up to a relabeling perturbation of the output). For each encoder ϕ , the multistep inverse model g (and, for ACDF, the forward model h) is estimated as a tabular function based on the collected data:

$$
g(s, s', k)[a] := \frac{\# \text{ of instances of } (x_t, a_t, x_{t+k}) \text{ such that } \phi(x_t) = s; a_t = a; \text{ and } \phi(x_{t+k}) = s'}{\# \text{ of instances of } (x_t, a_t, x_{t+k}) \text{ such that } \phi(x_t) = s \text{ and } \phi(x_{t+k}) = s'}.
$$
 (145)

2193 2194 2195 2196 2197 2198 However, due to overfitting, this tabular definition of q, if used naively, would always lead to the identity encoder $\phi(x) := x$ having the lowest empirical loss, regardless of the true latent encoder. Therefore, [Levine et al.](#page-10-2) [\(2024\)](#page-10-2) collect *two* trajectories for each experiment, and uses one to *fit* g and h for each possible encoder ϕ , and the other to *evaluate* the loss on each ϕ in order to determine the final output encoder $\phi_{AC\text{-State}}$ or ϕ_{ACDF}). We will call these sets of tuples the *fitting set* and *optimization set*, repectively.

2199 2200 Because the number of possible encoders grows very quickly with $|\mathcal{X}|$, [Levine et al.](#page-10-2) [\(2024\)](#page-10-2) limit these experiments to very small tabular Ex-BMDPs, with $|\mathcal{X}| \leq 10$.

2201 2202 With this background out of the way, we describe *our* experiments:

- **2203 2204** F.2 EXPERIMENTS
- **2205** F.2.1 SETUP

2207 2208 2209 2210 2211 2212 Given that [Levine et al.](#page-10-2) [\(2024\)](#page-10-2) describe how learning the correct latent state encoder for DoublePrime(p, q) using a multistep-inverse loss requires taking into account specific *long-duration* dependencies between states, we hypothesized that learning such an encoder using multistep-inverse methods may be considerably less sample-efficient that doing so using STEEL, particularly for large p and q . We therefore adapted the tabular Ex-BMDP experimental setup from the released code of [Levine et al.](#page-10-2) [\(2024\)](#page-10-2) and tested the algorithms head-to-head.

2213 However, for large p and q , the process of exhaustively searching all possible encoders (that is, all partitions of $2q$ elements) quickly becomes intractable. Therefore, we restricted the hypothesis space **2214 2215 2216 2217 2218 2219 2220** of encoders to *only* include the *two* hypotheses ϕ_{SP} and ϕ_{DP} . Note that this modification makes the learning task strictly "easier." For a fair comparison, we also restricted the hypothesis class for STEEL to the minimum-possible set of "one-versus-rest" classifiers that would ensure realizability for both DoublePrime(p, q) and SinglePrime(p, q). In particular, this is 3q classifiers $f \in \mathcal{F}$: for each $i \in \{0, ..., 1 - q\}$, F includes a hypothesis which distinguishes i from all other observations, a hypothesis which distinguishes i' from all other observations, and a hypothesis which distinguishes i *or* i' from all other observations.

2221 2222

We make the following further modifications to the experimental protocol from [Levine et al.](#page-10-2) [\(2024\)](#page-10-2):

- **2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233** • When assessing the "minimum-range" minimal loss encoder as in Equation [140,](#page-37-2) [Levine](#page-10-2) [et al.](#page-10-2) [\(2024\)](#page-10-2) include an empirical "fudge factor": their protocol returns the minimumrange encoder that achieves a loss within 0.1% of the true minimum loss over all possible encoders. We found that *even without this fudge factor*, the multistep-inverse methods were still heavily biased towards returning ϕ_{SR} , when applied either to SinglePrime(p, q); *or to* DoublePrime (p, q) with too-small K or too-few samples. This observation has a simple statistical explanation: if, in the "infinite sample" limit, $Pr(a_t|s_t = i, s_{t+1} = j)$ $Pr(a_t|s_t = i', s_{t+1} = j')$, then fitting $g(i, j, k)$ to both samples of $(x_t = i, a_t, x_{t+k} = j)$ *and* samples of $(x_t = i', a_t, x_{t+k} = j')$ from the "fitting set" will lead to a higher-quality multistep inverse model g, and therefore lower loss on the "optimization set", compared to using only the (smaller number of) samples of $(x_t = i, a_t, x_{t+k} = j)$ alone. We therefore remove the fudge factor entirely, and in fact return ϕ_{GR} in the case of exact numerical ties.
- **2234 2235 2236 2237 2238 2239 2240** • Because the forward-model loss in Equation [141](#page-38-0) is zero for both ϕ_{SR} and ϕ_{GR} for *any* dataset collected from DoublePrime (p, q) , we do not use it in our experiments: that is, we regard AC-State and ACDF as equivalent in this setting, and refer to AC-State alone from here onward. (Technically, the forward model loss *would* help identify the correct encoder ϕ_{SR} in data generated from SinglePrime (p, q) . However, as mentioned above, ϕ_{SR} is *already* returned essentially "by default" by AC-State, so this loss term turns out to be unnecessary.)
- **2241 2242 2243 2244 2245 2246 2247 2248** • To better match the spirit of "learning an Ex-BMDP from a single trajectory", we collect the "fitting" and "optimization" sets from one single trajectory, one after the other, with each corresponding to half of the trajectory: we regard the total sample complexfity as the length of the *entire* trajectory. Within of these two sub-trajectories, we collect all available tuples (x_t, a_t, x_{t+k}) for all $k \leq K$. There are therefore slightly fewer tuples with $k = K$ than with $k = 1$: we weight all *tuples* equally in the loss (rather than weighting all values of k equally; [Lamb et al.](#page-10-1) [\(2023\)](#page-10-1) is unclear about the "correct" behavior here, and it is not theoretically important).
	- Based on Equation [145,](#page-40-0) $g(s, s', k)[a]$ can be zero, which, by Equation [140,](#page-37-2) can lead to an infinite loss on a sample in the "optimization" set. In order to avoid this, [Levine et al.](#page-10-2) [\(2024\)](#page-10-2) set $g(s, s', k)[a]$ to an arbitrary floor value of 10^{-7} . As a more principled and scaleinvariant solution, we use standard Laplace ("add-one") smoothing when fitting q .

2253 2254 2255 We empirically compare the sample-efficiency of STEEL to AC-State on these problems with $(p, q) = (3, 5), (5, 7), (11, 13), (17, 19), (29, 31),$ and $(41, 43).$

2256 2257 2258 2259 In our comparison, we run each algorithm under the "best" choice of hyperparameters. For AC-State, the conduct a large hyperparameter search to find the optimal K , while for STEEL, we simply choose a single set of hyperparameters that will succeed on both DoublePrime (p, q) and SinglePrime (p, q) based on our prior knowledge of the problems. Specifically:

• For AC-State, for each tested value of (p, q) , we first collect 20 validation trajectories of DoublePrime(p, q) (under a uniformly random policy), for increasing dataset sizes starting at $T = 100$ steps. At each tested dataset size T, we compute the optimal $\phi_{AC-S\text{tate}}$ for each of the 20 trajectories, with each possible value of K from $K = 1$ to $K = 50,000$. We first repeatedly increase the dataset size T by factors of 10. Once we first identify a $T = 10^m$ such that, for at least some K, AC-State correctly returns $\phi_{AC\text{-State}} = \phi_{DP}$ for all 20 trajectories, we then test with $T = \{2 \cdot 10^{m-1}, 3 \cdot 10^{m-1}, ..., 9 \cdot 10^{m-1}\}$. At the earliest of *these* timesteps at which, for some K, a correct encoder is learned for all 20 trajectories, we record the median such K as the "tuned" value K_{opt} of this hyperparameter. (See Figure [7](#page-43-0)

2268	(p,q)	(3,5)		(11, 13)	(17.19)	(29.31)	(41, 43)
2269	Max Steps for STEEL	$ 5.97 \cdot 10^{4} $					$1.49\cdot10^5\,9.07\cdot10^5\,2.60\cdot10^6\,1.10\cdot10^7\,2.83\cdot10^7\,$
2270	Max Steps for AC-State	$4 \cdot 10^3$	$4 \cdot 10^4$	$1 \cdot 10^6$	$8 \cdot 10^6$	$1 \cdot 10^{8}$	$5 \cdot 10^8$
2271	Max Steps: (AC-State / STEEL)	≈ 0.07	≈ 0.3	\approx 1	≈ 3	≈ 9	\approx 18
2272	Median Steps (STEEL, DoublePrime) $ 2.50 \cdot 10^4 7.48 \cdot 10^4 5.23 \cdot 10^5 $				$1.08 \cdot 10^6$		$^{\shortmid}1.74\cdot10^{6}\, \overline{3.29\cdot10^{6}} $
2273	Median Steps (AC-State, DoublePrime)	$3 \cdot 10^3$	$3 \cdot 10^4$	$8 \cdot 10^{5}$	$7 \cdot 10^6$	$9 \cdot 10^{7}$	$5 \cdot 10^8$
2274	Median Steps: (AC-State / STEEL)	≈ 0.1	≈ 0.4	≈ 1.5	≈ 6	≈ 50	≈ 150

Table 3: Comparison of the empirical sample complexity of STEEL and AC-State on prime-loop MDPs. See text of Section [F.2.2.](#page-42-1)

for the results of the hyperparameter search.) At this point, we perform the actual test: we evaluate the success rate of AC-State on DoublePrime (p, q) , using only $K = K_{\text{opt}}$, for values of T starting at $T = 10^{m-1}$ and increasing by increments of 10^{m-1} , on 20 new trajectories for each tested dataset size. We stop when this test-time accuracy reaches 20/20 on trajectories from DoublePrime (p, q) , at some T_{max} . Finally, we verify that AC-State can *also* consistently, correctly learn ϕ_{SP} on data from SinglePrime(p, q) with $K = K_{opt}$ and a trajectory length of T_{max} , for 20 trajectories. (This always held in practice.^{[9](#page-42-2)})

- For STEEL, we set $N = \hat{D} = 2q$ (to match the maximum number of states in DoublePrime (p, q) or SinglePrime (p, q)); $t_{mix} = 1$ (because neither DoublePrime (p, q)) nor SinglePrime(p, q) have time-correlated noise); $\epsilon = 0.49$ (because, due to the simple emission distributions Q of SinglePrime and DoublePrime, a 51% encoder accuracy on each latent state implies a 100% encoder accuracy); and $\gamma = 0.95$. We test for 20 trials each of SinglePrime(p, q) and DoublePrime(p, q). All of these tests returned the correct encoders, so the only metric we needed to consider was the number of environment steps taken for each run.
- **2292 2293 2294**

2295 F.2.2 RESULTS

2296 2297 2298 2299 2300 2301 2302 Our top-line results are reported in Table [3.](#page-42-3)Our first reported statistic is the "Max Steps": the number of environment steps at which all 20 out of 20 tested trajectories for each of DoublePrime(p, q) and SinglePrime (p, q) returned the correct encoder. (For STEEL, this is simply the maximum steps taken over all 40 trajectories; for AC-State, this is the T_{max} discovered in the test-time search described in the previous section.) We see that, while for small instances ($|S| \leq 14$) of DoublePrime (p, q) , AC-State is more sample-efficient than STEEL, STEEL scales efficiently to larger instances of the problem.

2303 2304 2305 2306 2307 2308 2309 2310 2311 Further, we noticed an interesting trend in the data. AC-State tended to transition very abruptly from learning the wrong encoder on all tests of DoublePrime to learning the correct encoder on all tests as T increased (as can be observed in the hyperparameter search in Figure [7\)](#page-43-0). By contrast, the distribution of steps taken for STEEL on DoublePrime (p, q) was highly skewed: most trials took significantly fewer than the maximum observed number of steps. We therefore also compare the *median* number of steps taken to learn a correct encoder for DoublePrime (p, q) . For STEEL, this is computed as simply the median length of the 20 DoublePrime (p, q) trajectories tested. For AC-State, it is the first timestep T in the test-time search where AC-State with $K = K_{opt}$ learns a correct encoder for at least 10 of the 20 trajectories. Here, we find that, especially for large (p, q) , STEEL's advantage over AC-State becomes even more pronounced.

2312 2313 2314

F.3 EXPLORATION POLICIES WITH AC-STATE

2315 2316 So far, we have only compared STEEL to AC-State, where AC-State uses a uniformly random exploration policy. This may seem unfair: STEEL takes decidedly nonrandom actions, and [Lamb](#page-10-1)

²³¹⁷ 2318 2319 2320 2321 ⁹[We avoided more extensive testing with SinglePrime](#page-10-1) (p, q) , both because, as discussed above, AC-State [tends to "default" to returning the encoder](#page-10-1) ϕ_{SP} , which is correct for SinglePrime(p, q); and also because the deterministic dynamics of DoublePrime (p, q) [allowed us to take some computational "shortcuts" when](#page-10-1) [evaluating the loss function in Equation 140 on data from DoublePrime](#page-10-1) (p, q) for very large K, which were not possible for SinglePrime(p, q)[. This made more exhaustive experimentation on DoublePrime](#page-10-1)(p, q) significantly [more tractable than it would be on SinglePrime](#page-10-1) (p, q) .

Figure 7: Results from the hyperparameter search for the maximum-step-count parameter K in Equation [140.](#page-37-2) The objective is to find a K which leads to a high success rate in learning the correct latent state encoder for DoublePrime (p, q) , for the lowest possible number of environment steps.

2376 2377 2378 [et al.](#page-10-1) [\(2023\)](#page-10-1) proposes an active exploration method for AC-State (albeit, as mentioned in Section [F.1.1](#page-37-3) above, a method without strict theoretical grounding).

2379 2380 However, there is reason to believe that exploration policies similar to the one proposed by [Lamb](#page-10-1) [et al.](#page-10-1) [\(2023\)](#page-10-1) would be *unlikely* to help correctly identify the dynamics of DoublePrime (p, q) .

2381 2382 2383 2384 2385 2386 2387 2388 To start with, the stated goal of the the exploration policy in [Lamb et al.](#page-10-1) [\(2023\)](#page-10-1) is to "achieve high coverage of the control-endogenous state space." A natural question to ask is: how poorly do uniformly random policies perform at achieving this goal? To quantify this, we examined the state coverage for a single 10^6 -step trajectory on DoublePrime $(41, 43)$, and computed the ratio of the state visitation of the *most-visited state* to the state visitation of the *least-visited state*. Surprisingly, this was ≈ 2 . In other words, DoublePrime is **not** a hard exploration problem, and so techniques designed to improve state coverage would seem to be unlikely to provide much of a benefit over a uniformly random policy.

2389 2390 Still, we will now examine the specific exploration technique proposed by [Lamb et al.](#page-10-1) [\(2023\)](#page-10-1). At a high level, the technique proceeds as follows:

- Throughout data collection, the agent maintains an approximate version of the encoder ϕ' obtained by optimizing the AC-State loss (Equation [140\)](#page-37-2), and an approximate transition function T' , obtained through counting. The algorithm also maintains state visitation counts for each of the learned latent states encoded by ϕ' .
- At the start of each round of exploration (time t), the agent selects a goal learned-latent state s_a , with probability inversely proportional to the visitation count. The agent then takes a single random action a_t , and then, starting at time $t + 1$, plans shortest-path to s_a , and computes the number of steps k' it will take to get to s_g . Then, the agent proceeds to navigate to s_g in a closed-loop manner, using both ϕ' and $\overline{T'}$. After k' steps, *regardless of whether* s_q *is reached*, a new goal is set, and the process starts over.
	- The encoder ϕ is *only* trained on the tuples $(x_t, a_t, x_{t+k'+1})$ which begin with a random action and end with a goal state.

2404 2405 2406 2407 2408 2409 2410 2411 We performed some preliminary experiments using an adapted version of this algorithm on small instances of DoublePrime (p, q) , (with $(p, q) = (5, 7)$ and $(11, 13)$) and, while not conclusive, our tests showed roughly equivalent performance to using random actions. Specifically, for *any* choice of K from 1 to 5,000, our version of this active exploration algorithm achieved 20/20 correct encoders on DoublePrime(5, 7) at $T = 5 \times 10^4$ steps, but not at $T = 4 \times 10^4$ (compared to random actions, which does achieve this at $T = 4 \times 10^4$ steps.) Meanwhile, on DoublePrime(11, 13), the active exploration method achieved 20/20 correct encoders at $T = 2 \times 10^6$ steps, but not at $T = 1 \times 10^6$ (compared to random actions, which does achieve this at $T = 1 \times 10^6$ steps.)

2412 2413 2414 2415 2416 2417 2418 2419 We now briefly explain the modifications we made to this exploration algorithm from [Lamb et al.](#page-10-1) [\(2023\)](#page-10-1) for our (preliminary) tests. Examining the original algorithm, we immediately notice an issue: the encoder is only trained with segments of length $k = k' + 1$, which (assuming ϕ' and T' are anywhere close to accurate) will only scale linearly with D . However, properly learning the encoder for the DoublePrime environments *requires* examining longer segments of trajectories than the diameter of the dynamics graph. Therefore, in order adapt this exploration method to the setting we consider, we eliminate this part of the algorithm and train ϕ on the entire collected trajectory, as in Equation [140.](#page-37-2)

2420 2421 2422 2423 2424 2425 Furthermore, we give the exploration method what should be a large, unnatural advantage, by planning, choosing goals, and assessing state visitation on the *true ground truth dynamics* T*, with the ground-truth state encoder* ϕ . This represents what should be the "best possible" case for the algorithm. It also enables us to test in this setting without having to optimize ϕ continuously during data collection, and to assess many values of the hyperparameter K (which would impact the intermediate encoder ϕ) simultaneously on a single collected trajectory.

2426 2427 2428 2429 In our implementation, we reset the state visitation counts between collecting the "fitting" and "optimization" portions of the trajectory, in order to ensure that they are distributed in the same way. We also take uniformly random actions in cases where both actions produce a path of the same length to the goal. Otherwise, we simply take the shortest available path to the goal state, and, when it is reached, pick a new goal and take one random action.

F.4 DISCUSSION

 It is important to note that the DoublePrime environments are *not* hard-exploration environments, nor do they have *any* time-correlated noise, nor do they have rich observations. In fact, adding time-correlated noise or rich observations would likely only scale the sample-complexity of STEEL on these environments only modestly (linearly in \hat{t}_{mix} and $\log(|\mathcal{F}|)$). Rather, STEEL outperforms AC-State on large instances of these environments because the environments' transition dynamics are arranged in a way that is in a sense "adversarial" to multistep-inverse methods. By contrast, because STEEL has well-understood sample-complexity