
Tree-Sliced Entropy Partial Transport

Viet-Hoang Tran∗

Department of Mathematics
National University of Singapore
hoang.tranviet@u.nus.edu

Thanh Tran
College of Engineering & Computer Science

VinUniversity
21thanh.tq@vinuni.edu.vn

Thanh Chu
School of Computing

National University of Singapore
thanh.chu@u.nus.edu

Tam Le†
Department of Advanced Data Science

Institute of Statistical Mathematics
tam@ism.ac.jp

Tan M. Nguyen†

Department of Mathematics
National University of Singapore

tanmn@nus.edu.sg

Abstract

Optimal Transport (OT) has emerged as a fundamental tool in machine learning
for comparing probability distributions in a geometrically meaningful manner.
However, a key limitation of classical OT is its requirement that the source and
target distributions have equal total mass, limiting its use in real-world settings
involving imbalanced data, noise, outliers, or structural inconsistencies. Partial
Transport (PT) addresses this limitation by allowing only a fraction of the mass
to be transported, offering greater flexibility and robustness. Nonetheless, similar
to OT, PT remains computationally expensive, as it typically involves solving
large-scale linear programs–especially in high-dimensional spaces. To alleviate
this computational burden, several emerging works have introduced the Tree-
Sliced Wasserstein (TSW) distance, which projects distributions onto tree-metric
spaces where OT problems admit closed-form solutions. Building on this line
of research, we propose a novel framework that extends the tree-sliced approach
to the PT setting, introducing the Partial Tree-Sliced Wasserstein (PartialTSW)
distance. Our method is based on the key observation that, within tree-metric
space, the PT problem can be equivalently reformulated as a standard balanced OT
problem between suitably modified measures. This reformulation enables efficient
computation while preserving the adaptability and robustness of partial transport.
Our method proves effective across challenging tasks such as outlier removal and
addressing class imbalance in image-to-image translation. Our code is publicly
available at https://github.com/thanhqt2002/PartialTSW.

1 Introduction

Optimal Transport (OT) [87, 61] is a framework for comparing probability distributions by lifting a
ground cost defined between individual points to a metric over measures. Its ability to capture the
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geometric structure of distributions leads widespread adoption across numerous domains, includ-
ing machine learning [56, 11, 23, 32], data valuation [35, 38], multimodal data analysis [59, 49],
statistics [50, 54, 57, 63], and computer vision [55, 70, 76, 89]. Despite its theoretical appeal, OT
exhibits two major limitations in applications. First, the computational cost of OT problems for
discrete measures scales as O(n3 log n) [61]. Second, the framework imposes a strict mass equality
constraint, which is often violated due to noise, outliers, or unbalanced distributions [72].

Sliced Optimal Transport. To mitigate the high computational cost associated with OT, the Sliced
Wasserstein (SW) distance [66, 10, 67] has been introduced as an efficient approximation. SW
leverages the closed-form solution of one-dimensional OT by projecting high-dimensional probability
measures onto one-dimensional subspaces, computing the OT cost in each slice, and subsequently
averaging these costs. This procedure reduces the computational complexity to a sequence of sort-
based operations with O(n log n) complexity [61], while preserving key statistical and topological
properties [52, 4, 29]. The SW framework has further inspired a wide range of generalizations,
including extensions based on structured projections [39, 18, 53], as well as adaptations to manifold-
valued and non-Euclidean domains such as the sphere [5, 65] and hyperbolic space [8].

Tree-Sliced Optimal Transport. One-dimensional projections, while computationally efficient,
often fail to capture the intricate topological features inherent in high-dimensional data. To address
this shortcoming, a growing body of work has explored richer integration domains as alternatives
to linear projections in OT. These efforts span a variety of metric settings, including Euclidean
spaces [1, 60, 58], tree metrics [46, 81], graph-based structures [45, 43], spherical geometries [65,
5, 83], and hyperbolic spaces [6, 48]. A seminal contribution in this direction is the tree system
proposed by [81], which serves as a structurally enriched substitute for traditional lines. By leveraging
established results and closed-form OT solutions on tree metric spaces [46, 34, 33], this framework
introduces the Tree-Sliced Wasserstein (TSW) distance—a refined analogue of the classical SW
distance. TSW retains the low computational complexity of SW while enhancing its capacity to
reflect underlying data geometry. Recent advancements and extensions of the TSW framework are
explored in [80, 79, 84].

Partial Transport and Unbalanced Optimal Transport. In various applied settings, it is often
necessary to compare positive measures with unequal total mass—for instance, in biological ap-
plications where such measures represent cell populations of varying sizes [72]. The rigid mass
conservation requirement of the classical OT can be relaxed using the Unbalanced OT (UOT)
framework [73, 40, 47, 15, 22, 28], which introduces penalty terms that softly enforce mass preser-
vation rather than enforcing it strictly. A related and widely used relaxation is Partial Transport
(PT) [27, 9, 2, 68, 42, 43, 44], which allows only a fraction of the mass to be transported, thereby
enabling more flexible alignment between distributions. PT improves robustness to outliers and
facilitates meaningful comparisons under structural or statistical mismatches. It has also shown effec-
tiveness in robust distributional alignment and has found applications in several domains, including
deep learning theory [14, 69], cellular biology [72, 17], and domain adaptation [24, 3]. Despite its
advantages, PT remains computationally intensive and is susceptible to noise in high-dimensional
settings [20].

To address both the computational and mass imbalance issues, several approximate and scalable
variants have been introduced, including entropic OT [16, 62] and minibatch OT [25, 24]. Recent
work also has extended the sliced OT framework to the unbalanced setting [7, 22, 51, 28, 9, 2, 43],
resulting in Sliced UOT variants with improved scalability and robustness.

Contributions. Motivated by the expanding TSW framework and recent advances in PT on tree
metric spaces [42], this paper introduces a tree-sliced approach for computing partial transport
between unbalanced measures in Euclidean spaces. The paper is organized as follows:

• In Section 2, we review the foundations of Optimal Transport and Entropy Partial Transport
on metric spaces with tree metrics, as well as the Tree-Sliced Wasserstein distance for
probability measures in Euclidean spaces based on tree systems. These concepts collectively
form the theoretical foundation upon which the proposed framework is developed

• In Section 3, we formally introduce the Tree-Sliced Entropy Partial Transport (PartialTSW)
distance for comparing probability measures with unbalanced mass in Euclidean spaces. We
establish its metric properties and provide an analysis of its computational complexity.
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• In Section 4, we empirically evaluate PartialTSW on challenging tasks, such as enhancing
noise robustness for generative models and addressing class imbalance in image-to-image
translation. The results underscore its practical effectiveness and computational efficiency.
We conclude our work in Section 5.

All supplemental materials—including theoretical foundations, formal proofs, experimental settings
accompanied by additional tables and figures, and a table of notation—are provided in the Appendix.

2 Building Blocks of Tree-Sliced Entropy Partial Transport

This section provides the foundations of Optimal and Entropy Partial Transport, as well as the
Tree-Sliced Wasserstein distance. For the remainder of the paper, we denote the dimension by d.

2.1 Optimal and Entropy Partial Transports on Metric Spaces with Tree Metrics

Tree Metric Spaces. Let T = (V,E) be a tree rooted at node r, with nonnegative edge lengths
{we}e∈E . We identify T with the set of all nodes and points along its edges. For a metric space Ω
with metric d, d is called a tree metric [75, 46] if there exists a tree T such that Ω ⊂ T and d(x, y)
equals the length of the unique path between x and y for all x, y ∈ Ω. T is called a tree metric space.
Assume V ⊂ Rd and let dT denote the tree metric on T ; we write [x, y] for the unique path between
x, y ∈ T . Let ω be the unique Borel (length) measure on T satisfying ω([x, y]) = dT (x, y) for all
x, y ∈ T . For any x ∈ T , the subtree rooted at x is defined as Λ(x) = {y ∈ T : x ∈ [r, y]}. Figure 1
(left) provides a visual representation of tree metric spaces and their associated concepts.

Optimal Transport on Tree Metric Spaces. Let P(T ) be the collection of all probability measures
on T (i.e. total mass is equal to 1). Let µ, ν ∈ P(T ), and P(µ, ν) be the set of π coupling between
µ and ν. The 1-Wasserstein distance (W) [87] between µ, ν is:

Wp,dT (µ, ν) =

(
inf

π∈P(µ,ν)

∫
T ×T

dT (x, y)
p dπ(x, y)

) 1
p

. (1)

In the case of tree metrics and p = 1, the distance W1,dT (µ, ν) admits a closed-form solution [46]:

W1,dT (µ, ν) =

∫
T
|µ(Λ(x))− ν(Λ(x))| ω(dx). (2)

For general p > 1, the distance Wp,dT (µ, ν) does not admit a closed-form expression. A natural
generalization of Equation (2) leads to the Sobolev Transport (ST) [45], that is

STp(µ, ν) =

(∫
T
|µ(Λ(x))− ν(Λ(x))|p ω(dx)

) 1
p

̸=
(

inf
π∈P(µ,ν)

∫
T ×T

dT (x, y)
p dπ(x, y)

) 1
p

= Wp,dT (µ, ν). (3)

Although STp differs from Wp,dT , it still defines a valid metric on P(T ). Due to this property, and
for simplicity, we focus on the case p = 1, as the extension to general p is analogous.

Entropy Partial Transports on Tree Metric Spaces. Let M(T ) and M(T × T ) denote the
space of all nonnegative Borel measures on T and T × T respectively, with finite total mass. Given
µ, ν ∈ M(T ), define the set of admissible partial couplings as

Π≤(µ, ν) = {γ ∈ M(T × T ) : γ1 ≤ µ, γ2 ≤ ν} , (4)

where γ1 and γ2 represent the marginals of γ on the first and second marginals, respectively. For
any γ ∈ Π≤(µ, ν), let f1 and f2 be the Radon–Nikodym derivatives of γ1 with respect to µ and γ2
with respect to ν, respectively. Let w : T ! [0,∞) defined by w(x) = a1 dT (x, x0) + a0 where
x0 ∈ T , a1 ∈ [0, b], and a0 ∈ [0,∞). We have w is b-Lipschitz continuous. We use the entropy
function F : [0,∞) ! (0,∞) given by F (s) = |s− 1|. Letting m̄ = min{µ(T ), ν(T )}, and fixing
m ∈ [0, m̄], the Entropy Partial Transports (EPT) problem is formulated as

Wm(µ, ν) = inf
γ∈Π≤(µ,ν)
γ(T ×T )=m

[
F1(γ1 | µ) + F2(γ2 | ν) + b

∫
T ×T

dT (x, y) γ(dx, dy)

]
, (5)
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Figure 1: An illustration of the construction of TSW. (Left) Tree Metric Space. The tree is rooted
at node r, with all other nodes denoted by xi. Edges are denoted by ei, each assigned a weight
we. A probability distribution on the tree assigns mass to its nodes. The subtree Λ(x) is defined
as the collection of all points lying along the edges in the subtree rooted at x. For example, Λ(r)
includes the entire tree, Λ(x6) includes all points on edges e7 and e8, and Λ(x9) includes all points
on edges e10, e11, and e12. (Right) An illustration of the Tree-Sliced Wasserstein computation. Given
two probability measures (depicted in red and blue), and a tree system T , each measure is first
pushed-forward onto the tree via the Radon transform, resulting in two measures supported on the
tree structure. The Wasserstein distance between these tree-projected measures is then computed
using Equation (2). The overall TSW distance is obtained by averaging the Wasserstein distances
across a collection of such trees, typically approximated using a Monte Carlo sampling framework.

where the regularization terms are defined as the weighted relative entropies

F1(γ1 | µ) =
∫
T
w(x)F (f1(x))µ(dx), F2(γ2 | ν) =

∫
T
w(x)F (f2(x)) ν(dx). (6)

To handle the mass constraint γ(T × T ) = m, a Lagrange multiplier λ ∈ R is introduced. Consider
the relaxed objective

ETλ(µ, ν) = inf
γ∈Π≤(µ,ν)

[
F1(γ1 | µ) + F2(γ2 | ν) + b

∫
T ×T

(dT (x, y)− λ) γ(dx, dy)

]
. (7)

According to a construction by Caffarelli and McCann [12], the problem (7) is equivalent to a
balanced OT problem. Utilizing duality and regularization techniques as in [42], the objective (7)
admits a closed-form solution for the a-regularized EPT:

For a ∈ [0, bλ/2 + w(r)], it is given by:

ẼT
a

λ(µ, ν) =

∫
T
|µ(Λ(x))− ν(Λ(x))| ω(dx)

− bλ

2
[µ(T ) + ν(T )] +

(
w(r) +

bλ

2
− a

)
|µ(T )− ν(T )| . (8)

Define the corresponding regularized transport cost as

da(µ, ν) = ẼT
a

λ(µ, ν) +
bλ

2
[µ(T ) + ν(T )] . (9)

The function da defines a metric on M(T ), making (M(T ), da) a complete metric space.

2.2 Tree-Sliced Wasserstein Distance on Euclidean Spaces

We adopt the setting of Tree-Sliced Wasserstein Distance on Systems of Lines as in [81, 80]. Figure 1
(right) presents the illustration relevant to the following discussion.

Tree System. A line in Rd is an element of Rd × Sd−1, and a system of k lines is an element of
(Rd × Sd−1)k. We denote a system of lines by L, a line in L (also used as an index) by l, and the
space of all such systems by Ld

k. The ground set of L is defined as

L̄ =
{
(x, l) ∈ Rd × L : x = xl + tx · θl for some tx ∈ R

}
,

where xl + t · θl, with t ∈ R, is the parameterization of the line l. For notational convenience, we
index the lines as l1, . . . , lk, where each line li is defined by a source point xi ∈ Rd and a direction
vector θi ∈ Sd−1. A tree system is a system of lines endowed with an additional tree structure. To
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highlight the presence of this structure, we denote the system by T rather than L. The space of tree
systems—that is, the collection of tree systems sharing a common tree structure—is denoted by Td

k,
or simply T. This space is equipped with a probability distribution σ, which is induced by a random
sampling procedure over lines.

Radon Transform on Tree Systems. For T ∈ Td
k, denote the space of Lebesgue integrable functions

on T as

L1(T ) =

{
f : T̄ ! R : ∥f∥T =

∑
l∈T

∫
R
|f(tx, l)| dtx < ∞

}
.

Define the space C(Rd × Td
k,∆k−1) as the set of continuous maps from Rd × Td

k to the (k − 1)-
dimensional standard simplex ∆k−1, named splitting maps. For f ∈ L1(Rd), we define Rα

T f : T̄ !
R such that:

Rα
T f(x, l) =

∫
Rd

f(y) · α(y, T )l · δ (tx − ⟨y − xl, θl⟩) dy. (10)

The function Rα
T f is in L1(T ). The operator

Rα : L1(Rd) −!
∏

T ∈Td
k

L1(T ), f 7−! (Rα
T f)T ∈Td

k
, (11)

is called the Radon Transform on Tree Systems. This operator is injective.

Tree-Sliced Wasserstein Distance. Tran et al. [81] proposed the Tree-Sliced Wasserstein Distance
on Systems of Lines (TSW-SL), and later Tran et al. [80] proposed the Distance-based Tree-Sliced
Wasserstein Distance (Db-TSW) which is the generalization of the former. Throughout this paper,
we refer to both variants collectively as the Tree-Sliced Wasserstein (TSW) distance for brevity.
This notion is distinct from the original TSW distance proposed in [46, 42, 34, 48], which was
primarily developed for applications involving static-support measures, such as classification or
topological data analysis. In contrast, the TSW-SL and Db-TSW formulations—cast as OT problems
over tree systems—are specifically designed to handle applications with dynamic-support measures,
as commonly encountered in generative modeling tasks. Given µ, ν ∈ P(Rd) and fµ, fν are the
probability density functions of µ, ν, respectively. The TSW distance between µ, ν is defined by

TSW(µ, ν) =

∫
T

WdT ,1 (Rα
T fµ,Rα

T fν) dσ(T ), (12)

TSW is a metric on P(Rd). Leveraging the closed-form solution (2) and the Monte Carlo method,
TSW in Equation (12) can be efficiently approximated by a closed-form expression.

3 Tree-Sliced Entropy Partial Transport

In this section, we formally introduce the Tree-Sliced Entropy Partial Transport framework and
undertake a study of its theoretical properties and associated computational complexity.

3.1 Tree-Sliced Entropy Partial Transport

Start with a density function f ∈ L1(Rd). The Radon Transform Rα maps f to a density function on
a tree system while preserving its total mass, i.e.,

∥f∥1 =

∫
Rd

f(x) dx = ∥Rα
T f∥T , for all T ∈ T. (13)

A proof of this property is provided in Appendix D.6. For µ, ν ∈ M(Rd), recall that fµ and
fν denote their respective density functions. Given a tree system T ∈ T and a splitting map
α ∈ C(Rd × Td

k,∆k−1), the Radon Transform Rα, as defined in Equation (10), maps fµ and fν to
Rα

T fµ and Rα
T fν , respectively—both of which are density functions on T . Denote the respective

measures by µT , νT ∈ M(T ). We then compute the regularized transport cost da(µT , νT ) as in
Equation (10). The proposed discrepancy is defined as the expectation of this quantity over the space
of tree systems T with respect to the sampling distribution σ.
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Definition 3.1 (Tree-Sliced Entropy Partial Transport). The Tree-Sliced Entropy Partial Transport,
denoted as PartialTSW, between µ and ν in M(Rd) is defined by

PartialTSW(µ, ν) :=

∫
T
da(µT , νT )dσ(T ). (14)

Remark 3.2. It is worth noting that the value of Db-TSW is determined by a range of modeling
choices, including the tree system space T, the sampling distribution σ, the splitting map α ∈
C(Rd × Td

k,∆k−1), and the regularization parameters b, λ, w(·), and a involved in the definition of
da(·, ·). These dependencies are excluded from the notation for simplicity and readability.

3.2 Properties of PartialTSW

Consider the space Rd equipped with the Euclidean norm ∥·∥2. For any vector v ∈ Rd, the translation
by v is the map Rd ! Rd defined by x 7! x + v. The translation group T(d) consists of all such
translations and is isomorphic to the additive group Rd. The orthogonal group O(d) is the group
consists of all d× d orthogonal matrices. The Euclidean group E(d) comprises all transformations of
Rd that preserve pairwise Euclidean distances. Formally, E(d) is the semidirect product of T(d) and
O(d). Each element g ∈ E(d) can be represented as a pair g = (Q, v), where Q ∈ O(d) and v ∈ Rd,
and acts on Rd via y 7! gy = Qy + v. The canonical group action of E(d) on Rd naturally extends
to the space of tree systems Td

k through the rule

gT = {gli = (Qxi + a,Qθi)}ki=1 ∈ Td
k,

which preserves the underlying tree structure by construction. A splitting map α ∈ C(Rd×Td
k,∆k−1)

is said to be E(d)-invariant if

α(gx, gT ) = α(x, T ), for all x ∈ Rd and T ∈ Td
k. (15)

In the context of optimal transport theory, where a cost function defined on the ground space is
lifted to a distance between measures, it is often desirable—particularly for measures on Rd—that
the resulting metric be equivariant under the action of the Euclidean group. Notably, both the 2-
Wasserstein distance and the Sliced p-Wasserstein distance are known to exhibit E(d)-invariance.
Remarkably, in the case of PartialTSW, this invariance not only ensures that the discrepancy is
E(d)-invariant, but also guarantees that it is a valid metric on the space of measures M(Rd).

Theorem 3.3. PartialTSW is an E(d)-invariant metric on M(Rd).

The proof for Theorem 3.3 is presented in Appendix §D.7.
Remark 3.4. As in [80], for the experiments in Section 4, we choose the splitting map α such that

α(x, T ) = softmax

({
inf
t∈R

∥x− (xi + tθi)∥2
}k

i=1

)
, for all x ∈ Rd and T ∈ T, (16)

which is E(d)-invariant.

3.3 Computation of Tree-Sliced Entropy Partial Transport

Similar to UOT and PT, PartialTSW compares µ, ν ∈ M(Rd) while offering a mechanism to softly
enforce the fraction of mass to be transported. This is achieved by adjusting the total masses of their
respective projections onto a tree system T , denoted µ(T ) and ν(T ) (as in Equation (8) and (9)).
Given that the Radon Transform Rα

T is mass-preserving, modifying the masses µ(T ) and ν(T )
directly controls the degree of partiality in the transport between the original measures µ and ν. In
practice, µ(T ) is often normalized to a unit mass, with ν(T ) then serving as a tunable hyperparameter
to control this partiality.

A key application of PartialTSW is computing gradients of PartialTSW(µ, ν) with respect to samples
from µ and ν, crucial for generative modeling and gradient flows. Here, samples typically have
constant mass (e.g., 1/n where n is the number of supports), rendering gradients with respect to total
input masses µ(Rd) and ν(Rd) less meaningful. This simplifies hyperparameter selection: parameters
a, b and λ in Equation (9) are not necessary. The mass ν(T ) emerges as the only parameter for
controlling the degree of partiality.
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Figure 2: Runtime comparison for PartialTSW and PT/UOT solvers over n.

Computationally, the intractable integral in Equation (50) is approximated using Monte Carlo method:

̂PartialTSW(µ, ν) =
1

L

L∑
i=1

da(µTi , νTi), (17)

where {Ti}Li=1 are tree systems independently sampled from σ over T. The theoretical complexity
is O(Lkn log n + Lkdn) (with n samples, k lines per tree, d data dimension), identical to its
balanced counterpart, TSW [80]. PartialTSW adds negligible computational overhead to TSW,
mainly from adjusting the masses ν(T ). Detailed algorithms and complexity analysis are provided in
Appendices §E.1 and §E.2.

The log-linear scaling of PartialTSW with respect to the number of samples n makes it significantly
faster in practice than existing UOT and PT methods. Figure 2 illustrates this performance gap:
for n = 105 samples, alternative approaches, such as the translation-invariant Sinkhorn [74] and
PAWL [13], are approximately three orders of magnitude slower than PartialTSW. While USOT [7]
and SUOT [7] exhibit similar scaling behavior due to their GPU-friendly implementations, Par-
tialTSW maintains a speed advantage. Further details on computational efficiency are available in
Appendix §E.6.

Since PartialTSW is approximated via Monte Carlo (MC) estimation, a crucial aspect is the stability
and sample complexity of its estimator. Our distance is computed over L sampled trees, and its
approximation error is theoretically expected to decrease at a standard O(L−1/2) rate. We provide a
detailed empirical analysis in Appendix §E.4 that verifies this convergence.

4 Experimental Results

This section details the empirical evaluation of PartialTSW against other methods in tasks requiring
noise robustness for point cloud alignment, outlier rejection in generative modeling, and effective
handling of class imbalance in image to image translation.

4.1 Noisy Point Cloud Gradient Flow

In this experiment, we aim to evaluate the robustness of PartialTSW compared to other optimal
transport (OT) variants such as SW [10] and Db-TSW [80]. The source dataset X consists of 10,000
points arranged in the shape of a dragon. The target dataset Y , also with 10,000 points, follows the
shape of a bunny and is perturbed with 7% noise. Our objective is to determine whether PartialTSW
can align with the target shape while ignoring noisy outliers. The clean data is taken from [2].
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Figure 3: Visualization of point cloud gradient flows for SW, Db-TSW, and PartialTSW at steps
100, 200, and 300. The leftmost column is the source point cloud, and the rightmost column is the
noise-perturbed target point cloud.

We apply gradient descent to the source points in order to minimize the distance D(X,Y ), where
D is either PartialTSW, Db-TSW, or SW. The results are illustrated in Figure 3. It is clear that OT
methods such as SW and Db-TSW are affected by noisy data. In contrast, PartialTSW demonstrates
greater robustness, producing smoother interpolations. We refer to Appendix §E.7 for further details.

4.2 Robust Generative Model

To further demonstrate its outlier robustness, PartialTSW is evaluated in a generative modeling
experiment. First, an Autoencoder pre-trained on MNIST digits provides 2D latent representations for
digit 0 (the target class) and digit 1 (the outlier class), scaled to approximately reside within [−1, 1]2.
Let X0 and X1 denote the true latent distributions for digits 0 and 1, respectively. The generator is
subsequently trained using an observed dataset, Xobs, which is a mixture composed of 90% samples
drawn from X0 and 10% samples (outliers) drawn from X1. This contaminated input data is illustrated
in Figure 4a. A generator G : N (0, I2) ! [−1, 1]2 is then trained by minimizing D(G(Z), Xobs),
where Z is a batch of noise samples and D is the (Partial) Optimal Transport distance. The objective
is for G to learn to capture the target distribution X0 from the contaminated Xobs, effectively ignoring
the outliers from X1. Further experimental details are available in Appendix §E.8.

Figure 4 and Table 1 summarize method performances. Standard OT methods (e.g., SW [10], Db-
TSW [80]; Figure 4b-c) and several UOT/PT approaches (e.g., SOPT [2], SPOT [9], SUOT [7],
USOT [7]; Figure 4d-e, g-h) struggled with the 10% outliers. Despite careful hyperparameter tuning
(details in Appendix §E.8.2), these methods often produced mixed 0s and 1s or noisy outputs.

Conversely, PartialTSW demonstrates excellent robustness, achieving a 0.00% outlier rate (Table 1)
by ignoring MNIST 1 outliers and generating only high-quality 0 digits (Figure 4j). This robust
performance is complemented by strong sample diversity, stemming from its notably well-distributed
latent space. Sinkhorn [74] and PAWL [13] also achieve 0.00% outlier rejection (Figure 4f,i); however,
they exhibit less sample diversity, as suggested by their concentrated latent clusters.

PartialTSW also provides this robust and diverse generation with high computational efficiency. Its
55s runtime matches Db-TSW and is significantly faster than Sinkhorn (358s) and PAWL (88s).
While SW is the fastest overall, it lacks the necessary outlier robustness.

8



Table 1: Quantitative comparison for robust generative modeling on MNIST, using target digit 0 and
10% 1 outliers. PartialTSW achieves perfect outlier rejection alongside a competitive runtime.

OT Unbalanced OT / Partial OT Ours

Metric SW [10] Db-TSW [80] SOPT [2] SPOT [9] Sinkhorn [74] SUOT [7] USOT [7] PAWL [13] PartialTSW

Outliers (%) # 15.06 16.44 13.28 16.20 0.00 41.00 17.08 0.00 0.00
Runtime (s) # 37 55 278 278 358 275 306 88 55

(a) Dataset (b) SW [10] (c) Db-TSW [80] (d) SOPT [2] (e) SPOT [9]

(f) Sinkhorn [74] (g) SUOT [7] (h) USOT [7] (i) PAWL [13] (j) PartialTSW

Figure 4: Qualitative comparison of outlier robustness in generative modeling. Methods learn to
generate MNIST 0 (blue) from a dataset with 10% 1 outliers (orange). Subplots display generated
latent distributions (top) and images (bottom). PartialTSW successfully ignores outliers and accurately
learns the true latent distribution of the digit 0, leading to the diverse generated images.

Thus, PartialTSW uniquely combines strong outlier rejection, diverse sample generation, and high
computational efficiency, making it highly effective for generative modeling in contaminated settings.

4.3 Imbalance Image to Image Translation

Another key attribute of PartialTSW is its ability to handle class imbalance. We demonstrate this
capability in an image-to-image translation task, converting “Young” to “Adult” faces using the
FFHQ dataset [37]. This dataset presents a significant imbalance, with 38K “Young” images and
10.5K “Adult” images. Our experimental setup follows the protocol from recent unbalanced optimal
transport studies [22, 28]. Specifically, a pre-trained ALAE autoencoder [64] yields 512-dimensional
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Figure 5: Visualizing the Accuracy-LPIPS
trade-off in Image-to-Image translation.

Table 2: Quantitative Young-to-Adult translation results.
PartialTSW (Ours) achieves a good balance of Accuracy "
and perceptual similarity (LPIPS #).

Method Accuracy (%) " LPIPS #

SW [10] 89.88 ± 0.01 0.4074 ± 0.0002

Db-TSW [80] 89.96 ± 0.01 0.4068 ± 0.0002

UOT-FM [22]
λ = 0.05 76.16 ± 0.08 0.4979 ± 0.0001
λ = 0.1 82.38 ± 0.05 0.4713 ± 0.0001
λ = 0.2 80.44 ± 0.03 0.4920 ± 0.0003

ULightOT [28]

τ = 50 70.39 ± 0.09 0.3706 ± 0.0003
τ = 250 82.70 ± 0.05 0.4086 ± 0.0002
τ = 1000 85.27 ± 0.06 0.4198 ± 0.0001
τ = 10000 86.06 ± 0.04 0.4233 ± 0.0001

PartialTSW

ν(T ) = 1.1 85.71 ± 0.03 0.4047 ± 0.0002
ν(T ) = 0.9 91.06 ± 0.02 0.4183 ± 0.0002
ν(T ) = 0.5 97.05 ± 0.03 0.4590 ± 0.0001
ν(T ) = 0.3 99.11 ± 0.03 0.4902 ± 0.0003

latent image representations, where the translation is performed. All methods are evaluated on two
criteria: (1) translation accuracy (whether images reconstructed from M(X) classify as “Adult”) and
(2) perceptual similarity (LPIPS [90]) between original and translated reconstructions.

The mapping network M is trained to translate latent samples X from the “Young” domain to align
with Y from the “Adult” domain by minimizing a distance D(M(X), Y ), where D represents our
PartialTSW, SW [10], or Db-TSW [80]. We also compare against other recent procedures for this
task: UOT-FM [22] and ULightOT [28]. These methods, along with PartialTSW, feature parameters
to control their degree of regularization when handling data discrepancies: PartialTSW controls
the transported mass via its parameter ν(T ); UOT-FM [22] uses its parameter λ to influence the
regularization of marginal constraints; and ULightOT [28]’s parameter τ governs the extent of mass
conservation. The adjustment of these parameters creates an Accuracy-LPIPS trade-off (see Figure 5).

Table 2 demonstrates the favorable balance of PartialTSW. Specifically, PartialTSW (with ν(T ) =
0.9) achieves a higher accuracy of 91.06%, versus UOT-FM’s (with λ = 0.1) 82.38% and ULightOT’s
(with τ = 10000) 86.06%. Concurrently, it achieves a lower LPIPS of 0.4183 (indicating better
perceptual similarity), compared to UOT-FM’s 0.4713 and ULightOT’s 0.4233. Furthermore, Par-
tialTSW with ν(T ) = 0.3 attains the highest translation accuracy of 99.11%, significantly surpassing
the accuracies of standard OT methods like SW (89.88%) and Db-TSW (89.96%).

These findings underscore PartialTSW’s capability to handle significant class imbalances in image
translation, offering a solution that effectively balances high target domain alignment with the
preservation of perceptual similarity. Further experimental details are available in Appendix §E.9.

5 Conclusion

In this paper, we introduce Tree-Sliced Entropy Partial Transport (PartialTSW), a novel distance
developed by integrating Entropy-Regularized Partial Transport for unbalanced measures on tree
metric spaces with the Tree-Sliced Wasserstein (TSW) framework on tree systems. We investigate
the theoretical properties of the proposed distance and establish that it constitutes a valid metric on
the space of measures in Euclidean spaces. PartialTSW maintains the computational complexity of
the balanced TSW distance, despite being tailored to handle unbalanced measures. Crucially, it is
demonstrably faster than existing Unbalanced and Partial Optimal Transport approaches. Furthermore,
comprehensive experiments demonstrate its effectiveness in addressing noise and imbalance in real-
world data scenarios. A notable limitation of PartialTSW—and of existing TSW variants—is that it
defines a distance without yielding explicit transport maps. An important direction for future work is
therefore constructing optimal or partial transport plans within the tree-sliced setting.
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Table of Notation

Rd d-dimensional Euclidean space
∥ · ∥2 Euclidean norm
⟨·, ·⟩ standard dot product
Sd−1 (d− 1)-dimensional hypersphere
θ unit vector
⊔ disjoint union
L1(X) space of Lebesgue integrable functions on X

P(X) space of probability measures on X

M(X) space of measures on X

µ, ν measures
δ(·) 1-dimensional Dirac delta function
U(Sd−1) uniform distribution on Sd−1

♯ pushforward (measure)
C(X,Y ) space of continuous maps from X to Y

d(·, ·) metric in metric space
dT (·, ·) tree metric
T(d) translation group of order d
O(d) orthogonal group of order d
E(d) Euclidean group of order d
g element of group
Wp p-Wasserstein distance
SWp Sliced p-Wasserstein distance
Λ (rooted) subtree
e edge in graph
we weight of edge in graph
l line, index of line
L system of lines, tree system
L̄ ground set of system of lines, tree system
Ld
k space of systems of k lines in Rd

T tree structure in system of lines
L number of tree systems
k number of lines in a system of lines or a tree system
Rα Radon Transform on Systems of Lines
∆k−1 (k − 1)-dimensional standard simplex
α splitting map
ξ tuning parameter in splitting maps
T space of tree systems
σ distribution on space of tree systems
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A Background on Optimal Transport on Metric Spaces with Tree Metrics

Let T = (V,E) be a tree rooted at a node r, where each edge e ∈ E is assigned a nonnegative length
we. Here, V denotes the set of nodes and E the set of edges. For notational convenience, we use T
to also refer to the union of all nodes and the continuous points along the edges. We now recall the
formal definition of a tree metric:
Definition A.1 (Tree metric [75, Section 7, p.145–182]). A metric d : Ω× Ω ! [0,∞) is said to be
a tree metric on a set Ω if there exists a tree T such that Ω ⊂ T and, for all x, y ∈ Ω, the distance
d(x, y) equals the length of the unique path in T connecting x and y.

Suppose V is a subset of a vector space, and let dT (·, ·) denote the tree metric defined on T . We
denote by [x, y] the unique shortest path in T between any two points x and y. Let ω be the unique
Borel (length) measure on T satisfying ω([x, y]) = dT (x, y) for all x, y ∈ T . For any x ∈ T , we
define the subtree rooted at x by

Λ(x) := {y ∈ T : x ∈ [r, y]}. (18)

Let P(T ) denote the set of all probability measures on T , i.e., Borel measures with total mass equal
to one. The following result provides a closed-form expression for the 1-Wasserstein distance on the
tree metric space T .
Theorem A.2 (Optimal Transport on Tree Metric Spaces [46, Section 3, Proposition 1]). For any
µ, ν ∈ P(T ), the 1-Wasserstein distance with respect to the tree metric dT is given by

W1,dT (µ, ν) =

∫
T
|µ(Λ(x))− ν(Λ(x))| ω(dx). (19)

B Background on Entropy Partial Transport on Metric Spaces with Tree
Metrics

In this section, we revisit the Entropy Partial Transport (EPT) formulation introduced in [42] for
completeness. All theoretical proofs are outlined in Appendix D.

We denote by M(T ) the collection of all nonnegative Borel measures on T with finite total mass.
Let C(T ) denote the space of continuous functions defined on T , and let L∞(T ) denote the space of
Borel measurable functions on T that are essentially bounded with respect to the measure ω. The
space L∞(T ) forms a Banach space when equipped with the norm

∥f∥L∞(T ) := inf {ā ∈ R : |f(x)| ≤ ā for ω-almost every x ∈ T } . (20)

Let M(T × T ) denote the space of all nonnegative Borel measures on T × T with finite total mass.
Given µ, ν ∈ M(T ), define the set of admissible partial couplings as

Π≤(µ, ν) := {γ ∈ M(T × T ) : γ1 ≤ µ, γ2 ≤ ν} , (21)

where γ1 and γ2 represent the marginals of γ on the first and second coordinates, respectively.

For any γ ∈ Π≤(µ, ν), let f1 and f2 be the Radon–Nikodym derivatives of γ1 with respect to µ and
γ2 with respect to ν, respectively. That is, γ1 = f1µ and γ2 = f2ν, with the constraints 0 ≤ f1 ≤ 1
µ-a.e. and 0 ≤ f2 ≤ 1 ν-a.e.

Let w : T ! [0,∞) be a b-Lipschitz continuous and nonnegative weight function, defined by

w(x) = a1 dT (x, x0) + a0, (22)

where x0 ∈ T , a1 ∈ [0, b], and a0 ∈ [0,∞). Here, dT (·, ·) denotes the tree metric over T . We use
the entropy function F : [0,∞) ! (0,∞) given by

F (s) = |s− 1|.

Letting m̄ := min{µ(T ), ν(T )}, and fixing m ∈ [0, m̄], the EPT problem is formulated as

Wm(µ, ν) := inf
γ∈Π≤(µ,ν)
γ(T ×T )=m

[
F1(γ1 | µ) + F2(γ2 | ν) + b

∫
T ×T

dT (x, y) γ(dx, dy)

]
, (23)
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where the regularization terms are defined as the weighted relative entropies

F1(γ1 | µ) :=
∫
T
w(x)F (f1(x))µ(dx), F2(γ2 | ν) :=

∫
T
w(x)F (f2(x)) ν(dx). (24)

To handle the mass constraint γ(T ×T ) = m, we introduce a Lagrange multiplier λ ∈ R and instead
consider the relaxed objective

ETλ(µ, ν) := inf
γ∈Π≤(µ,ν)

[
F1(γ1 | µ) + F2(γ2 | ν) + b

∫
T ×T

(dT (x, y)− λ) γ(dx, dy)

]
. (25)

We now expand the entropic terms and define

Cλ(γ) :=
∫
T
w(x)µ(dx) +

∫
T
w(x) ν(dx)−

∫
T
w(x) γ1(dx)−

∫
T
w(x) γ2(dx)

+ b

∫
T ×T

(dT (x, y)− λ) γ(dx, dy), (26)

so that Equation (25) is equivalent to
ETλ(µ, ν) = inf

γ∈Π≤(µ,ν)
Cλ(γ). (27)

As established in [42, Theorem 3.1, part i)], the solutions to Equation (23) and Equation (27) are
related via the identity

Wm(µ, ν) = ETλ(µ, ν) + λbm. (28)
Inspired by the construction proposed by Caffarelli and McCann [12], we recast the entropy-
regularized partial transport problem in Equation (27) as a classical optimal transport (OT) problem
between balanced measures. To achieve this, we augment the original domain T by introducing an
auxiliary point ŝ /∈ T , and define the extended space T̂ := T ∪ {ŝ}.

We then lift the unbalanced measures µ, ν ∈ M(T ) to balanced counterparts supported on T̂ :
µ̂ := µ+ ν(T ) δŝ, ν̂ := ν + µ(T ) δŝ, (29)

where δŝ denotes the Dirac measure at point ŝ. Next, we define a cost function ĉ : T̂ × T̂ ! R that
extends the original transport cost:

ĉ(x, y) :=


b [dT (x, y)− λ] if x, y ∈ T ,

w(x) if x ∈ T and y = ŝ,

w(y) if y ∈ T and x = ŝ,

0 if x = y = ŝ.

(30)

Using this extended cost, we formulate the balanced OT problem over µ̂ and ν̂:

KT(µ̂, ν̂) := inf
γ̂∈Γ(µ̂,ν̂)

∫
T̂ ×T̂

ĉ(x, y) γ̂(dx, dy), (31)

where the set of admissible transport plans Γ(µ̂, ν̂) is given by:

Γ(µ̂, ν̂) :=
{
γ̂ ∈ M(T̂ × T̂ ) : γ̂(U × T̂ ) = µ̂(U), γ̂(T̂ × U) = ν̂(U), ∀ Borel set U ⊂ T̂

}
.

(32)

The connection between the entropy-regularized partial transport formulation ETλ in Equation (27)
and the balanced optimal transport problem KT in Equation (31) is established by the following
result.
Proposition B.1 (Equivalence of ETλ and KT). Let µ, ν ∈ M(T ). Then the two formulations
coincide:

ETλ(µ, ν) = KT(µ̂, ν̂). (33)
Furthermore, the optimal plans γ for the partial transport problem and γ̂ for the balanced transport
problem are related by:

γ̂ = γ + (1− f1)µ⊗ δŝ + δŝ ⊗ (1− f2)ν + γ(T × T ) δ(ŝ,ŝ), (34)
where f1 and f2 are the Radon–Nikodym derivatives of the marginals of γ with respect to µ and ν,
respectively.
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The detailed proof is provided in Appendix §D.1. Note that KT corresponds to a classical optimal
transport problem defined between two balanced measures over the extended space T̂ and governed
by the cost function ĉ. This allows us to invoke standard OT duality theory, such as [12, Corollary 2.6],
to obtain a variational dual formulation for ETλ, as described below.
Theorem B.2 (Dual Representation of ETλ). The dual problem associated with the entropy-
regularized partial transport functional ETλ(µ, ν) is given by:

ETλ(µ, ν) = sup

{∫
T
f (dµ− dν) : f ∈ L

}
− bλ

2
[µ(T ) + ν(T )] , (35)

where the admissible function class L is defined as

L :=

{
f ∈ C(T ) : −w − bλ

2
≤ f ≤ w +

bλ

2
, |f(x)− f(y)| ≤ b dT (x, y) for all x, y ∈ T

}
.

The proof of Theorem B.2 is deferred to Appendix §D.2. To obtain a tractable approximation of
the dual problem, we introduce a regularization based on a restricted class of test functions. Let r
denote the root of the tree T , and let ω be the associated length measure on T . For a fixed parameter
a ∈ [0, bλ

2 + w(r)], define the function class La to consist of all functions f : T ! R of the form:

f(x) = s+

∫
[r,x]

g(y)ω(dy), (36)

where s is a constant satisfying

s ∈
[
−w(r)− bλ

2
+ a, w(r) +

bλ

2
− a

]
, (37)

and g ∈ L∞(T ) is a bounded function with ∥g∥L∞(T ) ≤ b.

The a-regularized entropy partial transport is then defined as:

ẼT
a

λ(µ, ν) := sup
f∈La

{∫
T
f (dµ− dν)

}
− bλ

2
[µ(T ) + ν(T )] . (38)

This regularized formulation admits an explicit closed-form expression:

Proposition B.3 (Closed-Form Solution for ẼT
a

λ). For µ, ν ∈ M(T ), we have:

ẼT
a

λ(µ, ν) =

∫
T
|µ(Λ(x))− ν(Λ(x))| ω(dx)

− bλ

2
[µ(T ) + ν(T )] +

(
w(r) +

bλ

2
− a

)
|µ(T )− ν(T )| . (39)

The proof is provided in Appendix §D.3. We now compare the original entropy transport value ETλ

with its regularized approximation ẼT
a

λ:

Proposition B.4 (Comparison Bounds between ETλ and ẼT
a

λ). The following inequalities hold:

ETλ(µ, ν) ≤ ẼT
0

λ(µ, ν), (40)
and if the condition

[4LT − λ]b ≤ 2w(r), where LT := max
x∈T

ω([r, x]), (41)

is satisfied, then

ẼT
a

λ(µ, ν) ≤ ETλ(µ, ν) (42)

for all a such that 2bLT ≤ a ≤ bλ
2 + w(r).

The proof appears in Appendix §D.4. For 0 ≤ a < bλ
2 + w(r), recall that the regularized transport

cost is defined as:
da(µ, ν) := ẼT

a

λ(µ, ν) +
bλ

2
[µ(T ) + ν(T )] . (43)

This cost function defines a genuine metric, as shown below:
Proposition B.5 (Metric Structure of da). (M(T ), da) is a complete metric space.

The proof is presented in Appendix §D.5.
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Figure 6: An illustration of the tree system construction is presented in the two-dimensional space
R2, though the method readily generalizes to higher dimensions. The process starts with a collection
of infinite lines arranged without any inherent structure. All pairwise intersections among these lines
are identified (some of which may not be visible in the figure due to the lines’ unbounded nature). A
subset of intersections is selected and marked in red to indicate those to be discarded. The remaining
intersections are retained to enforce a tree structure on the system—ensuring that any two points
lying on the lines are connected by a unique path that passes only through the preserved intersections.
These remaining intersections act as the essential nodes that define the tree topology. Once the red
(discarded) intersections are removed, the resulting configuration forms the desired tree system.

C Background on Tree-Sliced Wasserstein Distance on Euclidean Spaces

This section reviews foundational concepts underlying the Tree-Sliced Wasserstein distance defined
over Tree Systems. To ensure completeness, we revisit key definitions and theoretical formulations;
detailed proofs and additional exposition are available in [81, 80].

C.1 Tree System

Line. A line in the Euclidean space Rd is specified by a tuple (x, θ) ∈ Rd × Sd−1 and is expressed
parametrically as x+ t · θ for t ∈ R. Throughout, we use l = (xl, θl) ∈ Rd × Sd−1 to denote a line,
where xl denotes the source point and θl the direction vector.

System of lines. Given an integer k ≥ 1, a system of k lines in Rd refers to a collection of k such
lines. The notation (Rd × Sd−1)k is abbreviated as Ld

k, representing the space of systems of k lines
in Rd. An element in this space, commonly denoted by L, corresponds to a specific system of lines.

Tree System. A system L is said to be connected if the union of all points lying on the constituent
lines forms a connected subset of Rd. By selectively removing certain intersection points between the
lines, one can enforce a tree structure on L—yielding a tree system—in which any two points are
connected by a unique path. An illustration of this construction is provided in Figure 6.
Remark C.1. The term tree system is used because there is a unique path between any two points,
analogous to the definition of trees in graph theory.

Beginning with the remaining intersections, we employ the concepts of disjoint union and quotient
topology [31] to construct a tree system by coherently gluing together multiple copies of R. This
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topological framework induces a natural metric, under which the resulting space satisfies the properties
of a tree metric space.

Sampling Procedure for Chain-Structured Tree Systems. The space of tree systems is inherently
rich and diverse, primarily due to the wide range of possible underlying tree topologies. [81] presents
a general framework that accommodates arbitrary tree structures, while placing particular emphasis
on a subclass of chain-like trees. The following describes the sampling procedure for generating tree
systems with this chain-based architecture:

Step 1. Draw an initial point x1 ∼ µ1 and a direction θ1 ∼ ν1, where µ1 is a probability measure on
Rd and ν1 is a measure on the unit sphere Sd−1.

Step i. For each subsequent node, sample ti ∼ µi and θi ∼ νi, then compute xi = xi−1 + ti · θi−1.
Here, µi is a distribution over R and νi over Sd−1.

All distributions µi and νi are assumed to be mutually independent. Specifically, we consider the
following choices: The initial position distribution µ1 is supported on a bounded subset of Rd, such
as the uniform distribution over the cube [−1, 1]d, i.e., U([−1, 1]d); For i > 1, each µi is defined
on a bounded interval of R—for example, U([−1, 1]); Finally, each direction θi is drawn from a
distribution over the unit sphere, e.g., the uniform distribution U(Sd−1). An example of such a tree
system is illustrated in Figure 6.
Remark C.2. This generative process induces a probability measure σ on the space T of all chain-
structured tree systems produced via this construction.

C.2 A Variant of Radon Transform for Systems of Lines

Let L1(Rd) denote the space of Lebesgue integrable functions on Rd, equipped with the standard
L1 norm ∥ · ∥1. Consider a configuration of k lines L ∈ Ld

k. A real-valued function f defined on
the domain L̄ consists of all points of L, is said to be integrable over the line system if the following
condition holds:

∥f∥L :=
∑
l∈L

∫
R
|f(tx, l)| dtx < ∞. (44)

The set of such functions is denoted by L1(L), representing the space of Lebesgue integrable functions
over the line system L. Recall the standard (k − 1)-simplex:

∆k−1 =

{
(al)l∈L ∈ Rk | al ≥ 0,

∑
l∈L

al = 1

}
. (45)

Define the space C(Rd × Ld
k,∆k−1) as the set of continuous maps from Rd × Ld

k to ∆k−1, referred
to as splitting maps. Given a line system L ∈ Ld

k and a splitting map α ∈ C(Rd × Ld
k,∆k−1), we

define a linear operator that projects a function f ∈ L1(Rd) to the line system L as follows:
Rα

Lf : L̄ −! R (46)

(x, l) 7−!

∫
Rd

f(y) · α(y,L)l · δ (tx − ⟨y − xl, θl⟩) dy, (47)

where δ denotes the Dirac delta function in one dimension, and (xl, θl) encodes the location and
direction of line l. It can be shown that Rα

Lf belongs to L1(L) for any f ∈ L1(Rd), and furthermore
satisfies the inequality

∥Rα
Lf∥L ≤ ∥f∥1.

Hence, the operator Rα
L : L1(Rd) ! L1(L) is well-defined. These properties are proven in [80].

Extending this to all line systems, we define the Radon transform on Systems of Lines as follows. For
a fixed splitting map α ∈ C(Rd × Ld

k,∆k−1), define:

Rα : L1(Rd) −!
∏

L∈Ld
k

L1(L) (48)

f 7−! (Rα
Lf)L∈Ld

k
. (49)

If the splitting map α is invariant under the Euclidean group E(d)—the group of all isometries of
Rd—then the operator Rα is injective.
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C.3 Tree-Sliced Wasserstein Distance for Probability Measures on Euclidean Spaces

Let µ, ν ∈ P(Rd) be probability measures. For a tree-structured system of lines L ∈ T and an
E(d)-invariant splitting map α ∈ C(Rd × Ld

k,∆k−1), the transform Rα
L pushes forward µ and ν to

corresponding measures Rα
Lµ and Rα

Lν on L. Since each L ∈ T is equipped with a tree metric dL,
the 1-Wasserstein distance WdL,1 between the transformed measures can be computed. This leads to
the following definition of the Distance-based Tree-Sliced Wasserstein (Db-TSW) [80] distance:

Db-TSW(µ, ν) :=

∫
T

WdL,1 (Rα
Lµ,Rα

Lν) dσ(L), (50)

where σ is a probability measure over the space of tree systems T. It is important to note that the
value of Db-TSW depends on the choice of the tree system space T, the sampling distribution σ,
and the specific E(d)-invariant splitting map α, although these dependencies are omitted from the
notation for brevity. The resulting Db-TSW defines an E(d)-invariant metric on P(Rd).

Remark C.3. As established in [80], if the tree systems consist solely of a single line, the Db-TSW
distance reduces exactly to the classical Sliced Wasserstein (SW) distance on Rd.

Constructing E(d)-Invariant Splitting Maps. The Euclidean group E(d) consists of all transforma-
tions of Rd that preserve pairwise Euclidean distances. As such, this invariance extends not only to
distances between points but also to the shortest distance from a point to a line. Given a point x ∈ Rd

and a system of lines L ∈ Ld
k, define the distance from x to a line l ∈ L by:

d(x,L)l = inf
y∈l

∥x− y∥2. (51)

This quantity is preserved under the action of E(d), meaning that any function constructed solely
from the collection {d(x,L)l}l∈L will inherit E(d)-invariance.

Based on this observation, invariant splitting maps is constructed by applying a post-processing
function β : Rk ! ∆k−1 to the vector of distances. The resulting splitting map,

α(x,L)l = β ({d(x,L)l}l∈L) , (52)

is guaranteed to be E(d)-invariant for any choice of continuous β. Empirically, effective performance
in applications is achieved when β is taken to be the softmax function with a tunable scaling parameter
ξ > 0. This yields the practical definition:

α(x,L)l = softmax ({ξ · d(x,L)l}l∈L) , (53)

which distributes weights across lines in L according to their proximity to x, while respecting the
geometric symmetries of the Euclidean space.

Remark C.4. The concepts of equivariance and invariance are widely employed in machine learning
to ensure model robustness under transformations that preserve the semantic or structural properties
of the input. Such principles are foundational in the design of architectures that respect inherent sym-
metries within data. Applications of equivariant models span various domains, including equivariant
graph neural networks [71, 19, 82], equivariant metanetworks [86, 78, 88, 36], parameter symmetry
[30, 26, 85], and optimization [91], among others.

D Theoretical Proofs

To ensure completeness, we provide full derivations of the result, closely following the methodology
of [42].

D.1 Proof for Proposition B.1

To ensure completeness, we provide full derivations of the result, closely following the methodology
of [42].

Proof. We begin by proving the inequality KT(µ̂, ν̂) ≤ ETλ(µ, ν). Let γ ∈ Π≤(µ, ν) be any
admissible partial transport plan, and define γ̂ according to the expression in Equation (34). By
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construction, γ̂ ∈ Γ(µ̂, ν̂). Then, evaluating the cost of γ̂ under the extended transport objective
yields:

KT(µ̂, ν̂) ≤
∫
T̂ ×T̂

ĉ(x, y) γ̂(dx, dy)

= b

∫
T ×T

[dT (x, y)− λ] γ(dx, dy)

+

∫
T
w(x) [1− f1(x)]µ(dx) +

∫
T
w(x) [1− f2(x)] ν(dx). (54)

Taking the infimum over all γ ∈ Π≤(µ, ν) on the right-hand side implies:

KT(µ̂, ν̂) ≤ ETλ(µ, ν). (55)

We now establish the reverse inequality, i.e., KT(µ̂, ν̂) ≥ ETλ(µ, ν). Let γ̂ ∈ Γ(µ̂, ν̂) be any feasible
coupling in the balanced OT problem, and let γ be its restriction to T × T . Then, by [42, Lemma
3.2], we have γ ∈ Π≤(µ, ν) and the decomposition in Equation (34) holds. We now compute the
total cost of γ̂ under ĉ:∫

T̂ ×T̂
ĉ(x, y) γ̂(dx, dy) = b

∫
T ×T

[dT (x, y)− λ] γ(dx, dy)

+

∫
T
w(x) [1− f1(x)]µ(dx) +

∫
T
w(x) [1− f2(x)] ν(dx)

≥ ETλ(µ, ν). (56)

Taking the infimum over all admissible γ̂ ∈ Γ(µ̂, ν̂) yields the desired inequality:

KT(µ̂, ν̂) ≥ ETλ(µ, ν). (57)

Combining both bounds, we conclude the equivalence:

KT(µ̂, ν̂) = ETλ(µ, ν). (58)

The correspondence between optimal couplings γ and γ̂ follows directly from the construction and
identities established above.

D.2 Proof for Theorem B.2

To ensure completeness, we provide full derivations of the result, closely following the methodology
of [42].

Proof. We begin by establishing the intermediate result:

ETλ(µ, ν) = sup
(u,v)∈K

[∫
T
u(x)µ(dx) +

∫
T
v(x) ν(dx)

]
, (59)

where the admissible set K is defined as

K :=

{
(u, v) ∈ L1(µ)× L1(ν)

∣∣∣∣ u(x) ≤ w(x), ∀x ∈ T ,

− bλ+ inf
x∈T

[b dT (x, y)− w(x)] ≤ v(y) ≤ w(y), ∀y ∈ T ,

u(x) + v(y) ≤ b[dT (x, y)− λ], ∀x, y ∈ T
}
.

This identity follows from the dual representation of KT(µ̂, ν̂) via Proposition B.1 and [12, Corollary
2.6], which yields:

ETλ(µ, ν) = sup
û∈L1(µ̂), v̂∈L1(ν̂)
û(x)+v̂(y)≤ĉ(x,y)

[∫
T̂
û(x) µ̂(dx) +

∫
T̂
v̂(y) ν̂(dy)

]
=: I. (60)
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We aim to show that this supremum I coincides with

J := sup
(u,v)∈K

[∫
T
u(x)µ(dx) +

∫
T
v(x) ν(dx)

]
. (61)

To show I ≥ J , let (u, v) ∈ K. Extend these functions to T̂ by setting:

û(x) :=

{
u(x) if x ∈ T ,

0 if x = ŝ,
v̂(x) :=

{
v(x) if x ∈ T ,

0 if x = ŝ.

Since (u, v) ∈ K, it follows directly from the definition of ĉ that û(x) + v̂(y) ≤ ĉ(x, y) for all
x, y ∈ T̂ . Consequently:

I ≥
∫
T̂
û(x) µ̂(dx) +

∫
T̂
v̂(x) ν̂(dx)

=

∫
T
u(x)µ(dx) +

∫
T
v(x) ν(dx), (62)

which implies I ≥ J .

To prove the reverse inequality I ≤ J , let (û, v̂) be a maximizer for I . Without loss of generality,
we can normalize û(ŝ) = 0 by observing that replacing (û, v̂) with (û− û(ŝ), v̂ + û(ŝ)) preserves
admissibility and the objective value. Moreover, define:

v(y) := inf
x∈T̂

[ĉ(x, y)− û(x)] ∀y ∈ T̂ . (63)

Then v̂(y) ≤ v(y), and (û, v) remains admissible and achieves the same supremum, so we may
further assume v̂(y) = infx[ĉ(x, y)− û(x)] and û(ŝ) = 0. In particular,

v̂(ŝ) = inf
x∈T̂

[ĉ(x, ŝ)− û(x)] . (64)

To proceed, we define w(ŝ) := 0 and consider two cases based on the structure of û and v̂.

Case 1. Suppose that
inf
x∈T̂

[w(x)− û(x)] ≥ 0. (65)

In this case, observe that û(ŝ) = 0 by assumption. Since

ĉ(ŝ, ŝ)− û(ŝ) = 0 and inf
x∈T

[ĉ(x, ŝ)− û(x)] = inf
x∈T

[w(x)− û(x)] ≥ 0,

we conclude that
v̂(ŝ) = inf

x∈T̂
[ĉ(x, ŝ)− û(x)] = 0. (66)

Next, for all y ∈ T̂ , we bound v̂(y) from above:

v̂(y) = inf
x∈T̂

[ĉ(x, y)− û(x)] ≤ ĉ(ŝ, y)− û(ŝ) = w(y), (67)

where we have used û(ŝ) = 0.

To lower-bound v̂(y) for y ∈ T , note that û(x) ≤ w(x) for all x ∈ T , and w(ŝ) = 0. Therefore,

v̂(y) = inf
x∈T̂

[ĉ(x, y)− û(x)]

≥ inf
x∈T̂

[ĉ(x, y)− w(x)]

= inf
x∈T

[b(dT (x, y)− λ)− w(x)]

= −bλ+ inf
x∈T

[b dT (x, y)− w(x)] . (68)
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Combining both bounds, we find that v̂(y) satisfies all constraints in the definition of K, and û ≤ w
holds by assumption. Hence, (û, v̂) ∈ K. We now compute the dual objective:

I =

∫
T̂
û(x) µ̂(dx) +

∫
T̂
v̂(x) ν̂(dx)

=

∫
T
û(x)µ(dx) +

∫
T
v̂(x) ν(dx) + v̂(ŝ)µ(T )

=

∫
T
û(x)µ(dx) +

∫
T
v̂(x) ν(dx) (69)

≤ J. (70)

Thus, under this case, the supremum I is bounded above by J , completing the proof for Case 1.

Case 2. Suppose now that
inf
x∈T̂

[w(x)− û(x)] < 0. (71)

As in Case 1, we deduce that

v̂(ŝ) = inf
x∈T

[w(x)− û(x)] < 0, (72)

and the dual objective becomes

I =

∫
T
û(x)µ(dx) +

∫
T
v̂(x) ν(dx) + µ(T ) · inf

T
[w − û] . (73)

Define a truncated version of û by setting:

ũ(x) := min{û(x), w(x)}. (74)

This ensures that ũ(x) ≤ w(x) and, since û(ŝ) = 0, we also have ũ(ŝ) = 0. Furthermore, for all
x, y ∈ T̂ ,

ũ(x) + v̂(y) ≤ ĉ(x, y), (75)

due to the pointwise minimum structure of ũ and the feasibility of (û, v̂).

Since infx∈T [w(x)− û(x)] < 0, there exists x0 ∈ T such that û(x0) > w(x0). Thus, at x0, we
have ũ(x0) = w(x0) and therefore

inf
T

[w − ũ] ≤ 0. (76)

On the other hand, since ũ(x) ≤ w(x) everywhere, it follows that

inf
T

[w − ũ] = 0. (77)

We now rewrite the first two terms in Equation (73) as:∫
T
û(x)µ(dx) + µ(T ) · inf

T
[w − û] =

∫
T
ũ(x)µ(dx) +

∫
{x:û(x)>w(x)}

[û(x)− w(x)]µ(dx)

+ µ(T ) · inf
T
[w − û]

≤
∫
T
ũ(x)µ(dx). (78)

Substituting this into Equation (73), we obtain the upper bound:

I ≤
∫
T
ũ(x)µ(dx) +

∫
T
v̂(x) ν(dx). (79)

We now define a new function ṽ : T ! R by

ṽ(y) := inf
x∈T̂

[ĉ(x, y)− ũ(x)] . (80)
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By construction, ṽ(y) ≥ v̂(y) and for all y ∈ T ,

ṽ(y) ≤ ĉ(ŝ, y)− ũ(ŝ) = w(y). (81)

Furthermore, using ũ(x) ≤ w(x) and the form of ĉ, we obtain a lower bound:

ṽ(y) = inf
x∈T̂

[ĉ(x, y)− ũ(x)]

≥ inf
x∈T

[b(dT (x, y)− λ)− w(x)]

= −bλ+ inf
x∈T

[b dT (x, y)− w(x)] . (82)

Combining these, we find that (ũ, ṽ) ∈ K. Hence,

I ≤
∫
T
ũ(x)µ(dx) +

∫
T
ṽ(x) ν(dx) ≤ J. (83)

This completes the analysis for Case 2 and thus confirms the desired equality:

ETλ(µ, ν) = sup
(u,v)∈K

[∫
T
u(x)µ(dx) +

∫
T
v(x) ν(dx)

]
, (84)

where

K :=

{
(u, v) : u ≤ w, −bλ+ inf

x∈T
[b dT (x, y)− w(x)] ≤ v(y) ≤ w(y),

u(x) + v(y) ≤ b(dT (x, y)− λ)

}
. (85)

We are now ready to complete the proof of the theorem. Since the weight function w is b-Lipschitz, it
satisfies the following inequality for all x ∈ T :

−w(x) ≤ inf
y∈T

[b dT (x, y)− w(y)] . (86)

Let (u, v) ∈ K be arbitrary. Define the following sequence of dual potentials via infimal convolutions:

v∗(x) := inf
y∈T

{b[dT (x, y)− λ]− v(y)} = −bλ+ inf
y∈T

[b dT (x, y)− v(y)] ≥ u(x), (87)

v∗∗(y) := inf
x∈T

{b[dT (x, y)− λ]− v∗(x)} = −bλ+ inf
x∈T

[b dT (x, y)− v∗(x)] ≥ v(y). (88)

Now, observe that the lower and upper bounds for v imply that

−bλ+ inf
x∈T

[b dT (x, y)− w(x)] ≤ v(y) ≤ w(y).

Using this together with Equation (86), we can derive pointwise bounds on v∗ for any x ∈ T :

v∗(x) ≤ −bλ− v(x) ≤ − inf
y∈T

[b dT (x, y)− w(y)] ≤ w(x), (89)

v∗(x) ≥ −bλ+ inf
y∈T

[b dT (x, y)− w(y)] ≥ −bλ− w(x). (90)

We now show that v∗ is b-Lipschitz. Let x1, x2 ∈ T and fix an arbitrary ε > 0. By the definition of
infimum, there exists y1 ∈ T such that

b dT (x1, y1)− v(y1) < v∗(x1) + bλ+ ε.

Then,

v∗(x2)− v∗(x1) ≤ b dT (x2, y1)− v(y1)− [b dT (x1, y1)− v(y1)] + ε

= b [dT (x2, y1)− dT (x1, y1)] + ε ≤ b dT (x1, x2) + ε. (91)

Since this holds for all ε > 0, we conclude that

v∗(x2)− v∗(x1) ≤ b dT (x1, x2). (92)
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By symmetry, the reverse inequality also holds, so

|v∗(x1)− v∗(x2)| ≤ b dT (x1, x2), (93)

which confirms that v∗ is b-Lipschitz.

Thus, v∗ belongs to the following class of functions:

L′ := {f ∈ C(T ) : −bλ− w(x) ≤ f(x) ≤ w(x), |f(x)− f(y)| ≤ b dT (x, y)} . (94)

This concludes the key regularity properties needed for the dual formulation.

We now establish the identity v∗∗ = −bλ− v∗. To begin, note from the definition that:

v∗∗(y) = inf
x∈T

[b(dT (x, y)− λ)− v∗(x)] ≤ −bλ− v∗(y). (95)

On the other hand, since v∗ is b-Lipschitz, we have for all x ∈ T :

−v∗(y) ≤ b dT (x, y)− v∗(x),

which implies
−bλ− v∗(y) ≤ inf

x∈T
[b(dT (x, y)− λ)− v∗(x)] = v∗∗(y). (96)

Combining both bounds, we conclude that

v∗∗(y) = −bλ− v∗(y). (97)

Using this identity, we now bound the dual objective for any (u, v) ∈ K:∫
T
u(x)µ(dx) +

∫
T
v(x) ν(dx) ≤

∫
T
v∗(x)µ(dx) +

∫
T
v∗∗(x) ν(dx)

=

∫
T
v∗(x)µ(dx)−

∫
T
v∗(x) ν(dx)− bλ ν(T )

= −bλ ν(T ) +

∫
T
v∗(x) (dµ− dν). (98)

Since v∗ ∈ L′ as shown earlier, we conclude:∫
T
u(x)µ(dx) +

∫
T
v(x) ν(dx) ≤ −bλ ν(T ) + sup

f∈L′

∫
T
f(x) (dµ− dν). (99)

Using the variational characterization of ETλ(µ, ν) (proved earlier), we deduce the upper bound:

ETλ(µ, ν) ≤ −bλ ν(T ) + sup
f∈L′

∫
T
f(x) (dµ− dν). (100)

To prove the reverse inequality, let f ∈ L′ and define:

u := f, v := −bλ− f.

Then:
u(x) ≤ w(x), v(x) ≤ −bλ− (−bλ− w(x)) = w(x),

and

v(x) = −bλ− f(x) ≥ −bλ− w(x)

≥ −bλ+ inf
y∈T

[b dT (x, y)− w(y)] . (101)

Moreover, the b-Lipschitz property of f yields:

u(x) + v(y) = f(x)− f(y)− bλ ≤ b (dT (x, y)− λ), (102)

which confirms that (u, v) ∈ K. Applying the variational formula for ETλ, we obtain:

−bλ ν(T ) +

∫
T
f(x) (dµ− dν) =

∫
T
u(x)µ(dx) +

∫
T
v(x) ν(dx) ≤ ETλ(µ, ν). (103)
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Since this holds for all f ∈ L′, we deduce:

−bλ ν(T ) + sup
f∈L′

∫
T
f(x) (dµ− dν) ≤ ETλ(µ, ν). (104)

Putting both directions together, we conclude:

ETλ(µ, ν) = −bλ ν(T ) + sup
f∈L′

∫
T
f(x) (dµ− dν). (105)

To recover the symmetric form in Theorem B.2, let f = f̃ − bλ
2 . Then, f ∈ L′ if and only if f̃ ∈ L.

Furthermore:∫
T
f(x) (dµ− dν) =

∫
T

(
f̃(x)− bλ

2

)
(dµ− dν) =

∫
T
f̃(x) (dµ− dν)− bλ

2
[µ(T )− ν(T )] .

(106)

Substituting into Equation (105), we obtain the final expression:

ETλ(µ, ν) = sup
f∈L

∫
T
f(x) (dµ− dν)− bλ

2
[µ(T ) + ν(T )] , (107)

which completes the proof.

D.3 Proof for Proposition B.3

To ensure completeness, we provide full derivations of the result, closely following the methodology
of [42].

Proof. We begin by expanding the definition of the regularized entropy transport:

ẼT
a

λ(µ, ν) = −bλ

2
[µ(T ) + ν(T )]

+ sup

{
s · [µ(T )− ν(T )] : s ∈

[
−bλ

2
− w(r) + a, w(r) +

bλ

2
− a

]}
+ sup

{∫
T

(∫
[r,x]

g(y)ω(dy)

)
(µ− ν)(dx) : ∥g∥L∞(T ) ≤ b

}
. (108)

We now evaluate each supremum separately:

- The first supremum corresponds to maximizing a linear function over a symmetric interval. Therefore,
it evaluates to [

w(r) +
bλ

2
− a

]
· |µ(T )− ν(T )|. (109)

- The second supremum is equivalent to the dual representation of a Lipschitz-type transport energy
over tree-structured domains. As established in [21, pp. 575–576], we have:

sup

{∫
T

(∫
[r,x]

g(y)ω(dy)

)
(µ− ν)(dx) : ∥g∥L∞(T ) ≤ b

}
=

∫
T
|µ(Λ(x))− ν(Λ(x))|ω(dx).

(110)

Combining both components, we obtain the closed-form expression:

ẼT
a

λ(µ, ν) =

∫
T
|µ(Λ(x))− ν(Λ(x))|ω(dx)− bλ

2
[µ(T ) + ν(T )]

+

[
w(r) +

bλ

2
− a

]
· |µ(T )− ν(T )| . (111)

This concludes the proof.
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D.4 Proof for Proposition B.4

To ensure completeness, we provide full derivations of the result, closely following the methodology
of [42].

Proof. We begin with the upper bound ETλ(µ, ν) ≤ ẼT
0

λ(µ, ν). This follows directly from the
inclusion L ⊂ L0 and the dual representation of ETλ established in Theorem B.2.

Next, consider a satisfying

2bL(T ) ≤ a ≤ bλ

2
+ w(r). (112)

We will show that under this condition, the inclusion La ⊂ L holds. Then, by Theorem B.2, it follows
that

ẼT
a

λ(µ, ν) ≤ ETλ(µ, ν). (113)

To prove La ⊂ L, we need to show that any function f ∈ La satisfies

−w(x)− bλ

2
≤ f(x) ≤ w(x) +

bλ

2
, ∀x ∈ T . (114)

Let f ∈ La. Then by definition,

f(x) = s+

∫
[r,x]

g(y)ω(dy), (115)

where s ∈
[
−w(r)− bλ

2 + a, w(r) + bλ
2 − a

]
and ∥g∥L∞(T ) ≤ b. Using this, we bound f(x) from

above:

f(x) ≤ s+ ∥g∥L∞(T ) · ω([r, x])

≤ w(r) +
bλ

2
− a+ bL(T )

≤ w(x) +
bλ

2
− a+ 2bL(T )

≤ w(x) +
bλ

2
. (116)

For the lower bound, we have:

f(x) ≥ s− ∥g∥L∞(T ) · ω([r, x])

≥ −w(r)− bλ

2
+ a− bL(T )

≥ −w(x)− bλ

2
+ a− 2bL(T )

≥ −w(x)− bλ

2
. (117)

Hence, f satisfies the defining constraints of L and we conclude that f ∈ L. Therefore, La ⊂ L for
all a ≥ 2bL(T ).

It follows from Theorem B.2 and the definition of ẼT
a

λ that

ẼT
a

λ(µ, ν) ≤ ETλ(µ, ν). (118)

This concludes the proof.

D.5 Proof for Proposition B.5

To ensure completeness, we provide full derivations of the result, closely following the methodology
of [42].
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Proof. We first observe that the metric da depends solely on the value of the weight function at
the root r of the tree T . This follows directly from the definition of La, where only w(r) appears
explicitly.

By construction, we have the variational characterization:

da(µ, ν) = sup

{∫
T
f (dµ− dν) : f ∈ La

}
. (119)

Let us now verify the metric properties:

(Non-negativity) Clearly, da(µ, ν) ≥ 0 from the supremum structure. Moreover, da(µ, µ) = 0 for
all µ by linearity of the integral. Now suppose that da(µ, ν) = 0. Using the closed-form expression
for ẼT

a

λ in Proposition B.3, this implies:[
w(r) +

bλ

2
− a

]
· |µ(T )− ν(T )|+

∫
T
|µ(Λ(x))− ν(Λ(x))| ω(dx) = 0. (120)

Since the first term has a strictly positive coefficient by assumption (a < w(r) + bλ
2 ), we must have

µ(T ) = ν(T ) and

µ(Λ(x)) = ν(Λ(x)) for all x ∈ T . (121)

By [42, Lemma A.2], this implies that µ = ν, establishing identity of indiscernibles.

(Symmetry) Note that if f ∈ La, then −f ∈ La by the symmetric definition of the function class.
Therefore, from Equation (119), we obtain

da(µ, ν) = da(ν, µ). (122)

(Triangle Inequality) The triangle inequality holds immediately from the supremum definition over
a convex, symmetric function class:

da(µ, σ) + da(σ, ν) ≥
∫
T
f (dµ− dσ) +

∫
T
f (dσ − dν) =

∫
T
f (dµ− dν), (123)

for all f ∈ La, and taking the supremum yields the inequality.

Hence, da satisfies all properties of a metric on M(T ), and the proof is complete.

D.6 Proof for Equation (13)

Proof. We recall Equation (13). Let f ∈ L1(Rd) be a non-negative density function. The Radon
Transform Rα maps f to a density defined on a tree system T , while preserving the total mass:

∥f∥1 =

∫
Rd

f(x) dx = ∥Rα
T f∥T , for all T ∈ T. (124)

To establish this property, we first observe that the non-negativity of α ensures that the transform
preserves non-negativity: if f ≥ 0, then Rα

T f ≥ 0, implying that the transformed function is a
valid density. The preservation of total mass then follows directly from the definition of Rα, which
integrates over linearly parameterized subsets aligned with the structure of T .

∥Rα
T f∥T =

∑
l∈T

∫
R
|Rα

T f(tx, l)| dtx

=
∑
l∈L

∫
R

∣∣∣∣∫
Rd

f(y) · α(y,L)l · δ (tx − ⟨y − xl, θl⟩) dy

∣∣∣∣ dtx
=
∑
l∈L

∫
R

(∫
Rd

f(y) · α(y,L)l · δ (tx − ⟨y − xl, θl⟩) dy

)
dtx

=
∑
l∈L

∫
Rd

(∫
R
f(y) · α(y,L)l · δ (tx − ⟨y − xl, θl⟩) dtx

)
dy
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=
∑
l∈L

∫
Rd

f(y) · α(y,L)l ·
(∫

R
δ (tx − ⟨y − xl, θl⟩) dtx

)
dy

=
∑
l∈L

∫
Rd

f(y) · α(y,L)l dy

=

∫
Rd

f(y) ·
∑
l∈L

α(y,L)l dy

=

∫
Rd

f(y) dy

= ∥f∥1. (125)

The proof is completed.

D.7 Proof for Theorem 3.3

Proof. We consider the expression

PartialTSW(µ, ν) =

∫
T
da(µT , νT ) dσ(T ), (126)

and show that it defines a metric on M(Rd). Since the splitting map α is E(d)-invariant, the Radon
Transform Rα is injective; that is, for any f ∈ L1(Rd), if Rα

T f = 0 for all T ∈ T, then f = 0
(see [80]). We now verify the three properties required for PartialTSW to be a metric on M(Rd).

Positive definiteness. For µ, ν ∈ P(Rn), it is clear that PartialTSW(µ, µ) = 0 and
PartialTSW(µ, ν) ≥ 0. Moreover, if PartialTSW(µ, ν) = 0, then da(µT , νT ) = 0 for all T ∈ T.
Since da is a metric on M(T ), it follows that µT = νT for all T . Hence, Rα

T fµ = Rα
T fν for all

T ∈ T. By the injectivity of Rα, we conclude that fµ = fν , and thus µ = ν.

Symmetry. For any µ, ν ∈ M(Rn), we have:

PartialTSW(µ, ν) =

∫
T
da(µT , νT ) dσ(T )

=

∫
T
da(νT , µT ) dσ(T ) (127)

= PartialTSW(ν, µ). (128)

Therefore, PartialTSW(µ, ν) = PartialTSW(ν, µ).

Triangle inequality. For µ1, µ2, µ3 ∈ M(Rn), we compute:

PartialTSW(µ1, µ2) + PartialTSW(µ2, µ3)

=

∫
T
da(µ1,T , µ2,T ) dσ(T ) +

∫
T
da(µ2,T , µ3,T ) dσ(T )

=

∫
T
(da(µ1,T , µ2,T ) + da(µ2,T , µ3,T )) dσ(T )

≥
∫
T
da(µ1,T , µ3,T ) dσ(T )

= PartialTSW(µ1, µ3), (129)

where the inequality follows from the triangle inequality satisfied by da on each tree T .

In conclusion, PartialTSW satisfies all properties of a metric on the space M(Rd).

We aim to show that PartialTSW is E(d)-invariant, meaning that for any g ∈ E(d), the following
holds:

PartialTSW(µ, ν) = PartialTSW(g♯µ, g♯ν), (130)
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where g♯µ and g♯ν denote the pushforwards of µ and ν, respectively, under the Euclidean transforma-
tion g : Rd ! Rd.

Let T ∈ T be a tree system given by T = {li = (xi, θi)}ki=1. Then, under the action of g = (Q, a),
we have

gT = {gli = (Qxi + a,Qθi)}ki=1. (131)

We also note that g♯fµ = fg♯µ and g♯fν = fg♯ν . Since |det(Q)| = 1, we compute:

Rα
gL(g♯fµ)(gx, gl) =

∫
Rd

(g♯fµ)(y) · α(y, gL)l · δ (tgx − ⟨y − xgl, θgl⟩) dy

=

∫
Rd

fµ(g
−1y) · α(y, gL)l · δ (tx − ⟨y − xgl, θgl⟩) dy

=

∫
Rd

fµ(g
−1gy) · α(gy, gL)l · δ (tx − ⟨gy − xgl, θgl⟩) d(gy)

=

∫
Rd

fµ(y) · α(y,L)l · δ (tx − ⟨gy − xgl, θgl⟩) dy

=

∫
Rd

fµ(y) · α(y,L)l · δ (tx − ⟨Qy + a−Qxl − a,Qθl⟩) dy

=

∫
Rd

fµ(y) · α(y,L)l · δ (tx − ⟨Q(y − xl), Qθl⟩) dy

=

∫
Rd

fµ(y) · α(y,L)l · δ (tx − ⟨y − xl, θl⟩) dy

= Rα
Lfµ(x, l). (132)

A similar computation gives:

Rα
gL(g♯fν)(gx, gl) = Rα

Lfν(x, l). (133)

Moreover, since g acts isometrically on tree systems, the induced measures satisfy:

da(µT , νT ) = da((g♯µ)gT , (g♯ν)gT ). (134)

Thus, we compute:

PartialTSW(g♯µ, g♯ν) =

∫
T
da((g♯µ)T , (g♯ν)T ) dσ(T )

=

∫
T
da((g♯µ)gT , (g♯ν)gT ) dσ(gT )

=

∫
T
da(µT , νT ) dσ(gT )

=

∫
T
da(µT , νT ) dσ(T )

= PartialTSW(µ, ν). (135)

We conclude that PartialTSW is E(d)-invariant.

Remark D.1. We omit almost-sure conditions in the above proof, as they are straightforward to
verify and would otherwise obscure the main argument.

E Experimental Details

E.1 Algorithm for Partial Tree-Sliced Wasserstein Distance

The computation of the Partial Tree-Sliced Wasserstein (PartialTSW) distance is outlined in Algo-
rithm 1. This procedure estimates the distance by averaging costs derived from multiple tree-based
projections of the input measures.
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Algorithm 1 Partial Tree-Sliced Wasserstein distance.

Input: Measures µ and ν in M(Rd), number of tree systems L, number of lines in tree system k,
space of tree systems T, splitting maps α, parameters a, b, λ, total mass µ(T ), ν(T ).
Scale total mass of µ and ν such that µ(Rd) = µ(T ), ν(Rd) = ν(T ).
for i = 1 to L do

Sampling x ∈ Rd and θ1, . . . , θk
i.i.d∼ U(Sdθ−1).

Contruct tree system Li = {(x, θ1), . . . , (x, θk)}.
Projecting µ and ν onto Ti to get Rα

Li
µ and Rα

Li
ν.

Compute ̂PartialTSW(µ, ν) = (1/L) · da(Rα
Li
µ,Rα

Li
ν).

end for
Return: ̂PartialTSW(µ, ν).

E.2 Computational and Memory Complexity Analysis

This section details the computational and memory demands of our proposed PartialTSW distance.
We consider input measures µ and ν represented by N samples in a d-dimensional space, with L tree
constructions and k lines per tree.

Table 3 outlines the complexity of key operations. The dominant factors are the distance-based
weight splitting (O(LkNd)) for projecting samples and the sorting of these projected 1D coordinates
(O(LkN logN)). Consequently, the total computational complexity is O(LkNd + LkN logN).
The primary memory consumers are the storage of split weights, tree/line parameters, and the original
data, leading to an overall memory requirement of O(LkN + Lkd+Nd).

Table 3: Detailed complexity analysis for PartialTSW. (N = number of samples, d = dimension, L =
number of trees, k = lines per tree).

Operation Category Specific Steps Involved Computational Cost Memory Cost

Initial Mass Scaling Adjusting sample weights for µ and
ν to meet target total masses.

O(N) O(N)

Distance-Based Weight
Splitting

Calculation of distances from N
points to Lk lines, and subsequent
softmax for weight distribution.

O(LkNd) O(LkN + Lkd+Nd)

Sorting Projected Data Sorting the N projected coordinates
along each of the Lk lines.

O(LkN logN) O(LkN)

Overall Total O(LkNd+ LkN logN) O(LkN + Lkd+Nd)

GPU Memory Optimization for Distance-Based Splitting. The practical GPU memory footprint
for the distance-based splitting step can be significantly lower than a naive theoretical estimate. As
highlighted by [80], this operation involves (1) computing d-dimensional distance vectors from points
to lines, (2) calculating their norms, and (3) applying a softmax function across lines within each
tree to obtain split weights. While a direct implementation might suggest O(LkNd) memory for
storing all intermediate distance vectors, modern deep learning frameworks like PyTorch, when using
compilation tools (e.g., ‘torch.compile’), can perform kernel fusion. This optimization merges these
sequential computations into fewer GPU kernels, potentially allowing large intermediate tensors (like
the full LkN × d distance vectors) to reside in faster, smaller shared memory or be recomputed
on-the-fly, rather than occupying global GPU memory. Consequently, the persistent global memory
primarily stores the essential data: line parameters (O(Lkd)), sample coordinates (O(Nd)), and the
resulting split weights (O(LkN)), aligning with the O(LkN + Lkd+Nd) overall memory profile.

E.3 Empirical Runtime and Memory Performance of PartialTSW

We present an empirical evaluation of the runtime and memory usage of PartialTSW. The experiments
were conducted on a single NVIDIA H100 GPU. We fixed the number of tree iterations L = 10 and
lines per tree k = 4. The analysis varies the number of samples N ∈ {100, 1K, 5K, 10K, 500K}
and the data dimension d ∈ {50, 100, 500, 1000}.
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Figure 7: Empirical runtime (left) and peak memory usage (right) for PartialTSW, varying the number
of samples (N ) and data dimension (d). (L = 10, k = 4).

Runtime Scalability. The empirical results, depicted in Figure 7 (left), illustrate how the runtime of
PartialTSW scales with the number of samples N and the data dimension d. The runtime exhibits
a near-linear increase with N . For instance, processing N = 50, 000 samples takes approximately
five times longer than N = 10, 000 samples (when d, L, k are fixed), which is consistent with
the O(Nd + N logN) dependency on N from our theoretical analysis (Section E.2). Regarding
dimensionality, the runtime also demonstrates a linear dependency on d. For example, increasing d
from 10000 to 50000 (a 5x increase) results in a correspondingly proportional increase in runtime for
a fixed N . This aligns with the O(d) factor in the LkNd term of the complexity. These empirical
observations support the theoretical computational complexity.

Memory Scalability. Figure 7 (right) showcases the memory consumption characteristics of Par-
tialTSW. The peak memory usage scales linearly with both the number of samples N and the
dimension d. This behavior is predictable and directly corresponds to our theoretical memory com-
plexity of O(LkN + Lkd + Nd), indicating efficient memory utilization that grows manageably
with data size and dimensionality.

E.4 Sample Complexity and Estimator Stability

We first clarify the roles of the two key parameters in our method.

• Lines per Tree (k): This is a structural parameter that defines the ground-truth distance
PartialTSWk(µ, ν). As discussed in the TSW literature, using k > 1 enhances the method’s
capacity to capture complex topological and structural features of the data.

• Number of Trees (L): This is the Monte Carlo (MC) estimation parameter. Our method
approximates the ground-truth distance by averaging over L independently sampled random
trees.

As discussed in the computational complexity analysis in Section 3.3, the total computational cost
is proportional to the total number of 1D projections, which is N = Lk. For a fixed computational
budget N , this creates a natural trade-off: increasing k improves topological expressiveness, but
requires decreasing L, which in turn affects the stability of the MC estimate.

In our experiments, we tune the structural parameter k for empirical performance and then set
L = N/k to ensure the total number of projections N remains fixed, allowing for a fair comparison
against baselines under the same computational budget.

This approach raises a valid concern about the stability of the estimator, as the MC approximation
error for a fixed k decreases at a rate of O(L−1/2). We therefore provide an empirical analysis of
the estimator’s convergence. We measure stability using the Coefficient of Variation (CoV = σ/µ), a
normalized metric where σ is the standard deviation and µ is the mean of the distance estimate over
multiple runs.

Table 4 shows the CoV as a function of both the MC parameter L and the structural parameter k.
The results empirically verify the expected convergence. For any fixed k, the estimator’s stability
improves (i.e., CoV decreases) as the number of MC samples L increases, aligning with the theoretical
O(L−1/2) rate. For instance, at k = 5, increasing L from 10 to 1000 reduces the CoV by over 14×.

36



Table 4: Estimator stability analysis. The table shows the Coefficient of Variation (CoV = σ/µ) for
the PartialTSW distance as a function of the number of tree slices (L) and the number of lines per
tree (k).

Number of Trees (L) k = 5 k = 10 k = 100

10 0.1098 0.1016 0.0456
50 0.0526 0.0252 0.0183
100 0.0263 0.0239 0.0091
500 0.0105 0.0133 0.0070
1000 0.0076 0.0070 0.0041
10000 0.0029 0.0018 0.0023
20000 0.0016 0.0024 0.0010

This analysis confirms that in our large-scale experiments, where we use a high number of projections
(e.g., L ≥ 1000), the resulting distance estimate is stable and reliable.

E.5 Discussion on Hyperparameters of Evaluated Methods

This section briefly outlines the key hyper-parameters for each evaluated Unbalanced Optimal
Transport (UOT) and Partial Optimal Transport (POT) method and their respective roles.

SPOT [9]. The hyperparameter k specifies the number of points to be transported, thereby defining
the partial nature of the matching between distributions.

SOPT [2]. The regularization parameter λ controls the "partialness" of the transport by influencing
the total amount of mass that is optimally transported between distributions.

Sinkhorn [74]. The hyperparameter reg is the entropic regularization coefficient that smooths the
optimal transport plan. The hyperparameter regm is the marginal regularization coefficient that
penalizes deviations from the prescribed marginal constraints, thus allowing for mass variation.

SUOT and USOT [7]. The hyper-parameters ρ1 and ρ2 are regularization parameters. They
respectively control the cost of deviating from the source and target marginals in the sliced domain,
enabling unbalanced transport by permitting mass creation or destruction.

PAWL [13]. The hyperparameter k the number of points to be transported, effectively determining
the extent of partiality in this unbalanced optimal transport formulation.

UOT-FM [22]. The hyperparameter λ influences the regularization of marginal constraints, thereby
controlling the degree to which the masses of the coupled distributions must be preserved during
transport.

ULightOT [28]. The hyperparameter τ governs the extent of mass conservation, adjusting how
strictly the total mass of the transported distribution must adhere to the original or target masses.

Partial-TSW (Ours). The mass parameter ν(T ) specifies the proportion of the target distribution’s
mass to be matched by the transport plan. The source distribution’s mass proportion, µ(T ), is
typically fixed at 1, so adjusting ν(T ) controls the partiality of the matching against the target.

E.6 Comparing Computational Efficiency

To ensure consistent and fair results, two warm-up runs were performed for each method and each
sample size n before conducting 10 timed repetitions. The average runtime and peak memory usage
(for GPU methods) were then recorded. Unless otherwise specified (as in the discussion on varying
d below), these experiments were conducted with data of dimension d = 2 and for sample sizes n
ranging from 102 to 105.

Since hyperparameter choices can significantly affect algorithmic runtime, the specific settings used
for each method in this runtime comparison are detailed below. For a general description of these
hyperparameters and their roles, please refer to Appendix §E.5.
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Figure 8: Runtime comparison for PartialTSW and POT/UOT solvers over data dimension d.

Common settings for the compared sliced-based methods (SOPT, SPOT, USOT, SUOT, PAWL)
included L = 10 projections. For PartialTSW (Ours), we used num_trees = 5 and num_lines = 2.
This configuration for PartialTSW, where the product of num_trees × num_lines = 10, offers
a comparable number of one-dimensional sorting operations to the L = 10 setting in other sliced
methods, aiming for a fair comparison. Specific hyperparameters for each method were then set as
follows:

• SOPT: Regularization parameter λ = 1.0.

• SPOT: The number of transported points k was set to n (the input sample size for each
distribution), implying a full matching was performed. (Number of projections L = 10, as
stated above).

• Sinkhorn: Entropic regularization reg = 0.1, marginal KL regularization regm = 1.0,
maximum number of Sinkhorn iterations ‘numItermax’ = 100, and stopping threshold
‘stopThr’ = 10−5.

• USOT and SUOT: Regularization parameters ρ1 = 0.01 and ρ2 = 1.0.

• PAWL: The number of transported points k was set to n (implying a full matching).

• PartialTSW (Ours): The target mass proportion ν(T ) was set to 1.0 (with the source mass
proportion µ(T ) typically assumed to be 1.0). This choice was made because ν(T ) does not
affect the computational runtime of the PartialTSW implementation used in this benchmark.

Furthermore, we present a runtime comparison for varying data dimensions d in Figure 8. The results
indicate that the runtime is not significantly affected when d increases.

The runtime comparisons for all methods were conducted with an Intel Xeon Platinum 8580 CPU
and an NVIDIA H100 GPU.

E.7 Noisy Point Cloud Gradient Flow

We used clean point cloud data obtained from [2] for the dragon and bunny shapes. Each clean
dataset contains 10k data points. We randomly select and add 7% noise points to the target point
cloud (bunny). Inspired by [2], the noise is sampled from the region [−0.6M, 0.6M ]3 where
M = maxi∈{1,n}(||xi||), where xi is the point in the target. In total, the target point cloud consists
of 10k clean points and an additional 700 noise points. We use L = 10 projections for SW, and
L = 5 trees, k = 2 lines for TSW and PartialTSW. All methods are trained using Adam optimizer
with a learning rate of 10−3 over 300 epochs. The results are shown in Figure 3.

All experiments were conducted with an Intel Xeon Platinum 8580 CPU and an NVIDIA H100 GPU.
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E.8 Robust Generative Model

E.8.1 Implementation detail

Pre-training an Autoencoder (AE). An Autoencoder (AE) is pre-trained to provide 2D latent
representations z ∈ R2 for MNIST digits. We employ a Wasserstein Autoencoder with MMD
regularization (WAE-MMD) [77] architecture. The AE is trained for 50 epochs using the Adam
optimizer with a learning rate of 3× 10−5 and a batch size of 256. The WAE-MMD loss uses a λ
hyperparameter of 500.0 to balance reconstruction and MMD regularization terms. For the MMD
term, we match the aggregated posterior q(z) to a uniform prior distribution p(z) ∼ U [−1, 1]2. This
encourages the learned latent space to reside approximately within [−1, 1]2. The training data for
the AE consists of MNIST digits 0 and 1, balanced and augmented as described below. The latent
dimension is set to d = 2.

The Autoencoder, AE : [0, 1]1×28×28 ! [0, 1]1×28×28, architecture is as follows:

• Encoder:
– Input: 1× 28× 28 (MNIST image)
– Conv2d(in_channels = 1, out_channels = 32, kernel_size = 4, stride =
2, padding = 1) ! ReLU (32× 14× 14)

– Conv2d(32, 64, kernel_size = 4, stride = 2, padding = 1) ! ReLU (64× 7× 7)
– Flatten: 64× 7× 7 = 3136 features
– Linear(in_features = 3136, out_features = 512) ! ReLU
– Linear(512, latent_dim = 2) (for mean µ)
– Linear(512, latent_dim = 2) (for log-variance log σ2)
– Latent vector z = µ+ ϵ⊙ σ (Reparameterization trick)

• Decoder:
– Input: z ∈ Rlatent_dim=2

– Linear(latent_dim = 2, 512) ! ReLU
– Linear(512, 3136) ! ReLU
– Reshape to 64× 7× 7

– ConvTranspose2d(64, 32, kernel_size = 4, stride = 2, padding = 1) ! ReLU
(32× 14× 14)

– ConvTranspose2d(32, 1, kernel_size = 4, stride = 2, padding = 1) ! Sigmoid
(1× 28× 28)

Dataset Augmentation for Auxiliary Models. To ensure robust training of the AE and the digit
classifier, we prepare a balanced and augmented training set from MNIST digits 0 and 1. The original
MNIST training set contains an unequal number of samples for these digits. We balance these classes
by applying data augmentation to the minority class until its sample count matches the majority class.
Augmentations include random affine transformations (degrees: ±15◦, translation: ±0.15 of image
dimension, scale: 0.85− 1.15×) and random rotations (±15◦). This balanced and augmented dataset
is used exclusively for training the AE and the binary (0 vs. 1) digit classifier. We found that having
a balanced dataset for training AE would lead to a balanced latent space for MNIST Digit 0 and 1.

Pre-training an MNIST Digit Classifier. A convolutional neural network classifier is pre-trained
to distinguish between MNIST digits 0 and 1. It is trained for 20 epochs on the balanced and
augmented dataset of these two digits, using the Adam optimizer with a learning rate of 1× 10−3

and a Cross-Entropy loss function. This classifier achieves approximately 99.99% accuracy on a test
set of unseen MNIST 0s and 1s and is subsequently used (with frozen weights) to evaluate the class
labels of images generated by the main generative model.

The Classifier, C : [0, 1]1×28×28 ! R2, architecture is as follows:

• Input: 1× 28× 28 (decoded image)
• Conv2d(1, 32, kernel_size = 3, stride = 1, padding = 1) ! ReLU (32× 28× 28)
• MaxPool2d(kernel_size = 2, stride = 2) (32× 14× 14)
• Conv2d(32, 64, kernel_size = 3, stride = 1, padding = 1) ! ReLU (64× 14× 14)
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• MaxPool2d(kernel_size = 2, stride = 2) (64× 7× 7)
• Flatten: 64× 7× 7 = 3136 features
• Linear(3136, 128) ! ReLU
• Linear(128, num_classes = 2) (Logits for classes 0 and 1)

Constructing the Observed (Contaminated) Dataset Xobs The observed dataset Xobs for training
the generator G consists of latent representations. These are obtained by encoding MNIST images
of digits 0 (target class) and 1 (outlier class) using the pre-trained AE’s encoder. Specifically, Xobs
is a mixture comprising 90% samples from the true latent distribution of digit 0 (X0) and 10%
samples (outliers) from the true latent distribution of digit 1 (X1). To construct this, we sample latent
vectors z′ from the prior U [−1, 1]2, decode them to images x′ = AEdec(z

′), and classify x′ using
the pre-trained 0/1 classifier. If x′ is classified as 0 (or 1), z′ is added to a pool for X0 (or X1). We
collect samples until we can form a dataset of Nobs = 50, 000 latent points, with the 90/10 proportion.
These latent points constitute Xobs and are scaled to approximately reside within [−1, 1]2.

Training the Generator G. The generator G : N (0, I2) ! [−1, 1]2 is a multi-layer perceptron
(MLP) designed to map 2D Gaussian noise Z ∼ N (0, I2) to the target latent space. The generator is
trained by minimizing a (Partial) Optimal Transport distance D(G(Z), Xobs), where Z is a batch of
noise samples. Training is performed for 30 epochs using the Adam optimizer with a learning rate
of 2 × 10−4 and a batch size of 256. Specific (P)OT-based distances D used for PartialTSW and
baseline methods are detailed in the main paper.

The generator architecture is:

• Input: Z ∈ R2 ∼ N (0, I2)

• Linear(2, 4) ! BatchNorm1d(4) ! LeakyReLU(0.2)
• Linear(4, 8) ! BatchNorm1d(8) ! LeakyReLU(0.2)
• Linear(8, 2) ! Tanh (Output zgen ∈ [−1, 1]2)

Evaluation. To evaluate the generator’s ability to learn the target distribution X0 while ignoring
outliers from X1, we employ two main criteria:

1. Outlier Rate: We generate Neval = 5, 000 latent samples zgen = G(Z). These latent
samples are decoded into images x̂ = AEdec(zgen) using the pre-trained AE’s decoder. The
resulting images are then classified by the pre-trained 0/1 digit classifier. The outlier rate
is the percentage of generated images classified as digit 1. A lower rate indicates better
robustness.

2. Sample Quality and Diversity: We qualitatively assess the generated samples by visualizing
the decoded images x̂ and their corresponding latent representations zgen. We look for
high-fidelity generation of digit 0 and good coverage of its variations, as indicated by a
well-distributed latent space for the generated samples classified as 0.

Performance summaries, including outlier rates and visual comparisons, are provided in Figure 4 and
Table 1 in the main text.

Hardware Settings. The experiments for all methods were conducted on a system equipped with an
Intel Xeon Platinum 8580 CPU and one NVIDIA H100 GPU.

E.8.2 Ablation result for baselines

We evaluate the impact of hyperparameter settings on each method’s ability to isolate the target
MNIST 0 distribution from the 10% MNIST 1 outliers present in the training data. The following
summarizes these ablation results (Figures 9–15), focusing on the percentage of generated MNIST 1
outliers and, where applicable, qualitative aspects of the learned distributions and generated samples.

SPOT [9]. Figure 9 demonstrates SPOT’s varying success in isolating the target MNIST 0 data from
the 10% 1 outliers, contingent on its hyperparameter k. While very small k values (e.g., k = 10,
yielding 45.62% MNIST 1 outliers) or very large k values (e.g., k = 256, yielding 16.20% outliers)
result in poor outlier rejection, an optimal range for k around 200− 210 reduces the MNIST 1 outlier
rate to 6− 7%. This indicates substantial but incomplete removal of the 10% outliers.
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SOPT [2]. SOPT’s effectiveness in discarding the 10% MNIST 1 outliers is modulated by its
regularization parameter λ, as shown in Figure 10. The lowest outlier percentage achieved by SOPT
is 13.28% (at λ = 0.01), which still exceeds the initial 10% contamination level. Larger values of λ
lead to even higher and relatively stable outlier rates (around 15− 16.42%), indicating a persistent
difficulty for SOPT in cleanly separating the target distribution in this setup.

Sinkhorn [74]. Sinkhorn shows the potential for complete removal of the 10% MNIST 1 outliers
when its entropic regularization reg and marginal regularization regm are appropriately co-tuned
(Figure 11). Specifically, setting reg = regm at values of 0.5, 0.7, or 0.9 results in 0% MNIST 1
outlier generation, successfully achieving the task’s objective. However, imbalanced or overly small
regularization values lead to substantial outlier contamination (e.g., 52.48% for reg = regm = 0.3,
or 70.56% for reg = 0.9, regm = 0.1). Moreover, qualitative inspection of the results (Figure 11,
particularly for reg = regm ∈ {0.5, 0.7, 0.9}) reveals that while Sinkhorn effectively removes
outliers, the generated latent distribution for MNIST 0 digits appears clustered, and the corresponding
decoded images may lack diversity compared to the true distribution. This suggests a potential
trade-off between perfect outlier rejection and capturing the full diversity of the target class for this
method under these settings.

SUOT [7]. The performance of SUOT in the task of removing 10% MNIST 1 outliers is consistently
poor across the explored range of its marginal regularization parameters ρ1 and ρ2, as detailed in
Figure 12. The method yields a high MNIST 1 outlier rate of approximately 41% regardless of the
hyperparameter settings tested, indicating a failure to distinguish the target MNIST 0 distribution
from the contaminants.

USOT [7]. USOT, while performing better than SUOT, still struggles to fully reject the 10%
MNIST 1 outliers (Figure 13). Across the tested range of its ρ1 and ρ2 hyperparameters, USOT yields
a consistent MNIST 1 outlier rate of approximately 17.08%. This suggests that while it mitigates
some contamination, it does not fully isolate the target MNIST 0 distribution in this scenario.

PAWL [13]. PAWL demonstrates exceptional success in the goal of removing 10% MNIST 1 outliers,
as shown in its ablation study (Figure 14). It consistently achieves a 0% MNIST 1 outlier rate across
all tested values of its hyperparameter k (from 10 to 256). This indicates PAWL’s strong capability
to identify and learn the target MNIST 0 distribution while completely ignoring outliers, exhibiting
robust performance across a wide range of k. However, as noted in the main text and suggested by
qualitative inspection of Figure 14, this strong outlier rejection by PAWL may be accompanied by
less sample diversity, with its learned latent space showing heavily concentrated clusters.

PartialTSW (Ours). Our PartialTSW method shows strong capabilities in removing the 10%
MNIST 1 outliers, with performance critically depending on its mass parameter ν(T ) (Figure 15).
Complete outlier rejection (0% MNIST 1 outliers) is achieved for ν(T ) values between 0.3 and 0.6.
Setting ν(T ) closer to the true inlier fraction of 0.9 (which yields 9.72% MNIST 1 outliers) leads to
the model fitting the outliers. This highlights that optimal robustness for PartialTSW is achieved when
ν(T ) is chosen to be somewhat less than the actual inlier data proportion in the contaminated dataset.
Qualitatively, as seen in Figure 15 and highlighted in our main findings, the settings achieving
complete outlier rejection (e.g., ν(T ) ∈ [0.3, 0.6]) also yield a well-distributed latent space and
diverse image samples for the MNIST 0 class, effectively capturing the target distribution.
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(a) Dataset with 90% MNIST 0 and 10% MNIST 1 (b) k = 10 ! 45.62% MNIST 1

(c) k = 25 ! 46.36% MNIST 1 (d) k = 50 ! 27.58% MNIST 1

(e) k = 75 ! 18.14% MNIST 1 (f) k = 100 ! 14.86% MNIST 1

(g) k = 200 ! 6.32% MNIST 1 (h) k = 200 ! 7.12% MNIST 1

(i) k = 210 ! 7.06% MNIST 1 (j) k = 256 ! 16.20% MNIST 1

Figure 9: Ablation study of SPOT [9] for robust image generation. The figure illustrates the percentage
of generated MNIST 1 digits (outliers), along with the corresponding learned latent distributions
(left) and decoded image samples (right).
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(a) Dataset with 90% MNIST 0 and 10% MNIST 1 (b) λ = 0.01 ! 13.28% MNIST 1

(c) λ = 0.05 ! 15.02% MNIST 1 (d) λ = 0.1 ! 16.20% MNIST 1

(e) λ = 0.5 ! 16.42% MNIST 1 (f) λ = 1 ! 16.20% MNIST 1

(g) λ = 10 ! 16.20% MNIST 1 (h) λ = 100 ! 16.20% MNIST 1

Figure 10: Ablation study of SOPT [2] for robust image generation. The figure illustrates the
percentage of generated MNIST 1 digits (outliers), along with the corresponding learned latent
distributions (left) and decoded image samples (right).
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(a) Dataset with 90% MNIST 0 and 10% MNIST 1 (b) reg = 0.3, regm = 0.3 ! 52.48% MNIST 1

(c) reg = 0.4, regm = 0.4 ! 23.76% MNIST 1 (d) reg = 0.5, regm = 0.5 ! 0% MNIST 1

(e) reg = 0.7, regm = 0.7 ! 0% MNIST 1 (f) reg = 0.9, regm = 0.9 ! 0% MNIST 1

(g) reg = 0.9, regm = 0.1 ! 70.56% MNIST 1 (h) reg = 0.1, regm = 0.9 ! 14.48% MNIST 1

(i) reg = 0.5, regm = 0.3 ! 40.00% MNIST 1 (j) reg = 0.3, regm = 0.5 ! 14.92% MNIST 1

Figure 11: Ablation study of Sinkhorn [74] for robust image generation. The figure illustrates the
percentage of generated MNIST 1 digits (outliers), along with the corresponding learned latent
distributions (left) and decoded image samples (right).
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(a) Dataset with 90% MNIST 0 and 10% MNIST 1 (b) ρ1 = 0.01, ρ2 = 0.01 ! 41% MNIST 1

(c) ρ1 = 1, ρ2 = 1 ! 41% MNIST 1 (d) ρ1 = 100, ρ2 = 100 ! 41% MNIST 1

(e) ρ1 = 200, ρ2 = 200 ! 41% MNIST 1 (f) ρ1 = 1000, ρ2 = 1000 ! 41% MNIST 1

(g) ρ1 = 1, ρ2 = 1000 ! 41% MNIST 1 (h) ρ1 = 1000, ρ2 = 1 ! 41% MNIST 1

Figure 12: Ablation study of SUOT [7] for robust image generation. The figure illustrates the
percentage of generated MNIST 1 digits (outliers), along with the corresponding learned latent
distributions (left) and decoded image samples (right).
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(a) Dataset with 90% MNIST 0 and 10% MNIST 1 (b) ρ1 = 0.01, ρ2 = 0.01 ! 17.08% MNIST 1

(c) ρ1 = 1, ρ2 = 1 ! 17.08% MNIST 1 (d) ρ1 = 100, ρ2 = 100 ! 17.08% MNIST 1

(e) ρ1 = 200, ρ2 = 200 ! 17.08% MNIST 1 (f) ρ1 = 1000, ρ2 = 1000 ! 17.08% MNIST 1

(g) ρ1 = 1, ρ2 = 1000 ! 17.08% MNIST 1 (h) ρ1 = 1000, ρ2 = 1 ! 17.08% MNIST 1

Figure 13: Ablation study of USOT [7] for robust image generation. The figure illustrates the
percentage of generated MNIST 1 digits (outliers), along with the corresponding learned latent
distributions (left) and decoded image samples (right).
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(a) Dataset with 90% MNIST 0 and 10% MNIST 1 (b) k = 10 ! 0% MNIST 1

(c) k = 25 ! 0% MNIST 1 (d) k = 50 ! 0% MNIST 1

(e) k = 75 ! 0% MNIST 1 (f) k = 100 ! 0% MNIST 1

(g) k = 200 ! 0% MNIST 1 (h) k = 256 ! 0% MNIST 1

Figure 14: Ablation study of PAWL [13] for robust image generation. The figure illustrates the
percentage of generated MNIST 1 digits (outliers), along with the corresponding learned latent
distributions (left) and decoded image samples (right).
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(a) Dataset with 90% MNIST 0 and 10% MNIST 1 (b) ν(T ) = 0.3 ! 0% MNIST 1

(c) ν(T ) = 0.4 ! 0% MNIST 1 (d) ν(T ) = 0.5 ! 0% MNIST 1

(e) ν(T ) = 0.6 ! 0% MNIST 1 (f) ν(T ) = 0.7 ! 0.08% MNIST 1

(g) ν(T ) = 0.8 ! 2.18% MNIST 1 (h) ν(T ) = 0.9 ! 9.72% MNIST 1

Figure 15: Ablation study of Partial-TSW (Ours) for robust image generation. The figure illustrates
the percentage of generated MNIST 1 digits (outliers), along with the corresponding learned latent
distributions (left) and decoded image samples (right).
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E.9 Imbalance Image to Image Translation

E.9.1 Implementation detail

This section outlines the experimental setup for the imbalanced image-to-image translation task,
specifically converting “Young” faces to “Adult” faces.

Dataset. Our experimental dataset and preprocessing follow [41]. We utilize the FFHQ dataset [37]
of 1024 × 1024 images. These images are encoded into a 512-dimensional latent space using a
pre-trained ALAE autoencoder [64]. The resulting latent representations are categorized into two
classes: “Young” and “Adult”, based on a cutoff age of 45 years. This process yields an imbalanced
dataset comprising approximately 38,000 “Young” latent vectors and 10,500 “Adult” latent vectors.
The translation is performed within this 512-dimensional latent space.

Translation Accuracy. To evaluate the accuracy of the translation from the “Young” to the “Adult”
domain, we adapt the procedure from [28]. A classifier is pre-trained on the 512-dimensional latent
vectors to distinguish between “Young” and “Adult” images. This pre-trained classifier, which
achieves 99% accuracy on a held-out test set of latent vectors, is then used to assess whether
the translated latent vectors M(X) (where X are latents from the “Young” domain) are correctly
classified as “Adult”.

Perceptual Similarity. We measure the perceptual similarity between the original images (recon-
structed from X) and the translated images (reconstructed from M(X)) using the Learned Perceptual
Image Patch Similarity (LPIPS) metric [90]. For LPIPS calculations, we use the AlexNet backbone
with pre-trained weights. While some prior work, such as [28], employed attribute-specific metrics
like “Keep Accuracy” (e.g., for preserving gender), we selected LPIPS to offer a more comprehensive
assessment of overall visual fidelity post-translation, rather than focusing on a single attribute.

UOT-FM Baseline. We compare against Unbalanced Optimal Transport Flow Matching (UOT-
FM) [22]. Following [28], we parameterize vector field vθ using a 2-layer feed-forward network with
512 hidden neurons and ReLU activation. We apply their default configuration for Flow Matching.
Consistent with the approach in [28], we perform an ablation study over the regularization parameter
λ, which controls the penalization of deviations from marginal constraints.

ULightOT Baseline. We also include ULightOT [28] as a baseline. We adapted the publicly available
code and default models for our experiments. Following the methodology in [28], we ablate the
parameter τ , which governs the degree of mass conservation in the transport plan. Our empirical
observations indicate that the performance of ULightOT saturates for τ > 1000. For instance,
increasing τ to 10000 yielded negligible changes in the Accuracy-LPIPS trade-off compared to
τ = 1000, as shown by the results (e.g., in Figure 5 of the main text).

Mapping Network Architecture.

For methods such as SW, Db-TSW, and our PartialTSW, the mapping network M is implemented us-
ing a ResidualMLP. The input to this network is a latent vector z ∈ R512. The specific ResidualMLP
configuration used has an input/output dimension of 512, with num_hidden_blocks=0 and
hidden_dim_multiplier=1.

The core of this network, denoted as MLPcore, processes the input z through the following sequence
of operations:

• Apply an initial linear transformation: Linear(512, 512)
• Followed by layer normalization: LayerNorm(512)
• Then, apply the GELU activation function: GELU()
• Apply dropout with a rate of 0.1: Dropout(0.1)
• Finally, apply an output linear projection: Linear(512, 512)

Let the output of this sequential MLPcore block be MLPcore(z).

The final output of the mapping network M(z) is obtained by adding a scaled residual connection to
the original input:

M(z) = z + α · MLPcore(z)

where α is a learnable scalar parameter (analogous to LayerScale) that is initialized to 0.1.
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Table 5: Comparison of model size and training time per epoch for the Young-to-Adult translation.
Method Number of Parameters Time (s/epoch)
SW 526,337 6
Db-TSW 526,337 25
PartialTSW (Ours) 526,337 25
UOT-FM 788,224 35
ULightOT 5,263,380 60

Table 6: Full image-to-image translation results, averaged over 5 runs. Our method, PartialTSW,
consistently demonstrates a superior trade-off between Accuracy (") and LPIPS (#) across all
translation directions.

Method Parameter W!M M!W A!Y
Acc (%) " LPIPS # Acc (%) " LPIPS # Acc (%) " LPIPS #

SW – 93.95 0.4418 91.68 0.4546 89.82 0.4041
Db-TSW – 94.13 0.4436 92.07 0.4546 89.58 0.4022

UOT-FM

ϵ = 0.0005 49.21 0.3914 85.52 0.4269 79.77 0.3836
ϵ = 0.005 70.69 0.4531 94.19 0.4749 92.91 0.4129
ϵ = 0.05 80.28 0.4899 95.40 0.5106 97.40 0.4693
ϵ = 0.1 81.50 0.5198 97.91 0.5369 98.43 0.4828

ULightOT

τ = 50.0 76.36 0.4102 85.91 0.4086 84.31 0.3452
τ = 250.0 86.36 0.4466 92.81 0.4516 90.49 0.3906
τ = 1000.0 88.07 0.4557 93.91 0.4626 92.00 0.4060
τ = 10000.0 88.75 0.4589 94.37 0.4663 92.49 0.4112

PartialTSW (Ours)

ν(T ) = 0.3 99.66 0.6058 99.13 0.6088 97.64 0.5595
ν(T ) = 0.5 98.04 0.5377 95.36 0.5493 93.76 0.4928
ν(T ) = 0.9 95.67 0.4515 94.39 0.4682 91.16 0.4024
ν(T ) = 1.1 92.03 0.4408 90.62 0.4533 89.34 0.4011

E.9.2 Additional Experimental Results

This section provides further details on model parameterization and presents a complete set of results
for all image-to-image translation directions.

Parameterization and Efficiency. As detailed in the implementation section, we adhered to the
official configurations for the baseline methods. We utilized a Gaussian Mixture Model (GMM)
for ULightOT [28] and a flow-matching network for UOT-FM [22], ensuring a faithful and robust
comparison.

For our method (PartialTSW) and the other standard OT baselines (SW [10], Db-TSW [80]), we
employed the ResidualMLP architecture described in Appendix E.9. While a GMM parameterization
is theoretically feasible for our method, we chose the neural network as it represents a more common,
flexible, and standard approach for generative modeling tasks in recent literature.

This choice of parameterization is not only standard but also highly efficient. As shown in Table 5,
our ResidualMLP approach is significantly more lightweight and faster per epoch than the complex
models required by UOT-FM and ULightOT. This demonstrates that PartialTSW is not only effective
but also computationally efficient.

Results for All Translation Directions. In the main paper, our analysis centered on the Young-to-
Adult (Y!A) translation task. This direction was chosen as it represents the most significant class
imbalance within the dataset. The class distribution of the pre-processed FFHQ latent dataset is as
follows: Young (approximately 15K Man, 23K Woman) and Adult (approximately 7K Man, 3.5K
Woman).

To provide a comprehensive analysis, we conducted additional experiments for all other possible
translation directions: Woman-to-Man (W!M), Man-to-Woman (M!W), and Adult-to-Young
(A!Y). The results, averaged over 5 independent runs, are presented in Table 6.
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These findings confirm that Partial-TSW consistently achieves a superior trade-off between translation
accuracy and perceptual similarity (LPIPS) across all translation settings. For instance, in the W!M
setting, Partial-TSW (with ν(T ) = 0.9) achieves a high accuracy of 95.67% while maintaining a
strong LPIPS of 0.4515. In contrast, for UOT-FM to reach a competitive accuracy (e.g., 81.50%
with ϵ = 0.1), it incurs a significantly worse LPIPS of 0.5198. This pattern, visible across the tasks,
highlights our method’s ability to find a more effective and stable balance between the two competing
objectives.

F Boarder Impacts

The introduction of the PartialTSW in this paper has a substantial societal impact by enhancing the
precision and adaptability of optimal transport methods in various practical applications. This method
can drive progress in numerous fields, such as healthcare, where better image processing techniques
can aid in more accurate medical imaging diagnostics, or in the arts and entertainment industry,
where enhanced generative models can lead to more sophisticated and creative outputs. Furthermore,
the ability to handle dynamic settings efficiently opens new possibilities for real-time data analysis
and decision-making in various sectors, including finance, logistics, and environmental monitoring.
Ultimately, the method contributes to making advanced computational techniques more versatile and
applicable to a broader range of real-world problems, thereby fostering innovation and improving
societal well-being.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations of the work in the Conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes] .
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Justification: We have provided full set of assumptions and complete proof for all theoretical
results in Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have mentioned all information to reproduce the main experimental results
in Appendix E. All necessary details for reproducing the main experimental results are
documented. This includes comprehensive descriptions of network architectures, training
procedures, and specific hyperparameters. Task-specific configurations are outlined in their
respective subsections. The code is also included as supplementary material to further
support reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have provided data and code in the supplemental material, with detailed
instructions to reproduce the results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have provided all information about training and test details in Appendix
E. We have included information on network architectures, optimizer types, batch sizes,
number of training iterations, and the specific hyperparameters used in each experiment.
In particular, Section E.7 describes the experimental setup for the point cloud experiments.
Section E.8 focuses on the robust generative model, and Section E.9 outlines the details for
the image translation task.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Our experimental results are provided with error bars. We report statistical
significance by including the mean and standard deviation over multiple runs in Table 2.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have provided sufficient information about computing resources needed to
reproduce the experiments in Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]
Justification: We have discussed Broader impacts in Appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All the assets used in the paper are properly cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The new assets provided in the paper are well documented, and the documen-
tation is provided alongside the assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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