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ABSTRACT

Urban crime prediction demands scalable methods for large, skewed spatio-
temporal data. We introduce SMART-CARE, an adaptive quadtree-based hier-
archical framework that dynamically partitions urban spaces and refines local
predictors. Given D = {(xi, ti, ci)}Ni=1, SMART-CARE learns f : (x, t) 7→ ĉ
through: (i) variance-driven median splitting with adaptive capacity Tmax and
depth Lmax, (ii) periodic local re-tuning with leaf merging to prevent over-
fragmentation, and (iii) parent→child knowledge transfer for model fine-tuning.
Experiments on NYC and Chicago crime data show SMART-CARE outperforms
uniform grids, static quadtrees, and standard baselines in accuracy and efficiency
while enabling fine-grained localized forecasts.

1 INTRODUCTION

Urban crime forecasting remains challenging due to irregular spatio-temporal patterns and data skew
in heterogeneous urban environments Zhang et al. (2015). Existing approaches struggle to capture
complex dependencies in high-density regions, where skewed distributions obscure local trends and
reduce prediction reliability Safat et al. (2021); Xiong et al. (2019). While recent machine learning
methods have improved accuracy, they often fail to model hierarchical spatial scales-specific pat-
terns essential for both city-wide trends and neighborhood-level variations Groff et al. (2019); Lu
et al. (2021). This limitation underscores the need for adaptive frameworks that dynamically refine
predictions across spatial granularities while maintaining scalability.

The challenges are particularly critical in high-density urban areas, where traditional methods strug-
gle to distinguish recurring patterns from isolated events Mahmud et al. (2016). Data skew in these
regions often leads models to overfit to dense hotspots while neglecting significant crime patterns
in lower-density areas Tayebi et al. (2015); Kennedy et al. (2011). This spatial bias results in poor
generalization across diverse urban geographies Braga et al. (2019); Lin et al. (2017), highlighting
the need for methods that explicitly account for density variations and spatial variance.

Butt et al. (2021) Butt et al. (2021) demonstrate that density-based clustering like HDBSCAN often
produces imbalanced partitions where dense regions overshadow sparse ones, degrading time-series
methods that assume balanced inputs. Their finding that smaller, homogeneous regions yield better
local forecasts motivates partitioning strategies that balance segment sizes while accounting for local
variance—addressing both scalability and accuracy across diverse urban environments.

Recent work by Butt et al. (2024) Butt et al. (2024) explores BiLSTM-based transfer learning for
crime forecasting, pretraining on source regions and fine-tuning on targets. While this approach
learns transferable temporal patterns, it requires substantial pretraining data and compute, risks neg-
ative transfer across heterogeneous regions, and offers limited interpretability. These limitations
highlight the need for more efficient, spatially-aware knowledge transfer mechanisms.

To address these limitations, we propose SMART-CARE, an adaptive quadtree framework that in-
tegrates variance-aware median splitting with hierarchical model refinement. Our approach dynami-
cally adjusts spatial partitions while merging low-density nodes to prevent over-fragmentation. Key
innovations include: (i) feature-propagation, where parent predictions inform child feature vectors,
and (ii) model-inheritance, where child models are warm-started from parent parameters and fine-
tuned locally. We instantiate SMART-CARE with both tree-based and neural architectures, demon-
strating its flexibility. On NYPD and Chicago crime data (2008–2023), SMART-CARE achieves
MAE reductions to 0.92 (average), 0.23 (best-year), and 0.13 (deepest layer), significantly outper-
forming grid-based, clustering, and transfer learning baselines Butt et al. (2021; 2024).
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2 RELATED WORK

Crime prediction research enhances public safety by identifying hotspots using historical data Du
& Ding (2023). While clustering and time-series models address data imbalance and spatial un-
evenness Butt et al. (2021), they often struggle with high spatial variance and density bias, causing
overfitting in heterogeneous regions Mahmud et al. (2016). Furthermore, the absence of hierarchi-
cal refinement limits their scalability across diverse urban settings. These limitations underscore the
need for adaptive, multi-scale systems that balance data and improve predictive accuracy.

Data Imbalance: Crime data often exhibits skewed distributions, with non-crime instances vastly
outnumbering crime events, challenging model performance. Techniques like Bayesian classifica-
tion Tang et al. (2016), SVMs for imbalanced tasks Tang et al. (2008), and synthetic oversampling
methods such as ADASYN He et al. (2008) and SMOTE for regression Torgo et al. (2013) attempt
to address imbalance but risk introducing artifacts that distort the underlying distribution. These
approaches often fail to preserve spatial relationships, leading to inaccurate predictions in dense
regions. This highlights the need for methods that balance geographical segmentation, ensuring
localised accuracy while mitigating the effects of skewed data distributions in crime prediction.

Hierarchical Data Structure: Hierarchical data structures are widely used for spatial tasks, with
recent advancements enhancing crime prediction models. DeepCrime Huang et al. (2018) leverages
a region-category encoder, hierarchical recurrent layers, and attention mechanisms to capture tem-
poral dependencies, achieving notable accuracy. However, its reliance on Gated Recurrent Units
(GRU) incurs high computational overhead for large datasets. Our hierarchical quadtree frame-
work mitigates this by offering scalable, spatially adaptive segmentation, reducing computational
demands while preserving fine-grained prediction accuracy, making it suitable for large-scale crime
prediction across diverse spatial scales.

Zhou et. al., 2019 Zhou et al. (2019) proposed DENSS, a semi-supervised learning framework using
Density Peak Clustering (DPC) with an R-tree index to ensure uniform local densities. While R-
trees employ minimum bounding rectangles (MBRs) for hierarchical spatial organisation, overlap-
ping MBRs increase computational complexity. In contrast, our framework dynamically segments
crime regions into balanced quadrants, reducing data skewness and enhancing scalability. This effi-
cient hierarchical modelling approach enables precise crime predictions across diverse spatial scales,
addressing limitations of overlapping structures and improving performance in heterogeneous crime
environments.

Neural-Based Crime Prediction Neural approaches like GNNs Chai et al. (2022), ST-GCNs Yu
et al. (2017), and Transformers Vaswani et al. (2017) have advanced crime forecasting but face limi-
tations: they require predefined spatial structures, struggle with data skew across density variations,
and suffer from quadratic computational complexity. SMART-CARE overcomes these through
adaptive partitioning that dynamically adjusts to local variance, enabling efficient hierarchical re-
finement with linear scalability while maintaining accuracy across diverse urban regions.

Despite advancements in crime prediction, existing methods struggle with imbalanced, high-density
datasets, hierarchical spatial relationships, and scalability. Techniques like R-trees and clustering
often fail to deliver fine-grained predictions in complex crime environments. To address these, we
propose SMART-CARE, a scalable framework integrating dynamic spatial segmentation, hierarchi-
cal modelling, and efficient learning mechanisms. SMART-CARE leverages adaptive partitioning
and parent-child model refinement to balance data distributions and capture spatio-temporal dynam-
ics, enhancing prediction accuracy. This section details the design and implementation of SMART-
CARE, outlining its components and operational workflow.

3 METHODOLOGY

We introduce the SMART-CARE framework, comprising Spatio-Median Adaptive Recursive Tree
(SMART-QT) for adaptive spatial partitioning and Crime Adaptive Refined Ensemble (CARE) for
hierarchical prediction refinement. SMART-QT partitions urban spaces using variance-aware me-
dian splitting, while CARE enables fine-grained forecasting through feature propagation and model
inheritance across spatial scales.
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Given a datasetD = {(xi, ti, ci)}Ni=1 where xi ∈ Rd contains spatio-temporal features derived from
timestamp ti, and ci ∈ N is the daily crime count, our objective is to learn a predictor f : xi 7→ ĉi.
The features xi include spatial coordinates (longitude, latitude) and temporal encodings (cyclical
hour/month, lagged counts, rolling statistics) extracted from ti. SMART-QT recursively partitions
the spatial domain S ⊂ R2 into nodes {Nj} using median splits constrained by adaptive capacity
Tmax and depth limit Lmax. Each nodeNj contains a subset Dj ⊂ Dtrain and trains a local regressor
fj refined from its parent model. Test samples are routed to appropriate leaves for prediction using
the corresponding fj .

3.1 SMART QUADTREE

The classical quadtree recursively partitions a 2D space into four quadrants when a node contains
more than a fixed threshold M points, with recursion bounded by maximum depth L (Appendix A.1:
Traditional Quadtree). Formally, subdivision occurs if n > M , where n is the point count in a node.
However, this static approach fails to adapt to heterogeneous urban crime data with dense hotspots
and sparse regions. We propose the SMART Quadtree (Spatio-Median Adaptive Recursive Tree)
with four key innovations: (1) adaptive node capacity thresholds derived from data statistics, (2)
adaptive depth limits scaling with dataset size, (3) median-based spatial splitting for balanced par-
titions, and (4) merging of sparse leaf nodes to prevent over-fragmentation (Algorithm 2:SMART
Quadtree Construction).

Adaptive subdivision threshold (Tmax): SMART-QT replaces a fixed node capacity with a
variance-aware, dataset-scaled threshold:

Tmax =
⌈
max

(
Tmin, min

( β

1 + σ2/γ
+
|P |
δ

, Tcap

))⌉
, (1)

where σ2 is the (sample) variance of crime counts in node P and |P | its point count. The lower/upper
clamps Tmin and Tcap are computed by scaling the reference parameters (α, κ) to the dataset size
(detailed in: Dynamic Parameter Scaling). Intuitively, the β/(1+σ2/γ) term reduces Tmax in high-
variance (hotspot) nodes, while the |P |/δ term raises the threshold in already dense nodes to avoid
excessive splitting. Clipping with Tmin and Tcap prevents pathological values in extreme regions.
All parameters (α, β, γ, δ, κ, λ) are auto-scaled by dataset size (Appendix A.2).

Adaptive Tree Depth (Lmax): Unlike classical quadtrees that enforce a globally fixed maximum
depth, SMART-QT dynamically determines the allowable depth for each subtree based on the dataset
size and localised variance in crime patterns. Specifically, the maximum depth is computed as

Lmax = min
(
η · log2(ntotal), log2(ntotal) + 1 + σ2

local

)
, (2)

where ntotal is the total number of points in the dataset and σ2
local denotes the sample variance of

crime counts within the node (computed with ddof = 1). The scaling factor η (e.g., η = 1.5) modu-
lates global complexity. The result is then rounded up to an integer and clamped to a practical range
Lmin ≤ Lmax ≤ Lcap (e.g., Lmin = 5, Lcap = 15) to prevent overfitting or under-representation.
This adaptive rule yields deeper trees in high-variance regions while constraining depth in homoge-
neous areas, balancing expressiveness and efficiency by tailoring quadtree granularity to both global
data volume and local heterogeneity.

Median-Based Splitting and Point Retention: To ensure balanced spatial partitions, SMART-
QT computes the median of the longitude and latitude values from all points P in the node. The
median coordinates xmid = (xmid[0], xmid[1]) are: xmid[0] = median(xi[0] | xi ∈ P ), xmid[1] =
median(xi[1] | xi ∈ P ). The split produces four axis-aligned quadrants (NNW, NNE, NSW, NSE).
Unlike classical quadtrees that remove points from the parent, SMART-QT retains all parent points
to enable parent–child knowledge transfer. Each child node is assigned a reference (index set)
to the subset of parent points falling in its quadrant, rather than duplicating the underlying data.
This reference-based redistribution preserves upper-level context for hierarchical modelling while
avoiding unnecessary memory copies (see section 3.2 for implementation details).

Strategic Small-Leaf Merging: Classical quadtrees often over-partition sparse or low-variance
regions, creating small, noisy leaves that reduce generalisation and increase computational cost. To

3
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mitigate this, SMART-QT integrates a variance-aware small-leaf merging mechanism. A node N
with point set P and area A (density ρ = |P |/A) is marked for merging if (i) 0 < |P | < τ (minimum
threshold), or (ii) ρ is a density outlier by the IQR rule (ρ < Q1 − ϕ · IQR or ρ > Q3 + ϕ · IQR,
ϕ = 1.5). Each candidate Nc is paired with a sibling Ns (same parent) that satisfies |Pc| + |Ps| <
τmax (τmax = 2.5τ ) and minimises |ρc − ρs|. After merging, all points are reassigned to Ns, Nc

is deactivated, and merged pairs are tracked. This reduces fragmentation while preserving coherent,
reliable partitions. (Full merging pseudocode and geometric examples are in Appendix A.3.)

Periodic Threshold Re-tuning: To ensure that the quadtree remains adaptive across varying spatial
resolutions, SMART-QT periodically re-tunes the node capacity Tmax and maximum depth Lmax

at designated levels, reflecting localised variations in crime density. This re-tuning is triggered
at nodes where the depth satisfies node level mod ν = 0, with ν = 1 for large datasets (e.g.,
ntotal > 1,000,000), enabling threshold recalibration at alternate levels. The hyperparameter ν ∈ Z+

controls the frequency of threshold re-tuning and defines the re-tuning interval across tree depth
levels. Refer example in Appendix A.4.

Spatio-Temporal Feature Propagation: Unlike classical quadtrees that store only spatial coordi-
nates (xi, yi), SMART-QT attaches a rich spatio-temporal feature vector xi ∈ Rd to each point
so that every node can learn with full contextual information. Features include spatial coordinates,
temporal attributes derived from the raw timestamp ti (hour, day-of-week, month), cyclic encodings
(e.g. hoursin = sin(2π · hour/24)), lagged crime counts ci−k for k ∈ {1, 2, 3}, and short rolling
statistics (e.g. 7-day mean). All features are standardised (zero mean, unit variance) and retained as
points are referenced by parent and child nodes; in addition, we propagate the parent prediction via
a dedicated Prediction column. By combining inherited context (parent prediction and features)
with local data, each node specialises its model to capture recurring hotspots, seasonal patterns, and
local variance. (Further implementation details and feature lists are in Appendix A.5.)

Dynamic Parameter Scaling:

To generalise SMART-QT across datasets of varying sizes, all key hyperparameters are dynamically
scaled based on the total number of points in the dataset, denoted by ntotal. Using a reference dataset
size nref, a scaling factor is computed as s = ntotal

nref
, which proportionally adjusts parameters such as

α, β, κ, and min base. Here, min base represents a lower-bound cap for the node capacity in
the adaptive threshold function (Eq. 1), ensuring that even in low-variance or low-density regions,
each node retains a minimum number of points before being split. This prevents over-fragmentation
in sparse areas. These control node capacity and subdivision thresholds. For parameters that benefit
from smoother adaptation, such as λ, γ, and δ, a logarithmic scaling is applied to avoid abrupt
changes as the dataset size grows. The scaled values are computed as:

λ = clip(λ0 ·log(1+s), 5, 20), γ = clip(γ0 ·log(1+s), 1, 5), δ = clip(δ0 ·log(1+s), 1, 5). (3)

where clip(·) ensures values remain within practical bounds. This dynamic scaling ensures SMART-
QT remains robust and consistently adaptive without requiring manual re-tuning when deployed
across datasets of vastly different sizes. The complete recursive construction process of SMART-QT
is outlined in Algorithm 2. This adaptive and recursive construction makes SMART-QT particularly
suitable for heterogeneous crime landscapes, as it dynamically balances spatial resolution with sta-
tistical complexity, leading to more granular modelling in high-variance areas while avoiding over-
fitting in low-density regions (implementation details and tuned defaults are given in Appendix A.6).

3.2 CARE PREDICTIVE MODEL

CARE (Crime Adaptive Refined Ensemble) is a hierarchical prediction scheme that fine-tunes local
regressors at each quadtree node using (i) feature-propagation — the parent’s prediction appended as
a feature to child inputs, and (ii) model-inheritance — warm-starting the child regressor from its par-
ent’s model and fine-tuning on local data. These two mechanisms jointly enable fast local adaptation
and improved accuracy in sparse and dense regions. (Appendix B.1: CARE-PM Algorithm).

3.2.1 HIERARCHICAL MODEL TRAINING

Figure 1 illustrates the SMART-CARE framework. After constructing the SMART-QT quadtree,
CARE-PM trains node models in breadth-first (top-down) order so that each parent is fitted before
its children. Let node ν have training set Dν = {(xi, ci)}i∈Iν and parent π(ν). The local regressor

4
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Figure 1: SMART-CARE Framework.

is fν(x; θν). Using feature propagation, the augmented input is xaug
i = [xi, fπ(ν)(xi) ], (where

fπ(ν) is absent at the root). Each node solves a regularized local objective:

θ⋆ν = argminθ
1

|Dν |
∑

(x,c)∈Dν
ℓ
(
fν(x

aug; θ), c
)
+ λν Ω(θ, θπ(ν)), (4)

where ℓ(·, ·) is the sample loss (MSE) and Ω is a proximity regularizer encouraging the child to
remain close to the parent model when appropriate. For the neural variant we use Ω(θ, θπ) =
∥θ − θπ∥22. For the tree (XGBoost) variant, proximity is implemented via warm-start (pass the
parent booster and optionally restrict the number of new trees Tnew or lower the learning rate).

Root Node Training: The root node, encompassing the entire spatial domain, has no parent,
so CARE begins by establishing an initial predictor to capture global crime trends. A baseline
model fbase (either a lightweight regressor or a shallow NN) is trained on the entire training set
Dtrain using the spatio-temporal feature vectors xi ∈ Rd, minimizing the mean squared error
minθ

∑
i∈Dtrain

(
yi−fbase(xi; θ)

)2
. This baseline produces preliminary global crime-count estimates

ŷbase(i) = fbase(xi). To stabilise learning across different feature scales, these estimates are stan-

dardized to zero mean and unit variance as ŷ′base(i) =
ŷbase(i)− µŷbase

σŷbase

, with µŷbase
and σŷbase

computed over Dtrain. The standardized predictions ŷ′base(i) are then appended as an auxiliary fea-
ture (“Prediction”) to form augmented inputs xi,aug = [xi, ŷ

′
base(i)]. Tree-based variant (XGBoost):

The root’s final regressor froot is an XGBoost booster trained on {(xi,aug, yi)}, minimising squared
error. NN variant: The root model froot is a feedforward NN initialised randomly and trained on
the same augmented inputs, with an optional regulariser to improve generalisation. In both cases,
the root’s refined predictions ŷ1(i) = froot(xi,aug) serve as the top-level forecasts, forming the
foundation for child-node refinement. (Appendix: B.2 for more details).

Child Node Training: For each child node ν, CARE trains a local regressor fν on its dataset
Dν ⊂ Dtrain, defined by the SMART-QT partition. The input features include the parents’ predic-
tions ŷπ(ν)(i), standardised within Dν to have zero mean and unit variance, which are appended
as an additional feature: xi,aug,ν = [xi, ŷ

′
π(ν)(i)]. The child model is then trained to minimise the

local mean squared error: ŷν(i) = fν(xi,aug,ν), θ⋆ν = argminθ
1

|Dν |
∑

i∈Dν
(yi − ŷν(i))

2. To
accelerate convergence and ensure consistency, fν is warm-started from the parent model fπ(ν).
This recursive refinement continues down the hierarchy, with each node specialising its predictions
to local spatial regions while inheriting global context from its ancestors. (Appendix: B.3)

Prediction Refinement Across Levels: At each node ν in the SMART-QT hierarchy, the CARE
Predictive Model refines predictions using the parent’s inherited estimate ŷπ(ν)(i) = fπ(ν)(xi,aug)
as a contextual input feature. After training the node’s XGBoost regressor fν on Dν ⊂ Dtrain, the
stored predictions are updated to ŷν(i) = fν(xi,aug,ν), replacing the parent’s estimate, and these
refined predictions are passed to descendant nodes. This recursive process, initialized by the root’s
baseline ŷbase(i) = fbase(xi), progresses through levels, with each fν learning the residual errors
of its parent by minimizing

∑
i∈Dν

(yi − ŷν(i))
2. The refinement can be expressed as a hierarchical

ensemble sequence ŷ0 → ŷ1 → · · · → ŷ≤Lmax
, where ŷk(i) improves upon ŷk−1(i) and the

process terminates in the leaf-level prediction ŷfinal(i). If a node remains unsplit, its ŷν(i) is final;

5
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otherwise, descendants further refine it. This step-wise approach integrates global patterns from
higher levels with local deviations at lower levels, enhancing prediction accuracy across diverse
crime distributions.

3.3 OPTIMISED TRAINING AND INFERENCE:

Efficient training and inference: CARE-PM accelerates training via parent→child model inheri-
tance: each child model fν is warm-started from its parent fπ(ν) (e.g., parent XGBoost booster or
NN weights), enabling faster convergence and higher accuracy. Hyperparameter tuning is performed
only at the root, avoiding expensive grid searches at every node. At inference, a sample activates
at most one model per tree level. Let Lmax denote the quadtree depth, p the feature dimension,
and k the number of trees in an XGBoost booster. The per-node inference cost is O(p · k) for XG-
Boost, and O(

∑H
ℓ=1 dℓ−1dℓ) for an H-layer neural network with layer widths {dℓ} (dominated by

matrix multiplications). In both cases, once the architecture or booster is fixed after tuning, the per-
node cost is effectively constant. Thus, the per-sample inference cost scales as O(Lmax), and since
quadtree depth grows logarithmically with dataset size n, the overall complexity is O(logn) under
the fixed-model assumption. Empirical timings in Appendix B.5 confirm that the constant factor is
small in practice.

Handling Sparse or Merged Nodes: CARE-PM addresses sparse nodes in the SMART-QT hier-
archy by skipping or merging regions with insufficient data. If a leaf node ν has |Dν | < τ and no
sibling to merge with, CARE skips training, using the parent’s predictions ŷπ(ν)(i) = fπ(ν)(xi,aug)
as the final output. Alternatively, small sibling leaf nodes are merged into a single unit by com-
bining their data, ensuring |Dcombined| ≤ κ, then training on the regressor model. Merged nodes
are marked, with one sibling’s model covering both areas, trained like other nodes. This ensures
sufficient sample sizes, reducing variance and stabilising predictions in low-density regions.

Hierarchical Prediction: SMART-CARE performs inference through hierarchical refinement,
where predictions are sequentially enhanced by models at decreasing spatial scales. This top-down
process ensures forecasts incorporate both global trends and local patterns, detailed in Appendix B.6.

4 EXPERIMENTS AND RESULTS

Experimental Setup: We evaluate SMART-QT and CARE-PM on NYC (7.8M records,
2008–2023) and Chicago (8.2M records, 2001–2024) crime datasets, using spatio-temporal fea-
tures (Date-Time, Latitude, Longitude). Models are trained in a breadth-first traversal, where parent
predictions are propagated to children for hierarchical refinement (Appendix D.1 for details).
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Figure 2: NYC Time Series Prediction Analysis

Evaluation Metrics: We report Mean Absolute Error (MAE), Root Mean Squared Error (RMSE),
and Adjusted R2 as primary metrics. MAE captures average errors, RMSE emphasizes larger de-
viations, and Adjusted R2 accounts for predictor count, jointly reflecting predictive accuracy and
generalization across spatio-temporal scales.

Time Series: Figure 2 (a) demonstrates that CARE-PM effectively captures daily crime trends,
including upper and lower bounds and seasonality, outperforming SARIMA Butt et al. (2021), which
struggles with these patterns. By leveraging spatio-temporal features and hierarchical refinement,
CARE-PM better adapts to temporal fluctuations across regions, enhancing prediction reliability
over traditional time-series models, especially in datasets with complex crime dynamics like NYPD
and Chicago.
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(a) HDBSCAN (b) Static Quadtree (c) SMART-Quadtree (d) SMART-QT-Zoom

Figure 3: NYC Crime Heatmap: HDBSCAN, Static & Adaptive-QT

Heatmap Comparison: Figure 3 compares partitioning strategies: HDBSCAN produces irregular
clusters, standard Quadtree shows sparse nodes (blue rectangles), while SMART-QT achieves bal-
anced distribution. Our method reduces nodes by 35% in sparse regions while maintaining hotspot
granularity, validating adaptive partitioning superiority (Appendix: D.2.
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Figure 4: NYC Temporal Comparative Analysis (Tree-Based Model).

Ablation Variant Comparison: An ablation study (Appendix: C) confirms SMART-CARE’s ad-
vantages over three variants: SMID-LNPM (MAE=5.26) and AMB-LNPM (MAE=2.36), which
lack hierarchical knowledge transfer, and SMID-REPM (MAE=3.23), which uses static midpoint
splitting. SMART-CARE achieves superior performance (MAE=0.92) by combining adaptive
median-based partitioning with parent-to-child model refinement, effectively capturing complex
spatio-temporal patterns (Figure 4) (For more detail Appendex: D.3).
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Figure 5: Avg. Comparative Analysis of Various Frameworks (Tree-Based Model).

Temporal Comparative Analysis: SMART-CARE was evaluated on incrementally aggregated
yearly crime data (2008-2023) using Dt =

⋃t
i=1 Yi. As the dataset size increased, error rates

decreased, demonstrating improved pattern recognition. SMART-CARE demonstrates flexibility
by performing effectively with both tree-based and neural model instantiations. The tree-based
implementation achieves MAE=0.23 and Adjusted R²=0.94 on aggregated data (2008-2023), sig-
nificantly outperforming literature baselines Butt et al. (2021; 2024) (MAE: 8.74, 6.12). Neural
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implementations (Fig. 6) also show competitive performance across GRU, LSTM, BiLSTM, and
MLP architectures while maintaining computational efficiency (Figure 4).
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Figure 6: Chicago Temporal Comparative Analysis (NN-Based Model).

Figure 5 shows the average MAE across each year for various frameworks, based on the results pre-
sented in Figure 4. SMART-CARE significantly outperforms the baseline model Butt et al. (2021)
and ablation variants, reducing the average MAE from 10.75 to 0.92. By combining spatiotem-
poral analysis, hierarchical knowledge transfer from parent node models, and predictive learning
through the quadtree structure, SMART-CARE effectively captures complex crime patterns, leading
to substantial improvement in prediction accuracy.
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Figure 7: Spatial Comparative Analysis of Various Frameworks (Tree-Based Model).

Spatial Comparative Analysis: To evaluate performance across hierarchical geographical scales,
we compared SMART-CARE, AMB-REPM, SMID-REPM, and SMID-LNPM on a 10-year dataset.
For SMID-REPM and SMID-LNPM, we fixed node capacity at Tmax = 500, 000 and maximum
depth at Lmax = 5, while SMART-CARE and AMB-REPM used adaptive thresholds and depth,
per SMART-QT’s design. Error metrics (MAE, RMSE, Adjusted R2) were aggregated per quadtree
node, averaging errors at each layer (e.g., layer-0, layer-5). Figure 7 shows SMART-CARE out-
performed others, with avg. MAE decreasing from 1.64 (layer-0, root node with one model) to
0.13 (layer-5, averaging over multiple granular models), compared to 6.46 to 0.56 for other models,
highlighting its adaptive structure’s ability to capture fine-grained spatial features as depth increases.

Table 1: Performance Metrics Comparison

Metric SMART-CARE AMB LNPM SMID-REPM SMID-LNPM
Range Query Time (s) 0.0125 0.0140 0.0165 0.0172
Points Found in Query 1548 1548 1420 1385
Memory Usage (MB) 38.61 40.20 71.75 63.00

Table 2: Density Distribution Comparison

Metric SMART-CARE AMB LNPM SMID-REPM SMID-LNPM
Count 66 66 112 112
Mean 6169219.41 6200000.00 7020000.00 7200000.00
Std. Dev. 5982675.80 6100000.00 7400000.00 7600000.00
Min 142360.71 145000.00 180000.00 170000.00
25th Percentile 1656491.97 1700000.00 1950000.00 2000000.00
Median 3128489.60 3150000.00 3750000.00 3900000.00
75th Percentile 9659166.74 9700000.00 9800000.00 9900000.00
Max 21207441.01 21500000.00 23500000.00 24000000.00

Feature Importance Analysis: Table 3 highlights the importance scores of spatio-temporal
and predictive features across NYC (7.9M rows) and Chicago (8.2M rows) datasets. For
NYC, Prediction (0.538) is the most significant, reflecting autocorrelation from hierarchi-
cal knowledge transfer in SMART-CARE, followed by Month (0.150) for seasonality and Lag1
(0.116) for short-term trends. For Chicago, Prediction (0.502) leads, with Month (0.245)
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Table 3: Feature Importance Score.

NYC 7.9 M. Rows CHICAGO 8.2 M. Rows
Feature Importance Feature Importance
Prediction 0.538 Prediction 0.502
Month 0.150 Month 0.245
Lag1 0.116 Lag1 0.212
Lag2 0.115 Lag2 0.033
RollMean7d 0.078 RollMean7d 0.006
Day 0.003 Day 0.002

Table 4: QT Structural Metrics Comparison

Metric SMART-CARE AMB LNPM SMID-REPM SMID-LNPM
Max Depth 3 3 2 2
Total Nodes 66 66 112 112
Leaf Nodes 49 49 86 86
Avg. Points per Leaf 8259.86 8657.52 13524.84 12458.73
Variance (Leaf) 5523618.82 5632654.00 6135974.00 6354297.00
Merged Nodes 4 4 26 26
Empty Nodes 0 0 14 16
Points in Merged Nodes 32830 34521 98211 10542

and Lag1 (0.212) showing stronger temporal influence. Spatial features (Scl Longitude,
Scl Latitude) and Date have minimal impact (not listed, <0.05), as SMART-QT handles lo-
cation. Lag2 and RollMean7d contribute modestly (e.g., 0.115, 0.078 for NYC), aiding sparse
region predictions. This validates SMART-CARE’s temporal focus.

Table 5: SMART-CARE Hyp-Tune.

Parameter Value MAE RMSE Adj. R2

α
2000 0.25 0.35 0.95
5000 0.40 0.55 0.90

10000 0.43 0.58 0.89

κ
50000 0.26 0.36 0.94

100000 0.38 0.52 0.91
150000 0.42 0.56 0.89

β
50000 0.24 0.34 0.96
10000 0.42 0.57 0.89
25000 0.39 0.53 0.91

δ
2 0.27 0.37 0.93
5 0.37 0.50 0.92

10 0.41 0.54 0.90

min base
5000 0.25 0.35 0.95
2000 0.39 0.54 0.90

10000 0.41 0.57 0.88

Table 6: Nueral Fine-tuning Hyperparameters

Model Optimizer Root LR Child LR Dropout Batch Size Epochs
Light Transformer AdamW 1 × 10−4 5 × 10−5 0.2–0.3 64 15–20
GRU Adam 5 × 10−3 1 × 10−3 0.1–0.2 128 10–15
LSTM Adam 3 × 10−3 8 × 10−4 0.2 128 10–15
BiLSTM Adam 3 × 10−3 8 × 10−4 0.3 128 10–15
MLP Adam 1 × 10−3 5 × 10−4 0.1 256 8–12

Table 7: Neural Learning-rate Schedules

Model Scheduler Warm-up Notes
Light Transformer Cosine Annealing 2 epochs LR decays to 1 × 10−6

GRU StepLR / ReduceLROnPlateau 1 epoch γ = 0.5 every 5 epochs
LSTM StepLR / ReduceLROnPlateau 1 epoch γ = 0.5, weight decay 1e-4
BiLSTM StepLR 1 epoch Stronger regularization, γ = 0.5
MLP ReduceLROnPlateau None Monitor val loss, factor 0.5

Hyper-Parameter Comparative Analysis: We evaluated SMART-CARE’s hyper-parameters (α,
κ, β, δ, min base) for adaptive quadtree balancing. Table 5 shows tuned values (e.g., α = 2000,
β = 50000) achieving optimal MAE (0.24–0.27), RMSE (0.34–0.37), and Adjusted R2 (0.93–0.96),
compared to alternatives (e.g., α = 10000, MAE: 0.43). A table, confirming that tuned parameters
enhance prediction accuracy and quadtree balance across diverse datasets.

The hyperparameters and learning-rate schedules in Tables 6 and 7 support hierarchical quadtree
fine-tuning for crime prediction. Higher root learning rates (e.g., 1 × 10−4 for Light Transformer,
5 × 10−3 for GRU) enable global learning, while lower child rates (e.g., 5 × 10−5, 1 × 10−3)
stabilize local refinements. Dropout scales with complexity (0.2–0.3 for Transformers/BiLSTM,
0.1 for GRU/MLP). Batch sizes and epochs adjust for model size and data (e.g., 8–12 for MLP,
10–15 for LSTM). Schedules include a 2-epoch warm-up with cosine annealing for Transformers
(to 1 × 10−6), 1-epoch warm-up with step decay (γ = 0.5) for RNNs, and validation-based decay
(factor 0.5) for MLPs, ensuring efficient transfer, convergence, and stability.

Quadtree Analysis Summary: We evaluated SMART-CARE’s quadtree efficiency through struc-
tural, performance, and density metrics. Table 4 shows SMART-CARE with a max depth of 3,
66 nodes (49 leaf nodes), and lower variance (5523618.82) than AMB-LNPM, SMID-REPM, and
SMID-LNPM, with 4 merged nodes reducing points to 32830. Table 1 highlights a 0.0125s range
query time and 38.61 MB memory usage, outperforming others. Table 2 indicates a balanced density
(mean: 6169219.41, median: 3128489.60), confirming SMART-CARE’s adaptability.

5 CONCLUSION

We presented SMART-CARE, an adaptive quadtree framework that dynamically partitions urban
spaces using variance-aware median splitting and hierarchical model refinement. Our approach
addresses key challenges in crime prediction: handling data skew through strategic small-leaf merg-
ing, capturing multi-scale patterns via feature propagation and model inheritance, and maintaining
computational efficiency through periodic re-tuning. Extensive evaluation on NYC and Chicago
crime data demonstrates SMART-CARE’s superiority over uniform grids, static quadtrees, and re-
cent baselines, achieving MAE reductions to 0.92 (average) and 0.23 (best-case) while reducing
execution time by 53%. The framework’s flexibility across both tree-based and neural instantia-
tions highlights its generalizability for spatio-temporal forecasting tasks. Future work will explore
real-time adaptation and multi-modal data integration.
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Reproducibility Statement: We have taken several measures to ensure the reproducibility of our
work. The datasets used (NYPD Complaint Data and Chicago Crime Data) are publicly available
and cited in Section A.6. Data preprocessing steps, including spatio-temporal feature extraction
and quadtree construction, are detailed in Section A and Appendix A.5. The complete recursive
algorithm for SMART-QT, dynamic parameter scaling, and periodic re-tuning is presented in Ap-
pendix 2, along with sensitivity analyses of hyperparameters. CARE-PM training and inference
procedures are formalized in Section B and Appendix B.6, with additional notes on handling sparse
nodes and prediction refinement. Hyperparameter settings for XGBoost and neural variants are
reported in Table B.4, and empirical timing results are provided in Appendix B.5. Finally, we pro-
vide an anonymous repository with full source code, preprocessing scripts, and trained models to
facilitate exact reproduction of all results.
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A SMART QUADTREE

A.1 TRADITIONAL QUADTREE

The quadtree begins with the entire spatial area, A, and recursively subdivides it into four quadrants
if the number of the data points (NA), within a node exceeds the predefined node capacity (Ncapacity),
the region A is divided into four equally sized sub-regions: Northwest (NW), Northeast (NE), South-
west (SW), and Southeast (SE). This process continues until all nodes satisfy NA ≤ Ncapacity, re-
sulting in a hierarchical segmentation of the spatial environment.

To better understand the functionality of our quadtree structure, refer to Algorithm (??) part-I and
Figure 8, which represent a quadtree containing fifteen data points (blue dots), each signifying a
crime incident within its spatial boundary. In this example, the node capacity is set to Ncapacity = 2,
and the maximum quadtree depth is limited to Lcapacity = 10.

Step 1: Quadtree Initialisation : The quadtree begins with the root node (Nroot), encompassing the
entire study area, as shown in Figure 8 (green dotted line). The root node’s boundary is defined as
R(Xmin, Ymin, Xmax, Ymax), where Xmin, Ymin, Xmax, Ymax represent the dataset’s spatial extent.
The quadtree is initialized as: Q(R(Xmin, Ymin, Xmax, Ymax),Ncapacity,Lcapacity), where Ncapacity
specifies the maximum points per node, and Lcapacity limits the tree depth to ensure computational
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Algorithm 1 Traditional Quadtree Algorithm

Require: Point object p to be inserted, boundary rectangle R, node capacity Ncapacity, leaf capacity
Lcapacity

Ensure: a Balanced quadtree with spatial subdivision
1: function INITIALISEQUADTREE(R,Ncapacity,Lcapacity)
2: Q← Q(R(Xmin, Ymin, Xmax, Ymax),Ncapacity,Lcapacity)
3: INSERT(p)
4: end function
5: function INSERT(p)
6: Q.insert(P (xi, yi, Ai))
7: if Ncurrent is leaf and |I(N)| ≥ Ncapacity then
8: SUBDIVIDE(self)
9: end if

10: end function
11: function SUBDIVIDE(self)
12: Add children: C(Nparent)← {QNW, QNE, QSW, QSE}
13: Distribute points to children nodes
14: for each p ∈ I(Nparent) do
15: for each N ∈ C(Nparent) do
16: if CONTAINS(R(N ), Xp, Yp) then
17: INSERT(N , p)
18: end if
19: end for
20: end for
21: end function
22: begin
23: INITIALISEQUADTREE(R,Ncapacity,Lcapacity)
24: end
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Figure 8: Recursive Quadtree-Based Spatial Segmentation.

efficiency and preventing excessive granularity. This initialisation provides a scalable foundation for
dynamic spatial segmentation.

Step 2: Data Insertion: Each crime incident is represented in 2D space as P (x, y,A), where (x, y)
are the spatial coordinates and Ai contains associated attributes (e.g., timestamp). Data points
are sequentially inserted into the quadtree using Q.insert(P (xi, yi,Ai)), ensuring the spatial and
attribute data are efficiently stored in the hierarchical structure.

Handling Data Points: For points near node boundaries, the quadtree validates placement using
rectangle intersection checks to avoid misplacement or data loss. Points shared across multiple
regions are assigned accurately by verifying spatial overlap. Intersection conditions are defined
as: Xmax ≥ X ′

min and Xmin ≤ X ′
max and Ymax ≥ Y ′

min and Ymin ≤ Y ′
max. This ensures precise

handling of boundary data, particularly for points spanning multiple regions.
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Capacity Constraints and Leaf Nodes: A leaf node (Nleaf) is a terminal node in the quadtree that
stores localized data points. If the number of interim data points (I(N)) in a leaf node is below
the Ncapacity, a new data point (p) can be directly appended to the set of interim points in that node.
Interim data points serve as a temporary storage mechanism for localised data within a node. When
|I(N)| ≥ Ncapacity, the node undergoes recursive subdivision, dynamically partitioning the space to
adapt to data density and ensure efficient spatial representation.

Step 3: Recursive Subdivision: When the leaf node (Nleaf) exceeds its capacity (Ncapacity), it tran-
sitions into a parent node (Nparent) to dynamically portion the spatial (crime) environment and better
capture local crime density variations. Creating child Nodes: The parent node is subdivided into four
child nodes: Northwest (NW), Northeast (NE), Southwest (SW), and Southeast (SE). The bound-
aries for each child node are calculated using the parent’s midpoint coordinates:

Xmid =
Xmin +Xmax

2
and Ymid =

Ymin + Ymax

2
.

Each child node (Qi) is initialized as: Qi = Q(Ri,Ncapacity,Lcapacity), (i ∈ {NW,NE, SW,SE}),
where Ri represents the spatial boundaries of the i − th quadrant. This ensures a finer spatial
granularity, enabling each child node to focus on localised crime patterns.

Node Hierarchy and Depth Assignment: Each child node is assigned a unique identifier, and its
depth level is based on the parent. This can be expressed as:

C(Nparent) = C(Nparent) ∪ {NNW, NNE, NSW, NSE}.

The newly created child nodes are appended to the parent node’s children list, forming a hierarchical
structure with refined spatial granularity.

Data Redistribution: After the child nodes (NNW, NNE, NSW, NSE) are created, data points from the
parent node (Nparent) are redistributed to the appropriate child nodes (Nchild) based on their spatial
coordinates. A data point p ∈ I(Nparent) is assigned to a Nchild if its coordinates (Xp, Yp) lie within
the spatial boundaries R(Nchild):

∀p ∈ I(Nparent), p→ Nchild if (Xp, Yp) ∈ R(Nchild).

To optimize memory usage and computational efficiency, QREPM uses references (or pointers) for
redistribution rather than duplicating the data points. Importantly, the parent node retains its original
data points while referencing child nodes.

Recursive Process: The subdivision process continues recursively until all nodes satisfy the capacity
constraint (|I(N)| ≤ Ncapacity), ensuring that each leaf node contains a manageable number of data
points. This dynamic adaptation allows the quadtree to efficiently handle varying data densities
across the study area.

A.2 ADAPTIVE SUBDIVISION THRESHOLD WITH SMART-QT HYPERPARAMETERS.

Adaptive Subdivision Threshold (Tmax): Instead of using a fixed threshold M , SMART-QT dy-
namically determines the subdivision condition using a variance-aware density function. Specifi-
cally, the node capacity Tmax is computed as:

Tmax = max
(
Tmin, min

( β

1 + σ2

γ

+
|P |
δ

, Tcap

))
,

In Eq. (1), σ2 denotes the variance of crime counts within node P , and |P | is the number of points
in that node. The terms Tmin and Tcap serve as lower and upper bounds, respectively, computed by
scaling the reference parameters α and κ according to the dataset size. The parameter β controls the
inverse relationship to local variance; a higher β emphasises variance reduction, while γ modulates
sensitivity to this variance.

The final term, involving δ, adds a density-dependent penalty proportional to the current node size
|P |, encouraging more conservative subdivision in already dense regions. However, since the thresh-
old is computed based on the density of the node, we constrain it using fixed caps: Tmin ensures
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Algorithm 2 SMART Quadtree Construction

Require: Dataset D = {(xi, ti, ci)}Ni=1, reference size nref

Ensure: SMART-QT structure with hierarchical partitioning
1: Compute scaling factor s← N/nref

2: Scale parameters: α, β, κ, λ, γ, δ,min base
3: Extract spatio-temporal features xi from (xi, yi, ti)
4: Initialize root node N0 with boundary S, data D0 = D, depth d = 0
5: function BUILDTREE(Nj , d)
6: nj ← |Dj | ▷ Point count in node
7: σ2

j ← Var({ci ∈ Dj}) ▷ Crime count variance
8: Compute Tmax ← f(α, β, κ, nj , σ

2
j ) ▷ Adaptive capacity

9: Compute Lmax ← g(λ, γ, δ,N) ▷ Adaptive depth limit
10: if d < Lmax and nj ≥ Tmax then
11: if d mod ν = 0 then ▷ ν = 3 if N > 106, else 1
12: Recompute Tmax, Lmax ▷ Adapt to local density
13: end if
14: (xmed, ymed)← Median(Dj) ▷ Median-based split
15: Partition Dj into {DNW ,DNE ,DSW ,DSE}
16: Create child nodes {NNW ,NNE ,NSW ,NSE}
17: Propagate parent features to children
18: for each child Nk ∈ {NNW ,NNE ,NSW ,NSE} do
19: BUILDTREE(Nk, d+ 1)
20: end for
21: end if
22: end function
23: BUILDTREE(N0, 0)
24: MERGESMALLLEAVES ▷ Algorithm 2 in Appendix
25: return Final SMART-QT tree

the threshold does not fall below a minimum subdivision size, and Tcap ensures it does not grow un-
bounded in low-variance or high-density regions. This clipping mechanism ensures robustness and
consistency across varying conditions. Together, these scaled constants ensure that node capacities
dynamically reflect both global dataset characteristics and local statistical heterogeneity.

These are all auto-tunable parameters that adapt based on the dataset size. This formulation ensures
that nodes with high variance (i.e., potential hotspots) are subdivided more aggressively, while more
homogeneous regions retain larger spatial coverage. In contrast to fixed heuristics, this adaptive
mechanism is sensitive to both local and global dataset properties. All parameter values used in the
adaptive threshold equations, including α, β, γ, δ, κ, and λ, are dynamically scaled based on dataset
size to ensure consistent behavior across varying data volumes; see Dynamic Parameter Scaling for
details.

SMART-QT Hyperparameters: Auto-tuneable hyper-parameters used for the SMART-QT are:

Table 8: SMART-QT Hyperparameters and Their Roles

Parameter Description
α Minimum allowable node capacity to prevent over-splitting.
β Controls inverse relationship between variance and node capacity.
γ Stabilizes variance sensitivity in the Tmax formula.
δ Penalizes node size when computing adaptive capacity.
κ Upper cap for node capacity, computed as κ = ntotal

λ .
λ Global scaling factor used in defining κ.
η Multiplier controlling the maximum depth of the tree.
ν Interval for periodic threshold re-tuning at node depth levels.
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A.3 STRATEGIC SMALL-LEAF MERGING DETAILS

To prevent over-fragmentation in sparse, low-density, or noisy regions, SMART-QT integrates a
variance-aware Strategic Small-Leaf Merging mechanism. Classical quadtrees often split uniformly,
producing many tiny leaves in areas that do not contain sufficient information for reliable local mod-
elling. Such over-partitioning leads to poor generalisation, unnecessary computational overhead, and
unstable models in underrepresented regions. The merging strategy addresses these shortcomings
by consolidating weak or noisy leaves into statistically coherent siblings.

Formal Definition: Let a nodeN contain a point set P within spatial area A, and define its density
as ρ = |P |

A . Two categories of nodes are flagged as merge candidates: (i) Small nodes: nodes with
0 < |P | < τ , where τ is a user-defined minimum threshold for reliable modelling. (ii) Density
outliers: nodes whose density deviates significantly from the global distribution across all leaves.
Specifically, a node is flagged if

ρ < Q1 − ϕ · IQR or ρ > Q3 + ϕ · IQR,

where Q1 and Q3 denote the first and third quartiles of the density distribution, IQR = Q3 − Q1,
and ϕ is a tunable sensitivity parameter (default ϕ = 1.5).

Merging Criteria: For each candidate nodeNc, the algorithm searches for a compatible siblingNs,
defined as a leaf node under the same parent that: (i) Satisfies the safe upper bound: |Pc| + |Ps| <
τmax, where τmax = 2.5 · τ . (ii) Minimises density mismatch: Ns = argmins |ρc − ρs|. If
multiple siblings satisfy the criteria, the one with closest density is chosen. All points from Nc are
then reassigned to Ns, and Nc is marked inactive. The merged relationship is stored in a mapping:
merged pairs[c] = s, where c and s are node IDs of the candidate and sibling.

Algorithm 3 Strategic Small-Leaf Merging

Require: Leaf set L, threshold τ , sensitivity ϕ = 1.5
Ensure: Updated quadtree with merged nodes, mapping merged pairs

1: Compute density statistics: Q1, Q3, IQR for all N ∈ L
2: C ← {N ∈ L | (0 < |P | < τ) ∨ (ρ < Q1 − ϕ · IQR) ∨ (ρ > Q3 + ϕ · IQR)}
3: for each candidate Nc ∈ C do
4: S ← {siblings of Nc under same parent}
5: Svalid ← {Ns ∈ S | |Pc|+ |Ps| < 2.5τ}
6: if Svalid ̸= ∅ then
7: Ns ← argminNs∈Svalid

|ρc − ρs|
8: Ps ← Ps ∪ Pc ▷ Merge point sets
9: Mark Nc as inactive

10: merged pairs[c]← s
11: end if
12: end for
13: return Updated leaf set, merged pairs mapping

Geometric Example: Merging redefines spatial boundaries while preserving coverage. For adjacent
nodes: N1 : [x1, xm] × [y1, y2], N2 : [xm, x2] × [y1, y2], the merged node spans the union:
Nmerged : [x1, x2]×[y1, y2]. The merged region inherits the combined point set P1∪P2 and aggregate
statistics while maintaining spatial continuity.

Discussion: This procedure ensures that sparse, noisy, or outlier leaves do not distort training. In-
stead, they are merged into nearby statistically compatible siblings, maintaining spatial coherence
and improving stability of local models. The result is a structurally simplified quadtree that reduces
overfitting, lowers computational cost, and yields more robust predictions in real-world heteroge-
neous datasets such as crime logs.

A.4 PERIODIC THRESHOLD RE-TUNING:

The re-tuning frequency ν controls the trade-off between adaptability and efficiency. For instance:

• ν = 1: Re-tuning at every level (maximal adaptability, higher cost).
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• ν = 3: Re-tuning every third level (improved efficiency for very large datasets).

The optimal ν is selected empirically based on dataset size and desired spatial resolution. When
triggered, the values of Tmax and Lmax are recomputed using the same variance-aware formulations
introduced earlier in Equation (1) and Equation (2). Specifically, the local variance σ2

local is computed
over the node’s crime counts, and the re-tuned thresholds are propagated recursively to its child
nodes. This local adjustment ensures that the quadtree structure dynamically adapts to regional
crime patterns—splitting more aggressively in high-variance urban centres, while allowing larger
aggregated regions in more uniform or low-density areas. SMART-QT maintains a balance between
spatial granularity and computational efficiency by tailoring its partitioning behaviour at multiple
depths.

A.5 FEATURE CONSTRUCTION AND PROPAGATION (IMPLEMENTATION DETAILS):

We derive a standardised spatio-temporal feature vector xi for each data point and retain it (by ref-
erence) at every node so that parent and child nodes share identical input features plus the parent
prediction. Preprocessing: raw timestamps ti are converted to UNIX seconds and used to sort and
align time series; any missing temporal fields are inferred from the timestamp. Target counts ci are
transformed with log(1 + ci) and then scaled to [0, 1] using a MinMax scaler fitted on training data.
Feature standardisation: continuous features (coordinates, rolling statistics, lags) are standardised
to zero mean and unit variance using a StandardScaler fitted on the training set; categorical/binary
features (is weekend, is holiday) are left as 0/1. Lags and rolling statistics: we compute lagged
counts ci−k for k ∈ {1, 2, 3} as ci−k = c(ti − k · ∆) where ∆ is one day (daily aggregation);
gaps (missing days) are handled by imputing with the node median count. The 7-day rolling mean
is computed as roll7i = 1

7

∑7
j=1 ci−j (using the same gap policy); for short time windows at se-

ries start we use the available history (no padding). Cyclic encodings use standard sin/cos trans-
forms: hoursin = sin(2π · hour/24), hourcos = cos(2π · hour/24), and similarly for month with
period 12. The full propagated feature set (kept for every point and passed from parent→child)
is: {scaled longitude, scaled latitude, UNIX date, hour, day of week, is weekend, is holiday,
day of month, month, year, hoursin, hourcos,monthsin,monthcos, lag1, lag2, lag3, roll7, seasonal
flags (spring/summer/fall/winter)}. In addition, we propagate a dedicated ‘Prediction‘ column con-
taining the parent model’s prediction for each point; children append this value to their input vector
and warm-start weights from parent models (XGBoost booster or NN weights). All derived feature
computation code, imputation policy and scaler objects are saved with the training artifacts to ensure
exact reproducibility.

A.6 DYNAMIC PARAMETER SCALING — RATIONALE AND IMPLEMENTATION

To make SMART-QT robust across datasets of very different scales (from 105 to 107 points), we
dynamically scale a set of tuned base constants by dataset size. The scaling factor is defined as

s =
ntotal

nref
,

where ntotal is the dataset size and nref is a fixed reference (in our experiments nref = 106). This
ensures that node capacity thresholds and depth limits grow smoothly with dataset size, preserving
both scalability and stability.

Clipping rationale: Two practical constraints motivate the clipping ranges used (e.g. λ ∈ [5, 20],
γ, δ ∈ [1, 5]): (i) Numerical stability and interpretability: Parameters such as λ control expo-
nential/logarithmic behaviours in threshold updates; letting them grow unbounded causes sudden
jumps, while values too close to zero make the method insensitive to variance. (ii) Computational
control: Clipping keeps effective complexity within practical bounds so that quadtree growth, re-
tuning frequency, and sibling-merge heuristics remain efficient on real hardware. Empirically, these
ranges strike a balance across city datasets from ≈ 105 to ≈ 107 records.

Implementation notes: We distinguish two parameter groups: (i) Integer-scale parameters
(α, β, κ,min base): scaled linearly with s, then rounded. (ii) Smooth parameters (λ, γ, δ): scaled
with log(1 + s) and clipped.

Algorithm sketch:
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Inputs:
N # dataset size
N_ref # reference dataset size (1e6)
base = {alpha=2000, kappa=50000, min_base=5000,

beta=50000, lambda_val=10, gamma=2, delta=2}

Compute scaling factor:
s = max(1.0, N / N_ref)
log_scale = 1 + log(s)

Scale parameters:
For alpha, beta, kappa, min_base:

scaled[param] = max(1, round(base[param] * s))
For lambda, gamma, delta:

scaled[param] = clip(round(base[param] * log_scale),
lower_bound, upper_bound)

Role of min base, Tmin, Tmax and Tcap : We recall the adaptive node capacity formula from Eq. 1:

Tmax = max
(
Tmin, min

( β

1 + σ2/γ
+
|P |
δ

, Tcap

))
,

where σ2 is local variance of crime counts and |P | is the number of points in the node.

• Tmin (set by min base) prevents thresholds from falling too low in homogeneous or noisy
regions.

• Tcap (scaled from κ) prevents thresholds from growing without bound in low-variance dense
areas.

• The first term β
1+σ2/γ decreases as local variance grows, forcing earlier splits in hotspots.

• The second term |P |
δ prevents unnecessary splitting of already dense nodes.

Worked numeric examples: For illustration, consider defaults β = 50,000, Tmin = 5,000, Tcap =
50,000, γ0 = 2, δ0 = 2, with nref = 106 and dataset size ntotal = 5× 106 (s = 5).

Then:
log(1 + s) = log(6) ≈ 1.7918, γ ≈ 1.79, δ ≈ 3.58.

• Case A (low variance, σ2 = 0.5, |P | = 1,000):
β

1+σ2/γ ≈ 39,073.3, |P |
δ ≈ 279.1 ⇒ Tmax ≈ 39,352.3.

• Case B (medium variance, σ2 = 5, |P | = 5,000):
β

1+5/γ ≈ 13,193.9, |P |
δ ≈ 1,395.3 ⇒ Tmax ≈ 14,589.2.

• Case C (high variance, σ2 = 50, |P | = 20,000):
β

1+50/γ ≈ 1,729.5, |P |
δ ≈ 5,581.1 ⇒ Tmax ≈ 7,310.5.

Interpretation: As local variance increases, the β-term shrinks and Tmax falls, enabling more
aggressive splitting in hotspots. The density penalty term moderates this behaviour in already dense
nodes. On small datasets (s < 1), γ and δ clip near 1, which makes |P |/δ larger, so Tmax is higher
(more conservative splitting). Thus, the rule:

• is monotone in both ntotal and σ2,
• is provably bounded and asymptotically Θ(logntotal),
• balances expressiveness (deep trees where variance is high) with efficiency (shallower trees

in uniform regions).

This variance-aware scaling ensures SMART-QT remains adaptive, statistically reliable, and com-
putationally efficient across a wide range of dataset scales.
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B CARE PREDICTIVE MODEL

B.1 CARE-PM ALGORITHM

Algorithm 4 CARE Predictive Model Framework

Require: Trained SMART-QT structure, training data Dtrain = {(xi, yi)}Ni=1, test data xtest
Ensure: Predictions ŷfinal for test data

1: Train baseline model fbase on Dtrain to get ŷ0(i) = fbase(xi)
2: Standardize ŷ0 and augment features: xi,aug = [xi, ŷ

′
0]

3: Train root model froot on xi,aug, yielding ŷ1(i) = froot(xi,aug)
4: function TRAINNODE(ν,Dν , fπ(ν))
5: if |Dν | ≥ τ and ν not merged then
6: Initialize fν with fπ(ν)’s parameters (e.g., booster trees)
7: Train fν on Dν with ŷ′π(ν), augmenting xi,aug,ν

8: Update predictions: ŷν(i) = fν(xi,aug,ν)
9: else

10: Retain ŷπ(ν)(i) for skipped/merged nodes
11: end if
12: end function
13: for each node ν in breadth-first order do
14: Dν ← points in ν’s region
15: TRAINNODE(ν,Dν , fπ(ν))
16: end for
17: function PREDICT(xtest)
18: Compute ŷ0 = fbase(xtest), augment to xtest,aug
19: Set ŷk ← froot(xtest,aug)
20: for each level k from 1 to leaf do
21: Route xtest to child node ν
22: Standardize ŷk to ŷ′k, augment xtest,aug,ν
23: ŷk+1 ← fν(xtest,aug,ν)
24: end for
25: return ŷfinal = ŷlast
26: end function
27: return final SMART-QT tree with all node models fν
28: return ŷfinal for xtest

B.2 DETAILED ROOT NODE TRAINING

The CARE Predictive Model begins by training the root node, which covers the entire spatial domain
of the dataset. Because the root has no parent, its purpose is to establish a global baseline that
captures overall spatio-temporal crime dynamics before finer regional refinements are learned in
deeper quadtree nodes. Below, we expand on the compact description given in the main text.

Step 1: Baseline Global Model. We first train a global baseline regressor fbase on the full training
setDtrain = {(xi, yi)}Ni=1, where xi ∈ Rd is the spatio-temporal feature vector and yi is the observed
crime count. This model minimises the mean squared error (MSE):

θ⋆base = argmin
θ

1

|Dtrain|

|Dtrain|∑
i=1

(
yi − fbase(xi; θ)

)2

.

In our experiments, fbase is instantiated as either: (i) an XGBoost regressor with depth = 6, learning
rate = 0.1, and 200 trees; or (ii) a two-layer neural network with hidden size [64, 32] and ReLU
activations. This baseline produces preliminary estimates ŷbase(i) = fbase(xi) for each input.
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Step 2: Standardisation of Predictions. To ensure comparability across nodes and prevent nu-
merical dominance of the baseline predictions, we standardise them to zero mean and unit variance:

ŷ′base(i) =
ŷbase(i)− µŷbase

σŷbase

,

where µŷbase =
1
N

∑N
i=1 ŷbase(i) and σŷbase =

√
1
N

∑N
i=1

(
ŷbase(i)− µŷbase

)2
. This step is essential: it

prevents inflated variance in downstream models and ensures the “Prediction” feature has the same
scale as the other spatio-temporal features.

Step 3: Feature Augmentation. The standardised predictions are appended as an additional fea-
ture, yielding the augmented input:

xi,aug = [xi, ŷ
′
base(i)].

This feature encodes the global crime trend for each sample and allows the root node to refine the
baseline estimates.

Step 4: Root Model Training. The final root model froot is trained on the augmented dataset
{(xi,aug, yi)}Ni=1, minimising the MSE:

θ⋆root = argmin
θ

1

N

N∑
i=1

(
yi − froot(xi,aug; θ)

)2

.

In the tree-based case, froot is an XGBoost model warm-started from fbase. In the neural case,
froot is initialised with the parameters of fbase and fine-tuned on the augmented data. This warm-
starting accelerates convergence and ensures that froot inherits global structure while learning local
refinements.

Step 5: Output. The root model generates refined predictions:

ŷ1(i) = froot(xi,aug),

which serve as the top-level forecasts. These are propagated to child nodes during subsequent hier-
archical training (see Appendix B.3), ensuring that each level inherits both the global baseline and
the root’s refined adjustments.

Implementation Note. For reproducibility, we set the reference dataset size nref = 106 when
computing scaling constants, learning rate decay with depth factor γ = 0.5, and minimum node size
Nmin = 50. In practice, the baseline and root are implemented as separate models: fbase provides a
normalised trend feature, while froot produces the actual top-level prediction.

B.3 DETAILED CHILD NODE TRAINING

After the root node has established a global baseline, CARE progressively trains the child nodes to
refine predictions for local spatial regions. This process is recursive, moving top-down through the
SMART-QT hierarchy. We expand here on the compact description given in the main text.

Step 1: Data Partitioning. Each child node ν is associated with a subset of training points Dν =
{(xi, yi)}i∈Iν that fall within the spatial boundaries of the SMART-QT partition. By construction,
these subsets are disjoint across siblings but collectively cover the parent’s domain.

Step 2: Parent Prediction Feature. For every sample i ∈ Dν , we compute the prediction of the
parent model fπ(ν):

ŷπ(ν)(i) = fπ(ν)(xi,aug).

Since the magnitude of parent predictions may vary across nodes, we normalise them within Dν :

ŷ′π(ν)(i) =
ŷπ(ν)(i)− µŷπ(ν)

σŷπ(ν)

,

where µŷπ(ν)
and σŷπ(ν)

are the mean and standard deviation of ŷπ(ν) over Dν . This ensures scale
consistency and prevents numerical drift as predictions are propagated downward.
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Step 3: Feature Augmentation. The standardised parent prediction is appended to the original
feature vector, producing:

xi,aug,ν = [xi, ŷ
′
π(ν)(i)].

This augments the child’s training input with both local spatio-temporal context (xi) and inherited
parent knowledge.

Step 4: Model Initialisation. To accelerate convergence and stabilise learning, each child’s re-
gressor fν is warm-started from its parent model fπ(ν):

• Tree-based case (XGBoost): The child booster inherits the parent’s ensemble and contin-
ues training with additional trees, typically with a reduced learning rate or capped number
of new trees Tnew.

• Neural case: The child network is initialised with the parent’s weights θπ(ν) and fine-tuned
on Dν with a local learning rate schedule.

Step 5: Local Objective. The child model minimises the local mean squared error:

θ⋆ν = argmin
θ

1

|Dν |
∑
i∈Dν

(
yi − fν(xi,aug,ν ; θ)

)2
+ λν Ω(θ, θπ(ν)),

where Ω(·) is a proximity regulariser. For neural models, Ω(θ, θπ(ν)) = ∥θ − θπ(ν)∥22, enforcing
similarity to the parent’s weights. For XGBoost, the proximity is implicit via warm-starting and
limiting additional trees.

Step 6: Recursive Refinement. The predictions from each child are then propagated further down
to their descendants, repeating Steps 2–5. This recursive refinement continues until leaf nodes are
reached, where the most specialised models provide fine-grained predictions for local regions while
maintaining coherence with the global structure propagated from the root.

Implementation Notes. In practice, small nodes with |Dν | < Nmin are exempt from retraining;
instead, they reuse their parent’s predictions. This avoids overfitting in data-sparse regions. We used
Nmin = 50 in our experiments.

B.4 FINE-TUNING HYPERPARAMETERS FOR NEURAL NETWORK MODELS

The hyperparameters in Table 6 were selected to balance model complexity with the hierarchical
quadtree fine-tuning strategy. At the root level, higher learning rates encourage global pattern dis-
covery, while lower child learning rates stabilize local refinements and prevent catastrophic forget-
ting. Dropout values scale with model capacity, being higher for Light Transformers and BiLSTMs,
moderate for LSTMs, and lower for GRUs and MLPs, reflecting their susceptibility to overfitting.
Batch sizes and epoch counts are adjusted according to model complexity and local data availability,
with smaller batches and fewer epochs for memory-intensive models (Transformers, BiLSTMs) and
larger batches for lighter models (GRUs, MLPs). These choices ensure that each model can refine
inherited weights at the leaf nodes effectively without overfitting, maintaining a balance between
global generalization at the root and robust local specialization at the leaves.

The learning-rate schedules in Table 7 complement this framework by further stabilizing training
and enhancing generalization. Light Transformers utilize a short linear warm-up followed by cosine
annealing to gradually reduce the learning rate across child epochs, preventing destabilization of pre-
trained attention patterns. RNN models (GRU, LSTM, BiLSTM) employ step decay or ReduceL-
ROnPlateau strategies to adaptively reduce learning rates when validation performance plateaus,
which is critical for small, sparse quadtree segments. Child-level learning rates are conservatively
lower than root-level rates to refine inherited weights without overwriting global patterns. Minimum
learning-rate floors, along with weight decay and dropout, further regularize the models. Overall,
varying hyperparameters across models is intentional to match their computational requirements
and overfitting tendencies, ensuring each model achieves its optimal performance and enabling a
fair comparison of prediction accuracy across heterogeneous quadtree segments.
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B.5 EFFICIENT TRAINING AND INFERENCE: COMPLEXITY ANALYSIS AND EMPIRICAL
TIMINGS

Per-node complexity. At inference, each sample traverses at most one model per quadtree level.
For an XGBoost regressor with k trees and p features, the per-node cost is O(p · k), since each tree
requires at most p feature checks. For a neural network with H layers and widths {dℓ}, the per-node
cost is O

(∑H
ℓ=1 dℓ−1dℓ

)
, dominated by dense matrix multiplications. In both cases, p, k, and {dℓ}

are fixed after model tuning, so the per-node cost is constant.

Depth dependence. Let L be the quadtree depth and n the dataset size. Each sample evaluation
requires O(L) node visits. Since SMART-QT enforces L = O(logn) (Eq. 2), the total complexity
per sample is O(L) = O(logn).

Empirical timings. To validate the constant-factor assumption, we benchmarked prediction time
for both model types on a commodity GPU/CPU setup. The average inference time per sample
across varying dataset sizes (n) is shown below.

Dataset size (n) Depth (L) XGBoost per-sample (ms) NN per-sample (ms)

104 6 0.05 0.07
105 8 0.06 0.08
106 12 0.08 0.11

Table 9: Empirical inference times for XGBoost (k = 200, p = 20) and NN (H = 3, widths {64, 32, 1}).
Timings averaged over 10 runs. Per-sample cost grows with depth L, consistent with O(logn) scaling, but
remains within practical bounds.

Implementation note: For both the XGBoost and NN instantiations of SMART-CARE, we fix the
architecture and hyperparameters before training. This ensures that per-node inference cost does not
scale with tree depth or dataset size, validating the O(logn) inference complexity assumption.

Discussion: The results confirm that (i) per-node inference cost remains nearly constant once mod-
els are fixed, and (ii) per-sample runtime grows only logarithmically with dataset size. This validates
the theoretical O(logn) complexity for both the XGBoost and NN instantiations of SMART-CARE.

B.6 HIERARCHICAL OR TOP-DOWN INFERENCE (PREDICTION) PROCEDURE:

Once all node models are trained, predicting the outcome for an evaluation data point involves pre-
processing, routing the point through the quadtree and refining the prediction at each level, mimick-
ing the training sequence. Starting at the root node, the process proceeds as follows: (i) Baseline Ini-
tialization: For a new input sample x (with spatio-temporal features), we obtain an initial prediction
from the baseline model, ŷ0 = fbase(x). This prediction is standardised (zero-mean, unit-variance)
and appended to x, forming the augmented feature vector xaug = [x, ŷ′0], consistent with the train-
ing phase. (ii) Root Prediction: The augmented features are fed into the root model to obtain the
first refined prediction: ŷ1 = froot(xaug). This ŷ1 represents the model’s estimate after accounting
for global crime patterns, serving as the starting point for further refinement. (iii) Recursive Re-
finement: The sample x is routed to the child node ν containing its coordinates, carrying ŷ1 as a
standardized ”Prediction” feature in xaug,ν = [x, ŷ′1]. The child model computes ŷ2 = fν(xaug,ν),
refining the prediction for the sub-region. This top-down traversal continues recursively: at each
node ν, the latest parent prediction ŷk augments the features, producing ŷk+1 = fν(xaug,ν), and
routing to the next child if it exists. For merged or skipped nodes, the parent’s prediction is retained,
bypassing local updates. Traversal stops at a leaf or when no child model exists, yielding the fi-
nal prediction ŷfinal. Formally, the inference path yields a sequence ŷ0 → ŷ1 → · · · → ŷ≤Lmax ,
terminating in the final prediction ŷfinal.
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C ABLATION VARIANT:

C.1 ADAPTIVE MEDIAN-BASED LEAF NODE PREDICTIVE MODEL (AMB-LNPM)

The Adaptive Median-Based Leaf Node Predictive Model (AMB-LNPM) adopts SMART-CARE’s
adaptive median-based splitting to partition spatial regions, ensuring more balanced data distribu-
tion for leaf node predictions. However, it omits SMART-CARE’s parent-child knowledge transfer
and model refinement, preventing the model from leveraging hierarchical relationships to inform
child node predictions or iteratively fine-tune across scales. This absence results in an MAE of 4.18,
higher than SMART-CARE’s 0.24–0.27, despite relatively balanced splits (variance of points per
leaf node: 7820000.00). The lack of hierarchical learning increases memory usage to 40.20 MB,
reflecting inefficiencies in processing large datasets like NYPD. AMB-LNPM’s performance high-
lights the importance of hierarchical modelling in capturing complex spatio-temporal crime patterns,
as its scalability and accuracy suffer without SMART-CARE’s full hierarchical framework.

C.2 STATIC MID-POINT BASED REFINE ENSEMBLE PREDICTIVE MODEL (SMID-REPM)

The Static Mid-point Based Refine Ensemble Predictive Model (SMID-REPM) employs static mid-
point splitting while integrating SMART-CARE’s parent-child knowledge transfer and model refine-
ment for leaf node predictions. This hierarchical learning enables child nodes to inherit and fine-tune
parent models, improving convergence over non-hierarchical variants. However, SMID-REPM lacks
SMART-CARE’s adaptive median-based splitting, resulting in uneven data distribution (variance of
points per leaf node: 6100000.00). This limitation reduces fine-grained prediction accuracy, yield-
ing an MAE of 3.45, better than SMID-LNPM’s 5.62 but worse than SMART-CARE’s 0.24–0.27.
The static partitioning also increases range query time to 0.0165 seconds, indicating inefficiencies
in processing high-density crime regions like Chicago. Consequently, SMID-REPM struggles to
balance computational efficiency and prediction accuracy, particularly in datasets with significant
spatial variability, limiting its effectiveness compared to SMART-CARE’s adaptive approach.

C.3 STATIC MID-POINT BASED LEAF NODE PREDICTIVE MODEL (SMID-LNPM)

The Static Mid-point Based Leaf Node Predictive Model (SMID-LNPM) constructs a quadtree using
fixed midpoint splitting to partition spatial regions, focusing on leaf node predictions without incor-
porating SMART-CARE’s parent-child knowledge transfer or model refinement mechanisms. This
absence of hierarchical relationships prevents SMID-LNPM from leveraging parent node models to
inform child node predictions, limiting its ability to capture spatial dependencies across scales. Ad-
ditionally, the lack of refinement hinders iterative model tuning, leading to suboptimal performance
in complex crime patterns. Consequently, SMID-LNPM achieves a higher prediction error, with
an MAE of 8.62, compared to SMART-CARE’s 0.24–0.27, due to static splits causing uneven data
distribution (variance of points per leaf node: 6350000.00). This imbalance increases computational
overhead, as the model struggles to adapt to high-density regions like NYC, resulting in reduced
scalability and accuracy in capturing fine-grained crime trends.

D EXPERIMENTS AND RESULTS

D.1 EXPERIMENTAL SETUP

We use two large-scale crime datasets:

• NYPD Complaint Data (7.8M rows, 18 attributes, 2008–2023) Department (2023).
• Chicago Crime Data (8.2M rows, 22 attributes, 2001–2024) of Chicago Police (2024).

From each dataset, we extract spatio-temporal features, including Date-Time, Longitude, and
Latitude, with temporal attributes engineered (day, week, month, year, cyclic encodings). The
SMART-QT structure distributes samples into quadtree nodes based on spatial density, producing
balanced training subsets.

For CARE-PM, we employ an XGBoost regressor, tuned via GridSearchCV over nestimators and
learning rate. Training proceeds in a breadth-first traversal: parent node predictions are appended
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as features and passed to children to enable hierarchical refinement. Hyperparameters are tuned
only at the root level and inherited by descendants to reduce search cost. For completeness, we also
experimented with a lightweight neural variant (transformer-based regressor) for CARE-PM, using
the same parent-to-child inheritance strategy. However, our primary reported results focus on the
XGBoost-based implementation.

D.2 HEATMAP COMPARISON OF SPLITTING STRATEGIES:

Figure 3 presents a heatmap comparing splitting strategies: HDBSCAN, standard Quadtree with
Static-Mid splitting, and SMART-QT with median-based splitting. SMART-QT excels by achiev-
ing a balanced data distribution, minimising over-fragmentation in sparse regions while preserving
granularity in dense areas, as evidenced by uniform colour intensity across nodes. HDBSCAN fal-
ters with noise sensitivity, producing irregular clusters, while Static-Mid splitting in the standard
Quadtree results in uneven distributions, with blue rectangles highlighting sparse nodes containing
few data points between dense clusters. SMART-QT’s Strategic Small-Leaf Merging reduces node
count by 35% in sparse areas (e.g., NYC outskirts), improving computational efficiency and pre-
diction stability. The heatmap shows SMART-QT’s adaptive partitioning outperforms, with tighter
crime density alignment (e.g., high-crime red zones match actual hotspots), validating its superiority
for spatio-temporal crime prediction.

D.3 ABLATION VARIANT COMPARISON:

An ablation study was conducted to evaluate the contributions of SMART-CARE’s key components
(ablation variant detailed in Appendix C). SMART-CARE outperforms ablation variants: SMID-
LNPM, SMID-REPM, and AMB-LNPM. SMID-LNPM and AMB-LNPM, lacking parent-child re-
lationships and model refinement, fail to leverage hierarchical knowledge, resulting in higher MAE
(e.g., 5.26 and 2.36, respectively). SMID-REPM, while incorporating parent-child relationships,
uses static midpoints, leading to uneven splits and an MAE of 3.23. In contrast, SMART-CARE’s
adaptive median-based splitting with hierarchical refinement achieves an MAE of 0.92, as shown
in Figure 4. This underscores the importance of SMART-QT’s dynamic partitioning and parent-to-
child model inheritance in capturing complex spatio-temporal crime patterns effectively.

D.4 TEMPORAL COMPARATIVE ANALYSIS:

To assess dataset size impact, SMART-CARE was trained incrementally on crime data, starting with
a one-year dataset D1, then aggregating as Dt =

⋃t
i=1 Yi, where Yi is year i’s data, using an 80%

training, 20% testing split. As t increased, error rates dropped, reflecting better pattern recogni-
tion. Figure 4 shows SMART-CARE outperformed baselines Butt et al. (2021; 2024) (MAE: 8.74,
6.12) with a lower MAE of 0.23 and Adjusted R2 of 0.94 on the dataset (2008-2023), leveraging
SMART-QT’s hierarchical structure for spatio-temporal dynamics. Ablation models SMID-REPM
and SMID-LNPM, lacking temporal features and hierarchy, showed reduced accuracy. SMART-
CARE’s execution time (54.44 min) was lower than baselines (116.42 min), balancing efficiency
and performance.
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Table 10: Notation Summary for SMART-CARE Framework

Notation Description First Used
D Complete dataset Abstract
D = {(xi, ti, ci)}Ni=1 Dataset with N samples Abstract
xi ∈ Rd Spatio-temporal feature vector for sample i Abstract
ti Raw timestamp for sample i Methodology
ci ∈ N Daily crime count (target variable) Abstract
ĉi Predicted crime count Abstract
f : xi 7→ ĉi Prediction function Abstract
Dtrain,Dtest Training and test splits Methodology
S ⊂ R2 Spatial domain (longitude, latitude) Methodology
Nj Node j in quadtree Methodology
{Nj} Set of all nodes Methodology
Dj ⊂ D Data subset belonging to node Nj Methodology
fj Local predictor for node Nj Methodology
Tmax Adaptive capacity threshold (max points per node) Abstract
Lmax Maximum depth limit Abstract
M Fixed capacity threshold (classical quadtree) SMART-QT subsection
L Fixed depth limit (classical quadtree) SMART-QT subsection
n Number of points in current node SMART-QT subsection
nj Number of points in node Nj Algorithm 1
σ2
j Crime count variance in node Nj Algorithm 1

nref Reference dataset size for scaling Algorithm 1
s Scaling factor N/nref Algorithm 1
ν Retuning frequency parameter Algorithm 1
xmed, ymed Median coordinates for splitting Algorithm 1
DNW ,DNE , . . . Data subsets for quadrants Algorithm 1
NNW ,NNE , . . . Child nodes (Northwest, Northeast, etc.) Algorithm 1
Tmin Minimum node capacity bound Equation 1
Tcap Maximum node capacity bound Equation 1
α, β, γ, δ Adaptive threshold parameters Table 2
κ, λ Scaling parameters for bounds Table 2
η Depth multiplier parameter Table 2
s Dataset size scaling factor Appendix
ntotal Total dataset size (N ) Appendix
nref Reference dataset size Appendix
Lmax Adaptive maximum depth limit Equation 2
Lmin Minimum depth bound (e.g., 5) Appendix
Lcap Maximum depth bound (e.g., 15) Appendix
σ2

local Local crime variance within node Equation 2
η Global depth scaling factor Equation 2
ntotal Total dataset size (N ) Equation 2
xmid[0], xmid[1] Median coordinates for splitting Equation ??
NNW, NNE, . . . Child node quadrants Methodology
P Point set in current node Equation ??
τ Minimum point threshold for merging Methodology
τmax Maximum merged node size (2.5τ ) Methodology
ρ Point density (|P |/A) Methodology
A Area of node boundary Methodology
Q1, Q3 First/third quartiles of density distribution Methodology
IQR Interquartile range (Q3 −Q1) Methodology
ϕ Outlier multiplier (1.5) Methodology
Nc,Ns Candidate and sibling nodes for merging Methodology
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