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Abstract

Generalization in medical segmentation models is challenging due to limited an-
notated datasets and imaging variability. To address this, we propose Retinal
Layout-Aware Diffusion (RLAD), a novel diffusion-based framework for gen-
erating controllable layout-aware images. RLAD conditions image generation
on multiple key layout components extracted from real images, ensuring high
structural fidelity while enabling diversity in other components. Applied to retinal
fundus imaging, we augmented the training datasets by synthesizing paired retinal
images and vessel segmentations conditioned on extracted blood vessels from real
images, while varying other layout components such as lesions and the optic disc.
Experiments demonstrated that RLAD-generated data improved generalization in
retinal vessel segmentation by up to 8.1%. Furthermore, we present REYIA, a
comprehensive dataset comprising 585 manually segmented retinal images. We

make the REYTA dataset and our source code open (upon publication) 0.

1 Introduction

Deep learning has achieved remarkable success across various domains, but its progress often
depends on access to large annotated datasets. In fields such as natural language processing, vision-
language modeling, and image generation, synthetic data from large models has driven significant
advancements [[1H6]. However, in medical imaging, particularly retinal vessel segmentation, data
scarcity and variability in imaging conditions remain persistent limitations [[7H10]. Retinal vessel
segmentation is critical for the diagnosis of ocular and systemic diseases [[11-14], yet the creation of
annotated datasets demands a considerable amount of time, specialized expertise, and consistency
across imaging devices [[15].

Retinal vessel segmentation involves two tasks: general vessel segmentation, which identifies the
vasculature, and artery/vein (AV) segmentation, which also differentiates arteries from veins. This
distinction provides insights into vessel-specific pathologies[16, [17]. However, AV segmentation
requires complex annotations, making it challenging to obtain sufficient labeled data for robust
training.

Generative models like GANs and VAEs have been explored to address data scarcity in medical
imaging [18,19]. When applied to retinal images, these models often encounter challenges, including
difficulties in preserving anatomical fidelity and issues with training stability [20]]. Diffusion models
have recently emerged as powerful tools for generating diverse high-fidelity images, with superior
stability and detail preservation, compared to GANs and VAEs [21, [22]. Despite their success in
image synthesis tasks across domains, e.g., natural image generation and text-to-image modeling,
their application in medical imaging has largely focused on generating synthetic images rather than
directly enhancing segmentation performance through data augmentation.
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Figure 1: RLAD Architecture. The original fundus image and segmentation maps for artery/vein
(AV), the optic cup/disc (CD), and lesions (L) are encoded into latent representations using a frozen
VAE. Gaussian noise is added to the image latent, and each latent (image, CD, AV, and L) is projected
into the DiT [25]] input space via distinct projections. Condition embeddings for AV, CD, and L are
summed into a single embedding, c. The DiT input consists of a beginning-of-conditioning (BOC)
token, user input (UI), ¢, an end-of-conditioning (EOC) token, and the noised image latent. The DiT
outputs the corresponding denoised image latent. The UI token specifies whether a layout component
is guided by user input or defaults to a neutral embedding when absent.

To address these limitations, we propose Retinal Layout-Aware Diffusion (RLAD), a diffusion-based
framework for the controllable generation of synthetic retinal images. By conditioning on multiple
key retinal structures—such as artery/vein (AV), the optic cup/disc (CD), and lesions (L)—RLAD
preserves essential vascular layouts while introducing variability in other regions. This enables the
creation of paired image-segmentation maps that expand training datasets without compromising
structural integrity. Synthetic data generated by RLAD improve segmentation model robustness
across diverse imaging conditions and acquisition settings.

We evaluated RLAD-generated data using state-of-the-art visual encoders such as Vision Transform-
ers [23]] and Swin Transformers [24], and demonstrate consistent improvements in generalization
performance under distribution shifts (up to 8.1%). Additionally, we introduce REYIA, the largest
multi-source collection of 585 retinal images with human reference AV segmentation, which not only
complements our synthetic data but also demonstrates strong baseline performance, further validating
the effectiveness of our synthetic data. In summary, the main contributions of this work are:

* A novel multi-layout-aware generative model (RLAD) that synthesizes diverse yet anatomi-
cally accurate retinal images while preserving semantic structures.

* Demonstrating consistent segmentation performance improvements across state-of-the-art
architectures using RLAD-generated data.

* Introducing REYIA, the largest multi-source collection of datasets for AV-segmented retinal
fundus images.

2 Related Work

Retinal AV segmentation plays a critical role in diagnosing microvascular pathologies [26-30]]. Early
methods [8} 131134, such as Little W-Net [[7], focused on compact convolutional neural networks
to reduce computational complexity. More recently, LUNet achieved state-of-the-art performance
on optic disc-centered images but struggled to generalize to macula-centered images [9)]. This
underscores the primary challenge of achieving robust generalization across diverse retinal imaging
conditions.

Generative adversarial networks have been extensively used for retinal image synthesis, often con-
ditioning the generation process on features such as vessel or lesion masks [35136]. While these
methods produced visually realistic images, they frequently lacked anatomical accuracy and robust-
ness [20], limiting their effectiveness for downstream tasks like AV segmentation. To address these
issues, Go et al. [20] proposed a hybrid approach that combined a diffusion model for generating AV
masks with a conditional GAN for synthesizing retinal images. Their method preserved patient pri-
vacy and demonstrated that synthetic images could lead to AV segmentation performance comparable
to models trained on real data. However, it failed to further enhance AV segmentation performance
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further, possibly due to limited variability in the generated AV masks, which may have propagated to
the synthesized images.

Diffusion models have demonstrated remarkable generative capabilities across various domains,
including image synthesis, video generation, layout and 3D modeling [[1}121}[37-43]]. Recent advance-
ments, such as classifier-free guidance [44] enable precise control over conditioning signals during
generation, making these models well-suited for structured image synthesis tasks. Transformer-based
architectures such as DiT [25] further enhance performance by capturing long-range dependencies.

Building on these developments, we propose a multi-layout-aware diffusion framework specifically
designed for retinal fundus image synthesis. Unlike prior approaches, our method conditions
generation on multiple retinal layout components —AV, CD, and L—extracted from real, non-
annotated images using pretrained segmentation models. This minimizes error propagation and
enhances realism while addressing domain generalization challenges in AV segmentation tasks
through synthetic data augmentation.

3 Datasets

This section introduces the new datasets created for this study and provides an overview of the
datasets used for diffusion model training and downstream segmentation tasks. For additional details,
please refer to the appendix.

3.1 New Datasets

We introduce REYTA, a curated set of 585 retinal fundus images annotated with AV blood vessel
segmentations using the open-access Lirot.ai software [15] and summarized in Table[I] To enhance
diversity, REYIA includes manually segmented images as part of this research from nine datasets:
FIVES [45], TREND [46], GRAPE [47], MESSIDOR [48], MAGRABIA [49], PAPILA [50],
MBRSET [51]] AV-WIDE [52]] and ENRICH. ENRICH is a new dataset collected for this study,
consisting of 111 retinal fundus images (IRB S60649). AV-WIDE, which initially contained only
skeletonized vessels, was reannotated to include complete vessel segmentations.

Dataset # Samples Image Center FOV (°) Region Resolution (px)
GRAPE' [47] 81 M 50 China 1444x1444
MESSIDOR [48] 67 M 45 France 1444x1444
PAPILAT [50] 78 D 30 Spain 1444x1444
MAGHREBIA' [49] 69 M,D 30 Maghreb 1444x1444
ENRICH" 111 D 45 Belgium 1958x2196
FIVES' [43] 75 M 45 China 1444x1444
AV-WIDE' [52] 26 D Ultra wide USA 829x1531
TREND T [46] 48 M 30 Montenegro  2560x2560
MBRSET" [51] 30 M 30 Brazil 1444x1444

Table 1: REYIA datasets collection released with this work. Datasets marked with T were annotated
specifically for this work, and those marked with * were both introduced and annotated here.

3.2 Diffusion Model Datasets

To train RLAD, we curated 112,320 retinal fundus images from publicly available datasets spanning
diverse imaging conditions, fields of view (FOV), and pathologies. The sources include widely used
datasets: UZLF [53], GRAPE [47], MESSIDOR [48], PAPILA [50], MAGRABIA [49]], ENRICH,
1000images [54], DDR [55], EYEPACS [56], G1020 [57], IDRID [58] and ODIR [59]. Evaluation
of the realism of the generated images, in comparison to real images, was performed on the DRTiD
dataset [60]).

3.3 AV Segmentation Datasets
3.3.1 Datasets for Segmentation Model Training

To train our segmentation models, we constructed a composite dataset combining the UZLF dataset
with newly annotated versions of GRAPE, MESSIDOR, ENRICH, MAGRABIA, and PAPILA.
These datasets feature high-resolution retinal fundus images with FOVs ranging from 30° to 45° and
encompass a variety of ophthalmic conditions and patient populations.
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Figure 2: Retinal Layout-Aware Diffusion Qualitative Examples. Top: user-defined layout compo-
nents inputs (artery/vein in red/blue, optic disc/cup in green/yellow, and lesions in white/pink/orange).
Bottom: corresponding generated fundus images.

3.3.2 Datasets for Segmentation Model Evaluation

To assess generalization performance under varying levels of distribution shift, we evaluated our
segmentation models across three categories of datasets:

In-Domain (Local): Data collected from the same hospital under similar acquisition conditions to
those as one of the training datasets, ensuring minimal distribution shifts.

Near-Domain (External): Data from different hospitals and environment, introducing moderate
distribution shifts. This category includes HRF [61]], INSPIRE [9} 62]], UNAF [9] and the
reannotated FIVES dataset.

Out-of-Domain (OOD): Data that significantly differ from the training distribution, used to evaluate
the model robustness across diverse imaging conditions. It includes AV-WIDE for ultra-wide-angle
images, IOSTAR [[64] for laser-based images, DRIVE [63] [66] for low-resolution images, RVD [10]
for video frames from handheld devices, TREND and MBRSET for handheld device images.

4 Method

Our objective is to generate realistic retinal images based on key retinal layout components, specifi-
cally AV, CD, and L, extracted from real retinal fundus images.

4.1 Layout Extraction

We extract retinal layouts using open-source models for L segmentation [67]] and CD segmentation
168]]. For AV segmentation, we retrained a SwinV2y,y-based model on our annotated datasets
with data augmentation techniques such as random color jitter, flips, and rotations. These extracted

retinal layout components serve as input to the diffusion process. The impact of the layout extractor
used is further discussed in the appendix.

4.2 Retinal Layout-Aware Diffusion

Our approach builds upon latent diffusion [69] and DiT [25]]. The forward diffusion process [21],
gradually adds Gaussian noise to an image xg, producing z;. This process is defined as:

q(z¢ | ®o) = N (z4; Varwo, (1 — o)1), (1

where the noise schedule {@;} follows a linear strategy as explored in [21]]. The reverse process
approximates the denoising steps to reconstruct xg:

po(wi—1 | 2, ¢) = N(xp—1; po(e, ), Bg (24, €)), )

where ¢ denotes conditioning information. Instead of operating directly in pixel space, we adopt
latent diffusion and perform these operations in a compressed latent space of a frozen VAE. This
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allows us to refine latent representations z; iteratively towards zy, improving computational efficiency
and scalability.

To incorporate conditional information into the diffusion process, we extract the layout components
(AV, CD and L) from the input data. These components are embedded into the transformer’s latent
space using dedicated projection heads: Vemp, Demb and Lemp.

cav = Vemn (AV),  cep = Demn(CD), e = Lemp (L).

To handle both fully and partially conditional cases, we used user input (UI) tokens. Each token indi-
cates whether a component is user-defined (guided) or neutral (unconditional). During training, each
layout component is either provided or masked with a certain probability, allowing the model to learn
both conditional and unconditional scenarios. This probabilistic masking is applied independently to
each component. When a component is masked, it is replaced with a “black* image embedding, and
its corresponding UI token is updated to signal the absence of guidance:

Ul = [Ulpy, Ulcp, UL,
allowing flexible control over the conditioning process. The final conditioning vector is computed as:

c=cay +ccp +cL.

which is fed into the transformer as part of a sequence:
[BOC, Ul, ¢, EOC, z],

where BOC and EOC mark the beginning and end of the conditioning tokens, respectively. After
the transformer processes this sequence, only the image tokens are retained to produce z;_1. This
design ensures that conditioning signals guide the denoising process without remaining entangled in
the final latent representation. A schematic overview of our architecture is provided in Figure[I]

Training Objective. Following DDPM [21]], we adopt a noise prediction loss. Instead of directly
modeling 9 and Xy, our model predicts the noise € added at a randomly chosen timestep ¢:

Limple = Bz r.e[lle — o (20, 1, )] S

Minimizing this MSE loss enables the model to accurately denoise latent representations, effectively
learning to reverse the diffusion process. By incorporating tokens that differentiate between user-
defined and neutral embeddings for each layout component, the model can both generate anatomically
guided images when specific conditions are provided, and produce diverse, unconstrained samples in
the absence of such guidance. This flexibility ensures that the model adapts seamlessly to varying
levels of conditional input, balancing anatomical fidelity with generative diversity.

Sampling. To generate new images, we start from a random Gaussian latent 2 ~ A(0, ) and
iteratively remove noise at each diffusion step ¢. Our model predicts the added noise €y(z4, t, ¢),
where c includes tokens for AV, CD, and L layouts.

We employ classifier-free guidance [44] to control how closely the model adheres to provided
conditions. At each step, two predictions are made: one conditional (c) and one unconditional (¢ = ().
These are combined as:

€§Uided(zt7 ta C) = é@ (zt, ta (Z)) + ’U)(éo (zt> ta C) - €9(Zta t? @>)7 (4)

where w is a guidance scale. Higher w yields more faithful adherence to the conditions, lower w
allows more diversity.

By iteratively applying guided noise predictions until reaching zp, we decode zy using the VAE
to produces a synthetic retinal fundus image. This approach balances anatomical fidelity when
conditions are provided with greater diversity when they are neutral or absent. Examples of generated
images are shown in Figure

4.3 Backbone Pretraining

We investigate pretraining strategies to enhance segmentation performance, focusing on two key
approaches: Masked Autoencoders (MAE) [[74] and Windowed Contrastive Learning (WCL) [[73]].
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Backbone UZLF LES-AV HRF INSPIRE FIVES UNAF AV-WIDE IOSTAR DRIVE RVD TREND MBRSET External OOD
RMHAS[8 - 60.0 48.0 : - R - 55.0 60.0 - - - - -

RVDsyin. (10 - - - - - - - - 57.3 53.0 - - - -

Little W-Net [z] ~ 80.7 82.0 58.1 71.3 73.5 68.6 43.1 29.9 61.3 34.7 53.4 50.4 67.9 455
Automorph [34] 763 84.0"  77.4f 71.1 725 65.9 50.1 54.9 78.1F 34.1 66.6 63.7 7177 57.91
VascX [20] 80.6 81.8 75.6 74.9 80.4 73.1 49.8 52.1 73.6 426 71.9 73.2 760  60.5
LUNet [9 83.2 83.5 73.1 75.5 86.0 74.4 69.3 56.7 71.1 352 71.1 63.2 773 61.1
DinoV2gman [71] 81.6109 824114 742408 76.6100 827110 729419 594404 572407 75.0412 4544006 671115 79.641, 76.6  64.0
+RLAD (Our) 818409 82.8:13 75.1u08 77.5+07 83.6110 7374118 583121 653432 76.8+1; 467106 708415 819:15 775 66.6
A +0.2 +0.4 +0.9 +0.9 +1.1 +0.8 -11 +8.1 +1.8 413 +3.7 2.3 +09 426

RETFound [72] 81.24,0 823415 77.7411 758409 821410 718159 632419 63.0133 75.1412 425408 701154 784457 769 652
+RLAD (Our) 83.1450 83.6415 80.2116 784410 863109 7464119 695118 70.5130 77.1415 4644108 769414 791417 799 699
A +0.9 +1.3 +2.5 +2.6 +4.2 +2.8 +6.3 +7.5 +2.0 +3.9 +6.8 +0.7 +3.0  +4.7
SwinV2ny [73] 828108 83.4+14 799414 78.1409 859408 743419 681420 67.6131 76.0+11 441408 762414 8154107 79.6 689
+RLAD (Our) 83.040s 83.6454 80.2413 783409 863108 74.6419 695420 713427 771414 463107 77.1411 837420 799 708
A +0.2 +0.2 +0.3 +0.2 +0.4 +0.3 +1.4 +3.7 +1.1 +2.2 +1.1 +2.0 +0.3 +1.9
SwinV2jyge [73] 83.2109 83.6114 804413 79.0100 87.2108 755417 709421 735131 76.5:11 48.2407 774114 86.0+16 80.5 72.1
+RLAD (Our) 832109 83.6.;5 804,53 791,09 87303 758117 71.24,, 7455 77110 482,07 77.6114 86216 80.7 725
A +0.0 +0.0 +0.0 +0.1 +0.1 +0.3 +0.3 +1.0 +0.6 +0.0 +0.2 +0.2 +0.2  +04

Table 2: RLAD Results. Quantitative comparison of RLAD-generated data integrated into DinoV2,
RETFound, and SwinV2 across model sizes. Baselines are trained on datasets from section
Evaluation spans Local, External, and OOD benchmarks, with average performance for External and
OOD. Previous state-of-the-art performance (gray) reflects open-source inference or reported results.
Performance is the average Dice score for artery and vein. T indicates data leakage during training.

MAE facilitates robust representation learning by reconstructing masked inputs, effectively teaching
the model to predict missing portions of an image. WCL, initially designed for depth estimation,
employs contrastive learning on small image patches while maintaining local spatial relationships,
making it particularly suitable for semantic segmentation tasks. Furthermore, we explore multi-
objective pretraining [76H78]], by combining MAE and WCL to develop richer representations and
improve downstream task performance. The dataset used for pretraining aligns with the one employed
to train RLAD.

4.4 Enhancing AV Segmentation with RLAD

The synthetic images generated by RLAD serve as powerful data augmentation tools for vessel
segmentation models. By preserving vascular structures while varying other characteristics (e.g., disc
or lesions), these images enrich training datasets without requiring additional manual annotations.

Let a vessel segmentation model be denoted as S, trained on real retinal images o, With ground
truth AV annotations y. The segmentation loss combines Dice loss and Binary Cross-Entropy (BCE)
where LA and LV specifically represent the loss terms computed over artery and vein, respectively:

L = 0.5 (Lice + Lcg) + 0.5 - (Lpice + Lyc)- 5)

The total training objective includes supervised loss on real images and consistency loss on synthetic
images:

Ltotal - Lseg (S(xorig)a y) + A Lseg (S(xgen)v y), (6)
where gy 18 a synthetic image sharing vascular structure with g, and A > 0 balances contributions
from real and synthetic data. This consistency regularization improves robustness across diverse
imaging conditions, enhancing segmentation performance on unseen datasets.

Additional implementation details, including hyperparameters and optimization strategies, are pro-
vided in the appendix.

5 Experimental Setup

We address data scarcity in retinal vessel segmentation by evaluating RLAD’s ability to generate
controllable, realistic fundus images and improve AV segmentation performance. Key evaluations
include image realism (section[5.2), segmentation performance across backbones (section[5.3), SOTA
comparisons (section [5.4)), and ablation studies (section[6). We seek to address three key research
questions:
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* Can RLAD generate controllable, realistic retinal images?
* Does usage of RLAD-generated data enhance our AV segmentation model?

* How does our model perform compared to SOTA?

5.1 Evaluation Metrics

We evaluate the diffusion model’s performance using the Fréchet Distance (FD), which compares the
feature distributions of real and generated images. We compute it in the latent space of Inception-v3
(FID) [79] and RETFound [72] (RET-FD), a foundation model pre-trained on 1.6 million retinal
images. RETFound likely offers a more accurate representation of retinal image-specific features,
while Inception-v3 enables a comparison with previous work.

For AV segmentation, we use the Dice score to measure overlap between predicted and ground truth
segmentations, averaged as (Dice4 + Dicey )/2. This is complemented by the Intersection over
Union (IoU) and centerline Dice (clDice) [80]], which emphasizes vessel centerlines. Both Dice
and clDice metrics are employed in RLAD ablation studies, with additional IoU and cIDice results
provided in the appendix. Notably, clDice offers a more nuanced evaluation by balancing sensitivity
to both thin and large vessels.

5.2 [Evaluation of Realism

We compare the FID scores achieved by RLAD with those of prior works (Table [3), using their
publicly available models for image generation or reports their published results when the models
were inaccessible. Notably, RLAD demonstrates superior performance by generating more realistic
retinal fundus images, as evidenced by lower FID and RET-FD scores.

5.3 Integrating RLAD into Leading Backbones

In Table [2, we present the performance of RLAD-generated data on the AV segmentation task,
evaluated using various backbones: DinoV2¢y,, RETFound, SwinV2;y,y, and SwinV2j,,.. The
results are reported across Local, External, and OOD test sets. For comparison, the first rows include
previously published state-of-the-art results under similar settings (i.e., Local, External, and OOD),
where available.

RLAD consistently improves performance on External, and OOD test sets, demonstrating its
backbone-agnostic advantages and its adaptability to in-domain and out-of-domain pretrained models.
For example, integrating RLAD with RETFound yields performance improvements of 6.3%, 7.5%,
and 6.8% on AV-WIDE, IOSTAR, and TREND, respectively. Notably, even when applied to the top-
performing backbone, SwinV2j,,., RLAD provides further performance gains of 0.2% on External
and 0.4% in OOD datasets.

5.4 Segmentation performance vs SOTA

SwinV2jee, trained on our newly curated dataset and RLAD-generated data, surpasses previous
state-of-the-art models across all Local, External, and OOD datasets, with the exception of RVD
(Table[2). As illustrated in Figure[3] it demonstrates superior AV segmentation performance compared
to SwinV2j,,. trained solely on the UZLF dataset and LUNet, the best performing open-source

Gen Model Conditioning FID| RET-FD|
StyleGAN [81]] L 138.0 120.8
StyleGAN2 [82] Demographics 98.1 116.0
StyleGAN2 [20]" AV 122.8 -
Pix2PixHD [20] AV 86.8 -

RLAD (Our) AV+L+CD 303 79.7

Table 3: Realism of Generated Images. Lower FID and RET-FD on the DRTiD dataset indicate
closer alignment with real data, reflecting realism. Notably, RLAD is able to generate controllable
and more realistic retinal images. Models' trained and evaluated on private data.
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model. Further quantitative and qualitative comparisons are included in the appendix. Moreover, a
comprehensive analysis demonstrating the superiority of our model over previous state-of-the-art
methods in estimating common vascular parameters is also provided in the appendix.

AV-WIDE IOSTAR MBRSET RVD

SwinVv2

Figure 3: Qualitative Example on the Segmentation Downstream Task. Comparing our model’s
AV segmentation to a SWinV2p g [24] trained on the UZLF dataset and LUNet [9], a SOTA model,
showcasing its superior performance across fundus images from various datasets.

6 Ablation studies

We analyze the effects of RLAD’s components, training datasets, and pretraining objectives using
SwinV2;,y as the baseline and Dice score unless stated otherwise.

Training Datasets: Starting with the UZLF dataset, we incrementally added our newly introduced
datasets (Table EI) The Local test sets includes optic disc centered images, while External test sets mix
optic disc and macula centered images. Adding macula-centered datasets GRAPE and MESSIDOR
improved performance across Local, External and OOD test sets. Each dataset addition yielded
incremental gains, with final improvements of +1.1%, +4.1%, and +8.3% for Local, External, and
OOD, respectively.

Pretraining Objective: We evaluated how pretraining objectives (MAE, WCL, or both) influence
our model’s performance (see Table[5). Adding MAE or WCL individually improved the OOD Dice
score from 68.9% to 69.2% and 69.4%, respectively, while combining them further increased clDice.
These findings indicate that combining both strategies enhance model generalization.

Conditioning on multiple layout components: When learning a conditional distribution solely on
AV, SwinV2nyriap achieved an average Dice score of 70.4% on the OOD datasets. In contrast,
conditioning on multiple layout components (AV, CD, and L) improved performance to 70.8%. This
highlights the advantage of leveraging a broader range of retinal fundus image features to enhance
the learned distribution (see Table [3).

Varying Generated Data Quantity: We explored the impact of varying amounts of RLAD-generated
samples: 0.5K (1 per real image), 1.5K (3 per real image), and 7.2K (15 per real image). Increasing
generated samples improved the average OOD Dice (Table[6) and cIDice (see appendix).

Performance Gains of RLAD Relative to Dataset Size: Figure 4 shows learning curves on OOD
datasets for SwinV2,, trained with and without RLAD synthetic data. Incorporating RLAD-
generated data consistently improves performance across all datasets. For IOSTAR, RVD, DRIVE,
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#Gen AV-WIDE IOSTAR DRIVE RVD TREND MBRSET OOD

Datasets Size Local External OOD

0.5K 69.2 69.9 71.2 45.8 76.9 759 70.4

1.5K 69.5 70.5 77.1 46.4 76.9 76.0 70.6
UZLF [53] 184 82.1 75.5 60.6 7.2K 69.5 713 77.1 46.3 77.1 76.2 70.8
+ GRAPE (Our') 81 82.6 781 652  Table 6: Quantity of Generated Data. We
*+MESSIDOR (Qur ) 67 828 789 666  evaluate the impact of increasing RLAD’s gener-
+ENRICH (Our®) : 111 831 792 67.0 ated data on performance, reporting Dice scores
+ MAGRABIA (Our’) 69 83.1 792  67.2 for each OOD dataset and their average perfor-
+PAPILA (Our') 78 831 796 689  .ce
A +1.0  +4.1 +83

AVWIDE IOSTAR
Table 4: Impact of increasing the number of £ /t ] /"/—.
o e . . 13 £

training datasets. This table shows how adding ¢, £607
newly introduced (*) or annotated () datasets to ~ © & ; A 5L ; .

. P . . . 10 50 100 10 50 100
the SwinV2y,, training pipeline impact perfor- Data Percentage Data Percentage
mance. DRIVE RVD

g 75 g 45
é 70 / £ '/—/.
E 65 - § 407
PT FT Local External 00D 1I0 Data?’lgrcentage 160 1'0 DataSPlgrcentage 160
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Table 5: Pretraining Objective and Generation
Method. The top section shows baseline perfor-
mance on our dataset, the middle highlights the
impact of pretraining objectives, and the bottom
examines AV conditioning versus AV + CD +
L, with notable OOD improvements using AV +

Figure 4: RLAD Performance vs. Training
Data Size. The figure illustrates the learning
curve of the SwinV2,y [24] baseline on OOD
datasets, demonstrating enhanced performance
with RLAD-generated data. The data percentage
reflects both real and generated samples, main-

CD +L. taining a 1:15 ratio (real:generated).

and MBRSET, the model trained with synthetic data outperformed the baseline while using less than
50% of the baseline’s training data. The largest gains occurred in data-scarce scenarios, highlighting
RLAD’s effectiveness in enhancing performance.

7 Conclusion

This work presents RLAD, a novel diffusion-based framework designed to generate realistic and
controllable retinal fundus images by conditioning on multiple layout components extracted from real-
world data. Beyond image generation, RLAD proves to be a valuable tool for advancing downstream
tasks. By incorporating the synthetic data generated by RLAD, we significantly enhance the training
datasets for AV segmentation tasks, resulting in notable performance improvements across various
visual backbones. This capability is particularly impactful in data-scarce scenarios, where access to
comprehensive datasets is limited. Our findings highlight the potential of RLAD to drive innovation
in medical imaging applications and improve segmentation outcomes. Future research could explore
its application to other imaging modalities and investigate optimization strategies to further enhance
its adaptability and scalability.

Limitations and Societal Impact: While RLAD improves generalization in retinal vessel segmenta-
tion, its effectiveness may be constrained by the quality of the generated images and the diversity of
the training data. The approach may not fully generalize to imaging modalities or populations not
represented in the training set. We demonstrated that the proposed framework may enhance clinical
decision support for retinal image analysis, but care must be taken to avoid over-reliance on synthetic
data and to monitor for biases that could affect underrepresented groups. Misapplication to non-target
populations or imaging modalities could lead to incorrect diagnoses.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the main contributions of the
paper, including the introduction of the RLAD framework, its application to retinal vessel
segmentation, and the release of a new annotated dataset. These claims are supported by the
experimental results and discussion in Sections 5 and 6.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations of the RLAD approach, including potential domain gaps,
computational demands, and reliance on accurate annotations, are now discussed in the
section 7.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides open access to both the code of the main experience and the
new dataset, with detailed instructions for data preprocessing, model training, and evaluation.
All hyperparameters, data splits, and implementation details are described in the main paper
and the supplementary material.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code for training and evaluating RLAD, as well as the new REYIA dataset,
are provided with the paper.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental settings, including model architectures, optimizer types,
learning rates, batch sizes, number of epochs, and data splits, are detailed.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Table 2, which support the main claim of the paper is also reporting a 2-sigma
error bar.
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Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Computer ressources used in the experiments are provided in the paper.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research adheres to the NeurIPS Code of Ethics. All datasets are properly
anonymized, patient privacy is respected, and no personally identifiable information is used.
An Institutional Review Board (IRB) approval have been received for the newly published
data source.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discussed the positive and negative societal impact in section 7.
Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: Although the risk for misuse is low, we have implemented the following
safeguards: (1) The dataset which is provided (DFI with segmentation masks) is either
anonymized or derived from publicly available sources, and thus potential risks of misuse,
such as unintended re-identification, are mitigated.

(2) Data and models will be released under a research-only license prohibiting clinical or
commercial use.

(3) Access to data will require agreement to terms of use, and all users must register and
accept usage guidelines.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All third-party datasets, models and codebases used are cited in the references.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new REYTIA dataset and RLAD code are fully documented, with instruc-
tions for use.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification: The paper does not involve crowdsourcing nor research with human subjects.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: All images used but one were open access. For the ENRICH dataset IRB was
obtained (S60649).

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
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