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Abstract

Generalization in medical segmentation models is challenging due to limited an-1

notated datasets and imaging variability. To address this, we propose Retinal2

Layout-Aware Diffusion (RLAD), a novel diffusion-based framework for gen-3

erating controllable layout-aware images. RLAD conditions image generation4

on multiple key layout components extracted from real images, ensuring high5

structural fidelity while enabling diversity in other components. Applied to retinal6

fundus imaging, we augmented the training datasets by synthesizing paired retinal7

images and vessel segmentations conditioned on extracted blood vessels from real8

images, while varying other layout components such as lesions and the optic disc.9

Experiments demonstrated that RLAD-generated data improved generalization in10

retinal vessel segmentation by up to 8.1%. Furthermore, we present REYIA, a11

comprehensive dataset comprising 585 manually segmented retinal images. We12

make the REYIA dataset and our source code open (upon publication) .13

1 Introduction14

Deep learning has achieved remarkable success across various domains, but its progress often15

depends on access to large annotated datasets. In fields such as natural language processing, vision-16

language modeling, and image generation, synthetic data from large models has driven significant17

advancements [1–6]. However, in medical imaging, particularly retinal vessel segmentation, data18

scarcity and variability in imaging conditions remain persistent limitations [7–10]. Retinal vessel19

segmentation is critical for the diagnosis of ocular and systemic diseases [11–14], yet the creation of20

annotated datasets demands a considerable amount of time, specialized expertise, and consistency21

across imaging devices [15].22

Retinal vessel segmentation involves two tasks: general vessel segmentation, which identifies the23

vasculature, and artery/vein (AV) segmentation, which also differentiates arteries from veins. This24

distinction provides insights into vessel-specific pathologies[16, 17]. However, AV segmentation25

requires complex annotations, making it challenging to obtain sufficient labeled data for robust26

training.27

Generative models like GANs and VAEs have been explored to address data scarcity in medical28

imaging [18, 19]. When applied to retinal images, these models often encounter challenges, including29

difficulties in preserving anatomical fidelity and issues with training stability [20]. Diffusion models30

have recently emerged as powerful tools for generating diverse high-fidelity images, with superior31

stability and detail preservation, compared to GANs and VAEs [21, 22]. Despite their success in32

image synthesis tasks across domains, e.g., natural image generation and text-to-image modeling,33

their application in medical imaging has largely focused on generating synthetic images rather than34

directly enhancing segmentation performance through data augmentation.35
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Figure 1: RLAD Architecture. The original fundus image and segmentation maps for artery/vein
(AV), the optic cup/disc (CD), and lesions (L) are encoded into latent representations using a frozen
VAE. Gaussian noise is added to the image latent, and each latent (image, CD, AV, and L) is projected
into the DiT [25] input space via distinct projections. Condition embeddings for AV, CD, and L are
summed into a single embedding, c. The DiT input consists of a beginning-of-conditioning (BOC)
token, user input (UI), c, an end-of-conditioning (EOC) token, and the noised image latent. The DiT
outputs the corresponding denoised image latent. The UI token specifies whether a layout component
is guided by user input or defaults to a neutral embedding when absent.

To address these limitations, we propose Retinal Layout-Aware Diffusion (RLAD), a diffusion-based36

framework for the controllable generation of synthetic retinal images. By conditioning on multiple37

key retinal structures—such as artery/vein (AV), the optic cup/disc (CD), and lesions (L)—RLAD38

preserves essential vascular layouts while introducing variability in other regions. This enables the39

creation of paired image-segmentation maps that expand training datasets without compromising40

structural integrity. Synthetic data generated by RLAD improve segmentation model robustness41

across diverse imaging conditions and acquisition settings.42

We evaluated RLAD-generated data using state-of-the-art visual encoders such as Vision Transform-43

ers [23] and Swin Transformers [24], and demonstrate consistent improvements in generalization44

performance under distribution shifts (up to 8.1%). Additionally, we introduce REYIA, the largest45

multi-source collection of 585 retinal images with human reference AV segmentation, which not only46

complements our synthetic data but also demonstrates strong baseline performance, further validating47

the effectiveness of our synthetic data. In summary, the main contributions of this work are:48

• A novel multi-layout-aware generative model (RLAD) that synthesizes diverse yet anatomi-49

cally accurate retinal images while preserving semantic structures.50

• Demonstrating consistent segmentation performance improvements across state-of-the-art51

architectures using RLAD-generated data.52

• Introducing REYIA, the largest multi-source collection of datasets for AV-segmented retinal53

fundus images.54

2 Related Work55

Retinal AV segmentation plays a critical role in diagnosing microvascular pathologies [26–30]. Early56

methods [8, 31–34], such as Little W-Net [7], focused on compact convolutional neural networks57

to reduce computational complexity. More recently, LUNet achieved state-of-the-art performance58

on optic disc-centered images but struggled to generalize to macula-centered images [9]. This59

underscores the primary challenge of achieving robust generalization across diverse retinal imaging60

conditions.61

Generative adversarial networks have been extensively used for retinal image synthesis, often con-62

ditioning the generation process on features such as vessel or lesion masks [35, 36]. While these63

methods produced visually realistic images, they frequently lacked anatomical accuracy and robust-64

ness [20], limiting their effectiveness for downstream tasks like AV segmentation. To address these65

issues, Go et al. [20] proposed a hybrid approach that combined a diffusion model for generating AV66

masks with a conditional GAN for synthesizing retinal images. Their method preserved patient pri-67

vacy and demonstrated that synthetic images could lead to AV segmentation performance comparable68

to models trained on real data. However, it failed to further enhance AV segmentation performance69
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further, possibly due to limited variability in the generated AV masks, which may have propagated to70

the synthesized images.71

Diffusion models have demonstrated remarkable generative capabilities across various domains,72

including image synthesis, video generation, layout and 3D modeling [1, 21, 37–43]. Recent advance-73

ments, such as classifier-free guidance [44] enable precise control over conditioning signals during74

generation, making these models well-suited for structured image synthesis tasks. Transformer-based75

architectures such as DiT [25] further enhance performance by capturing long-range dependencies.76

Building on these developments, we propose a multi-layout-aware diffusion framework specifically77

designed for retinal fundus image synthesis. Unlike prior approaches, our method conditions78

generation on multiple retinal layout components —AV, CD, and L—extracted from real, non-79

annotated images using pretrained segmentation models. This minimizes error propagation and80

enhances realism while addressing domain generalization challenges in AV segmentation tasks81

through synthetic data augmentation.82

3 Datasets83

This section introduces the new datasets created for this study and provides an overview of the84

datasets used for diffusion model training and downstream segmentation tasks. For additional details,85

please refer to the appendix.86

3.1 New Datasets87

We introduce REYIA, a curated set of 585 retinal fundus images annotated with AV blood vessel88

segmentations using the open-access Lirot.ai software [15] and summarized in Table 1. To enhance89

diversity, REYIA includes manually segmented images as part of this research from nine datasets:90

FIVES [45], TREND [46], GRAPE [47], MESSIDOR [48], MAGRABIA [49], PAPILA [50],91

MBRSET [51] AV-WIDE [52] and ENRICH. ENRICH is a new dataset collected for this study,92

consisting of 111 retinal fundus images (IRB S60649). AV-WIDE, which initially contained only93

skeletonized vessels, was reannotated to include complete vessel segmentations.94

Dataset # Samples Image Center FOV (→) Region Resolution (px)

GRAPE† [47] 81 M 50 China 1444x1444
MESSIDOR† [48] 67 M 45 France 1444x1444
PAPILA† [50] 78 D 30 Spain 1444x1444
MAGHREBIA† [49] 69 M, D 30 Maghreb 1444x1444
ENRICH↑ 111 D 45 Belgium 1958x2196
FIVES† [45] 75 M 45 China 1444x1444
AV-WIDE† [52] 26 D Ultra wide USA 829x1531
TREND † [46] 48 M 30 Montenegro 2560x2560
MBRSET† [51] 30 M 30 Brazil 1444x1444

Table 1: REYIA datasets collection released with this work. Datasets marked with † were annotated
specifically for this work, and those marked with → were both introduced and annotated here.

3.2 Diffusion Model Datasets95

To train RLAD, we curated 112,320 retinal fundus images from publicly available datasets spanning96

diverse imaging conditions, fields of view (FOV), and pathologies. The sources include widely used97

datasets: UZLF [53], GRAPE [47], MESSIDOR [48], PAPILA [50], MAGRABIA [49], ENRICH,98

1000images [54], DDR [55], EYEPACS [56], G1020 [57], IDRID [58] and ODIR [59]. Evaluation99

of the realism of the generated images, in comparison to real images, was performed on the DRTiD100

dataset [60].101

3.3 AV Segmentation Datasets102

3.3.1 Datasets for Segmentation Model Training103

To train our segmentation models, we constructed a composite dataset combining the UZLF dataset104

with newly annotated versions of GRAPE, MESSIDOR, ENRICH, MAGRABIA, and PAPILA.105

These datasets feature high-resolution retinal fundus images with FOVs ranging from 30° to 45° and106

encompass a variety of ophthalmic conditions and patient populations.107
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Figure 2: Retinal Layout-Aware Diffusion Qualitative Examples. Top: user-defined layout compo-
nents inputs (artery/vein in red/blue, optic disc/cup in green/yellow, and lesions in white/pink/orange).
Bottom: corresponding generated fundus images.

3.3.2 Datasets for Segmentation Model Evaluation108

To assess generalization performance under varying levels of distribution shift, we evaluated our109

segmentation models across three categories of datasets:110

In-Domain (Local): Data collected from the same hospital under similar acquisition conditions to111

those as one of the training datasets, ensuring minimal distribution shifts.112

Near-Domain (External): Data from different hospitals and environment, introducing moderate113

distribution shifts. This category includes HRF [61], INSPIRE [9, 62], UNAF [9, 63] and the114

reannotated FIVES dataset.115

Out-of-Domain (OOD): Data that significantly differ from the training distribution, used to evaluate116

the model robustness across diverse imaging conditions. It includes AV-WIDE for ultra-wide-angle117

images, IOSTAR [64] for laser-based images, DRIVE [65, 66] for low-resolution images, RVD [10]118

for video frames from handheld devices, TREND and MBRSET for handheld device images.119

4 Method120

Our objective is to generate realistic retinal images based on key retinal layout components, specifi-121

cally AV, CD, and L, extracted from real retinal fundus images.122

4.1 Layout Extraction123

We extract retinal layouts using open-source models for L segmentation [67] and CD segmentation124

[17, 68]. For AV segmentation, we retrained a SwinV2tiny-based model on our annotated datasets125

with data augmentation techniques such as random color jitter, flips, and rotations. These extracted126

retinal layout components serve as input to the diffusion process. The impact of the layout extractor127

used is further discussed in the appendix.128

4.2 Retinal Layout-Aware Diffusion129

Our approach builds upon latent diffusion [69] and DiT [25]. The forward diffusion process [21, 37]130

gradually adds Gaussian noise to an image x0, producing xt. This process is defined as:131

q(xt | x0) = N (xt;
→
ωtx0, (1↑ ωt)I), (1)

where the noise schedule {ωt} follows a linear strategy as explored in [21]. The reverse process132

approximates the denoising steps to reconstruct x0:133

pω(xt↑1 | xt, c) = N (xt↑1;µω(xt, c),!ω(xt, c)), (2)

where c denotes conditioning information. Instead of operating directly in pixel space, we adopt134

latent diffusion and perform these operations in a compressed latent space of a frozen VAE. This135
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allows us to refine latent representations zt iteratively towards z0, improving computational efficiency136

and scalability.137

To incorporate conditional information into the diffusion process, we extract the layout components138

(AV,CD and L) from the input data. These components are embedded into the transformer’s latent139

space using dedicated projection heads: Vemb, Demb and Lemb.140

cAV = Vemb
(
AV

)
, cCD = Demb

(
CD

)
, cL = Lemb

(
L
)
.

To handle both fully and partially conditional cases, we used user input (UI) tokens. Each token indi-141

cates whether a component is user-defined (guided) or neutral (unconditional). During training, each142

layout component is either provided or masked with a certain probability, allowing the model to learn143

both conditional and unconditional scenarios. This probabilistic masking is applied independently to144

each component. When a component is masked, it is replaced with a “black“ image embedding, and145

its corresponding UI token is updated to signal the absence of guidance:146

UI = [UIAV, UICD, UIL],

allowing flexible control over the conditioning process. The final conditioning vector is computed as:147

c = cAV + cCD + cL.

which is fed into the transformer as part of a sequence:148

[BOC, UI, c, EOC, zt],

where BOC and EOC mark the beginning and end of the conditioning tokens, respectively. After149

the transformer processes this sequence, only the image tokens are retained to produce zt↑1. This150

design ensures that conditioning signals guide the denoising process without remaining entangled in151

the final latent representation. A schematic overview of our architecture is provided in Figure 1.152

Training Objective. Following DDPM [21], we adopt a noise prediction loss. Instead of directly153

modeling µω and !ω, our model predicts the noise ε added at a randomly chosen timestep t:154

Lsimple = Ez0,t,ε

[
↓ε↑ ε̂ω(zt, t, c)↓2

]
. (3)

Minimizing this MSE loss enables the model to accurately denoise latent representations, effectively155

learning to reverse the diffusion process. By incorporating tokens that differentiate between user-156

defined and neutral embeddings for each layout component, the model can both generate anatomically157

guided images when specific conditions are provided, and produce diverse, unconstrained samples in158

the absence of such guidance. This flexibility ensures that the model adapts seamlessly to varying159

levels of conditional input, balancing anatomical fidelity with generative diversity.160

Sampling. To generate new images, we start from a random Gaussian latent zT ↔ N (0, I) and161

iteratively remove noise at each diffusion step t. Our model predicts the added noise ε̂ω(zt, t, c),162

where c includes tokens for AV, CD, and L layouts.163

We employ classifier-free guidance [44] to control how closely the model adheres to provided164

conditions. At each step, two predictions are made: one conditional (c) and one unconditional (c = ↗).165

These are combined as:166

ε̂guided
ω (zt, t, c) = ε̂ω(zt, t, ↗) + w

(
ε̂ω(zt, t, c)↑ ε̂ω(zt, t, ↗)

)
, (4)

where w is a guidance scale. Higher w yields more faithful adherence to the conditions, lower w167

allows more diversity.168

By iteratively applying guided noise predictions until reaching z0, we decode z0 using the VAE169

to produces a synthetic retinal fundus image. This approach balances anatomical fidelity when170

conditions are provided with greater diversity when they are neutral or absent. Examples of generated171

images are shown in Figure 2.172

4.3 Backbone Pretraining173

We investigate pretraining strategies to enhance segmentation performance, focusing on two key174

approaches: Masked Autoencoders (MAE) [74] and Windowed Contrastive Learning (WCL) [75].175
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Backbone Local External OOD Average
UZLF LES-AV HRF INSPIRE FIVES UNAF AV-WIDE IOSTAR DRIVE RVD TREND MBRSET External OOD

RMHAS[8] - 60.0 48.0 - - - - 55.0 60.0 - - - - -
RVDSwin-L [10] - - - - - - - - 57.3 53.0 - - - -
Little W-Net [7] 80.7 82.0 58.1 71.3 73.5 68.6 43.1 29.9 61.3 34.7 53.4 50.4 67.9 45.5
Automorph [34] 76.3 84.0† 77.4† 71.1 72.5 65.9 50.1 54.9 78.1† 34.1 66.6 63.7 71.7† 57.9†

VascX [70] 80.6 81.8 75.6 74.9 80.4 73.1 49.8 52.1 73.6 42.6 71.9 73.2 76.0 60.5
LUNet [9] 83.2 83.5 73.1 75.5 86.0 74.4 69.3 56.7 71.1 35.2 71.1 63.2 77.3 61.1

DinoV2small [71] 81.6±0.9 82.4±1.4 74.2±0.8 76.6±0.9 82.7±1.0 72.9±1.9 59.4±2.4 57.2±2.7 75.0±1.2 45.4±0.6 67.1±1.5 79.6±1.1 76.6 64.0
+ RLAD (Our) 81.8±0.9 82.8±1.3 75.1±0.8 77.5±0.7 83.6±1.0 73.7±1.8 58.3±2.1 65.3±3.2 76.8±1.1 46.7±0.6 70.8±1.5 81.9±1.5 77.5 66.6
” +0.2 +0.4 +0.9 +0.9 +1.1 +0.8 -1.1 +8.1 +1.8 +1.3 +3.7 +2.3 +0.9 +2.6

RETFound [72] 81.2±1.0 82.3±1.5 77.7±1.1 75.8±0.9 82.1±1.0 71.8±1.9 63.2±1.9 63.0±3.3 75.1±1.2 42.5±0.8 70.1±1.4 78.4±1.7 76.9 65.2
+ RLAD (Our) 83.1±1.0 83.6±1.5 80.2±1.6 78.4±1.0 86.3±0.9 74.6±1.9 69.5±1.8 70.5±3.0 77.1±1.2 46.4±0.8 76.9±1.4 79.1±1.7 79.9 69.9
” +0.9 +1.3 +2.5 +2.6 +4.2 +2.8 +6.3 +7.5 +2.0 +3.9 +6.8 +0.7 +3.0 +4.7

SwinV2tiny [73] 82.8±0.8 83.4±1.4 79.9±1.4 78.1±0.9 85.9±0.8 74.3±1.9 68.1±2.0 67.6±3.1 76.0±1.1 44.1±0.8 76.2±1.4 81.5±2.7 79.6 68.9
+ RLAD (Our) 83.0±0.8 83.6±1.4 80.2±1.3 78.3±0.9 86.3±0.8 74.6±1.9 69.5±2.0 71.3±2.7 77.1±1.4 46.3±0.7 77.1±1.1 83.7±2.0 79.9 70.8
” +0.2 +0.2 +0.3 +0.2 +0.4 +0.3 +1.4 +3.7 +1.1 +2.2 +1.1 +2.0 +0.3 +1.9

SwinV2large [73] 83.2±0.9 83.6±1.4 80.4±1.3 79.0±0.9 87.2±0.8 75.5±1.7 70.9±2.1 73.5±3.1 76.5±1.1 48.2±0.7 77.4±1.4 86.0±1.6 80.5 72.1
+ RLAD (Our) 83.2±0.9 83.6±1.5 80.4±1.3 79.1±0.9 87.3±0.8 75.8±1.7 71.2±2.2 74.5±2.8 77.1±1.0 48.2±0.7 77.6±1.4 86.2±1.6 80.7 72.5
” +0.0 +0.0 +0.0 +0.1 +0.1 +0.3 +0.3 +1.0 +0.6 +0.0 +0.2 +0.2 +0.2 +0.4

Table 2: RLAD Results. Quantitative comparison of RLAD-generated data integrated into DinoV2,
RETFound, and SwinV2 across model sizes. Baselines are trained on datasets from section 3.3.
Evaluation spans Local, External, and OOD benchmarks, with average performance for External and
OOD. Previous state-of-the-art performance (gray) reflects open-source inference or reported results.
Performance is the average Dice score for artery and vein. † indicates data leakage during training.

MAE facilitates robust representation learning by reconstructing masked inputs, effectively teaching176

the model to predict missing portions of an image. WCL, initially designed for depth estimation,177

employs contrastive learning on small image patches while maintaining local spatial relationships,178

making it particularly suitable for semantic segmentation tasks. Furthermore, we explore multi-179

objective pretraining [76–78], by combining MAE and WCL to develop richer representations and180

improve downstream task performance. The dataset used for pretraining aligns with the one employed181

to train RLAD.182

4.4 Enhancing AV Segmentation with RLAD183

The synthetic images generated by RLAD serve as powerful data augmentation tools for vessel184

segmentation models. By preserving vascular structures while varying other characteristics (e.g., disc185

or lesions), these images enrich training datasets without requiring additional manual annotations.186

Let a vessel segmentation model be denoted as S, trained on real retinal images xorig with ground187

truth AV annotations y. The segmentation loss combines Dice loss and Binary Cross-Entropy (BCE)188

where LA and LV specifically represent the loss terms computed over artery and vein, respectively:189

Lseg = 0.5 · (LA
Dice + LA

BCE) + 0.5 · (LV
Dice + LV

BCE). (5)

The total training objective includes supervised loss on real images and consistency loss on synthetic190

images:191

Ltotal = Lseg(S(xorig), y) + ϑ · Lseg(S(xgen), y), (6)
where xgen is a synthetic image sharing vascular structure with xorig, and ϑ > 0 balances contributions192

from real and synthetic data. This consistency regularization improves robustness across diverse193

imaging conditions, enhancing segmentation performance on unseen datasets.194

Additional implementation details, including hyperparameters and optimization strategies, are pro-195

vided in the appendix.196

5 Experimental Setup197

We address data scarcity in retinal vessel segmentation by evaluating RLAD’s ability to generate198

controllable, realistic fundus images and improve AV segmentation performance. Key evaluations199

include image realism (section 5.2), segmentation performance across backbones (section 5.3), SOTA200

comparisons (section 5.4), and ablation studies (section 6). We seek to address three key research201

questions:202
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• Can RLAD generate controllable, realistic retinal images?203

• Does usage of RLAD-generated data enhance our AV segmentation model?204

• How does our model perform compared to SOTA?205

5.1 Evaluation Metrics206

We evaluate the diffusion model’s performance using the Fréchet Distance (FD), which compares the207

feature distributions of real and generated images. We compute it in the latent space of Inception-v3208

(FID) [79] and RETFound [72] (RET-FD), a foundation model pre-trained on 1.6 million retinal209

images. RETFound likely offers a more accurate representation of retinal image-specific features,210

while Inception-v3 enables a comparison with previous work.211

For AV segmentation, we use the Dice score to measure overlap between predicted and ground truth212

segmentations, averaged as (DiceA + DiceV )/2. This is complemented by the Intersection over213

Union (IoU) and centerline Dice (clDice) [80], which emphasizes vessel centerlines. Both Dice214

and clDice metrics are employed in RLAD ablation studies, with additional IoU and clDice results215

provided in the appendix. Notably, clDice offers a more nuanced evaluation by balancing sensitivity216

to both thin and large vessels.217

5.2 Evaluation of Realism218

We compare the FID scores achieved by RLAD with those of prior works (Table 3), using their219

publicly available models for image generation or reports their published results when the models220

were inaccessible. Notably, RLAD demonstrates superior performance by generating more realistic221

retinal fundus images, as evidenced by lower FID and RET-FD scores.222

5.3 Integrating RLAD into Leading Backbones223

In Table 2, we present the performance of RLAD-generated data on the AV segmentation task,224

evaluated using various backbones: DinoV2small, RETFound, SwinV2tiny, and SwinV2large. The225

results are reported across Local, External, and OOD test sets. For comparison, the first rows include226

previously published state-of-the-art results under similar settings (i.e., Local, External, and OOD),227

where available.228

RLAD consistently improves performance on External, and OOD test sets, demonstrating its229

backbone-agnostic advantages and its adaptability to in-domain and out-of-domain pretrained models.230

For example, integrating RLAD with RETFound yields performance improvements of 6.3%, 7.5%,231

and 6.8% on AV-WIDE, IOSTAR, and TREND, respectively. Notably, even when applied to the top-232

performing backbone, SwinV2large, RLAD provides further performance gains of 0.2% on External233

and 0.4% in OOD datasets.234

5.4 Segmentation performance vs SOTA235

SwinV2large, trained on our newly curated dataset and RLAD-generated data, surpasses previous236

state-of-the-art models across all Local, External, and OOD datasets, with the exception of RVD237

(Table 2). As illustrated in Figure 3, it demonstrates superior AV segmentation performance compared238

to SwinV2large trained solely on the UZLF dataset and LUNet, the best performing open-source239

Gen Model Conditioning FID↘ RET-FD↘
StyleGAN [81] L 138.0 120.8
StyleGAN2 [82] Demographics 98.1 116.0
StyleGAN2 [20]† AV 122.8 -
Pix2PixHD [20]† AV 86.8 -
RLAD (Our) AV + L + CD 30.3 79.7

Table 3: Realism of Generated Images. Lower FID and RET-FD on the DRTiD dataset indicate
closer alignment with real data, reflecting realism. Notably, RLAD is able to generate controllable
and more realistic retinal images. Models† trained and evaluated on private data.
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model. Further quantitative and qualitative comparisons are included in the appendix. Moreover, a240

comprehensive analysis demonstrating the superiority of our model over previous state-of-the-art241

methods in estimating common vascular parameters is also provided in the appendix.242

AV-WIDE

GT

Our

IOSTAR RVD

LUNet

SwinV2

Image

MBRSET

Figure 3: Qualitative Example on the Segmentation Downstream Task. Comparing our model’s
AV segmentation to a SwinV2Large [24] trained on the UZLF dataset and LUNet [9], a SOTA model,
showcasing its superior performance across fundus images from various datasets.

6 Ablation studies243

We analyze the effects of RLAD’s components, training datasets, and pretraining objectives using244

SwinV2tiny as the baseline and Dice score unless stated otherwise.245

Training Datasets: Starting with the UZLF dataset, we incrementally added our newly introduced246

datasets (Table 4). The Local test sets includes optic disc centered images, while External test sets mix247

optic disc and macula centered images. Adding macula-centered datasets GRAPE and MESSIDOR248

improved performance across Local, External and OOD test sets. Each dataset addition yielded249

incremental gains, with final improvements of +1.1%, +4.1%, and +8.3% for Local, External, and250

OOD, respectively.251

Pretraining Objective: We evaluated how pretraining objectives (MAE, WCL, or both) influence252

our model’s performance (see Table 5). Adding MAE or WCL individually improved the OOD Dice253

score from 68.9% to 69.2% and 69.4%, respectively, while combining them further increased clDice.254

These findings indicate that combining both strategies enhance model generalization.255

Conditioning on multiple layout components: When learning a conditional distribution solely on256

AV, SwinV2tiny+RLAD achieved an average Dice score of 70.4% on the OOD datasets. In contrast,257

conditioning on multiple layout components (AV, CD, and L) improved performance to 70.8%. This258

highlights the advantage of leveraging a broader range of retinal fundus image features to enhance259

the learned distribution (see Table 5).260

Varying Generated Data Quantity: We explored the impact of varying amounts of RLAD-generated261

samples: 0.5K (1 per real image), 1.5K (3 per real image), and 7.2K (15 per real image). Increasing262

generated samples improved the average OOD Dice (Table 6) and clDice (see appendix).263

Performance Gains of RLAD Relative to Dataset Size: Figure 4 shows learning curves on OOD264

datasets for SwinV2tiny trained with and without RLAD synthetic data. Incorporating RLAD-265

generated data consistently improves performance across all datasets. For IOSTAR, RVD, DRIVE,266
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Datasets Size Local External OOD
UZLF [53] 184 82.1 75.5 60.6

+ GRAPE (Our†) 81 82.6 78.1 65.2
+ MESSIDOR (Our†) 67 82.8 78.9 66.6
+ ENRICH (Our→) 111 83.1 79.2 67.0
+ MAGRABIA (Our†) 69 83.1 79.2 67.2
+ PAPILA (Our†) 78 83.1 79.6 68.9
” +1.0 +4.1 +8.3

Table 4: Impact of increasing the number of
training datasets. This table shows how adding
newly introduced (→) or annotated (†) datasets to
the SwinV2tiny training pipeline impact perfor-
mance.

PT FT Local External OOD
MAE WCL Gen Dice clDice Dice clDice Dice clDice

✁ ✁ ✁ 83.1 83.6 79.6 80.7 68.9 68.8

✂ ✁ ✁ 83.1 83.6 79.6 80.8 69.4 69.2
✁ ✂ ✁ 83.2 83.6 79.7 80.8 69.2 69.1
✂ ✂ ✁ 83.2 83.6 79.6 80.8 69.4 69.3

✂ ✂ AV 83.3 83.7 79.9 81.1 70.4 70.5
✂ ✂ AV + CD + L 83.3 83.7 79.9 81.1 70.8 71.1
” +0.2 +0.1 +0.3 +0.4 +1.9 +2.3

Table 5: Pretraining Objective and Generation
Method. The top section shows baseline perfor-
mance on our dataset, the middle highlights the
impact of pretraining objectives, and the bottom
examines AV conditioning versus AV + CD +
L, with notable OOD improvements using AV +
CD + L.

# Gen AV-WIDE IOSTAR DRIVE RVD TREND MBRSET OOD
0.5K 69.2 69.9 77.2 45.8 76.9 75.9 70.4
1.5K 69.5 70.5 77.1 46.4 76.9 76.0 70.6
7.2K 69.5 71.3 77.1 46.3 77.1 76.2 70.8

Table 6: Quantity of Generated Data. We
evaluate the impact of increasing RLAD’s gener-
ated data on performance, reporting Dice scores
for each OOD dataset and their average perfor-
mance.

Figure 4: RLAD Performance vs. Training
Data Size. The figure illustrates the learning
curve of the SwinV2tiny [24] baseline on OOD
datasets, demonstrating enhanced performance
with RLAD-generated data. The data percentage
reflects both real and generated samples, main-
taining a 1:15 ratio (real:generated).

and MBRSET, the model trained with synthetic data outperformed the baseline while using less than267

50% of the baseline’s training data. The largest gains occurred in data-scarce scenarios, highlighting268

RLAD’s effectiveness in enhancing performance.269

7 Conclusion270

This work presents RLAD, a novel diffusion-based framework designed to generate realistic and271

controllable retinal fundus images by conditioning on multiple layout components extracted from real-272

world data. Beyond image generation, RLAD proves to be a valuable tool for advancing downstream273

tasks. By incorporating the synthetic data generated by RLAD, we significantly enhance the training274

datasets for AV segmentation tasks, resulting in notable performance improvements across various275

visual backbones. This capability is particularly impactful in data-scarce scenarios, where access to276

comprehensive datasets is limited. Our findings highlight the potential of RLAD to drive innovation277

in medical imaging applications and improve segmentation outcomes. Future research could explore278

its application to other imaging modalities and investigate optimization strategies to further enhance279

its adaptability and scalability.280

Limitations and Societal Impact: While RLAD improves generalization in retinal vessel segmenta-281

tion, its effectiveness may be constrained by the quality of the generated images and the diversity of282

the training data. The approach may not fully generalize to imaging modalities or populations not283

represented in the training set. We demonstrated that the proposed framework may enhance clinical284

decision support for retinal image analysis, but care must be taken to avoid over-reliance on synthetic285

data and to monitor for biases that could affect underrepresented groups. Misapplication to non-target286

populations or imaging modalities could lead to incorrect diagnoses.287
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Justification: The paper does not involve crowdsourcing nor research with human subjects.765

15. Institutional review board (IRB) approvals or equivalent for research with human766

subjects767

Question: Does the paper describe potential risks incurred by study participants, whether768

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)769
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