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Abstract

Critique Fine-Tuning (CFT) has recently
emerged as a promising paradigm for unlock-
ing the reasoning capabilities of large language
models (LLMs). In this work, we introduce
one-shot CFT, a highly compute-efficient ap-
proach that leverages critique data generated
from a single math problem. Remarkably,
this method yields significant gains in rea-
soning accuracy—surpassing one-shot RLVR
(Reinforcement Learning with Verifiable Re-
ward) (Wang et al., 2025a) while requiring
15-20x less compute. Given ONE math prob-
lem, we first prompt a set of diverse small mod-
els to produce candidate solutions, then use
frontier models such as GPT-4.1 to generate
high-quality critiques of these responses. We
fine-tune Qwen and Llama family models rang-
ing from 1.5B to 14B parameters with CFT.
With just 5 GPU hours, our models achieve
up to a 16% absolute improvement in aver-
age accuracy across six mathematical reasoning
benchmarks (e.g. Qwen2.5-Math-7B from 26%
to 42%). Furthermore, ablation studies reveal
the robustness of one-shot CFT across different
prompt problems. Our findings suggest an ex-
tremely compute-efficient approach to unleash
the reasoning potential of LLMs.

1 Introduction

Large language models (LLMs) have recently
achieved impressive results on mathematical and
scientific reasoning tasks (Achiam et al., 2023;
Yang et al., 2025; Hendrycks et al.,, 2021;
Lewkowycz et al., 2022; Wang et al., 2024; Du
etal., 2025). A central approach to enhancing these
abilities is reinforcement learning with verifiable re-
ward (RLVR), which leverages rule-based outcome
signals to improve reasoning accuracy, particularly
in mathematics (Guo et al., 2025; Gao et al., 2024;
Team et al., 2025; Lambert et al., 2024). Recent
work has shown that even a single training exam-
ple can significantly boost LLM performance via

RLVR, suggesting that base LL.Ms possess latent
reasoning abilities that can be efficiently unleashed
with minimal data (Wang et al., 2025a).

Parallel to RL-based approaches, critique fine-
tuning (CFT) has emerged as an alternative post-
training strategy (Wang et al., 2025b), where mod-
els are taught to critique solutions rather than im-
itate them. Instead of directly optimizing for so-
lution correctness, CFT encourages models to an-
alyze errors and reason critically—mirroring how
humans learn. This approach has been shown to
more effectively exploit LLMs’ inborn reasoning
capabilities (Ye et al., 2025; Zhou et al., 2023), es-
pecially when training data is scarce: CFT can out-
perform supervised fine-tuning (SFT) on complex
reasoning tasks and typically generalizes better,
with less risk of overfitting.

Unlike SFT, which may bias the model toward
a small set of reference solutions, CFT introduces
diversity by allowing teacher models to critique a
wide range of candidate answers to a single prob-
lem. This exposes the LLM to multiple perspec-
tives and error types. This leads to a key question:
Can diverse critiques from just one problem pro-
vide a strong enough signal to unlock LLM reason-
ing, matching RLVR’s effectiveness with even less
data and computation?

In this paper, we systematically investigate one-
shot CFT for mathematical reasoning. As illus-
trated in Figure 1, we create a dataset by selecting
a single math problem and generating 100 diverse
candidate solutions from 10 open-source models.
Each solution receives critiques from 7 proprietary
teacher models, resulting in 700 critiques. After
filtering, we retain 600 high-quality critiques. We
evaluate this approach on Qwen and LLama family
models ranging from 1.5B to 14B parameters, com-
paring it with one-shot RLVR and SFT baselines.

Our experiments show that one-shot CFT can
match or outperform ‘RLVR with a single ex-
ample’ (Wang et al., 2025a) across a range of
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Figure 1: Overview of the one-shot CFT data generation process: candidate solutions to a single math problem are

generated, critiqued, and filtered to form the training set.

mathematical reasoning benchmarks like MATH-
500 (Hendrycks et al., 2021), Minerva (Lewkowycz
et al., 2022), OlympiadBench (He et al., 2024), etc,
while requiring substantially less computational re-
sources. For instance, on Qwen2.5-Math-7B, one-
shot CFT achieves an average accuracy of 42.2%,
compared to 40.2% for RLVR and 25.6% for SFT
trained on the full dataset. Similar trends are ob-
served across other models. In terms of efficiency,
one-shot CFT achieves these results with 15-20x
lower GPU time and simpler training procedures
compared to RLVR. Ablation studies further sug-
gest that this effect is robust to the choice of train-
ing problem, and that selecting problems of moder-
ate difficulty generally yields better results.

2 Method

In this section, we will detail our dataset construc-
tion and training scheme.

2.1 One-shot CFT Dataset Construction

To systematically assess one-shot CFT, we con-
struct a suite of critique datasets derived from a
single seed problem, following the one-shot RLVR
research protocol. Our process is as follows:

Seed Problem Selection. We select seed math
problems from the DeepScaleR subset, following
the setting of previous one-shot RLVR studies. For
ease of comparison, we focus on four representative
problems, 7y, mo, 13, and 209, Which were also
analyzed in prior work. The full content of these
seed problems is provided in Appendix A.6.

Candidate Solutions Generation. For each
seed problem, we use 10 open-source mod-
els as solution generators, including Qwen2.5-
Math-7B-Instruct (Yang et al., 2024), Qwen3-
4B/8B/14B/32B (Yang et al., 2025), MiMo-7B-
SFT (Xia et al., 2025), MiMo-7B-RL, DeepSeek-
R1-Distill-Qwen-32B (Guo et al., 2025), Phi-
4-reasoning (Abdin et al., 2025), and Phi-4-

reasoning-plus. Each generator provides 10 solu-
tions for the seed problem, resulting in 100 various
candidate solutions. (see Fig. 1)

Teacher Critique Annotation. We then solicit
critiques for each candidate solution from 7 high-
performing, proprietary teacher models: Claude-
3-7-Sonnet (Anthropic, 2025), Claude-3-5-Sonnet,
GPT-4.1-Mini (OpenAl, 2025a), GPT-4.1, GPT-
40 (Achiam et al., 2023), O3-Mini (OpenAl,
2025b), and O1-2024 (Jaech et al., 2024).

2.2 Training

Following the Critique Fine-Tuning (CFT) (Wang
et al., 2025b), each training instance is constructed
by concatenating the original problem and a can-
didate solution as the model input, with the cor-
responding teacher-provided critique as the target
output. Specifically, each sample is of the form
(z,y) — ¢, where x denotes the seed problem, y
denotes a candidate solution from a student model,
and c is the critique provided by a teacher model.
During training, the model is optimized to generate
c given the input of concatenated (z, y). Detailed
instruction templates and concrete examples are
provided in Appendix A.3.

We adopt full-parameter instruction tuning for
all experiments. Models are trained using a learn-
ing rate of 5 x 107°, with a cosine learning rate
schedule and a warmup ratio of 0.1. The global
batch size is set to 512. Consistent with prior one-
shot RLVR and CFT works, we use the MATH-500
benchmark as the validation set to select the best
checkpoint. All hyperparameters are kept consis-
tent across different model architectures and prob-
lem seeds to ensure fair comparison.

3 Experiments

3.1 Setup

We conduct our experiments on four backbone
models: Qwen2.5-Math-1.5B, Qwen2.5-Math-7B,



Model Method | Math-500 Minerva Olympiad AIME24 AIME25 AMC23 | AVG
backbone 35.8 11.0 2.1 15.0 25 400 | 211
SFT (1 ex) 372 9.6 227 3.1 0.0 383 | 185
Qwen2.5-Math-1.5B  SFT (full) 39.8 10.3 209 3.8 2.1 358 | 1838
RL (1 ex) 72.4 26.8 333 1.7 7.1 516 | 33.8
CFT (lex) | 666 30.1 30.4 10.4 8.8 506 | 328
backbone 408 15.8 132 8.3 17 253 | 175
SFT (1 ex) 414 132 117 27 0.0 232 | 154
Llama3.2-3B-Instruct ~ SFT (full) 432 14.7 12.1 3.1 1.7 243 16.5
RL (1 ex) 45.8 16.5 17.0 7.9 12 253 | 19.0
CFT (1ex) | 490 21.0 153 9.2 2.9 325 | 217
backbone 52,6 173 175 16.7 10.8 431 | 263
SFT (1 ex) 53.8 143 182 12.1 6.7 325 | 229
Qwen2.5-Math-78 ST (full) 55.0 2.6 27.6 10.0 7.1 201 | 256
RL (1 ex) 79.2 27.9 39.1 238 10.8 603 | 402
CFT(lex) | 764 40.4 39.3 18.8 14.6 634 | 422
backbone 60.4 04 27.9 38 33 441 | 271
SFT (1 ex) 63.8 19.5 20.9 5.0 12 369 | 246
Qwen2.5-14B SFT (full) 65.2 242 2.7 2.6 17 383 | 2538
CFT(ex) | 712 438 34.8 125 8.3 453 | 360

Table 1: Performance (%) on mathematical benchmarks. The RL (1 ex) results are from Wang et al. (2025a).

Llama-3.2-3B-Instruct, and Qwen2.5-14B. For
seed question selection, we follow the protocol es-
tablished in one-shot RLVR studies and choose
the same four representative problems: m, 7o,
m13, and my209. The corresponding CFT training
datasets are denoted as dsr-cft-p@, dsr-cft-p1,
dsr-cft-p2, and dsr-cft-p3.

To facilitate a fair comparison with supervised
fine-tuning (SFT) methods, we employ the full
DeepScaleR dataset (40.9K examples) as the train-
ing data for our Full SFT baseline. Additionally,
for the one-example SFT (SFT-1ex) condition, we
select 71 as the seed problem and use the same 7
closed-source API models to generate 100 diverse
solutions. We then verify all 700 generated solu-
tions against the ground-truth answer, retaining 600
correct responses for our final SFT (1 ex) dataset.

We evaluate all models on six standard mathe-
matical reasoning benchmarks: MATH-500, Min-
erva Math, OlympiadBench, AIME25, AIME24,
and AMC23. To ensure statistical stability for the
smaller benchmarks (AIME25, AIME24, AMC23),
we repeat each evaluation 32 times and report the
average result as the final score.

3.2 Main Results

Table 1 presents the main performance comparison
across different training methods, including one-
shot Critique Fine-Tuning (CFT), supervised fine-
tuning (SFT), and one-shot Reinforcement Learn-
ing with Verifiable Reward (RLVR). For validation,
we randomly select 500 math problems from the

MATH dataset (excluding those in the MATH-500
benchmark) to construct the validation set. Dur-
ing training, all models are checkpointed every 10
steps. The checkpoint with the highest validation
score is selected for final evaluation. The global
batch size is set to 512 for all experiments.

CFT significantly improves upon the backbone.
Across all model scales, one-shot CFT consistently
improves the reasoning accuracy over the base mod-
els without requiring large-scale training data. For
example, on Qwen2.5-Math-7B, one-shot CFT im-
proves the average accuracy from 26.3% (back-
bone) to 42.2%, a +15.9 point gain.

CFT outperforms SFT even with full data. Un-
der the same one-shot setting, CFT substantially
outperforms SFT. For Qwen2.5-Math-7B, one-shot
SFT achieves 22.9%, while one-shot CFT reaches
42.2%. Notably, one-shot CFT also surpasses SFT
trained on the full dataset (25.6%), highlighting the
superior generalization and reasoning gains from
the critique supervision signal.

CFT is competitive with or superior to one-shot
RLVR. CFT demonstrates stronger performance
than RLVR across most settings. On Qwen2.5-
Math-7B and Llama-3.2-3B-Instruct, one-shot CFT
outperforms RLVR by +2.0 and +2.1 points, respec-
tively. On Qwen2.5-Math-1.5B, CFT is slightly
behind RLVR (by 1 point).

3.3 Training Efficiency Comparison

As shown in Figure 2, one-shot CFT achieves sig-
nificantly higher training efficiency than one-shot



Training Data \ Seed Score (/100) \ Math-500 Minerva Math Olympiad AIME25 AIME24 AMC23 \ AVG
baseline | - | 526 17.3 17.5 10.8 16.7 431 ]263
dsr-cft-p0 49.0 77.0 40.4 39.3 14.6 18.8 634 | 422
dsr-cft-p1 93.0 72.4 35.7 32.1 15.8 20.0 51.6 | 379
dsr-cft-p2 83.0 77.0 33.1 39.1 12.1 13.8 57.2 | 38.7
dsr-cft-p3 10.0 72.6 324 354 7.1 10.4 59.7 |36.3
dsr-cft-p0,p1,p2,p3 58.8 74.6 34.6 354 13.3 17.1 65.3 | 40.1

Table 2: Comparison of performance (%) with different seed math problems on Qwen-2.5-Math-7B

RLVR. With only 5 GPU hours, CFT surpasses
75% accuracy on the Math-500 and quickly stabi-
lizes. In contrast, RLVR requires over 120 GPU
hours to reach a similar level of performance and
exhibits greater fluctuations during training.

This efficiency advantage is primarily due to the
high computational cost of reinforcement learn-
ing, which requires many iterations to propagate
reward signals. In contrast, CFT benefits from di-
rect and dense critique supervision, enabling much
faster and more stable training. Consequently, one-
shot CFT matches or surpasses RLVR performance
while using only about 1/15 to 1/20 of the compute.

3.4 Effectiveness of Seed Examples

Table 2 compares one-shot CFT performance on
datasets from different seed problems. While all
seeds are effective, dsr-cft-p@ (from seed prob-
lem 7r1) achieves the highest average accuracy.

To understand this, we assess the difficulty of
each seed by prompting Qwen3-32B to grade 100
candidate solutions from Qwen2.5-Math-7B, us-
ing the grading prompt provided in Appendix A.5.
Scores of 1 (correct), 0.5 (partially correct), or O
(incorrect) are assigned and summed. Seeds of
moderate difficulty, such as 7, yield a balanced
mix of correct and incorrect solutions, enabling
richer critiques and more effective learning.

Overall, one-shot CFT is robust to the seed
choice, with moderate-difficulty seeds providing
the strongest learning signal.

3.5 Diversity of Candidate Solutions

Solution Generators \ Math-500 Minerva AIME25
1 generator (Phi-4) 75.8 32.0 7.1
1 generator (Qwen2.5) 74.4 30.5 9.6
10 generators (mixed) 76.4 40.4 14.6

Table 3: Ablation on solution generator diversity in one-
shot CFT (see Appendix 4 for details and full results).

To analyze the effect of candidate solution diver-
sity, we compare three settings on the seed prob-
lem 7. We use a single strong generator (Phi-
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Figure 2: Comparing Model accuracy on Math-500, v.s.
the training cost. For the Qwen2.5-Math-7B trained
with 1-shot RL and 1-shot CFT.

4-Reasoning-Plus) and a single weaker generator
(Qwen2.5-Math-7B-Instruct) to each produce 100
candidate solutions, generate critiques, and per-
form CFT. Our main method, by contrast, mixes
100 candidate solutions from 10 different genera-
tors before collecting critiques and fine-tuning.

As shown in Table 3, using a single genera-
tor yields average benchmark scores of 38.7 (Phi-
4-Reasoning-Plus) and 37.6 (Qwen2.5-Math-7B-
Instruct). In comparison, our mixed-generator ap-
proach achieves a higher average of 42.2. This
demonstrates that greater diversity in candidate so-
lutions leads to richer error types and reasoning pat-
terns, enabling more effective critique fine-tuning.

4 Conclusion

This work introduces and investigates one-shot Cri-
tique Fine-Tuning (CFT) as an efficient and effec-
tive method for unlocking the reasoning capabili-
ties of LLMs. Using diverse student-teacher inter-
actions on a single math problem, one-shot CFT
surpasses both traditional supervised fine-tuning
and one-shot RLVR in accuracy, while offering
up to 20 higher training efficiency. Experiments
across multiple model backbones confirm its strong
generalization and robustness, especially when the
seed example is moderately difficult. One-shot
CFT offers a practical post-training solution for
LLMSs in compute- and data-limited scenarios.



Limitations

Our study is primarily limited to relatively weaker
language models, particularly base models prior
to supervised fine-tuning or distillation. When ap-
plied to already strong reasoning-oriented LLMs,
our method yields highly mixed results. This sug-
gests that our approach is most effective at un-
locking latent capabilities in less-aligned models.
However, for models that have already undergone
extensive alignment, our algorithm does not con-
sistently yield further improvements. Future work
is needed to investigate adaptations or extensions
of our method for more capable or well-aligned
models.
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A Appendix

A.1 Related Work

Post training (Ouyang et al., 2022) is a crucial part
in aligning pre-trained language models to solve
specific tasks. Recently, there has been a surge
in post-training LLMs to improve its reasoning
performance, specifically on math and coding prob-
lems (Toshniwal et al., 2024; Yue et al., 2024; Shao
et al., 2024; Guo et al., 2025). This line of work
has shown great improvement to LLM reasoning.
More recently, researchers start to investigate the
most efficient approach to unleash LLM reasoning
capabilities. S1 (Muennighoff et al., 2025) and
LIMO (Ye et al., 2025) have shown great advances
to improve LLLM reasoning with 1000 examples.
1-shot RLVR (Wang et al., 2025a) has lowered that
to 1 example. Our 1-shot CFT is following the
paradigm to pursue the most efficient algorithm for
LLM reasoning post-training. The main difference
is that our algorithm is based on CFT (Wang et al.,
2025b), an alternative to SFT and RL.

A.2 Full Results for Solution Generator
Diversity Ablation

Table 4 presents the complete results for the solu-
tion generator diversity ablation. Including more
diverse generators consistently improves perfor-
mance across all evaluated benchmarks.

A.3 Training Data Format and Example

Each training sample follows a conversational for-
mat, consisting of a user prompt (including a math
problem and a candidate solution) and a teacher-
provided critique as the target output. The structure
is as follows:

Instruction Template:

* role: user
content: Instruction, question and candidate
solution

e role: assistant

content: Teacher critique
Concrete Example: User message:

the
the

Please «critique whether
following solution to
question is correct.

Question:
The pressure P exerted by wind
on a sail varies jointly as the



Solution Generators | Avg | Math-500 Minerva

Olympiad AIME25 AIME24 AMC23

1 generator (Phi-4) 37.6 75.8
1 generator (Qwen2.5) | 38.7 74.4
10 generators (mixed) | 42.2 76.4

354 7.1 16.7 58.8
35.6 9.6 17.1 64.7
39.3 14.6 18.8 63.4

Table 4: Full ablation results on the diversity of solution generators in one-shot CFT.

area A of the sail and the cube
of the wind’s velocity V. When
the velocity is 8 miles per hour,
the pressure on a sail of 2 square
feet is 4 pounds. Find the wind
velocity when the pressure on 4

square feet of sail is 32 pounds.

Solution:
To solve the problem, we start
by expressing the relationship
between the pressure P, the
area A, and the wind’s velocity
V' mathematically. Since the
pressure varies jointly as the
area of the sail and the cube
of the wind’s velocity, we can
write:
P =FkAV3
where k£ is a constant of
proportionality. We are given
that when the velocity is 8 miles
per hour, the pressure on a sail
of 2 square feet is 4 pounds. We
can use this information to find
the value of k. Substituting
=4, A=2, and V = 8 into
the equation, we get:

4=Fk-2.8
83 =512

4="Fk-2-512
4=1Fk-1024

k=4/1024 = 1/256

Now that we have the value of
k, we can use it to find the
wind velocity when the pressure
on 4 square feet of sail is 32
pounds. Substituting P = 32,
A =4, and k = 1/256 into the
equation P = kAV?3, we get:

32 = (1/256) -4 - V3

32 = (4V3)/256 = V3 /64

V3 =32-64

V3 = 2048

V = /2048 = 12

Therefore, the wind velocity when
the pressure on 4 square feet of
sail is 32 pounds is:

12

Assistant message:

Critique:
Let me analyze this solution:

1. Key Mathematical Concepts:

- Joint variation

- Cube relationship

- Solving for constants using given
conditions

- Cube roots

2. Step-by-Step Check:

Initial equation setup P = kAV? is
correct

First substitution with P = 4, A = 2,
V = 8 is correct

Calculation of 8% = 512 is correct
Finding £ = 4/(2 x 512) = 1/256 is
correct

Second equation setup with P = 32,
A = 4 is correct

Algebra to solve for V3 is correct

Final calculation of /2048 = 12 is
correct

3. Solution Verification:

Let’s verify the final answer:

When V =12, A =4, and k = 1/256:
P = (1/256)(4)(123)
(1/256)(4)(1728)

(1728 x 4)/256

32

P
P
P

The student’s solution is completely cor-
rect. They followed a logical approach,
performed all calculations accurately,
and arrived at the correct answer.



12 miles per hour

Conclusion: right [END]

This format is used for all training examples in
our CFT experiments.

A.4 Dataset Statistics

For each seed problem, we initially obtain 700
critique examples (100 candidate solutions x 7
teacher critiques). After filtering out incorrect or
inconsistent critiques, we remove 43, 16, 22, and 68
examples for my, w2, m13, and w1299, respectively.
For a fair comparison across different seeds, we
further remove the longest and shortest samples
by length, and subsample the remaining data to
construct a unified training set of 600 critiques
per seed problem. The selected problems span a
range of difficulty levels: o and 73 are relatively
easy, while 71 is of medium difficulty and 71209 is
considered hard.

A.5 Prompts

This section provides all prompts used for dataset
construction, including those for solution genera-
tion, critique generation, and grading.

Solution Generation Prompts We used different
prompts for each solution generator model:

¢ Qwen3 and MiMo:
<|im_start|>user
Please reason step by step to find a
solution to the following question,
and put your final answer within
\boxed{}.
{question}<|im_end|>
<|im_start|>assistant

Qwen2.5:
<|im_start|>system
Please reason step by
put your final answer
\boxed{}.<|im_end|>
<|im_start|>user
{question}<|im_end|>
<|im_start|>assistant

step, and
within

Phi-4:
<|im_start|>system<|im_sep|>
Please reason step by step, and

put your final within
\boxed{}.<|im_end|>
<|im_start|>user<|im_sep|>
{question}<|im_end]|>

<|]im_start|>assistant<|im_sep|>

answer

Critique Generation Prompt

You are a mathematics expert. Analyze if
the student’s solution to the given ques-
tion is correct. Follow these steps: 1.
Identify the key mathematical concepts
and correct approach. 2. Check each step
of the student’s solution. 3. If incorrect,
point out errors and provide the correct
solution, putting your final answer within
\boxed{}. Conclude with "Conclusion:
right/wrong [END]"

{question}

{solution}

Grading Prompt Below is the English prompt
used for grading student answers with three discrete
scores:

You are a grader for a mathematics exam.
Given the following question and a refer-
ence answer, grade the student’s exam
answer. Only give one of three pos-
sible scores: 1 point (mostly correct),
0.5 points (partially correct), or O points
(seriously incorrect). Put your score in
Final Grade: \boxed{}.

A.6 Seed Problem Descriptions

Here we provide the full statements of the four seed
math problems used in our experiments.

* 71: The pressure P exerted by wind on a sail
varies jointly as the area A of the sail and
the cube of the wind’s velocity V. When the
velocity is 8 miles per hour, the pressure on
a sail of 2 square feet is 4 pounds. Find the
wind velocity when the pressure on 4 square
feet of sail is 32 pounds.

* 7o How many positive divisors do 9240 and
13860 have in common?

* m13: Given that circle C' passes through points
P(0,-4),Q(2,0),and R(3,—1).
(1) Find the equation of circle C'.



(2) If the line [ : mz + y — 1 = 0 intersects
circle C' at points A and B, and |AB| = 4,
find the value of m.

* Ti209: Define the derivative of the (n — 1)th
derivative as the nth derivative (n € N*,n >
2), that is, f(")(z) = [f"~D(z)]’. They are
denoted as f”(z), f" (), f®(z), ..., f™)(z).
If f(z) = xe®, then the 2023rd derivative of
the function f(z) at the point (0, f(2023)(0))
has a y-intercept on the z-axis of __ .

A.7 Use of AI Assistance

We used ChatGPT to capture grammar errors in the
manuscript.

A.8 Potential Risks

Our work focuses on improving mathematical rea-
soning in large language models. Potential risks
include the misuse of enhanced models for gener-
ating plausible but incorrect or misleading mathe-
matical content, or for academic dishonesty (e.g.,
automated solution generation in educational set-
tings). We encourage responsible use and further
research into safeguards and verification methods.

A.9 License for Artifacts

All code and data released with this work are pro-
vided under the MIT License. Users are free to use,
modify, and distribute these artifacts, provided they
adhere to the terms of the license.

All existing artifacts used in this work were uti-
lized in accordance with their intended use and
license terms, as specified by their original authors.
The code and data we release are intended solely
for research and educational purposes, and are dis-
tributed under terms compatible with the original
access conditions. Any derivatives of third-party
data are restricted to research use only.

A.10 Data Privacy and Offensive Content

All data used in this work were sourced from pub-
licly available mathematical problem sets and do
not contain any personally identifying information
or offensive content. We manually reviewed the
datasets to ensure that no sensitive or inappropriate
material was present, and no anonymization was
necessary.

A.11 Documentation of Artifacts

We provide documentation for all released artifacts,
including descriptions of the datasets, code usage

instructions, and details of supported benchmarks.
The datasets consist of English mathematical prob-
lems covering a range of domains such as algebra,
geometry, and mathematical olympiad questions.
No demographic or personally identifying informa-
tion is included, as all data is problem-centric and
publicly available.

A.12 Parameters for Packages

We report all packages and libraries used for data
preprocessing and evaluation in our experiments.
For standard packages, such as NumPy and Py-
Torch, default parameter settings were used unless
otherwise specified. All non-default parameters
and implementation details are documented in the
code release.

A.13 Case Study

This case study highlights a crucial difference
between the base model and the CFT-enhanced
model in solving modular equations. The base
model (step-0) attempts to find integer solutions to
14u = 46 (mod 100) by directly checking pos-
sible values, but the solutions it finds (v = 34 and
u = 79) do not actually satisfy the original con-
gruence. This reflects a reasoning error: the model
fails to verify its candidate solutions. As a result,
the final answer is incorrect.

In contrast, after one-shot Critique Fine-Tuning
(step-20 and step-50), the model correctly applies
the Extended Euclidean Algorithm to solve the
congruence, finds the true solutions (v = 39 and
u = 895), and accurately computes the average
as 64. This showcases how CFT helps the model
develop deeper mathematical understanding and
more rigorous verification, leading to correct and
well-explained solutions.



Question:What is the average of the two smallest positive integer solutions to the congruence $$14u \equiv 46\ pmod100 ?$$

Answer: 64

Output (step0): To solve the congruence $14u \equiv 46 \pmod100$, we need to find the integer solutions for $u$ [...]We
can use the Extended Euclidean Algorithm to find the modular inverse. Let’s start by finding the gcd of 14 and 100 using the
Euclidean Algorithm, and then use the Extended Euclidean Algorithm to find the modular inverse if it exists. If the gcd is not 1,
then we need to find the solutions directly by checking each possible value of $u$. Let’s implement this in Python. [Python
Code] output\n34.5\n \nThe two smallest positive integer solutions to the congruence $14u \equiv 46 \pmod100$ are 34 and
79. The average of these two solutions is $frac34 + 792 = 56.5$. However, the problem asks for the average of the two smallest
positive integer solutions, and the correct answer should be an integer. Let’s verify the solutions and the average again.The two
smallest positive integer solutions are indeed 34 and 79, and their average is $\frac34 + 792 = 56.5$. Since the problem asks for
the average, and the average is a decimal, we should consider the integer part of the average, which is 56.Therefore, the final
answer is $\boxed56$.

Output (step20): To solve the congruence $14u \equiv 46 \pmod100$, we need to find the values of $u$ that satisfy this
equation. Let’s go through the steps: [...] We can use the Extended Euclidean Algorithm to find this inverse.3. **Use the
Extended Euclidean Algorithm:** We need to find $x$ and $y$ such that: $ 7x + 50y = 1 $ Using the Euclidean Algorithm: $ 50
=7 \cdot7+13$$1=50-7\cdot 7 $ So, the inverse of 7 modulo 50 is $-7$, which is equivalent to $43$ modulo 50 (since
$-7 + 50 = 43$). 4. **Solve for $u$:** Now we can multiply both sides of the congruence $7u \equiv 23 \pmod50$ by 43:
$ u \equiv 23 \cdot 43 \pmod50 $ Let’s calculate $23 \cdot 43 \mod 50$: $ 23 \cdot 43 =989 $ $ 989 \div 50 = 19 \text
remainder 39 $ So, $u \equiv 39 \pmod50$.5. **Find the two smallest positive integer solutions:** The general solution to the
congruence is $u = 39 + 50k$ for any integer $k$. The two smallest positive integer solutions are when $k = 0$ and $k = 1$: $
u1 =39 $ $ uz =39 + 50 = 89% 6. **Calculate the average:** The average of the two smallest positive integer solutions is: $
\frac39 + 892 = \frac1282 = 64$ Let’s verify this with Python code to ensure accuracy. [Python Code] output 64 The average
of the two smallest positive integer solutions to the congruence $14u \equiv 46 \pmod100$ is $\boxed64$.

Output (step50): To solve the congruence $14u \equiv 46 \pmod100$ we need to find the values of $u$ that satisfy this
equation. This can be done by finding the modular inverse of 14 modulo 100, if it exists, and then using it to solve for $u$. First,
we need to check if 14 has an inverse modulo 100. For 14 to have an inverse modulo 100, the greatest common divisor (gcd) of
14 and 100 must be 1. However, since $\gcd(14, 100) = 2$, 14 does not have an inverse modulo 100. Instead, we can divide the
entire congruence by 2, which gives us:$7u \equiv 23 \ pmod50.$ Now, we need to find the modular inverse of 7 modulo 50.
The modular inverse $x$ of 7 modulo 50 is a number such that $7x \equiv 1 \pmod50$. We can use the Extended Euclidean
Algorithm to find this inverse. Using the Extended Euclidean Algorithm, we find that the inverse of 7 modulo 50 is 43 because $7
\cdot 43 \equiv 1 \pmod50$. So, we can multiply both sides of the congruence $7u \equiv 23 \pmod50$ by 43 to solve for $u$:
$u \equiv 23 \cdot 43 \pmod50.$ Calculating $23 \cdot 43 \mod 50$:$23 \cdot 43 = 989,$ $989 \div 50 = 19 \text remainder
39,%$$989 \equiv 39 \pmod50.$ So, $u \equiv 39 \pmod50$. This means that the general solution for $u$ is $u = 39 + 50k$ for
any integer $k$. The two smallest positive integer solutions are when $k = 0$ and $k = 13, giving us $u = 39%$ and $u = 89$. The
average of these two solutions is:$\frac39 + 892 = \frac1282 = 64.$ So, the final answer is $\boxed64$.Conclusion: right"

Table 5: Case Study: Question, Answer, and Progressive Outputs
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