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Abstract001

Critique Fine-Tuning (CFT) has recently002
emerged as a promising paradigm for unlock-003
ing the reasoning capabilities of large language004
models (LLMs). In this work, we introduce005
one-shot CFT, a highly compute-efficient ap-006
proach that leverages critique data generated007
from a single math problem. Remarkably,008
this method yields significant gains in rea-009
soning accuracy—surpassing one-shot RLVR010
(Reinforcement Learning with Verifiable Re-011
ward) (Wang et al., 2025a) while requiring012
15–20× less compute. Given ONE math prob-013
lem, we first prompt a set of diverse small mod-014
els to produce candidate solutions, then use015
frontier models such as GPT-4.1 to generate016
high-quality critiques of these responses. We017
fine-tune Qwen and Llama family models rang-018
ing from 1.5B to 14B parameters with CFT.019
With just 5 GPU hours, our models achieve020
up to a 16% absolute improvement in aver-021
age accuracy across six mathematical reasoning022
benchmarks (e.g. Qwen2.5-Math-7B from 26%023
to 42%). Furthermore, ablation studies reveal024
the robustness of one-shot CFT across different025
prompt problems. Our findings suggest an ex-026
tremely compute-efficient approach to unleash027
the reasoning potential of LLMs.028

1 Introduction029

Large language models (LLMs) have recently030

achieved impressive results on mathematical and031

scientific reasoning tasks (Achiam et al., 2023;032

Yang et al., 2025; Hendrycks et al., 2021;033

Lewkowycz et al., 2022; Wang et al., 2024; Du034

et al., 2025). A central approach to enhancing these035

abilities is reinforcement learning with verifiable re-036

ward (RLVR), which leverages rule-based outcome037

signals to improve reasoning accuracy, particularly038

in mathematics (Guo et al., 2025; Gao et al., 2024;039

Team et al., 2025; Lambert et al., 2024). Recent040

work has shown that even a single training exam-041

ple can significantly boost LLM performance via042

RLVR, suggesting that base LLMs possess latent 043

reasoning abilities that can be efficiently unleashed 044

with minimal data (Wang et al., 2025a). 045

Parallel to RL-based approaches, critique fine- 046

tuning (CFT) has emerged as an alternative post- 047

training strategy (Wang et al., 2025b), where mod- 048

els are taught to critique solutions rather than im- 049

itate them. Instead of directly optimizing for so- 050

lution correctness, CFT encourages models to an- 051

alyze errors and reason critically—mirroring how 052

humans learn. This approach has been shown to 053

more effectively exploit LLMs’ inborn reasoning 054

capabilities (Ye et al., 2025; Zhou et al., 2023), es- 055

pecially when training data is scarce: CFT can out- 056

perform supervised fine-tuning (SFT) on complex 057

reasoning tasks and typically generalizes better, 058

with less risk of overfitting. 059

Unlike SFT, which may bias the model toward 060

a small set of reference solutions, CFT introduces 061

diversity by allowing teacher models to critique a 062

wide range of candidate answers to a single prob- 063

lem. This exposes the LLM to multiple perspec- 064

tives and error types. This leads to a key question: 065

Can diverse critiques from just one problem pro- 066

vide a strong enough signal to unlock LLM reason- 067

ing, matching RLVR’s effectiveness with even less 068

data and computation? 069

In this paper, we systematically investigate one- 070

shot CFT for mathematical reasoning. As illus- 071

trated in Figure 1, we create a dataset by selecting 072

a single math problem and generating 100 diverse 073

candidate solutions from 10 open-source models. 074

Each solution receives critiques from 7 proprietary 075

teacher models, resulting in 700 critiques. After 076

filtering, we retain 600 high-quality critiques. We 077

evaluate this approach on Qwen and LLama family 078

models ranging from 1.5B to 14B parameters, com- 079

paring it with one-shot RLVR and SFT baselines. 080

Our experiments show that one-shot CFT can 081

match or outperform ‘RLVR with a single ex- 082

ample’ (Wang et al., 2025a) across a range of 083
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Figure 1: Overview of the one-shot CFT data generation process: candidate solutions to a single math problem are
generated, critiqued, and filtered to form the training set.

mathematical reasoning benchmarks like MATH-084

500 (Hendrycks et al., 2021), Minerva (Lewkowycz085

et al., 2022), OlympiadBench (He et al., 2024), etc,086

while requiring substantially less computational re-087

sources. For instance, on Qwen2.5-Math-7B, one-088

shot CFT achieves an average accuracy of 42.2%,089

compared to 40.2% for RLVR and 25.6% for SFT090

trained on the full dataset. Similar trends are ob-091

served across other models. In terms of efficiency,092

one-shot CFT achieves these results with 15–20×093

lower GPU time and simpler training procedures094

compared to RLVR. Ablation studies further sug-095

gest that this effect is robust to the choice of train-096

ing problem, and that selecting problems of moder-097

ate difficulty generally yields better results.098

2 Method099

In this section, we will detail our dataset construc-100

tion and training scheme.101

2.1 One-shot CFT Dataset Construction102

To systematically assess one-shot CFT, we con-103

struct a suite of critique datasets derived from a104

single seed problem, following the one-shot RLVR105

research protocol. Our process is as follows:106

Seed Problem Selection. We select seed math107

problems from the DeepScaleR subset, following108

the setting of previous one-shot RLVR studies. For109

ease of comparison, we focus on four representative110

problems, π1, π2, π13, and π1209, which were also111

analyzed in prior work. The full content of these112

seed problems is provided in Appendix A.6.113

Candidate Solutions Generation. For each114

seed problem, we use 10 open-source mod-115

els as solution generators, including Qwen2.5-116

Math-7B-Instruct (Yang et al., 2024), Qwen3-117

4B/8B/14B/32B (Yang et al., 2025), MiMo-7B-118

SFT (Xia et al., 2025), MiMo-7B-RL, DeepSeek-119

R1-Distill-Qwen-32B (Guo et al., 2025), Phi-120

4-reasoning (Abdin et al., 2025), and Phi-4-121

reasoning-plus. Each generator provides 10 solu- 122

tions for the seed problem, resulting in 100 various 123

candidate solutions. (see Fig. 1) 124

Teacher Critique Annotation. We then solicit 125

critiques for each candidate solution from 7 high- 126

performing, proprietary teacher models: Claude- 127

3-7-Sonnet (Anthropic, 2025), Claude-3-5-Sonnet, 128

GPT-4.1-Mini (OpenAI, 2025a), GPT-4.1, GPT- 129

4o (Achiam et al., 2023), O3-Mini (OpenAI, 130

2025b), and O1-2024 (Jaech et al., 2024). 131

2.2 Training 132

Following the Critique Fine-Tuning (CFT) (Wang 133

et al., 2025b), each training instance is constructed 134

by concatenating the original problem and a can- 135

didate solution as the model input, with the cor- 136

responding teacher-provided critique as the target 137

output. Specifically, each sample is of the form 138

(x, y) → c, where x denotes the seed problem, y 139

denotes a candidate solution from a student model, 140

and c is the critique provided by a teacher model. 141

During training, the model is optimized to generate 142

c given the input of concatenated (x, y). Detailed 143

instruction templates and concrete examples are 144

provided in Appendix A.3. 145

We adopt full-parameter instruction tuning for 146

all experiments. Models are trained using a learn- 147

ing rate of 5 × 10−6, with a cosine learning rate 148

schedule and a warmup ratio of 0.1. The global 149

batch size is set to 512. Consistent with prior one- 150

shot RLVR and CFT works, we use the MATH-500 151

benchmark as the validation set to select the best 152

checkpoint. All hyperparameters are kept consis- 153

tent across different model architectures and prob- 154

lem seeds to ensure fair comparison. 155

3 Experiments 156

3.1 Setup 157

We conduct our experiments on four backbone 158

models: Qwen2.5-Math-1.5B, Qwen2.5-Math-7B, 159
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Model Method Math-500 Minerva Olympiad AIME24 AIME25 AMC23 AVG

Qwen2.5-Math-1.5B

backbone 35.8 11.0 22.1 15.0 2.5 40.0 21.1
SFT (1 ex) 37.2 9.6 22.7 3.1 0.0 38.3 18.5
SFT (full) 39.8 10.3 20.9 3.8 2.1 35.8 18.8
RL (1 ex) 72.4 26.8 33.3 11.7 7.1 51.6 33.8
CFT (1 ex) 66.6 30.1 30.4 10.4 8.8 50.6 32.8

Llama3.2-3B-Instruct

backbone 40.8 15.8 13.2 8.3 1.7 25.3 17.5
SFT (1 ex) 41.4 13.2 11.7 2.7 0.0 23.2 15.4
SFT (full) 43.2 14.7 12.1 3.1 1.7 24.3 16.5
RL (1 ex) 45.8 16.5 17.0 7.9 1.2 25.3 19.0
CFT (1 ex) 49.0 21.0 15.3 9.2 2.9 32.5 21.7

Qwen2.5-Math-7B

backbone 52.6 17.3 17.5 16.7 10.8 43.1 26.3
SFT (1 ex) 53.8 14.3 18.2 12.1 6.7 32.5 22.9
SFT (full) 55.2 24.6 27.6 10.0 7.1 29.1 25.6
RL (1 ex) 79.2 27.9 39.1 23.8 10.8 60.3 40.2
CFT (1 ex) 76.4 40.4 39.3 18.8 14.6 63.4 42.2

Qwen2.5-14B

backbone 60.4 22.4 27.9 3.8 3.8 44.1 27.1
SFT (1 ex) 63.8 19.5 20.9 5.0 1.2 36.9 24.6
SFT (full) 65.2 24.2 22.7 2.6 1.7 38.3 25.8
CFT (1 ex) 71.2 43.8 34.8 12.5 8.3 45.3 36.0

Table 1: Performance (%) on mathematical benchmarks. The RL (1 ex) results are from Wang et al. (2025a).

Llama-3.2-3B-Instruct, and Qwen2.5-14B. For160

seed question selection, we follow the protocol es-161

tablished in one-shot RLVR studies and choose162

the same four representative problems: π1, π2,163

π13, and π1209. The corresponding CFT training164

datasets are denoted as dsr-cft-p0, dsr-cft-p1,165

dsr-cft-p2, and dsr-cft-p3.166

To facilitate a fair comparison with supervised167

fine-tuning (SFT) methods, we employ the full168

DeepScaleR dataset (40.9K examples) as the train-169

ing data for our Full SFT baseline. Additionally,170

for the one-example SFT (SFT-1ex) condition, we171

select π1 as the seed problem and use the same 7172

closed-source API models to generate 100 diverse173

solutions. We then verify all 700 generated solu-174

tions against the ground-truth answer, retaining 600175

correct responses for our final SFT (1 ex) dataset.176

We evaluate all models on six standard mathe-177

matical reasoning benchmarks: MATH-500, Min-178

erva Math, OlympiadBench, AIME25, AIME24,179

and AMC23. To ensure statistical stability for the180

smaller benchmarks (AIME25, AIME24, AMC23),181

we repeat each evaluation 32 times and report the182

average result as the final score.183

3.2 Main Results184

Table 1 presents the main performance comparison185

across different training methods, including one-186

shot Critique Fine-Tuning (CFT), supervised fine-187

tuning (SFT), and one-shot Reinforcement Learn-188

ing with Verifiable Reward (RLVR). For validation,189

we randomly select 500 math problems from the190

MATH dataset (excluding those in the MATH-500 191

benchmark) to construct the validation set. Dur- 192

ing training, all models are checkpointed every 10 193

steps. The checkpoint with the highest validation 194

score is selected for final evaluation. The global 195

batch size is set to 512 for all experiments. 196

CFT significantly improves upon the backbone. 197

Across all model scales, one-shot CFT consistently 198

improves the reasoning accuracy over the base mod- 199

els without requiring large-scale training data. For 200

example, on Qwen2.5-Math-7B, one-shot CFT im- 201

proves the average accuracy from 26.3% (back- 202

bone) to 42.2%, a +15.9 point gain. 203

CFT outperforms SFT even with full data. Un- 204

der the same one-shot setting, CFT substantially 205

outperforms SFT. For Qwen2.5-Math-7B, one-shot 206

SFT achieves 22.9%, while one-shot CFT reaches 207

42.2%. Notably, one-shot CFT also surpasses SFT 208

trained on the full dataset (25.6%), highlighting the 209

superior generalization and reasoning gains from 210

the critique supervision signal. 211

CFT is competitive with or superior to one-shot 212

RLVR. CFT demonstrates stronger performance 213

than RLVR across most settings. On Qwen2.5- 214

Math-7B and Llama-3.2-3B-Instruct, one-shot CFT 215

outperforms RLVR by +2.0 and +2.1 points, respec- 216

tively. On Qwen2.5-Math-1.5B, CFT is slightly 217

behind RLVR (by 1 point). 218

3.3 Training Efficiency Comparison 219

As shown in Figure 2, one-shot CFT achieves sig- 220

nificantly higher training efficiency than one-shot 221
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Training Data Seed Score (/100) Math-500 Minerva Math Olympiad AIME25 AIME24 AMC23 AVG

baseline - 52.6 17.3 17.5 10.8 16.7 43.1 26.3

dsr-cft-p0 49.0 77.0 40.4 39.3 14.6 18.8 63.4 42.2
dsr-cft-p1 93.0 72.4 35.7 32.1 15.8 20.0 51.6 37.9
dsr-cft-p2 83.0 77.0 33.1 39.1 12.1 13.8 57.2 38.7
dsr-cft-p3 10.0 72.6 32.4 35.4 7.1 10.4 59.7 36.3
dsr-cft-p0,p1,p2,p3 58.8 74.6 34.6 35.4 13.3 17.1 65.3 40.1

Table 2: Comparison of performance (%) with different seed math problems on Qwen-2.5-Math-7B

RLVR. With only 5 GPU hours, CFT surpasses222

75% accuracy on the Math-500 and quickly stabi-223

lizes. In contrast, RLVR requires over 120 GPU224

hours to reach a similar level of performance and225

exhibits greater fluctuations during training.226

This efficiency advantage is primarily due to the227

high computational cost of reinforcement learn-228

ing, which requires many iterations to propagate229

reward signals. In contrast, CFT benefits from di-230

rect and dense critique supervision, enabling much231

faster and more stable training. Consequently, one-232

shot CFT matches or surpasses RLVR performance233

while using only about 1/15 to 1/20 of the compute.234

3.4 Effectiveness of Seed Examples235

Table 2 compares one-shot CFT performance on236

datasets from different seed problems. While all237

seeds are effective, dsr-cft-p0 (from seed prob-238

lem π1) achieves the highest average accuracy.239

To understand this, we assess the difficulty of240

each seed by prompting Qwen3-32B to grade 100241

candidate solutions from Qwen2.5-Math-7B, us-242

ing the grading prompt provided in Appendix A.5.243

Scores of 1 (correct), 0.5 (partially correct), or 0244

(incorrect) are assigned and summed. Seeds of245

moderate difficulty, such as π1, yield a balanced246

mix of correct and incorrect solutions, enabling247

richer critiques and more effective learning.248

Overall, one-shot CFT is robust to the seed249

choice, with moderate-difficulty seeds providing250

the strongest learning signal.251

3.5 Diversity of Candidate Solutions252

Solution Generators Math-500 Minerva AIME25

1 generator (Phi-4) 75.8 32.0 7.1
1 generator (Qwen2.5) 74.4 30.5 9.6
10 generators (mixed) 76.4 40.4 14.6

Table 3: Ablation on solution generator diversity in one-
shot CFT (see Appendix 4 for details and full results).

To analyze the effect of candidate solution diver-253

sity, we compare three settings on the seed prob-254

lem π1. We use a single strong generator (Phi-255

Figure 2: Comparing Model accuracy on Math-500, v.s.
the training cost. For the Qwen2.5-Math-7B trained
with 1-shot RL and 1-shot CFT.

4-Reasoning-Plus) and a single weaker generator 256

(Qwen2.5-Math-7B-Instruct) to each produce 100 257

candidate solutions, generate critiques, and per- 258

form CFT. Our main method, by contrast, mixes 259

100 candidate solutions from 10 different genera- 260

tors before collecting critiques and fine-tuning. 261

As shown in Table 3, using a single genera- 262

tor yields average benchmark scores of 38.7 (Phi- 263

4-Reasoning-Plus) and 37.6 (Qwen2.5-Math-7B- 264

Instruct). In comparison, our mixed-generator ap- 265

proach achieves a higher average of 42.2. This 266

demonstrates that greater diversity in candidate so- 267

lutions leads to richer error types and reasoning pat- 268

terns, enabling more effective critique fine-tuning. 269

4 Conclusion 270

This work introduces and investigates one-shot Cri- 271

tique Fine-Tuning (CFT) as an efficient and effec- 272

tive method for unlocking the reasoning capabili- 273

ties of LLMs. Using diverse student-teacher inter- 274

actions on a single math problem, one-shot CFT 275

surpasses both traditional supervised fine-tuning 276

and one-shot RLVR in accuracy, while offering 277

up to 20× higher training efficiency. Experiments 278

across multiple model backbones confirm its strong 279

generalization and robustness, especially when the 280

seed example is moderately difficult. One-shot 281

CFT offers a practical post-training solution for 282

LLMs in compute- and data-limited scenarios. 283
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Limitations284

Our study is primarily limited to relatively weaker285

language models, particularly base models prior286

to supervised fine-tuning or distillation. When ap-287

plied to already strong reasoning-oriented LLMs,288

our method yields highly mixed results. This sug-289

gests that our approach is most effective at un-290

locking latent capabilities in less-aligned models.291

However, for models that have already undergone292

extensive alignment, our algorithm does not con-293

sistently yield further improvements. Future work294

is needed to investigate adaptations or extensions295

of our method for more capable or well-aligned296

models.297
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A Appendix 441

A.1 Related Work 442

Post training (Ouyang et al., 2022) is a crucial part 443

in aligning pre-trained language models to solve 444

specific tasks. Recently, there has been a surge 445

in post-training LLMs to improve its reasoning 446

performance, specifically on math and coding prob- 447

lems (Toshniwal et al., 2024; Yue et al., 2024; Shao 448

et al., 2024; Guo et al., 2025). This line of work 449

has shown great improvement to LLM reasoning. 450

More recently, researchers start to investigate the 451

most efficient approach to unleash LLM reasoning 452

capabilities. S1 (Muennighoff et al., 2025) and 453

LIMO (Ye et al., 2025) have shown great advances 454

to improve LLM reasoning with 1000 examples. 455

1-shot RLVR (Wang et al., 2025a) has lowered that 456

to 1 example. Our 1-shot CFT is following the 457

paradigm to pursue the most efficient algorithm for 458

LLM reasoning post-training. The main difference 459

is that our algorithm is based on CFT (Wang et al., 460

2025b), an alternative to SFT and RL. 461

A.2 Full Results for Solution Generator 462

Diversity Ablation 463

Table 4 presents the complete results for the solu- 464

tion generator diversity ablation. Including more 465

diverse generators consistently improves perfor- 466

mance across all evaluated benchmarks. 467

A.3 Training Data Format and Example 468

Each training sample follows a conversational for- 469

mat, consisting of a user prompt (including a math 470

problem and a candidate solution) and a teacher- 471

provided critique as the target output. The structure 472

is as follows: 473

Instruction Template: 474

• role: user 475

content: Instruction, question and candidate 476

solution 477

• role: assistant 478

content: Teacher critique 479

Concrete Example: User message: 480

Please critique whether the 481

following solution to the 482

question is correct. 483

Question: 484

The pressure P exerted by wind 485

on a sail varies jointly as the 486

6



Solution Generators Avg Math-500 Minerva Olympiad AIME25 AIME24 AMC23

1 generator (Phi-4) 37.6 75.8 32.0 35.4 7.1 16.7 58.8
1 generator (Qwen2.5) 38.7 74.4 30.5 35.6 9.6 17.1 64.7
10 generators (mixed) 42.2 76.4 40.4 39.3 14.6 18.8 63.4

Table 4: Full ablation results on the diversity of solution generators in one-shot CFT.

area A of the sail and the cube487

of the wind’s velocity V . When488

the velocity is 8 miles per hour,489

the pressure on a sail of 2 square490

feet is 4 pounds. Find the wind491

velocity when the pressure on 4492

square feet of sail is 32 pounds.493

Solution:494

To solve the problem, we start495

by expressing the relationship496

between the pressure P, the497

area A, and the wind’s velocity498

V mathematically. Since the499

pressure varies jointly as the500

area of the sail and the cube501

of the wind’s velocity, we can502

write:503

P = kAV 3504

where k is a constant of505

proportionality. We are given506

that when the velocity is 8 miles507

per hour, the pressure on a sail508

of 2 square feet is 4 pounds. We509

can use this information to find510

the value of k. Substituting511

P = 4, A = 2, and V = 8 into512

the equation, we get:513

4 = k · 2 · 83514

83 = 512515

4 = k · 2 · 512516

4 = k · 1024517

k = 4/1024 = 1/256518

Now that we have the value of519

k, we can use it to find the520

wind velocity when the pressure521

on 4 square feet of sail is 32522

pounds. Substituting P = 32,523

A = 4, and k = 1/256 into the524

equation P = kAV 3, we get:525

32 = (1/256) · 4 · V 3526

32 = (4V 3)/256 = V 3/64527

V 3 = 32 · 64528

V 3 = 2048529

V = 3
√
2048 = 12530

Therefore, the wind velocity when 531

the pressure on 4 square feet of 532

sail is 32 pounds is: 533

12 534

Assistant message: 535

Critique: 536

Let me analyze this solution: 537

538

1. Key Mathematical Concepts: 539

- Joint variation 540

- Cube relationship 541

- Solving for constants using given 542

conditions 543

- Cube roots 544

545

2. Step-by-Step Check: 546

Initial equation setup P = kAV 3 is 547

correct 548

First substitution with P = 4, A = 2, 549

V = 8 is correct 550

Calculation of 83 = 512 is correct 551

Finding k = 4/(2 × 512) = 1/256 is 552

correct 553

Second equation setup with P = 32, 554

A = 4 is correct 555

Algebra to solve for V 3 is correct 556

Final calculation of 3
√
2048 = 12 is 557

correct 558

559

3. Solution Verification: 560

Let’s verify the final answer: 561

When V = 12, A = 4, and k = 1/256: 562

P = (1/256)(4)(123) 563

P = (1/256)(4)(1728) 564

P = (1728× 4)/256 565

P = 32 566

567

The student’s solution is completely cor- 568

rect. They followed a logical approach, 569

performed all calculations accurately, 570

and arrived at the correct answer. 571

572
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12 miles per hour573

574

Conclusion: right [END]575

This format is used for all training examples in576

our CFT experiments.577

A.4 Dataset Statistics578

For each seed problem, we initially obtain 700579

critique examples (100 candidate solutions × 7580

teacher critiques). After filtering out incorrect or581

inconsistent critiques, we remove 43, 16, 22, and 68582

examples for π1, π2, π13, and π1209, respectively.583

For a fair comparison across different seeds, we584

further remove the longest and shortest samples585

by length, and subsample the remaining data to586

construct a unified training set of 600 critiques587

per seed problem. The selected problems span a588

range of difficulty levels: π2 and π13 are relatively589

easy, while π1 is of medium difficulty and π1209 is590

considered hard.591

A.5 Prompts592

This section provides all prompts used for dataset593

construction, including those for solution genera-594

tion, critique generation, and grading.595

Solution Generation Prompts We used different596

prompts for each solution generator model:597

• Qwen3 and MiMo:598

<|im_start|>user599

Please reason step by step to find a600

solution to the following question,601

and put your final answer within602

\boxed{}.603

{question}<|im_end|>604

<|im_start|>assistant605

606

• Qwen2.5:607

<|im_start|>system608

Please reason step by step, and609

put your final answer within610

\boxed{}.<|im_end|>611

<|im_start|>user612

{question}<|im_end|>613

<|im_start|>assistant614

615

• Phi-4:616

<|im_start|>system<|im_sep|>617

Please reason step by step, and618

put your final answer within 619

\boxed{}.<|im_end|> 620

<|im_start|>user<|im_sep|> 621

{question}<|im_end|> 622

<|im_start|>assistant<|im_sep|> 623

624

Critique Generation Prompt 625

You are a mathematics expert. Analyze if 626

the student’s solution to the given ques- 627

tion is correct. Follow these steps: 1. 628

Identify the key mathematical concepts 629

and correct approach. 2. Check each step 630

of the student’s solution. 3. If incorrect, 631

point out errors and provide the correct 632

solution, putting your final answer within 633

\boxed{}. Conclude with "Conclusion: 634

right/wrong [END]" 635

{question} 636

{solution} 637

Grading Prompt Below is the English prompt 638

used for grading student answers with three discrete 639

scores: 640

You are a grader for a mathematics exam. 641

Given the following question and a refer- 642

ence answer, grade the student’s exam 643

answer. Only give one of three pos- 644

sible scores: 1 point (mostly correct), 645

0.5 points (partially correct), or 0 points 646

(seriously incorrect). Put your score in 647

Final Grade: \boxed{}. 648

A.6 Seed Problem Descriptions 649

Here we provide the full statements of the four seed 650

math problems used in our experiments. 651

• π1: The pressure P exerted by wind on a sail 652

varies jointly as the area A of the sail and 653

the cube of the wind’s velocity V . When the 654

velocity is 8 miles per hour, the pressure on 655

a sail of 2 square feet is 4 pounds. Find the 656

wind velocity when the pressure on 4 square 657

feet of sail is 32 pounds. 658

• π2: How many positive divisors do 9240 and 659

13860 have in common? 660

• π13: Given that circle C passes through points 661

P (0,−4), Q(2, 0), and R(3,−1). 662

(1) Find the equation of circle C. 663
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(2) If the line l : mx + y − 1 = 0 intersects664

circle C at points A and B, and |AB| = 4,665

find the value of m.666

• π1209: Define the derivative of the (n− 1)th667

derivative as the nth derivative (n ∈ N∗, n ≥668

2), that is, f (n)(x) = [f (n−1)(x)]′. They are669

denoted as f ′′(x), f ′′′(x), f (4)(x), ..., f (n)(x).670

If f(x) = xex, then the 2023rd derivative of671

the function f(x) at the point (0, f (2023)(0))672

has a y-intercept on the x-axis of .673

A.7 Use of AI Assistance674

We used ChatGPT to capture grammar errors in the675

manuscript.676

A.8 Potential Risks677

Our work focuses on improving mathematical rea-678

soning in large language models. Potential risks679

include the misuse of enhanced models for gener-680

ating plausible but incorrect or misleading mathe-681

matical content, or for academic dishonesty (e.g.,682

automated solution generation in educational set-683

tings). We encourage responsible use and further684

research into safeguards and verification methods.685

A.9 License for Artifacts686

All code and data released with this work are pro-687

vided under the MIT License. Users are free to use,688

modify, and distribute these artifacts, provided they689

adhere to the terms of the license.690

All existing artifacts used in this work were uti-691

lized in accordance with their intended use and692

license terms, as specified by their original authors.693

The code and data we release are intended solely694

for research and educational purposes, and are dis-695

tributed under terms compatible with the original696

access conditions. Any derivatives of third-party697

data are restricted to research use only.698

A.10 Data Privacy and Offensive Content699

All data used in this work were sourced from pub-700

licly available mathematical problem sets and do701

not contain any personally identifying information702

or offensive content. We manually reviewed the703

datasets to ensure that no sensitive or inappropriate704

material was present, and no anonymization was705

necessary.706

A.11 Documentation of Artifacts707

We provide documentation for all released artifacts,708

including descriptions of the datasets, code usage709

instructions, and details of supported benchmarks. 710

The datasets consist of English mathematical prob- 711

lems covering a range of domains such as algebra, 712

geometry, and mathematical olympiad questions. 713

No demographic or personally identifying informa- 714

tion is included, as all data is problem-centric and 715

publicly available. 716

A.12 Parameters for Packages 717

We report all packages and libraries used for data 718

preprocessing and evaluation in our experiments. 719

For standard packages, such as NumPy and Py- 720

Torch, default parameter settings were used unless 721

otherwise specified. All non-default parameters 722

and implementation details are documented in the 723

code release. 724

A.13 Case Study 725

This case study highlights a crucial difference 726

between the base model and the CFT-enhanced 727

model in solving modular equations. The base 728

model (step-0) attempts to find integer solutions to 729

14u ≡ 46 (mod 100) by directly checking pos- 730

sible values, but the solutions it finds (u = 34 and 731

u = 79) do not actually satisfy the original con- 732

gruence. This reflects a reasoning error: the model 733

fails to verify its candidate solutions. As a result, 734

the final answer is incorrect. 735

In contrast, after one-shot Critique Fine-Tuning 736

(step-20 and step-50), the model correctly applies 737

the Extended Euclidean Algorithm to solve the 738

congruence, finds the true solutions (u = 39 and 739

u = 895), and accurately computes the average 740

as 64. This showcases how CFT helps the model 741

develop deeper mathematical understanding and 742

more rigorous verification, leading to correct and 743

well-explained solutions. 744
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Question:What is the average of the two smallest positive integer solutions to the congruence $$14u \equiv 46\pmod100 ?$$

Answer: 64

Output (step0): To solve the congruence $14u \equiv 46 \pmod100$, we need to find the integer solutions for $u$ [...]We
can use the Extended Euclidean Algorithm to find the modular inverse. Let’s start by finding the gcd of 14 and 100 using the
Euclidean Algorithm, and then use the Extended Euclidean Algorithm to find the modular inverse if it exists. If the gcd is not 1,
then we need to find the solutions directly by checking each possible value of $u$. Let’s implement this in Python. [Python
Code] output\n34.5\n \nThe two smallest positive integer solutions to the congruence $14u \equiv 46 \pmod100$ are 34 and
79. The average of these two solutions is $frac34 + 792 = 56.5$. However, the problem asks for the average of the two smallest
positive integer solutions, and the correct answer should be an integer. Let’s verify the solutions and the average again.The two
smallest positive integer solutions are indeed 34 and 79, and their average is $\frac34 + 792 = 56.5$. Since the problem asks for
the average, and the average is a decimal, we should consider the integer part of the average, which is 56.Therefore, the final
answer is $\boxed56$.

Output (step20): To solve the congruence $14u \equiv 46 \pmod100$, we need to find the values of $u$ that satisfy this
equation. Let’s go through the steps: [...] We can use the Extended Euclidean Algorithm to find this inverse.3. **Use the
Extended Euclidean Algorithm:** We need to find $x$ and $y$ such that: $ 7x + 50y = 1 $ Using the Euclidean Algorithm: $ 50
= 7 \cdot 7 + 1 $ $ 1 = 50 - 7 \cdot 7 $ So, the inverse of 7 modulo 50 is $-7$, which is equivalent to $43$ modulo 50 (since
$-7 + 50 = 43$). 4. **Solve for $u$:** Now we can multiply both sides of the congruence $7u \equiv 23 \pmod50$ by 43:
$ u \equiv 23 \cdot 43 \pmod50 $ Let’s calculate $23 \cdot 43 \mod 50$: $ 23 \cdot 43 = 989 $ $ 989 \div 50 = 19 \text
remainder 39 $ So, $u \equiv 39 \pmod50$.5. **Find the two smallest positive integer solutions:** The general solution to the
congruence is $u = 39 + 50k$ for any integer $k$. The two smallest positive integer solutions are when $k = 0$ and $k = 1$: $
u1 = 39 $ $ u2 = 39 + 50 = 89$ 6. **Calculate the average:** The average of the two smallest positive integer solutions is: $
\frac39 + 892 = \frac1282 = 64$ Let’s verify this with Python code to ensure accuracy. [Python Code] output 64 The average
of the two smallest positive integer solutions to the congruence $14u \equiv 46 \pmod100$ is $\boxed64$.

Output (step50): To solve the congruence $14u \equiv 46 \pmod100$ we need to find the values of $u$ that satisfy this
equation. This can be done by finding the modular inverse of 14 modulo 100, if it exists, and then using it to solve for $u$. First,
we need to check if 14 has an inverse modulo 100. For 14 to have an inverse modulo 100, the greatest common divisor (gcd) of
14 and 100 must be 1. However, since $\gcd(14, 100) = 2$, 14 does not have an inverse modulo 100. Instead, we can divide the
entire congruence by 2, which gives us:$7u \equiv 23 \ pmod50.$ Now, we need to find the modular inverse of 7 modulo 50.
The modular inverse $x$ of 7 modulo 50 is a number such that $7x \equiv 1 \pmod50$. We can use the Extended Euclidean
Algorithm to find this inverse. Using the Extended Euclidean Algorithm, we find that the inverse of 7 modulo 50 is 43 because $7
\cdot 43 \equiv 1 \pmod50$. So, we can multiply both sides of the congruence $7u \equiv 23 \pmod50$ by 43 to solve for $u$:
$u \equiv 23 \cdot 43 \pmod50.$ Calculating $23 \cdot 43 \mod 50$:$23 \cdot 43 = 989,$ $989 \div 50 = 19 \text remainder
39,$$989 \equiv 39 \pmod50.$ So, $u \equiv 39 \pmod50$. This means that the general solution for $u$ is $u = 39 + 50k$ for
any integer $k$. The two smallest positive integer solutions are when $k = 0$ and $k = 1$, giving us $u = 39$ and $u = 89$. The
average of these two solutions is:$\frac39 + 892 = \frac1282 = 64.$ So, the final answer is $\boxed64$.Conclusion: right"

Table 5: Case Study: Question, Answer, and Progressive Outputs
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