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Abstract
As neural network weight matrices are initialized randomly, they conform precisely to random matrix
theory (RMT) predictions before training. Post-training, deviations from RMT predictions indicate
task-specific information encoded in the weights. We analyze feedforward and convolutional neural
network weights trained on image recognition tasks. We demonstrate that most of the weights’
singular values follow universal RMT predictions even after training, suggesting that major parts of
weights remain random. By comparing singular value spectra with the Marchenko-Pastur distribution
and singular vector entries with the Porter-Thomas distribution, we identify significant deviations
only in the parts associated with the largest singular values. We argue that a comparison to RMT
predictions allows locating learned information in the weights. In addition, the RMT analysis enables
us to differentiate between networks trained within various learning regimes.

1. Introduction

Neural networks are often highly over-parametrized [1–12] and capable of memorizing large amounts
of random training data [13, 14]. Traditional ”bias-variance tradeoff” [15] suggests that such networks
should overfit and fail with unseen data. However, they exhibit a double descent behavior [16–18]
relative to the number of parameters, performing well even in the over-parametrized limit. This
apparent contradiction is addressed by evidence showing that ultra-wide neural networks are biased
towards simple functions [19–22].

To analyze these networks, we employ random matrix theory (RMT) [23–27] as a zero-information
hypothesis, where deviations from RMT indicate system-specific information. RMT has been useful
for studying systems with inherent randomness, such as nuclear spectra [24, 26–28], stock market
correlations [29–31, 31–35], and biological networks [36, 37].

RMT has previously been applied to estimate the asymptotic performance of single-layer net-
works [38, 39] and to analyze the generalization dynamics of linear networks [40]. Outliers and the
random part of pre-activation covariance matrices were examined in [41], while other studies focused
on the spectra of Jacobians at initialization [42] and the eigenvalue distribution of the Hessian of the
loss matrix [43, 44]. The spectral evolution of weight matrices during training was analyzed in [45],
assessing the quality of pretrained DNNs [45, 46] by computing spectral norms of weight matrices
and fitting the exponent of a power law tail of the singular value spectrum.

Here, we use various RMT tools to demonstrate that the weight matrices of deep, overparameter-
ized neural networks are predominantly random. By comparing the singular values of several DNNs
with the Wigner nearest neighbor spacing distribution, we find that the bulk of the spectrum aligns
with RMT predictions. This is further corroborated by analyzing the number variance of the singular
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Figure 1. Nearest neighbor spacing distributions (a) and level number variance (b) of unfolded singular values
of weights for various neural networks. The RMT predictions are depicted by dashed, black lines. The insets
in (a) depict the cumulative distributions. Subpanels (1) show results for the second hidden layer weight matrix
of MLP1024, (2) the second convolutional layer in the CNN miniAlexNet, (3) the second fully connected layer
in AlexNet, and (4) for the third dense layer in VGG19. In all cases there is excellent visual agreement with
the RMT predictions. For the level spacings this is further supported by Kolmogorov-Smirnov tests which
cannot reject the null hypothesis at a significance level of (a1) 81%, (a2) 85%, (a3) 31%, and (a4) 96%.

value spectra of weight matrices. We investigate the hypothesis that a large fraction of singular
values does not encode information by comparing the distribution of eigenvector components to the
Porter-Thomas distribution. Significant deviations from the Porter-Thomas distribution are found
only in a small fraction of eigenvectors with large singular values, indicating that learned information
is encoded in them.

Additionally, we train networks across different learning regimes, from lazy networks where
weights barely change during training to rich networks where final weights significantly differ
from initial ones [47–50]. Networks trained in the lazy regime adhere closely to RMT predictions,
unlike those trained in rich and intermediate regimes. Consequently, the weight spectrum and the
comparison of singular vector entries to the Porter-Thomas distribution can distinguish between
learning regimes, with the best generalization performance found between the two extremes.

The results presented here are a concise summary of Ref. [51], which includes additional findings
and detailed information.

2. Experimental setup

In this study, we consider the singular value decomposition of a weight matrix W defined via
W = USV T , where U and V are orthogonal matrices, and S is a diagonal matrix of non-negative
entries νi on its diagonal, the so-called singular values. While this is straightforward for dense
layers, in the case of convolutional layers we first reshape the four dimensional weight tensors to a
rectangular shape and then compute their singular values and vectors.

We consider several networks for image recognition with different architectures and sizes: a)
a fully connected feedforward network with layers of size [3072, 1024, 512, 512, 10] denoted as
MLP1024 and b) a convolutional network called miniAlexNet consisting of two convolutional layers
followed by three dense layers, both trained on the CIFAR-10 [10] dataset. In addition, we analyze
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the two larger networks c) AlexNet [52] and d) VGG19 [11], whose models trained on the ImageNet
[53] dataset are available via pytorch [54] and tensorflow [55], respectively. The network
weights are initialized using a Glorot uniform distribution [56] and then trained with stochastic
gradient descent and cross-entropy loss. More details on the networks can be found in Appendix A.

3. Universal random matrix theory properties

We first consider universal properties that do only depend on the class of random matrix, not on a
specific realization. These properties can be formulated for the unfolded singular value spectrum.
Here, unfolding refers to normalizing the mean density of states of the singular values νi to unity,
yielding the unfolded spectrum ξi [23–27]. For real random matrices in the universality class of the
Gaussian orthogonal ensemble (GOE), the level spacings sk = ξk+1−ξk, i.e. the differences between
neighboring unfolded singular values, are distributed according to the Wigner surmise [23–28]

PGOE(s) =
πs

2
exp

(
−π

4
s2
)

. (1)

The nearest neighbor spacings of the weight matrix singular values are in excellent agreement with
the RMT prediction Eq. (1) before and after training the networks (Fig. 1a). This is supported by
Kolmogorov-Smirnov tests of the empirical data against Eq. (1) that cannot reject the null hypothesis
even at a significance level as high as α = 0.30 (for specific p-values, see Appendix B).

Another prediction of RMT that allows to test the random nature of weight matrices is the level
number variance, which is sensitive to long range correlations in the spectrum. The number variance
describes fluctuations in the number of unfolded singular values Nξi(l) in intervals of length l around
each singular value ξi: Σ2(l) = ⟨(Nξ(l)− l)2⟩ξ . For random matrices from the GOE universality
class, the level number variance depends on the interval width ℓ according to Σ2(l) ∝ ln(2πl) in the
regime l ≳ 1 [24–27] in excellent agreement with the data (see Fig. 1b).

4. Distribution of singular values and singular vector entries

To locate the learned information in the weights, we compare the agreement with non-universal
RMT predictions between initial and trained matrices. For a random n×m matrix of zero mean and
variance σ, the singular values follow the Marchenko-Pastur distribution [57–59, 59],

P (ν) =

{
n/m
πσ̃2ν

√
(ν2max − ν2)(ν2 − ν2min) ν ∈ [νmin, νmax]

0 else
(2)

where νmax
min

= σ̃(1 ±
√

m/n) and σ̃ = σ
√
n. We assume without loss of generality that m ≤ n.

While the distribution Eq. (2) describes the spectrum of the weights of untrained networks, the trained
weight deviates from the Marchenko-Pastur law (see [45]). In the absence of a microscopic theory
for the spectrum of a trained weight matrix, we estimate its random part by fitting the empirical
spectra with a modified Marchenko-Pastur law: setting νmin to the smallest empirical eigenvalue,
and using νmax and σ2 as fit parameters. This introduces an additional free parameter compared to
the strict Marchenko-Pastur distribution, representing the percentage of the spectrum still following
the Marchenko-Pastur law (see Fig. 2a). We also consider the normalized eigenvectors of the m×m
matrix W †W (right singular vectors of W ), whose components for a random matrix follow the
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Figure 2. (a) Spectral distributions for initial weight (red), trained weight of the second hidden layer of a
MLP512 network (blue) and RMT prediction (black). (b-d) Analysis of the eigenvectors of W †W . Here, we
show p-values of Kolmogorov-Smirnov tests of the eigenvector entries versus a Gaussian distribution. All
results are averaged over neighboring eigenvectors with a window size of 15. The x-direction describes the
position of rank ordered singular values, such that 0 corresponds to the smallest and 1 to the largest singular
value of each weight matrix. We show results for (b) the second hidden layer of MLP1024, (c) the first dense
layer of the large pretrained DNNs AlexNet (blue) and VGG19 (green), and (d) the second convolutional layer
(blue) and first dense layer (orange) of the CNN miniAlexNet.

Porter-Thomas distribution [24, 26, 27], i.e., a Gaussian distribution with mean zero and standard
deviation 1/

√
m. To check if the observation that most singular values of trained networks are random

extends to the eigenvectors, we test the empirical distribution of each eigenvector’s entries against
this Gaussian using a Kolmogorov-Smirnov test. A large p-value means the Gaussian hypothesis
cannot be rejected, indicating the vector contains only noise, while a small p-value suggests stored
information. To reveal trends, we average the p-values over neighboring singular values with a
window size of 15. We find that most eigenvectors are random, especially those corresponding to
small singular values (Fig. 2b-d). For large singular values, the p-values decrease, indicating stored
information, consistent with [45].

5. RMT analysis of different learning regimes

It was shown [14, 60–64] that neural networks can achieve good generalization accuracies even when
their weights change only by very small amounts during training. The opposite to this lazy learning
is denoted as rich learning, where the final weights W after training deviate significantly from the
initial ones W0. We train several MLP512 networks, where laziness is controlled by introducing a
hyperparameter α that modifies the output activations via [48] aL = softmax (α(WL−1aL−1 + bL))
and the cost function as

l(W , b) = − 1

Nα2

N∑
k=1

y(k) · ln(a(k)
out) . (3)

Here, a large α > 1 scales down the gradient updates and therefore encourages lazy learning,
while small α < 1 steers training towards the rich learning regime [48]. We denote α = 1 as
typical learning. A comparison of the RMT analysis in the three regimes—rich (α = 0.5), typical
(α = 1), and lazy (α = 5)—is illustrated in Fig. 3. For all networks, the bulk spectra exhibit
random characteristics, with level spacings (panel b) and level number variance (panel c) closely
aligning with RMT predictions. Notably, the level number variances do not indicate slower growth
for networks with larger α. In the rich network, there are more large singular values compared to the
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Figure 3. Random matrix theory analysis of second layer weights of MLP512 networks trained in different
learning regimes: rich learning (α = 0.5, top panel), typical learning (α = 1, middle panel), and lazy learning
(α = 5, bottom panel). We show (a) the spectra for trained (blue) and randomly initialized networks (red) with
fits of modified Marchenko-Pastur laws (dashed, black), (b) unfolded level spacing distributions (main panel,
blue, window size 15) and corresponding cumulative distributions (insets) with the Wigner surmise (dashed,
black), (c) unfolded level number variance (trained: blue, initialized: red), and (d) p-values for comparing
singular vector entries to a Porter-Thomas distribution. Trained networks in all cases follow universal RMT
predictions (b and c), indicating a random bulk. Lazy networks can be distinguished from typical and rich
networks by the spectral distributions in (a) and p-values in (d) [51].

typical network, while the lazy network’s Marchenko-Pastur spectrum remains almost unchanged
(panel a). Despite this, the lazy network achieves a test accuracy of 50.4% on CIFAR-10, compared
to 52.7% for the rich network and 55.2% for the typical network.

When examining the p-values for Kolmogorov-Smirnov tests of eigenvector entries against a
Porter-Thomas distribution (panel d), it is observed that in the typical case, small p-values occur
only for large singular values. In contrast, the rich network shows small p-values for vectors
corresponding to the smallest singular values as well. For the lazy network, all p-values fluctuate
around 0.5, consistent with the behavior expected for random weights.

6. Conclusion

We employed RMT as a zero-information hypothesis to distinguish randomness from learned
information during training. At initialization, weight matrices perfectly align with RMT predictions,
with singular value spectra following the Marchenko-Pastur distribution, singular vector entries
obeying the Porter-Thomas distribution, and level spacing adhering to the Wigner surmise. A
comparison between initialized and trained networks reveals where information is stored in the
weight matrices. Even after training, much of the eigenvalue spectrum remains random, and the
spectral statistics continues to match RMT predictions. Singular vectors are mostly random, except for
those associated with the largest singular values, indicating that learned information is concentrated in
these vectors. Separating random parts from information may allow improved network compression
algorithms to be designed.
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Appendix A. Network architectures and performance

Table 1. Neural network architectures and performance of trained networks. We use d to indicate a dense layer,
c for a convolutional layer, p for max pooling, f for flattening, rc for random crop layer, and r for response
normalization layer (with a depth radius of 5, a bias of 1, α = 1, and β = 0.5).

NETWORK DATASET TEST ACC

I) MLP512, SEED 1 (D 3072, D 512, D 512, D 512, D 10) [14] CIFAR-10 54.7%
MLP512, SEED 2 (D 3072, D 512, D 512, D 512, D 10) CIFAR-10 55.1%
MLP512, SEED 3 (D 3072, D 512, D 512, D 512, D 10) CIFAR-10 55.2%

II) MLP1024 (D 3072, D 1024, D 512, D 512, D 10) CIFAR-10 55.4%
III) MINIALEXNET (C 300 5×5, P 3×3, R, C 150 5×5, P 3×3, R, F, D 384, D 192, D 10) [14] CIFAR-10 78.5%
IV) ALEXNET [52] IMAGENET 56.5%
V) VGG16 [11] IMAGENET 67.6%
VI) VGG19 [11] IMAGENET 72.4%

We consider a variety of different networks to show that our results are valid for a wide range of
architectures. Tab. 1 lists the network architectures, training datasets, and accuracies achieved on
each dataset. We downloaded the large pre-trained networks iv) AlexNet [52] via pytorch [54],
v) VGG16 [11] via tensorflow [55], and vi) VGG19 [11] via pytorch [54]. Networks i)-iii)
are trained using mini-batch stochastic gradient decent for 100 epochs. The weights are initialized
using the Glorot uniform distribution [56] and the biases are initialized with zeros. We standardize
each image of the CIFAR-10 dataset by subtracting the mean and dividing by the standard deviation.
We set the learning rate to 0.001 at the beginning and use an exponential learning rate schedule with
decay constant 0.95. For all networks, we choose 0.95 as momentum and the mini-batch size is
32. Network architectures i)-ii) in Tab. 1 are trained without L2 regularization, while we use an L2

regularization strength of 10−4 for training miniAlexNet networks iii).

Appendix B. Kolmogorov-Smirnov tests against the Wigner surmise

The p-values of Kolmogorov-Smirnov tests of the unfolded singular value spacings against the
Wigner surmise are shown in Tab. 2.

Appendix C. Details on unfolding the spectrum

We perform a Gaussian broadening [25, 65] by approximating the probability density as a sum of
Gaussian functions centered around each of the m singular values νk with widths σk = (νk+a −
νk−a)/2, where 2a is the window size of the broadening [32, 66]

P (ν) ≈ 1

m

m∑
k=1

1√
2πσ2

k

exp

(
−(ν − νk)

2

2σ2
k

)
. (4)

Unfolding is a transformation that maps the singular values νi to uniformly distributed singular
values ξi [23–25, 27, 32]. For this purpose, we first determine the probability density P (ν) using
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Table 2. Kolmogorov-Smirnov test results of the distribution of unfolded singular value spacings of the weight
matrices against the Wigner surmise. Rejection of the null hypothesis is based on the α = 0.05 significance
level. The p-value indicates how likely it is to obtain a distribution with at least as much cumulative density
function deviation as the one tested for drawing random numbers from a Wigner surmise distribution. We find
excellent agreement with the Wigner surmise for a variety of network architectures.

NETWORK
REJECT NULL HYPOTHESIS? KS-TEST P-VALUE

LAYER 1 LAYER 2 LAYER 3 LAYER 1 LAYER 2 LAYER 3

MLP512 (SEED 1) NO NO NO 0.347 0.401 0.812
MLP512 (SEED 2) NO NO NO 0.993 0.421 0.844
MLP512 (SEED 3) NO NO NO 0.768 0.784 0.863
MLP1024 NO NO NO 0.799 0.812 0.792
MINIALEXNET (SECOND CONV. LAYER) NO 0.859
ALEXNET (DENSE LAYERS) NO NO NO 0.670 0.229 0.160
VGG16 (DENSE LAYERS) NO NO NO 0.923 0.312 0.309
VGG19 (DENSE LAYERS) NO NO NO 0.376 0.652 0.557

Eq. (4) and calculate the corresponding cumulative distribution

F (ν) = m

∫ ν

−∞
P (x) dx . (5)

The unfolded singular values are defined as ξi = F (νi).

Appendix D. Controlling the learning regime

A criterion for estimating the learning regime was proposed by Chizat et al. [48]: For a neural
network fW that maps an input x to an output, and an accuracy function A(fW , {x}, {y}), where
{x} is a dataset with labels {y}, one computes the network’s linearization around the initial weights
W0

f̃W (x) = fW0(x) + (W −W0) · ∇W fW |W0(x) . (6)

In the lazy learning regime, where W ≈ W0, linearization is a good approximation such that the
accuracies are barely different, i.e.

A(fW , {x}, {y}) ≈ A(f̃W , {x}, {y}) . (7)

On the contrary, in the rich learning regime, one expects significant deviations such that

A(fW , {x}, {y}) ≫ A(f̃W , {x}, {y}) . (8)

This criterion has the advantage that it can also be studied on a layer-wise basis by linearizing around
a single weight matrix only, and as accuracies are in the range [0, 1], it gives a scale for laziness
comparable between different network architectures. A disadvantage is that it requires to compute
the linearization which can be resource intensive for large networks. For obtaining f̃W , we use
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the autodiff implementation in the jax python package together with the neural tangents
package [67].

Accuracies for linearized and full MLP512 networks as a function of α are depicted in Fig. 4.
As expected, the networks are in the rich regime for α < 1, where the full networks (blue crosses)
perform significantly better than the linearized networks (green circles), while we observe lazy
learning for α < 1. The network with α = 1 (black symbols), lies about in the middle between
the two regimes, where we also find the best test accuracy. We therefore denote α = 1 as typical
learning.

100 101

α

0.0

0.5
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Figure 4. Comparison of training and test accuracies for full MLP512 networks (blue crosses) and linearized
networks (green circles) around the initial weights of the second layer as a function of the laziness hyperpa-
rameter α. The black symbols indicate accuracies for α = 1. For small α < 1 accuracies of linearized and full
networks deviate significantly which indicates rich learning, while for large α > 1 performance differences
are small indicating lazy learning [51].
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