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Abstract

Reinforcement Learning from Human Feedback (RLHF) has shown remarkable
success in aligning Large Language Models (LLMs) with human preferences. Tra-
ditional RLHF methods rely on a fixed dataset, which often suffers from limited
coverage. To this end, online RLHF has emerged as a promising direction, enabling
iterative data collection and refinement. Despite its potential, this paradigm faces a
key bottleneck: the requirement to continuously integrate new data into the dataset
and re-optimize the model from scratch at each iteration, resulting in computational
and storage costs that grow linearly with the number of iterations. In this work,
we address this challenge by proposing a one-pass reward modeling method that
eliminates the need to store historical data and achieves constant-time updates per
iteration. Specifically, we first formalize RLHF as a contextual preference bandit
and develop a new algorithm based on online mirror descent with a tailored local
norm, replacing the standard maximum likelihood estimation for reward modeling.
We then apply it to various online RLHF settings, including passive data collection,
active data collection, and deployment-time adaptation. We provide theoretical
guarantees showing that our method enhances both statistical and computational
efficiency. Finally, we design practical algorithms for LLMs and conduct experi-
ments with the L1ama-3-8B-Instruct and Qwen2.5-7B-Instruct models on
Ultrafeedback and Mixture2 datasets, validating the effectiveness of our approach.

1 Introduction

Reinforcement Learning from Human Feedback is a critical technique for training large language
models using human preference feedback [Ouyang et al., 2022, Bai et al., 2022]. Typical RLHF
methods involve collecting extensive data, each consisting of a prompt, a pair of responses, and a
preference label indicating which response is preferred. Then, a reward model is trained to predict
the human preference, and the LLM is fine-tuned based on the reward model by the RL algorithms.

Traditional RLHF methods primarily rely on fixed preference datasets, which typically suffer from
limited coverage. As a result, the learned reward models struggle to generalize to out-of-distribution
samples, constraining the effectiveness of the aligned models. To address this, online RLHF has
emerged as a promising paradigm, enabling iterative data collection and model improvement. The
general process can be described as (i) collect the preference data; (ii) update the model using the
collected data. The above two steps are repeated for several iterations to boost model performance.
In practice, Claude [Bai et al., 2022] and LLaMA-2 [Touvron et al., 2023] have demonstrated that
online RLHF can significantly enhance model performance [Dong et al., 2024]. Theoretically, recent
works [Xie et al., 2025, Cen et al., 2025] indicate that online exploration can improve the statistical
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Table 1: Comparison between previous works and our work in terms of the statistical and computational
efficiency across different online RLHF settings. The column “Context” and “Action” represent the context and
action are determined by the environment (@) or the algorithm (Q). For the computational efficiency (time and
storage), we highlight the dependence on the ¢ at iteration ¢. Here, d is the feature dimension, 7" is the total
number of iterations, & is the non-linearity coefficient, ® = Ey~, [¢(z, 7" (x))] is the concentrability vector,
Vr and Hy are two local norms satisfying H<I>HH;1 < \/E||¢||V£1 (*: amortized complexity over T').

Setting Context Action Gap/Regret Time Storage Reference
Q O(Vd-k|®| 1) O(logT)* O()  Zhuetal. [2023]
6(\/& ||<I>HH;1) o) O(1)  Ours (Theorem 1)

(1)
ctive O(dy/k/T) O(tlogt) O(t)  Dasetal. [2025]
Act Q Q O(dv/k/T) o) O(1)  Ours (Theorem 2)

(t)

(1)

Passive

@ Q O(drV/T) O(tlogt)  O(t)  Sahaetal. [2023]

Depl pd
cpioy O(dv/kT) 0(1) O(1)  Ours (Theorem 3)

efficiency of RLHF. Beyond performance gains, online RLHF serves as a crucial step toward agentic
applications, where models can continuously integrate environmental feedback to enable real-time
interaction, adaptive reasoning, and autonomous decision-making [Silver and Sutton, 2025].

Despite its empirical success, online RLHF may introduces significant computational challenges.
Specifically, the typical process of online RLHF involves continuously integrating newly collected
data into the historical dataset and re-optimizing the model from scratch over the expanded dataset.
While this strategy is statistically efficient, its computational and storage costs scale linearly with the
number of iterations, which becomes prohibitive in long-term iterations, especially on edge devices
where computation and memory resources are inherently limited. This raises a pressing question:

Can we design online RLHF algorithms that are both statistically and computationally efficient?

In this work, we provide an affirmative answer to this question in the setting of contextual preference
bandits with linearly parameterized reward functions. Specifically, building on recent theoretical
advancements in RLHF [Zhu et al., 2023, Das et al., 2025, Ji et al., 2025], we formulate the
RLHF problem as a contextual dueling bandit problem [Yue et al., 2012, Saha, 2021]. While
prior work has explored this formulation, most existing methods focus on statistical efficiency and
overlook the growing computational burden. To bridge this gap, inspired by recent progress in bandit
learning [Zhang and Sugiyama, 2023, Li et al., 2024], we introduce a novel one-pass reward modeling
method based on the online mirror descent framework with a tailored local norm that captures
second-order information. Unlike traditional approaches, our method eliminates the need to store
historical data and achieves constant-time updates per iteration, i.e., the computational cost remains
invariant with respect to the cumulative number of iterations. We then apply our method to several
online RLHF settings, including passive data collection, active data collection, and deployment-time
adaptation. We establish theoretical guarantees showing that our method improves both statistical and
computational efficiency. Table 1 summarizes the comparison of our method with the existing works.

To enable usage in LLMs, we develop practical variants of our method. Direct computation and
storage of the Hessian matrix is prohibitively expensive; thus, we propose an efficient approximation
using Hessian-Vector Products (HVP) combined with conjugate gradient descent, avoiding explicit
second-order information and relying only on first-order computation. Additionally, we employ
rejection sampling to approximate model uncertainty in a computationally efficient manner. With the
above techniques, we conduct experiments using the LLaMA-3-8B-Instruct [Llama Team, 2023]
and Qwen2.5-7B-Instruct [Qwen Team, 2024] models on the Ultrafeedback [Cui et al., 2024] and
Mixture2 [Dong et al., 2024] datasets. Experimental results validate the effectiveness of our method.

To summarize, our contributions are as follows:

* By formulating the RLHF problem as a contextual dueling bandit, we propose a novel one-pass
reward modeling algorithm and establish the corresponding estimation error bound. Our method is
built upon the online mirror descent framework and incorporates a carefully designed local norm
that captures second-order information for improved learning efficiency.



* We apply our method to a broad range of online RLHF settings, including passive data collection,
active data collection, and deployment-time adaptation. For each setting, we design tailored
algorithms and establish corresponding theoretical guarantees, demonstrating that our approach
achieves improved statistical and computational efficiency compared to existing methods.

* We develop practical algorithms by approximating the update using Hessian-Vector Products
combined with conjugate gradient descent, and estimating uncertainty via rejection sampling. Based
on the above techniques, we conduct empirical evaluations using the LLaMA-3-8B-Instruct and
Qwen2.5-7B-Instruct models on the Ultrafeedback and Mixture2 datasets, showing that our
method improves both statistical and computational efficiency compared to existing methods.

Organization. Section 2 reviews the related work. Section 3 introduces the problem setup. Section 4
presents our proposed one-pass reward modeling method and section 5 applies it to various online
RLHEF settings. Section 6 provides practical versions of our method. Section 7 presents experimental
results. Section 8 concludes the paper. The proofs and experiment details are deferred to the appendix.

2 Related Work

In this section, we review the works most closely related to ours, including online RLHF, contextual
dueling bandits, and active learning.

Online RLHF. Traditional RLHF methods predominantly rely on fixed datasets, which often suffer
from limited data coverage. Consequently, the resulting reward models struggle to generalize to
out-of-distribution samples, thereby limiting the effectiveness of the aligned models. To overcome this
limitation, online RLHF has emerged as a promising alternative, enabling iterative data collection and
continuous model refinement. The works [Dong et al., 2023, Guo et al., 2024, Yuan et al., 2024, Wu
et al., 2025] have demonstrated that online iterative variants of direct preference learning algorithms
significantly outperform their offline counterparts. Xiong et al. [2024] identified key challenges in
offline RLHF and theoretically demonstrated the potential benefits of online exploration. Recent
work has incorporated optimism-driven bonus terms into the objective to encourage exploration
in online RLHF [Xie et al., 2025, Cen et al., 2025, Zhang et al., 2025, Zhao et al., 2025]. These
approaches primarily focus on the sample efficiency, but do not consider the accompanying increase
in computational complexity. To improve computational efficiency, Foster et al. [2025] tackled the
challenge of enumerating an exponentially large response space. Differently, our work focuses on
alleviating the computational burden that scales linearly with the number of iterations in online RLHF.

Contextual Dueling Bandits and RL. Dueling bandits are a variant of the multi-armed bandit
problem in which the learner sequentially selects a pair of arms and receives binary feedback [Yue
etal., 2012]. The contextual dueling bandit framework extends this setting by incorporating contextual
information [Dudik et al., 2015, Saha, 2021, Bengs et al., 2022]. Within this framework, Saha [2021]
studied the K -armed contextual dueling bandit problem, and Saha et al. [2023] further extended it
to the reinforcement learning setting. Additionally, Sekhari et al. [2023] investigated the contextual
dueling bandit problem under an active learning paradigm, where the learner adaptively queries to
minimize both regret and the number of queries. To move beyond linear reward functions, Verma et al.
[2025a] introduced the neural dueling bandit problem, modeling the reward function using neural
networks. These prior works commonly rely on maximum likelihood estimation to learn the reward
function, leading to computational complexity that grows linearly with the number of iterations. In
contrast, we propose algorithms that maintain constant per-iteration computational complexity.

Active Learning. Active learning is a paradigm that aims to reduce the labeling cost by selecting the
most informative samples for annotation [Settles, 2009]. In general, existing work can be categorized
into two settings: pool-based and stream-based. The pool-based setting [Seung et al., 1992, Freund
et al., 1997, Huang et al., 2010] involves the learner iteratively selecting a batch of informative
samples from a large unlabeled pool, querying their labels, updating the model, and repeating this
process. In contrast, the stream-based setting [Cesa-Bianchi et al., 2004, 2006, Cacciarelli and
Kulahci, 2024] requires the learner to sequentially observe data points and decide in real time whether
to query their labels. Within the context of RLHF, Das et al. [2025] and Verma et al. [2025b] studied
pool-based active learning, while Ji et al. [2025] focused on the stream-based setting. In this work,
we focus on the pool-based strategy, which can be naturally extended to the stream-based scenario.



3 Problem Setup

Following recent advancements in RLHF [Zhu et al., 2023, Das et al., 2025, Xiong et al., 2024], we
formulate RLHF as a contextual bandit problem. Specifically, we have a set of contexts X and a set of
possible actions A per context. To learn with human preference feedback, the learner selects a tuple
(z,a,d’) to present to the human, where 2z € X is the context, a,a’ € A are the actions. The human
then provides a binary preference feedback y € {0, 1}, where y = 1 indicates that the human prefers
action a over action o', and y = 0 otherwise. We study the commonly used Bradley-Terry (BT)
model in preference learning [Bradley and Terry, 1952], which assumes that the human’s preference
is generated by a logistic function of the difference in the rewards of the two actions.

Definition 1 (Bradley-Terry Model). Given a context z € X and two actions a,a’ € A, the
probability of the human preferring action a over action a’ is given by Ply =1 | z,a,a'] =
exp(r(z,a))

exp(r(z,a))+exp(r(z,a’))’ where 7 : X x A — R is a latent reward function.

To facilitate theoretical analysis, following prior works [Zhu et al., 2023, Cen et al., 2025], we
consider the linear realizable setting, where the reward function is parameterized by a linear model.
Assumption 1. It holds that r(z,a) = ¢(z,a) ' 0* where ¢(z,a) : X x A — R? is the known
and fixed feature map, and 6* € R< is the unknown parameter vector. Furthermore, we assume
|l¢(z,a)|l2 < Lforallz € X and @ € A and §* € © where © = {# € R? | ||0||» < B}.

Remark 1. While this setting is a simplification of the real-world problem, it serves as a useful and
analytically tractable starting point. Specifically, the feature mapping ¢ can be obtained by removing
the final layer of a pre-trained large language model, with 8* corresponding to the weights of that
layer. Moreover, this assumption can be further relaxed by allowing model misspecification [Jin et al.,
2020] and neural function approximation [Du et al., 2024, Verma et al., 2025b].

Then, we can rewrite the probability as P [y = 1 | x,a,a'] = o(¢(x,a) 6% — ¢(x,a’) T §*), where

o(w) = m. Next, we introduce a key quantity that captures learning complexity.
Definition 2. Let 6(w) = o(w)(1 — o(w)) be the derivative function of o, the non-linearity
1

coefficient k is defined as kK = MaXycx 0,0’ cA,6€0 ) T I=dEa) )

Intuitively, the quantity «, defined as the inverse of the derivative, characterizes the learning difficulty
of the reward function. In particular, a smaller derivative leads to a larger «, implying that the model
output changes less for the same input variation and thus the function is harder to learn. By direct
calculation, we have k < 3 + exp(2BL). Therefore, x can be exceedingly large, exhibiting an
exponential dependence on the magnitude of the features and the model parameters.

4 Our Framework

In this section, we first introduce the general framework for online RLHF. We then present our
one-pass reward modeling method. Finally, we show the theoretical guarantee of our method.

4.1 General framework for online RLHF

The general process of online RLHF involves iteratively collecting data and updating the model based
on the collected data. At iteration ¢, the process can be formulated as:

(i) New data collection: Sample a prompt z; and two responses a; and a}, query the oracle to
obtain the preference label y; € {0, 1}, expand the dataset Dy11 = Dy U {(z4, at, a}, yt) }-

(ii) Reward modeling: Train a reward model r,, 1 using the historical dataset Dy ;.
(iii) Policy optimization (Optional): Update the policy 7.1 using the reward model 7.

A key challenge in online RLHF is that the reward model needs to be trained on the entire historical
dataset at each iteration, which is computationally expensive. Specifically, let z; = ¢ (¢, ar) —

¢(z, a}) be the feature difference, given the historical dataset Dyy1 = {(x4, a4, al, yi>}§:1’ the
reward model is estimated via maximum likelihood estimation as
R t
0i11 = arg minZ&(@Lwhere 0,(0) = —y;log(o(2] 0)) — (1 —y)log(1 — o (2 0)). (1)
OeRT 1



However, Eq. (1) does not admit a closed-form solution, requiring iterative optimization techniques,
such as gradient descent, to achieve an e-accurate estimate. As discussed by Faury et al. [2022],
obtaining such accuracy with MLE typically requires O(log(1/<)) optimization steps. Since the loss
function is defined over the entire historical dataset, each iteration incurs a computational cost of
O(t) gradient evaluations. In practice, ¢ is often set to 1/¢ to ensure that the optimization error does
not dominate the overall estimation error. As a result, the total computational complexity at iteration
t becomes O(tlogt), a cost that is prohibitive for long-term online RLHF applications.

4.2 One-pass reward modeling

Drawing inspiration from recent advancements in logistic bandits [Faury et al., 2022, Zhang and
Sugiyama, 2023] and multinomial logit MDPs [Li et al., 2024], we propose a novel one-pass reward
modeling method that reduces the complexity to constant time per iteration. First, define the gradient
g¢(0) and Hessian Hy () of loss £;(0) as g;(0) = (o (2, 0) — y¢)z and Hy(0) = &(2/ )22, .

Implicit OMD. To improve the computational efficiency, Faury et al. [2022] observed that the
cumulative past log-loss is strongly convex and can therefore be well approximated by a quadratic
function. Building on this observation, they proposed the following update rule:

— 1 7]
0141 :argmin{gt(e)‘F?||9_9tHj:Lt}’ @

where H; = Zt ! H; (0;41) + M is the local norm, and 7 is the step size. The optimization problem
can be decomposed into two terms. The first term is the instantaneous log-loss ¢; (), which accounts
for the information of the current sample. The second consists of a quadratic proxy for the past
losses constructed through the sequence {6; }i<t. A key component is the design of the local norm
H;, which approximates the Hessian matrix by H;(0;+1) at a lookahead point 6, 1. Such a Hessian
matrix effectively captures local information and is crucial for ensuring statistical efficiency.

The update rule in Eq. (2) benefits from a one-pass data processing property, which eliminates
the need to store the entire historical dataset. However, the optimization problem in Eq. (2) still
does not have a closed-form solution. But since the loss is defined only on the current sample, it
requires only O(1) gradient computations per step, leading to a total computational complexity of
O(logt) at iteration ¢. This represents a significant improvement over the O(t log t) complexity of
the MLE estimator in Eq. (1). Nevertheless, the computational complexity of the implicit OMD is
still increasing with the number of iterations, which motivates us to design a constant-time method.

Standard OMD. To enhance computational efficiency, a natural alternative is to replace this
formulation with the standard OMD framework, which permits a closed-form solution and thus
eliminates the need for iterative optimization. However, the standard OMD minimizes a first-order
approximation of the loss function, which sacrifices several key properties compared to its implicit
counterpart, as demonstrated by Campolongo and Orabona [2020]. Specifically, the standard OMD
formulation updates using ¢;(6;), whereas the implicit OMD updates the algorithm approximately
with the subsequent sub-gradient, g;(6;1). This distinction results in a notable gap in the convergence
rates of the two methods. To this end, we propose to approximate the current loss ¢;(6) using a
second-order Taylor expansion, drawmg 1nsp1rat10n from Zhang and Suglyama [2023]. Define the

second-order approximation of £, (6) as £,(6) = £,(6;) + g:(6,)T (6 — 6;) + 1116 — HtHH @) Then,
we replace the loss ¢;(6) in Eq. (2) with the approximation &(9), leading to the update rule:

~ . ~ 1 ~ 12

Or11 :argmln{<gt(9t),9>—I—fHH—GtHQt}, 3)

where 7 is the step size and Hy = He + nHt(Gt) is the local norm with #; £ Zt YH, (0 1+1) 4+ M.
Eq. (3) can be solved with a projected gradient step with the following equivalent form

5£+1 = 575 - nﬁt_lgt(gt)v 5t+1 = argn@ﬂnllﬁ - 52+1H%f-
e :

Thus, the estimator 6,1 provides a closed-form solution, leading to a O(1) computational complexity
per iteration. Furthermore, since the estimator processes the samples in a one-pass manner, it mitigates
the memory burden associated with computing the gradient of the full dataset. These properties make
the method particularly suitable for edge devices, where both memory and computational resources
are severely constrained. The detailed process of our proposed method is presented in Algorithm 1.



Algorithm 1 One-Pass Reward Modeling Algorithm 2 Passive Data Collection

Input: Preference data (zy, as, a}, y;) Input: Regularization parameter A, step size n
: Define the loss function ¢;(6) as Eq. (1) 1: Initialize #; = 0 and H, = AT

2: fort=1,2,...,Tdo

3:  Observe preference data (z¢, at, ay, y:)

4:  BOp1q = Algorithm 1 (x4, as, ay, y:)

5

6

1

2: Update 7—~lt~: He + nHt@) _
3: Compute 0, | = 0, — 777"[15_1%(9:5)~
4
5

: Compute 6;11 = arg mingcg||0 — 9,’f+1||2ﬁt . end for

. Update Hyi1 = Hy + Hy(6141) : Construct Jr1(7) as in Eq. (4)
Output: 6,41 Output: 77 = argmax, o Jr41(7)

4.3 Theoretical guarantee

Note that the update rule in Eq. (3) is a special case of online mirror descent, specifically:
§t+1 = areg Igin {n<gt(§t), 9> + Dy, (6, gt)},
€

where ¢4, (6) = 3[|6]|%, is the regularizer and Dy, (6, 6;) = v¢(6) — v1(6:) — (Vi (6:),0 — ;) is

Bregman divergence. Leveraging the modern analysis of online mirror descent [Zhao et al., 2024,
Zhang and Sugiyama, 2023], we derive the following estimation error bound.

Lemma 1. Let § € (0,1], setn = (1/2)log2 + (BL + 1) and A\ = 84v/2n(dL* + BL?), define
C:={0€00—0|n < B2 0O(Vdlog(t/s))}. Then, we have Pr[Vt > 1,0* € C;] > 1 — 4.

Comparison with MLE. For the MLE eitimator in Eq. (1), prior works [Zhu et al., 2023, Das et al.,
2025, Ji et al., 2025] have shown || — 6;]|v, < O(kV/d), where V; = Zf;} ziz] + M. By the

definition of H;, it holds that H; = x~V;, Lemma 1 implies that [|6 — 8;||y, < v/&[|6 — 0|2, <
O(V/kd). This result shows that Lemma 1 improves upon previous bounds by at least a factor of v/k.

S Applications in Three Online RLHF Scenarios

In this section, we apply our framework to three distinct RLHF scenarios, including online RLHF
with passive data collection, active data collection, and deployment-time adaptation.

5.1 Online RLHF with passive data collection

We first consider the passive data collection setting, where the algorithm cannot control the data
collection process. At each iteration, the learner obtains (z¢, at, a}, y¢) and updates by Eq. (3). We

adopt the “pessimism in the face of uncertainty” principle and define the value function J;1(7) as
Jrs1(m) = (Bowp [0, 7(2))]) 071 = Bral[Bany [d(a, ()]l - Q)

where p is the context distribution. The policy 71 is selected as w1 = arg max, .y jT+1 (7).
The detailed procedure is present in Algorithm 2, and we show it enjoys the following guarantee.

Theorem 1. Set parameters as in Lemma 1, with probability at least 1 — §, Algorithm 2 ensures
SUbOPL(r41) = By (2,7 (2) — 72, 7741 (2))) £ O (VA By (60,7 @) )

where p is the context distribution and 7* is the optimal policy.

Remark 2. The term ||E,, [¢(x, 7*(z))] HHﬁl is usually referred to “concentrability coefficient”

in the literature. It measures the distribution shift between the optimal policy and the collected data.

Remark 3. For statistical efficiency, since H; > k£~ 1V,, Theorem 1 improves the (5(\/&/-@ .

IEznp [@(z, 7 (2))] ||v;1 ) result of Zhu et al. [2023] at least by a factor of /. Regarding com-
+1

putational efficiency, their algorithm has a total storage complexity of O(T) and a time complexity
of O(T logT), leading to an amortized per-iteration cost of O(logT). In contrast, our algorithm
maintains a strict O(1) complexity per iteration, offering a substantial computational advantage.
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Figure 1: Different settings of online RLHF. Contexts and actions selected by the environment (@)
are shown in grey, while those selected by the algorithm (Q) are highlighted in color.

5.2 Online RLHF with active data collection

As established in Theorem 1, the sub-optimality gap depends on the concentrability coefficient, which
quantifies the distributional mismatch between the optimal policy and the collected data. In this
subsection, we propose an active data collection method that removes this dependency.

Active Data Collection. At each iteration, we select a triplet (z+, as, a}) to query for human feedback
s, and then update the reward model using our one-pass method as defined in Eq. (3). To guide data
acquisition, we adopt an active selection strategy that queries the sample with the highest predictive
uncertainty under the current reward model. Specifically, the next query is chosen by solving:

(Te41, @41, 0741) =  argmax {qu(%a) — B, a)|| } &)
r,a,a’ EX X AXA t+1

Policy Optimization After T rounds, we define the reward as the average of all the past estimations

rry1(z,a) = T+1 ZTH (z,a) " 6;. The policy is given by 7741 (z) = arg max, ¢ 4 7r11(7, a).

The detailed procedure is present in Algorithm 3. We show it enjoys the following guarantee.

Theorem 2. Set parameters as in Lemma 1, with probability at least 1 — 6, Algorithm 3 ensures

SubOpt(mr41) = Egnp [r(z, 7" (2)) — (2, mrp1(2))] < (’)(d\//@/T)
where p is the context distribution and 7* is the optimal policy.

Remark 4. We attain the same sub-optimality gap as Das et al. [2025], but improve the computational
efficiency significantly. Our algorithm has an O(1) time and space complexity per round, while their
MLE estimator needs O(tlogt) time and O(t) space complexity at iteration ¢.

5.3 Online RLHF with deployment-time adaptation

In this section, we consider the deployment-time adaptation setting, where users provide input
contexts in an online manner, and the learner generates responses while simultaneously collecting
feedback to improve the model. In this scenario, the learner faces a dual objective: selecting actions
that maximize rewards to ensure a positive user experience, while also choosing actions that yield
informative feedback to facilitate continual model improvement. To this end, we consider the measure:

Regr = Y1y (r (x4, 7 (24)) — & ( (24, a¢) + 7 (24, d}))), where 7* is the optimal policy.

Action selection. At each iteration, given a prompt x; from the user, the learner selects two actions
a; and a; and obtain the feedback y;. The learner must select actions that are both informative and
with high rewards. To this end, we choose the first action a;4; to maximize the estimated reward, i.e.,

arp1 = argmax ¢(y41,a) ' Oyp1. (6)
acA
The second action a} , ; aims to maximize the reward and the distance between the two actions, i.e.,
T ~
apyy = arg max {¢($t+1a ') 1 + Brall @i, af) = S(@rpr, anp)llgr b (D
a’'e ’

The overall algorithm is summarized in Algorithm 4. We show it enjoys the following regret bound.



Algorithm 3 Active Data Collection Algorithm 4 Deployment-Time Adaptation

Input: Regularization parameter A, step size 7 Input: Regularization parameter A, step size

1: Initialize 61 = 0 and H; = A\l 1: Initialize 61 = 0 and H; = Al
2: fort=1,2,...,T do 2: fort=1,2,...,T do
3: Choose (2¢, ar, az) as Eq. (5), observe y; 3:  Observes the context ;.
4 By = Algorithm 1 (x4, as, a}, ys) 4:  Selects a; and @} as Eq. (6) and Eq. (7)
5: end for ~ 5:  Observe the preference feedback y;
6: Set7Triq(x,a) = ET+1 (r,a)"0 a : /
T+1 T+1 \T t 6:  Bpp1 = Algorithm 1 (zy, ay, a}, yt)
Output: 771 (7) = argmax,c 4 774+1(2,a) 7. end for

Theorem 3. For any 6 € (0, 1], set parameters as in Lemma 1, Algorithm 4 ensures the regret
satisfies Regp < (’)(d\/ HT) with probability at least 1 — 0.

Remark S. Our result improves upon Saha et al. [2023] in both computational and statistical efficiency.
Statistically, Theorem 3 improves their O(dn\/T ) result by a factor of \/k. Computationally, our

algorithm has an O(1) time and space complexity per round, while their MLE estimator needs
O(tlogt) time and O(t) space complexity at iteration ¢ due to optimization over the historical data.

6 Practical Implementation

While the proposed one-pass algorithm completely removes the need to store historical data and
achieves constant-time updates per iteration, its computational cost still exhibits an implicit depen-
dence on the feature dimension d, which can become non-negligible in large-scale model optimization.
To further alleviate this issue, we introduce in this section several empirical approximation techniques
designed to reduce the effective dependence on dimensionality and enhance practical efficiency.

6.1 Computation of inverse Hessian

Although the OMD update in Eq. (3) enjoys one-pass property, it requires the computation of
matrix inversion. Spe01ﬁcally, by omitting the projection operation, Eq. (3) can be rewritten as
9t+1 = Ht — n’Ht gt(Ht) where H; = Zt H, 0 ’L+1) + nHt(Ot) + AI. Computing the full ’Ht
directly incurs a time complexity of O(d?), wh1ch is prohibitive for LLMs as d is typically large.

This cost can be reduced to O(d?) by applying the Sherman-Morrison-Woodbury formula, leveraging

the fact that the Hessian is a rank-one update. Specifically, for a matrix of the form A + XXT where A
TxxTA™
1+xTA 1x ’
only O(d?) time. Nevertheless, even this reduced complexity remains costly for large models.

is invertible and x is a vector, the inverse is given by (A +xx")"! = A~ — requiring

To further reduce the computational burden to O(d), we employ the Hessian-vector product tech-
nique combined with con]ugate gradient descent [Boyd and Vandenberghe, 2004]. Instead of ex-

plicitly computing Ht we define v; = Ht gt(9t) and solve the linear system H,v; = gt(ﬁt)
using the conjugate gradient method. The required matrix—vector product decomposes as Hovy =
Zt LH, ( z+1)vt + vy + nHt(Ht)vt For the first term, materializing and storing all past Hes-

sians H; (91+1) is infeasible. We therefore absorb their effect into the second term by replac-
ing A with Ay = A¢ - min{1, f(¢/T)}, where f(-) is a monotonic increasing function, such as
a linear or logarithmic function. The last term can be computed via the Pearlmutter trick as
H(0)vy = Vy (Vgét(G)Tvt) ’ 9—3," Each iteration therefore requires only HVPs and vector op-

erations, yielding an overall O(d) per-iteration cost with a small fixed number of iterations.

6.2 Computation of model uncertainty

In both online RLHF with active data collection and deployment-time adaptation, our algorithm
utilizes uncertainty-driven query selection strategies. While quantifying uncertainty using the local
norm induced by the inverse Hessian matrix offers strong theoretical guarantees, it is computationally
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Figure 2: For online RLHF with passive data collection, we report the comparison of MLE and our
method about (a) training loss, (b) training accuracy, (c) evaluation loss and (d) evaluation accuracy.
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Figure 3: For online RLHF with active data collection, we report the comparison of different methods
about (a) training loss, (b) evaluation accuracy and (c) final evaluation accuracy and training time.

prohibitive in practice. To address this challenge, we adopt a rejection sampling-based approximation,
a technique commonly employed for exploration in the RLHF literature [Nakano et al., 2021, Gulcehre
etal., 2023, Dong et al., 2023, 2024]. Specifically, given a prompt, we sample n independent responses
by the current model, then use the trained reward function to rank the responses. Then, we use
different strategies to select the response for different settings. Specifically, In active data collection,
the key insight is to identify and query samples that exhibit the greatest diversity in prompt action
features. To this end, we select the response with the highest predicted reward and the one with the
lowest predicted reward. In deployment-time adaptation, the core idea is to select the first arm to
maximize the estimated reward, while the second is chosen to balance high reward with sufficient
divergence from the first. Concretely, we select the response with the highest predicted reward and
another from the top-1/q¢ percentile of the reward to ensure diversity, where ¢ is a hyperparameter.

7 Experiments

In this section, we empirically evaluate the performance of our proposed method. ! We first describe
the experimental setup, and then present the empirical results.

7.1 Experiment setup

In our experiments, we employ the Llama-3-8B-Instruct and Qwen2.5-7B-Instruct as the
base model for reward model. We extract features ¢(x, a) using the last layer of the model, and the
dimension is d = 4096. We use two datasets for evaluation. The first one is Ultrafeedback-binarized
dataset, a pre-processed version of the original Ultrafeedback dataset [Cui et al., 2024], a widely used
benchmark for RLHF. It collects about 64, 000 prompts from diverse resources, including question
answering, summarization, and dialogue generation. Each data consists of a context x, two responses
a and a’, and a preference label y. We also employ a mixed dataset, Mixture2 dataset [Dong et al.,
2024], which combines a variety of preference datasets, including HH-RLHF, SHP, UltraFeedback,
Capybara, etc. The dataset follows the same format as the UltraFeedback-binarized dataset.

7.2 Experimental results

We present the experimental results for L1ama-3-8B-Instruct on the Ultrafeedback dataset. Due
to page limits, more detailed results including comparisons with Adam, DPO, full model updates,
additional models of Qwen2.5-7B-Instruct, and Mixture2 dataset are deferred to appendix.

'The code is available at https://github.com/ZinYY/Online RLHF
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Figure 4: For online RLHF with deployment-time adaptation, we report (a) cumulative rewards of
MLE-based methods, (b) cumulative rewards of OMD-based methods, and (c) win rates.

Passive data collection. We evaluate the performance of our proposed method in terms of the
loss and accuracy of the reward model. We compare our OMD-based method with the MLE-based
method. We randomly sample 7' = 30, 000 data points from the Ultrafeedback dataset for training.
Figure 2 shows the loss and accuracy vs. the number of training samples. We observe that our method
converges faster to a lower loss and achieves a higher evaluation accuracy compared to baselines.
The improvement is particularly pronounced in the small-sample regime (7' < 10, 000), where our
method achieves a higher evaluation accuracy with the same amount of samples compared to MLE
which employs conventional stochastic gradient descent (SGD) updates. This shows the superior
statistical efficiency of our approach, achieving a better performance with fewer training samples.

Active data collection. In this setting, we only allow the algorithm to select 6,400 samples out
of the whole training datasets for training according to different selection strategies. To evaluate
the effectiveness of the data selection strategy, we compare our method with the random selection
strategy. We evaluate the performance of the MLE-based method and our proposed OMD-based
method. Figure 3 demonstrates that our OMD-based method achieves comparable performance with
the MLE-based method for both data collection strategies, while improving the training time by
approximately three times. Moreover, our data selection strategy outperforms the random selection
strategy, showing that our method can effectively select informative data to improve the performance.

Deployment-time adaptation. We divide the dataset into 20 chunks and process them sequentially
to simulate the deployment scenario. We compare our action selection strategy with (i): random
selection, (ii): select the best and second best actions, and (iii): select the best and worst actions. We
combine the above strategies with MLE-based and OMD-based methods. We report both the average
cumulative rewards and win rates of each method, where the win rate is defined as the proportion of
pairwise comparisons in which a method outperforms all others. As shown in Figure 4, our action
selection strategy outperforms the baselines for both MLE-based and OMD-based methods. This
validates the effectiveness of our selection strategy that balances the exploitation of high-reward
responses with sufficient exploration to facilitate model improvement. Besides, the win rates show
that our OMD-based method achieves competitive performance with the MLE-based method.

8 Conclusion

In this work, we address a key challenge in online RLHF, where the computational complexity
typically grows linearly with the number of iterations. To overcome this limitation, we propose a
novel one-pass algorithm that eliminates the need to store historical data and achieves constant-time
complexity per iteration. Our approach is built upon the online mirror descent framework with a
carefully designed local norm. We apply our method to three online RLHF settings and design tailored
algorithms for each scenario. We provide both theoretical guarantees and efficient implementations,
demonstrating that our approach improves statistical and computational efficiency over existing
methods. Finally, we validate the effectiveness of our method through extensive experiments.

While our work advances both the statistical and computational understanding of online RLHF,
several important directions remain for future exploration. First, we assume a fixed feature mapping
for the reward model; however, in practice, this mapping may evolve throughout the training process.
Analyzing the impact of such dynamically changing feature representations presents a compelling
direction for future research. Second, although our analysis is based on the Bradley-Terry model,
extending the framework to other preference models, such as the Plackett-Luce model [Luce, 1959,
Plackett, 1975], is another promising avenue that may broaden the applicability of our results.
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the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
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* The authors should provide instructions on data access and preparation, including how
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 The authors should provide scripts to reproduce all experimental results for the new
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide the experimental details in the appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Our results are averaged over five runs and we report the standard deviation.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the compute resources in the experiment details.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We follow the NeurIPS Code of Ethics.
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the potential positive and negative societal impacts in appendix.
Guidelines:
» The answer NA means that there is no societal impact of the work performed.
* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations

(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not release any data or models that have a high risk for misuse.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite the original paper that produced the code package and dataset.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release any new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not involve research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We do not use LLMs as an important, original, or non-standard component of
the core methods in this research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Useful Lemmas

Lemma 2. For anyt € [T, define the second-order approximation of the loss function £(0) at the
estimator 0; as

~ ~ ~ ~ 1 ~
0(6) = 04(80) + (VL(8.),6 = 00) + 10— Bill%, 5. -

Then, for the following update rule

- (-~ 1 ~

;41 = arg min {&(9) + 2*”0 — 0t|3ﬁ} ,
0cO n

it holds that

1641 — 0713,

t t t t
<2 (Z 6 (0%) — Zfi(eiﬂ)) +4AB® +12V2BL*n Y 101 — 6:[13 — > [10i1 — i3,
=1

i=1 i=1 i=1
Proof. Based on the analysis of (implicit) OMD update (see Lemma 5), for any 7 € [T, we have

3 — 16— 07|

~ ~ ~ 1 ~ ~ ~
(VEi2), 01 = 0°) < 5 (18— 0" b= 10s = B3, )

According to Lemma 6, we have

- 1.~
Ci(0i41) — £; (0%) < (VUi (0ig1), 041 — 0%) — E||9i+1 — 6|

2
V24 (0it1)’

where ¢ = log2 + 2(LB + 1). Then, by combining the above two inequalities, we have
0(0r1) = £i(07) < (VEi(Bis1) = VEi(0i41), 0111 = 07)

Lrs * 2 Y *|12 Y 012
+ (1 =0 1B~ WBes =0 By, — i = Bl

We can further bound the first term of the right-hand side as:

(VUi(0r41) — VE(0i41), 041 — 0°) = (Vi(Bi1) — VLE(0:) — V20i(0:) (Oi1 — 0;), 051 — 07)
= (D*;(&i41)0i1 — 0:)(Oi1 — 0:), 0151 — 07)
<3V2L|0i1 = 07|, 10ia
< 6vV2BL||0;11 —
< 6vV2BL3||0;41 — ;2.

~ 112
- 91 ||V2ei (€1+1)

~ 112
0i Hvzz,- (&ix1)

where the second equality holds by the mean value theorem, the first inequality holds by the self-

concordant-like property of ¢;(-) in Lemma 3, and the last inequality holds by ;.1 and 6* belong to
6= {9 S Rd, ||0||2 < B}, and VQ&;(&;H) = Lzld.

Then, by taking the summation over ¢ and rearranging the terms, we obtain
~ 2
*
16e41 = 0715,

t

t t
<Y (607 = 6lBi) ) + 1100 = "3, +6V2ZBLCY B = Bill; = D [[0is = B3,
=1

=1 i=1

t t t
< CZ (& (07) — ei(ai—&-l)) +4\B? + 6\/§BL3CZ 1051 — @||§ - Z 1051 — ngiba
i=1

=1 =1

where the last inequality is by ||, — 0* 15, < M|61 — 6%]|2 < 4AB2. Set ¢ = 27 ends the proof. W
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B Proof of Lemma 1

Proof. Based on Lemma 2, we have

10101 — 6%]13,,.,

t t ¢ ¢
<2 (Z i (07) — Z&(@Hl)) +4AB? +12vV2BL%n Y [[0i41 — 013 — > _[10i1 — 6ill3, -
i=1 i=1 i=1 i=1
It remains to bound the right-hand side of the above inequality in the following. The most challenging
part is to bound the term Zle £;(6%) — 22:1 £;(0;41). This term might seem straightforward to
control, as it can be observed that 0* = arg mingcga £(0) = E,, [¢;()], where ¢;(6) serves as an

empirical observation of /(). Consequently, the loss gap term seemingly can be bounded using
appropriate concentration results. However, a caveat lies in the fact that the update of the estimator

;11 depends on ¢;, or more precisely y;, making it difficult to directly apply such concentrations.

To address this issue, following the analysis in Zhang and Sugiyama [2023], we decompose the loss
gap into two components by introducing an intermediate term. Specifically, we define the softmax
function as

exp(q) !
il = g ¢ @b =0

where [-]; denotes the i-th element of the vector. Then, the loss function ¢;(6) can be rewritten as
Uas,ye) = —Ly,=1y -1og ([0(g:)]1) = Ly, =0y - log ([o(gs)]o) -
Then, we define the pseudo-inverse function of o~ (p) with

[0™ (p)]1 =log(a/(1 = q)) and [0~ (p)]o = log((1 — p)/p).
Then, we decompose the regret into two terms by introducing an intermediate term.

)

t t t t t

Z@ (0%) — Zéi(@ﬁrl) = Z@ (0%) — Zfi(% yi) + Z@(%’,yi) - Z@(@H)

=1 i=1 i=1 i=1 i=1

term (a) term (b)

where ¢; is an aggregating forecaster for logistic loss defined by ¢; = 0~ (Egp,[0(0T 2;)]) and

P; = N(0;,(1 + ¢H; ")) is the Gaussian distribution with mean 6; and covariance (1 + ¢H; '),
where ¢ > 0 is a constant to be specified later. It remains to bound the terms term (a) and term (b),
which were initially analyzed in Zhang and Sugiyama [2023] and further refined by Lee and Oh
[2024]. Specifically, using Lemmas F.2 and F.3 in Lee and Oh [2024], we can bound them as follows.

For term (a), let 6 € (0,1) and A > 1. With probability at least 1 — ¢, for all ¢ € [T], we have
2142t
term (a) < 11- (3log(l+ 2t) +2+ LB)log <5+> +2.

For term (b), let A > max{2, 72¢d}. Then, for all ¢ € [T], we have
t
1 2 2tB?
tern (b) < 5= )| 6edlog ( 1
erm()_QCi:1 Hi—f—\fc Og( + )

dA
Combing the above two bounds, we have

01— 0,

Oiv1 — 0 i1 —0i|| +C.

- ¢ 2
[ =65, < 12\@BL377; ’ N

2 n ¢
HE-)X

where C' = 22(3log(1 +2t) +2 + LB) log (257 ) + 4 + 20/Gedlog (1+ 2E ) + 41B>
Setting ¢ = 71/6 and \ > 84y/2BL37, we have

t
12\/§BL3’I7 Z ‘ 9i+1 — 01 97;+1 — 97,
i=1

2
Hi

2 n t
G-

23



~ (12
0; 01 — 0
1+ ) 9

( A\ o ([~
< (12v2BL3y - Z
_< V2BLn 7)2;

<0.

Note that 84v/2 (BL? 4+ dL?) n > max {2L?, 72cdL?, 84v/2BL3n}, so we set A > 84v/2 (BL3+
dL?)n. As we have n = (1/2)log 2 + (BL + 1), we have

10es1 = 07|, < O(Vdlog(t/5)).

This finishes the proof. ]

C Proof of Theorem 1

Proof. Define J(7) = Ey,[r (x, 7(x))], we have

SubOpt (rr) = (J (1) = J (x)) + (T (x*) = T (wr)) + (7 () = J (77) ) .
Since 7 is the optimal policy under expected value J (m), i.e., J (7r) = maxyen J(7), we have
J(x%) = J (nr) <0 ®)

For the third term, we have with probability at least 1 — 4, it holds that

J (zr) = J (wr) = min By (07 6(s,77(5))] = Eanyp [0* T 0(s,71(s))] <0, (€

T
where the last inequality holds by 8* € Cr with probability at least 1 — §.
For the first term, we have with probability at least 1 — 4, it holds that
J(7*) = J (x*)
=FEsnp [(9*) #(s,7*(s))] — min E,, [9T¢(s,7r )]

0eCr
= sup E;p |:(9*_§T+§T_9 :|
6eCr
N\T
=E,, [(0* — 0T) gb(:c,ﬂ*(:c))] sup Eq) {(HT — 0 o(x w*(x))]
oeCr
< (107 = Brlls + sup 10 = Brlsee ) - [BamplGe, 7 )] 2

where the first inequality holds by the Cauchy-Schwarz inequality.

Since it holds 6* € Cp with probability at least 1 — & by Lemma 1, we have ||6* — 07|/, < Bz and
supgec, 10 — 073, < Br. Thus, we obtain

J (@) =T (1) < 281 - [[Eonpld (@, 7" @)] -1 (10)

Combining Eq. (8), Eq. (9), and Eq. (10) and substituting 37 = O(v/d(log(T/§))?), we have with
probability at least 1 — 4, it holds that

SubOpt () < 207 * |[Bawsp [0, 7" ()] 5,

<0 (@ CHE HEmpww,w*(@ﬂHHTl) |

This completes the proof. |
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D Proof of Theorem 2

Proof. Let the sub-optimality gap for a context z € X be denoted as SubOpt(x). Thus, for any
0 € (0, 1), with probability at least 1 — 4, we have

SubOpt(z) = (¢ (z, 7" (x)) — ¢ (x,ﬂT(x)))T 0*

'ﬂ \

)

< (¢ (&, 7" () = & (2,70 (x))) " 0" + (¢ (2, 71 (2)) — 6 (2, 7" (

~ (6 (@,7" (@) — 6 e, mr(a)) " (9* -7 Z@)

T
= 7 L @ @) ) (7 -0)
T
< ;; ||¢($,77*(x)) — ¢(l‘,7TT(;U))||Ht_1 0" — 0, Ny
'B’ T
< S 6 e w @) — 6 (@)l

t=1

where the first inequality is due to the fact that (¢ (z, 77 (z)) — ¢ (z, 7% (z))) (% ZZ;I gt) >0
by the design of (), the second is due to the Cauchy-Schwarz inequality, and the last inequality is
due to ||0* — 0¢]|3, < Br with probability at least 1 — § by Lemma 1.

By our algorithm’s choice (74, a;, a;) = argmax,c v , oea l|@(7,a) — ¢ (2, a’)||H;1, we have

T T T
Z 16 (2,7 (2)) = & (2, e (@) gy < DN (20, a0) = & (e, g = D Nzellyer
t=1 t=1 t=1

Furthermore, by the definition of H;, we have

Thus, we have

ATL?
Z||thH_1 < fZHZtHV_l <Vr TZHthV < \/mmog <1+ 3 d)

where the first inequality holds by the fact that H; > %Vt, the second inequality holds by the
Cauchy-Schwarz inequality, and the last inequality holds by the elliptic potential lemma in Lemma 4.
Thus, we have for any context x € X,

Br ATL?
SubOpt(z) < \/2de1 g( + od )

By the definition of SubOpt(7r), we have with probability at least 1 — 4,

ET T ~ K
SubOpt (77) = E;, [SubOpt(z)] < T 2kdTlog [ 1+ ed <O|d 7 )
This finishes the proof.
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E Proof of Theorem 3

Proof. We first analyze the instantaneous regret at round ¢. For any 6 € (0, 1), with probability at
least 1 — 4, it holds that

(r(e, ™ (20)) — (e, ap)) + (r(we, 7 (24)) — (2, a}))
)"0 + (S, 7 (20)) — Slar,a})) 6

) 0" + (Baear) — dlar,a}))  0°
)T (0" — ) +2(¢<xt, *(xt»—wt,at)f@

+ (@, ar) - <xt,at>)T<e* 00) + (d(ws,a0) — b, a})) b,
< 2[é(r 7 (1)) — dlzes ar)l |y |6 — Bill, + (6 <wt, “(a)) — dlar,ar) O,

+ nqs(xt,at) ~ o1, a}) ||H;1||9* = Oy, + (e, ar) — o1, i) "6,
< 2B, @(we. 7" (20)) — St ) [y 1 + (B(ar 7 (22) — dlarnal) B

+ Bi| (e, ar) — ¢($t7a2)’|7{;1
< 2B, ||p (¢, ap) — ¢($t’at)||7¢;1 + (P, ap) — dlae, 7 (22))) Oy

+ (@7 (20) = Bloe, ) O+ Bill 6w, a0) — (e, a5,
=36, || ¢ (4, ar) — ¢($t’a;)HHt’l’

_|

where the first inequality holds by the Holder’s inequality and the arm selection strategy of a; such
that ¢(xs, 7*(2¢)) "0; < é(x4,a4)" 0y, the second inequality holds by #; € C; with probability
at least 1 — 6 by Lemma 1, the third inequality holds by arm selection strategy of a} such that
a, = argmax e 4 ¢(x4,a) " 0 + 26| ¢(x4, a) — ¢(x, at)HH;L Thus, we have

T

5 2 (o @) = rlana)) + (vl (a1)) = r(or.) )

t=1

Regr =

By the definition of H;, we have

t—1

t—1
He = Ma+ Z ; (z 05+1) Zezg = Mg+ = Zzs == (n)\ld + Zzsz;r> = %Vt.
s=1 s=1

Thus, we have

AT L2
antuy-l <f2||zt||v-1 < vk TZHztIIV < \/MTlog (1+ ] d)

where the first inequality holds by the fact that H, > %Vt, the second inequality holds by the
Cauchy-Schwarz inequality, and the last inequality holds by the elliptic potential lemma in Lemma 4.

Therefore, we have

- ARTI2\  ~
Reg, < gﬁT\/QﬁdTlog (1 + K)\d ) < O(dVkT).

where the This completes the proof. |
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F Supporting Lemmas

Definition 3 (Tran-Dinh et al. [2015]). A convex function f € C? (R™) is M-self-concordant-like
function if

[ ()] < M[bll2%" (s),
fors € Rand M > 0, where ¢(s) := f(a+ sb) forany a,b € R™.

Lemma 3 (Lee and Oh [2024, Proposition C.1]). The loss £,(0) defined in Eq. (1) is 3v2L-self-
concordant-like for ¥/t € [T).

Lemma 4 (Abbasi-Yadkori et al. [2011, Lemma 11]). Suppose z1,...,z; € R and for any
1<s<t ||zslla < L. Let Vi, = My + Zz;ll xsx;rfor)\ > 0. Then, we have

t 2
2 tL
> lzslly - < 2dlog (1 + M) .

s=1

Lemma 5 (Campolongo and Orabona [2020, Proposition 4.1]). Define w1 as the solution of
Wiy = arg min {nét(w) + Dw (Wa Wt) }7
wey
where V C W C R is a non-empty convex set. Further supposing 1(w) is I -strongly convex w.r.t.
a certain norm || - || in W, then there exists a g} € 0¢; (Wyy1) such that

(Mgt W1 —u) < (VY (wy) = Vb (Wig1) , Wig1 — 1)

foranyu € W.

Lemma 6 (Zhang and Sugiyama [2023, Lemma 1]). Let {(z,y) = Z,f:o 1{y =k} - log (m)

where o(z)), = % ac[-C,C)% ye {0} U[K]andb € RE where C > 0. Then, we have
j=0

1

Ua.y) 2 Ub.y) + VU(b.y) (2 —b) + s

(a—b) 'V%(b,y)(a—b).

G Details of Experiments
In this section, we provide the omitted details of the experiment details and additional results.

G.1 Implementation Details

Datasets. We use the UltraFeedback-binarized dataset [Rafailov et al., 2023] for the experiments.
This dataset is derived from the original UltraFeedback dataset, which comprises 64, 000 prompts
sourced from diverse datasets including UltraChat, ShareGPT, Evol-Instruct, Truthful QA, FalseQA,
and FLAN. For each prompt, four model completions were generated using various open-source
and proprietary language models, with GPT-4 providing comprehensive evaluations across multiple
criteria including helpfulness, honesty, and truthfulness. The binarized version was constructed
by selecting the completion with the highest overall score as the "chosen" response and randomly
selecting one of the remaining completions as the "rejected" response, creating clear preference
pairs suitable for reward modeling and direct preference optimization. This dataset structure aligns
well with our experimental setup, providing a robust foundation for evaluating different preference
learning approaches. The dataset’s diverse prompt sources and evaluation criteria make it particularly
valuable for training and evaluating reward models in a real-world context. To further tailor the
dataset to our experimental setup, we organize the dataset as follows:

* Passive data collection: We randomly choose 30, 000 samples from the UltraFeedback-binarized
dataset’s train_prefs split for training. Each sample consists of a prompt and two responses
with a label indicating the preferred response. We use the test_prefs split for evaluation.

* Active data collection: We allow the method to actively select 6,400 samples from the
train_prefs split according to different selection strategies. The global batch size is set to
8 for training. The selection is performed iteratively, where in each iteration, the method selects the
most informative samples based on its selection criterion.
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Algorithm 5 Efficient Update using Hessian-Vector Product with Conjugate Gradient

Input: Current parameter 6;, gradient gt(évt), learning rate n, max CG steps K, parameter \g, €
1: Initialize vo = 0, 79 = gt(gt), Po =Tro

2: Compute damping \; = Ao - min{1, f(¢/T)}

3: fork=0,1,...,K —1do

4:  Compute HVP: H;p = Ve(Vgﬁ(H)Tpk)b:gt + APk

T ~
T TR
50k = =, Vkg1 = Uk + QkPks Tkt = Tk — 0k HiDk,
Py TLtPk
o Thk+1
6 frtr = k:,fm s Pkl = Tkt + Br+1Pk
7 if ||rgs1|| < e then
8: break
9: endif
10: end for

11: Update parameter: §t+1 = §t — UK
Output: Updated parameter 6,1

* Deployment-time adaption: We use a pre-processed online variant of the UltraFeedback-binarized
dataset from the test_gen split. The dataset is divided into 20 sequential chunks to simulate
an online deployment scenario. For each chunk, we generate responses using the current pol-
icy (the foundation model of policy model is chosen to be meta-1lama / Llama-3.2-1B),
evaluate them using both the learned reward model and an oracle reward model. We choose
NCSOFT/Llama-3-0ffsetBias-RM-8B [Park et al., 2024] as the oracle reward model. After each
chunk, we use the policy model to randomly generate 64 responses using different seeds. We then
apply various strategies (Random, Best-Two, etc.) to select responses and construct new preference
pairs, which are then used to update the reward model and the policy model.

Update details. As described in Section 6.1, we can implement the OMD update using the HVP with
conjugate gradient descent. The full algorithm is summarized in Algorithm 5. In our experiments, we
set K = 3 and \g = 0.8 and choose the linear function f(t/T") = t/T as the damping function.

G.2 Validating the Magnitude of x

We validate the magnitude of x by computing its value during the training process. The results show
that k = 171.62 =+ 85.49 during our training process, which is relatively large.

G.3 Combined with Adam Optimizer

In previous experiments, we used SGD to update model parameters. In this section, we integrate the
methods with the Adam optimizer [Kingma and Ba, 2015], i.e., adding the first and second momentum
terms to the model updates. The results, shown in Figure 5, indicate that the Adam optimizer further
enhances the performance of our method by leveraging the momentum term to accelerate convergence.
With the momentum term, our method remains superior to the MLE-based method; however, the
performance gap is reduced. This may be because the Adam optimizer incorporates second-order
information for optimization, diminishing the advantage of our method compared to the SGD cases.

G.4 Comparison with DPO

We also compare with DPO [Rafailov et al., 2023] in the deployment stage. As a reward-free method,
DPO optimizes the policy directly using preference feedback without explicit reward modeling. To
ensure a fair comparison, we initialize the policy with 400 samples and use the same dataset settings
as PPO to iteratively update the policy model using the DPO algorithm. The results are illustrated in
Figure 6. While DPO outperforms the random baseline (Rand-MLE), it achieves lower cumulative
rewards than the methods using our action selection. This result suggests that DPO’s online learning
capability remains a challenge. In contrast, the reward model learned by our selection strategy
effectively learned streaming data and continuously updates the policy as new data arrive, indicating
that a reward model with PPO may be a more suitable choice for sequentially learning from new data.
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Figure 5: For online RLHF with passive data collection, we compare our proposed method and
MLE [Zhu et al., 2023] in with passive data collection combined with Adam. We report the average
accuracy and loss of the reward model during the training process.
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G.5 Full Update of Reward Model

Figure 7 shows deployment-time adaptation results using the Llama-3.2-1B model, where we update
all parameters of the reward model instead of only the final layer. Both our method and MLE use the
same action selection strategy. Our approach achieves comparable performance with MLE, indicating
that our OMD-based update method is still compatible with full-model updates.

G.6 More Foundation Models and Datasets

In this section, we provide more experimental results about other foundation models and datasets.

Figure 8 shows the training and evaluation curves for reward model learning under passive data
collection using the Qwen2.5-7B-Instruct model. We compare our method with MLE and report
the loss and accuracy over training. Our method consistently shows stable training dynamics and
competitive evaluation performance compared to MLE, suggesting its effectiveness in offline settings.

Figure 9 present results for online RLHF with active data collection using the same Qwen model.
Figure 9(a) shows training loss curves, while Figure 9(b) reports evaluation accuracy over training
iterations. Table 9(c) further compares various methods (Rand-MLE, Active-MLE, Rand-OMD, and
our approach) in terms of final accuracy and training time. While Active-MLE achieves slightly higher
accuracy, our method provides significant speedup in training time with comparable performance,
highlighting the efficiency of our approach.

Figure 10 illustrates the deployment-time performance of various methods on the Ultrafeedback
dataset. We split the dataset into 20 chunks and measure cumulative rewards across these chunks.
Our method demonstrates robust adaptation capabilities, achieving competitive reward accumulation.

Finally, Figure 11 shows results on the Llama-3-8B-Instruct model trained on the Mixture2
dataset in a passive data collection setup. Similar to earlier observations, our method achieves
competitive or superior performance compared to MLE, both in terms of training and evaluation
loss/accuracy, demonstrating its generality across different model and dataset combinations.
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Figure 8: For Qwen2.5-7B-Instruct model with passive data collection, we compare our method
with MLE. We report average accuracy and loss curve of the reward model.
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Figure 11: For online RLHF with passive data collection on the Llama-3-8B-Instruct model on
the Mixture2 dataset, we compare our method with MLE. We report average accuracy and loss curve
of the reward model.

H Broader Impact

Our work advances the efficiency of RLHF, a central technique in aligning large language models
with human values and preferences. By proposing a new one-pass reward modeling method that
eliminates the need to store historical data and re-train from scratch, we reduce the computational
and environmental costs commonly associated with online RLHF pipelines. This could enable the
development and deployment of aligned language models by institutions with limited resources.

However, the broader deployment of RLHF, particularly in an online and adaptive setting, raises
important ethical and societal considerations. On the positive side, it can enable more responsive and
value-aligned Al systems, with potential applications in education, healthcare, and accessibility. Yet,
the ability to iteratively adapt to user feedback in deployment may also increase the risk of reinforcing
harmful biases or being gamed by adversarial users, especially in high-stakes or open-ended domains.
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