
A Simple Hash-Based Early Exiting Approach For
Language Understanding and Generation

Anonymous ACL submission

Abstract

Early exiting allows instances to exit at differ-001
ent layers according to the estimation of diffi-002
culty. Previous works usually adopt heuristic003
metrics such as the entropy of internal outputs004
to measure instance difficulty, which suffers005
from generalization and threshold-tuning. In006
contrast, learning to exit, or learning to pre-007
dict instance difficulty is a more appealing way.008
Though some effort has been devoted to em-009
ploying such "learn-to-exit" modules, it is still010
unknown whether and how well the instance011
difficulty can be learned. As a response, we012
first conduct experiments on the learnability013
of instance difficulty, which demonstrates that014
modern neural models perform poorly on pre-015
dicting instance difficulty. Based on this obser-016
vation, we propose a simple-yet-effective Hash-017
based Early Exiting approach (HASHEE) that018
replaces the learn-to-exit modules with hash019
functions to assign each token to a fixed ex-020
iting layer. Different from previous methods,021
HASHEE requires no internal classifiers nor022
extra parameters, and therefore is more effi-023
cient. Experimental results on classification,024
regression, and generation tasks demonstrate025
that HASHEE can achieve higher performance026
with fewer FLOPs and inference time com-027
pared with previous state-of-the-art early ex-028
iting methods.029

1 Introduction030

Early exiting is a widely used technique to accel-031

erate inference of deep neural networks. With the032

rising of pre-trained language models (PLMs) (De-033

vlin et al., 2019; Yang et al., 2019; Lan et al., 2020;034

Raffel et al., 2020; Qiu et al., 2020), early exiting035

is drawing increasing attention in the NLP com-036

munity. At its core, early exiting allows simple in-037

stances to exit early while allowing hard instances038

to exit late. Thus, how to measure instance diffi-039

culty is a crucial problem.040

Most existing early exiting methods attach mul-041

tiple internal classifiers to the PLM and adopt042

some heuristic metrics, such as entropy (Xin et al., 043

2020; Liu et al., 2020a) or maximum softmax 044

score (Schwartz et al., 2020) of internal outputs, to 045

measure instance difficulty. However, these meth- 046

ods can not easily generalize to new tasks. On the 047

one hand, these metrics are not accessible on some 048

tasks such as regression. On the other hand, In 049

order for these methods to perform well, one usu- 050

ally needs to fine-tune the threshold, which varies 051

widely across different tasks and datasets. 052

Another way to measure instance difficulty is 053

to directly learn it. Recent studies (Elbayad et al., 054

2020; Xin et al., 2021) that use the idea of "learn-to- 055

exit" have achieved promising results. They jointly 056

train a neural model to predict for each instance the 057

exiting layer. At their core, the learn-to-exit module 058

is to estimate the difficulty for each instance. Com- 059

pared with previous heuristically designed metrics 060

for difficulty, learn-to-exit is task-agnostic and does 061

not require threshold-tuning, therefore is a more 062

promising way. 063

Despite their success, it is still unknown whether 064

or how well the instance difficulty can be learned. 065

As a response, in this work, we construct datasets 066

for two kinds of instance difficulty: (a) Human- 067

defined difficulty, and (b) Model-defined difficulty. 068

The dataset for human-defined difficulty has two 069

labels, 0 for instances that can be annotated by 070

human and 1 for instances that cannot. For model- 071

defined difficulty, we train a multi-exit BERT (De- 072

vlin et al., 2019), which is attached with an in- 073

ternal classifier at each layer, on a sentence-level 074

classification task, SNLI (Bowman et al., 2015), 075

and a token-level classification task, OntoNotes 076

NER (Hovy et al., 2006). The trained multi-exit 077

BERTs are then used to annotate for each develop- 078

ment instance whether it can be correctly predicted 079

by each internal classifier. Thus, our constructed 080

sentence-level and token-level model-defined diffi- 081

culty datasets are multi-label classification datasets. 082

Experimental results demonstrate that, modern neu- 083

1

ral networks perform poorly on predicting instance084

difficulty. This observation is consistent with pre-085

vious work (Laverghetta et al., 2020) on estimating086

instance difficulty for curriculum learning.087

Given that instance difficulty is hard to be pre-088

dicted, then what works in the learn-to-exit mod-089

ules? We hypothesis that the consistency between090

training and inference may play an important role.091

That is, for a training instance xi that is predicted092

to exit at layer l, an inference instance xj that is093

similar with xi should be predicted to exit at layer l,094

too. Since neural networks are usually smooth func-095

tions (Ziegel, 2003), this consistency can be easily096

satisfied by neural learn-to-exit modules. If this097

hypothesis holds, we can replace the learn-to-exit098

module with a simple hash function. In particular,099

we use hash functions to assign each token to a100

fixed exiting layer. This hash-based early exiting101

method is named HASHEE.102

Compared with previous methods that use103

heuristic metrics for difficulty or jointly learn104

to exit, HASHEE offers several advantages: (a)105

HASHEE requires no internal classifiers nor extra106

parameters, which are necessary in previous work.107

(b) HASHEE can perform token-level early exiting108

without supervision, therefore can be widely used109

on various tasks including language understand-110

ing and generation. (c) The speed-up ratio can be111

easily tuned by modifying the hash function. (d)112

HASHEE can significantly accelerate model infer-113

ence on a per-batch basis instead of per-instance114

basis as in previous work (Xin et al., 2020; Liu115

et al., 2020a; Zhou et al., 2020).116

We conduct experiments on classification, re-117

gression, and generation tasks. Experimental re-118

sults on ELUE (Liu et al., 2021a) demonstrate that119

HASHEE, despite its simplicity, can achieve higher120

performance with fewer FLOPs and inference time121

than previous state-of-the-art methods on various122

tasks. Besides, our experiments on several text123

summarization datasets show that HASHEE can124

reduce ∼50% FLOPs of BART (Lewis et al., 2020)125

and CPT (Shao et al., 2021) while maintaining 97%126

ROUGE-1 score.127

2 Can Instance Difficulty Be Learned?128

In this section, we examine whether or to what ex-129

tent instance difficulty can be learned. In particular,130

we manage to evaluate how well a neural network131

that trained on some data with difficulty annotation132

can generalize to unseen data. Here we consider133

Figure 1: Training a BERT model to predict human-
defined difficulty.

two kinds of difficulty: human-defined difficulty 134

and model-defined difficulty. 135

2.1 Human-defined Difficulty 136

Dataset Construction Human-defined difficulty 137

of an instance measures how difficult for human to 138

judge its label. To construct such a dataset, we use 139

the SNLI dataset (Bowman et al., 2015), which is a 140

collection of 570k human-written English sentence 141

pairs that are manually labeled with the inference 142

relation between the two sentences: entailment, 143

contradiction, or neutral. The labels in SNLI are 144

determined by the majority of the crowd-sourced 145

annotators. If there is no majority for an instance, 146

its label would be "Unknown". We collect 1,119 un- 147

known instances from SNLI dataset as our difficult 148

instances, and collect 1,119 labeled instances from 149

the instances of three classes (i.e., entailment, con- 150

tradiction, and neutral) in equal proportion as our 151

simple instances, obtaining a balanced binary clas- 152

sification (difficult or simple) dataset with 2,238 153

instances. We randomly sample 1,238 instances 154

with balanced labels as training set and use the 155

remaining 1,000 instances as test set. 156

Learning Human-defined Difficulty We then 157

train a BERT model (Devlin et al., 2019) with a 158

linear classifier on the top on our constructed train- 159

ing set, and evaluate on the test set to see if it can 160

predict whether an unseen instance is simple or 161

difficult. As shown in Figure 1, the BERT model 162

that fits well on the training set can only achieve 163

∼60% accuracy on the test set, demonstrating that 164

neural models (even BERT) can not easily learn to 165

estimate human-defined difficulty. 166

2.2 Model-defined Difficulty 167

However, model can have a different view of in- 168

stance difficulty from human. For example, an 169

instance can be defined as a difficult one if it can 170

not be correctly predicted by a well-trained model. 171

2

Figure 2: The best accuracy achieved by different mod-
els on our constructed datasets for model-defined diffi-
culty. The trained neural networks perform on par with
the simple majority model.

Thus, we also construct datasets to characterize172

model-defined difficulty for each instance, which173

is more realistic in the context of early exiting.174

In particular, we construct two datasets labeled175

with model-defined difficulty at sentence-level and176

token-level, respectively.177

Sentence-level Difficulty Estimating model-178

defined difficulty of a sentence (or sentence pairs) is179

helpful to language understanding tasks such as text180

classification and natural language inference (Xin181

et al., 2021). To obtain the sentence-level difficulty,182

we train a multi-exit BERT that is attached with an183

internal classifier at each layer on SNLI training set.184

Once the multi-exit BERT is trained, it can serve as185

an annotator to label each instance in the SNLI de-186

velopment set whether it can be correctly predicted187

by each internal classifier. In our experiments, we188

use BERTBASE that has 12 layers, and therefore for189

each instance in the SNLI development set we have190

12 labels, each takes values of 0 or 1 to indicate191

whether or not the corresponding internal classifier192

correctly predict its label. By this, we label the193

9,842 SNLI development instances to construct a194

multi-label classification dataset, from which we195

randomly sample 8,000 instances as training set196

and use the remaining 1,842 instances as test set.197

Token-level Difficulty We also construct a198

dataset for estimating model-defined difficulty of199

each token, which can be used in language gen-200

eration tasks (Elbayad et al., 2020) and sequence201

labeling tasks (Li et al., 2021b). Similarly, we202

train a multi-exit BERT on OntoNotes NER (Hovy203

et al., 2006) training set, and use it to annotate204

each token in the OntoNotes development instances205

whether it can be correctly predicted by each inter-206

nal classifier. By this, we obtain a token-level multi-207

label classification datasets consisting of 13,900208

Model Precision Recall F1 Score

Sentence-Level Difficulty

Majority 60.5 36.7 45.7
Linear-M 54.8 42.1 47.6
Linear-B 52.9 45.3 48.8
BiLSTM 54.5 45.2 49.4
BERT 61.1 49.9 54.9

Token-Level Difficulty

Majority* - - -
Linear-B 56.6 38.7 46.0
BiLSTM 46.8 39.9 43.0
BERT 65.6 44.6 53.1

Table 1: Experimental results on our constructed model-
defined difficulty datasets. We report micro-averaged
precision, recall and F1 score over the negative label.
*: The majority model for the token-level task would
always predict positive class for all the labels, and there-
fore the F1 score is not applicable.

instances, from which we randomly sample 10,000 209

instances to construct a training set and use the 210

remaining 3,900 instances as test set. 211

Learning Model-defined Difficulty For each 212

constructed model-defined difficulty dataset, we 213

evaluate several models: (1) Majority model al- 214

ways predicts the majority class for each label, 215

with class priors learned from the training data. 216

(2) Linear-M is a multi-classification linear layer 217

that takes as input the average pooled word embed- 218

dings and outputs the exiting layer. This model 219

corresponds to the multinomial variants of Elbayad 220

et al. (2020). Since the inputs of Linear-M is non- 221

contextualized, we did not apply it to estimate 222

token-level difficulty. (3) Linear-B is a binary clas- 223

sification linear layer that takes as input the hidden 224

states at each BERT layer and outputs whether or 225

not the instance (or token) is correctly predicted. 226

This model corresponds to the geometric variants 227

of Elbayad et al. (2020) and the learn-to-exit mod- 228

ule in BERxiT (Xin et al., 2021). (4) We also train 229

and evaluate a bidirectional LSTM model (Hochre- 230

iter and Schmidhuber, 1997) with one layer and 231

hidden size of 256. It takes as input the instance 232

and outputs the exiting layer. (5) BERT model (De- 233

vlin et al., 2019) is also considered for this task. For 234

these models, except for Linear-B, we use the bi- 235

nary cross entropy loss to handle the multi-label 236

classification. Since most development instances 237

are correctly predicted, our constructed datasets are 238

label-imbalanced. To alleviate this issue, we adopt 239

over-sampling for classes with fewer instances. 240

3

Our experimental results are shown in Figure 2,241

from which we find that: (1) For the task of esti-242

mating sentence-level difficulty, the shallow neural243

models perform as well as simple majority model.244

Only the BERT model can slightly outperform the245

majority model. (2) For token-level difficulty, these246

neural models perform slightly better than the ma-247

jority model. The insignificant improvement over248

the majority model demonstrate that, the perfor-249

mance of the neural models mainly come from the250

learning of prior distribution of label instead of ex-251

tracting difficulty-related features from instances.252

In the case of label imbalance, the accuracy can not253

well measure model performance. Besides, in the254

context of early exiting, we are more interested in255

cases that the model performs a false exit for an256

unsolved instance. Thus, we also report the preci-257

sion, recall, and F1 score on the negative class. As258

shown in Table 1, all the evaluated models perform259

poorly on recognizing the incorrectly predicted in-260

stances and tokens.261

Though, it can not be concluded that the instance262

difficulty can not be learned since there are still a263

variety of machine learning models and training264

techniques that are under explored. Our prelim-265

inary experiments demonstrate that, at least, in-266

stance difficulty, whether human-defined or model-267

defined, is hard to learn for modern neural net-268

works. In fact, our evaluated learn-to-exit models269

are upper baselines than that used in previous work270

because: (1) we also adopt more powerful deep271

models instead of simple linear models in previous272

methods (Elbayad et al., 2020; Xin et al., 2021),273

and (2) Different from our method that trains learn-274

to-exit module on development set, previous meth-275

ods jointly train their learn-to-exit module on the276

training set where few instances are incorrectly pre-277

dicted, leading to more serious label imbalance. To278

facilitate future research, our constructed difficulty279

datasets will be publicly available.280

3 HASHEE: Hash Early Exiting281

3.1 What is Unnecessary and What Works?282

On the one hand, previous methods (Elbayad et al.,283

2020; Xin et al., 2021) that use learn-to-exit mod-284

ules have achieved competitive results, which im-285

plies that something works in the learn-to-exit mod-286

ules. On the other hand, our preliminary experi-287

ments show that instance difficulty is hard to be288

predicted in advance, which indicates that learning289

can be unnecessary to achieve a good performance.290

To find what works, we formally describe the 291

prediction of an early exiting model as P (y|x) = 292∑
d∈D P (y|x, d)P (d|x), where d is the difficulty 293

(e.g., the exiting layer) for x. Note that in practice, 294

P (D|x) is an one-hot distribution, so when d is pre- 295

dicted, the exiting layer, i.e., the model architecture 296

is determined. Therefore, the difficulty d actually 297

corresponds to an architecture.1 Now given that 298

the mapping from instance x to its difficulty d, 299

i.e., the best architecture, is hard to be learned, a 300

natural idea to make P (y|x) performs well is to 301

keep P (d|x) consistent: if a training instance xi 302

is predicted to exit at layer l, then an inference 303

instance xj that is similar with xi should exit at 304

layer l, too. By this, the activated architecture can 305

well-handle the instance xj during inference be- 306

cause it is well-trained on similar instances such as 307

xi. Note that this consistency between training and 308

inference can be easily satisfied by previous learn- 309

to-exit modules due to the smoothness of neural 310

models (Ziegel, 2003). Based on this hypothesis, 311

we manage to remove the learning process and only 312

stick to the consistency. In particular, we replace 313

the neural learn-to-exit module P (d|x) with a sim- 314

ple hash function. 315

3.2 Method 316

Without loss of generality, we first consider se- 317

quence classification tasks. A straightforward idea 318

is to design a hash function to map semantically 319

similar instances into the same bucket, and there- 320

fore the hash function should be some powerful se- 321

quence encoder such as Sentence-BERT (Reimers 322

and Gurevych, 2019), which is cumbersome in 323

computation. In addition, a high-quality sequence 324

encoder as a hash function usually maps instances 325

with the same label into the same bucket (i.e. the 326

same exiting layer), which makes the internal clas- 327

sifier at that layer suffer from label imbalance. Due 328

to the difficulty of holding consistency at sentence- 329

level, we rather propose to hold the consistency at 330

token-level. By assigning each token into a fixed 331

bucket, the token-level consistency between train- 332

ing and inference is easily satisfied. 333

An overview of our method is illustrated in Fig- 334

ure 3. We adopt a simple and efficient hash function 335

to map each token into a fixed bucket in advance, 336

where each bucket corresponds to an exiting layer. 337

1Note that this formulation is similar to some differentiable
Neural Architecture Search (NAS) and Mixture-of-Expert
(MoE) works, which also encountered similar difficulties in
learning architectures (Wang et al., 2021; Roller et al., 2021).

4

This is an awesome movie

Embedding Layer

HASH TABLE

(Token → Layer)

…

this → 1

is → 1

an → 1

awesome → 3

movie → 2

…

Transformer Encoder Layer

Transformer Encoder Layer

Calculated Token Exited Token Attention Copy

Figure 3: Overview of the Hash-based Early Exiting
(HASHEE). Tokens are assigned to fixed exiting layers
using a hash function.

We use pre-trained Transformers (Vaswani et al.,338

2017) as our backbones. During model’s forward339

pass, the representation of exited tokens will not be340

updated through self-attention, and its hidden states341

of the upper layers are directly copied from the hid-342

den states of the exiting layer. By this token-level343

early exiting, the computation in self-attention and344

the following feed-forward network is reduced.345

3.3 Hash Functions346

To hold the token-level consistency between train-347

ing and inference, HASHEE employs hash func-348

tions to compute in advance the exiting layer for349

each token. During training and inference, each350

token exits at a fixed layer according to the pre-351

computed hash lookup table. The hash functions352

can take a variety of forms. Here we consider sev-353

eral hash functions as possible alternatives.354

Random Hash Random hash is a lower base-355

line, wherein we assign each token to a fixed, ran-356

dom exiting layer at initialization. To examine our357

hypothesis, we also consider to use two different358

random hash functions for training and inference359

respectively, in which case the consistency does not360

hold. We denote these two random hash functions361

as Rand-cons and Rand-incons.362

Frequency Hash To achieve higher speed-up, a363

natural way is to assign frequent tokens to lower364

layers to exit. Intuitively, frequent tokens are usu-365

ally well-trained during pre-training and therefore366

do not require too much refinement by looking at367

their contexts. Thus we can design a hash function368

that assigns tokens into exiting layers by frequency.369

In particular, the tokens are sorted by frequency370

and then divided equally into B buckets.371

MI Hash Further, we also consider a task- 372

specific hash function that is based on the mutual 373

information (MI) between each token and the corre- 374

sponding label, which, as an instance of HASHEE, 375

is also adopted in Liu et al. (2021b). Tokens are 376

sorted by their MI values between the task label, 377

and then divided equally into B buckets. Tokens 378

with higher MI values are assigned to lower layers. 379

Clustered Hash It is also intuitive that similar 380

tokens should be assigned to the same layer to 381

exit, and therefore we also experiment with a clus- 382

tered hash function. The clusters are obtained by 383

performing k-means clustering using token embed- 384

dings from BERTBASE embedding layer. The clus- 385

tered tokens are then sorted by norm, which often 386

relates to token frequency (Schakel and Wilson, 387

2015) and difficulty (Liu et al., 2020b). The clus- 388

tered tokens with small average norms are assigned 389

to lower layers. 390

4 Experiments 391

4.1 Tasks and Datasets 392

Since HASHEE requires no supervision, it can 393

be applied to a variety of tasks and architectures. 394

In our work, we conduct experiments on natu- 395

ral language understanding tasks including senti- 396

ment analysis, natural language inference, similar- 397

ity regression, and a language generation task, text 398

summarization. Statistics of our used datasets are 399

shown in Appendix A.1. 400

Understanding Tasks For the convenience of 401

comparison with other efficient models, we eval- 402

uate our proposed HASHEE on the ELUE bench- 403

mark (Liu et al., 2021a), which is comprised of 404

SST-2 (Socher et al., 2013), IMDb (Maas et al., 405

2011), SNLI (Bowman et al., 2015), SciTail (Khot 406

et al., 2018), MRPC (Dolan and Brockett, 2005), 407

and STS-B (Cer et al., 2017)). Note that STS-B is 408

a regression task. 409

Generation Tasks For language generation, we 410

evaluate HASHEE on two English summarization 411

datasets, CNN/DailyMail (Hermann et al., 2015) 412

and Reddit (Kim et al., 2019), and two Chinese 413

summarization datasets: TTNews (Hua et al., 2017) 414

and CSL (Xu et al., 2020b). 415

4.2 Experimental Setup 416

Baselines We compare HASHEE with the follow- 417

ing competitive baseline models: (1) Pre-Trained 418

5

Models SST-2 IMDb SNLI SciTail MRPC STS-B ELUE
(8.5k) (20.0k) (549.4k) (23.6k) (3.7k) (5.7k) Score

Pre-Trained Language Models
BERT-3L 79.3 (4.0×) 88.4 (4.0×) 87.1 (4.0×) 84.3 (4.0×) 76.0 (4.0×) 75.8 (4.0×) -3.70
ALBERT-3L 82.4 (3.6×) 90.7 (3.9×) 87.8 (3.7×) 87.5 (3.9×) 80.0 (3.6×) 79.1 (3.9×) -1.59
RoBERTa-3L 81.8 (4.1×) 90.7 (4.2×) 88.0 (3.8×) 84.9 (3.9×) 75.6 (3.9×) 67.5 (3.9×) -2.17
ElasticBERT-3L 84.1 (4.0×) 91.8 (4.0×) 89.3 (4.0×) 91.9 (4.0×) 83.1 (4.0×) 83.5 (4.0×) 0.00

Static Models
DistilBERT 84.8 (2.0×) 92.0 (2.0×) 89.2 (2.0×) 89.7 (2.0×) 83.8 (2.0×) 81.7 (2.0×) -2.55
TinyBERT 85.3 (2.0×) 89.0 (2.0×) 89.3 (2.0×) 90.0 (2.0×) 84.7 (2.0×) 85.0 (2.0×) -2.20
HeadPrune 84.8 (1.3×) 84.7 (1.5×) 87.8 (1.5×) 88.3 (1.5×) 77.8 (1.5×) 74.8 (1.5×) -6.85
BERT-of-Theseus 84.4 (2.0×) 90.7 (2.0×) 89.4 (2.0×) 92.1 (2.0×) 82.4 (2.0×) 85.0 (2.0×) -2.55

Dynamic Models
DeeBERT 78.9 (3.4×) 79.5 (4.1×) 48.1 (3.6×) 71.9 (3.4×) 79.1 (3.5×) - -
FastBERT 82.7 (3.7×) 92.5 (3.5×) 88.8 (3.5×) 89.0 (3.6×) 80.3 (4.2×) - -
PABEE 83.1 (2.9×) 91.6 (3.4×) 88.7 (3.1×) 90.7 (3.3×) 75.2 (3.5×) 80.1 (3.2×) -1.31
CascadeBERT 82.4 (3.8×) 91.8 (3.7×) 89.0 (3.6×) 91.7 (3.8×) 78.8 (3.8×) - -
BERxiT w/ BERT 71.8 (2.2×) 85.0 (2.8×) 88.4 (3.6×) 80.3 (3.4×) 74.9 (4.0×) 57.8 (4.0×) -6.12
BERxiT w/ ElasticBERT 72.6 (4.4×) 91.2 (4.0×) 84.7 (3.9×) 91.0 (4.0×) 78.6 (4.3×) 81.5 (4.0×) -3.90

Ours
HASHEE 85.5 (4.8×) 92.4 (6.2×) 89.6 (4.4×) 92.3 (5.1×) 84.0 (4.8×) 84.3 (4.6×) 1.20

Table 2: Main results on the ELUE benchmark (Liu et al., 2021a). We report for each model on each task the
performance and the corresponding speed-up ratio, which is calculated as the FLOPs reduction relative to BERTBASE.
For MRPC, we report the mean of accuracy and F1. For STS-B, we report Pearson and Spearman correlation. For
all other tasks we report accuracy. "-" indicates that the method is not applicable on that task.

Language Models. We directly fine-tune the419

first layers of pre-trained language models includ-420

ing BERT (Devlin et al., 2019), ALBERT (Lan421

et al., 2020), RoBERTa (Liu et al., 2019), and422

ElasticBERT (Liu et al., 2021a) with a MLP clas-423

sifier on the top. (2) Static Models. We com-424

pare with several static approaches to acceler-425

ate language model inference, including Distil-426

BERT (Sanh et al., 2019), TinyBERT (Jiao et al.,427

2020), HeadPrune (Michel et al., 2019), and BERT-428

of-Theseus (Xu et al., 2020a). (3) Dynamic mod-429

els. We compare with DeeBERT (Xin et al., 2020),430

FastBERT (Liu et al., 2020a), PABEE (Zhou et al.,431

2020), BERxiT (Xin et al., 2021), and Cascade-432

BERT (Li et al., 2021a).433

Training For most NLU experiments we adopt434

the ElasticBERTBASE model (Liu et al., 2021a)435

as our backbone model, which is a pre-trained436

multi-exit Transformer encoder. For small datasets437

(i.e., SST-2, MRPC, and STS-B) we report the438

mean performance and the standard deviation439

(in Table 3 and 9) over 5 runs with different440

random seeds. For text summarization datasets441

we adopt BARTBASE (Lewis et al., 2020) and442

CPTBASE (Shao et al., 2021) as our backbone mod-443

els and use the frequency hash to assign tokens444

Hash Speed SST-2 SNLI MRPC
Functions -up (8.5k) (549.4k) (3.7k)

Backbone: ElasticBERT-6L

Rand-incons 3.0× 85.5 (±0.53) 89.7 85.0 (±0.22)

Rand-cons 3.0× 85.7 (±0.45) 90.1 86.3 (±0.67)

Frequency 4.9× 85.5 (±0.41) 89.6 84.0 (±0.27)

MI 3.3× 85.5 (±0.49) 90.0 86.0 (±0.23)

Clustered 3.0× 85.7 (±0.50) 90.2 86.3 (±0.47)

Backbone: ElasticBERT-12L

Rand-incons 1.6× 85.7 (±0.38) 89.6 86.6 (±0.45)

Rand-cons 1.5× 86.5 (±0.37) 90.2 87.4 (±0.34)

Frequency 2.8× 85.6 (±0.37) 89.8 84.4 (±0.17)

MI 1.8× 86.6 (±0.17) 90.1 87.2 (±0.66)

Clustered 1.5× 87.0 (±0.54) 90.1 87.3 (±0.48)

Table 3: Comparison of different hash functions. The
speed-up ratios are calculated by FLOPs reduction rel-
ative to BERTBASE and averaged over the three tasks.
The ELUE score is averaged over the three tasks. For
small datasets, i.e., SST-2 and MRPC, we report the
mean and standard deviation over five runs.

to the encoder layers. All of the experiments are 445

conducted on GeForce RTX 3090 GPUs. More 446

experimental details are given in Appendix A.2. 447

4.3 Results and Analysis 448

Results on ELUE We first show our main com- 449

parison results on ELUE test sets in Table 2. Us- 450

6

Model Speed-up English Chinese
Enc. Dec. Total Reddit CNN/DM CSL TTNews

BART 1.0× 1.0× 1.0× 29.71/9.91/23.43 44.16/21.28/40.90 64.49/52.48/61.81 53.84/38.09/49.85
DAT 1.0× 0.5× 0.8× 27.02/8.89/22.68 40.30/17.77/37.53 - -
BART-6L 2.0× 1.4× 1.8× 26.22/6.82/21.05 40.02/16.60/36.82 -
HASHEE w/ BART 3.3× 1.0× 1.8× 28.77/8.52/21.97 41.04/18.41/37.65 - -

CPT 1.0× 1.0× 1.0× - - 65.49/53.82/62.96 53.48/37.59/49.82
CPT-6L 2.0× 1.8× 2.0× - - 52.29/39.35/50.06 50.89/33.75/45.42
HASHEE w/ CPT 2.3× 1.5× 2.3× - - 62.42/49.96/59.15 52.67/35.31/46.97

Table 4: Experimental results on two English and two Chinese summarization datasets. We report ROUGE-1,
ROUGE-2, and ROUGE-L for each dataset. The speedup ratios for English and Chinese models are calculated by
the FLOPs reduction relative to BARTBASE and CPTBASE, respectively, and averaged over the performed datasets.
Here we re-implement the confidence thresholding variant of DAT (Elbayad et al., 2020).

Figure 4: Comparison of the ELUE scores achieved by
HASHEE with different hash functions.

Figure 5: Comparison of actual inference time.

ing the frequency hash that assigns tokens to the451

first 6 layers of ElasticBERTBASE, HASHEE can452

outperform most considered baselines with fewer453

FLOPs. To fairly compare with baselines of various454

speedup ratios, we also report the ELUE score (Liu455

et al., 2021a), which is a two-dimensional (perfor-456

mance and FLOPs) metric for efficient NLP mod-457

els, measuring how much a model oversteps Elas-458

ticBERT. Table 2 shows that HASHEE achieved a459

new state-of-the-art ELUE score. To fairly compare460

with the learn-to-exit baseline we also implement461

BERxiT (Xin et al., 2021) with ElasticBERTBASE.462

Figure 6: Comparison of different backbone models.

Comparison of Different Hash Functions We 463

then evaluate HASHEE with different hash func- 464

tions detailed in Section 3.3. For all these hash 465

functions, we assign tokens to the 6 and 12 lay- 466

ers of ElasticBERT-6L and ElasticBERT-12L, re- 467

spectively. Experimental results on SST-2, SNLI, 468

and MRPC are given in Table 3. Among the hash 469

functions, the frequency hash achieves the highest 470

speedup while maintaining a considerable perfor- 471

mance. With the backbone of ElasticBERT-12L, 472

these hash functions, except for the frequency hash, 473

cannot achieve considerable speedup. Besides, we 474

find that ElasticBERT-12L did not significantly out- 475

perform ElasticBERT-6L with HASHEE. We con- 476

jecture that higher layers are not good at querying 477

information from hidden states of tokens that exit 478

too early. In this work, we are more interested in 479

the case of high acceleration ratio, so we adopt 480

ElasticBERT-6L as our main backbone. To make 481

a more intuitive comparison of these hash func- 482

tions with different speedup ratios, we also show 483

in Figure 4 the ELUE scores on SST-2 and SNLI 484

with ElasticBERT-6L as backbone. We find that the 485

frequency hash outperforms other hash functions 486

by a large margin, and therefore in the following 487

7

experiments we mainly use the frequency hash. Be-488

sides, only the Rand-incons hash obtains negative489

ELUE score, demonstrating the benefit of maintain-490

ing consistency between training and inference.491

Comparison of Actual Inference Time Because492

most of the operations in the Transformer architec-493

ture are well optimized by modern deep learning494

frameworks and parallel processing hardwares such495

as GPU and TPU, FLOPs may not precisely reflect496

the actual inference time. To that end, here we also497

evaluate actual inference time on a single GeForce498

RTX 3090 GPU. Note that the speedup ratio of499

previous early exiting methods are usually tested500

on a per-instance basis, i.e. the batch size is set501

to 1. However, batch inference is often more fa-502

vorable in both offline scenarios and low-latency503

scenarios (Zhang et al., 2019). Here we compare504

HASHEE with two baselines that have similar per-505

formance, i.e., FastBERT and PABEE. Our exper-506

iments are conducted on two datasets with very507

different average sentence length, i.e., SNLI and508

IMDb. Results are given in Table 5 and Figure 5.509

We find HASHEE has an advantage in processing510

speed when the batch size exceeds 8. Besides,511

HASHEE can perform larger batch inference due512

to its memory-efficiency.513

SNLI (Avg Len: 27) IMDb (Avg Len: 278)
Acc FLOPs # samples/sec Acc FLOPs # samples/sec

BERT 90.4 1.0× 2093 (1.0×) 93.0 1.0× 177 (1.0×)

FastBERT 88.8 3.5× 4128 (2.0×) 92.5 3.5× 553 (3.1×)

PABEE 88.7 3.1× 4596 (2.2×) 91.6 3.4× 571 (3.2×)

HashEE 89.6 4.4× 6779 (3.2×) 92.4 6.2× 976 (5.5×)

Table 5: Maximal number of processing samples per
second on a single RTX 3090 GPU with 24GB memory.

Comparison of Different Backbones To evalu-514

ate the versatility of HASHEE, we also conduct ex-515

periments with other backbone models, i.e., BERT,516

ALBERT, and RoBERTa. As shown in Figure 6,517

HASHEE outperforms other baselines with the518

same backbone.519

Accelerating Seq2Seq Models Since520

HASHEE requires no supervision, it can521

also be applied to seq2seq models for generation522

tasks. We first evaluate HASHEE with BARTBASE523

as our backbone on two English summarization524

tasks. As shown in Table 4, HASHEE can achieve525

significant speedup for BART encoder while526

maintaining considerable ROUGE scores. Besides,527

we find that previous early exiting methods528

that measure the uncertainty of internal outputs529

would rather slow down decoder inference due to 530

the heavy computation of prediction over large 531

vocabulary. In addition, to further explore the 532

speedup potential of HASHEE, we also experiment 533

with CPT (Shao et al., 2021), which has a deep 534

encoder and a shallow decoder. Results on CSL 535

and TTNews depict that HASHEE can achieve 536

2.3× speedup relative to CPT while maintaining 537

97% ROUGE-1. We also report results of the 538

6-layer versions of BART (with 3 encoder layers 539

and 3 decoder layers) and CPT (with 5 encoder 540

layers and 1 decoder layer). 541

5 Related Work 542

Large-scale pre-trained language models (PLMs) 543

have achieved great success in recent years. De- 544

spite their power, the inference is time-consuming, 545

which hinders their deployment in low-latency sce- 546

narios. To accelerate PLM inference, there are 547

currently two streams of work: (1) Compressing 548

a cumbersome PLM through knowledge distilla- 549

tion (Sanh et al., 2019; Sun et al., 2019; Jiao et al., 550

2020), model pruning (Gordon et al., 2020; Michel 551

et al., 2019), quantization (Shen et al., 2020), mod- 552

ule replacing (Xu et al., 2020a), etc. (2) Selec- 553

tively activating parts of the model conditioned 554

on the input, such as Universal Transformer (De- 555

hghani et al., 2019), FastBERT (Liu et al., 2020a), 556

DeeBERT (Xin et al., 2020), PABEE (Zhou et al., 557

2020), LeeBERT (Zhu, 2021), CascadeBERT (Li 558

et al., 2021a), ElasticBERT (Liu et al., 2021a) 559

and other similar methods (Elbayad et al., 2020; 560

Schwartz et al., 2020; Liao et al., 2021; Xin et al., 561

2021; Sun et al., 2021). Different from these meth- 562

ods, our proposed HASHEE requires no internal 563

classifiers (which imply extra parameters) and su- 564

pervision, and therefore can be widely used in a 565

variety of tasks and model architectures. 566

6 Conclusion 567

We first empirically study the learnability of in- 568

stance difficulty, which is a crucial problem in early 569

exiting. Based on the observation that modern neu- 570

ral models perform poorly on estimating instance 571

difficulty, we propose a hash-based early exiting ap- 572

proach, named HASHEE, that removes the learning 573

process and only sticks to the consistency between 574

training and inference. Our experiments on classi- 575

fication, regression, and generation tasks show that 576

HASHEE can achieve state-of-the-art performance 577

with fewer computation and inference time. 578

8

References579

Samuel R. Bowman, Gabor Angeli, Christopher Potts,580
and Christopher D. Manning. 2015. A large an-581
notated corpus for learning natural language infer-582
ence. In Proceedings of the 2015 Conference on583
Empirical Methods in Natural Language Processing,584
EMNLP 2015, Lisbon, Portugal, September 17-21,585
2015, pages 632–642. The Association for Computa-586
tional Linguistics.587

Daniel M. Cer, Mona T. Diab, Eneko Agirre, Iñigo588
Lopez-Gazpio, and Lucia Specia. 2017. Semeval-589
2017 task 1: Semantic textual similarity - multilin-590
gual and cross-lingual focused evaluation. CoRR,591
abs/1708.00055.592

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,593
Jakob Uszkoreit, and Lukasz Kaiser. 2019. Univer-594
sal transformers. In 7th International Conference on595
Learning Representations, ICLR 2019, New Orleans,596
LA, USA, May 6-9, 2019. OpenReview.net.597

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and598
Kristina Toutanova. 2019. BERT: pre-training of599
deep bidirectional transformers for language under-600
standing. In Proceedings of the 2019 Conference of601
the North American Chapter of the Association for602
Computational Linguistics: Human Language Tech-603
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,604
June 2-7, 2019, Volume 1 (Long and Short Papers),605
pages 4171–4186. Association for Computational606
Linguistics.607

William B. Dolan and Chris Brockett. 2005. Automati-608
cally constructing a corpus of sentential paraphrases.609
In Proceedings of the Third International Workshop610
on Paraphrasing, IWP@IJCNLP 2005, Jeju Island,611
Korea, October 2005, 2005. Asian Federation of Nat-612
ural Language Processing.613

Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael614
Auli. 2020. Depth-adaptive transformer. In 8th Inter-615
national Conference on Learning Representations,616
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,617
2020. OpenReview.net.618

Mitchell A. Gordon, Kevin Duh, and Nicholas Andrews.619
2020. Compressing BERT: studying the effects of620
weight pruning on transfer learning. In Proceedings621
of the 5th Workshop on Representation Learning for622
NLP, RepL4NLP@ACL 2020, Online, July 9, 2020,623
pages 143–155. Association for Computational Lin-624
guistics.625

Karl Moritz Hermann, Tomás Kociský, Edward Grefen-626
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,627
and Phil Blunsom. 2015. Teaching machines to read628
and comprehend. In Advances in Neural Information629
Processing Systems 28: Annual Conference on Neu-630
ral Information Processing Systems 2015, December631
7-12, 2015, Montreal, Quebec, Canada, pages 1693–632
1701.633

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long634
short-term memory. Neural Comput., 9(8):1735–635
1780.636

Eduard H. Hovy, Mitchell P. Marcus, Martha Palmer, 637
Lance A. Ramshaw, and Ralph M. Weischedel. 2006. 638
Ontonotes: The 90% solution. In Human Language 639
Technology Conference of the North American Chap- 640
ter of the Association of Computational Linguistics, 641
Proceedings, June 4-9, 2006, New York, New York, 642
USA. The Association for Computational Linguistics. 643

Lifeng Hua, Xiaojun Wan, and Lei Li. 2017. Overview 644
of the nlpcc 2017 shared task: Single document sum- 645
marization. In National CCF Conference on Natural 646
Language Processing and Chinese Computing, pages 647
942–947. Springer. 648

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao 649
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020. 650
Tinybert: Distilling BERT for natural language un- 651
derstanding. In Proceedings of the 2020 Conference 652
on Empirical Methods in Natural Language Process- 653
ing: Findings, EMNLP 2020, Online Event, 16-20 654
November 2020, pages 4163–4174. Association for 655
Computational Linguistics. 656

Tushar Khot, Ashish Sabharwal, and Peter Clark. 2018. 657
Scitail: A textual entailment dataset from science 658
question answering. In Proceedings of the Thirty- 659
Second AAAI Conference on Artificial Intelligence, 660
(AAAI-18), the 30th innovative Applications of Arti- 661
ficial Intelligence (IAAI-18), and the 8th AAAI Sym- 662
posium on Educational Advances in Artificial Intel- 663
ligence (EAAI-18), New Orleans, Louisiana, USA, 664
February 2-7, 2018, pages 5189–5197. AAAI Press. 665

Byeongchang Kim, Hyunwoo Kim, and Gunhee Kim. 666
2019. Abstractive summarization of reddit posts with 667
multi-level memory networks. In Proceedings of 668
the 2019 Conference of the North American Chap- 669
ter of the Association for Computational Linguistics: 670
Human Language Technologies, NAACL-HLT 2019, 671
Minneapolis, MN, USA, June 2-7, 2019, Volume 1 672
(Long and Short Papers), pages 2519–2531. Associa- 673
tion for Computational Linguistics. 674

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, 675
Kevin Gimpel, Piyush Sharma, and Radu Soricut. 676
2020. ALBERT: A lite BERT for self-supervised 677
learning of language representations. In 8th Inter- 678
national Conference on Learning Representations, 679
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 680
2020. OpenReview.net. 681

Antonio Laverghetta, Jamshidbek Mirzakhalov, and 682
John Licato. 2020. Towards a task-agnostic model of 683
difficulty estimation for supervised learning tasks. In 684
Proceedings of the 1st Conference of the Asia-Pacific 685
Chapter of the Association for Computational Lin- 686
guistics and the 10th International Joint Conference 687
on Natural Language Processing: Student Research 688
Workshop, AACL/IJCNLP 2021, Suzhou, China, De- 689
cember 4-7, 2020, pages 16–23. Association for Com- 690
putational Linguistics. 691

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan 692
Ghazvininejad, Abdelrahman Mohamed, Omer Levy, 693
Veselin Stoyanov, and Luke Zettlemoyer. 2020. 694

9

https://doi.org/10.18653/v1/d15-1075
https://doi.org/10.18653/v1/d15-1075
https://doi.org/10.18653/v1/d15-1075
https://doi.org/10.18653/v1/d15-1075
https://doi.org/10.18653/v1/d15-1075
http://arxiv.org/abs/1708.00055
http://arxiv.org/abs/1708.00055
http://arxiv.org/abs/1708.00055
http://arxiv.org/abs/1708.00055
http://arxiv.org/abs/1708.00055
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://aclanthology.org/I05-5002/
https://aclanthology.org/I05-5002/
https://aclanthology.org/I05-5002/
https://openreview.net/forum?id=SJg7KhVKPH
https://doi.org/10.18653/v1/2020.repl4nlp-1.18
https://doi.org/10.18653/v1/2020.repl4nlp-1.18
https://doi.org/10.18653/v1/2020.repl4nlp-1.18
https://proceedings.neurips.cc/paper/2015/hash/afdec7005cc9f14302cd0474fd0f3c96-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/afdec7005cc9f14302cd0474fd0f3c96-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/afdec7005cc9f14302cd0474fd0f3c96-Abstract.html
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://aclanthology.org/N06-2015/
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17368
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17368
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17368
https://doi.org/10.18653/v1/n19-1260
https://doi.org/10.18653/v1/n19-1260
https://doi.org/10.18653/v1/n19-1260
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://aclanthology.org/2020.aacl-srw.3/
https://aclanthology.org/2020.aacl-srw.3/
https://aclanthology.org/2020.aacl-srw.3/

BART: denoising sequence-to-sequence pre-training695
for natural language generation, translation, and com-696
prehension. In Proceedings of the 58th Annual Meet-697
ing of the Association for Computational Linguistics,698
ACL 2020, Online, July 5-10, 2020, pages 7871–7880.699
Association for Computational Linguistics.700

Lei Li, Yankai Lin, Deli Chen, Shuhuai Ren, Peng Li,701
Jie Zhou, and Xu Sun. 2021a. Cascadebert: Accel-702
erating inference of pre-trained language models via703
calibrated complete models cascade. In Findings of704
EMNLP.705

Xiaonan Li, Yunfan Shao, Tianxiang Sun, Hang Yan,706
Xipeng Qiu, and Xuanjing Huang. 2021b. Accelerat-707
ing BERT inference for sequence labeling via early-708
exit. In Proceedings of the 59th Annual Meeting of709
the Association for Computational Linguistics and710
the 11th International Joint Conference on Natural711
Language Processing, ACL/IJCNLP 2021, (Volume 1:712
Long Papers), Virtual Event, August 1-6, 2021, pages713
189–199. Association for Computational Linguistics.714

Kaiyuan Liao, Yi Zhang, Xuancheng Ren, Qi Su,715
Xu Sun, and Bin He. 2021. A global past-future716
early exit method for accelerating inference of pre-717
trained language models. In Proceedings of the 2021718
Conference of the North American Chapter of the719
Association for Computational Linguistics: Human720
Language Technologies, NAACL-HLT 2021, Online,721
June 6-11, 2021, pages 2013–2023. Association for722
Computational Linguistics.723

Weijie Liu, Peng Zhou, Zhiruo Wang, Zhe Zhao,724
Haotang Deng, and Qi Ju. 2020a. Fastbert: a self-725
distilling BERT with adaptive inference time. In726
Proceedings of the 58th Annual Meeting of the As-727
sociation for Computational Linguistics, ACL 2020,728
Online, July 5-10, 2020, pages 6035–6044. Associa-729
tion for Computational Linguistics.730

Xiangyang Liu, Tianxiang Sun, Junliang He, Lingling731
Wu, Xinyu Zhang, Hao Jiang, Zhao Cao, Xuanjing732
Huang, and Xipeng Qiu. 2021a. Towards efficient733
NLP: A standard evaluation and A strong baseline.734
CoRR, abs/2110.07038.735

Xuebo Liu, Houtim Lai, Derek F. Wong, and Lidia S.736
Chao. 2020b. Norm-based curriculum learning for737
neural machine translation. In Proceedings of the738
58th Annual Meeting of the Association for Compu-739
tational Linguistics, ACL 2020, Online, July 5-10,740
2020, pages 427–436. Association for Computational741
Linguistics.742

Yijin Liu, Fandong Meng, Jie Zhou, Yufeng Chen, and743
Jinan Xu. 2021b. Faster depth-adaptive transform-744
ers. In Thirty-Fifth AAAI Conference on Artificial745
Intelligence, AAAI 2021, Thirty-Third Conference746
on Innovative Applications of Artificial Intelligence,747
IAAI 2021, The Eleventh Symposium on Educational748
Advances in Artificial Intelligence, EAAI 2021, Vir-749
tual Event, February 2-9, 2021, pages 13424–13432.750
AAAI Press.751

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 752
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 753
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 754
Roberta: A robustly optimized BERT pretraining 755
approach. CoRR, abs/1907.11692. 756

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, 757
Dan Huang, Andrew Y. Ng, and Christopher Potts. 758
2011. Learning word vectors for sentiment analysis. 759
In The 49th Annual Meeting of the Association for 760
Computational Linguistics: Human Language Tech- 761
nologies, Proceedings of the Conference, 19-24 June, 762
2011, Portland, Oregon, USA, pages 142–150. The 763
Association for Computer Linguistics. 764

Paul Michel, Omer Levy, and Graham Neubig. 2019. 765
Are sixteen heads really better than one? In Ad- 766
vances in Neural Information Processing Systems 32: 767
Annual Conference on Neural Information Process- 768
ing Systems 2019, NeurIPS 2019, December 8-14, 769
2019, Vancouver, BC, Canada, pages 14014–14024. 770

Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, 771
Ning Dai, and Xuanjing Huang. 2020. Pre-trained 772
models for natural language processing: A survey. 773
SCIENCE CHINA Technological Sciences. 774

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 775
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 776
Wei Li, and Peter J. Liu. 2020. Exploring the limits 777
of transfer learning with a unified text-to-text trans- 778
former. J. Mach. Learn. Res., 21:140:1–140:67. 779

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: 780
Sentence embeddings using siamese bert-networks. 781
In Proceedings of the 2019 Conference on Empiri- 782
cal Methods in Natural Language Processing and 783
the 9th International Joint Conference on Natural 784
Language Processing, EMNLP-IJCNLP 2019, Hong 785
Kong, China, November 3-7, 2019, pages 3980–3990. 786
Association for Computational Linguistics. 787

Stephen Roller, Sainbayar Sukhbaatar, Arthur Szlam, 788
and Jason Weston. 2021. Hash layers for large sparse 789
models. 790

Victor Sanh, Lysandre Debut, Julien Chaumond, and 791
Thomas Wolf. 2019. Distilbert, a distilled version 792
of BERT: smaller, faster, cheaper and lighter. CoRR, 793
abs/1910.01108. 794

Adriaan M. J. Schakel and Benjamin J. Wilson. 2015. 795
Measuring word significance using distributed repre- 796
sentations of words. CoRR, abs/1508.02297. 797

Roy Schwartz, Gabriel Stanovsky, Swabha 798
Swayamdipta, Jesse Dodge, and Noah A. Smith. 799
2020. The right tool for the job: Matching model and 800
instance complexities. In Proceedings of the 58th 801
Annual Meeting of the Association for Computational 802
Linguistics, ACL 2020, Online, July 5-10, 2020, 803
pages 6640–6651. Association for Computational 804
Linguistics. 805

10

https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2021.acl-long.16
https://doi.org/10.18653/v1/2021.acl-long.16
https://doi.org/10.18653/v1/2021.acl-long.16
https://doi.org/10.18653/v1/2021.acl-long.16
https://doi.org/10.18653/v1/2021.acl-long.16
https://doi.org/10.18653/v1/2021.naacl-main.162
https://doi.org/10.18653/v1/2021.naacl-main.162
https://doi.org/10.18653/v1/2021.naacl-main.162
https://doi.org/10.18653/v1/2021.naacl-main.162
https://doi.org/10.18653/v1/2021.naacl-main.162
https://www.aclweb.org/anthology/2020.acl-main.537/
https://www.aclweb.org/anthology/2020.acl-main.537/
https://www.aclweb.org/anthology/2020.acl-main.537/
http://arxiv.org/abs/2110.07038
http://arxiv.org/abs/2110.07038
http://arxiv.org/abs/2110.07038
https://doi.org/10.18653/v1/2020.acl-main.41
https://doi.org/10.18653/v1/2020.acl-main.41
https://doi.org/10.18653/v1/2020.acl-main.41
https://ojs.aaai.org/index.php/AAAI/article/view/17584
https://ojs.aaai.org/index.php/AAAI/article/view/17584
https://ojs.aaai.org/index.php/AAAI/article/view/17584
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://aclanthology.org/P11-1015/
https://proceedings.neurips.cc/paper/2019/hash/2c601ad9d2ff9bc8b282670cdd54f69f-Abstract.html
https://doi.org/https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/https://doi.org/10.1007/s11431-020-1647-3
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1508.02297
http://arxiv.org/abs/1508.02297
http://arxiv.org/abs/1508.02297
https://www.aclweb.org/anthology/2020.acl-main.593/
https://www.aclweb.org/anthology/2020.acl-main.593/
https://www.aclweb.org/anthology/2020.acl-main.593/

Yunfan Shao, Zhichao Geng, Yitao Liu, Junqi Dai,806
Fei Yang, Li Zhe, Hujun Bao, and Xipeng Qiu.807
2021. CPT: A pre-trained unbalanced transformer for808
both chinese language understanding and generation.809
CoRR, abs/2109.05729.810

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei811
Yao, Amir Gholami, Michael W. Mahoney, and Kurt812
Keutzer. 2020. Q-BERT: hessian based ultra low pre-813
cision quantization of BERT. In The Thirty-Fourth814
AAAI Conference on Artificial Intelligence, AAAI815
2020, New York, NY, USA, February 7-12, 2020,816
pages 8815–8821. AAAI Press.817

Richard Socher, Alex Perelygin, Jean Wu, Jason818
Chuang, Christopher D. Manning, Andrew Y. Ng,819
and Christopher Potts. 2013. Recursive deep mod-820
els for semantic compositionality over a sentiment821
treebank. In Proceedings of the 2013 Conference on822
Empirical Methods in Natural Language Processing,823
EMNLP 2013, 18-21 October 2013, Grand Hyatt824
Seattle, Seattle, Washington, USA, A meeting of SIG-825
DAT, a Special Interest Group of the ACL, pages826
1631–1642. ACL.827

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.828
Patient knowledge distillation for BERT model com-829
pression. In Proceedings of the 2019 Conference on830
Empirical Methods in Natural Language Processing831
and the 9th International Joint Conference on Nat-832
ural Language Processing, EMNLP-IJCNLP 2019,833
Hong Kong, China, November 3-7, 2019, pages 4322–834
4331. Association for Computational Linguistics.835

Tianxiang Sun, Yunhua Zhou, Xiangyang Liu, Xinyu836
Zhang, Hao Jiang, Zhao Cao, Xuanjing Huang, and837
Xipeng Qiu. 2021. Early exiting with ensemble inter-838
nal classifiers. CoRR, abs/2105.13792.839

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob840
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz841
Kaiser, and Illia Polosukhin. 2017. Attention is all842
you need. In Advances in Neural Information Pro-843
cessing Systems 30: Annual Conference on Neural844
Information Processing Systems 2017, December 4-9,845
2017, Long Beach, CA, USA, pages 5998–6008.846

Ruochen Wang, Minhao Cheng, Xiangning Chen, Xi-847
aocheng Tang, and Cho-Jui Hsieh. 2021. Rethinking848
architecture selection in differentiable NAS. In 9th849
International Conference on Learning Representa-850
tions, ICLR 2021, Virtual Event, Austria, May 3-7,851
2021. OpenReview.net.852

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and853
Jimmy Lin. 2020. Deebert: Dynamic early exiting854
for accelerating BERT inference. In Proceedings of855
the 58th Annual Meeting of the Association for Com-856
putational Linguistics, ACL 2020, Online, July 5-10,857
2020, pages 2246–2251. Association for Computa-858
tional Linguistics.859

Ji Xin, Raphael Tang, Yaoliang Yu, and Jimmy Lin.860
2021. Berxit: Early exiting for BERT with better fine-861
tuning and extension to regression. In Proceedings of862

the 16th Conference of the European Chapter of the 863
Association for Computational Linguistics: Main Vol- 864
ume, EACL 2021, Online, April 19 - 23, 2021, pages 865
91–104. Association for Computational Linguistics. 866

Canwen Xu, Wangchunshu Zhou, Tao Ge, Furu Wei, 867
and Ming Zhou. 2020a. Bert-of-theseus: Compress- 868
ing BERT by progressive module replacing. In Pro- 869
ceedings of the 2020 Conference on Empirical Meth- 870
ods in Natural Language Processing, EMNLP 2020, 871
Online, November 16-20, 2020, pages 7859–7869. 872
Association for Computational Linguistics. 873

Liang Xu, Hai Hu, Xuanwei Zhang, Lu Li, Chenjie Cao, 874
Yudong Li, Yechen Xu, Kai Sun, Dian Yu, Cong 875
Yu, Yin Tian, Qianqian Dong, Weitang Liu, Bo Shi, 876
Yiming Cui, Junyi Li, Jun Zeng, Rongzhao Wang, 877
Weijian Xie, Yanting Li, Yina Patterson, Zuoyu Tian, 878
Yiwen Zhang, He Zhou, Shaoweihua Liu, Zhe Zhao, 879
Qipeng Zhao, Cong Yue, Xinrui Zhang, Zhengliang 880
Yang, Kyle Richardson, and Zhenzhong Lan. 2020b. 881
CLUE: A chinese language understanding evaluation 882
benchmark. In Proceedings of the 28th International 883
Conference on Computational Linguistics, COLING 884
2020, Barcelona, Spain (Online), December 8-13, 885
2020, pages 4762–4772. International Committee on 886
Computational Linguistics. 887

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car- 888
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019. 889
Xlnet: Generalized autoregressive pretraining for 890
language understanding. In Advances in Neural In- 891
formation Processing Systems 32: Annual Confer- 892
ence on Neural Information Processing Systems 2019, 893
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, 894
Canada, pages 5754–5764. 895

Chengliang Zhang, Minchen Yu, Wei Wang, and Feng 896
Yan. 2019. Mark: Exploiting cloud services for cost- 897
effective, slo-aware machine learning inference serv- 898
ing. In 2019 USENIX Annual Technical Conference, 899
USENIX ATC 2019, Renton, WA, USA, July 10-12, 900
2019, pages 1049–1062. USENIX Association. 901

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian J. 902
McAuley, Ke Xu, and Furu Wei. 2020. BERT loses 903
patience: Fast and robust inference with early exit. 904
In Advances in Neural Information Processing Sys- 905
tems 33: Annual Conference on Neural Information 906
Processing Systems 2020, NeurIPS 2020, December 907
6-12, 2020, virtual. 908

Wei Zhu. 2021. Leebert: Learned early exit for BERT 909
with cross-level optimization. In Proceedings of the 910
59th Annual Meeting of the Association for Com- 911
putational Linguistics and the 11th International 912
Joint Conference on Natural Language Processing, 913
ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual 914
Event, August 1-6, 2021, pages 2968–2980. Associa- 915
tion for Computational Linguistics. 916

Eric R. Ziegel. 2003. The elements of statistical learn- 917
ing. Technometrics, 45(3):267–268. 918

11

http://arxiv.org/abs/2109.05729
http://arxiv.org/abs/2109.05729
http://arxiv.org/abs/2109.05729
https://aaai.org/ojs/index.php/AAAI/article/view/6409
https://aaai.org/ojs/index.php/AAAI/article/view/6409
https://aaai.org/ojs/index.php/AAAI/article/view/6409
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://doi.org/10.18653/v1/D19-1441
https://doi.org/10.18653/v1/D19-1441
https://doi.org/10.18653/v1/D19-1441
http://arxiv.org/abs/2105.13792
http://arxiv.org/abs/2105.13792
http://arxiv.org/abs/2105.13792
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=PKubaeJkw3
https://openreview.net/forum?id=PKubaeJkw3
https://openreview.net/forum?id=PKubaeJkw3
https://www.aclweb.org/anthology/2020.acl-main.204/
https://www.aclweb.org/anthology/2020.acl-main.204/
https://www.aclweb.org/anthology/2020.acl-main.204/
https://aclanthology.org/2021.eacl-main.8/
https://aclanthology.org/2021.eacl-main.8/
https://aclanthology.org/2021.eacl-main.8/
https://doi.org/10.18653/v1/2020.emnlp-main.633
https://doi.org/10.18653/v1/2020.emnlp-main.633
https://doi.org/10.18653/v1/2020.emnlp-main.633
https://doi.org/10.18653/v1/2020.coling-main.419
https://doi.org/10.18653/v1/2020.coling-main.419
https://doi.org/10.18653/v1/2020.coling-main.419
http://papers.nips.cc/paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding
http://papers.nips.cc/paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding
http://papers.nips.cc/paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding
https://www.usenix.org/conference/atc19/presentation/zhang-chengliang
https://www.usenix.org/conference/atc19/presentation/zhang-chengliang
https://www.usenix.org/conference/atc19/presentation/zhang-chengliang
https://www.usenix.org/conference/atc19/presentation/zhang-chengliang
https://www.usenix.org/conference/atc19/presentation/zhang-chengliang
https://proceedings.neurips.cc/paper/2020/hash/d4dd111a4fd973394238aca5c05bebe3-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d4dd111a4fd973394238aca5c05bebe3-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d4dd111a4fd973394238aca5c05bebe3-Abstract.html
https://doi.org/10.18653/v1/2021.acl-long.231
https://doi.org/10.18653/v1/2021.acl-long.231
https://doi.org/10.18653/v1/2021.acl-long.231
https://doi.org/10.1198/tech.2003.s770
https://doi.org/10.1198/tech.2003.s770
https://doi.org/10.1198/tech.2003.s770

A Appendix919

A.1 Dataset Statistics920

Here we list the statistics of our used language921

understanding and generation datasets in Table 6922

and Table 7.923

Tasks Datasets |Train| |Dev| |Test|

Sentiment
Analysis

SST-2 8,544 1,101 2,208
IMDb 20,000 5,000 25,000

Natural Language
Inference

SNLI 549,367 9,842 9,824
SciTail 23,596 1,304 2,126

Similarity and
Paraphrase

MRPC 3,668 408 1,725
STS-B 5,749 1,500 1,379

Table 6: Statistics of our used language understanding
datasets.

Datasets Source # Pairs
Train Dev Test

Reddit Social Media 41,675 645 645
CNN/DM News 287,084 13,367 11,489
TTNews News 50,000 - 2,000
CSL Academic 20,000 3,000 3,000

Table 7: Statistics of our used text summarization
datasets.

A.2 Experimental Details924

For small datasets in ELUE, i.e. SST-2, MRPC,925

and STS-B, we conduct grid search over batch sizes926

of {16, 32}, learning rates of {2e-5, 3e-5, 5e-5},927

number of epochs of {3, 4, 5}, warmup step ratios928

of {0.1, 0.01}, and weight decays of {0.1, 0.01}929

with an AdamW optimizer. We select the hyperpa-930

rameters that achieved the best performance on the931

development sets, and perform 5 runs with different932

random seeds to obtain the mean performance and933

standard deviation. For SNLI, SciTail, and IMDb,934

we use the same hyperparameters. All of the hy-935

perparameters used in our language understanding936

experiments are given in Table 8.937

For English summarization tasks, i.e.,938

CNN/DailyMail and Reddit, we use the same939

hyperparameters as BART. For Chinese summa-940

rization tasks, i.e., TTNews and CSL, we use the941

same hyperparameters as CPT.942

A.3 Additional Experimental Results943

In previous experiments we assign tokens to the944

same number of buckets as the number of layers.945

Here we also explore other configurations. For946

Tasks LR BSZ Epoch WSR WD

SST-2 5e-5 16 3 0.1 0.1
IMDb 5e-5 32 3 0.1 0.01
SNLI 5e-5 32 3 0.1 0.01
SciTail 5e-5 32 3 0.1 0.01
MRPC 5e-5 32 4 0.1 0.01
STS-B 5e-5 16 5 0 0.1

Table 8: Best-performed hyperparameters on ELUE
tasks. LR: Learning Rate. BSZ: Batch Size. WSR:
Warmup Step Ratio. WD: Weight Decay.

L # B Speed SST-2 SNLI MRPC
-up (8.5k) (549.4k) (3.7k)

12

12 2.8× 85.6 (±0.37) 89.8 84.4 (±0.17)

6 2.9× 84.9 (±0.69) 89.7 83.7 (±0.26)

4 3.0× 85.2 (±0.43) 89.6 83.7 (±0.15)

3 3.0× 85.3 (±0.37) 89.7 82.9 (±0.29)

2 3.1× 85.2 (±0.19) 89.7 82.8 (±0.40)

6
6 4.9× 85.5 (±0.41) 89.6 84.0 (±0.27)

3 5.0× 85.2 (±0.42) 89.5 83.5 (±0.54)

2 5.1× 85.4 (±0.33) 89.6 83.6 (±0.19)

Table 9: Comparison of different numbers of model
layers and buckets with frequency hash function. "#
L" and "# B" mean number of layers and number of
buckets. For small datasets, i.e., SST-2 and MRPC, we
report the mean and standard deviation over five runs
with different random seeds.

each configuration, we assign tokens to B buckets, 947

corresponding to exiting layers {1 + 12b/B}B−1
b=0 . 948

For instance, if we have 12 layers and 3 buckets, 949

the 3 buckets correspond to the {1, 5, 9} layers. 950

Overall results are given in Table 9, where we show 951

results of 8 configurations with the frequency hash. 952

Similar with Table 3, we find that 6-layer models 953

perform well while achieving higher acceleration 954

ratios. In addition, the number of buckets has no 955

significant effect on acceleration ratio. Configura- 956

tions that the number of layers equals to the number 957

of buckets perform slightly better than other con- 958

figurations. 959

A.4 Details on FLOPs Calculation 960

Here we take a closer look at the HASHEE model 961

forward process, and see which FLOPs are saved 962

during inference. 963

Given the hidden states at layer l as Hl ∈ Rn×d 964

and the hidden states of remaining tokens are de- 965

noted as hl ∈ Rm×d, where n is the original se- 966

quence length and m is the number of remaining 967

tokens at layer l, the calculation of one Transformer 968

encoder layer with HASHEE can be formally de- 969

12

scribed as970

qi,Ki,Vi = hlWQ
i ,H

lWK
i ,HlWV

i , (1)971

xi = Softmax(
qiK

⊤
i√

dk
)Vi, (2)972

x = Concat(x1, · · · ,xh)W
O, (3)973

hl+1 = ReLU(xW1)W2, (4)974

Hl+1 = Copy(Hl,hl+1), (5)975

where we lowercase the representations with re-976

duced shape, i.e., qi,xi ∈ Rm×dk , x,h ∈977

Rm×d. dk is the dimension of each attention head.978

Copy(Hl,hl+1) is to copy the hidden states of the979

exited tokens from Hl and concatenate with the980

updated hidden states hl+1. By this token-level981

early exiting, the computation in self-attention and982

the following feed-forward network is reduced.983

In particular, we show in Table 10 the saved984

MACs (Multiply–Accumulate Operations) in each985

module of one Transformer encoder layer. We986

estimate FLOPs with twice the MACs.987

Module Saved MACs

SelfAttn

LinearProj (n−m)d2

MultiHeadAttn 2n(n−m)(h+ d)
OutProj (n−m)d2

LayerNorm 2(n−m)d

FFN
FFN 2(n−m)ddff
LayerNorm 2(n−m)d

Table 10: Saved MACs in one Transformer encoder
layer. Here we assume hdk = d. dff is the hidden size
of the Feed-Forward Network (FFN) sublayer.

13

