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ABSTRACT
Graph Fourier Transform (GFT) has demonstrated significant ef-
fectiveness in point cloud attribute compression task. However,
existing graph modeling methods are based on the geometric rela-
tionships of the points, which leads to reduced efficiency of graph
transforms in cases where the correlation between attributes and
geometry is weak. In this paper, we propose a novel graph model-
ing method based on attribute prediction values. Specifically, we
utilize Gaussian priors to model prediction values, then use max-
imum a posteriori estimation to learn the Laplacian matrix that
best fits the prediction values in order to conduct separate graph
transforms on prediction values and ground truth values to de-
rive residuals, and subsequently perform quantization and entropy
coding on these residuals. Additionally, since the partitioning of
point clouds directly affects the coding performance, We design an
adaptive block partitioning method based on ternary search, which
selects reference points using distance threshold 𝑟 and performs
block partitioning and non-reference point attribute prediction
based on these reference points. By conducting ternary search on
distance threshold 𝑟 , we rapidly identify the optimal block partition-
ing strategy. Moreover, we introduce an efficient residual encoding
method based onMorton codes for the attributes of reference points
while the prediction attributes of non-reference points are modeled
using the proposed graph-based modeling approach. Experimen-
tal results demonstrate that our method significantly outperforms
two attribute compression methods employed by Moving Picture
Experts Group (MPEG) in lossless geometry based attribute com-
pression tasks, with an average of 30.57% BD-rate gain compared
to Predictive Lifting Transform (PLT), and an average of 33.54%
BD-rate gain compared to Region-Adaptive Hierarchical Transform
(RAHT), which exhibits significantly improved rate-distortion per-
formance over the current state-of-the-art method based on GFT.
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1 INTRODUCTION
In recent years, point clouds, as an important representation of
three-dimensional data, have attracted increasing attention. Point
clouds have broad application prospects in fields such as cultural
heritage preservation [5, 30, 52], virtual reality [47], and autonomous
driving [51]. In point cloud data, attribute information is an im-
portant component for describing object and scene features, such
as color and normals. Therefore, effective compression of point
cloud attributes is of great significance due to the massive nature of
point cloud data. Currently, many existing studies on point cloud
compression mainly focus on compressing geometric information
[28, 44, 48, 50], such as using different data structures (octree [54],
KDtree [19], prediction tree [27], etc.) to compress geometric in-
formation, while research on point cloud attribute compression is
relatively limited, especially efficient compression methods that
maintain data quality require further research and exploration.
Therefore, our focus is on lossless geometric-based point cloud
attribute compression tasks.

Current traditional point cloud attribute compression methods
are based on two basic frameworks: prediction coding [21, 26] and
transform coding [9, 25].

The block partitioningmethod of point clouds largely determines
the effectiveness of prediction coding. Regular block partitioning
methods aim to divide point clouds into blocks of roughly the same
size using basic data structures (octree, KDtree, etc.). The advan-
tage of this approach is that the same block partitioning method
can be quickly obtained at the encoding and decoding ends, but
there are significant limitations in encoding performance. Existing
irregular block partitioning methods [4, 14, 49, 55] require writing
the block number of each point into the bitstream, which incurs
significant costs when the blocks are small, resulting in decreased
encoding performance. We propose a block partitioning method
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based on ternary search: first, the point cloud is partitioned based
on a distance threshold 𝑟 , and then the optimal distance threshold 𝑟
is quickly found based on the convexity of the rate-distortion [35]
function using ternary search. This allows for dynamic adjustment
of block size and position based on the characteristics of point
cloud attributes, making compression more compact and accurate.
Moreover, only the distance threshold 𝑟 needs to be transmitted to
the decoding end instead of writing the block number of each point
into the bitstream, and the decoding end can also quickly obtain
the same block partitioning based on the distance threshold 𝑟 .

Discrete cosine transform (DCT) [3] and graph Fourier teans-
form (GFT) [33] are the main components of point cloud attribute
transform coding. DCT does not consider the correlation between
geometry and attributes, resulting in poor performance when point
clouds have complex textures. The focus of GFT is to construct
the Laplacian matrix, and existing methods are based on geomet-
ric information to construct the Laplacian matrix [23]. When the
correlation between point cloud attributes and geometry is weak,
the encoding performance of GFT will significantly decrease. This
paper proposes modeling the prediction values of attributes with
Gaussian priors [20] and using posterior learning [32] and denois-
ing [8] to construct the optimal Laplacian matrix. Meanwhile, we
propose a two-step strategy [11] for quickly solving the non-convex
objective functions when constructing the optimal Laplacian ma-
trix.

In this paper, for prediction coding, we utilize a distance thresh-
old 𝑟 for irregular block partitioning of point clouds and efficiently
determine the optimal threshold 𝑟 by leveraging a ternary search on
the rate-distortion function. For transform coding, we model the at-
tribute prediction values utilizing Gaussian priors and subsequently
construct an optimal Laplacian matrix based on posterior learning
and denoising. In summary, our contributions can be summarized
as follows:

• To address the issues of poor performance in regular block
coding and the additional bit overhead introduced by block
indices in irregular block coding, we propose an adaptive
block partitioning strategy based on ternary search to quickly
find the optimal block partitioning method of point clouds.
Only the distance threshold 𝑟 needs to be written into the
bitstream to quickly restore the block partitioning method
at the decoding end.

• Tomitigate the decrease in transform efficiency of GFT when
the correlation between geometry and attributes is weak, we
develop a method to model the prediction values of attributes
utilizing Gaussian priors, and then use posterior learning
and denoising to construct the optimal Laplacian matrix.
Moreover, we propose a two-step strategy for quickly solving
the non-convex objective functions.

• Additionally, for the attributes of a small number of refer-
ence points generated by distance threshold 𝑟 , we sort their
quantized values according to the Morton code in geometry,
and then encode the adjacent residuals, fully exploiting the
correlation between geometry and attributes.

• Extensive experiments demonstrate that compared with the
current state-of-the-art methods based omGFT, the proposed

method can significantly reduce bit overhead while main-
taining reconstructed quality, with with an average BD-rate
gain compared to MPEG frameworks more than 30%.

2 RELATEDWORK
2.1 Prediction Coding
Prediction encoding is a method that encodes the residuals be-
tween prediction values and ground truth [18]. For point clouds,
the partitioning method determines the accuracy of attribute pre-
diction values [39]. Therefore, the partitioning method is a critical
factor influencing the performance of prediction encoding, primar-
ily categorized into regular partitioning and irregular partitioning
methods.

Regular partition methods such as octree or KDtree were used
for block partitioning, gradually dividing the point cloud into cubes
or bounding boxes with similar numbers of points. Octree [54] is
suitable for irregularly sampled point clouds, while KDtree [36]
recursively divides the bounding boxes of point clouds according
to certain partition ways, such as setting the coordinate axis with
the maximum geometric variance as the partition dimension and
evenly dividing the points for partitioning to obtain blocks with
roughly the same number of points. Schnabel et al. [34] introduce
the concept of octrees for the compression of 3D data, providing
an efficient framework for partitioning point clouds into octants
recursively. Each octant subdivides space into eight equal parts,
accommodating points within its volume. Bentley [6] introduce
KDtree as a data structure for multidimensional point sets.

Irregular partition methods designed for attribute compression
gradually appeared. For example, Xu et al. [49] use K-means [4] to
partition point clouds, and Zhao et al. [41, 55] obtain a hierarchical
structure of point clouds based on attribute information. The K-
means method is used to avoid generating too many isolated points,
while the hierarchical structure divides points with similar colors
into different layers [41] to exploit the color continuity. Existing
irregular partition methods require the encoding end to write the
block partitioning method into the bitstream, resulting in additional
bit overhead.

2.2 Transform Coding
In the field of compression, DCT is widely studied and applied as
an important technique. Ahmed et al. [3] introduce the concept of
DCT and apply it to image data compression. Watson et al. [46]
propose an adaptive JPEG compression algorithm based on DCT,
which achieves better compression by dynamically adjusting the
quantization step of DCT coefficients. Additionally, Wang et al. [45]
propose a hybrid compression algorithm based on wavelet packets
and DCT, combining the advantages of wavelet packets and DCT to
achieve higher compression ratios and better reconstructed image
quality.

GFT is a highly regarded technique in the fields of image pro-
cessing and image compression. It extends the concept of Fourier
transform to the domain of image data, enabling images to be an-
alyzed and processed in the frequency domain. Research on GFT
is not limited to the frequency domain representation of images
but also includes its applications in the field of compression. GFT is
introduced by Shuman et al. [38], who propose a frequency domain
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Figure 1: Overall framework of the proposed method with two main modules. In Ternary Search-Based Adaptive Block Partition, reference
points are selected based on a distance threshold 𝑟 , followed by partitioning the point cloud and obtaining attribute predictions for non-
reference points. In Laplacian Matrix Learning Based on Attribute Prediction, Gaussian priors are employed to model the attribute predictions
of non-reference points, and the optimal Laplacian matrix is constructed through posterior learning and denoising. The attributes of reference
points are quantized, sorted according to geometric Morton codes, and then entropy encoded. Finally, the overall rate and distortion are
computed, and the distance threshold 𝑟 is updated accordingly for different patches.

analysis method based on graph signal processing, treating image
data as signals on graphs and utilizing GFT to transform them into
the frequency domain for analysis. Fracastoro et al. [13] propose a
GFT-based image compression method, leveraging the sparsity of
images in the frequency domain, and combining wavelet transform
with GFT to achieve efficient image compression. Hu et al. [17] em-
ploy GFT for feature extraction and selection in images to reduce
data redundancy and achieve compression.

Mekuria et al. [22] use DCT transformation for transform cod-
ing of point cloud attributes, which did not utilize the correlation
between geometry and attributes. Zhao et al. [56] propose con-
structing multiple candidate transformation bases and determining
the optimal candidate transformation basis using rate-distortion
optimization. However, it is difficult to construct suitable candidate
transformation bases for different point clouds. Shao et al. [36, 53]
use geometric information to construct a graph model and then
transformed attributes based on the obtained graph with GFT, ef-
fectively utilizing the correlation between point cloud attributes
and geometry, but the performance is limited by the point cloud
topology. Song et al. [40] propose classifying different blocks for
discussion, adopting different mapping methods based on the corre-
lation between attributes and geometry, and using GaussianMarkov
random fields [31] for attribute prediction, which to some extent
prevents the encoding performance from decreasing due to weak
correlation between point cloud attributes and geometry, but still
does not fully utilize the correlation of attributes themselves, and
excessive classification discussions will bring additional time and
bit overhead.

3 OUR METHOD
In this section, we give a detailed description of the method we pro-
posed. The overall framework of the proposed method is illustrated

Figure 2: The ternary search process for point cloud long-
dress_vox10_1300.ply, where the x-axis represents the distance
threshold 𝑟 and the y-axis represents the rate-distortion function
𝑓 (𝑟 ) divided by the number of points in longdress_vox10_1300.ply
(857,966). For the current search range [𝑙, 𝑟 ], the new search range is
determined based on the comparison of function values at the left
one-third point𝑚𝑖𝑑_𝑙𝑒 𝑓 𝑡 and the right one-third point𝑚𝑖𝑑_𝑟𝑖𝑔ℎ𝑡 .
The new search range is two-thirds of the original search range. The
search ends when the search range is no larger than the predefined
threshold 𝑒𝑝𝑠, and the midpoint of the current search range is out-
putted as the result.

in Figure 1. We first introduce the block partitioning method based
on the distance threshold 𝑟 , as well as the ternary search algorithm
for quickly finding the optimal distance threshold 𝑟 based on the
rate-distortion function. Next, we describe the method of model-
ing the prediction values of attributes using Gaussian priors and
constructing the optimal Laplacian matrix through posterior learn-
ing and denoising. Meanwhile we present a two-step strategy for
rapidly solving the objective function. Finally, we discuss sorting
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the reference points using Morton codes to leverage the correlation
between attributes and geometry.

3.1 Ternary Search-Based Adaptive Block
Partition

Block Partition with Distance Threshold 𝑟 : Firstly, we ran-
domly select a point 𝑟1 from the original point 𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝑛}
as the first reference point. Assuming that some reference points
𝑅 = {𝑟1, 𝑟2, ..., 𝑟𝑘 } have been selected, then we randomly select a
point from the remaining points with a spatial distance greater
than the distance threshold 𝑟 from any reference point as the
new reference point 𝑟𝑘+1. Repeat the above operation until: For
any remaining point, there is always a reference point where the
spatial distance between the two points is not greater than 𝑟 . At
this point, we divide the original point cloud into a reference
point cloud 𝑅 = {𝑟1, 𝑟2, ..., 𝑟𝑙 } and a non-reference point cloud
𝑁𝑅 = {𝑛𝑟1, 𝑛𝑟2, ..., 𝑛𝑟𝑛−𝑙 }.

Next, each non-reference point will be assigned to the nearest
reference point, and therefore we divide the original point cloud
into 𝑙 blocks, each containing exactly one reference point. Blocks
will serve as the basic unit for subsequent graph modeling and
transformations.

Then, we need to predict the attributes of each non-reference
point based on the attributes of reference points for subsequent
learning of the Laplacian matrix. In light of the fact that both the
encoder and decoder must undergo this process, we can only utilize
the reconstructed values of reference points’ attributes for predic-
tion. The predicted attribute of the non-reference point 𝑛𝑟𝑖 is:

𝑃𝐴𝑛𝑟𝑖 =
𝑑2𝑑3𝑅𝐴𝑖1 + 𝑑1𝑑3𝑅𝐴𝑖2 + 𝑑1𝑑2𝑅𝐴𝑖3

𝑑2𝑑3 + 𝑑1𝑑3 + 𝑑1𝑑2
, (1)

where 𝑅𝐴𝑖1 , 𝑅𝐴𝑖2 and 𝑅𝐴𝑖3 denote the reconstructed values of the
three nearest reference points to 𝑛𝑟𝑖 , while 𝑑1, 𝑑2 and 𝑑3 represent
their respective distances to 𝑛𝑟𝑖 .

Ternary Search via Rate-Distortion Optimization: From
the above process of block partitioning and prediction, it can be
observed that the final encoding outcome is closely related to the
selection of the distance threshold 𝑟 : When 𝑟 is small, more ref-
erence points are generated, resulting in lower distortion in the
reconstructed point cloud due to the lower quantization level of ref-
erence point attributes, albeit at the expense of increased bitstream
occupancy. Conversely, when 𝑟 is relatively large, the distortion in
the reconstructed point cloud is higher, but with a smaller bitstream.
On the other hand, if we attempt to exhaustively try all values of 𝑟
(e.g., with a step size of 1), the encoding process would evidently
consume a significant amount of time. Therefore, the method for se-
lecting the distance threshold 𝑟 determines the overall effectiveness
and complexity of the encoding process.

One approach is to guide the selection of the distance threshold
𝑟 based on rate-distortion cost. Our goal is to quickly find the 𝑟 that
minimizes the rate-distortion cost:

min
𝑟

𝑓 (𝑟 ) = D(𝑟 ) + 𝛾1R𝑅 (𝑟 ) + 𝛾2R𝑁𝑅 (𝑟 ),

𝑠 .𝑡 . 𝑟 > 0,
(2)

where D(𝑟 ) represents the distortion level of the reconstructed
point cloud, denoted by the sum of absolute difference (SAD) or

the sum of square difference (SSD) [37]. R𝑅 (𝑟 ) represents the bit-
stream size of reference point attributes, while R𝑁𝑅 (𝑟 ) represents
the bitstream size of non-reference points. 𝛾1 and 𝛾2 are tradeoff
parameters.

We find that the rate-distortion cost as a function 𝑓 (𝑟 ) of the
distance threshold 𝑟 can be approximated by a concave function. For
instance, 𝑓 (𝑟 ) is illustrated in Figure 2 for longdress_vox10_1300.ply.

Considering the property of concave functions, we can utilize
ternary search to quickly find the optimal distance threshold 𝑟

with a complexity of𝒪(𝑙𝑜𝑔1.5 (𝑛)) (𝑛 represents the range of 𝑟 ). The
specific pseudocode is shown in Algorithm 1.

Algorithm 1 Ternary Search via Rate-Distortion Optimization
Input: Lower bound of the distance threshold 𝑙𝑒 𝑓 𝑡 ; Upper bound

of the distance threshold 𝑟𝑖𝑔ℎ𝑡 ; Precision 𝑒𝑝𝑠; Rate-distortion
cost function 𝑓 .

Output: The optimal distance threshold 𝑟 .
1: while 𝑟𝑖𝑔ℎ𝑡 − 𝑙𝑒 𝑓 𝑡 > 𝑒𝑝𝑠 do
2: // Split the search interval into three parts.
3: 𝑚𝑖𝑑1 = 𝑙𝑒 𝑓 𝑡 + (𝑟𝑖𝑔ℎ𝑡 − 𝑙𝑒 𝑓 𝑡)/3
4: 𝑚𝑖𝑑2 = 𝑟𝑖𝑔ℎ𝑡 − (𝑟𝑖𝑔ℎ𝑡 − 𝑙𝑒 𝑓 𝑡)/3
5: 𝑐𝑜𝑠𝑡1 = 𝑓 (𝑚𝑖𝑑1)
6: 𝑐𝑜𝑠𝑡2 = 𝑓 (𝑚𝑖𝑑2)
7: // Evaluate the function at the two midpoints to determine the
8: // next search interval.
9: if 𝑐𝑜𝑠𝑡1 < 𝑐𝑜𝑠𝑡2 then
10: 𝑟𝑖𝑔ℎ𝑡 =𝑚𝑖𝑑2
11: else
12: 𝑙𝑒 𝑓 𝑡 =𝑚𝑖𝑑1
13: end if
14: end while
15: // Return the midpoint of the search interval as the result.
16: return (𝑙𝑒 𝑓 𝑡 + 𝑟𝑖𝑔ℎ𝑡)/2

3.2 Laplacian Matrix Learning Based on
Attribute Prediction

For a graph 𝐺 , its Laplacian matrix is defined as:

𝐿 = 𝐷 −𝑊, (3)

where 𝐷 is the degree matrix of graph 𝐺 , and𝑊 is the adjacency
matrix. Suppose the Laplacian matrix 𝐿 has an eigenvalue 𝜁 and a
corresponding eigenvector denoted by 𝑣 . For a signal 𝑥 on graph𝐺 ,
𝑣𝑇 𝑥 represents the component of this signal at frequency 𝜁 under
the graph Fourier transform. Different quantization parameters
can be applied to coefficients at different frequencies to compress
the point cloud, typically with larger quantization parameters for
higher-frequency coefficients. Note that 𝐿 is a real symmetric matrix
which can be diagonalized:

𝐿 = 𝐴Λ𝐴𝑇 , (4)

where the matrix 𝐴 composed of eigenvectors and Λ is a diagonal
matrix arranged in ascending order of eigenvalues. 𝐴𝑇 can serve
as the basis for graph Fourier transform, while 𝐴 can serve as the
basis for the inverse graph Fourier transform.



Laplacian Matrix Learning and Adaptive Block Partition for Point Cloud Attribute Compression MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

For 𝑛 non-reference points within the same block, we obtained
the predicted attributes 𝑥 ∈ R𝑛 in the previous step. We aim to
learn an appropriate Laplacian matrix based on the predicted at-
tributes 𝑥 . Considering that there is some error (which can be seen
as noise) between the predicted attributes and the true attributes,
we establish the following model:

𝑥 = 𝐴𝑧 + 𝜇𝑥 + 𝜖, (5)

where 𝑧 ∈ R𝑛 is the latent variable corresponding to the true
attributes, 𝜇𝑥 ∈ R𝑛 is the mean of 𝑥 , and 𝜖 ∈ R𝑛 is the noise that
follows a multivariate Gaussian distribution [10]:

𝑝 (𝜖) ∼ N (0, 𝜎2𝜖 𝐼𝑛) . (6)

The estimation of latent variable 𝑧 can be performed using max-
imum a posteriori (MAP) [15] estimation:

𝑧𝑀𝐴𝑃 (𝑥) = argmax
𝑧

𝑝 (𝑧 |𝑥) = argmax
𝑧

𝑝 (𝑥 |𝑧)𝑝 (𝑧) . (7)

For the convenience of subsequent computations, we assume that
the latent variable 𝑧 follows a multivariate Gaussian distribution
[12] as below:

𝑝 (𝑧) ∼ N (0,Λ−1), (8)
where Λ−1 is the Moore-Penrose pseudoinverse of Λ. Therefore,
we obtain the following probability distribution:

𝑝 (𝑥 |𝑧) ∼ N (𝐴𝑧 + 𝜇𝑥 , 𝜎
2
𝜖 𝐼𝑛),

𝑝 (𝑥) ∼ N (𝜇𝑥 ,Λ−1 + 𝜎2𝜖 𝐼𝑛).
(9)

Without loss of generality, we can assume that 𝜇𝑥 = 0. Com-
bining with the probability density function of a 𝑑-dimensional
multivariate Gaussian distribution:

𝑓 (x|𝝁, 𝚺) = 1
(2𝜋)𝑑/2 |𝚺|1/2

exp
(
−1
2
(x − 𝝁)𝑇 𝚺−1 (x − 𝝁)

)
. (10)

We can learn that:
𝑧𝑀𝐴𝑃 (𝑥) = argmax

𝑧
𝑝 (𝑧 |𝑥) = argmax

𝑧
𝑝 (𝑥 |𝑧)𝑝 (𝑧)

= argmin
𝑧

1
𝜎2𝜖

| |𝑥 −𝐴𝑧 | |22 + 𝑧𝑇Λ𝑧

= argmin
𝑧

| |𝑥 −𝐴𝑧 | |22 + 𝛼𝑧𝑇Λ𝑧,

(11)

where 𝛼 = 𝜎2𝜖 is some constant parameter we can control.
Note that the eigenvaluesmatrixΛ, eigenvectors matrix𝐴, and la-

tent variable 𝑧 are all unknowns that we aim to solve for in Equation
11. Therefore, this can be reformulated as the following optimiza-
tion problem:

𝑚𝑖𝑛
Λ,𝐴,𝑧

| |𝑥 −𝐴𝑧 | |22 + 𝛼𝑧𝑇Λ𝑧. (12)

Assuming 𝑦 = 𝐴𝑧, combined with Equation 4, we obtain:

𝑚𝑖𝑛
𝐿,𝑦

| |𝑥 − 𝑦 | |22 + 𝛼𝑦𝑇 𝐿𝑦. (13)

Thus, combined with the properties of the Laplacian matrix 𝐿,
we obtained the final objective function and constraints:

𝑚𝑖𝑛
𝐿,𝑦

| |𝑥 − 𝑦 | |22 + 𝛼𝑦𝑇 𝐿𝑦 + 𝛽 | |𝐿 | |𝐹 ,

𝑠 .𝑡 . 𝑡𝑟 (𝐿) = 𝑛, 𝐿𝑖 𝑗 = 𝐿𝑗𝑖 ≤ 0,∀𝑖 ≠ 𝑗, 𝐿·1 = 0,
(14)

where the Frobenius norm in the objective function controls the
connectivity of the graph, the first term of the constraints avoids

trivial solutions, and the latter two terms are necessary and suffi-
cient conditions that the Laplacian matrix L must satisfy.

Simultaneously optimizing 𝐿 and𝑦 to solve the objective function
14 is quite challenging. Therefore, we adopt the following two-step
strategy.

Firstly, initialize 𝑦 to be 𝑥 , and then fix 𝑦 to solve the following
problem:

𝑚𝑖𝑛
𝐿

𝛼𝑦𝑇 𝐿𝑦 + 𝛽 | |𝐿 | |𝐹 ,

𝑠 .𝑡 . 𝑡𝑟 (𝐿) = 𝑛, 𝐿𝑖 𝑗 = 𝐿𝑗𝑖 ≤ 0,∀𝑖 ≠ 𝑗, 𝐿·1 = 0.
(15)

Equation 15 is a standard convex optimization problem that can
be solved using existing methods [7]. Then, fix the obtained 𝐿 and
solve the following problem:

𝑚𝑖𝑛
𝑦

| |𝑥 − 𝐿𝑦 | |22 + 𝛼𝑦𝑇 𝐿𝑦. (16)

In fact, we can directly obtain an analytical solution to problem
16:

𝑦 = (𝐼𝑛 + 𝛼𝐿)−1𝑥 . (17)

In this way, we alternately solve for 𝐿 and𝑦 until two consecutive
solutions for 𝑦 satisfy:

| |𝑦𝑘 − 𝑦𝑘+1 | |2 < 𝜆. (18)

The computed Laplacian matrix 𝐿 obtained through the above cal-
culations can be regarded as the graph structure for the denoised
attributes 𝑦 obtained by denoising the predicted attributes 𝑥 .

Assuming𝑥 represents the true attributes of these𝑛 non-reference
points, we then quantify and entropy encode the residuals of the
frequency-domain coefficients of the true attributes and predicted
attributes:

𝐴𝑇 𝑥 −𝐴𝑇 𝑥, (19)

in the graph Fourier transform.

3.3 Morton Sorting of Reference Points
For a reference point with spatial coordinates:

𝑥 = (𝑥𝑘𝑥𝑘−1 ...𝑥1𝑥0)2,
𝑦 = (𝑦𝑘𝑦𝑘−1 ...𝑦1𝑦0)2,
𝑧 = (𝑧𝑘𝑧𝑘−1 ...𝑧1𝑧0)2,

(20)

its corresponding Morton code [29] is:

𝑀𝑜𝑟𝑡𝑜𝑛 𝑐𝑜𝑑𝑒 = (𝑧𝑘𝑦𝑘𝑥𝑘𝑧𝑘−1𝑦𝑘−1𝑥𝑘−1 ...𝑧1𝑦1𝑥1𝑧0𝑦0𝑥0)2 . (21)

Utilizing Morton codes derived from three-dimensional geomet-
ric coordinates to rank the quantified attributes of reference points:

𝑀𝑜𝑟𝑡𝑜𝑛 𝑜𝑟𝑑𝑒𝑟 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 = {𝑛1, 𝑛2, ..., 𝑛𝑙 }, (22)

where 𝑙 denotes the total number of reference points in the point
cloud, and 𝑛𝑖 (𝑖 = 1, 2, 3...𝑙) represents the quantized attributes of
the 𝑖-th reference point after Morton sorting.

Due to the relatively small spatial distances between reference
points in small Morton code distance, we can compute the differ-
ences between sorted adjacent attributes and subsequently apply
entropy coding to these differences:

{𝑛1, 𝑛2 − 𝑛1, ..., 𝑛𝑙 − 𝑛𝑙−1}. (23)
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Figure 3: Demonstration of rate-distortion curves for the proposed method, PLT and RAHT on some of the 9 point cloud sequences.

4 EXPERIMENTAL RESULTS
4.1 Experiment Setup
Our experiments are conducted on a PC with Intel Core i7-10510U
CPU@ 1.80GHz and 16GBmemory. First, we compare our approach
with two state-of-the-art frameworks in terms of PSNR and BD-BR
performance by the MPEG PCC PSNR [42] evaluation method and
the BD-BR performance evaluation tool on traditional video coding
[16, 53]. Second, we evaluate the encoding and decoding time of
different methods [55]. Finally, we conduct an ablation study to
demonstrate the effectiveness of the proposed Laplacian matrix
learning method.

Datasets:We select nine point cloud sequences from datasets
MVUB [24] and 8iVFBv2 [2] for testing. These nine point cloud
sequences consist of 200 to 300 frames of point clouds, with each
point cloud containing between 500,000 to 2,000,000 points, encom-
passing point clouds with varying poses and texture complexities.
We utilize the average results of each point cloud sequence as the
data for comparison.

Parameter Settings: We establish the parameter settings based
on extensive experimentation and analogous works by others. Ac-
cording to the work of Shao et al. [36], we set the tradeoff parame-
ters in Equation 2 as below:

𝛾1 = 𝛾2 = 𝑎 ·𝑄𝑏 , (24)

where 𝑎 = 0.14, 𝑏 = 1.72 and𝑄 is the quantization parameter. Given
that the depth of the point clouds in the test data is consistently 10,

the parameters inputted into Algorithm 1 are:
𝑙𝑒 𝑓 𝑡 = 0,

𝑟𝑖𝑔ℎ𝑡 = 210 ·
√
3 · 0.1 = 102.4

√
3,

𝑒𝑝𝑠 = 0.5.
(25)

In the computation of parameter 𝑟𝑖𝑔ℎ𝑡 , the multiplication by 0.1 is
necessitated due to the substantial time consumption in solving the
objective function 14 when the number of partitions is insufficiently
large, alongside a significant degradation in encoding performance
at such junctures.

Finally, we set 𝛼 = 10 and 𝛽 = 5 in equation 14 to strike a balance
between the fidelity of the graph structure to the signal and the
connectivity of the graph structure.

4.2 Comparisons with the State-of-the-Arts
To evaluate the effectiveness of the proposed method, we will com-
pare it with two state-of-the-arts point cloud attribute compression
methods: (1) Predictive Lifting Transform (PLT) [1], a prediction-
based method from Geometry-based Point Cloud Compression
(G-PCC version 22) that incorporates both Level_of_Detail (LoD)
and lifting transforms; (2) Region-Adaptive Hierarchical Transform
(RAHT) [1], a transformation-based method from G-PCC version 22
that utilizes the hierarchical structure of point clouds for inter-layer
transforms.

Rate-Distortion Performance: We illustrate the relationship
in some of the 9 point cloud sequences between the distortion
of reconstructed point clouds and the size of the bitstream while
utilizing different methods in Figure 3. Herein, we utilize the peak
signal-to-noise ratio (PSNR) of the Y component to represent the
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Figure 4: Visual quality comparison of the reconstructed longdress (left) and soldier (right) point clouds for proposed method, PLT and RAHT.
Each sub-figure is annotated with corresponding bit rate (bpp) and distortion (dB).

Table 1: BD-BR (%) comparisons of the proposed method with PLT and RAHT on 9 point cloud sequences.

Point Clouds
PLT RAHT Proposed

BD-BR (%) Time(s) BD-BR(%) Time(s) Time(s)
Y U V Enc. Dec. Y U V Enc. Dec. Enc. Dec.

Andrew -27.65 -19.58 -15.10 35.20 32.60 -27.59 -22.63 -21.06 36.04 34.17 174.11 29.93
David -41.61 -49.92 -13.65 42.80 40.58 -51.14 -47.38 -22.74 46.25 43.87 254.47 44.02
Longdress -23.69 -21.58 -17.72 22.48 21.64 -20.67 -16.75 -18.63 25.76 24.41 82.84 16.92
Loot -30.18 -41.94 -38.17 20.13 19.14 -27.80 -44.38 -42.72 23.54 22.93 77.37 15.84
Phil -30.60 -22.20 -16.99 46.77 45.03 -36.88 -30.84 -21.50 51.32 50.19 260.06 43.18
Redandblack -27.48 -26.23 -12.51 20.64 19.66 -33.47 -24.68 -15.91 21.47 20.63 90.23 17.82
Ricardo -36.20 -42.31 23.66 26.48 24.98 -37.76 -27.53 -5.04 29.45 29.01 117.83 26.74
Sarah -25.35 -28.37 7.43 40.63 38.21 -38.43 -32.61 -15.13 46.92 41.25 177.03 38.45
Soldier -32.39 -45.07 -38.26 28.97 27.07 -28.13 -41.83 -37.34 30.98 29.47 130.87 25.64
Average -30.57 -33.02 -13.48 31.57 29.88 -33.54 -32.07 -22.23 34.64 32.88 151.65 28.73

distortion level of the reconstructed point clouds, and bits per point
(bpp) to denote the size of the bitstream.

From Figure 3, it can be seen that our method outperforms the
other two state-of-the-art reference methods in compression per-
formance across all tested point clouds.

Table 1 presents the BD-BR performance of the proposed method
compared to PLT and RAHT on different point clouds, where tests
are conducted for the Y, U and V components. Additionally, Table 1
also compares the encoding and decoding time of different meth-
ods.Referring to Table 1, compared to PLT, our method achieves an
average saving of 30.57%, 33.02%, and 13.48% in bitrates for the Y,
U, and V components, respectively, particularly in point clouds loot
and soldier where our method saves over 30% in bitrate for all three
components. Compared to RAHT, our method achieves average

savings of 33.54%, 32.07%, and 22.23% in bitrates for the Y, U, and V
components, respectively.

Additionally, please note that our results on PLT and RAHT
obtained through testing may not be completely consistent with
those presented in other papers. This discrepancymay have resulted
from inconsistent configuration files or different versions of G-PCC.

Visual Quality: In Figure 4, we compare the visual results of
different methods on two point clouds longdress and soldier with
complex textures. It can be observed from Figure 4 that, under
similar PSNR values for Y component, our method not only saves
bitstream compared to PLT and RAHT but also achieves reconstruc-
tions more perceptually faithful to complex textures.

Computational Complexity: From a complexity perspective,
the decoding time of our method is comparable to PLT and RAHT,
or even slightly less. However, the encoding time of our method
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Table 2: Ablation study based on block partitioning and transform
methods. The results demonstrate the BD-BR (%) comparison be-
tween proposed method and comparative methods.

Methods Strategy Point Clouds BD-BR (%)
Partition Transform Y U V

Proposed Ours � - - - -

A Ours ×

Andrew -10.75 -9.35 -4.87
David -15.88 -17.97 -5.52

Longdress -9.80 -11.12 -3.47
Loot -11.46 -14.59 -15.99
Phil -10.82 -11.51 -9.81

Redandblack -10.80 -12.45 -5.90
Ricardo -14.49 -14.73 -5.06
Sarah -12.87 -13.43 -5.55
Soldier -11.54 -15.92 -14.93
Average -12.05 -13.45 -7.90

B Octree �

Andrew -7.57 -9.29 -9.13
David -15.73 -16.04 -6.75

Longdress -10.29 -9.42 -8.04
Loot -13.70 -14.56 -19.60
Phil -13.02 -12.40 -9.30

Redandblack -12.03 -11.89 -7.53
Ricardo -11.12 -15.33 -3.80
Sarah -10.82 -11.09 -6.37
Soldier -14.00 -19.15 -13.25
Average -12.03 -13.24 -9.31

C Octree ×

Andrew -15.99 -12.68 -12.86
David -26.16 -35.17 -14.71

Longdress -12.50 -13.93 -15.25
Loot -18.10 -27.95 -27.26
Phil -18.80 -17.70 -12.70

Redandblack -17.63 -16.38 -12.90
Ricardo -24.51 -23.26 -8.51
Sarah -17.18 -22.72 -10.29
Soldier -18.37 -31.04 -29.66
Average -18.80 -22.31 -16.02

D KDtree �

Andrew -11.63 -7.86 -4.88
David -21.75 -22.65 -8.92

Longdress -11.78 -12.13 -11.73
Loot -10.09 -17.80 -23.28
Phil -12.99 -14.99 -11.02

Redandblack -10.66 -10.27 -6.01
Ricardo -17.97 -17.28 -0.81
Sarah -16.11 -13.18 -2.03
Soldier -11.11 -23.59 -17.71
Average -13.79 -15.53 -9.60

E KDtree ×

Andrew -21.62 -11.27 -11.64
David -31.41 -38.72 -13.01

Longdress -15.20 -15.19 -13.37
Loot -25.94 -28.21 -32.10
Phil -25.85 -19.60 -15.99

Redandblack -19.24 -18.73 -10.98
Ricardo -23.14 -30.69 -8.61
Sarah -25.77 -25.21 -8.37
Soldier -25.67 -32.56 -29.10
Average -23.76 -24.46 -15.91

is approximately five times that of PLT and RAHT. This is mainly
due to the time spent on the ternary search for the optimal distance
threshold 𝑟 and solving Equation 14. Nevertheless, this time expen-
diture is within acceptable limits, and further optimization of the
encoding time can be achieved by utilizing fast algorithm [43] to
optimize the solving process of Equation 14.

Comparison with GFT-based Method: The work by Song et
al. [40] is currently one of the state-of-the-art methods based on
GFT for point cloud attribute compression tasks.Since their codes
are not available, we compare against the data referenced in the
paper for evaluation.

As reported in [40], their method achieves an average bitrate
saving of 15.72%, 20.73%, and 23.02% compared to PLT for the Y, U,
and V components, respectively, and an average bitrate saving of
13.72%, 22.33%, and 22.94% compared to RAHT. Additionally, this
method requires approximately 200 seconds for both encoding and

decoding. Therefore, both in terms of rate-distortion performance
and time complexity, our method outperforms theirs.

4.3 Ablation Study
In the ablation study, our main objective is to demonstrate the
effectiveness of two modules: (1) Ternary search-based adaptive
block partition; (2) Laplacian matrix learning based on attribute
prediction. Therefore, we set up two variables in the comparative
experiments: (1) Partitioning method, where we partition the point
clouds based on octree or KDtree instead of ternary search-based
adaptive block partition; (2) Removal of the graph transforms, di-
rectly quantifying the residuals between the real and predicted
attributes (predicted attributes are the weighted averages of the
reconstruction values of the three nearest points already encoded
in the methods based on octree or KDtree). Therefore, we designed
the following five comparative methods:

• Adaptive block partition with no graph transforms.
• Octree-based partition with graph transforms.
• Octree-based partition with no graph transforms.
• KDtree-based partition with graph transforms.
• KDtree-based partition with no graph transforms.

The results of the comparative experiments are shown in Table
2. From Table 2, it can be observed that the performance of the con-
trast methods exhibits a certain degree of decline compared to the
proposed method. The proposed method achieves approximately a
10% to 15% reduction in bitstream compared to the contrast meth-
ods that only modify the block partitioning or solely eliminate the
transform module. Moreover, compared to the contrast methods
that modify both the block partitioning and eliminate the transform
module, the proposed method achieves a reduction in bitstream of
approximately 20% to 30%. This demonstrates the effectiveness of
both Ternary search-based adaptive block partition and Laplacian
matrix learning based on attribute prediction.

5 CONCLUSION
This paper presents a point cloud attribute compression method
based on adaptive block partitioning and GFT. We utilize a distance
threshold 𝑟 for block partitioning of point clouds, and by encod-
ing 𝑟 into the bitstream, the same block partitioning scheme can
be efficiently reconstructed at the decoding end. Simultaneously,
we employ a ternary search based on rate-distortion functions to
rapidly determine the optimal distance threshold 𝑟 . Furthermore,
we propose a novel approach for graph modeling of attribute pre-
diction values, wherein the optimal Laplacian matrix is obtained
through posterior learning and denoising, enhancing the trans-
form efficiency of GFT. Experimental results demonstrate that our
method achieves an average bitrate reduction of 30.57%, 33.02%,
and 13.48% for Y, U, and V components, respectively, compared
with PLT. Moreover, compared with RAHT, our method achieves
average bitrate reductions of 33.54%, 32.07%, and 22.23% for Y, U,
and V components, respectively. The proposed method also ex-
hibits significantly improved rate-distortion performance over the
current state-of-the-art method based on GFT. Through ablation
experiments, we also validate the effectiveness of the proposed
two modules: Ternary search-based adaptive block partition and
Laplacian matrix learning based on attribute prediction.
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