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ABSTRACT

Agents powered by large language models (LLMs) are increasingly adopted in
the software industry, contributing code as collaborators or even autonomous de-
velopers. As their presence grows, it becomes important to assess the current
boundaries of their coding abilities. Existing agentic coding benchmarks, how-
ever, cover a limited task scope, e.g., bug fixing within a single pull request (PR),
and often rely on non-executable evaluations or lack an automated approach for
continually updating the evaluation coverage. To address such issues, we pro-
pose ACE-Bench, a benchmark designed to evaluate agentic coding performance
in end-to-end, feature-oriented software development. ACE-Bench incorporates
an execution-based evaluation protocol and a scalable test-driven method that
automatically derives tasks from code repositories with minimal human effort.
By tracing from unit tests along a dependency graph, our approach can identify
feature-level coding tasks spanning multiple commits and PRs scattered across
the development timeline, while ensuring the proper functioning of other features
after the separation. Using this framework, we curated 212 challenging evaluation
tasks and 889 executable environments from 16 open-source repositories in the
first version of our benchmark. Empirical evaluation reveals that the state-of-the-
art agent, such as Claude 4 Sonnet with OpenHands framework, which achieves
a 70.4% resolved rate on SWE-bench, succeeds on only 7.5% of tasks, opening
new opportunities for advancing agentic coding. Moreover, benefiting from our
automated task collection toolkit, ACE-Bench can be easily scaled and updated
over time to mitigate data leakage. The inherent verifiability of constructed envi-
ronments also makes our method potentially valuable for agent training. Our data
and code will be publicly released.

1 INTRODUCTION

Software development is rapidly evolving with the advent of large language models (LLMs) (Sap-
kota et al., 2025), marking a shift toward end-to-end agentic coding systems (Wang et al., 2025).
Recent advances, such as Claude Code (Anthropic, 2025a) and Qwen Code (Qwen, 2025) exem-

Task Description
Develop a GPT-2 model following the provided 
interface and ensure it is directly callable.

Interface of the features to be tested

from transformers import GPT2Model

Class GPT2Model (nn.Module):
" " " 
def forward(self, input_ids, …):

Args: 
input_ids: (batch_size, input_ids_length)

Returns:
logits: (batch_size, seqlen, d_classes).

" " " 

LLM Agents

Codebase (optional)

Generate a Callable Solution
+3000 -13

Unit Tests ( F2P & P2P )

Test_modeling_bert

Pre Post Tests

Test_modeling_gpt2

a) Formulation of our task b) % Resolved of current LLMs

Performace Comparison

Figure 1: a) The agent must implement a directly callable feature based on the task description and
interface definitions, either by developing from scratch or extending an existing repository. b) Our
benchmark shows that even Claude 4 achieves only a 7.5% solution rate.
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Feature-oriented Execution-based Scalable Instance Continually InstanceBenchmark Agentic Coding Evaluation Collection Updatable Number

BigCodeBench (Zhuo et al., 2025) ✓ 1140
LiveCodeBench (Jain et al., 2025a) ✓ 454
FullStackBench (Cheng et al., 2024) ✓ 3374

SWE-bench (Jimenez et al., 2024) ✓ ✓ ✓ 500
PaperBench (Starace et al., 2025) ✓ 20
Paper2Coder (Seo et al., 2025) ✓ 90
MLEBench (Chan et al., 2025) ✓ ✓ 72
DevEval (Li et al., 2025) ✓ ✓ 20
GitTaskBench (Ni et al., 2025) ✓ ✓ 54

ACE-Bench (ours) ✓ ✓ ✓ ✓ 212

Table 1: A comparison of ACE-Bench with current coding benchmarks reveals that our bench em-
phasizes feature-level realistic software development. It leverages an execution-based evaluation
pipeline and integrates a test-driven toolkit for the automatic generation of task instances.

plify this evolution by introducing requirement-driven agents that autonomously plan, execute, and
interact with external tools (e.g., compilers) to iteratively tackle complex software development
tasks (Gong et al., 2025), thereby relegating human intervention to a supervisory role.

Recently, various benchmarks have been introduced to assess this paradigm shift, including SWE-
bench (Jimenez et al., 2024), PaperBench (Starace et al., 2025), and GitTaskBench (Ni et al., 2025).
While these benchmarks have made significant contributions to task-oriented agentic coding, they
are limited either by the narrow focus on bug-level scenarios or by reliance on handcrafted gen-
eration pipelines. As agentic coding expands toward more complex settings, such as feature-level
development, these constraints hinder their ability to fully capture the capabilities of frontier code
agents. Therefore, there is a need to build a challenging benchmark that broadens evaluation scope
to feature-level scenarios, supported by automated collection toolkits to facilitate its future usage.

Constructing such a benchmark poses nontrivial challenges. Effective and execution-based evalu-
ation of feature-level agentic coding generally depends on clearly defined functional interfaces to
resolve ambiguities between the implementation and test criteria. However, these specifications are
often absent in previous benchmarks. Furthermore, creating an automated data collection toolkit
to support the scaling of benchmarks introduces additional complexities. Conventional pull request
(PR)-based methods (Jimenez et al., 2024; Pan et al., 2025; Jain et al., 2025b) are ineffective in
capturing complete feature patches, as these often span multiple PRs scattered across the timeline,
making them difficult to associate. Moreover, many PRs lack tagging, hindering the reliable iden-
tification of feature contributions. Notably, PR-driven methods are inherently tied to the historical
trajectory of commit submissions, limiting the tasks to fixed development combinations.

Motivated by these shortcomings, we introduce ACE-Bench , a challenging benchmark that targets
feature-oriented agentic coding scenarios. It integrates an execution-based evaluation pipeline and
a test-driven toolkit for automatically collecting instances from Python repositories. As shown in
Table 1, our bench provides the following characteristics:

1. Feature-oriented real-world software development. Unlike SWE-bench, which is dominated
by bug-fixing issues with only about 18–22% of its instances corresponding to feature requests,
our benchmark is explicitly designed to target systematic feature-level agentic coding. As shown
in Figure 1, given human-like clear requirements (e.g., interface signatures and high-level func-
tional descriptions), our task entails the implementation of new capabilities either within an ex-
isting codebase or as standalone modules. For example, adapting the Transformers library (Wolf
et al., 2020) for compatibility with Qwen3 (Yang et al., 2025a) or engineering FlashAttention (Dao
et al., 2022) from scratch.

2. Reliable execution-based evaluation. Highly ambiguous requirements without explicit function
signatures often introduce multiple valid implementations that are incompatible with the interface
expected by unit tests. This misalignment complicates execution-based evaluation and typically
necessitates additional manual inspection or LLM-based judgement (Starace et al., 2025; Seo
et al., 2025). To mitigate this issue, we adopt a test-driven formulation strategy when constructing
requirements. Each prompt explicitly specifies the clear interface definitions, import paths, and
the descriptions of expected behaviors, and enforces that the solution must be directly callable,
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as illustrated in Figure 1. This method guarantees that a correct implementation will pass all
associated tests, thereby enabling automated execution-based evaluation.

3. Scalable instance collection toolkit. To support the extensible creation of feature-oriented, real-
istic evaluation environments with fail-to-pass (F2P) and pass-to-pass (P2P) tests, as introduced in
SWE-bench, we develop an automated generation pipeline driven by unit tests. The pipeline be-
gins by selecting and executing F2P and P2P tests, followed by the construction of a dependency
graph through dynamic tracing. Based on the traced dependencies, the system automatically ex-
tracts the implementation of the targeted features while ensuring the integrity of other features.
The final problem statements are then synthesized. This approach enables us to generate naturally
verifiable environments from any Python repository in a scalable and flexible manner, free from
the constraints of the availability and predefined trajectory of human-written PRs or commits.

4. Continually updatable. Building on our collection toolkit, ACE-Bench supports a continual
supply of new task instances, enabling evaluation on tasks created after their training date, thus
mitigating the risk of contamination. Using this pipeline, we have curated a benchmark with 212
evaluation instances and 889 verifiable environments, created from May 2022 to September 2025,
sourced from 16 real-world GitHub repositories in the first version of our benchmark.

We evaluate multiple state-of-the-art LMs on ACE-Bench and find that they fail to solve all except
the simplest tasks. Using the Openhands agent framework (Wang et al.), Claude 4 successfully
completes 7.5% of the task cases. Furthermore, we carried out comprehensive experiments, offering
insights into potential improvement directions on our benchmark.

In a nutshell, our contributions are three-fold: 1) We introduce ACE-Bench, a benchmark for agen-
tic coding that evaluates LLMs on solving feature-level, real-world complex tasks through an auto-
mated, execution-based evaluation pipeline. 2) We release a scalable, test-driven toolkit for instance
collection that integrates seamlessly with our benchmark and automatically generates verifiable en-
vironments from Python repositories. Using this toolkit, we construct a benchmark comprising 212
evaluation tasks and 889 executable environments from 16 open source GitHub repositories. 3) We
benchmark state-of-the-art LLMs, including both open- and closed-source variants, and perform
in-depth analysis to identify and highlight remaining challenges.

2 RELATED WORK

Agentic Coding Benchmarks. The most widely adopted benchmark for agentic coding is SWE-
bench (Jimenez et al., 2024), whose verified subset has emerged as a standard for assessing LLMs.
Although originally highly challenging, its success rate has increased from below 10% to over 70%
within a year, reflecting rapid advances in LLM-based agents (Anthropic, 2025a; Yang et al., 2025a).
Despite its importance, SWE-bench has notable drawbacks. It mainly focuses on bug fixing, with
comparatively limited coverage of feature development tasks, which often span multiple PRs. Other
benchmarks address narrower domains or predefined workflows. PaperBench (Starace et al., 2025)
and MLE-Bench (Chan et al., 2025) focus on machine learning problems but rely on expert curation
or high-quality cases from Kaggle. GitTaskBench (Ni et al., 2025) broadens task coverage but offers
only 54 expert-designed tasks, while DevEval (Li et al., 2025) spans the development lifecycle but
enforces fixed workflows with 22 handcrafted tasks. To tackle the above problems, we propose
a challenging benchmark specifically designed for feature-oriented agentic coding scenarios. This
benchmark integrates an execution-based evaluation pipeline and an automated toolkit that collects
instances from Python repositories in a scalable manner.

Scalable Collection Pipeline. A verifiable environment is crucial for achieving better agentic cod-
ing. SWE-Gym (Pan et al., 2025) follows the pull-request based approach of SWE-bench, whereas
R2E-Gym (Jain et al., 2025b) derives tasks from commits by synthesizing tests and back-translating
code changes into problem statements with LLMs. These approaches mitigate scalability concerns
but provide limited guarantees of evaluation quality. SWE-Smith (Yang et al., 2025b) synthesizes
tasks from repositories using heuristics such as LLM generation, procedural modifications, or pull-
request inversion. SWE-Flow (Zhang et al., 2025) synthesizes data based on fail-to-pass tests but
neglects pass-to-pass tests and does not ensure the proper functioning of other features in undevel-
oped codebases, resulting in discrepancies compared to actual development settings. Although suc-
cessful, none of them can generate tasks that are both feature-oriented and reflective of real-world
development scenarios. Our benchmark addresses these gaps by providing a test-driven, scalable
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< > Source Code
models/

tests/

readme.md

setup.py

Unit Tests
tests/test_bert.py
tests/test_dinov2.py
tests/test_llava.py
tests/test_gpt2.py

Real Repositories Setup Environment

Developers
List packages and 

installation commands

Select F2P and P2P Tests

Execute and Check Unit Tests

tests/test_bert.py

tests/test_dinov2.py

tests/test_llava.py

tests/test_gpt2.py

Fail-to-Pass  (F2P) Pass-to-Pass (P2P)

Dependency Graph

Post Verification

P2P  & F2P 
F2P

P2P

Pre-solved Codebase

F2P

P2P

Instance

Problem Text

Docker Image

Codebase

Gold Patch

Unit Tests

Node Classification

Graph Traversal

Code Patch Extraction

Func unique to P2P 

Func unique to F2P

Func of both P2P & F2P

Func of codebase  

Func of code patch

Dependency

Applying the code patch

Docker Creation 
Automatically 

install the repository

Synthetic Tasks

Select×𝑵

Figure 2: Given a GitHub repository, our automated toolkit initializes the development environment
via Docker. For each benchmark instance, it validates and selects fail-to-pass and pass-to-pass tests.
Then, the system performs dynamic tracing to capture runtime behavior and construct an object
dependency graph. Leveraging this graph, the toolkit synthesizes code patches, derives correspond-
ing pre-solved codebases, and formulates final problem statements. This pipeline has yielded 212
benchmark tasks and 889 executable environments from 16 GitHub repositories.

tool for generating feature-level agentic coding tasks, complemented by a rigorous post-verification
that ensures the integrity of undeveloped codebases, consistent with real-world scenarios.

3 ACE-BENCH

ACE-Bench establishes a benchmark for evaluating the capabilities of code agents in end-to-end
software development tasks. The benchmark requires agents to interpret high-level goals and their
associated code interfaces, autonomously manage execution environments, and synthesize correct
and callable implementations either within existing codebases or as standalone solutions. Con-
structed with minimal human intervention, the benchmark leverages an automated pipeline that de-
rives feature-oriented coding tasks from open-source repositories, thereby extending the scope of
agentic coding beyond bug fixing to encompass feature development.

3.1 FEATURE-ORIENTED AGENTIC CODING

Task Formulation. As illustrated in Figure 1, each instance in ACE-Bench provides the agent
with a comprehensive problem statement. This includes a high-level task description, a specified
functional interface, a blacklist of prohibited URLs to mitigate potential cheating of agents, and a
dockerfile defining the execution environment. The agent is then tasked with generating a solution
that addresses the problem, whether by editing existing code or implementing from scratch. Notably,
to facilitate automated and unambiguous evaluation, the agent’s output is required to be a directly
callable module. Its invocation path, function signature, including input and output variables as well
as comprehensive annotations, are all explicitly provided within the problem statements.

Difficulty. In realistic settings, software development may proceed either by extending an existing
codebase or by implementing a feature entirely from scratch. ACE-Bench reflects these two scenar-
ios with two difficulty levels. Level 1 (L1) consists of incremental development within an existing

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

repository based on task requirements, while Level 2 (L2) requires constructing the same function-
ality from scratch. To enable controlled comparison, L1 and L2 tasks are paired in a one-to-one
fashion, resulting in 106 tasks per level and 212 (106×2) tasks overall.

Metric Design. Our evaluation protocol follows the established setup of SWE-bench (Jimenez
et al., 2024), where each agent-generated solution is validated by executing its associated fail-to-
pass (F2P) and pass-to-pass (P2P) tests. A task is considered resolved when the proposed solution
successfully passes all these tests. We report three primary metrics: (1) Resolved Rate, the propor-
tion of tasks fully solved, like SWE-bench; (2) Passed Rate, the average fraction of fail-to-pass tests
passed per task, serving as a soft indicator of partial correctness; (3) Token IO, the average number
of input and output tokens consumed, reflecting the computational efficiency of the agent.

3.2 BENCHMARK COLLECTION

Execution Environment Configuration. To rapidly set up an environment for a given repository,
we manually specify installation commands (taking approximately three minutes), rather than rely-
ing on the more error-prone and uncontrollable approach of having the agent search for installation
methods itself. Automated scripts are then used to configure the environment and package the repos-
itory into a Docker image. The benchmark includes 16 widely downloaded PyPI packages across
various domains, such as visualization libraries and LLM infrastructure. Notably, human interven-
tion is required only for this step of the pipeline, and the total human labor required to complete this
for all 16 repositories amounts to less than one hour.

Constructing Fail-to-pass and Pass-to-pass Tests. We construct benchmark instances by identi-
fying candidate test files in the repository using pytest’s collection function (Krekel et al., 2004),
followed by validation through execution. For each instance, n validated test files are designated as
fail-to-pass (F2P) tests, as introduced in SWE-bench. These tests fail in the undeveloped repository
but succeed once the agent correctly implements the target functionality. To additionally assess in-
cremental development capability, we include m randomly sampled validated files as pass-to-pass
(P2P) tests, which are expected to pass both before and after the agent’s solution. Since a single test
file typically corresponds to one functional implementation, n is usually set to one in our setting.

Test-Driven Code Patch Extraction. Obtaining the pre-solved codebase together with the cor-
responding code patch requires isolating the functionality linked to the F2P tests. However, the
inherent ambiguity of functional boundaries in real-world codebases poses a significant challenge.
Naively extracting relevant code fragments risks inadvertently disrupting other well-established fea-
tures. As depicted in Figure 2, our approach mitigates this issue by incorporating P2P tests to
accurately identify code modules required by other functions or those serving as foundational com-
ponents of the repository. The detailed implementation is as follows:

• Construct the object dependency graph. We initiate the process by executing the available F2P
and P2P test cases for a given benchmark instance. During runtime, we employ Python’s built-
in tracing facility to capture function call events and their dependencies. From this trace, we
construct an object dependency graph in which each node represents a function and is enriched
with metadata, including a unique identifier, source location, a list of dependent functions, and a
binary flag indicating if the function was triggered during P2P tests.

• Graph traversal and node classification. To distinguish functional components, a large language
model analyzes the F2P test files and separates the imported functions related to the target feature
from those that serve supporting roles in the testing process. The nodes identified as central to
the undeveloped feature serve as the initial entry points for a breadth-first traversal of the graph.
During this traversal, nodes are systematically classified: those encountered in P2P executions
are designated as remained, while nodes not observed in P2P runs are classified as extracted.

• Extracting the code. The traversal process yields a subset of graph nodes identified as relevant
to the intended functionality. In the final stage, the corresponding segments of source code are
extracted from the original codebase. This operation produces a modified codebase devoid of the
target functionality and a complementary code snippet that realizes the previously absent feature.

Post Verification. To ensure the successful extraction of the target functionality from the code-
base without affecting other components, we implement a rigorous verification process. The first
step involves validating the pre-modified codebase by ensuring that it passes all P2P tests, thereby
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Lite Full
Model % Passed % Resolved # Token I/O % Passed % Resolved # Token I/O

Gemini 2.5 Pro 17.0 3.3 0.7M / 16k 13.2 2.4 0.8M / 17k
OpenAI o3 23.2 3.3 2.0M / 36k 22.4 1.9 2.0M / 34k
Qwen3-Coder-480B-A35B-Instruct 25.6 0.0 1.9M / 18k 25.4 2.4 2.4M / 24k
GPT-5 29.5 6.7 1.5M / 31k 36.4 7.1 2.1M / 34k
Claude Sonnet 4 37.0 6.7 1.8M / 31k 38.2 7.5 1.4M / 33k

Table 2: The performance of various frontier large models combined with the OpenHands frame-
work in the Lite and Full evaluation sets of our benchmark.

confirming its integrity. Simultaneously, it must fail all F2P tests, demonstrating that the target
functionality has been effectively removed. Following this, we assess the accessibility of all utility
functions required for the F2P tests in the modified codebase. This step ensures that the changes
made are confined to the target functionality and do not inadvertently impact other core depen-
dencies. Finally, reapplying the patch to the undeveloped codebase should allow all tests to pass,
confirming the patch’s correctness.

Problem Statement Generation. By leveraging the extracted code snippet, the pre-modified code-
base, and the corresponding unit tests, we automatically generate the problem statement for each
instance. This procedure includes the derivation of the feature signatures, which encompass the
types of input and output variables, alongside the functional description as inferred from the code
comments. In the absence of such comments, we employ a large language model to generate them
directly from the code snippet. Further details can be found in the appendix.

To this end, our pipeline automatically generates the core components of each instance: a natural
language problem statement, an undeveloped codebase, a verified code patch, and a suite of unit tests
corresponding to required features. The sole manual intervention required is the specification of the
repository’s installation procedure, a process that takes approximately three minutes per repository.

3.3 BENCHMARK CONFIGURATION

Full Set. Leveraging our pipelines, we configured the number of P2P test files to five and curated 889
coding environments derived from 16 Python repositories. To ensure the benchmark meaningfully
challenges best-performing agents, we restricted inclusion to tasks exceeding 100 lines of pending
implementation, encompassing at least 10 F2P test points, with test files initially committed after
May 2022. This filtering yielded 212 high-quality instances comprising the full set.

Lite Set. Evaluating LMs on our bench can be time-consuming and, depending on the model, require
a costly amount of compute or API credits, as illustrated in Table 2, where the average number of
input tokens approaches the million-token mark. To facilitate wider adoption of ACE-Bench , we
randomly selected 30 instances from the full set to create a streamlined lite set.

4 EXPERIMENTS

4.1 PERFORMANCE ON ACE-BENCH

4.1.1 BASELINE

To establish strong baselines, we adopt the OpenHands (Wang et al.) framework for software devel-
opment agents, which tops the SWE-bench. In the experiments, the maximum of steps per task is
set as 100 by default. Internet access is freely available, while no specific browser-use tools are pro-
vided. To ensure the integrity of our evaluation, robust anti-cheating mechanisms are incorporated
to prevent agents from assessing the ground-truth repositories (see the appendix for details).

Five frontier LLMs are evaluated, including GPT-5 (OpenAI, 2025a), OpenAI o3 (OpenAI, 2025b),
Qwen3-Coder-480B-A35B-Instruct (Team, 2025), Gemini 2.5 Pro (Comanici et al., 2025) and
Claude Sonnet 4 (Anthropic, 2025b). The results are presented in Table 2. As can be seen, even
the most capable models, i.e., Claude 4 Sonnet and GPT-5, resolve only 7.5% and 7.1% of the tasks
on the Full set, respectively. This underscores the highly challenging nature of the feature-oriented

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

SWE-bench Ours

Problem Texts Length (Words) 195.1 4818.0

Gold Solution
# Lines 32.8 1012.0
# Files 1.7 3.5
# Functions 3 15.0

Tests # Fail to pass (test points) 9.1 133.2
# Total (test points) 120.8 447.2

Table 3: Average numbers characterizing different at-
tributes of a SWE-bench task instance, as well as our
ACE-Bench (L1 set).

Full Set
(212)

transformers (126)seaborn (8)

flask (2)

sympy (2)
scikit-learn (4)

requests (2)

pandas (2)

astropy (2)

sphinx (22)

Liger-Kernel (24)

matplotlib (2) nerfstudio (2)
trl (6)

xarray (2)

pytest (2)

polars (4)

Figure 3: Distribution of our bench-
mark across 16 GitHub repositories.

SWE-bench Verified ACE-Bench subset

% Resolved % Passed % Resolved # Token I/OModel
mini-SWE-agent OpenHands OpenHands

Gemini 2.5 Pro 53.60 - 22.8 0.0 0.8M / 12k
Qwen3-Coder-480B-A35B-Instruct 55.40 69.60 27.2 0.0 1.5M / 14k
OpenAI o3 58.40 - 27.0 0.0 1.7M / 30k
GPT-5 65.00 - 40.1 2.1 1.8M / 33k
Claude Sonnet 4 64.93 70.40 42.6 4.1 1.1M / 24k

Table 4: Compare the performance of the frontier agents on SWE-bench and our ACE-Bench, using
a subset of our benchmark with repositories shared with SWE-bench for a fair comparison.

development tasks in our ACE-Bench, which require agents to write thousands of lines of code and
pass comprehensive test suites.

For a more nuanced evaluation, we further analyze passed rates and token consumption by differ-
ent LLMs. The passed rates, while remaining at a low level of below 40%, are much higher than
the resolved rates. This discrepancy indicates that current agents often produce seemingly plausi-
ble solutions with a large underlying gap from truly solving the problem, which accounts for the
common need of tedious debugging for AI-generated code. Regarding token consumption, nearly
all LLMs consume over one million input tokens. Given the low resolved rates, this reflects the
extremely low efficiency of existing agents in tackling real-world development tasks, which is thus
an important topic for future research. In addition, a high consistency is observed in the rankings of
different LLMs across the Lite and Full sets in terms of both pass and resolved rates, demonstrating
the representativeness of the Lite set.

4.1.2 COMPARISON WITH SWE-BENCH

Compared with the SWE-bench (Jimenez et al., 2024), our ACE-Bench introduces a more chal-
lenging suite of development tasks. It encompasses six additional popular repositories apart from
ten repositories originally covered by the SWE-bench, the full list of which is shown in Figure 3.
Table 3 presents comparative statistics illustrating the task difficulties across the two benchmarks.
Specifically, the tasks in our benchmark exhibit a substantial increase of complexity in terms of the
length of problem texts, number of lines, files and functions to be edited as well as the number of
tests to pass. These enhancements necessiate agents with strong long-context understanding and
management capabilities alongside comprehensive problem analysis to handle diverse test cases.

For a more grounded analysis, we further compare the performance of agents on the SWE-bench
and our ACE-Bench . To draw a more aligned comparison, we construct a subset of our benchmark
including only repositories shared with SWE-bench. The results in Table 4 reveals a stark perfor-
mance gap between the two benchmarks in terms of resolved rate. Specifically, the most capable
Claude Sonnet 4 only resolves 4.1% of the tasks in our ACE-Bench subset in contrast to the 70.40%
on the SWE-bench. This indicates the highly challenging nature of our benchmark, which provides
considerable room for future improvement and establishes a rigorous testbed to measure the upper
bound of existing agents.
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Models % Resolved % Passed

Original
Gemini 2.5 Pro 3.3 17.0
GPT-5 6.7 29.5
Claude 4 Sonnet 6.7 37.0

Verified
Gemini 2.5 Pro 3.3 15.4
GPT-5 6.7 27.4
Claude 4 Sonnet 3.3 32.5

Table 5: An ablation study to evaluate the ne-
cessity of manual verification for the examples
generated by our system.

Models Steps % Resolved % Passed

GPT-5
50 3.3 22.5
100 6.7 29.5
150 3.3 30.2

Claude 4 Sonnet
50 0.0 28.2
100 6.7 37.0
150 3.3 34.3

Table 6: An ablation study on the max exe-
cution steps of OpenHands with GPT-5 and
Claude 4 in Lite Set.

Without Interface Visible Unit Tests
Model % Resolved % Passed # Token I/O % Resolved % Passed # Token I/O

Gemini 2.5 Pro 0.0 (-3.3) 12.0 (-5.0) 0.6M / 21k 3.3 (+0.0) 18.4 (+1.4) 1.2M / 19k
OpenAI o3 3.3 (-0.0) 17.7 (-5.5) 1.3M / 26k 10.0 (+6.7) 37.7 (+14.5) 2.8M / 101k
GPT-5 3.3 (-3.4) 16.6 (-12.9) 2.3M / 31k 26.7 (+20.0) 56.1 (+26.6) 2.5M / 66k
Claude Sonnet 4 3.3 (-3.4) 16.9 (-20.1) 1.2M / 30k 26.7 (+20.0) 60.5 (+23.5) 2.2M / 32k

Table 7: Performance comparison of lite set with visible unit tests and without interface.

4.1.3 FAILURE CASES ANALYSIS

We conduct a failure case analysis based on the results in our full set from the best-performing
Claude 4 Sonnet model, leading to the following findings.

Appropriate Information in ACE-Bench. Figure 4 presents the distribution of prevalent error
categories, with AssertionError emerging as the most frequent. This predominance indicates
that many LLM-generated solutions are able to execute up to the assertion checkpoints without
encountering prior runtime failures. This result underscores that ACE-Bench can effectively provide
the LLMs with appropriate information to generate complete programs.

Limitations in Code Reasoning. A considerable number of TypeError instances can be ob-
served in Figure 4, indicating that current LLMs struggle to accurately infer variable types and
function interfaces within dynamically typed high-level programming languages (such as Python).
It essentially reveals the current limitation of LLMs in performing complex reasoning.

The “Idle Habits” of LLMs. We also find that current LLMs exhibit a tendency toward “laziness”.
For example, they often resort to guessing (even hallucinating) the interface of a function defined
across files, rather than performing the actual file reading required to retrieve the precise function
prototype. This behavior also leads to a considerable number of TypeError occurrences. Notably,
the same tendency appears in both Claude Code and Mini-SWE-Agent, indicating that this issue is
not specific to a single scaffold.

4.2 ABLATION STUDY

4.2.1 ANALYZING THE QUALITY AND NECESSITY OF OUR BENCHMARK DESIGN.

Without Interface. We performed an ablation study to assess the role of explicit interface speci-
fication in agent performance. For controlled comparison, we employed the lite set, systematically
removing function signatures and call path annotations from the prompts. As shown in Table 7, this
removal leads to a marked decline in task success rates. The results confirm that clearly defined
interfaces are critical for enabling effective reasoning and program synthesis by LLM-based agents.

Sample Quality. Our automated data generation pipeline yields high-quality, evaluation-ready sam-
ples with minimal human intervention, supported by a rigorous post-verification process. To assess
the fidelity of these samples, we conducted an ablation study in which a senior engineer with five
years of industry experience in AI infrastructure and system architecture independently revised the
prompts in the lite set. The verification details are provided in Appendix Figures 20 and 21. As
shown in Table 5, model performance on the manually revised subset is highly consistent with the
original dataset. These results affirm the reliability and robustness of our automated data pipeline.
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Difficulty Models % Resolved % Passed

L1

Gemini 2.5 Pro 3.8 12.3
OpenAI o3 2.8 24.5
Qwen3-Coder-480B 3.8 29.6
GPT-5 13.2 48.8
Claude 4 Sonnet 14.0 57.6

L2

Gemini 2.5 Pro 0.9 14.0
OpenAI o3 0.9 20.4
Qwen3-Coder-480B 0.9 21.3
GPT-5 0.9 24.1
Claude 4 Sonnet 0.9 18.7

Table 8: Performance comparison of tasks with
different difficulty levels in ACE-Bench.
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Figure 4: Failure modes of the best-
performing Claude 4 Sonnet.

Lines of Code and Task Initial Commit Date. Figure 5 explores the relationship between task
pass rates, initial commit timestamps, and the number of lines of code required for task completion.
We observe a clear negative correlation between pass rate and code length, indicating that tasks
involving more lines of code are inherently more challenging for current large models. In contrast,
task performance shows minimal dependence on commit time, likely because the task set remains
largely unexplored by existing models. To further understand why commit time has little influence,
we analyze how feature complexity evolves over time. Specifically, the lower panel of Figure 5
plots the normalized trends of code length and pass rate across commit periods. The two normalized
curves exhibit highly similar fluctuations, reinforcing that variation in task performance is driven
far more by feature complexity than by commit time. However, as agentic systems increasingly
participate in feature development workflows, the risk of data leakage may become more pronounced
and should be monitored in future benchmark design.
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Figure 5: The pass rate of Claude 4 Sonnet in our
benchmark varies with the number of code lines
and task creation time.

Comparison between L1 and L2 Subset.
Comparison between L1 and L2 Subsets. Our
benchmark defines two evaluation settings: L1,
where new functionalities are incrementally
added to an existing codebase, and L2, where
functionalities are implemented entirely from
scratch. All conditions are held constant across
both settings, except for the presence or ab-
sence of initial code context.

This distinction leads to notably different lev-
els of reasoning complexity. In the L1 setting,
the agent still has access to most of the original
codebase except for the functions and classes
removed along the traced execution path. This
partial repository shows how the feature fits
into the surrounding code and gives the agent
contextual clues about expected behavior. As
a result, L1 tasks are more guided, since only
the missing implementations need to be com-
pleted. In contrast, L2 tasks remove all sur-
rounding code. The agent does not see any part
of the original repository and must rely only on
the interface to implement the required functionality. Without the structure provided by the existing
codebase, the agent has to reconstruct the full logic and organization of the feature entirely from
scratch, which makes L2 substantially more difficult. As shown in Table 8, the from-scratch (L2)
setting presents a substantially greater challenge. Current large language models exhibit near-zero
success rates under this condition, indicating a severe limitation in their ability to perform end-to-end
program synthesis without structural guidance.

Accuracy of LLM-based Top Import Classification.

To validate the reliability of our LLM-based classifier for identifying top-level tested objects in test
file, we conducted a quantitative evaluation against expert annotations. Domain experts evaluated
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Metric Precision Recall F1 Score Accuracy

Value 81.03% 89.24% 84.94% 91.74%

Table 9: Performance of the LLM classifier for identifying top-level tested objects.

Scaffold % Resolved % Passed

Claude Code + Claude 4 Sonnet 6.7 40.5
OpenHands + Claude 4 Sonnet 6.7 37.0
Mini-SWE-Agent + Claude 4 Sonnet 0.0 28.2

Table 10: Performance comparison of different agent scaffolds using Claude 4 Sonnet on the Lite
subset.

all 605 import statements in the Lite Set and identified 158 of them as top-level tested objects. The
details of the procedure are provided in Appendix Figure 19. Table 9 reports the performance of
the LLM classifier. These results indicate that LLMs can accurately identify tested objects at scale,
supporting the use of LLM-based classification in our data construction pipeline.

4.2.2 ANALYZING THE KEY FACTORS IN BUILDING END-TO-END CODEAGENTS

Visible Unit Tests. We conducted an ablation study to assess the impact of providing accurate unit
tests on agent performance in complex coding tasks. In this setting, the agent was given access
to ground-truth unit tests alongside the Lite set. As shown in Table 7, both task success rates and
pass rates increased significantly. These findings underscore the importance of high-quality unit test
generation as a key factor in enabling robust agentic coding.

Longer Execution Steps. Table 6 reports the effect of increasing the maximum number of exe-
cution steps on model performance. Increasing the maximum step size from 50 to 100 results in
notable performance gains for both GPT-5 and Claude 4 Sonnet. However, beyond this threshold,
the improvements plateau, and in some cases, excessively long execution trajectories can lead to
performance degradation by reversing previously correct outputs.

Evaluation Across Agent Frameworks. We evaluated three scaffolds on the Lite subset using
Claude 4 Sonnet. As shown in Table 10, Claude Code and OpenHands achieved identical resolution
rates (6.7%), while Mini-SWE-Agent failed to resolve any instance (0.0%). For pass rates, Claude
Code reached 40.5%, followed by OpenHands at 37.0% and Mini-SWE-Agent at 28.2%. These
differences show that scaffold design strongly influences agent effectiveness. However, all three
scaffolds exhibit similar failure modes, suggesting that the core difficulty of ACE-Bench comes
from the tasks themselves rather than any specific framework.

5 CONCLUSION

In this work, we introduce ACE-Bench , a novel benchmark designed to evaluate the capabilities
of LLM-powered agents in realistic, feature-oriented software development scenarios. Leveraging
test-driven task extraction and execution-based evaluation, ACE-Bench overcomes key limitations
of existing benchmarks by enabling greater task diversity, scalability, and verifiability. Empirical
results reveal that current agentic systems face persistent challenges in planning, reasoning, and
managing long-horizon tasks. With its extensible and automated design, ACE-Bench offers not
only a rigorous evaluation framework but also a foundation for the development of next-generation
agentic coding models.
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efficient exact attention with io-awareness. In Advances in Neural Information Processing Sys-
tems, 2022.

Yaxin Du, Yuzhu Cai, Yifan Zhou, Cheng Wang, Yu Qian, Xianghe Pang, Qian Liu, Yue Hu, and Si-
heng Chen. Swe-dev: Evaluating and training autonomous feature-driven software development.
arXiv preprint arXiv:2505.16975, 2025.

Jingzhi Gong, Vardan Voskanyan, Paul Brookes, Fan Wu, Wei Jie, Jie Xu, Rafail Giavrimis, Mike
Basios, Leslie Kanthan, and Zheng Wang. Language models for code optimization: Survey,
challenges and future directions. arXiv preprint arXiv:2501.01277, 2025.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. In International Conference on Learning Repre-
sentations, 2025a.

Naman Jain, Jaskirat Singh, Manish Shetty, Liang Zheng, Koushik Sen, and Ion Stoica. R2e-gym:
Procedural environments and hybrid verifiers for scaling open-weights swe agents. Conference
on Language Modeling, 2025b.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In Interna-
tional Conference on Learning Representations, 2024.

Holger Krekel, Bruno Oliveira, Ronny Pfannschmidt, Floris Bruynooghe, Brianna Laugher, and
Florian Bruhin. pytest x.y, 2004. URL https://github.com/pytest-dev/pytest.
Contributors: Holger Krekel and Bruno Oliveira and Ronny Pfannschmidt and Floris Bruynooghe
and Brianna Laugher and Florian Bruhin and others.

Bowen Li, Wenhan Wu, Ziwei Tang, Lin Shi, John Yang, Jinyang Li, Shunyu Yao, Chen Qian,
Binyuan Hui, Qicheng Zhang, et al. Prompting large language models to tackle the full software
development lifecycle: A case study. In International Conference on Computational Linguistics,
2025.

Ziyi Ni, Huacan Wang, Shuo Zhang, Shuo Lu, Ziyang He, Wang You, Zhenheng Tang, Yuntao Du,
Bill Sun, Hongzhang Liu, et al. GitTaskBench: A benchmark for code agents solving real-world
tasks through code repository leveraging. arXiv preprint arXiv:2508.18993, 2025.

OpenAI. Gpt-5 system card, 2025a. URL https://cdn.openai.com/
gpt-5-system-card.pdf.

OpenAI. Openai o3, 2025b. URL https://openai.com/index/
introducing-o3-and-o4-mini.

Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe Zhang.
Training software engineering agents and verifiers with SWE-Gym. In International Conference
on Machine Learning, 2025.

11

https://github.com/pytest-dev/pytest
https://cdn.openai.com/gpt-5-system-card.pdf
https://cdn.openai.com/gpt-5-system-card.pdf
https://openai.com/index/introducing-o3-and-o4-mini
https://openai.com/index/introducing-o3-and-o4-mini


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Qwen. Qwen code: Research-purpose cli tool for qwen-coder models. https://qwenlm.
github.io/blog/qwen3-coder/, 2025.

Ranjan Sapkota, Konstantinos I Roumeliotis, and Manoj Karkee. Vibe coding vs. agentic coding:
Fundamentals and practical implications of agentic ai. arXiv preprint arXiv:2505.19443, 2025.

Minju Seo, Jinheon Baek, Seongyun Lee, and Sung Ju Hwang. Paper2code: Automating code
generation from scientific papers in machine learning. arXiv preprint arXiv:2504.17192, 2025.

Giulio Starace, Oliver Jaffe, Dane Sherburn, James Aung, Jun Shern Chan, Leon Maksin, Rachel
Dias, Evan Mays, Benjamin Kinsella, Wyatt Thompson, Johannes Heidecke, Amelia Glaese, and
Tejal Patwardhan. Paperbench: Evaluating AI’s ability to replicate AI research. In International
Conference on Machine Learning, 2025. URL https://openreview.net/forum?id=
xF5PuTLPbn.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Huanting Wang, Jingzhi Gong, Huawei Zhang, and Zheng Wang. Ai agentic programming: A
survey of techniques, challenges, and opportunities. arXiv preprint arXiv:2508.11126, 2025.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. OpenHands: An Open Platform for AI Soft-
ware Developers as Generalist Agents. URL https://arxiv.org/abs/2407.16741.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Perric Cistac, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gug-
ger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-
Art Natural Language Processing. Association for Computational Linguistics, 2020. URL
https://www.aclweb.org/anthology/2020.emnlp-demos.6.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025a.

John Yang, Kilian Lieret, Carlos E. Jimenez, Alexander Wettig, Kabir Khandpur, Yanzhe Zhang,
Binyuan Hui, Ofir Press, Ludwig Schmidt, and Diyi Yang. SWE-smith: Scaling data for software
engineering agents. arXiv preprint arXiv:2504.21798, 2025b.

Lei Zhang, Jiaxi Yang, Min Yang, Jian Yang, Mouxiang Chen, Jiajun Zhang, Zeyu Cui, Binyuan Hui,
and Junyang Lin. Synthesizing software engineering data in a test-driven manner. In International
Conference on Machine Learning, 2025.

Wenting Zhao, Nan Jiang, Celine Lee, Justin T Chiu, Claire Cardie, Matthias Gallé, and Alexan-
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APPENDIX

A DETAILED BENCHMARK COLLECTION

This section complements the details of benchmark construction (Sec. 3.2), which contains detailed
recipes of the data collection, patch extraction, and prompt design, along with a fuller characteriza-
tion of the task instances.

A.1 DATA COLLECTION PIPELINE

Environment Setup.

For each selected repository, we manually prepare an environment configuration file (see Figure 6
for an example). Empirical observations indicate this procedure can be accomplished within three
minutes. Upon completion of environment configuration, our pipeline constructs a Docker image,
with all subsequent operations executed within this sandboxed environment. This is the sole stage
requiring human intervention. All succeeding stages operate under full automation.

Patch Extraction. The patch extraction process consists of four main steps.

Patch Extraction Step 1: Dependency Graph Construction. This procedure generates function-level
dependency graphs for all test files within the code repository, establishing the foundation for sub-
sequent patch extraction operations. We leverage pytest’s intrinsic test case collection mechanism
to aggregate all viable test cases at the file granularity, where each file contains a potential test case.
For each test case, we execute the test within the sandbox environment, selecting test cases that
achieve complete success as fail-to-pass (F2P) instances. Concurrent with test execution, we con-
struct function-level dependency graphs for each F2P instance utilizing a dynamic tracing library.

Patch Extraction Step 2: LLM Classification. For each F2P test file, we employ an LLM to differen-
tiate between imported objects serving as test targets versus those functioning as test dependencies
and general utilities. We provide the LLM with the test file’s name and content as classification
references. Our prompt template for the LLM to classify is illustrated in Figure 10. Objects clas-
sified through this methodology are designated as top-level objects, representing directly imported
interfaces by the test file.

Patch Extraction Step 3: Pass-to-pass (P2P) Selection. For each F2P instance, we select multiple
pass-to-pass cases. These P2P cases are executed after coding agents finishing implementations
to ensure existing functionalities remain normal. Since the aforementioned top-level objects of F2P
cases will be removed from codebases, here the pass-to-pass cases should not share top-level objects
with the F2P cases. For this reason, if we find only a few P2P cases have different top-level objects
from F2P cases, it may indicate erroneous classification of general utilities as top-level objects by
the LLM. In this circumstance, we will reconsider the top-level objects according to their invocation
frequency.

Patch Extraction Step 4: Final Extraction. For each F2P case, we utilize top-level objects as entry
points and execute BFS according to the constructed dependency graph. Node objects belonging to
P2P are designated as remained, while others are marked as extracted. Nodes marked as extracted
are added to the BFS queue for continued traversal. BFS termination occurs upon queue finish or
when extracted code lines reach our predetermined maximum value, randomly selected between
1000 and 10000 lines per case. Finally, we remove objects marked as extracted from the codebase,
yielding a complete codebase with F2P functionality eliminated.

Post-verification. For each codebase after code patch extraction, we conduct post-verification to
ensure the modified codebase has normal functionality. Specifically, we execute F2P within the
modified codebase, expecting pass rates below a predetermined parameter. Then we further execute
all selected P2P cases, ensuring complete test passage.
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Environment Configuration File

SPECS_LITGPT = {
    "base_image": "python310",
    "repository": "Lightning-AI/litgpt",
    "commit": None,
    "start_time": "2024-01-01",
    "test_discovery_cmd": TEST_DISCOVERY_DEFAULT,           
    "test_dynamic_trace_cmd": TEST_DYNAMIC_TRACE_DEFAULT,   
    "test_cmd": TEST_PYTEST,
    "custom_instance_image_build": [ 
        "ENV HF_HOME=/root/my_cache/huggingface",
        "ENV HF_HUB_CACHE=/root/my_cache/huggingface/hub",
    ],
    "pip_packages": [

   "setuptools",
   "tblib>=3.0.0",

    ],
    "pre_install": [ 

# Commands to execute before installing the project
    ],
    "install": "pip install 'litgpt[extra]'",  
    "docker_specs": {   
        "run_args": {
            "cuda_visible_devices": "0,1,2", 
            "cap_add": []
        },
        "custom_docker_args": [
            "-v /data2/cache_pb_datapipeline:/root/my_cache/",
        ]
    },
    "exclude_keywords": [ 

# Exclude test files containing these keywords
    ],
    "library_name": "litgpt",
    "black_links": [
        "https://github.com/Lightning-AI/litgpt/"
    ],
    "technical_docs": [
    ]
}

Figure 6: Environment Configuration File

A.2 DATA FORMAT AND PROMPT DESIGN

In this section, we present the essential components included in a qualified example (covering both
L1 and L2 tasks), illustrating the test case format of our benchmark, organization of our prompts,
and the effectiveness of using an LLM to supplement missing docstring entries.

Directory Structure of Generated Instances. Each successfully generated instance includes a
directory structure containing two main folders: task and test, as well as a config.yaml file
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used for prompt generation. The task folder contains data that is fully accessible to the agent to
assist with task completion, whereas the test folder contains testing information and debugging
details that are hidden from the agent. The contents of these task folders vary between L1 and L2.
For a L1 case, the task folder contains the codebase of the repository after applying patch extraction.
This gives the agent the necessary context to work with existing code and complete the task. On
the other hand, a L2 case is designed to be more challenging—the task folder does not include any
codebase. That is, the agent is required to implement the solution from scratch, without relying on
any existing code. An example of the directory structure for a L1 case is provided in Figure 7.

Level 1 directory structure

/test_name
└── level1
    ├── task/
    │   ├── Liger-Kernel /        # modified code base
    │   ├── technical_docs/
    │   ├── black_links.txt       # black links agent can't access
    │ └── prompt.md             # task statement
    ├── test/
    │   ├── eval_code.py          # script to structure test results 
    │   ├── path2test.txt         # record the path of test files
    │   ├── f2p_file.py
    │   ├── p2p_file1.py
    │ └── ...
    └── config.yaml

Figure 7: L1 directory structure. This figure illustrates the directory structure for a L1 example,
showing the task and test folders along with the config.yaml file used for prompt genera-
tion. The structure ensures that essential task-related data is accessible to the agent, while test and
debugging details remain hidden.

Prompt Structure and Organization. For each successfully generated instance, we construct a
tailored and detailed prompt.md file as input to the agent. The content of prompt.md consists
of three components: Task, Precautions, and Test and Interface Descriptions. All prompts are
generated automatically without manual labor, following a unified prompt template combined with
an instance-specific configuration file via scripting. As shown in Figure 12, the Task section provides
the agent with an overview of the task under the heading “Core Functionality.” “Main Features and
Requirements” describes the essential code features and requirements. The mandatory components
that must be implemented are outlined under “Key Challenges.” Finally, the “NOTE” subsection
provides relevant notices. In the Precautions section (as shown in Figure 13), we define critical
rules and boundaries, including clarity of the environment and dependency management, the strict
prohibition of cheating (the “red line”), code delivery requirements, and the evaluation criteria. In
the Test and Interface Description section (as shown in Figure 14), we offer detailed instructions on
how to construct the code. This includes requirements for file locations and structure, suggestions
for implementing interfaces, and specific objectives related to the current task.

Template of Prompt Config. We adopt a prompt config to automatically generate prompt.md.
Figure 15 illustrates the template of this configuration file. A rule-based script automatically gener-
ates prompt.md according to this config file.

Prompt Design: L1 vs. L2. It is noteworthy that there are subtle differences between the L1 and L2

prompts. In the Task section of the prompt, for L2 examples, we require the agent to independently
implement the solution from scratch, without access to the repository’s codebase. To enforce this
constraint, the agent is instructed not to download the repository, and even in the event of its doing
so, it is instructed not to install it. This is closely monitored during the testing phase, where we
have set up mechanisms to check whether the agent engages in any unauthorized actions, such as
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Task

black_links.txt
prompt.md

...

        Mask Codebase

huggingface/transformers
Agent

            Tests
test_modeling_rwkv

test_tokenization_deberta.py
...
test_modeling_altclip.py

Evaluation
Apply Tests to Agent Code
Run Test Scripts

Metric computation
Cheating detection

         Agent Code

rwkv/modeling_rwkv.py
rwkv/configuration_rwkv.py
pipelines/base.py

pipelines/feature_extraction.py
utils/backbone_utils.py

Remain unchanged

Changed

  Results
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agent_output/
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report.md

Task

black_links.txt
prompt.md

...

        Base Codebase

huggingface/transformers

Agent

         Agent Lib
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setup.py
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  Results

2025-09-23/18-16-51

agent_output/

apps/

repos/

structured_logs/

report.md

Figure 8: Evaluation workflow: L1 (top, refining a masked codebase) and L2 (bottom, implementing
from scratch)

cheating. Figure 16 presents the prompt for the test-dpo-loss test in the Liger-Kernel library (L1),
while Figure 17 demonstrates the prompt for the test-simple-loss test in the same library (L2).

Supplementation for Missing Docstrings. In cases where the source code lacks adequate docu-
mentation regarding function interfaces or behavior, we leverage a LLM to infer and complete the
missing information. Figure 11 illustrates the prompt for docstring generation. The LLM-generated
docstring is exemplified in Figure 18, where the LLM is used to supplement the missing docstring
in the functional description.

B DETAILED BENCHMARKING PROCESS

Figure 8 illustrates the end-to-end benchmarking process of our system, designed to rigorously as-
sess agent performance across two distinct task levels: L1 (code refinement) and L2 (from-scratch
implementation). The pipeline is organized into four sequential stages: (1) task preprocessing,
(2) agent execution, (3) automated testing, and (4) post-evaluation analysis, which includes metric
computation and cheating detection. Each stage is carefully constructed to ensure fairness, repro-
ducibility, and the prevention of information leakage. The following subsections provide a detailed
explanation of the design and rationale behind each phase.

B.1 PREPROCESSING

The preprocessing procedure standardizes the input preparation for the two evaluation levels while
ensuring the prevention of information leakage. For L1, the process begins with a clean and complete
codebase, where the target implementation files are substituted with masked versions. To further
eliminate potential sources of inference, the corresponding fail-to-pass test is removed, ensuring
that the agent cannot derive the expected behavior from the test code. In contrast, L2 tasks are
initialized solely with a task specification, requiring the agent to construct a complete solution from
scratch without the support of an existing codebase. For both levels of evaluation, the agent’s output
must result in a fully functional codebase that satisfies task requirements, either by refining the
masked codebase in L1 or by generating a new implementation in L2.

It is worth noting that in ablation studies involving white-box evaluation, the fail-to-pass test is
retained to provide additional context for the agent. However, this variant is strictly excluded from
the main evaluation to ensure an experimental setup free from information leakage.
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B.2 EVALUATION

The evaluation process follows a unified framework for both L1 and L2 tasks, with customized
configurations specific to each task.

L1: After the agent completes its task, the fail-to-pass test is restored to its original location within
the codebase. The updated codebase is then subjected to a comprehensive testing process using the
pytest framework, and the resulting test outcomes are systematically recorded for analysis.

L2: The evaluation environment is initialized with a completely unaltered codebase. Within this
codebase, the fail-to-pass test file is modified to import the agent’s implementations via the di-
rective from agent code import. The augmented codebase is subsequently evaluated using
pytest, with all test results meticulously collected and documented.

The raw outputs from the pytest testing phase serve as the foundation for subsequent analyzes.
The evaluation framework organizes all outputs into a comprehensive result package. This package
includes the agent’s generated codebase (agent output/), the container’s runtime workspace
(apps/), detailed metric records (repos/), structured execution logs (structured logs/),
and a summary report (report.md).

B.3 METRICS

The evaluation process produces raw output from the pytest framework, which is subsequently
processed to extract key statistics, including total, passed, failed, skipped, error, xfail, and xpass.

From these statistics, we derive two primary evaluation metrics: pass rate and is solved. The
pass rate is defined as the ratio of successfully passed tests to the total number of executed tests,
excluding skipped tests. The binary metric is solved indicates whether the task is fully solved. It is
assigned a value of 1 if pass rate equals 1 (i.e., all tests are passed), and 0 otherwise.

B.4 CHEATING PREVENTION AND DETECTION

To protect against potential cheating attempts by agents, such as using pip install
<package> followed by inspecting the source code of the installed package, we implement a
twofold defense mechanism. First, defensive prompting is incorporated into the task descriptions to
discourage such behavior. Second, the evaluation framework conducts an automated inspection of
the agent’s execution logs after task completion to identify suspicious activities.

The log inspection process searches for regular expression patterns that indicate unauthorized at-
tempts to access the source code of installed packages. If any pattern matches, the agent is flagged
for potentially dishonest behavior in the evaluation report.

r’"message".*cat /usr/local/lib/python\d+\.\d+’
r’"command".*cat /usr/local/lib/python\d+\.\d+’
r’"message".*reading file: /usr/local/lib/python\d+\.\d+’
r’"message".*reading /usr/local/lib/python\d+\.\d+’

These patterns capture attempts to directly access files within the Python library directory, which is
classified as a form of cheating under the evaluation criteria.

C ANALYSIS OF FALURES OF GEMINI 2.5 PRO MODEL

In our baseline experiments, we found that the Gemini 2.5 Pro model performed poorly
and exhibited the counterintuitive result where L1 performance was actually worse than L2.
Through analysis of the model output logs, we discovered that this may be caused by
Gemini destroying test-related dependencies when completing tasks. For example, in case
001 test fused linear cross entropy level1, the model produced the output shown
in Figure 9.

It can be observed that after encountering problems during testing attempts, the model directly
deleted the entire folder containing test files in the provided codebase. Such destructive behavior
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Benchmark Task Source F2P/P2P Real-world software development Agent Eval. Avg. LoC

SWE-Bench PR ✓ ✓ ✗ 32.8
SWE-Dev Unit Tests ✗ ✗ ✗ 190
ACE-Bench Unit Tests ✓ ✓ ✓ 1012

Table 11: Comparison of ACE-Bench with SWE-Bench and SWE-Dev.

results in zero scores even when the model completes our assigned tasks, as it prevents our subse-
quent tests from running properly. In L2, since we do not provide the codebase, similar destructive
behavior does not occur, ensuring that our tests can always run normally, which explains why its
scores are actually higher.

Furthermore, it can be observed that even when Gemini identifies problems with its own code, it
tends to consider the issues unsolvable and directly abandons the task. This situation accounts for
the majority of cases in our evaluation, while such behavior rarely occurs in other models. This
indicates that Gemini 2.5 Pro seems to have certain deficiencies in completing large-scale code
editing tasks.

D COMPARISON WITH EXISTING BENCHMARKS

This section provides additional comparisons between ACE-Bench and two representative bench-
marks, SWE-Dev (Du et al., 2025) and commit0 (Zhao et al., 2024). These comparisons comple-
ment the high-level discussion in Section 2 and clarify the distinctions in task sources, construction
pipelines, evaluation settings, and scalability.

Comparison with SWE-Dev SWE-Dev derives tasks from unit tests and LLM-generated problem
requirement descriptions (PRDs). Its task formulation and construction pipeline differ substantially
from ACE-Bench, particularly in how tasks are specified, validated, and filtered. Table 11 provides
a concise comparison, followed by brief clarifications of the key distinctions.

• Realistic development workflow and stricter construction. ACE-Bench preserves the original,
well-developed features of each repository and leaves only the target feature unimplemented,
closely matching incremental development. This is enforced through precise patch extraction,
F2P/P2P filtering, and strict post-verification. SWE-Dev omits P2P verification and does not
perform post-verification, allowing patches that unintentionally break existing behavior.

• Interface-driven task specification with minimal ambiguity. SWE-Dev uses LLM-generated
PRDs, which naturally introduce ambiguity. ACE-Bench instead exposes native top-level inter-
faces—function signatures and invocation paths extracted directly from the codebase—ensuring
clear, deterministic, and implementable task specifications.

• Agent-based evaluation in this work. SWE-Dev reports results for LLM and multi-LLM settings
but does not evaluate coding agents. ACE-Bench conducts end-to-end agent experiments us-
ing a unified OpenHands scaffold with multiple LLM backends (Claude, GPT, Gemini, Qwen),
providing a realistic assessment of agent performance.

• More realistic and complex feature-level tasks. SWE-Dev tasks involve roughly 190 LoC across
three files. ACE-Bench tasks require around 1012 LoC across more files and substantially more
test points, reflecting the multi-file, cross-module modifications typical in real feature develop-
ment.

Comparison with commit0 commit0 studies whether LLMs can reconstruct entire libraries from
documentation and high-coverage test suites. This setup differs markedly from ACE-Bench, whose
focus is real-world feature development with full, from-scratch implementations and scalable con-
struction. Table 12 summarizes the key distinctions, with brief explanations provided below.

• Real-world development and full implementation. In commit0, only the bodies of functions and
classes are removed while definitions and architectural scaffolding remain, making tasks closer
to fill-in-the-blank partial completions. ACE-Bench removes definitions, imports, and associated
logic, ensuring that the target feature is fully absent and must be implemented from scratch, better
aligning with real development workflows.
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Benchmark Full Implementation Realistic Software Development Scalability

commit0 ✗ ✗ ✗
ACE-Bench ✓ ✓ ✓

Table 12: Comparison of ACE-Bench with SWE-Bench and commit0.

• Low-cost scalability to new repositories. commit0 requires repositories with well-organized doc-
umentation and very high test coverage (>90%), severely limiting applicability. ACE-Bench
requires only a runnable unit-test suite; after a short configuration step, the rest of the pipeline is
fully automated, enabling efficient scaling across a wide range of real-world codebases.

E DATASET OVERVIEW AND EXPERIMENTAL RESULTS

The construction of the dataset resulted in 212 evaluation tasks derived from 889 candidate coding
environments across 16 Python repositories. These repositories encompass a wide range of domains,
including scientific computing, data analytics, web frameworks, visualization tools, and machine
learning libraries. This diversity ensures the dataset captures a broad spectrum of real-world coding
scenarios.

To promote transparency and reproducibility, the appendix contains two tables that describe the
dataset composition. The Table 13 provides an overview of each repository, including summary
information and licensing details. The Table 14 presents quantitative statistics such as the average
number of extracted code lines and the number of test points in the test suite.

To illustrate the dataset structure, we include an example of an individual data entry. Each
entry includes the following fields: instance id, repo, description, base image,
instance image, task path, test path, test cmd, timeout, lines, created at,
updated at, and total test points. The specific meaning of each field is detailed in Table
15.

Additionally, the experimental results, summarized in five comprehensive tables (Table 16 to Table
20), evaluate the performance of multiple large language models across the dataset. Each table re-
ports three repository-level average metrics: Passed, Resolved, and Token IO. These results
provide insights into model capabilities, including task pass rates, resolution rates, and token input-
output statistics. The results demonstrate the strengths and limitations of current coding agents in
diverse scenarios, forming a foundation for future advancements in agentic coding research.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Repo Summary License

Liger-Kernel High-performance deep learning kernels developed for
large-scale distributed training

BSD 2-CLAUSE

astropy Astronomy and astrophysics core library BSD 3-Clause
flask Lightweight framework for building web applications BSD 3-Clause
matplotlib Plotting library for creating scientific and

publication-quality visuals
Custom

nerfstudio Framework for research and development on Neural
Radiance Fields (NeRFs)

Apache-2.0

pandas Data analysis and manipulation library providing
high-performance data structures

BSD 3-Clause

polars Fast DataFrame library implemented in Rust with
Python bindings

MIT License

pytest Testing framework for Python MIT License
requests Elegant and user-friendly HTTP library for Python Apache-2.0
scikit-learn Machine learning algorithms and tools in Python BSD 3-Clause
seaborn Statistical data visualization library built on top of

matplotlib
BSD 3-Clause

sphinx Documentation generation system for Python projects BSD 2-Clause
sympy Computer algebra system for symbolic mathematics in

Python
Custom

transformers State-of-the-art pretrained models for natural language
processing and beyond

Apache-2.0

trl Library for training large language models with
reinforcement learning from human feedback

Apache-2.0

xarray Library for N-dimensional labeled arrays and datasets Apache-2.0

Table 13: Summary and licenses for all GitHub repositories that task instances were extracted from.

Repo # Test
points

# Lines # Files # Function

Liger-Kernel 79.4 532.3 3.5 9.3
astropy 5.0 3423.0 5.0 13.0

flask 58.0 280.0 2.0 10.0
matplotlib 23.0 1869.0 9.0 46.0
nerfstudio 4.5 1784.0 8.0 14.0

pandas 11.0 134.0 2.0 2.0
polars 44.0 229.5 1.5 3.5
pytest 38.0 611.0 1.0 5.0

requests 218.0 705.0 3.0 32.0
scikit-learn 116.0 2901.0 7.5 23.0

seaborn 45.8 760.3 4.0 17.8
sphinx 31.7 796.9 4.3 20.4
sympy 22.0 146.0 1.0 3.0

transformers 177.5 1079.3 3.3 15.5
trl 57.7 1907.7 3.0 13.7

xarray 18.0 144.0 1.0 2.0

Table 14: Repository statistics.
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Field Description

instance id (str) Unique ID for the task instance.
repo (str) The repository the task instance originates from.
description (str) Natural language task description.
base image (str) Minimal Docker image with essential system/runtime dependencies.
instance image (str) Repo-specific Docker image with all dependencies to run tests.
task path (str) Path to task directory (source context for the agent).
test path (str) Path to test directory (used to validate the agent’s solution).
test cmd (str) Command to run the tests.
timeout (int) Max time (seconds) per test point.
lines (int) Lines of code extracted for the task
created at (str) Timestamp of the test file’s first commit.
updated at (str) Timestamp of the test file’s last commit.
total test points (int) Total number of test cases for this task.

Table 15: Description of each field of a ACE-Bench task instance object.

Model Repo % Passed % Resolved # Token IO

Claude Sonnet 4

Liger-Kernel 48.5 20.8 1.2M / 32k
astropy 10.0 0.0 1.4M / 28k

flask 62.1 0.0 0.7M / 25k
matplotlib 87.0 50.0 0.9M / 23k
nerfstudio 50.0 50.0 2.0M / 37k

pandas 0.0 0.0 0.5M / 12k
polars 69.7 25.0 0.6M / 19k
pytest 69.7 0.0 0.9M / 33k

requests 80.2 0.0 1.2M / 27k
scikit-learn 10.2 0.0 1.2M / 30k

seaborn 33.3 0.0 1.8M / 33k
sphinx 45.1 4.5 0.9M / 21k
sympy 25.0 0.0 0.6M / 14k

transformers 35.0 5.6 1.5M / 37k
trl 15.7 0.0 1.9M / 34k

xarray 40.7 0.0 0.7M / 20k

Table 16: Performance of Claude Sonnet 4 on each repository.

Model Repo % Passed % Resolved # Token I/O

GPT-5

Liger-Kernel 27.3 16.7 2.1M / 43k
astropy 0.0 0.0 3.8M / 25k

flask 65.5 0.0 0.3M / 16k
matplotlib 37.0 0.0 0.9M / 38k
nerfstudio 0.0 0.0 4.1M / 50k

pandas 18.2 0.0 0.2M / 20k
polars 71.1 50.0 0.2M / 11k
pytest 34.2 0.0 0.5M / 30k

requests 80.7 0.0 2.8M / 37k
scikit-learn 53.4 0.0 2.5M / 40k

seaborn 25.9 0.0 2.0M / 33k
sphinx 40.8 4.5 2.0M / 37k
sympy 22.7 0.0 0.2M / 16k

transformers 37.8 6.3 2.2M / 35k
trl 9.6 0.0 1.1M / 23k

xarray 63.9 0.0 0.2M / 17k

Table 17: Performance of GPT-5 on each repository.
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Model Repo % Passed % Resolved # Token I/O

Gemini 2.5 Pro

Liger-Kernel 4.1 0.0 0.6M / 15k
astropy 0.0 0.0 2.3M / 15k

flask 32.8 0.0 0.4M / 14k
matplotlib 34.8 0.0 0.2M / 7k
nerfstudio 0.0 0.0 0.7M / 37k

pandas 0.0 0.0 0.2M / 3k
polars 56.7 50.0 1.2M / 7k
pytest 0.0 0.0 0.2M / 7k

requests 1.5 0.0 3.0M / 8k
scikit-learn 6.3 0.0 1.3M / 8k

seaborn 15.6 0.0 1.2M / 10k
sphinx 30.3 0.0 0.4M / 8k
sympy 9.1 0.0 0.1M / 12k

transformers 9.8 2.4 0.8M / 20k
trl 2.2 0.0 1.2M / 25k

xarray 61.1 0.0 0.3M / 10k

Table 18: Performance of Gemini 2.5 Pro on each repository.

Model Repo % Passed % Resolved # Token I/O

Qwen3-Coder-480B

Liger-Kernel 9.4 0.0 1.6M / 15k
astropy 0.0 0.0 1.5M / 20k

flask 38.5 0.0 1.6M / 6k
matplotlib 41.3 0.0 1.6M / 8k
nerfstudio 0.0 0.0 1.7M / 7k

pandas 50.0 50.0 0.8M / 7k
polars 54.5 25.0 2.2M / 13k
pytest 34.2 0.0 0.8M / 9k

requests 31.2 0.0 3.1M / 83k
scikit-learn 14.1 0.0 1.5M / 8k

seaborn 16.5 0.0 1.8M / 13k
sphinx 30.9 0.0 1.5M / 12k
sympy 15.9 0.0 0.2M / 2k

transformers 28.1 2.4 2.9M / 30k
trl 0.3 0.0 2.4M / 23k

xarray 58.3 0.0 0.3M / 5k

Table 19: Performance of Qwen3-Coder-480B-A35B-Instruct on each repository.

Model Repo % Passed % Resolved # Token I/O

OpenAI o3

Liger-Kernel 12.4 4.2 2.5M / 47k
astropy 0.0 0.0 2.5M / 19k

flask 60.9 0.0 1.1M / 19k
matplotlib 43.5 0.0 2.1M / 63k
nerfstudio 0.0 0.0 2.8M / 62k

pandas 0.0 0.0 2.1M / 31k
polars 71.5 0.0 0.9M / 26k
pytest 27.6 0.0 1.1M / 24k

requests 70.0 0.0 2.3M / 26k
scikit-learn 27.8 0.0 1.9M / 39k

seaborn 6.8 0.0 2.1M / 31k
sphinx 27.4 0.0 1.6M / 30k
sympy 22.7 0.0 0.4M / 17k

transformers 22.7 0.8 2.0M / 33k
trl 2.5 0.0 1.7M / 35k

xarray 38.9 0.0 0.5M / 22k

Table 20: Performance of OpenAI o3 on each repository.
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rm -rf /testbed/test

Output Analysis of Gemini 2.5 Pro

...
{
"id": 55,
"timestamp": "2025-09-24T23:36:46.422826",
"source": "agent",
"message": "I am thinking...: The ‘pyproject.toml‘ file seems to

be well-configured. The error message ‘coverage.exceptions.
ConfigError: Couldn’t read ’pyproject.toml’ as a config file‘
is misleading. The issue is likely that the test is being run
from a directory that doesn’t have the ‘pyproject.toml‘ file.
I will move into the ‘/testbed‘ directory and run the test
from there. This should resolve the issue. Before that, I’ll
remove the test directory that I created by mistake in the
root directory.<ctrl95>The ‘pyproject.toml‘ is fine; the
coverage error is a red herring. The real problem is my
working directory. I need to be in ‘/testbed‘ to run the tests
correctly. First, I’ll delete the misplaced test directory I

created.",
"action": "think",

...
}

{
"id": 57,
"timestamp": "2025-09-24T23:36:46.425534",
"source": "agent",
"message": "Running command: ",
"action": "run",

...
}

...

{
"id": 114,
"timestamp": "2025-09-24T23:50:46.289666",
"source": "agent",
"message": "All done! What’s next on the agenda?",
"action": "finish",
"args": {
"final_thought": "I have implemented the fused linear cross-

entropy loss operation and its corresponding functional and
module interfaces. I have also written a test to verify the
correctness of the implementation. However, the test is
failing, and I am unable to fix it. I have tried several
approaches, but none of them have worked. I am confident
that the implementation of the forward pass is correct, but
there is an issue in the backward pass that I cannot
identify. I am marking the task as incomplete and finishing
the session.",

},
...
}

Figure 9: Partial output of Gemini 2.5 Pro model using OpenHands framework while com-
pleting task 001 test fused linear cross entropy level1. The command rm -rf
/testbed/test is highlighted for emphasis.
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Prompt for classifying top-level objects

Task: Analyze a Python test file and identify which imports from a
given list are actually being tested.

You need to:
1. Read and understand the test file content
2. Identify which imports from the provided list are actually used/

tested in the test functions
3. Return ONLY the imports that the file want to test (not utility

imports like pytest, test.utils, torch, numpy, etc.)
Test file name: {test_name}
Test file path: {test_file}
Available imports to choose from:
{imports_str}
Test file content:
‘‘‘python
{test_file_content}
‘‘‘
I will give you some examples to help you understand the task:

Example 1:
Test name: test_dyt.py
Available imports: ["test.utils.assert_verbose_allclose", "test.

utils.set_seed", "pytest", "torch", "liger_kernel.ops.dyt.
LigerDyTFunction", "liger_kernel.transformers.dyt.LigerDyT", "
liger_kernel.transformers.functional.liger_dyt", "test.utils.
infer_device", "test.utils.supports_bfloat16"]

Expected output: ["liger_kernel.ops.dyt.LigerDyTFunction", "
liger_kernel.transformers.dyt.LigerDyT", "liger_kernel.
transformers.functional.liger_dyt"]

Reason: The test file is about the DyT algorithm, so the imports
that are actually being tested are the LigerDyTFunction,
LigerDyT, and liger_dyt.

Please analyze the test file step by step and provide your response
in the following structured format:

## Analysis
### Step 1: Understanding the test file purpose
[Describe what this test file is trying to test based on the file

name and content]
### Step 2: Identifying test functions
[List the main test functions found in the file]
### Step 3: Analyzing imports usage
[For each import in the available list, analyze whether it’s used in

the test functions and whether it’s the main subject being
tested]

### Step 4: Categorizing imports
**Core testing targets (what the test is actually testing):**
[List imports that are the main subject of testing]
**Utility/Infrastructure imports (supporting code):**
[List imports that are just utilities, testing framework, or

supporting libraries]
## Final Answer
Based on the analysis above, the imports that are actually being

tested are:
‘‘‘json
[list of import strings]
‘‘‘
Now begin your analysis:

Figure 10: Prompt template for classifying top-level objects
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Prompt for completing docstring

Generate a detailed docstring for the following Python function. The
docstring should include:

1. The main function description
2. Parameter description (if any)
3. Return value description (if any)
4. Important notes or exceptions (if applicable)

Function signature:
‘‘‘python
{func_sig}
‘‘‘

The full file content for reference:
‘‘‘python
{file_content}
‘‘‘

In docstring, in order for us to parse it correctly, you are
forbidden to use syntax like ‘‘‘python ‘‘‘, which may cause the
end result to be confusing. Please only return the docstring
content!!! DO NOT include triple quotes or other format tags:

Figure 11: Prompt template for completing docstring given to LLM

User prompt part 1 of 3 (Level 1)

## Task
**Task: Implement ...**

**Core Functionality:**
Create a ...
**Main Features & Requirements:**
...
**Key Challenges:**
...
The task focuses on creating a (or an) ...

**NOTE**:
- This test comes from the ‘<certain_repo>‘ library, and we have

given you the content of this code repository under ‘/testbed/‘,
and you need to complete based on this code repository and

supplement the files we specify. Remember, all your changes must
be in this codebase, and changes that are not in this codebase

will not be discovered and tested by us.
- What’s more, you need to install ‘pytest, pytest-timeout, pytest-

json-report‘ in your environment, otherwise our tests won’t run
and you’ll get **ZERO POINTS**!

Your available resources are listed below:
- ‘/workspace/task/black_links.txt‘: Prohibited URLs (all other web

resources are allowed)

Figure 12: Unified prompt template for L1 part 1, Task.
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User prompt part 2 of 3 (Level 1)

## Precautions

- You may need to install some of the libraries to support you in
accomplishing our task, some of the packages are already pre-
installed in your environment, you can check them out yourself
via ‘pip list‘ etc. For standard installs, just run ‘pip install
<package>‘. There’s no need to add ‘--index-url‘, the domestic

mirrors are already set up unless you have special requirements.
- Please note that when running ‘pip install <package>‘, you should

not include the ‘--force-reinstall‘ flag, as it may cause pre-
installed packages to be reinstalled.

- **IMPORTANT**: While you can install libraries using pip, you
should never access the actual implementations in the libraries
you install, as the tasks we give you originate from github, and
if you look at the contents of the libraries, it could result

in you being awarded 0 points directly for alleged cheating.
Specifically, you cannot read any files under ‘/usr/local/lib/
python3.x‘ and its subfolders (here python3.x means any version
of python).

- **IMPORTANT**: Your installed python library may contain a real
implementation of the task, and you are prohibited from directly
calling the library’s interface of the same name and pretending
to package it as your answer, which will also be detected and

awarded 0 points.
- **CRITICAL REQUIREMENT**: After completing the task, pytest will

be used to test your implementation. **YOU MUST**:
- Build proper code hierarchy with correct import relationships

shown in **Test Description** (I will give you this later)
- Match the exact interface shown in the **Interface Description

** (I will give you this later)
- I will tell you details about **CRITICAL REQUIREMENT** below.

Your final deliverable should be code under the ‘/testbed/‘
directory, and after completing the codebase, we will evaluate
your completion and it is important that you complete our tasks
with integrity and precision

The final structure is like below, note that your codebase’s
structure should match import structure in **Test Description**,
which I will tell you later.

/workspace
├── task/
│   ├── prompt.md          # task statement
│   ├── black_links.txt    # black links you can't access
│   ├── ...
├── test/                  # you won't see this dir
│   ├── ...
/testbed                   # all your work should be put into this codebase
│   │                        and match the specific dir structure
├── dir1/
│   ├── file1.py
│   ├── ...
├── dir2/

Figure 13: Unified prompt template for L1 part 2, Precautions.
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User prompt part 3 of 3

## Test and Interface Descriptions

The **Test Description** will tell you the position of the function
or class which we’re testing should satisfy.

This means that when you generate some files and complete the
functionality we want to test in the files, you need to put
these files in the specified directory, otherwise our tests won’
t be able to import your generated.

For example, if the **Test Description** show you this:
‘‘‘python
from liger_kernel.chunked_loss import LigerFusedLinearDPOLoss
‘‘‘
This means that we will test one class: LigerFusedLinearDPOLoss.
And the defination and implementation of class

LigerFusedLinearDPOLoss should be in ‘/testbed/src/liger_kernel/
chunked_loss/dpo_loss.py‘. And the same applies to others.

In addition to the above path requirements, you may try to modify
any file in codebase that you feel will help you accomplish our
task. However, please note that you may cause our test to fail
if you arbitrarily modify or delete some generic functions in
existing files, so please be careful in completing your work.

And note that there may be not only one **Test Description**, you
should match all **Test Description {n}**

The **Interface Description** describes what the functions we are
testing do and the input and output formats.

for example, you will get things like this:
<example of a function masked by details only remains a docstring>

In order to implement this functionality, some additional libraries
etc. are often required, I don’t restrict you to any libraries,
you need to think about what dependencies you might need and
fetch and install and call them yourself. The only thing is that
you **MUST** fulfill the input/output format described by this

interface, otherwise the test will not pass and you will get
zero points for this feature.

And note that there may be not only one **Interface Description**,
you should match all **Interface Description {n}**

### Test Description 1
Below is **Test Description 1**
‘‘‘python
from ... import ...
‘‘‘
### Interface Description 1
Below is **Interface Description 1** for file:
This file contains <num> top-level interface(s) that need to be

implemented.
‘‘‘python

...
‘‘‘
Remember, **the interface template above is extremely important**.

You must generate callable interfaces strictly according to the
specified requirements, as this will directly determine whether
you can pass our tests. If your implementation has incorrect
naming or improper input/output formats, it may directly result
in a 0% pass rate for this case.

Figure 14: Unified prompt template for L1 part 3, Test and Interface Description.
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Template of user prompt config

prompt:
template: "level_{task_level}.j2" # choose a prompt template

dockerfile:
template: "00" # 00/01/...,

appendix:
additional_dependencies: # optional
- "einops>=0.7.0"
- "mcp"

hyperparameters: # optional
batch_size: 32
learning_rate: 0.001

# source url
source_link: "https://github.com/linkedin/Liger-Kernel"

# pip install <library_name>
library_name: "liger-kernel"

black_links: # optional
- "https://github.com/google-research/vision_transformer"
- "https://github.com/lucidrains/vit-pytorch"
- "https://github.com/huggingface/pytorch-image-models/blob/main/

timm/models/vision_transformer.py"

technical_docs: # optional
- path: "vision_transformer.tex"
description: "paper of ViT"

- path: "123123.tex"
description: "joke"

task_level: 1 # 1: based on code base, # 2: based on nothing

# task discription
task_name: "liger_kernel_cross_entropy"

test_root_path: |
test

test_description1: |
Below is **Test Description 1**

test_code1: |
from agent_code.Liger_Kernel.src.liger_kernel.ops.cross_entropy

import LigerCrossEntropyFunction
from agent_code.Liger_Kernel.src.liger_kernel.ops.cross_entropy

import liger_cross_entropy_kernel
from agent_code.Liger_Kernel.src.liger_kernel.transformers.

cross_entropy import LigerCrossEntropyLoss
from agent_code.Liger_Kernel.src.liger_kernel.transformers.

functional import liger_cross_entropy

interface_description1: |
Below is **Interface Description 1**

interface_code1: |
def liger_cross_entropy_kernel()
...

Figure 15: Template of user prompt config.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

User prompt for test-dpo-loss (Level 1)

## Task
**Task: Implement Fused Linear Layer with Direct Preference

Optimization (DPO) Loss**

**Core Functionality:**
Create a memory-efficient PyTorch autograd function that combines

linear layer computation with DPO loss calculation for
preference-based language model training.

**Main Features & Requirements:**
- Fuse linear transformation and DPO loss computation in a single

operation
- Support multiple loss variants (sigmoid, APO, SPPO, NCA)
- Handle chosen/rejected sequence pairs for preference learning
- Integrate optional reference model comparisons
- Implement chunked processing for memory efficiency
- Provide proper gradient computation for backpropagation

**Key Challenges:**
- Memory optimization through operation fusion
- Correct gradient flow in custom autograd functions
- Efficient handling of large sequence batches
- Supporting multiple DPO loss formulations
- Managing optional reference model integration
- Proper masking of ignored tokens during loss computation

The task focuses on creating an efficient implementation of DPO
training that reduces memory overhead while maintaining
flexibility across different preference optimization approaches.

**NOTE**:
- This test comes from the ‘liger-kernel‘ library, and we have given

you the content of this code repository under ‘/testbed/‘, and
you need to complete based on this code repository and
supplement the files we specify. Remember, all your changes must
be in this codebase, and changes that are not in this codebase

will not be discovered and tested by us.
- What’s more, you need to install ‘pytest, pytest-timeout, pytest-

json-report‘ in your environment, otherwise our tests won’t run
and you’ll get **ZERO POINTS**!

Your available resources are listed below:
- ‘/workspace/task/black_links.txt‘: Prohibited URLs (all other web

resources are allowed)

Figure 16: User prompt for test-dpo-loss (L1).
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User prompt for test-simple-loss (Level 2)

## Task
**Task: Implement Memory-Efficient Preference-Based Language Model

Training**

**Core Functionality:**
Develop a fused linear layer with SimPO (Simple Preference

Optimization) loss for training language models on preference
data without requiring reference models.

**Main Features & Requirements:**
- Combine linear transformation and preference loss computation in a

single memory-efficient operation
- Implement SimPO algorithm using length-normalized log

probabilities with configurable margin and smoothing
- Support both forward and backward passes with proper gradient

computation
- Handle chunked processing for large sequences
- Provide configurable hyperparameters (beta, gamma, label smoothing

)

**Key Challenges:**
- Optimize memory usage by fusing operations rather than computing

them separately
- Correctly implement the SimPO loss formula with sigmoid-based

preference comparison
- Ensure proper gradient flow through custom autograd functions
- Balance computational efficiency with numerical stability for

large-scale training

**NOTE**:
- This test is derived from the ‘liger-kernel‘ library, but you are

NOT allowed to view this codebase or call any of its interfaces.
It is **VERY IMPORTANT** to note that if we detect any viewing

or calling of this codebase, you will receive a ZERO for this
review.

- What’s more, you need to install ‘pytest, pytest-timeout, pytest-
json-report‘ in your environment, otherwise our tests won’t run
and you’ll get **ZERO POINTS**!

- **CRITICAL**: This task is derived from ‘liger-kernel‘, but you **
MUST** implement the task description independently. It is **
ABSOULUTELY FORBIDDEN** to use ‘pip install liger-kernel‘ or
some similar commands to access the original implementation-
doing so will be considered cheating and will result in an
immediate score of ZERO! You must keep this firmly in mind
throughout your implementation.

- You are now in ‘/testbed/‘, and originally there was a specific
implementation of ‘liger-kernel‘ under ‘/testbed/‘ that had been
installed via ‘pip install -e .‘. However, to prevent you from

cheating, we’ve removed the code under ‘/testbed/‘. While you
can see traces of the installation via the pip show, it’s an
artifact, and ‘liger-kernel‘ doesn’t exist. So you can’t and don
’t need to use ‘pip install liger-kernel‘, just focus on writing
your ‘agent_code‘ and accomplishing our task.

- Also, don’t try to ‘pip uninstall liger-kernel‘ even if the actual
‘liger-kernel‘ has already been deleted by us, as this will

affect our evaluation of you, and uninstalling the residual ‘
liger-kernel‘ will result in you getting a ZERO because our
tests won’t run.

Figure 17: User prompt for test-simple-loss (L2).
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Example of an LLM-generated docstring

class LigerFusedLinearDPOFunction(LigerFusedLinearPreferenceBase):
...
@staticmethod
def backward(ctx, *grad_output):

"""
Computes gradients for the fused linear DPO (Direct

Preference Optimization) function during backpropagation
.

This static method implements the backward pass for
automatic differentiation in PyTorch’s autograd system.
It delegates the gradient computation to the parent
class’s backward method and then filters the results to
match the expected number of parameters for the DPO
function.

Parameters:
ctx: PyTorch autograd context object containing saved

tensors and other information from the forward pass
*grad_output: Variable-length argument list of gradient

tensors flowing back from the loss function. Each
tensor represents the gradient with respect to the
corresponding output of the forward pass

Returns:
tuple: A tuple containing gradients with respect to the

input parameters of the forward function:
- Gradient w.r.t. input tensor (_input)
- Gradient w.r.t. weight tensor (weight)
- Gradient w.r.t. target tensor (target)
- Gradient w.r.t. bias tensor (bias)
- None values for parameters that don’t require

gradients (ref_input, ref_weight, ref_bias,
ignore_index, beta, compute_nll_loss, compiled,
use_ref_model, average_log_prob, chunk_size,
loss_type)

Important Notes:
- This method is part of PyTorch’s Function interface

for custom autograd operations
- The method truncates the parent class gradients to the

first 4 elements using [:4] slicing
- Additional None values are returned to match the

signature of the forward method parameters
- The actual gradient computation logic is inherited

from LigerFusedLinearPreferenceBase.backward()
- This ensures proper gradient flow for DPO loss

optimization while maintaining compatibility with
PyTorch’s autograd system

"""
<your code>

...

Figure 18: Example of an LLM-generated docstring.
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Human Evaluation Guideline for Top-Level Tested Object Classification

Each import statement in a test file should be evaluated independently to determine whether
it represents a top-level tested object or an auxiliary component. The procedure is as
follows:
Step 1: Understand Test File Purpose

• Read the test file to understand its testing objective and scope.
• Identify the main functionality or module being validated.

Step 2: Identify All Import Statements
• Locate all import statements, including absolute and relative imports.

Step 3: Filter External Library Imports
• Exclude imports from external libraries (e.g., pytest, unittest, torch).

Step 4: Classify Repository-Internal Imports
• Assert statement usage: If the imported object appears in assertions comparing re-

sults, it is likely a tested object.
• Name correspondence: If the object’s name matches keywords in the test filename,

it is likely a tested object.
• Module correspondence: If imported from a module matching the test filename, it is

likely a tested object.
• Utility module exclusion: Imports from utils/, testing/, helpers/, etc., are

usually auxiliary.
• Frequency and prominence: Objects used extensively across the test file are more

likely tested objects.
Classification Decision
Mark each import as either a Top Import (tested object) or Non-Top Import (auxiliary).
When criteria conflict, prioritize the first three criteria over the last two.

Figure 19: Human evaluation guideline for identifying top-level tested objects.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Expert Verification Guideline for Feature-Level Tasks (part 1 of 2)

Each feature-level task must be manually verified to ensure that (1) the task is structurally
correct (objects, imports, masking, etc.), and (2) a competent engineer can implement the
required functionality using only the prompt and the remaining codebase, without external
documentation.
You will typically use two resources:

• debug output/: logs and classification results (lists of top objects and specific
objects).

• Level-1 task directory: textttprompt.md (this is the primary target for verification).

Stage 1: Check Structural Consistency
1.1 Get the list of top and specific objects

• Open the classification summary under debug output/.
• Identify:

– Top objects: top interface of the feature being tested.
– Specific objects: objects that are functionally related but are not top interfaces.

• Treat these lists as a checklist for the following steps.
1.2 Check masking of top objects

• For each top object, open its source file in the Level-1 directory.
• Confirm that the implementation body is removed and that only the signature, doc-

string, and minimal scaffolding remain.
• If any implementation detail is still visible, manually remove it while ensuring that

tests can still import and call the interface.
1.3 Check removing of specific objects

• For each specific object, confirm that it does not appear in the remain codebase.
• If leftover definitions are found, please remove them.

Figure 20: Expert verification guideline for feature-level tasks part 1.
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Expert Verification Guideline for Feature-Level Tasks (part 2 of 2)

Stage 2: Check Prompt Completeness and Solvability
2.1 Check the high-level Task Description

• Read the Task Description and ask: “If I only had this description and the codebase,
do I know what to implement?”

• Verify that it:
– Explains what feature or behavior needs to be implemented.
– Provides context about where the feature sits in the system.
– Mentions any key technical considerations that affect correctness.

• If the description is vague or incomplete, rewrite it to make the implementation goal
clear.

2.2 Check the Test Description sections
• For each Test Description, verify that:

– All required top objects are correctly referenced.
– Imports match the real file structure under the task directory.

• Fix missing interfaces and incorrect module paths as needed so that the agent will
know where to implemenet them.

2.3 Check Interface Descriptions and docstrings
• For each Interface Description:

– Ensure the docstring is semantically complete: what the function/class does, pa-
rameter meanings, and return values.

– Confirm that it is self-contained and does not require external documentation.
– Keep it concise but readable; something a real engineer would be happy to follow.

• If a docstring is too short, ambiguous, or inconsistent with the real behavior, revise
it and, if necessary, refer to the original implementation to understand the intended
semantics.

When to Mark a Task as Verified
A task is considered verified if a competent engineer can implement the required function-
ality using only the prompt.md and the remained codebase without external documentation.
Concretely, this requires that:

• All top objects are correctly masked, imported, and documented.
• All specific objects that should not remain in the codebase are removed.
• The Task Description clearly states what to build.
• Test Descriptions match the actual file layout and cover all required interfaces.
• Interface Descriptions and docstrings are accurate and self-contained.

If any of these conditions are not met, fix the relevant parts and re-check the task using the
same steps before marking it as verified.

Figure 21: Expert verification guideline for feature-level tasks part 2.
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