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Ozan Öktem
Department of Mathematics
KTH Royal Institute of Technology
ozan@kth.se

ABSTRACT

Many proteins are flexible and occur in a continuum of 3D conformations. A pro-
tein’s 3D conformation is the main determinant of its biological function, and
is therefore of paramount importance to fields such as drug development and
biomolecular engineering. Cryogenic electron microscopy (cryo-EM) enables the
reconstruction of protein conformations. Because cryo-EM reconstruction is a
fundamentally underdetermined problem, neural networks that incorporate prior
knowledge such as physical constraints into the training process, can theoretically
be more effective at reconstructing heterogeneous conformation distributions. We
introduce a novel such prior, called the geometry degradation loss, grounded in the
theory of normal mode analysis. The loss is generally applicable to all proteins
and easily integrated into reconstruction algorithms that utilize geometric protein
representations. We show on synthetic datasets of the flexible ADK and Nsp13
proteins that the loss greatly improves reconstruction quality and that our network
is able to reconstruct both proteins accurately across the full conformation distri-
bution. These results are further evidence that geometric cryo-EM reconstruction
networks have large potential that can be tapped with the introduction of geo-
metric priors. Code is published at https://github.com/VictorPrins/
geometric-heterogeneous-cryoEM-reconstruction.

1 INTRODUCTION

Cryogenic electron microscopy (cryo-EM) is a technique that allows one to recover the conforma-
tions and dynamics of proteins, which are the prime determinants of protein function in a biological
system. Conformationally heterogeneous protein structures, however, are notoriously hard to re-
construct, even from high-resolution cryo-EM datasets. This challenge originates from the inherent
underdetermination of the cryo-EM reconstruction problem with finite data (Bendory et al., 2020).
The solution is twofold: 1) reducing the degree of underdetermination by collecting more data and
improving data quality and 2) developing reconstruction algorithms that can optimize in non-convex
solution spaces. This work makes contributions to the latter area using a neural network regularized
by a novel geometry degradation loss.

In an ideal cryo-EM experiment, N instances of the same protein, submerged in a thin slab of vit-
reous ice, are projected onto N grayscale 2D images. Each image is associated with three random
variables: (i) the protein’s pose Ri ∈ SO(3), (ii) a displacement from the image centre di ∈ R2,
and (iii) a conformation parameterized by ϕi. All three variables are sampled from unknown distri-
butions. The task is to inversely reconstruct the conformation distribution {ϕi}. Variables Ri and
di are nuisance variables.
Commonly used reconstruction packages, like Scheres (2012) and Punjani et al. (2017), are capable
of producing high-resolution reconstructions for homogeneous proteins, which are rigid in structure.
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They can also produce finite sets of conformations for heterogeneous proteins, thus approximating
a discrete conformation distribution.
Neural networks are continuous estimators, and are known to be effective optimizers in high-
dimensional non-convex solution spaces. This makes neural networks potentially powerful for
the reconstruction of continuous conformation distributions. Zhong et al. (2021a) were the first to
demonstrate a neural heterogeneous reconstruction algorithm on experimental (i.e. non-synthetic)
data. They assumed (Ri,di) be known, and these assumptions were later relaxed by Zhong et al.
(2021b) and Levy et al. (2022).

Geometric protein representation All methods discussed so far use a volumetric protein repre-
sentation. We call a representation volumetric if it constitutes a 3D map of the electrostatic potential
of the protein. The specifics of implementations vary; some methods use voxel grids whereas others
use volumes defined over a continuous range. From the 3D map, one can build an atomic model
of the protein, which is a geometric representation as a point cloud where the points encode the
positions of atoms that make up the protein (Vulović et al., 2013). Reconstructing this geometric
representation directly from cryo-EM data has multiple theoretical benefits. Firstly, it enables in-
corporation of physical and chemical priors into the solution search. The number and identity of
protein residues, the length of covalent bonds, and the permissible dihedral angles (Ramachandran
et al., 1963) are a few well-defined priors that any reconstructed conformation should adhere to.
These constraints are easily enforced in a geometric protein representation, whilst they are ignored
by volumetric methods. Secondly, it makes redundant the atomic model building step required after
a volumetric reconstruction.
This insight has given rise to work on geometric representations for cryo-EM reconstruction, con-
currently introduced by Rosenbaum et al. (2021) and Zhong et al. (2021c). Both papers represent
the protein as a point cloud, initialized at a known conformation, which the network deforms into
other conformations of the distribution. The only structural prior used by the papers is a loss on the
distance between residues. The authors observe that geometric reconstruction networks are much
harder to optimize than their volumetric counterparts, and call for the development of novel struc-
tural constraints to close the existing performance gap—a call that this work endeavors to address.

Contributions We introduce a geometry degradation loss function, which approximates the po-
tential energy of a protein and therefore guides the solution search towards conformations that are
energetically likely to occur. We further use a learnable output normalization, specifically help-
ful for reconstruction under extreme noise conditions. An ablation study shows that the geometry
degradation loss greatly improves our neural network’s reconstruction performance, reaching EMD-
RMSD values in the range of 2-3Å under realistic noise conditions.

2 METHOD

Our neural reconstruction network (Figure 1) is an autoencoder architecture that operates by en-
coding a cryo-EM projection to a latent variable z, which represents the conformation, then gen-
erating a protein conformation X(z), and finally producing a projection from this conformation
by simulating the cryo-EM image formation process in a differentiable manner. This approach
is based on the assumption that the full conformation distribution can be embedded into a low-
dimensional latent space (Das et al., 2006) —we use1 z ∈ R8. The network is optimized by min-
imizing the following loss: L = Limg + αLgeom + βLbond + γLcentering, where the primary loss
component Limg is the pixelwise L2 loss between the input images and the reconstructions pro-
duced by the network, Lgeom is our novel geometry degradation loss (see the paragraph below),
Lbond = 1

N−1

∑N−1
i=1 (∥pi − pi+1∥ − 3.8)2 represents the constraint that neighbouring residues

maintain a fixed distance of 3.8 Å (Chakraborty et al., 2013), and Lcentering = ( 1
N

∑N
i=1 pi)

2 keeps
the generated conformations centered around the origin and serves to remove globally shifted (and
thus equivalent) conformations from the solution space (Rosenbaum et al., 2021). The weighting
factors2 are set to α = 0.05, β = 0.005, and γ = 0.1.

1Levy et al. (2022) also use a conformation latent of dimensionality 8.
2The values of β and γ are inspired by Rosenbaum et al. (2021). The exact values of (α, β, γ) were obtained

through a limited hyperparameter search.
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Figure 1: The network architecture: an autoencoder that learns the conformation distribution by pro-
ducing conformations conditional on each input image. Details are in appendix A (CNN), appendix
E (latent decoder), section 2 (protein deformer), and appendix B (projector).

Protein deformer The network produces conformations by deforming a base conformation, ini-
tialized at a known conformation, through the prediction of translations for each point in the point
cloud. Let the base conformation be defined as X0 = [p1, ...,pN ] ∈ R3×N , where pi ∈ R3 is the
position of residue i for a protein consisting of N residues. The generative latent decoder outputs
a 3N -dimensional vector that is reshaped into a deformation matrix T (z) = [t1(z), ..., tN (z)] ∈
R3×N where ti(z) ∈ R3 is the displacement vector for residue i. The predicted conformation,
conditioned on the conformation latent z, can now be expressed as X(z) = X0 + T (z).

Geometry degradation loss The introduction of the geometry degradation loss is the main contri-
bution of this paper. This function, which approximates the difference in potential energy between
two conformations, was developed by Diepeveen et al. (2023) to address the locality and linear-
ity limitations of normal mode analysis using Riemannian manifold theory. Observing that high-
potential conformations are physically less likely to occur and should therefore be discouraged by
the network, it becomes apparent that potentials can serve as loss functions. We present the core
idea here but refer to the original paper for the mathematical derivation. It was shown by Tirion
(1996); Doruker et al. (2000) that the potential of a protein conformation w.r.t. a base conformation
can be approximated by E =

∑
(a,b)

C
2 (∥ra,b∥ − ∥r

0
a,b∥)2, where the summation is over all atom

pairs within a specified cutoff distance, ra,b is the displacement vector from atom a to b, superscript
0 refers to the base conformation, and C is a constant. This function thus only incorporates local
interactions (due to the cutoff distance), and approximates potential energy to have a linear relation
to distance, an assumption which does not hold in general. To address the locality and linearity
issues of the equation, it is modified in two ways: (i) The loss becomes a function of the relative
change in pairwise distance, thereby giving atoms which are further apart in the base conforma-
tion greater liberty of movement. (ii) The change in pairwise distance is wrapped into a logarithm,
which a) allows the network to separate nearby atoms (due to logarithm’s slow rate of increase) if
this leads to a much better fit in terms of the other loss functions, and b) prevents the network from
producing (physically impossible) conformations where the positions of two atoms coincide, since
limx→0 log

2(x/c) = ∞. This concludes the geometry degradation loss, which is applied across all
pairs of atoms (a, b) in the protein34:

Lgeom =
N(N − 1)

2

∑
(a,b)

log2

(
∥ra,b∥2

∥r0a,b∥2

)
. (1)

3Note that the vector norms are squared purely for computational efficiency reasons; the squares can be
extracted as a constant and subsumed into the weighting of this loss term.

4The loss scales O(N2) in space and computational complexity. To mitigate the memory issue that arises
for larger complexes, the loss can be computed across a subset of all N atoms. This work coarsens the protein
and computes Lgeom across all pairs of Cα atoms. Another option is to restrict the computation to the k-nearest
neighbours of each atom, reducing the complexity to O(kN).
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In short, the geometry degradation loss guides the network optimization towards conformations
that are energetically close to the base conformation. Note that this puts importance on the base
conformation: the geometry degradation loss will theoretically only aid the reconstruction of likely
conformations if the base conformation itself is a relatively likely (i.e. stable) conformation.

Learnable output normalization For L2 image loss computation, input and output must be nor-
malized to distributions with equal statistics. In cryo-EM, this is nontrivial to accomplish due to
the extreme noise of unknown strength. We estimate output normalization statistics with a neural
network that produces (µ̂, ŝ) with which projections are normalized: Î ← (Î − µ̂)/ŝ. Learnable
output normalization improved network performance significantly, compared to fixed normalization
statistics estimated pre-training. Full details are in appendix F.

3 RESULTS

Data The ground truth conformation trajectories are simulated using molecular dynamics and the
cryo-EM projections are generated by Parkhurst et al. (2021), a physically realistic cryo-EM sim-
ulation software package. We consider two proteins that undergo conformational changes, namely
the 214-residue ADK protein and the larger 590-residue SARS-CoV-2 non-structural protein 13
(Nsp13). The ADK protein undergoes a relatively simple hinge movement (Figure 6a) and we sam-
ple this conformation trajectory at 102 points (Seyler et al., 2015). In contrast, Nsp13 exhibits a
more disordered motion (Figure 7) and this conformation trajectory is sampled at 200 points (Shaw,
2020). Each dataset contains a uniform distribution across all conformations, with approximately
600 images per conformation. The poses Ri are sampled uniformly from SO(3) and assumed
known, and all particles are centered (di = 0). Images have a pixel size of 1 Å. CTF parameters are
assumed known. See appendix H for full details.

Benchmarks The literature on heterogeneous cryo-EM reconstruction methods using geometric
representations is relatively nascent, making direct comparison with other papers challenging5. We
mention three relevant data points in order to facilitate interpretation of our results. First, the distance
between neighbouring Cα atoms of 3.8 Å (Chakraborty et al., 2013) provides a natural baseline; an
(EMD-)RMSD around this value indicates a high degree of backbone similarity. Second, Rosen-
baum et al. (2021) achieves an EMD-RMSD of 3.8 Å on a 282-residue protein at an electron dose of
1000 e/Å

2
, using 63,000 images. Unlike us, however, they do also estimate poses, thus introducing

additional complexity. Third, Nashed et al. (2022) report an RMSD of 1.3 Å on the ADK protein,
using 50,000 images. However, they used a dataset generated by their own reconstruction model,
significantly reducing the complexity of the reconstruction problem (Wirgin, 2004). In conclusion,
reconstructions with errors below 3.8 Å are in line with the current state of research.

Experimental setup The network is optimized with Adam (Kingma & Ba, 2017) at a constant
learning rate of 10−5. The CTF is oversampled at 300 × 300 pixels to prevent CTF aliasing and is
applied to images after zero-padding those to the same size. The base conformation of the protein is
initialized at the first conformation of the trajectory. We use a batch size of 128, and a conformation
latent z of dimension 8. Training is performed on a single A100 Nvidia GPU and takes 10 minutes
on the ADK dataset and 4 - 24 hours on the Nsp13 dataset.

Evaluation EMD-RMSD and RMSD are used as the quantitative metrics to measure heteroge-
neous reconstruction accuracy. EMD-RMSD is the Earth Mover’s Distance between the recon-
structed and the ground truth conformation distributions, using the Root Mean Squared Deviation
of Cα atoms as the metric to minimize. This generalizes the RMSD metric, commonly used to
measure similarity between pairs of structures, to distributions of structures. Whilst our network
achieves very similar values for RMSD and EMD-RMSD, the latter is conceptually a more truthful
measurement of the objective of this work, which is to reconstruct a distribution of conformations.
Rosenbaum et al. (2021) showed that a model may be able to accurately reconstruct a distribution of
conformations, even if it can only poorly reconstruct individual conformations given a single input
image.

5Additionally, few papers in this literature have open sourced code or datasets.
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Table 1: Heterogeneous reconstruction results in terms of EMD-RMSD (Å). The network is trained
on synthetic datasets of the ADK and Nsp13 proteins with various electron doses (50 e/Å

2
corre-

sponds to a realistic noise level). The stark increase in the reconstruction error caused by ablating
the geometry degradation loss (in all cases except for ADK at 50 e/Å

2
) demonstrates the significant

benefit of the geometry degradation loss.

electron dose (eÅ
−2

)
ADK Nsp13

base geom. loss ablated base geom. loss ablated
1000 1.9 2.5 2.5 4.0
100 2.1 2.5 2.7 4.5
50 2.5 2.5 2.8 4.4

Given a validation set and a ground truth set of structures of equal size (we use 4000, uniformly
distributed across all conformations), the EMD-RMSD is the minimum average RMSD achievable
by finding the optimal one-to-one pairing between validation structures and ground truth structures.
Full details are in appendix G.

Results The main results in terms of EMD-RMSD are displayed in Table 1. The corresponding
results in terms of RMSD are in Table 2. When including the geometry degradation loss, our network
achieves EMD-RMSD values between 1.9 Å and 2.8 Å, compared to EMD-RMSD values of 4.4 Å
for ADK and 5.0 Å for Nsp13 at random initialization (before training). Especially for the Nsp13
protein, the geometry degradation loss is essential to getting meaningful reconstruction performance;
without it the EMD-RMSD improves no more than 1 Å compared to random initialization. Figures
2 and 3 show the reconstruction performance for each residue separately, and compare these results
between the easiest (ADK at 1000 e/Å

2
) and the hardest (Nsp13 at 50 e/Å

2
) dataset. Appendix I

contains additional figures.

(a) (b)

Figure 2: Ablation experiment: the network in its base configuration (left) correctly positions both
flexible and stable regions of the protein, whereas ablating the geometry degradation loss (right)
leads to significantly poorer reconstructions. Each dot represents one of the 214 residues in the
ADK protein. The y-axis is the distance (Å) between the ground truth position of the residue and the
reconstructed position, averaged over the validation set. Residues within the bottom 3.8 Å (marked
grey) can be considered excellently fitted. The x-axis is the distance between the ground truth posi-
tion of the residue and the position of the residue in the base conformation. Each plot corresponds
to one conformational state of ADK. The absence of an increasing trend line in the plots shows that
our network is able to fit stationary as well as mobile residues.
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(a) (b)

Figure 3: Ablation experiment: without the geometry degradation loss (right figure), the recon-
struction error is significantly greater for a large share of the residues. This plot is an analogous
visualization to Figure 2, but for the Nsp13 protein at an electron dose of 50 e/Å

2
. At this noise

level, a number of residues, particularly those with very large displacements, are not positioned
accurately and keep a sizeable error. However, the benefit of the geometry degradation loss is very
stark, as can be seen from the thick blob of dots in the right figure, which for a large part falls outside
the 3.8 Å band.

4 DISCUSSION

We have introduced a novel geometry degradation loss and demonstrated how it enables the accu-
rate reconstruction of a continuous conformation distribution. To our knowledge, this is the first
demonstration of a significant reconstruction improvement attributable to a single physical and geo-
metric prior. We have additionally introduced a new reconstruction network with a learnable output
normalization that is specifically beneficial in the uniquely high-noise conditions of cryo-EM.
Our network is able to fit highly mobile as well as stable parts of the protein (Figure 2a) and learns
to embed the conformation distribution manifold in a low-dimensional (8, in this paper) latent space
(Figure 10). These results still hold, but are weaker for the more complex Nsp13 conformation dis-
tribution; the reconstruction errors of some sections remain high (see Figure 3a and appendix I). The
Nsp13 network also has a less interpretable latent space; PCA doesn’t quickly reveal a structure in
this case. However, this is likely the result of the higher dimensional motion of the Nsp13 protein,
which cannot be embedded in a 1-dimensional space or visualized with 1-dimensional PCA.

Like all geometric cryo-EM reconstruction papers known to the authors, the results are only demon-
strated on a synthetic dataset. We further assume that poses are uniformly distributed and known,
and assume a uniform conformation distribution over the MD-simulated states. The dataset also
contains no junk particles. These are all assumptions that should be relaxed before geometric net-
works will be able to achieve convincing results on experimental datasets. However, the validation
of our method on the complex Nsp13 protein at realistic noise levels is a promising result that sug-
gests resilience of our method under even more challenging conditions. Another limitation is that it
is unclear to what extent the geometry degradation loss remains beneficial for the reconstruction of
extremely flexible complexes. Considering that the loss is an approximation of the transition energy
between conformational states, it could degrade for particularly challenging energy landscapes.

Future work should continue to leverage the benefits of geometric models—the geometry degrada-
tion loss is only a first demonstration of the power of priors in geometric reconstruction methods.

Increasingly more attention will shift from homogeneous reconstruction to heterogeneous recon-
struction, which offers the more complete view and understanding of the function of biology’s most
vital particles. Numerous influential fields, including drug development and biomolecular engineer-
ing stand to benefit from advancements in this area. We hope this paper is a step towards the ultimate
objective of comprehensively unraveling protein heterogeneity.

6



Published at the GEM workshop, ICLR 2024

REFERENCES

Tamir Bendory, Alberto Bartesaghi, and Amit Singer. Single-Particle Cryo-Electron Microscopy:
Mathematical Theory, Computational Challenges, and Opportunities. IEEE Signal Processing
Magazine, 37(2):58–76, March 2020. ISSN 1053-5888, 1558-0792. doi: 10.1109/MSP.2019.
2957822.

Sandeep Chakraborty, Ravindra Venkatramani, Basuthkar J. Rao, Bjarni Asgeirsson, and Abhaya M.
Dandekar. Protein structure quality assessment based on the distance profiles of consecutive
backbone Cα atoms. F1000Research, 2:211, December 2013. ISSN 2046-1402. doi: 10.12688/
f1000research.2-211.v3.

Payel Das, Mark Moll, Hernán Stamati, Lydia E. Kavraki, and Cecilia Clementi. Low-dimensional,
free-energy landscapes of protein-folding reactions by nonlinear dimensionality reduction. Pro-
ceedings of the National Academy of Sciences, 103(26):9885–9890, June 2006. doi: 10.1073/
pnas.0603553103.
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eration with NSOR/Vorträge Der 16. Jahrestagung Der DGOR Zusammen Mit Der NSOR, pp.
622–622. Springer, 1988.

Wolfgang Kabsch. A solution for the best rotation to relate two sets of vectors. Acta Crystallo-
graphica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 32
(5):922–923, 1976.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization, January 2017.

Axel Levy, Gordon Wetzstein, Julien Martel, Frederic Poitevin, and Ellen D. Zhong. Amortized
Inference for Heterogeneous Reconstruction in Cryo-EM, October 2022.

Youssef Nashed, Ariana Peck, Julien Martel, Axel Levy, Bongjin Koo, Gordon Wetzstein, Nina Mi-
olane, Daniel Ratner, and Frédéric Poitevin. Heterogeneous reconstruction of deformable atomic
models in Cryo-EM, September 2022.

James M Parkhurst, Maud Dumoux, Mark Basham, Daniel Clare, C Alistair Siebert, Trond Varslot,
Angus Kirkland, James H Naismith, and Gwyndaf Evans. Parakeet: A digital twin software
pipeline to assess the impact of experimental parameters on tomographic reconstructions for cryo-
electron tomography. Open Biology, 11(10):210160, 2021.

Ali Punjani, John L. Rubinstein, David J. Fleet, and Marcus A. Brubaker. cryoSPARC: Algorithms
for rapid unsupervised cryo-EM structure determination. Nature Methods, 14(3):290–296, March
2017. ISSN 1548-7105. doi: 10.1038/nmeth.4169.

G. N. Ramachandran, C. Ramakrishnan, and V. Sasisekharan. Stereochemistry of polypeptide chain
configurations. Journal of Molecular Biology, 7(1):95–99, July 1963. ISSN 0022-2836. doi:
10.1016/S0022-2836(63)80023-6.

Alexis Rohou and Nikolaus Grigorieff. CTFFIND4: Fast and accurate defocus estimation from
electron micrographs. Journal of Structural Biology, 192(2):216–221, November 2015. ISSN
1047-8477. doi: 10.1016/j.jsb.2015.08.008.

7



Published at the GEM workshop, ICLR 2024

Dan Rosenbaum, Marta Garnelo, Michal Zielinski, Charlie Beattie, Ellen Clancy, Andrea Huber,
Pushmeet Kohli, Andrew W. Senior, John Jumper, Carl Doersch, S. M. Ali Eslami, Olaf Ron-
neberger, and Jonas Adler. Inferring a Continuous Distribution of Atom Coordinates from Cryo-
EM Images using VAEs, June 2021.

Sjors H.W. Scheres. RELION: Implementation of a Bayesian approach to cryo-EM structure deter-
mination. Journal of Structural Biology, 180(3):519–530, December 2012. ISSN 10478477. doi:
10.1016/j.jsb.2012.09.006.

Sean L. Seyler, Avishek Kumar, M. F. Thorpe, and Oliver Beckstein. Path Similarity Analysis:
A Method for Quantifying Macromolecular Pathways. PLOS Computational Biology, 11(10):
e1004568, October 2015. ISSN 1553-7358. doi: 10.1371/journal.pcbi.1004568.

DE Shaw. Molecular dynamics simulations related to Sars-Cov-2. DE Shaw Research Technical
Data, 2020.

Monique M. Tirion. Large Amplitude Elastic Motions in Proteins from a Single-Parameter, Atomic
Analysis. Physical Review Letters, 77(9):1905–1908, August 1996. doi: 10.1103/PhysRevLett.
77.1905.

Shinji Umeyama. Least-squares estimation of transformation parameters between two point patterns.
IEEE Transactions on Pattern Analysis & Machine Intelligence, 13(04):376–380, 1991.
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A IMAGE ENCODER
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Figure 4: The image encoder used in our network. BN stands for batch normalization Ioffe &
Szegedy (2015), and MP is max pooling. The numbers on the arrows after convolutional blocks
indicate the number of channels. The numbers on the layers after flattening indicate vector dimen-
sionality. The output of the image encoder is the conformation latent z, with dimensionality 8 in this
research.

B IMAGE FORMATION MODEL AND DIFFERENTIABLE PROJECTOR

A transmission electron microscope (TEM) probes a specimen by incident high-energy electrons.
These electrons scatter against the electrostatic potential V (x, y, z) that is generated by the atoms in
the specimen, which here are the atoms of the protein and the surrounding vitrified aqueous buffer.
The first step in simulating the TEM image formation is to model this scattering. If the specimen
is weakly scattering, as is the case for proteins in a thin aqueous buffer, then one can express the
scattered electron wave in terms of the X-ray transform of the aforementioned electrostatic potential:
I(x, y) =

∫
z
V (x, y, z) dz, where the integral runs parallel to the TEM optical axis through the

specimen. Next, this electron wave is propagated through the TEM optics, a procedure that is
modelled by a convolution in the TEM detector plane with a kernel given by the microscope CTF
(Vulović et al., 2014; 2013). The projector of our network relies on this image formation model to
efficiently and differentiably produce output images based on the computed protein conformation.

Letting R represent the protein pose in the image, and d represent the global (2D) off-center shift of
the protein in the image, our network projects conformations as follows:

pi ← Rpi + d i = 1, ..., N (2)

Îideal(x, y) =

N∑
i=1

mi(σi

√
2π)−2e

− 1
2

(
x−pi,0

σi

)2

e
− 1

2

(
y−pi,1

σi

)2

(3)

ÎF (kx, ky) = CTF (kx, ky) · F{Îideal(x, y)}(kx, ky) (4)

Îreal(x, y) = F−1{IF (kx, ky)}(x, y) , (5)

where pi is the residue’s position, and σi its standard deviation estimated as explained in appendix
C. The Gaussian mass mi =

∑
atom∈i Zatom is equal to the total number of electrons of the residue

(since the image contrast is proportional to the electron density as per the X-ray transform). The
CTF is computed in the conventional way, explained in appendix D.

C MODELLING RESIDUES AS GAUSSIANS

We model residues as points, and represent the protein as a point cloud of residues. More fine-
grained representations (e.g. as in Zhong et al. (2021c) and Rosenbaum et al. (2021)) allow for
potentially more precise projections, but only if the smaller units are also positioned accurately.
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This adds significant complexity to the problem6. Furthermore it is the backbone movement that is
of primary interest to structural biologists.

To account for the varying sizes and shapes of different amino acids, each residue is projected as a
Gaussian with a standard deviation unique to its amino acid identity. Let Iν,R(x, y) be the projection
of amino acid ν ∈ {alanine, arginine, ...} in pose R ∈ SO(3). Let Iν,R(x, y) additionally be
normalized such that its integral is 1. We then estimate σν as the standard deviation that minimizes
the L2 loss between the Gaussian pdfσ(x, y) corresponding to N (0,diag(σ, σ)) and Iν,R(x, y),
integrated across the projection plane S, assuming rotations R uniformly sampled from SO(3):

σν = argmin
σ

∫ ∫
S
(pdfσ(x, y)− ER∼Unif(SO(3))[Iν,R](x, y))

2 dxdy . (6)

We use a discretized version of this estimator. The projections Iν,R(x, y) are generated by taking
an atomic model of amino acid ν, centering its Cα atom, and projecting all its atoms as spherical
Gaussians with unit standard deviation7 and mass equal to the atomic number. This estimator finds
the Gaussians that most closely fit the projections of a residue (using atom-level projections and a
(theoretically) infinitesimal pixel size) with random poses. Although ER∼Unif(SO(3))[Iν,R] is not
shaped exactly like a Gaussian pdf, we found that it is sufficiently close.

D CTF COMPUTATION

The contrast transfer function (CTF) is the Fourier transform of the convolution kernel used for
modelling the TEM optics. It is applied in the detector plane (in Fourier space) through pixel-wise
multiplication (equation 4). The CTF is computed as follows Rohou & Grigorieff (2015):

CTF (kx, ky) = − sin

(
πλ∥g∥2(f − 1

2
λ2∥g∥2Cs) + arctan(ω/

√
1− ω2)

)
(7)

f =
1

2
(f1 + f2 + (f1 − f2) cos(2(αg − αast))) (8)

∥g∥2 = k2x + k2y (9)

αg = (ky, kx) (10)

λ = 12.2639/
√
V + V 2 · 0.97845 · 10−6 , (11)

where

• (kx, ky) are coordinates in frequency space (in units of Å
−1

) corresponding to pixel (x, y)
in real space.

• λ is the wavelength of the electron beam used by the electron microscope, which is a
function of the accelerating voltage V (given). Equation 11 is the relativistic version of the
de Broglie wavelength with physical constants filled out.

• Cs is the spherical aberration (given).

• ω is the amplitude contrast percentage (given).

• f1 and f2 are the two defocus values along normal directions (given).

The parameters marked as (given) are either experimental settings, or estimated in postprocessing
by the cryo-EM experimentalists, and must be given as part of the dataset.

6Potentially even more complexity than the network can solve for. Side chains are small and it is question-
able whether realistic heterogeneous datasets contain strong enough a signal to reconstruct their exact posi-
tions. Zhong et al. (2021c) found a minor accuracy improvement by modelling side chains separately, but only
demonstrated this under low-noise conditions.

7Which is a simple yet sufficiently accurate model of the electron density of an atom (Rosenbaum et al.,
2021).
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E LATENT DECODER

The latent decoder is implemented as a 7-layer MLP with a hidden dimension of 350 and SiLU
activations (Hendrycks & Gimpel, 2023) after each linear layer except the last.

F LEARNABLE OUTPUT NORM

Learnable output normalization is implemented using a 3-layer MLP with output dimension 2, hid-
den dimension 350, and SiLU activations between layers. The last linear layer is interpreted to
contain normalization scalars [µ̂, ŝ]. The MLP is not conditioned on input data, i.e. it is backpropa-
gated directly.

To ensure stable optimization from the first batch, it helps to additionally use a fixed set of normal-
ization statistics (µ0, s0) that has been estimated prior to training. Since the learnable output norm
will correct during training, there is no need to use a sophisticated estimation approach for (µ0, s0).
We estimated µ0 as the mean across a sample of projections of the base conformation under random
poses. We estimated s0 using a visual comparison between a set of images from the dataset and a
set of projections of the base conformation, by trying to scale their intensity levels to the same order
of magnitude.

Output projections of the network are then normalized twice: first Î ← (Î − µ0)/s0, followed by
Î ← (Î − µ̂)/ŝ. Hence, ŝ should be initialized at 1.

G EMD-RMSD

Root-mean-square deviation (RMSD) is a standard similarity metric used in structural biology for

two different reconstructions of the same protein RMSD(P1, P2) =
√

1
N

∑N
i=1 ∥pi,1 − pi,2∥2

where pi,j is the position vector of point i in protein Pj and the protein is represented using N points
(Cα atoms in this work). RMSD enables straightforward comparison between any pair of proteins,
but we need a metric that quantifies similarity of two distributions of conformations, namely the
heterogeneous conformation distribution learnt by the network and the ground truth conformation
distribution (which is known for a synthetic dataset). To that end, we use the earth mover’s dis-
tance (EMD) measure of similarity between two probability distributions8. Let sets C1 = {ci,1|i =
1, ...,K} and C2 = {ci,2|i = 1, ...,K}, each consisting of K conformations of the same protein.
Then there are K2 pairs RMSD(ci,1, cj,2). Let S = {si,j |i, j = 1, ...,K ∧ si,j ∈ {0, 1}} be the set
of binary variables that select whether (ci,1, ci,2) are paired up. We then define EMD-RMSD as:

EMD-RMSD(C1, C2) ≡ min
S

1

K

K∑
i=1

K∑
j=1

si,jRMSD(ci,1, ci,2) (12)

subject to (13)
K∑
j=1

si,j = 1 ∀i ∧
K∑
i=1

si,j = 1 ∀j . (14)

(15)

This finds the optimal pairing of conformations from C1 and C2 such that every conformation is
paired exactly once with a conformation from the other set, and that the total RMSD across all pairs
is minimized. The optimal pairing can be found with any linear assignment problem solver; we use
Jonker & Volgenant (1988). The Kabsch-Umeyama algorithm (Kabsch, 1976; Umeyama, 1991) is
used to rigidly align all structures to achieve SE(3)-invariant RMSD computation.

EMD-RMSD encapsulates the RMSD between the ground truth conformation distribution and the
learned conformation distribution in a single value with units in Ångstrom.

8This evaluation approach was introduced by Rosenbaum et al. (2021).
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H DATA

Defocus is set at 20.000 Å, spherical aberration at 2.7mm, accelerating voltage at 300 kV. The
effective pixel size, after accounting for magnification, is set at 1 Å. The electron dose is set at
{1000, 100, 50} e/Å

2
. No effect of radiation damage was included in the simulations. All other

parameters were left at the default values, as described in Parkhurst et al. (2021). Figure 5 shows
a sample of the synthetic dataset. Figure 6a shows the conformational states at the extremes of the
hinge-motion of the ADK protein.

Figure 5: A sample of the synthetic datasets used for our experiments (the ADK protein is projected
in these images). At 50 eÅ

−2
, it is hard to even discern the presence of the particle.

I ADDITIONAL RESULTS AND FIGURES

Table 2: Heterogeneous reconstruction results in terms of RMSD (Å). This table reports on the same
experiments as Table 1, but displays the results in terms of a different metric (that is, RMSD instead
of EMD-RMSD).

electron dose (eÅ
−2

)
ADK Nsp13

base geom. loss ablated base geom. loss ablated
1000 1.9 2.6 2.5 4.0
100 2.2 2.7 2.8 4.5
50 2.7 2.7 3.0 4.5
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(a) Ribbon diagram of the ground truth open and
closed conformations of the ADK protein. The
two flexible regions that make a hinge-movement
are marked with arrows.

(b) Reconstructed conformation distribution by
the network. Note how the reconstructions form
a uniformly distributed fan between the closed
and open state.

Figure 6: The conformation trajectory of ADK, with the open and closed conformations respectively
in purple and red.

Figure 7: The conformation trajectory of Nsp13. The ground truth conformations are in red, and
the corresponding predicted conformations in blue. A different visualization is chosen compared to
Figure 6, to better be able to display the disordered motion of Nsp13 in the intermediate states.
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Figure 8: Analogous plot to Figure 2a, but for a different electron dose of 50 e/Å
2
. Note how at

this noise level the network no longer succeeds in accurately positioning all residues in the highly-
flexible sections of the protein.

Figure 9: Analogous plot to Figure 3a, but for a different electron dose of 1000 e/Å
2
.

Figure 10: Latent space z visualized using principal component analysis. Each dot represents a
latent embedding of an image from the dataset. The y-axis shows the norm of its projection on the
first principal component. The x-axis shows the ground truth conformation corresponding to each
dot, in increments of 10. Means ± standard deviation are shown. The clear structure shows that the
network naturally learns to embed the low-dimensional conformational heterogeneity of ADK in an
appropriate manifold, without the use of mechanisms to enforce structure on the latent space.
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