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Abstract

Like many other deep learning models, Graph Neural Networks (GNNs) have
been shown to be susceptible to adversarial attacks, i.e., the addition of crafted
imperceptible noise to input data changes the model predictions drastically. Most
of these attacks perturb the graph edge structure and are known to connect very
dissimilar parts of the network. We show that a very simple method, k-HOP-
PURIFY, which makes node predictions using a k-hop Egonet centered at the node
instead of the entire graph which boosts adversarial accuracies. This could be
used both as i) a post-processing step after applying popular defenses or ii) as a
standalone defense method that is comparable to many other competitors. The
method is extremely lightweight and scalable (takes 4 lines of code to implement)
unlike many other defense methods which are computationally expensive or rely
on heuristics. We show performance gains by extensive experimentation across
various types of attacks (poison/evasion, targetted/untargeted), perturbation rates,
and defenses implemented in the DeepRobust Library 1.

1 Introduction

Graph Neural Networks (GNNs) have served as powerful representation models for graph data
and have received attention across various disciplines [1, 2, 3]. The success of these models is
attributed mainly to the message-passing scheme [4] where neural features are propagated along
graph edges and at each layer, a node aggregates messages received from neighbors in the graph.
Such a message-passing and aggregation scheme has led to great success in the representation power
of GNNs with applications in social networks [5], particle interactions [6], disease pathways [7],
etc. However on the other hand, like many deep learning models in domains such as images, text,
etc., GNNs are susceptible to adversarial attacks which are designed to degrade GNN predictions by
making imperceptible changes to the input graph [8, 9].

Adversarial attacks on graphs change the node features or the graph topology. While most attacks in
the image or text domain inject adversarial noise in the data features [10, 11], most graph attacks
inject carefully crafted edge perturbations and attack the graph structure. These attacks typically join
nodes with dissimilar features/labels that were not connected in the clean graph [12]. The presence of
such adversarial edges interferes with neural message passing which in turn makes the GNN make
wrong predictions. The lack of GNN robustness is a critical issue in many application areas, which
hinders the use of GNNs especially in many safety-critical applications [13, 14]. We deal with the
task of node classification but the same ideas can be extended to other downstream tasks.

Due to the pressing need for developing GNNs to be robust to adversarial attacks, a lot of work has
been pushed into developing defense methods for these models. Most existing defense methods for
graphs either involve adversarial training (i.e., training the graph for the worst-possible perturbation)
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or some graph processing that involves identifying adversarial edges. Many of these defense methods
are computationally expensive [15] and rely on heuristics to prune off edges [16] which also destroys
the original structure of the graph which hampers performance.

GNN predictions are done by passing the entire graph in the model which provides logits for all nodes
at once which are used to provide the class to the node. For images, some very simple inference
time processing techniques have been shown to mitigate adversarial robustness, such as random
resizing and padding [17], quantization of input image pixels [18], etc. All of these were based on
a simple principle: the image looks almost the same to the human eye so the model performance
should not degrade a lot on performing these transformations. On the other hand, performing such
transformations helps reduce the effect of any attack. We ask a similar question for graphs:

Is there a simple test-time transformation that helps in mitigating adversarial noise for graphs?

We answer the question affirmatively: using k-hop egonets (subgraphs centered at a node) around
the node to be predicted helps a lot in mitigating the effect of an adversary. Thus, instead of using
the entire graph to predict node labels, just construct a local neighborhood for each test node, and
using these (much) smaller subgraphs helps mitigate the effects of a lot of common adversaries. The
intuition is similar – showing the model only the most relevant information avoids distraction which
generally leads to wildly incorrect features.

2 Background and Preliminaries

Given a graph G = (V, E ,X) with n nodes and m edges, we deal with the task of transductive
node classification, i.e., given some labeled nodes in the graph, the task is to predict the class of all
the unlabelled nodes with node labels y ∈ {1, 2, . . . , C}n, where C is the total number of classes.
X ∈ Rn×d = [x1,x2, . . . ,xn] are the node features where d is the dimensionality of the node
features. The graph adjacency matrix A ∈ {0, 1}n×n is the denotes the node connectivity, i.e.,
Aij = 1 iff nodes i and j are connected by an edge. We have a GNN model fθ(A,X), that takes
in the graph features and connectivity and outputs logits Ŷ ∈ Rn×C which are then used to make
predictions. In the adversarial setting, an attacker perturbs the graph G to G′ = (V, E ′,X′) which
degrades the performance of the classifiers fθ. Note that we are only focussing on attacks that do
not perturb the vertex set of the graph but can change the connectivity and node features. In the
subsequent subsections, we shall go over some preliminaries that shall serve as an overview of
common graph attack and defense techniques.

2.1 Background on Graph Neural Networks (GNNs)

Graph neural networks (GNNs) learn a low-dimensional representation vector for each node in the
graph which can be used for downstream predictions [19, 20]. These representations are learned using
both the node features X provided in the graph and features of the neighborhood of the node using
the graph connectivity A. A GNN is made by stacking L layers where node features are modified at
each layer. Let hk

u ∈ Rd, be the a feature of node u at layer k. Using this notation, we have h0
u = xu,

the original node features that one starts off with. The GNN fθ comprises a triplet (MSG, AGG, UPD)
which governs how the node embeddings evolve during a GNN forward pass [21]. A node u receives
messages mk

uv from each of it’s neighbors v ∈ N (u), where the message mk
uv is computed using

MSG(hk
u,h

k
v ,Auv). The node u after receiving messages from all its neighbours aggregates those

into m̂k
u = AGG(mk

uv; v ∈ N (u)). The node then finally updates its features using the UPD function,
i.e., hk+1

u =UPD(m̂k
u,h

k
u). The same process is continued for L layers to assign the nodes their final

features which is equal to hL
u . This final feature can then be used for any downstream task such as

node classification. Note that GNNs are both invariant to node permutation and the size of the input
graph, i.e., the same GNN can be tested on a graph of variable size as the learned weights just update
pairwise node connections and are invariant to the global connectivity [22].

2.2 Background on Adversarial Attacks

Deep learning models used for domains such as images and texts mainly modify the data features
(image pixels or word embeddings) [8, 11]. On the other hand, attacks on graphs have many design
choices which we shall be going over in this subsection. For this work, we mainly concern ourselves
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with only white-box attacks given that they are the strongest and it makes sense to study defense
methods for these worst-case attacks. Most of these attacks aim to add some (bounded) perturbation
to the input. The attacks are designed to be imperceptible (say, from anomaly detection methods) yet
are capable of degrading model performance which requires crafting these attacks carefully. Attacks
on graphs can be classified into one of the following categories:

1. Feature vs Structure Perturbation. An attack can either add adversarial noise in the node
features or change the structure of the graph (node/edge addition or deletion) in order to
attack the message-passing algorithm which in turn would lead to spurious node features.
Most attacks on graphs are known to connect nodes with dissimilar features/labels which
destroys the homophily and has been shown to degrade the GNN performance [23].

2. Global vs Local Attacks. Local (or targetted) on a particular node or targetted (or global)
to perturb the performance on the entire test set. Performance for local attacks is measured
by success rate, i.e., how many times the attacker is able to misclassify the target node on
applying the attack vs global attacks are measured by overall test-set accuracies.

3. Evasion vs Poisoning Attacks. Evasion (test-time) attacks involve having an already trained
GNN fθ model on a clean graph G, and then perturbing it into a new graph G′ where the
model would fail. Poisoing attacks (train-time), on the other hand do not have access to
the GNN model and first change the graph G to G′. The GNN model is then finally trained
on the adversarial graph G′. Poisoning attacks are typically harder to design than evasion
attacks due to lack of the model information and the need to see through the training process
to analyze the effects of the made changes, both through training and inference [24].

Some common attacks which we use in our experiments are briefly described below:

Projected Randomized Block Coordinate Descent (PRBCD) [15]. This is an evasion attack that
scales to millions of nodes and performs PGD on only a subset of promising variables at a time which
improves its scalability. This is the only known attack to scale to larger graphs such as ogbn-arxiv.

Delete Internally, Connect Externally (DICE) [25]. This is a simple baseline global attack where,
for each perturbation, we randomly choose whether to insert or remove an edge. Edges are only
removed between nodes from the same classes and inserted between nodes from different classes.

Nettack [9]. This is a targetted attack that selects a set of nodes within the graph that are most
influential and then alternately updates the node features and edge structure.

Mettack [26]. This is typically used as a strong global poisoning attack which uses meta-gradients
using the to-be-attacked graph as a hyperparameter to optimise.

2.3 Background on Adversarial Defenses

In this subsection, we shall go over some common defenses against structural graph attacks. On a
high level, most of these methods try to identify discriminating features between a clean and attacked
graph. The next step is essentially to try to circumvent the identified anomaly in some form which
subsequently improves the model performance. As described in [24], these methods can be classified
into one of the following three methods.

Improving the Graph. Attacks typically affect the higher-order singular values of the graph
adjacency matrix, and hence GCNSVD [27] uses a low-rank approximation of the adjacency matrix
before a pass through the GNN. GNN-Jaccard [16] prunes edges between nodes whose similarity
is below a certain pre-determined threshold. Pro-GNN [28] is a supervised defense method that
alternatingly optimizes the parameters of the GNN and the adjacency matrix (which leads to a cleaner
graph).

Improving the Training. For having more robust models, one idea is adversarial training which
involves training the model on adversarial samples, i.e., minimizing the loss for a worst-case pertur-
bation. GRAND [29] performs random feature augmentations of the node and its neighbors.

Improving the Architecture. This typically involves changing some part of message passing, such
as using a median aggregation function [30, 31] that is more robust or filtering potentially adversarial
edges during message passing. Some other methods like RGCN [32] also try to induce robustness by
using ideas of distributions over node features as opposed to point estimates.
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3 Method

As described in the previous section, most literature on adversarial graph learning can be pinned
down as the following: attacks add edges between dissimilar nodes and removes edges from similar
nodes; defenses that try to identify such perturbations and try it “purify” the graph at different stages
which would try to ensure that model performance would not degrade. Inference on graph neural
networks proceeds by passing the entire graph through the model which provides logits (and hence
labels) for all the nodes in a single forward pass. The issue with passing the entire graph is that
adversarial edges joining very unrelated parts of the network affect message propagation leading to
misclassification. We propose that during inference time, instead of passing the entire graph, we only
pass a k-hop subgraph centered at the test node in the GNN model. In code, the change is extremely
minor as shown below:

data: PyG data object
model: GNN model
node_idx: Node to be classified

# Earlier Inference:

output = model(data.x, data.edge_index)
assigned_label = output[node_idx].argmax(-1)

# k-Hop-Purify Inference:

from torch_geometric.utils.subgraph import k_hop_subgraph
subset, edge_index_subgraph, _, _ = k_hop_subgraph(node_idx, k, data.edge_index)
output = model(data.x[subset], edge_index_subgraph)
assigned_label = output[node_idx].argmax(-1)

Note that we are generating a new subgraph for the test node which increases computational cost,
however, this step can be easily parallelized and all the obtained subgraphs can be passed as a batch to
the model. The idea is to show the model only the most important part of the graph around the node
to be predicted and surprisingly, just doing this circumvents messages received along spurious edges.
This inference mechanism can be used in general as a post-processing method after applying any
defense method, i.e., model could be either a vanilla model or an already defended model. Similarly,
this method can be used for both evasion and poison attacks. In the latter case, the graph passed for
inference would be the edge index of the poisoned graph. We show that in our experiments, this
way of performing inference can also be used as a post-processing step to any popular defense to
significantly improve their adversarial accuracy.

4 Experiments

We perform extensive experimentation across a variety of attacks and defenses using the DeepRobust
Library. For all the experiments, the value of k was chosen as a hyperparameter which maximized
the validation accuracy. The values of k which worked the best for all datasets were in the range
of 2 − 4. Results indicate test-accuracies averaged over 5 runs along with one standard deviation.
All other hyperparameters related to both the model training and attacks are kept the same as in the
library unless mentioned explicitly. ∆ indicates the perturbation rate, denoting that a total of ∆×m
edges could be perturbed by the attacker (written in parentheses next to the attack name). Table 1
describes the results of performing different types and strengths of global evasion attacks on different
datasets using a vanilla GCN model only. The number in parentheses is the model accuracy on that
dataset without any attack. The attacked model column indicates the model accuracy after performing
the mentioned attack and the final column just changes the inference method as described above
without any additional training/processing. We see that for all these scenarios, using the k-Hop-Purify
inference method does significantly better in terms of test-set accuracies.

Next, in Table 2, we observe that our method can be used as a post-processing step over commonly
used defenses to give a 4−5% boost in adversarial accuracies. We also compare with other commonly
used GNN architectures such as AirGNN [33], SGC [34], and APPNP [35]. The above two tables
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DATASET ATTACK MODEL NAME ATTACKED MODEL ATTACKED MODEL
NAME (∆) + K-HOP-PURIFY

CORA PRBCD (0.1) GCN (77.16) 65.13 ± 1.34 70.72 ± 1.61
CORA PRBCD (0.2) GCN (77.16) 56.84 ± 1.53 68.49 ± 1.28
CORA PRBCD (0.3) GCN (77.16) 46.93 ± 1.02 63.73 ± 1.31

CORA DICE (0.1) GCN (77.16) 67.22 ± 1.03 70.53 ± 0.94
CORA DICE (0.2) GCN (77.16) 57.55 ± 0.86 63.17 ± 0.72
CORA DICE (0.3) GCN (77.16) 50.05 ± 0.85 58.35 ± 0.94

CORA METTACK (0.1) GCN (77.16) 61.34 ± 0.56 68.32 ± 1.14
CORA METTACK (0.2) GCN (77.16) 52.13 ± 1.34 59.73 ± 0.86
CORA METTACK (0.3) GCN (77.16) 41.03 ± 0.73 55.01 ± 0.92

PUBMED PRBCD (0.1) GCN (81.61) 71.33 ± 1.01 75.91 ± 1.29
PUBMED PRBCD (0.2) GCN (81.61) 64.41 ± 1.62 69.01 ± 1.11
PUBMED PRBCD (0.3) GCN (81.61) 57.94 ± 1.29 64.27 ± 1.83

PUBMED DICE (0.1) GCN (81.61) 73.39 ± 0.84 74.86 ± 1.07
PUBMED DICE (0.2) GCN (81.61) 66.63 ± 1.12 69.06 ± 1.32
PUBMED DICE (0.3) GCN (81.61) 57.91 ± 1.04 64.39 ± 0.87

PUBMED METTACK (0.1) GCN (81.61) 67.34 ± 1.03 69.04 ± 0.83
PUBMED METTACK (0.2) GCN (81.61) 62.91 ± 1.27 67.31 ± 1.02
PUBMED METTACK (0.3) GCN (81.61) 55.13 ± 1.14 62.87 ± 0.91

OGBN-ARXIV PRBCD (0.1) GCN (70.65) 49.12 ± 1.14 62.06 ± 1.71
OGBN-ARXIV PRBCD (0.2) GCN (70.65) 31.79 ± 1.01 53.92 ± 1.42
OGBN-ARXIV PRBCD (0.3) GCN (70.65) 15.43 ± 1.86 43.73 ± 1.37

Table 1: Global Evasion: Using k-HOP-PURIFY as a standalone defense method

DATASET MODEL NAME ATTACKED MODEL ATTACKED MODEL
+ K-HOP-PURIFY

CORA AIRGNN (83.2) 70.88 ± 0.75 75.88 ± 0.45
CORA MEDIANGCN (85.7) 75.88 ± 0.63 79.88 ± 0.71
CORA SGC (79.13) 73.88 ± 1.15 77.19 ± 0.67
CORA APPNP (81.2) 74.14 ± 1.13 75.39 ± 1.05
CORA GCNSVD (83.1) 70.14 ± 0.65 77.21 ± 0.82
CORA GCNJACCARD (80.3) 76.34 ± 1.34 79.12 ± 0.75
CORA RCGN (78.7) 73.24 ± 1.03 76.19 ± 0.73

OGBN-ARXIV AIRGNN (72.3) 52.98 ± 0.81 61.12 ± 0.53
OGBN-ARXIV MEDIANGCN (75.8) 61.39 ± 0.52 65.13 ± 1.10
OGBN-ARXIV SGC (74.6) 55.32 ± 0.81 62.34 ± 1.32
OGBN-ARXIV APPNP (73.4) 52.35 ± 0.69 55.54 ± 0.82
OGBN-ARXIV GCNSVD (70.7) 51.35 ± 1.54 59.35 ± 1.15
OGBN-ARXIV GCNJACCARD (72.9) 56.89 ± 0.75 62.97 ± 0.77
OGBN-ARXIV RCGN (74.6) 59.38 ± 1.42 63.94 ± 0.65

Table 2: Global Evasion: Using k-HOP-PURIFY as a post-processing inference after applying a
defense model. The attack was a PRBCD attack with ∆ = 0.2.

suggest the utility of k-Hop-Purify for global evasion attacks. We also investigate whether similar
trends are observed in global poisoning attacks, where the graph is perturbed first and then a model is
trained on the adversarial graph. Poisoning is a harder attack and most successful attacks use some
variation of meta-learning. For our experiments, we use already perturbed graphs using Mettack with
varying perturbation rates as provided here 2. Table 3 indicates that the proposed inference method
performs well for poisoning attacks as well, albeit with lower improvements indicating the hardness
of defending these attacks over evasion attacks.

We then look at targeted attacks where the goal of the adversary is to misclassify a provided target
node instead of overall test accuracies as in evasion attacks. We instead measure the attack success
rate, i.e., how many fraction of times the attack succeeds in misclassifying the target node. Nettack is
a popular local adversarial graph attack which is what we used in our experiments with perturbation
rate ∆ = 0.2. Table 4 shows the results where the model to be attacked was a GCN model. The
number indicates the rate of correct classification of the target node (higher is better) and it indicates
that just passing a k-hop neighborhood to the GNN also benefits local attacks.

2https://github.com/ChandlerBang/Pro-GNN
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DATASET MODEL NAME ATTACKED MODEL ATTACKED MODEL
+ K-HOP-PURIFY

CORA GCN 44.67 ± 1.34 55.38 ± 0.79
CORA MEDIANGCN 56.23 ± 1.07 63.93 ± 0.92
CORA GCNSVD 54.32 ± 1.94 60.38 ± 1.73
CORA GCNJACCARD 55.43 ± 0.64 58.12 ± 1.41
CORA RCGN 53.98 ± 0.71 57.03 ± 1.52

PUBMED GCN 75.46 ± 1.14 77.13 ± 1.01
PUBMED MEDIANGCN 77.23 ± 0.92 78.14 ± 1.43
PUBMED GCNSVD 76.32 ± 0.71 78.04 ± 0.89
PUBMED GCNJACCARD 78.13 ± 0.62 79.15 ± 1.16
PUBMED RCGN 77.74 ± 0.95 78.84 ± 0.54

Table 3: Global Poison: Using k-HOP-PURIFY as a post-processing inference after applying a
defense model. The attack was a Mettack attack with ∆ = 0.2.

DATASET ATTACKED MODEL ATTACKED MODEL
+ K-HOP-PURIFY

CORA 2% 18%
PUBMED 3% 26%

CITESEER 1% 14%

Table 4: Local Nettack with ∆ = 0.2.

Performance Change with Varying k

One important question one might ask is how the performance varies with changing k, the number of
hops to sample the subgraph from 0− 5. k = 0 indicates just using the node features of prediction,
and increasing k takes more of the neighborhood into account. As shown in Fig 1, we see that
performance typically peaks by taking an intermediate value of k and worsens on both sides of the
spectrum. This indicates that some information of neighborhood helps in prediction but as we start
getting too far, the effect of adversarial edges kicks in. Another question is the following: does
the approach to perform k−hop inference help only adversarial graphs or even help in usual GNN
inference to improve performance? As we see in Fig 1, for unattacked graphs, it makes sense to
pass as much context as possible which can be seen with monotonically increasing performance with
increasing k. This points to the fact that performing k-hop subgraph inference is something special
for adversarial graphs and isn’t a general recipe for GNN inference.

(a) Cora Dataset (b) Pubmed Dataset

Figure 1: Effect of changing k on the method for both attacked and unattacked graphs

5 Conclusion

In this work, we demonstrated that a simple method of using k-hop subgraphs instead of an entire
graph boosts adversarial robustness for a variety of different attacks. This raises some very interesting
questions in studying the nature of attacks on graphs in more detail, and whether simply pruning
edges that connect far-away nodes in the graph help in robustness. The existence of such an
inference method calls for more sophisticated attacks for which even local neighborhoods are not
reliable for making a prediction. Some avenues of future research involve analyzing k-HOP-PURIFY
theoretically and looking at the overlap between the edges removed and adversarial edges introduced
by the attacker.
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