
Published in Transactions on Machine Learning Research (12/2023)

Synaptic Interaction Penalty: Appropriate Penalty Term
for Energy-Efficient Spiking Neural Networks

Kazuma Suetake∗ kazuma.suetake@aisin-software.com
AISIN SOFTWARE, Aichi, Japan

Takuya Ushimaru∗ takuya.ushimaru@aisin-software.com
AISIN SOFTWARE, Aichi, Japan

Ryuji Saiin ryuji.saiin@aisin-software.com
AISIN SOFTWARE, Aichi, Japan

Yoshihide Sawada yoshihide.sawada@aisin.co.jp
Tokyo Research Center, AISIN, Tokyo, Japan

Reviewed on OpenReview: https: // openreview. net/ forum? id= 42BKnT2qW3

Abstract

Spiking neural networks (SNNs) are energy-efficient neural networks because of their spik-
ing nature. However, as the spike firing rate of SNNs increases, the energy consumption
does as well, and thus, the advantage of SNNs diminishes. Here, we tackle this problem by
introducing a novel penalty term for the spiking activity into the objective function in the
training phase. Our method is designed so as to optimize the energy consumption metric
directly without modifying the network architecture. Therefore, the proposed method can
reduce the energy consumption more than other methods while maintaining the accuracy.
We conducted experiments for image classification tasks, and the results indicate the ef-
fectiveness of the proposed method, which mitigates the dilemma of the energy–accuracy
trade-off.

1 Introduction

With the rapid growth and spread of neural networks, realizing energy-efficient neural networks is an ur-
gent mission for sustainable development. One such model is the spiking neural network (SNN), which is
also known to be more biologically plausible than ordinary artificial neural networks (ANNs). SNNs are
energy-efficiently driven on neuromorphic chips (Akopyan et al., 2015; Davies et al., 2018) or certain field-
programmable gate arrays (FPGAs) (Maguire et al., 2007; Misra & Saha, 2010) by asynchronously processing
spike signals. However, as the spike firing rate of an SNN increases, the energy consumption does as well,
and thus, the advantage of the SNN diminishes. Therefore, in addition to the shift from ANNs to SNNs, it
is advantageous to adopt training methods that reduce energy consumption in the inference phase. At the
same time, such a training method should be independent of the network architecture to avoid limitations in
the application. That is, our goal is to develop a training method that realizes energy-efficient SNNs without
any constraint on the network architecture.

There are various approaches toward energy-efficient SNNs, such as pruning, quantization, and knowledge
distillation (Kundu et al., 2021; Chowdhury et al., 2021a; Lee et al., 2021), which are widely-used approaches
also in ANNs. Further, there are SNN-specific approaches sparsifying the spiking activity related to the
energy consumption (Lee et al., 2020; Kim & Panda, 2021; Naya et al., 2021), to which our method belongs. In
particular, the methods that penalize the spike firing rate in the training phase are close to our aforementioned

∗Equal contribution.

1

https://openreview.net/forum?id=42BKnT2qW3

Published in Transactions on Machine Learning Research (12/2023)

goal (Esser et al., 2016; Sorbaro et al., 2020; Pellegrini et al., 2021). However, they indirectly reduce the
energy consumption by arbitrarily reducing the spike firing rate, where there is no strict proportionality
between them. Hence, reducing energy consumption while maintaining accuracy is difficult.

Principle and Idea Our principle is that—we should optimize the metric as it is in the training phase.
In this spirit, we propose to introduce a proper penalty term for the spiking activity—a synaptic interaction
penalty—into the objective function. It is derived so that its expected value is precisely proportional to
the energy consumption metric for the SNN. Although the difference between the proposed and existing
methods is only at the scaling factor for each spike, we demonstrate that this minor correction causes
significant improvement.

Main Contributions

• We derived a novel penalty term that can directly optimize the metric for the total energy consump-
tion of an SNN without modifying the network architecture.

• We demonstrated that the proposed method can reduce the energy consumption more than other
methods while maintaining the accuracy for image classification tasks, which mitigates the dilemma
of the energy–accuracy trade-off.

• We also demonstrated that the proposed method is compatible with the weight decay, which imposes
implicit sparsity on the network (Yaguchi et al., 2018), and that the proposed method creates a higher
sparsification effect than the weight decay.

2 Related Work

2.1 Spike Sparsification in Direct SNN Training

The most relevant approaches to our proposal introduce the penalty term for the spike firing rate and
directly train SNNs by the surrogate gradient method (Esser et al., 2016; Pellegrini et al., 2021). It is a
straightforward idea to penalize the spike firing rate to obtain energy-efficient SNNs because the spike firing
rate appears in the SNN energy consumption metric (Lee et al., 2020; Kim & Panda, 2021). We refer to
the reduction in spike firing rate as spike sparsification. Although the spike firing rate cannot be optimized
by the ordinal backpropagation method owing to non-differentiability, it can be optimized by the surrogate
gradient method, which is the same technique as training spiking neurons of SNNs (Zenke & Ganguli, 2018;
Shrestha & Orchard, 2018). However, neither of these penalty terms (Esser et al. (2016); Pellegrini et al.
(2021)) precisely matches the energy consumption metric. As opposed to them, our synaptic interaction
penalty resolves this limitation.

2.2 Spike Sparsification via Conversion from ANN

Other approaches introduce the penalty term for corresponding ReLU networks (ANNs with ReLU acti-
vations) and convert them to SNNs (Sorbaro et al., 2020; Narduzzi et al., 2022). Although there is no
guarantee that the penalty terms for ReLU networks contribute to the reduction of the energy consumption
for converted SNNs, ReLU networks can be optimized by the ordinal backpropagation method. Note that
the same synaptic scaling factor for the penalty term as ours is proposed to reduce the energy consumption
for SNNs in Sorbaro et al. (2020). However, they failed to provide evidence to support their claim, as they
mentioned. As opposed to them, we provide theoretical and experimental proof in the setting of the direct
SNN training by the surrogate gradient.

2.3 Neuron Sparsification

Neuron sparsification means increasing the number of permanently zero-valued activations for all data—dead
neurons. It is a stronger condition than spike sparsification, which does not force neurons to be permanently
inactive. In ReLU networks, the training with the Adam optimizer and weight decay regularization implicitly

2

Published in Transactions on Machine Learning Research (12/2023)

induce neuron sparsification (Yaguchi et al., 2018) because ReLU activations have an inactive state. However,
this claim has yet to be demonstrated in the context of SNNs, where spiking neurons also have an inactive
state, even though weight decay is usually adopted in SNNs. Therefore, to detect the effect of our method
correctly, we shall also focus on the weight decay.

3 Method

In this section, we propose the synaptic interaction penalty. First, we describe the spiking neuron model
with surrogate gradient mechanism. Next, we describe the metric for energy consumption, which can be
represented by the spiking activity. Note that we need to optimize both the accuracy and energy efficiency
in the training phase. Finally, we state that the synaptic interaction penalty is the proper penalty term to
optimize the energy consumption metric.

3.1 Neuron Model and Surrogate Gradient

In this study, we use SNNs constructed by single-step spiking neurons, which are superior to the multi-time
step SNNs in terms of training and inference costs for static tasks (Suetake et al., 2023). Note that the
single-step spiking neurons are the same setup as that in a previous study of the penalty term (Esser et al.,
2016).

Let us denote l ∈ {l ∈ Z | 1 ≤ l ≤ L} as the layer, dl as the number of neurons in the l-th layer,
s0 = x ∈ X ⊂ Rd0 as the input data, and the subscript i of any vector as its i-th component. Then, the
single-step spiking neuron is defined as follows (Suetake et al., 2023).

Definition 3.1. The forward mode of a single-step spiking neuron consists of two ingredients: the membrane
potential ul ∈ Rdl and spikes emitted by neurons sl ∈ {0, 1}dl . They are defined using the Heaviside step
function H as follows:

ul := Wlsl−1, (1)

sl,i (ul,i) := H (ul,i − uth) =
{

1 (ul,i ≥ uth) ,
0 (ul,i < uth) , (2)

where Wl ∈ Rdl×dl−1 is the strength of the synapse connections, also called the weight matrix, and uth ∈ R
is the spike firing threshold (Eq. 1 for l = 1 corresponds to the direct encoding (Rueckauer et al., 2017)). In
this context, we classify the i-th neuron in the l-th layer as a dead neuron if sl,i = 0 for all input data within
a given dataset.

A backward mode of the single-step neuron as it is does not work in the standard backpropagation algorithm
because the derivative of Eq. 2 vanishes almost everywhere. Therefore, we adopt the technique called
surrogate gradient, i.e., we formally replace the derivative function with some reasonable function, for
example, the following one (Suetake et al., 2023):

∂sl,i

∂ul,i
(ul,i) :≃

{
1
τ

1
ul,i

(ul,i ≥ uth) ,
∂σα

∂ul,i
(ul,i) (ul,i < uth) , (3)

where τ and α are hyperparameters and σα is the scaled sigmoid function expressed as follows:

σα (ul,i) := 1
1 + exp ((−ul,i + uth) /α) , (4)

∂σα

∂ul,i
(ul,i) = 1

α
σα (ul,i) (1− σα (ul,i)) . (5)

Note that the choice of a function for the surrogate function is irrelevant to our proposal.

3

Published in Transactions on Machine Learning Research (12/2023)

3.2 Metric for Energy Consumption

We prepare the symbol ψl,i for the number of synapses outgoing from the i-th neuron in the l-th layer,
i.e., the number of matrix elements in (Wl+1)∗,i ∈ Rdl that is not forced to vanish in terms of network
architecture. Let us denote Wl and Hl as the width and height of the feature map, respectively, Cl as the
channel size in the l-th layer, and kl+1 as the kernel size associated with Wl+1. We restrict both the kernel
width and height to be identical to kl+1 for the sake of simplicity. Then, explicit forms of ψl,i are as follows,
e.g., the standard fully connected (fc) and two-dimensional convolutional (conv) layers,

ψl,i = ψl = Cl+1 (fc), (6)

ψl,i ≃ ψl = Wl+1Hl+1

WlHl
Cl+1k

2
l+1 (conv), (7)

where the convolutional layer assumes appropriate padding with respect to kl+1 to satisfy Eq. 7. Additionally,
Eq. 7 provides the average value in the case of downsampling layers (Wl+1Hl+1 < WlHl) because the
precise value varies depending on the neuron’s position and the downsampling method. Note that ψl,i

may also vary depending on the neuron’s position within the convolutional layers, e.g., corners, edges,
and other positions, contingent upon hardware implementation. For instance, the hardware design could
involve computing all kernels tied to spike firing at edge positions including padding and then discarding
redundant computation results (Kang et al., 2020). Alternatively, the hardware could be engineered to evade
unnecessary computations in the initial phase through a conditional branch (Bamberg et al., 2023). The
expression presented in Eq. 7 remains consistent with the approach adopted by Kang et al. (2020), thereby
providing a sound measure that accurately accounts for hardware realization. In addition, it is worth noting
that more complex scenarios involving nontrivial padding, stride, and dilatation might introduce additional
i-dependency in ψl,i. However, such specific cases are beyond the scope of this study.

Using ψl,i, we can express the number of floating point operations (FLOPs), which is often used as a metric
to measure the computational complexity in ANNs, as follows:

FLOPs(l) :=
dl∑

i=1
ψl,i, (8)

and the layer-wise and balanced spike firing rates, which are also important metrics to measure the sparsity
of spiking activity in SNNs, as follows:

R(l) := E
x∈X

[∑dl

i=1 sl,i

dl

]
, (9)

R := 1
L

L∑
l=1

R(l), (10)

where the operation Ex∈X means taking the empirical expectation in the dataset X. Then, the energy
consumption metric that we should optimize is defined as follows.
Definition 3.2. Let us denote T as the size of time steps and EAC [pJ] as the energy consumption per
accumulate operation. Then, the layer-wise and total energy consumption metrics for the SNN are defined
as follows:

ESNN(l) := TEAC E
x∈X

[
dl∑

i=1
ψl,isl,i

]
, (11)

ESNN :=
L∑

l=1
ESNN(l). (12)

Note that T is equal to one for the single-step neuron model.

4

Published in Transactions on Machine Learning Research (12/2023)

This total energy consumption metric holds practical validity, as it aligns with the achievable energy con-
sumption levels when implementing SNNs through specific neuromorphic chips. For example, in Kim &
Panda (2021); Esser et al. (2016), the implementation of SNNs on the TrueNorth platform was demon-
strated (Akopyan et al., 2015), where the energy proportional to ψl,i is exclusively consumed upon the
occurrence of the corresponding spike firing. However, note that we consider the ideal setting for SNN infer-
ence, where peripheral energy consumption (Lemaire et al., 2022) does not contribute except for the spiking
interaction.

If ψl,i is independent of i (∃ψl,∀i, ψl,i = ψl), by combining Eqs. 8 and 9, Eq. 11 is rewritten as follows:

ESNN(l) = TEAC

dl∑
i=1

ψl E
x∈X

[∑dl

i=1 sl,i

dl

]
= TEACFLOPs(l)R(l), (13)

which is the same metric as that used in Kim & Panda (2021).

Note that dead neurons (Def. 3.1) for a given dataset never contribute to the energy consumption metric
(Def. 3.2) for that dataset. Moreover, these dead neurons never influence model outputs for the same
dataset. Therefore, pruning dead neurons after training can help save memory capacity, provided that data
distributions do not differ significantly between before and after training.

3.3 Synaptic Interaction Penalty

To optimize the energy consumption ESNN (Eq. 12), we propose the following penalty terms.

Definition 3.3. The layer-wise and total synaptic interaction penalty terms are defined as follows:

Ωsyn(l) = Ωsyn(l, sl) := 1
p

dl∑
i=1

ψl,is
p
l,i, (14)

Ωsyn = Ωsyn(s) :=
L∑

l=1
Ωsyn(l, sl), (15)

where s := {sl}L
l=1 and p ≥ 1.

The equivalency between the total energy consumption metric and total synaptic interaction penalty imme-
diately follows from their definitions and the equation sp

l,i = sl,i, which is derived from Eq. 2.

Theorem 3.4. The expected value of the layer-wise and total synaptic interaction penalties are precisely
proportional to the layer-wise and total energy consumption metrics of SNNs:

pTEAC E
x∈X

[Ωsyn(l)] = ESNN(l), (16)

pTEAC E
x∈X

[Ωsyn] = ESNN, (17)

for arbitrary p ≥ 1.

This fact means that optimizing Eq. 15 leads to optimizing Eq. 12. Hence, we strongly propose to use Eq. 15
as the penalty term to optimize the energy consumption metric. In the following, we indicate the total
synaptic interaction penalty when simply referred to as the synaptic interaction penalty. The spike firing
rate and energy consumption metric represent the balanced spike firing rate and total energy consumption
metric, respectively, as well as the synaptic interaction penalty.

5

Published in Transactions on Machine Learning Research (12/2023)

Table 1: Comparison among total penalty terms. Our penalty term Ωsyn is precisely equal to the ground
truth ESNN/EAC.

Model ESNN/EAC Ωsyn Ωtotal Ωbalance

CNN7 98895888 98895888 59688 6
VGG11 2526060544 2526060544 249856 10
ResNet18 553730048 553730048 671744 20

Remark 3.5. The proposed penalty term can be optimized in the manner of the surrogate gradient as in
Sec. 3.1, and using p ̸= 1 options controls the backward signal when the spike does not fire as follows:

1
p

∂sp
l,i

∂ul,i
(ul,i) = sp−1

l,i

∂sl,i

∂ul,i

≃

{
∂sl,i

∂ul,i
(ul,i ≥ uth) ,

0 (ul,i < uth) ,
(18)

where we used Eq. 2. From Eqs. 14 and 18, there is no intrinsic difference when p > 1; hence, we do not
consider p > 1 options except for p = 2, which is commonly used in several studies (Esser et al., 2016;
Pellegrini et al., 2021). However, the open problem still remains, i.e., it cannot be theoretically decided
which choice is better, p = 1 or p > 1. We experimentally examined it for p = 1, 2 as described in Sec. 4.

3.3.1 Differences from Other Penalty Terms

The other candidates for the penalty term are as follows:

Ωtotal = 1
p

L∑
l=1

dl∑
i=1

sp
l,i, (19)

Ωbalance = 1
p

L∑
l=1

dl∑
i=1

1
dl
sp

l,i, (20)

where, for p = 2, Ωtotal and Ωbalance are the same as those in Esser et al. (2016) and Pellegrini et al. (2021),
respectively. However, we claim that neither can directly optimize the energy consumption because they do
not have the proportional nature (Eq. 17), although they sparsify the spiking activity to some extent.

Fig. 1 and Table 1 show the discrepancy between the energy consumption metric and penalty terms of the
model used in the following experiment. In these figures and table, we assumed that all the spiking neurons
fired, i.e., sl,i = 1(∀l, i), for the sake of simplicity. In this assumption, the ground truth is proportional to
FLOPs without loss of generality. These figures and table indicate that the synaptic interaction penalty is
precisely proportional to the energy consumption metric, but other penalties are not. In the next section,
we will experimentally verify how this claim affects performance.

3.3.2 Normalization of Penalty Terms

Penalty terms are included in the objective function with their intensity parameter λ as the coupling λΩ∗,
where the symbol ∗ denotes “syn”, “total”, or “balance”. For tractable treatment of the intensity parameter
between various penalty terms or among models of various scales, we recommend normalizing the penalty
terms by Ω∗(1), where 1 indicates s = 1, i.e., sl,i = 1 ∀l, i. Note that replacing Ω∗ with Ω∗/Ω∗(1) is
equivalent to replacing λ with

λ′ = λ/Ω∗(1). (21)

Hence, we sometimes adopt the normalized notation λ′ instead of λ.

6

Published in Transactions on Machine Learning Research (12/2023)

1 2 3 4 5 6
Layer l

10 1

10 2

10 3(l)
/

l
(l)

ESNN syn (ours) total balance

(A) CNN7

1 2 3 4 5 6 7 8 9 10
Layer l

10 1

10 2

10 3

(l)
/

l
(l)

ESNN syn (ours) total balance

(B) VGG11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Layer l

10 1

10 2

10 3(l)
/

l
(l)

ESNN syn (ours) total balance

(C) ResNet18

Figure 1: Comparison among layer-wise penalty terms. The x-axis represents the layer number, and the y-
axis represents ESNN(l)/ESNN for data of ESNN or Ω∗(l)/Ω∗ for data of Ω∗ (∗ denotes syn, total, or balance).
The network architectures are (A) CNN7, (B) VGG11, and (C) ResNet18 (App. A.1). Our penalty term
(blue) is precisely proportional to the ground truth (gray).
4 Experiment

In this section, we evaluate the effectiveness of the proposed synaptic interaction penalty. First, we describe
the setup for experiments. Next, we show that the proposed method can decrease energy consumption.
Finally, we show that the proposed method can reduce the energy consumption more than other methods
while maintaining the accuracy. In particular, we show that the proposed method can work under distinct
surrogate gradient functions and outperforms the conversion approach (Sorbaro et al., 2020). Overall, the
main objective is to analyze the behavior of our method rather than to achieve state-of-the-art accuracy.

4.1 Experimental Setup

As the single-step spiking neuron is developed for static tasks (Suetake et al., 2023), we experimented for
the Fashion-MNIST (Xiao et al., 2017), CIFAR-10, and CIFAR-100 (Krizhevsky, 2009) datasets widely used
in SNN experiments (Esser et al., 2016; Zhang & Li, 2020; Chowdhury et al., 2021b) with some network
architectures, CNN7, VGG11, and ResNet18 (refer to App. A.1 for details). For these experiments, we
implemented the program by the PyTorch framework and used one GPU, an NVIDIA GeForce RTX 3090,
with 24 GB (refer to Table B.1 in the appendix for the difference in the training time).

In these experiments, we used the following objective function:

L = 1
n

N∑
n=1

(CE(f(xn), tn) + λΩsyn(s(xn)))

+ λWD
(
∥W ∥2

L2
+BBN∥WBN∥2

L2

)
, (22)

where (xn, tn) denotes the pair of input data and its label, f denotes some spiking neural network, CE denotes
the cross-entropy function, ∥W ∥2

L2
denotes the L2 penalty for the weights, i.e., weight decay, ∥WBN∥2

L2
denotes the L2 penalty for the trainable parameters of batch normalization layers, λ and λWD denote the
intensity of penalties, and BBN ∈ {0, 1}. Note that we included the weight decay into the objective function
to verify its sparsifying effect (Yaguchi et al., 2018) in the context of SNNs. In addition, we explicitly
specified the weight decay for batch normalization layers because it was included in the default setting of
the PyTorch framework (Paszke et al., 2019) but not in Yaguchi et al. (2018). The training of f was done by

7

Published in Transactions on Machine Learning Research (12/2023)

Table 2: Performance with respect to varying λ, λWD, and BBN. The network architecture is VGG11, the
dataset is CIFAR-10, and the optimizer is Adam. ESNN denotes the energy consumption metric for the SNN
(Eq. 12), Ebaseline denotes the ESNN for the model with λ = λWD = BBN = 0, dead rate denotes the ratio
of the number of dead neurons to the number of total neurons, and R denotes the spike firing rate (Eq. 10).
All the metrics were calculated using the test dataset.

λ λWD BBN Accuracy [%] ESNN/Ebaseline [%] Dead rate [%] R [%]
0 0 0 89.09 ± 0.271 100.0 ± 1.530 3.367 ± 0.221 12.11 ± 0.114

1e-08 0 0 89.23 ± 0.141 73.92 ± 0.247 5.935 ± 0.822 10.34 ± 0.050
1e-07 0 0 87.81 ± 0.458 34.07 ± 0.397 22.42 ± 1.005 6.046 ± 0.061
1e-06 0 0 79.75 ± 0.694 11.85 ± 0.492 59.01 ± 1.174 2.176 ± 0.040
1e-05 0 0 21.81 ± 14.46 1.053 ± 1.246 92.43 ± 3.149 0.174 ± 0.198

0 1e-04 0 89.15 ± 0.493 81.07 ± 4.497 9.567 ± 1.005 8.474 ± 0.771
0 1e-03 0 89.00 ± 0.832 68.64 ± 6.714 18.72 ± 1.942 6.802 ± 0.492
0 1e-02 0 84.98 ± 1.455 44.39 ± 3.540 34.13 ± 0.683 4.992 ± 0.448
0 1e-01 0 50.51 ± 36.24 17.90 ± 16.03 70.93 ± 25.66 2.988 ± 2.642
0 1e+00 0 10.00 ± 0.000 0.000 ± 0.000 100.0 ± 0.000 0.000 ± 0.000

1e-08 1e-03 0 89.61 ± 0.026 60.28 ± 1.384 20.20 ± 2.268 6.244 ± 0.155
1e-07 1e-03 0 88.06 ± 0.653 28.72 ± 0.448 35.58 ± 2.255 4.076 ± 0.064
1e-06 1e-03 0 76.00 ± 0.962 7.829 ± 0.076 68.02 ± 0.504 1.378 ± 0.016
1e-05 1e-03 0 10.02 ± 0.029 0.007 ± 0.012 99.84 ± 0.283 0.001 ± 0.002

0 1e-05 1 88.99 ± 0.626 96.29 ± 2.003 6.268 ± 0.786 9.753 ± 0.246
0 1e-04 1 89.87 ± 0.526 85.64 ± 3.412 10.24 ± 1.735 7.457 ± 0.293
0 1e-03 1 86.91 ± 0.315 51.06 ± 1.277 32.79 ± 1.257 4.376 ± 0.138
0 1e-02 1 10.00 ± 0.000 0.000 ± 0.000 100.0 ± 0.000 0.000 ± 0.000

1e-08 1e-04 1 89.41 ± 0.147 45.87 ± 0.202 18.38 ± 0.631 5.643 ± 0.019
1e-07 1e-04 1 86.76 ± 0.957 19.21 ± 0.610 41.97 ± 2.169 2.911 ± 0.043
1e-06 1e-04 1 74.38 ± 0.465 6.582 ± 0.264 71.21 ± 0.608 1.111 ± 0.028
1e-05 1e-04 1 10.00 ± 0.000 0.003 ± 0.005 99.92 ± 0.140 0.001 ± 0.001

the backpropagation algorithm with the surrogate gradient of Eq. 3 unless otherwise stated. The optimizer
was selected from the momentum SGD (mSGD) or Adam to confirm the claims in Yaguchi et al. (2018).

Refer to App. A for further details of the experimental setup such as hyperparameters.

4.2 Energy Reduction by Synaptic Interaction Penalty

We investigated whether optimizing the synaptic interaction penalty (Eq. 15) led to optimizing the energy
consumption metric (Eq. 12) and whether there was any conflict with other terms in the objective func-
tion (Eq. 22). The setting was as follows. The baseline model was trained for Eq. 22 with λ = λWD = 0.
The other models were trained from scratch with some combinations of the weight decay (λWD > 0), L2
penalty for batch normalization layers (BBN = 1), and p = 1 synaptic interaction penalty (λ > 0). The
results are presented in Tables 2 and 3. Note that the values in this table were taken for λ and λWD from
a point where the accuracy was very low (approximately 20%) until the accuracy reached the upper bound
and stopped changing.

From the result in Table 2, we can observe the following. First, as the intensity of the penalty term increases,
the energy consumption metric decreases; the inference accuracy also decreases. Therefore, the intensity
parameter λ controls the trade-off between them. Second, the combination of the synaptic interaction penalty
and weight decay further reduces the energy consumption metric. Therefore, we propose to adopt both of
them simultaneously. In addition, we found that the combination of the weight decay and Adam optimizer
induces neuron sparsification even without the synaptic interaction penalty, though its contribution to the
energy reduction is less than the synaptic interaction penalty. Furthermore, neuron sparsification proceeds
more strongly, maintaining higher accuracy for the Adam optimizer than the mSGD optimizer (compare the
dead rate for λ = BBN = 0 and λWD = 0 to 1e-02 in Table 2 with that in Table 3), consistent with the
findings in Yaguchi et al. (2018). Note that we cannot observe a remarkable difference between BBN = 0

8

Published in Transactions on Machine Learning Research (12/2023)

Table 3: Performance with respect to varying λ, λWD, and BBN. The optimizer is mSGD. The remaining
descriptions are consistent with those detailed in Table 2.

λ λWD BBN Accuracy [%] ESNN/Ebaseline [%] Dead rate [%] R [%]
0 0 0 89.14 ± 0.158 100.0 ± 2.548 1.678 ± 0.167 14.19 ± 0.277

1e-09 0 0 89.36 ± 0.159 78.84 ± 1.166 2.428 ± 0.188 13.35 ± 0.214
1e-08 0 0 88.81 ± 0.224 40.00 ± 0.335 11.04 ± 0.139 10.07 ± 0.097
1e-07 0 0 86.80 ± 0.348 18.58 ± 0.384 33.62 ± 0.875 4.476 ± 0.143
1e-06 0 0 24.32 ± 7.158 73.27 ± 98.19 78.72 ± 21.06 4.207 ± 4.165

0 1e-04 0 88.59 ± 0.413 84.40 ± 6.843 2.705 ± 0.754 12.73 ± 0.344
0 1e-03 0 88.60 ± 2.134 70.96 ± 8.041 3.968 ± 1.326 11.97 ± 0.582
0 1e-02 0 70.80 ± 2.795 45.18 ± 3.008 19.57 ± 2.636 10.85 ± 0.651
0 1e-01 0 20.23 ± 17.72 18.52 ± 13.99 92.18 ± 10.94 3.322 ± 4.056

1e-09 1e-03 0 90.96 ± 0.202 64.62 ± 0.802 3.976 ± 0.196 11.82 ± 0.085
1e-08 1e-03 0 90.06 ± 0.387 35.65 ± 0.076 13.51 ± 0.195 9.043 ± 0.068
1e-07 1e-03 0 87.74 ± 0.257 16.32 ± 0.166 37.68 ± 0.598 4.163 ± 0.040
1e-06 1e-03 0 21.42 ± 9.467 26.13 ± 24.14 87.16 ± 4.910 3.255 ± 1.576

0 1e-07 1 89.30 ± 0.263 99.75 ± 2.576 1.798 ± 0.260 14.17 ± 0.270
0 1e-06 1 88.85 ± 0.277 94.59 ± 2.186 1.838 ± 0.117 13.63 ± 0.108
0 1e-05 1 88.80 ± 0.235 95.85 ± 1.806 1.834 ± 0.134 13.43 ± 0.299
0 1e-04 1 88.51 ± 0.295 87.16 ± 1.614 2.657 ± 0.105 10.12 ± 0.151
0 1e-03 1 84.47 ± 0.757 51.21 ± 2.576 16.90 ± 0.388 5.005 ± 0.310
0 1e-02 1 19.53 ± 16.50 1.786 ± 3.093 97.64 ± 4.088 0.164 ± 0.284

1e-09 1e-07 1 89.32 ± 0.417 78.35 ± 1.694 2.606 ± 0.078 13.24 ± 0.143
1e-08 1e-07 1 88.77 ± 0.181 39.70 ± 0.844 11.29 ± 0.428 10.04 ± 0.173
1e-07 1e-07 1 86.95 ± 0.236 18.60 ± 0.285 33.49 ± 0.418 4.478 ± 0.130
1e-06 1e-07 1 28.05 ± 1.125 78.52 ± 105.4 81.75 ± 13.47 4.500 ± 4.411

and 1. Therefore, we adopt the weight decay with BBN = 0 in further experiments to simplify our objective
function. Finally, all the above results hold for not only VGG11 but also CNN7 and ResNet18 (see Tables 8–
11 in the appendix).

4.3 Trade-off between Accuracy and Energy Efficiency

4.3.1 Comparison Between Penalties

To examine the impact of distinct penalty terms on the energy consumption of trained models, we conducted
a comparative experiment. The setting was as follows. For fair comparison, we used the λ′ notation for
the intensity parameter of penalties rather than the raw λ (see Eq. 21). The baseline model was trained
for Eq. 22 with λ′ = BBN = 0, and we tuned λWD > 0 to obtain the highest accuracy. Then, the others
were trained by varying λ′ > 0 and by replacing Ωsyn in Eq. 22 with Ωtotal or Ωbalance from scratch. The
results are shown in Fig. 2 (A) as λ′-parameterized curves of the energy–accuracy trade-off, where the energy
consumption rate was produced as the energy consumption of each model normalized by that of the baseline
model. Note that it is better for data to be located at the upper left corner in the figure. Refer to App. A.3
for the sampling of λ′. In addition, the quantitative analysis is presented in Table 4, where higher scores are
better for all the metrics: area under the curve (AUC), Spearman’s rank correlation coefficient (Spearman),
and the mutual information (MI). Note that the argument of each metric represents a cutoff parameter,
where data with lower accuracy than it are omitted. We introduced the cutoff parameter because training
tended to break as the intensity parameter was increased for all the methods. Refer to App. A.4 for details
of quantitative metrics.

From the result in Fig. 2 (A) and Table 4, we can observe the following. First, for each Ω∗, the p = 1
option is apparently better than the p = 2 option. Therefore, we propose to adopt the p = 1 option. Note
that this difference arises from the backward control as Eq. 18. We expect that the p = 1 option would
substantially diminish the membrane potential below the spike firing threshold, even in cases where spike
firing does not occur. Consequently, the likelihood of the membrane potential stay below the spike firing

9

Published in Transactions on Machine Learning Research (12/2023)

0.0 0.2 0.4 0.6 0.8 1.0
Energy consumption rate

0.5

0.6

0.7

0.8

0.9

1.0
A

cc
ur

ac
y

syn (p = 1) (Ours)

syn (p = 2) (Ours)
total (p = 1)
total (p = 2)

balance (p = 1)
balance (p = 2)

(A) Eq. 15

0.0 0.2 0.4 0.6 0.8 1.0
Energy consumption rate

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

syn (p = 1) (Ours)

syn (p = 2) (Ours)
total (p = 1)
total (p = 2)

balance (p = 1)
balance (p = 2)

(B) Eq. 23

0.0 0.2 0.4 0.6 0.8 1.0
Energy consumption rate

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

syn (p = 1) (Ours)

syn (p = 2) (Ours)
total (p = 1)
total (p = 2)

balance (p = 1)
balance (p = 2)

(C) Eq. 24

0.0 0.5 1.0 1.5 2.0 2.5
Energy consumption rate

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

syn (p = 1) (Ours)

syn (p = 2) (Ours)
ANN (T = 1)
ANN (T = 5)

ANN (T = 10)

(D) Conversion

Figure 2: Energy–accuracy trade-off curves. The network architecture is CNN7, the dataset is Fashion-
MNIST, and the optimizer is Adam. The energy consumption rate is the energy consumption of each model
normalized by that of the baseline model. Each model is trained using the penalty term Ω∗ indicated in the
legend. From (A) to (C): each model is trained by the indicated surrogate gradient below each figure. (D):
comparison with the conversion approach (Sorbaro et al., 2020). ΩANN denotes SNNs converted from the
QReLU network. The x-axis exceeds one because converted SNNs have higher energy consumption than the
SNN baseline for Ωsyn.

Table 4: Quantitative comparison corresponding to Fig. 2 (A). Higher scores are better. The best and the
second-best results are highlighted in bold and underlined, respectively. Refer to App. A.4 for details of the
quantitative metrics.

Method AUC(70)[%] AUC(50)[%] Spearman(70) Spearman(50) MI(70) MI(50)
Ωsyn (p = 1) (Ours) 68.02 79.60 0.9861 0.9865 3.465 3.610
Ωsyn (p = 2) (Ours) 61.62 72.69 0.9474 0.9709 3.233 3.476
Ωtotal (p = 1) 63.30 76.05 0.9766 0.9767 3.244 3.319
Ωtotal (p = 2) 55.16 64.63 0.9831 0.9701 3.218 3.295
Ωbalance (p = 1) 54.23 67.16 0.9412 0.9412 2.978 2.978
Ωbalance (p = 2) 31.47 42.94 0.8500 0.8946 2.708 2.833

threshold following weight updates due to data fitting. However, the precise reason why the benefits of
lowered energy consumption outweigh the drawbacks of potential inference accuracy deterioration remains
unresolved, constituting a subject for our future investigations. Second, for p = 1, the trade-off curve of Ωsyn
is the best, followed in order by Ωtotal and Ωbalance. Therefore, we experimentally clarified the advantage
of the coefficient ψl,i for Eq. 14, which had remained an issue in the method proposed by Sorbaro et al.

10

Published in Transactions on Machine Learning Research (12/2023)

(2020). Finally, all the above results hold for not only CNN7 but also VGG11 and ResNet18 (see Fig. 5 and
Tables 12–17 in the appendix).

4.3.2 Robustness to Distinct Surrogate Gradient Functions

To examine the impact of distinct functions for the surrogate gradient on the energy consumption of trained
models, we conducted the same experiment as that in Sec. 4.3.1 except for the choice of a function for the
surrogate gradient. Instead of Eq. 3, we adopted the piece-wise linear function (Esser et al., 2016) and scaled
sigmoid (Pellegrini et al., 2021) function for the surrogate gradient as follows:

∂s

∂u
≃ max (1− |u− uth|, 0), (23)

∂s

∂u
≃ ∂σα

∂u
, (24)

where σα is the same as Eq. 5. The results are presented in Figs. 2 (B) and (C) (and Tables 19 and 20 in
the appendix).

From the result in Figs. 2 (B) and (C), the same observations as those in Sec. 4.3.1 hold. That is, the p = 1
option is apparently better than the p = 2 option; the trade-off curve of Ωsyn is the best, followed in order
by Ωtotal and Ωbalance. Therefore, the synaptic interaction penalty works under distinct surrogate gradient
functions.

4.3.3 Superiority to Conversion Approach

To examine the impact of distinct training methods on the energy consumption of trained models, we also
produced the trade-off curve for the conversion approach (Sorbaro et al., 2020). We trained a single QReLU
network (an ANN with quantized ReLU activations) increasing the intensity of the penalty and evaluated the
converted SNNs for each intensity in different time steps: T = 1, 5, and 10 (refer to the original paper (Sorbaro
et al., 2020) for details). The results are presented in Fig. 2 (D) (and Table 21 in the appendix), where the
energy consumption was normalized by that of the baseline for Ωsyn.

From the result in Fig. 2 (D), we can observe that both the energy consumption and accuracy for the
conversion approach are worse than those for the surrogate gradient approach. This is because the conversion
process degrades the accuracy, and the penalty term for the QReLU network cannot directly optimize the
energy consumption metric for the SNN. Hence, we should directly train SNNs by the surrogate gradient
and synaptic interaction penalty to avoid such degradation.

4.3.4 Additional Trade-Off Curves

To examine the impact of distinct penalty terms on metrics beyond the energy consumption of trained
models, we have included additional trade-off curves in Fig. 3 (and Tables 22–24 in the appendix). These
curves depict the relationship between accuracy and specific metrics other than the energy consumption
metric presented in Fig. 2 (A), while maintaining the same training procedure as adopted in Fig. 2 (A).

From the results in Fig. 3 (A, B), we can observe that training with a specific penalty term leads to a
reduction in the associated metric, particularly for the p = 1 option compared to the p = 2 option. These
findings underscore the suitability of the p = 1 option when applying a penalty term aligned with the
targeted metric optimization. This choice aligns with our principle of directly optimizing the desired metric.
Additionally, focusing on the results for dead neurons as displayed in Fig. 3 (C), the trade-off curve for
Ωsyn emerges as the most favorable. Importantly, this observation serves as an advantageous outcome that
complements our guiding principle. It suggests a stronger correlation between energy consumption and dead
neurons compared to other metrics. Detailed analysis will be further explored in our future work.

5 Conclusion

We studied the training method to obtain energy-efficient SNNs in terms of the surrogate gradient. Based
on our principle that we should optimize the metric as it is, we derived the synaptic interaction penalty

11

Published in Transactions on Machine Learning Research (12/2023)

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of total for each model to that for base model

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

syn (p = 1) (Ours)

syn (p = 2) (Ours)
total (p = 1)
total (p = 2)

balance (p = 1)
balance (p = 2)

(A)

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of balance for each model to that for base model

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

syn (p = 1) (Ours)

syn (p = 2) (Ours)
total (p = 1)
total (p = 2)

balance (p = 1)
balance (p = 2)

(B)

0.00 0.05 0.10 0.15 0.20
Dead rate

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

syn (p = 1) (Ours)

syn (p = 2) (Ours)
total (p = 1)
total (p = 2)

balance (p = 1)
balance (p = 2)

(C)

Figure 3: Additional trade-off curves corresponding to (CNN7 / Fashion-MNIST / Adam). (A), (B), and
(C) indicate the trade-off curves between accuracy and the three metrics: Ωtotal, Ωbalance, and the ratio of
the number of dead neurons to the number of total neurons, respectively.

to optimize the energy consumption metric. Then, we experimentally showed that the synaptic interaction
penalty (especially for p = 1) is superior to the existing penalties and conversion approach. Furthermore,
its effectiveness remains consistent across different network architectures and choices of surrogate gradient
functions. We conclude that our principle has worked well.

An apparent limitation is that the definition of the synaptic interaction penalty depends on that of the energy
consumption metric. However, if the target metric becomes deformed, the penalty should be accordingly
deformed in accordance with our principle—even though it is a metric irrelevant to the energy consumption.
Another limitation is that although the target metric is directly included in the objective function, it is just
indirectly optimized by the surrogate gradient.

We further list some outstanding issues. First, it is unclear why there was a difference between the training
result for p = 1 and 2 of the synaptic interaction penalty. Elucidating the mechanism of this difference
could help us understand the surrogate gradient. Second, we did not focus on the synergy between the spike
sparsification and pruning. A pruning-aware sparsification training will help us obtain more energy-efficient
SNNs. Finally, the high availability of the synaptic interaction penalty should be verified on neuromorphic
chips, for example, in the case of real datasets, large networks, and other tasks. By solving these issues, we
can contribute to the realization of genuinely eco-friendly SNNs.

References
Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John Arthur, Paul Merolla, Nabil

Imam, Yutaka Nakamura, Pallab Datta, Gi-Joon Nam, et al. TrueNorth: Design and tool flow of a 65
mW 1 million neuron programmable neurosynaptic chip. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 34(10):1537–1557, 2015.

Lennart Bamberg, Arash Pourtaherian, Luc Waeijen, Anupam Chahar, and Orlando Moreira. Synapse
compression for event-based convolutional-neural-network accelerators. IEEE Transactions on Parallel
and Distributed Systems, 34(4):1227–1240, 2023.

Sayeed Shafayet Chowdhury, Isha Garg, and Kaushik Roy. Spatio-temporal pruning and quantization for
low-latency spiking neural networks. In 2021 International Joint Conference on Neural Networks (IJCNN),
pp. 1–9. IEEE, 2021a.

Sayeed Shafayet Chowdhury, Nitin Rathi, and Kaushik Roy. One timestep is all you need: Training spiking
neural networks with ultra low latency. arXiv preprint arXiv:2110.05929, 2021b.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated data
augmentation with a reduced search space. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, pp. 702–703, 2020.

12

Published in Transactions on Machine Learning Research (12/2023)

Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha Choday,
Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic manycore processor
with on-chip learning. IEEE Micro, 38(1):82–99, 2018.

Steven K Esser, Paul A Merolla, John V Arthur, Andrew S Cassidy, Rathinakumar Appuswamy, Alexander
Andreopoulos, David J Berg, Jeffrey L McKinstry, Timothy Melano, Davis R Barch, et al. Convolu-
tional networks for fast, energy-efficient neuromorphic computing. Proceedings of the National Academy
of Sciences of the United States of America, 113(41):11441, 2016.

Ziyang Kang, Lei Wang, Shasha Guo, Rui Gong, Shiming Li, Yu Deng, and Weixia Xu. ASIE: An asyn-
chronous SNN inference engine for AER events processing. ACM Journal on Emerging Technologies in
Computing Systems (JETC), 16(4):1–22, 2020.

Youngeun Kim and Priyadarshini Panda. Revisiting batch normalization for training low-latency deep spiking
neural networks from scratch. Frontiers in Neuroscience, 15:1638, 2021.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Souvik Kundu, Gourav Datta, Massoud Pedram, and Peter A Beerel. Spike-thrift: Towards energy-efficient
deep spiking neural networks by limiting spiking activity via attention-guided compression. In Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3953–3962, 2021.

Chankyu Lee, Syed Shakib Sarwar, Priyadarshini Panda, Gopalakrishnan Srinivasan, and Kaushik Roy.
Enabling spike-based backpropagation for training deep neural network architectures. Frontiers in Neu-
roscience, 14:119, 2020.

Dongjin Lee, Seongsik Park, Jongwan Kim, Wuhyeong Doh, and Sungroh Yoon. Energy-efficient knowledge
distillation for spiking neural networks. arXiv preprint arXiv:2106.07172, 2021.

Edgar Lemaire, Loïc Cordone, Andrea Castagnetti, Pierre-Emmanuel Novac, Jonathan Courtois, and Benoît
Miramond. An analytical estimation of spiking neural networks energy efficiency. In International Con-
ference on Neural Information Processing, pp. 574–587. Springer, 2022.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In International
Conference on Learning Representations, 2017.

Liam P Maguire, T Martin McGinnity, Brendan Glackin, Arfan Ghani, Ammar Belatreche, and Jim Harkin.
Challenges for large-scale implementations of spiking neural networks on FPGAs. Neurocomputing, 71
(1-3):13–29, 2007.

Janardan Misra and Indranil Saha. Artificial neural networks in hardware: A survey of two decades of
progress. Neurocomputing, 74(1-3):239–255, 2010.

Simon Narduzzi, Siavash A Bigdeli, Shih-Chii Liu, and L Andrea Dunbar. Optimizing the consumption of
spiking neural networks with activity regularization. In ICASSP 2022-2022 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 61–65. IEEE, 2022.

Katsumi Naya, Kyo Kutsuzawa, Dai Owaki, and Mitsuhiro Hayashibe. Spiking neural network discovers
energy-efficient hexapod motion in deep reinforcement learning. IEEE Access, 9:150345–150354, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An imperative style, high-performance
deep learning library. Advances in Neural Information Processing Systems, 32:8024–8035, 2019. https:
//pytorch.org/.

Thomas Pellegrini, Romain Zimmer, and Timothée Masquelier. Low-activity supervised convolutional spiking
neural networks applied to speech commands recognition. In 2021 IEEE Spoken Language Technology
Workshop (SLT), pp. 97–103. IEEE, 2021.

13

https://pytorch.org/
https://pytorch.org/

Published in Transactions on Machine Learning Research (12/2023)

Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu. Conversion of
continuous-valued deep networks to efficient event-driven networks for image classification. Frontiers in
Neuroscience, 11:682, 2017.

Sumit B Shrestha and Garrick Orchard. SLAYER: Spike layer error reassignment in time. Advances in
Neural Information Processing Systems, 31:1419–1428, 2018.

Martino Sorbaro, Qian Liu, Massimo Bortone, and Sadique Sheik. Optimizing the energy consumption of
spiking neural networks for neuromorphic applications. Frontiers in Neuroscience, 14:662, 2020.

C Spearman. The proof and measurement of association between two things. American Journal of Psychology,
15:72–101, 1904.

Kazuma Suetake, Shin-ichi Ikegawa, Ryuji Saiin, and Yoshihide Sawada. S3NN: Time step reduction of spik-
ing surrogate gradients for training energy efficient single-step spiking neural networks. Neural Networks,
159:208–219, 2023.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: A novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Atsushi Yaguchi, Taiji Suzuki, Wataru Asano, Shuhei Nitta, Yukinobu Sakata, and Akiyuki Tanizawa. Adam
induces implicit weight sparsity in rectifier neural networks. In 2018 17th IEEE International Conference
on Machine Learning and Applications (ICMLA), pp. 318–325. IEEE, 2018.

Friedemann Zenke and Surya Ganguli. SuperSpike: Supervised learning in multilayer spiking neural networks.
Neural Computation, 30(6):1514–1541, 2018.

Wenrui Zhang and Peng Li. Temporal spike sequence learning via backpropagation for deep spiking neural
networks. Advances in Neural Information Processing Systems, 33:12022–12033, 2020.

14

Published in Transactions on Machine Learning Research (12/2023)

Table 5: Network architectures. C(i1)k(i2)s(i3)p(i4) is a two-dimensional convolutional layer with channel
size = i1, kernel size = i2, stride size = i3, and padding size = i4, FC(x) is a fully connected layer with
channel size = x, S is a spiking activation function (Eq. 2), BN is a batch normalization layer, DO(x) is a
dropout layer with dropout rate = x, Avg is a 2 × 2 average pooling layer, and GAP is the global average
pooling layer. Both ResA and ResB are the certain residual modules—ResA(x) consists of two paths, [BN–
S–C(x)k(3)s(1)p(1)–BN–S–C(x)k(3)s(1)p(1)] and the identity function; ResB(x) consists of two paths, [BN–S–
C(x)k(3)s(2)p(1)–BN–S–C(x)k(3)s(1)p(1)] and [BN–S–C(x)k(3)s(1)p(1)].

Name Network architecture

CNN7
C(64)k(3)s(2)p(0)–BN–S–DO(0.1)–C(128)k(6)s(1)p(0)–BN–S–DO(0.2)–
C(256)k(3)s(1)p(0)–BN–S–DO(0.3)–C(128)k(1)s(1)p(0)–BN–S–DO(0.2)–

C(64)k(1)s(1)p(0)–BN–S–DO(0.1)–C(10)k(1)s(1)p(0)–BN–S–C(10)k(1)s(1)p(0)–GAP

VGG11

C(64)k(3)s(1)p(1)–BN–S–DO(0.2)–C(128)k(3)s(1)p(1)–BN–S–Avg–
C(256)k(3)s(1)p(1)–BN–S–Avg–C(512)k(3)s(1)p(1)–BN–S–DO(0.2)–

C(512)k(3)s(1)p(1)–BN–S–Avg–C(512)k(3)s(1)p(1)–BN–S–Avg–
C(512)k(3)s(1)p(1)–BN–S–DO(0.2)–C(512)k(3)s(1)p(1)–BN–S–

FC(4096)–BN–S–DO(0.2)–FC(4096)–BN–S–DO(0.2)–FC(10)

ResNet18

C(64)k(3)s(1)p(1)–
{ResA(64)–ResA(64)}–{ResB(128)–ResA(128}–

{ResB(256)–ResA(256)}–{ResB(512)–ResA(512)}–
BN–S–C(10)k(1)s(1)p(0)–GAP

A Details of Experimental Setup

A.1 Network architecture

The network architectures that we adopted in the experiments are described in Table 5. Note that ψl,i is
independent of i in those network architectures, and all the two-dimensional convolutional and fully connected
layers have no bias terms.

The batch normalization layer affects the membrane potential (Eq. 1) as follows:

ul := αl

σl
(Wlsl−1 − µl) + γl, (25)

where µl and σl ∈ Rdl denote the running average and standard deviation value for the post-synaptic current,
Wlsl−1, respectively, and αl and γl ∈ Rdl are the trainable affine parameters for the batch normalization
layer.

A.2 Dataset

We used three datasets as benchmarks and divided each dataset into three datasets—train, validation,
and test datasets—as follows: the (#train dataset, #validation dataset, #test dataset) for each dataset
is (54000, 6000, 10000) for Fashion-MNIST, (45000, 5000, 10000) for CIFAR-10, and (45000, 5000, 10000) for
CIFAR-100. We fitted trainable parameters to the training dataset, optimized hyperparameters on the
validation dataset, and calculated all the metrics using the test dataset. We used random augmentation as
the data augmentation technique (Cubuk et al., 2020).

A.3 Hyperparameter

We used the following hyperparameters. The weights were initialized by He initialization for the ReLU func-
tion (although we adopted the spiking neuron) and optimized using the Adam (β = (0.9, 0.999), ϵ = 10−8)
or mSGD (momentum = 0.9) optimizer. The mini-batch size was 100, the epoch size was 150, the spike
firing threshold was uth = 1, the learning rate and (α, τ) for the surrogate gradient in Eq. 3 are summa-
rized in Table 6, and the learning rate was scheduled by the cosine annealing (Tmax = 150, ηmin = 0.0)
(Loshchilov & Hutter, 2017). Note that the penalty terms Ω∗ were linearly scheduled, i.e., λ was

15

Published in Transactions on Machine Learning Research (12/2023)

Table 6: Hyperparameters. The following hyperparameters were used in the experiment unless otherwise
stated. The learning rate, λWD, α, and τ were grid searched.

Model Optimizer Surrogate gradient Learning rate λWD BBN α τ

CNN7 Adam Eq. 3 1e-3 1e-4 0 0.25 0.6
CNN7 Adam Eq. 23 1e-3 1e-6 0 - -
CNN7 Adam Eq. 24 1e-2 1e-7 0 0.45 -
CNN7 mSGD Eq. 3 1e-2 1e-4 0 0.35 0.6
VGG11 Adam Eq. 3 1e-3 1e-3 0 0.25 0.6
VGG11 mSGD Eq. 3 1e-2 1e-3 0 0.35 0.8
ResNet18 Adam Eq. 3 1e-3 1e-4 0 0.35 1.0
ResNet18 mSGD Eq. 3 1e-2 1e-3 0 0.35 1.0

Algorithm 1 AUC(P)

Input: data X = {(xi, yi)}N
i=1 ⊂ R2

≥0, cutoff P ′ = P/100 (0 ≤ P < 100).
X ← Sort(X,xi−1 ≤ xi);
X ← {(xi, yi) ∈ X | xi ≤ 1};
X ← (x0 = x1, y0 = 0) ∪X;
X ← X ∪ (x∞ = 1; y∞ = max({yi ∈ R | (xi, yi) ∈ X)});
X ← {(xi, yi) ∈ X | yj ≤ yi (j < i)};
c ← linearly interpolated curve for X;
A(P) ← Area under c over y = P ′ for range x ∈ [0, 1];
Return A(P)/(1− P ′).

multiplied by the ratio of the current epoch to the full epoch size. In the experiment for trade-
off curve (Sec. 4.3), the normalized intensity parameter λ′ (Eq. 21) was selected from 14 patterns—
{1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192}. All of the experiments were conducted with three
random seeds.

A.4 Metrics

For the quantitative analysis in Sec. 4.3, we used three quantitative scores: the area under the curve (AUC),
Spearman’s rank correlation coefficient (Spearman), and mutual information (MI). The argument P of the
scores means that the score is calculated for data whose accuracy is over P . By AUC(P), we mean the
normalized area under the energy–accuracy trade-off curve, where the range of the x- and y-axis is [0, 1]
and [P/100, 1], respectively. Therefore, the higher the AUC is, the lower the energy consumption metric
maintaining the higher accuracy. Refer to Alg. 1 and Fig. 4 for detailed calculation of AUC(P). Note that
our algorithm of AUC overestimates the non-monotonic curves, i.e., other methods than ours tend to be
overestimated. Spearman’s rank correlation coefficient ρ describes how well two ingredients are represented
by the monotonic function (Spearman, 1904). Therefore, the higher the Spearman’s ρ is, the higher was the
aptitude of the intensity parameter as a trade-off controller. The mutual information is also suitable for the
metric for a trade-off controller as it describes the mutual dependence between two ingredients, and a higher
score is better.

B Details of Experimental Result

B.1 Difference in training time

Table 7 presents the training time ratio of each method to the baseline (λ = 0). As indicated in this table,
we cannot observe the significant difference in training time. Note that a similar trend was observed in other
settings.

16

Published in Transactions on Machine Learning Research (12/2023)

0.0 0.2 0.4 0.6 0.8 1.0
Energy consumption rate

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

data A(0) A(70) c

Figure 4: Example of AUC(P) calculation (ResNet18 / CIFAR-10 / mSGD). A(P) denotes an area under a
curve before normalization, and c denotes a linearly interpolated curve. Refer to Alg. 1 for detailed definitions
of them.

Table 7: Difference in training time. The network architecture is ResNet18, the dataset is CIFAR-10, the
optimizer is Adam, and p = 1.

Penalty term None Ωsyn Ωtotal Ωbalance
Training time rate 1.000 0.998 0.968 0.999

B.2 Verification of Synaptic Interaction Penalty

The results of Sec. 4.2 are also presented in Tables 3–11. Note that the values in these tables were taken for
λ and λWD from a point where the accuracy was very low (approximately 20%) until the accuracy reached
the upper bound and stopped changing.

B.3 Energy–Accuracy Trade-Off Curve

The results of Sec. 4.3 are also presented in Fig. 5 and Tables 12–21. For all the methods, the training
results of the mSGD optimizer tends to be more sensitive to the intensity of the penalty than those of the
Adam optimizer. Additionally, the advantage of the proposed method over existing methods in VGG11 and
ResNet18 appears to be smaller than that in CNN7. This discrepancy can be attributed to the reduced
variability of ∥ESNN(l)−Ω∗(l)∥ across layers in VGG11 and ResNet18 when compared to in CNN7 (Fig. 1).
A detailed analysis of this observation will be part of our future work.

B.4 Additional Trade-Off Curves

The results from Sec. 4.3.4 are also presented in Tables 22–23.

17

Published in Transactions on Machine Learning Research (12/2023)

Table 8: Performance with respect to varying λ, λWD, and BBN. The network architecture is CNN7, the
dataset is Fashion-MNIST, and the optimizer is Adam. The remaining descriptions are consistent with those
detailed in Table 2.

λ λWD BBN Accuracy [%] ESNN/Ebaseline [%] Dead rate [%] R [%]
0 0 0 92.25 ± 0.143 100.0 ± 0.530 6.350 ± 0.055 14.19 ± 0.436

1e-08 0 0 92.26 ± 0.098 88.71 ± 1.472 6.971 ± 0.157 13.90 ± 0.442
1e-07 0 0 91.90 ± 0.120 49.53 ± 0.478 14.25 ± 0.266 12.33 ± 0.472
1e-06 0 0 90.45 ± 0.517 16.01 ± 0.152 41.91 ± 0.632 9.055 ± 0.272
1e-05 0 0 80.60 ± 4.078 5.289 ± 0.717 76.00 ± 0.992 4.014 ± 0.303

0 1e-04 0 92.35 ± 0.034 91.96 ± 0.749 7.484 ± 0.095 14.57 ± 0.571
0 1e-03 0 92.05 ± 0.132 76.01 ± 0.889 12.25 ± 0.160 15.34 ± 0.560
0 1e-02 0 90.21 ± 0.035 54.68 ± 0.743 25.81 ± 0.812 15.26 ± 0.372
0 1e-01 0 69.26 ± 10.32 35.26 ± 1.263 51.27 ± 0.807 13.67 ± 0.980

1e-08 1e-04 0 92.31 ± 0.165 82.88 ± 0.417 8.169 ± 0.084 14.34 ± 0.706
1e-07 1e-04 0 92.01 ± 0.059 48.29 ± 0.268 15.24 ± 0.379 13.09 ± 0.571
1e-06 1e-04 0 90.42 ± 0.320 15.80 ± 0.426 43.55 ± 0.802 10.09 ± 0.481
1e-05 1e-04 0 80.59 ± 1.119 4.133 ± 0.533 78.53 ± 0.325 4.468 ± 0.141

0 1e-05 1 92.35 ± 0.161 98.77 ± 0.450 6.410 ± 0.298 14.18 ± 0.578
0 1e-04 1 92.39 ± 0.138 89.38 ± 0.876 7.771 ± 0.102 14.70 ± 0.524
0 1e-03 1 91.68 ± 0.045 61.78 ± 1.470 19.44 ± 0.540 13.74 ± 0.391
0 1e-02 1 81.55 ± 0.215 22.13 ± 0.868 68.90 ± 0.260 8.833 ± 0.712
0 1e-01 1 10.00 ± 0.000 0.000 ± 0.000 100.0 ± 0.000 0.000 ± 0.000

1e-08 1e-04 1 92.52 ± 0.025 79.23 ± 0.457 8.763 ± 0.074 14.27 ± 0.468
1e-07 1e-04 1 91.86 ± 0.068 44.18 ± 0.395 17.35 ± 0.476 12.97 ± 0.461
1e-06 1e-04 1 90.35 ± 0.187 14.15 ± 0.315 46.94 ± 0.790 9.987 ± 0.200
1e-05 1e-04 1 77.68 ± 1.547 4.128 ± 0.824 78.89 ± 0.918 4.592 ± 1.018

Table 9: Performance with respect to varying λ, λWD, and BBN. The network architecture is CNN7, the
dataset is Fashion-MNIST, and the optimizer is mSGD. The remaining descriptions are consistent with those
detailed in Table 2.

λ λWD BBN Accuracy [%] ESNN/Ebaseline [%] Dead rate [%] R [%]
0 0 0 92.02 ± 0.142 100.0 ± 1.288 11.17 ± 0.749 14.34 ± 0.643

1e-08 0 0 91.96 ± 0.072 94.65 ± 0.996 11.98 ± 0.602 14.28 ± 0.755
1e-07 0 0 91.62 ± 0.119 61.72 ± 2.295 19.16 ± 1.284 13.12 ± 0.677
1e-06 0 0 90.16 ± 0.225 21.72 ± 0.324 45.37 ± 1.028 10.26 ± 0.781
1e-05 0 0 77.14 ± 0.217 4.651 ± 0.270 79.80 ± 0.902 4.570 ± 0.257

0 1e-05 0 92.11 ± 0.114 98.84 ± 2.827 11.41 ± 0.633 14.44 ± 0.763
0 1e-04 0 92.01 ± 0.130 98.50 ± 0.888 11.90 ± 0.786 14.76 ± 0.774
0 1e-03 0 91.84 ± 0.229 85.42 ± 2.323 14.92 ± 0.359 15.75 ± 0.979
0 1e-02 0 89.70 ± 0.605 73.98 ± 0.855 22.17 ± 0.477 15.02 ± 0.647
0 1e-01 0 62.45 ± 1.900 19.16 ± 1.442 62.08 ± 1.776 13.46 ± 0.259

1e-08 1e-04 0 92.13 ± 0.168 91.49 ± 2.061 12.72 ± 0.450 14.62 ± 0.856
1e-07 1e-04 0 92.01 ± 0.135 61.60 ± 1.440 19.45 ± 0.833 13.56 ± 0.793
1e-06 1e-04 0 90.48 ± 0.420 21.20 ± 0.451 45.99 ± 1.018 10.84 ± 0.665
1e-05 1e-04 0 73.40 ± 7.835 4.413 ± 0.958 80.46 ± 3.399 5.385 ± 1.278

0 1e-05 1 92.15 ± 0.154 100.6 ± 1.111 11.38 ± 0.742 14.44 ± 0.712
0 1e-04 1 92.24 ± 0.021 103.0 ± 1.589 10.89 ± 0.781 14.77 ± 0.877
0 1e-03 1 91.64 ± 0.161 83.64 ± 1.326 16.90 ± 1.336 13.89 ± 1.016
0 1e-02 1 79.16 ± 3.171 30.91 ± 1.941 70.40 ± 1.285 8.008 ± 0.381
0 1e-01 1 10.00 ± 0.000 0.000 ± 0.000 100.0 ± 0.000 0.000 ± 0.000

1e-08 1e-05 1 91.97 ± 0.077 93.33 ± 1.838 12.43 ± 0.928 14.26 ± 0.624
1e-07 1e-05 1 91.86 ± 0.165 61.27 ± 1.850 19.44 ± 0.982 13.24 ± 0.634
1e-06 1e-05 1 90.20 ± 0.170 21.53 ± 0.835 45.55 ± 1.673 10.45 ± 0.608
1e-05 1e-05 1 73.70 ± 2.893 4.297 ± 0.546 81.37 ± 2.846 4.293 ± 0.441

18

Published in Transactions on Machine Learning Research (12/2023)

Table 10: Performance with respect to varying λ, λWD, and BBN. The network architecture is ResNet18,
the dataset is CIFAR-10, and the optimizer is Adam. The remaining descriptions are consistent with those
detailed in Table 2.

λ λWD BBN Accuracy [%] ESNN/Ebaseline [%] Dead rate [%] R [%]
0 0 0 91.32 ± 0.209 100.0 ± 0.293 1.074 ± 0.033 17.74 ± 0.067

1e-09 0 0 91.27 ± 0.175 93.06 ± 0.486 1.325 ± 0.020 16.75 ± 0.023
1e-08 0 0 91.40 ± 0.293 58.03 ± 0.222 3.846 ± 0.067 11.69 ± 0.055
1e-07 0 0 89.46 ± 0.215 19.13 ± 0.247 25.36 ± 0.825 4.936 ± 0.010
1e-06 0 0 78.76 ± 0.239 4.328 ± 0.192 65.38 ± 0.283 1.629 ± 0.015
1e-05 0 0 19.53 ± 2.170 0.010 ± 0.004 99.36 ± 0.094 0.040 ± 0.008

0 1e-05 0 92.15 ± 0.032 92.79 ± 0.547 2.088 ± 0.077 16.55 ± 0.086
0 1e-04 0 92.21 ± 0.196 79.67 ± 0.721 5.377 ± 0.084 14.22 ± 0.097
0 1e-03 0 91.64 ± 0.135 70.58 ± 0.114 12.08 ± 0.185 12.38 ± 0.064
0 1e-02 0 86.88 ± 0.466 50.96 ± 1.071 32.84 ± 1.270 10.59 ± 0.099
0 1e-01 0 80.94 ± 0.264 26.48 ± 0.815 58.03 ± 1.090 7.163 ± 0.073
0 1e+00 0 60.29 ± 2.386 13.99 ± 0.264 76.32 ± 1.462 5.239 ± 0.136

1e-09 1e-04 0 92.44 ± 0.093 74.74 ± 0.310 5.851 ± 0.116 13.57 ± 0.078
1e-08 1e-04 0 92.12 ± 0.177 52.82 ± 0.206 8.275 ± 0.161 10.20 ± 0.012
1e-07 1e-04 0 90.18 ± 0.135 15.27 ± 0.075 31.96 ± 0.398 3.895 ± 0.063
1e-06 1e-04 0 75.38 ± 0.766 2.385 ± 0.449 74.48 ± 1.881 1.320 ± 0.054
1e-05 1e-04 0 15.95 ± 3.741 0.002 ± 0.001 99.72 ± 0.046 0.032 ± 0.014

0 1e-05 1 91.87 ± 0.065 89.63 ± 0.447 2.467 ± 0.022 15.55 ± 0.043
0 1e-04 1 91.97 ± 0.183 66.36 ± 0.600 10.98 ± 0.076 10.32 ± 0.079
0 1e-03 1 85.93 ± 0.244 23.50 ± 0.551 54.07 ± 0.387 3.321 ± 0.039
0 1e-02 1 19.22 ± 6.452 0.574 ± 0.040 99.19 ± 0.492 0.114 ± 0.011

1e-09 1e-04 1 91.79 ± 0.215 61.58 ± 0.537 11.45 ± 0.088 9.699 ± 0.034
1e-08 1e-04 1 91.85 ± 0.187 38.43 ± 0.512 15.40 ± 0.274 6.616 ± 0.097
1e-07 1e-04 1 88.97 ± 0.227 12.29 ± 0.292 40.56 ± 0.295 2.735 ± 0.039
1e-06 1e-04 1 73.40 ± 0.533 2.153 ± 0.115 77.12 ± 0.622 0.996 ± 0.038
1e-05 1e-04 1 15.79 ± 3.494 0.001 ± 0.001 99.74 ± 0.071 0.027 ± 0.016

19

Published in Transactions on Machine Learning Research (12/2023)

Table 11: Performance with respect to varying λ, λWD, and BBN. The network architecture is ResNet18,
the dataset is CIFAR-10, and the optimizer is mSGD. The remaining descriptions are consistent with those
detailed in Table 2.

λ λWD BBN Accuracy [%] ESNN/Ebaseline [%] Dead rate [%] R [%]
0 0 0 90.15 ± 0.291 100.0 ± 0.583 1.188 ± 0.060 17.40 ± 0.074

1e-09 0 0 90.31 ± 0.294 95.21 ± 0.552 1.275 ± 0.032 16.70 ± 0.086
1e-08 0 0 89.83 ± 0.092 60.41 ± 0.201 3.120 ± 0.072 11.57 ± 0.040
1e-07 0 0 87.86 ± 0.274 16.01 ± 0.067 26.68 ± 0.865 4.135 ± 0.022
1e-06 0 0 54.23 ± 3.671 2.911 ± 2.568 90.89 ± 0.931 1.389 ± 0.410
1e-05 0 0 15.65 ± 3.972 0.613 ± 0.490 99.04 ± 0.247 0.176 ± 0.034

0 1e-04 0 90.56 ± 0.098 98.25 ± 0.253 1.157 ± 0.134 17.26 ± 0.038
0 1e-03 0 92.59 ± 0.150 86.46 ± 0.818 1.380 ± 0.092 15.96 ± 0.113
0 1e-02 0 91.86 ± 0.036 74.17 ± 0.965 3.932 ± 0.277 14.19 ± 0.213
0 1e-01 0 88.24 ± 0.432 61.39 ± 2.329 19.10 ± 1.422 12.66 ± 0.274
0 1e+00 0 14.65 ± 1.956 17.60 ± 1.014 54.54 ± 2.851 4.290 ± 0.438

1e-09 1e-03 0 92.44 ± 0.268 81.41 ± 0.328 1.588 ± 0.028 15.23 ± 0.026
1e-08 1e-03 0 92.48 ± 0.124 48.00 ± 0.160 4.646 ± 0.111 10.37 ± 0.056
1e-07 1e-03 0 89.05 ± 0.245 11.51 ± 0.320 43.32 ± 0.177 3.997 ± 0.050
1e-06 1e-03 0 65.07 ± 1.377 0.794 ± 0.100 91.15 ± 0.777 1.105 ± 0.044
1e-05 1e-03 0 12.85 ± 2.377 0.036 ± 0.051 99.63 ± 0.335 0.065 ± 0.066

0 1e-05 1 89.98 ± 0.142 98.41 ± 0.691 1.163 ± 0.027 17.06 ± 0.091
0 1e-04 1 90.24 ± 0.211 80.90 ± 0.597 1.886 ± 0.058 13.80 ± 0.071
0 1e-03 1 89.84 ± 0.162 32.15 ± 0.172 26.02 ± 0.286 5.147 ± 0.030
0 1e-02 1 10.04 ± 0.064 0.563 ± 0.523 99.68 ± 0.279 0.111 ± 0.099

1e-09 1e-04 1 90.17 ± 0.192 74.70 ± 0.739 2.154 ± 0.056 12.91 ± 0.114
1e-08 1e-04 1 90.08 ± 0.071 44.94 ± 0.286 5.625 ± 0.230 8.558 ± 0.045
1e-07 1e-04 1 88.17 ± 0.151 13.89 ± 0.066 31.53 ± 0.324 3.586 ± 0.016
1e-06 1e-04 1 59.17 ± 3.370 1.119 ± 0.522 91.11 ± 0.966 0.992 ± 0.092
1e-05 1e-04 1 16.01 ± 0.654 1.087 ± 1.670 99.05 ± 1.117 0.236 ± 0.257

Table 12: Quantitative comparison corresponding to (CNN7 / Fashion-MNIST / mSGD). The descriptions
are consistent with those detailed in Table 4.

Method AUC(70)[%] AUC(50)[%] Spearman(70) Spearman(50) MI(70) MI(50)
Ωsyn (p = 1) (Ours) 65.67 77.18 0.9652 0.7486 3.355 3.454
Ωsyn (p = 2) (Ours) 58.19 70.15 0.9387 0.7794 3.332 3.434
Ωtotal (p = 1) 60.90 74.22 0.9557 0.7705 3.178 3.295
Ωtotal (p = 2) 52.73 66.27 0.9313 0.9562 3.062 3.233
Ωbalance (p = 1) 45.42 59.26 0.9100 0.9229 2.871 2.926
Ωbalance (p = 2) 28.53 38.09 0.8694 0.8694 2.813 2.813

Table 13: Quantitative comparison corresponding to (VGG11 / CIFAR-10 / Adam). The descriptions are
consistent with those detailed in Table 4.

Method AUC(70)[%] AUC(50)[%] Spearman(70) Spearman(50) MI(70) MI(50)
Ωsyn (p = 1) (Ours) 52.56 68.63 0.9365 0.9497 3.610 3.688
Ωsyn (p = 2) (Ours) 46.85 59.73 0.7758 0.8445 3.536 3.671
Ωtotal (p = 1) 52.21 68.69 0.8883 0.9121 3.583 3.663
Ωtotal (p = 2) 47.38 60.58 0.7400 0.7953 3.506 3.592
Ωbalance (p = 1) 41.21 55.66 0.8770 0.8770 3.344 3.344
Ωbalance (p = 2) 40.68 53.07 0.8633 0.9006 3.436 3.556

20

Published in Transactions on Machine Learning Research (12/2023)

syn (p = 1) (Ours)

syn (p = 2) (Ours)
total (p = 1)
total (p = 2)

balance (p = 1)
balance (p = 2)

Legend for the curves

0.0 0.2 0.4 0.6 0.8 1.0
Energy consumption rate

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

(CNN7 / Fashion-MNIST / mSGD)

0.0 0.2 0.4 0.6 0.8 1.0
Energy consumption rate

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

(VGG11 / CIFAR-10 / Adam)

0.0 0.2 0.4 0.6 0.8 1.0
Energy consumption rate

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

(VGG11 / CIFAR-10 / mSGD)

0.0 0.2 0.4 0.6 0.8 1.0
Energy consumption rate

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

(ResNet18 / CIFAR-10 / Adam)

0.0 0.2 0.4 0.6 0.8 1.0
Energy consumption rate

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

(ResNet18 / CIFAR-10 / mSGD)

0.0 0.2 0.4 0.6 0.8 1.0
Energy consumption rate

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

(ResNet18 / CIFAR-100 / Adam)

0.0 0.2 0.4 0.6 0.8 1.0
Energy consumption rate

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

(ResNet18 / CIFAR-100 / mSGD)

Figure 5: Energy–accuracy trade-off curve. The energy consumption rate is the energy consumption of each
model normalized by that of the baseline model. The network architecture / dataset / optimizer are referred
to below each figure.

21

Published in Transactions on Machine Learning Research (12/2023)

Table 14: Quantitative comparison corresponding to (VGG11 / CIFAR-10 / mSGD). The descriptions are
consistent with those detailed in Table 4.

Method AUC(70)[%] AUC(50)[%] Spearman(70) Spearman(50) MI(70) MI(50)
Ωsyn (p = 1) (Ours) 58.82 72.98 0.9576 0.9613 3.454 3.485
Ωsyn (p = 2) (Ours) 45.73 60.29 0.9348 0.9348 3.308 3.308
Ωtotal (p = 1) 56.62 69.23 0.9631 0.9631 3.401 3.401
Ωtotal (p = 2) 44.82 59.09 0.9373 0.9373 3.401 3.401
Ωbalance (p = 1) 35.94 48.02 0.8525 0.4420 3.075 3.163
Ωbalance (p = 2) 32.15 46.92 0.9591 0.9633 3.295 3.332

Table 15: Quantitative comparison corresponding to (ResNet18 / CIFAR-10 / Adam). The descriptions are
consistent with those detailed in Table 4.

Method AUC(70)[%] AUC(50)[%] Spearman(70) Spearman(50) MI(70) MI(50)
Ωsyn (p = 1) (Ours) 67.68 80.07 0.9021 0.9261 3.308 3.412
Ωsyn (p = 2) (Ours) 54.60 62.74 0.8169 0.7917 3.454 3.573
Ωtotal (p = 1) 66.51 78.67 0.9321 0.9475 3.296 3.400
Ωtotal (p = 2) 55.08 64.29 0.8751 0.8846 3.412 3.536
Ωbalance (p = 1) 65.19 76.63 0.9484 0.9572 3.434 3.526
Ωbalance (p = 2) 51.07 58.70 0.7931 0.7441 3.412 3.506

Table 16: Quantitative comparison corresponding to (ResNet18 / CIFAR-10 / mSGD). The descriptions are
consistent with those detailed in Table 4.

Method AUC(70)[%] AUC(50)[%] Spearman(70) Spearman(50) MI(70) MI(50)
Ωsyn (p = 1) (Ours) 68.85 80.56 0.9009 0.9274 3.244 3.355
Ωsyn (p = 2) (Ours) 62.15 75.04 0.9660 0.9730 3.454 3.545
Ωtotal (p = 1) 67.47 79.15 0.9573 0.9573 3.308 3.308
Ωtotal (p = 2) 59.02 72.34 0.9469 0.9552 3.496 3.555
Ωbalance (p = 1) 67.57 78.56 0.9389 0.9350 3.295 3.401
Ωbalance (p = 2) 56.18 68.44 0.9408 0.9201 3.319 3.389

Table 17: Quantitative comparison corresponding to (ResNet18 / CIFAR-100 / Adam). The descriptions
are consistent with those detailed in Table 4. Note that the metrics with P = 70 are excluded because the
maximum accuracy is approximately 70%.

Method AUC(50)[%] Spearman(50) MI(50)
Ωsyn (p = 1) (Ours) 38.98 0.9091 3.496
Ωsyn (p = 2) (Ours) 33.86 0.8162 3.496
Ωtotal (p = 1) 38.05 0.9520 3.454
Ωtotal (p = 2) 33.15 0.8143 3.355
Ωbalance (p = 1) 38.00 0.8536 3.412
Ωbalance (p = 2) 32.69 0.7170 3.401

Table 18: Quantitative comparison corresponding to (ResNet18 / CIFAR-100 / mSGD). The descriptions
are consistent with those detailed in Table 4. Note that the metrics associated with P = 70 have been
excluded because the maximum accuracy is approximately 70%.

Method AUC(50)[%] Spearman(50) MI(50)
Ωsyn (p = 1) (Ours) 39.74 0.9879 2.303
Ωsyn (p = 2) (Ours) 33.98 0.9704 2.272
Ωtotal (p = 1) 38.57 1.0000 2.303
Ωtotal (p = 2) 33.74 0.9758 2.303
Ωbalance (p = 1) 38.32 0.9636 2.303
Ωbalance (p = 2) 31.47 0.9152 2.303

22

Published in Transactions on Machine Learning Research (12/2023)

Table 19: Quantitative comparison corresponding to (CNN7 / Fashion-MNIST / Adam) using Eq. 23. The
descriptions are consistent with those detailed in Table 4.

Method AUC(70)[%] AUC(50)[%] Spearman(70) Spearman(50) MI(70) MI(50)
Ωsyn (p = 1) (Ours) 68.67 79.98 0.9831 0.9863 3.091 3.258
Ωsyn (p = 2) (Ours) 60.19 71.01 0.9608 0.9496 2.833 3.135
Ωtotal (p = 1) 64.78 77.19 0.9765 0.9835 2.772 2.890
Ωtotal (p = 2) 52.99 63.03 0.9492 0.9609 3.091 3.178
Ωbalance (p = 1) 46.25 65.31 0.7549 0.8211 2.833 2.944
Ωbalance (p = 2) 40.83 49.20 0.9588 0.9789 2.772 2.995

Table 20: Quantitative comparison corresponding to (CNN7 / Fashion-MNIST / Adam) using Eq. 24. The
descriptions are consistent with those detailed in Table 4.

Method AUC(70)[%] AUC(50)[%] Spearman(70) Spearman(50) MI(70) MI(50)
Ωsyn (p = 1) (Ours) 68.66 80.05 0.9935 0.9948 3.044 3.178
Ωsyn (p = 2) (Ours) 60.04 71.01 0.9676 0.9797 2.772 3.091
Ωtotal (p = 1) 64.03 76.76 0.9365 0.9460 2.813 2.871
Ωtotal (p = 2) 54.16 62.96 0.9123 0.9123 3.075 3.075
Ωbalance (p = 1) 49.28 66.39 0.9236 0.9390 2.890 3.044
Ωbalance (p = 2) 39.97 48.82 0.9500 0.9628 2.772 2.890

Table 21: Quantitative comparison with Sorbaro et al. (2020) corresponding to (CNN7 / Fashion-MNIST /
Adam). The descriptions are consistent with those detailed in Table 4.

Method AUC(70)[%] AUC(50)[%] Spearman(70) Spearman(50) MI(70) MI(50)
Ωsyn (p = 1) (Ours) 68.02 79.60 0.9861 0.9865 3.465 3.610
Ωsyn (p = 2) (Ours) 61.62 72.69 0.9474 0.9709 3.233 3.476
ANN2SNN (T = 1) 53.51 67.80 0.6863 0.6275 4.316 4.355
ANN2SNN (T = 5) 47.40 63.17 0.8548 0.7015 4.030 4.385
ANN2SNN (T = 10) 37.93 56.30 0.8602 0.6044 3.784 4.406

Table 22: Quantitative comparison corresponding to Fig. 3 (A) (Ωtotal). The descriptions are consistent with
those detailed in Table 4.

Method AUC(70)[%] AUC(50)[%] Spearman(70) Spearman(50) MI(70) MI(50)
Ωsyn (p = 1) (Ours) 61.12 74.00 0.9879 0.9930 2.303 2.485
Ωsyn (p = 2) (Ours) 54.24 65.93 1.000 1.000 2.197 2.398
Ωtotal (p = 1) 61.81 74.84 1.000 1.0000 2.197 2.303
Ωtotal (p = 2) 53.48 63.06 1.000 0.9833 2.079 2.197
Ωbalance (p = 1) 55.99 68.73 1.000 1.000 1.946 1.946
Ωbalance (p = 2) 31.92 43.19 0.9000 0.9429 1.609 1.792

Table 23: Quantitative comparison corresponding to Fig. 3 (B) (Ωbalance). The descriptions are consistent
with those detailed in Table 4.

Method AUC(70)[%] AUC(50)[%] Spearman(70) Spearman(50) MI(70) MI(50)
Ωsyn (p = 1) (Ours) 44.18 59.91 0.9879 0.9930 2.303 2.485
Ωsyn (p = 2) (Ours) 40.14 54.67 1.000 1.000 2.197 2.398
Ωtotal (p = 1) 57.01 71.21 1.000 1.0000 2.197 2.303
Ωtotal (p = 2) 51.18 62.91 1.000 1.000 2.079 2.197
Ωbalance (p = 1) 62.79 74.80 1.000 1.000 1.946 1.946
Ωbalance (p = 2) 41.15 53.19 0.9000 0.9429 1.609 1.792

23

Published in Transactions on Machine Learning Research (12/2023)

Table 24: Quantitative comparison corresponding to Fig. 3 (C) (dead neurons). The descriptions are con-
sistent with those detailed in Table 4. Note that the AUC scores have been computed based on the inverted
curve relative to x = 0.5.

Method AUC(70)[%] AUC(50)[%] Spearman(70) Spearman(50) MI(70) MI(50)
Ωsyn (p = 1) (Ours) 6.856 8.742 -0.9879 -0.9930 2.303 2.485
Ωsyn (p = 2) (Ours) 4.919 6.581 -1.000 -1.000 2.197 2.398
Ωtotal (p = 1) 6.550 8.615 -1.000 -1.000 2.197 2.303
Ωtotal (p = 2) 4.361 5.432 -1.000 -1.000 2.079 2.197
Ωbalance (p = 1) 5.122 6.883 -1.000 -1.000 1.946 1.946
Ωbalance (p = 2) 2.042 2.939 -0.9000 -0.9429 1.609 1.792

24

	Introduction
	Related Work
	Spike Sparsification in Direct SNN Training
	Spike Sparsification via Conversion from ANN
	Neuron Sparsification

	Method
	Neuron Model and Surrogate Gradient
	Metric for Energy Consumption
	Synaptic Interaction Penalty
	Differences from Other Penalty Terms
	Normalization of Penalty Terms

	Experiment
	Experimental Setup
	Energy Reduction by Synaptic Interaction Penalty
	Trade-off between Accuracy and Energy Efficiency
	Comparison Between Penalties
	Robustness to Distinct Surrogate Gradient Functions
	Superiority to Conversion Approach
	Additional Trade-Off Curves

	Conclusion
	Details of Experimental Setup
	Network architecture
	Dataset
	Hyperparameter
	Metrics

	Details of Experimental Result
	Difference in training time
	Verification of Synaptic Interaction Penalty
	Energy–Accuracy Trade-Off Curve
	Additional Trade-Off Curves

