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ABSTRACT

Concept bottleneck models (CBM) have emerged as a promising solution to address
the lack of interpretability in deep learning models. However, recent researches
on CBM prioritize task accuracy at the expense of interpretability, weakening
their ability to accurately infer key concepts. This work addresses this trade-off
by introducing the energy ensemble CBM (EE-CBM). The EE-CBM leverages
an energy-based concept encoder to effectively extract concepts, overcoming the
information bottleneck common in conventional CBMs. Additionally, a novel
energy ensemble gate within the EE-CBM architecture efficiently combines energy
and concept probability to further address this bottleneck. Moreover, the EE-CBM
employs the maximum mean discrepancy loss to enhance concept discrimination
within the concept space and facilitate accurate concept inference. An experimental
evaluation on benchmark datasets (CUB-200-2011, TravelingBirds, AwA2, CheX-
pert, and CelebA) demonstrates that EE-CBM achieve state-of-the-art performance
in both concept accuracy and interpretability. This work positions the EE-CBM as
a significant advancement in CBM researches, enabling them to effectively balance
performance and interpretability for improved model transparency. Our code is
available at https://anonymous.4open.science/r/EE-CBM-F48D.

1 INTRODUCTION

Model interpretation is increasingly important because of the opaque nature of deep learning models,
particularly in critical image-based domains such as healthcare and autonomous driving. Concept
bottleneck models (CBM) (Koh et al., 2020; Espinosa Zarlenga et al., 2022; Yuksekgonul et al., 2023;
Chauhan et al., 2023; Kim et al., 2023; Sarkar et al., 2022; Havasi et al., 2022) have emerged as a
solution to this challenge; their aim is to make the decision-making process of models transparent
by simplifying it into understandable concepts. CBM researches infer the key concepts used in the
prediction, and then predict the final label using only the inferred concepts, as shown in Fig. 1 (a).
This approach significantly enhances the transparency of the model using concepts that humans can
directly understand.

Early researches on CBM aimed to ensure model transparency, but this often resulted in accuracy
that was lower than that of black-box models. To address this issue, recent CBM researches have
seen a shift towards using large backbone networks and deep layers to achieve superior performance,
contrary to their original purpose. This trend sacrifices the transparency of the model, focusing
solely on improving the accuracy of final label predictions. Therefore, it is imperative to develop
algorithms that can bridge the performance gap with black-box models while maintaining model
transparency, in line with the original objectives of CBM researches. Model interpretability refers to
the ability of a model to provide human-understandable explanations for its predictions, ensuring
transparency in decision-making processes. In contrast, concept accuracy quantifies the correctness
of the intermediate concept representations inferred by the model. While these two aspects are
distinct, they are closely related. High concept accuracy enhances interpretability by ensuring that
the concepts used in explanations align with the ground truth. To address the trade-off between
accuracy and interpretability, concept embedding models (CEM) (Espinosa Zarlenga et al., 2022)
has been proposed. CEM is a modified CBM network (Koh et al., 2020) that incorporate both
positive and negative semantics, as shown in Fig. 1 (b). Coop-CBM (Sheth & Ebrahimi Kahou,
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2023) enhanced CBM performance by employing an auxiliary loss to develop rich and expressive
concept representations for downstream tasks. Energy-based CBM (ECBM) (Xu et al., 2024) utilized
a collection of neural networks to establish the collective energy associated with candidate tuples
comprising input, concept, and class. Through this unified framework, tasks such as prediction,
concept refinement, and the assessment of conditional dependencies are expressed as conditional
probabilities derived from the integration of diverse energy functions. Recent prominent CBM studies
(Xu et al., 2024; Sheth & Ebrahimi Kahou, 2023; Sarkar et al., 2022), have adopted an approach to
enhance model accuracy that incorporates x→ c→ y and x→ y structures to learn the relationship
between final labels and concepts (Fig. 1 (c)). While these methods can improve label accuracy, often
struggle to accurately infer concepts, a core goal of CBM research. This hinders model transparency.
For example, while a CBM model may accurately diagnose pneumonia, it may fail to detect lung
lesions, thereby undermining clinical trust.

In this study, we introduce a novel approach, the Energy Ensemble CBM (EE-CBM), which aims to
enhance the balance between inference accuracy and interpretability in concept learning, as depicted
in Fig. 1 (d). The proposed EE-CBM comprises two branch modules, concept extraction and concept
probability. The concept extraction branch predicts concept values C through fully connected (FC)
layers, similar to other CBM models. The concept probability branch generates probability P using
an energy-based mechanism (LeCun et al., 2006), enhancing concept accuracy. This branch plays
a pivotal role in determining the likelihood of each concept within the input data. It serves as
a probability estimator, assigning probability to each concept and reflecting their relevance and
contribution to the overall representation.

To ensure robust concept inference even in challenging scenarios such as noisy or wild images,
an EE-CBM integrates samples generated through Markov chain Monte Carlo (MCMC) (Nijkamp
et al., 2020a; 2019; 2020b; Han et al., 2017) methods. The concept value C and probability P of
each branch are combined in the energy ensemble gate (EEG) to generate the final concept. The
EEG alleviates potential information bottleneck issues in CBM researches. Furthermore, to promote
accurate concept learning, an EE-CBM applies the maximum mean discrepancy (MMD) (Anderson
et al., 1994; Gretton et al., 2012) as a loss to each concept embedding. This loss function fosters
orthogonality between concept features, which brings similar concepts closer in latent space and
creating distinct spaces for different concepts, resulting in clearer concept inference outcomes. In
downstream tasks across various datasets, the EE-CBM effectively addresses balance the between
conceptual understanding and label prediction.

The main contributions of the proposed EE-CBM are as follows:

• We introduce EE-CBM, a new architecture that aims to balance task accuracy and inter-
pretability in concept learning and consists of two branches: the concept extraction branch
and concept probability branch.

• The EEG combines the concept values and concept probabilities. This combination helps
address the potential information bottleneck issues present in conventional CBMs.

• To ensure robust concept inference, especially for challenging data such as noisy or wild im-
ages, the EE-CBM integrates samples generated through MCMC methods. This potentially
improves the ability of the model to handle complex data.

• The MMD loss function promotes the distinctiveness of concepts in latent space, bringing
similar concepts closer together and separating distinct concepts.

• The proposed EE-CBM has demonstrated excellent performance and model interpretability
through experiments conducted on various benchmark datasets such as CUB-200-2011
(Welinder et al., 2010), AwA2 (Xian et al., 2018), CheXpert (Irvin et al., 2019), and CelebA
(Liu et al., 2015).

2 BACKGROUND

2.1 CONCEPT BOTTLENECK MODELS

CBM (Koh et al., 2020) is an interpretable method that can ensure the transparency of artificial
intelligence models and classify images using human-friendly concepts that can be intuitively under-
stood. Initial CBM studies (Koh et al., 2020; Espinosa Zarlenga et al., 2022) were constructed with
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energy

(a) CBM (b) CEM (c) ECBM (d) EE-CBM

Figure 1: Structural differences in major CBM models. Our EE-CBM combines concept features and
probabilities to address potential information bottleneck issues.

lightweight ResNet18 (He et al., 2016) or ResNet34 backbone networks and FC layers to emphasize
model interpretability. However, recent studies (Xu et al., 2024; Sheth & Ebrahimi Kahou, 2023) have
shown a trend towards the use of larger ResNet101 or Inception-v4 (Szegedy et al., 2017) networks,
prioritizing classification performance over model interpretability.

The input data of CBM are composed of D = {X , C,Y}, which includes N images X =
{x1, x2, . . . , xN}, concept labels C = {C∗

1,C
∗
2, . . . ,C

∗
N}, and class labels Y = {y∗1 , y∗2 , . . . , y∗N}.

Here, a single concept label C∗
n = {c∗1, c∗2, . . . , c∗K} consists of K individual concept annotations

c∗k ∈ {0, 1}. CBM features a unified structure integrating two primary models. This structure follows
the logic of X → C → Y , comprising a concept encoder model, h : X → C, which infers concepts
from input images, and a model, g : C → Y , which uses extracted concepts to infer the final class
labels. Thus, the ultimate inference model is represented as g(h(x)). Each model h and g is trained
to minimize the cross-entropy loss.

Concept labeling to reflect the detailed characteristics of objects may require expert knowledge, and
understanding of the concepts could vary based on individual perspectives. Consequently, to address
the problem of limited concept labeling, label-free approaches (Oikarinen et al., 2022; Wang et al.,
2023; Yang et al., 2023; Shang et al., 2024) are being investigated. These methods are combined
with large language models to generate concepts or enable the model to learn concepts by creating
arbitrary concept embeddings. However, these approaches lead to an excessive increase in model
parameters. Moreover, a semantic understanding of these models is difficult because heatmaps or
other human-interpretable methods must be used to explain the concepts. Hence, initial CBM for
image classification faces a trade-off between classification accuracy and model interpretability. To
address this, several approaches have been proposed; however, existing methods (Sarkar et al., 2022;
Sheth & Ebrahimi Kahou, 2023; Xu et al., 2024) tend to rely on large backbone networks to maintain
accuracy, thereby neglecting the primary goal of CBM, which is model interpretability. In this
study, we adopt energy-based models (EBM) to resolve this trade-off while maintaining the primary
objectives of CBM—accuracy and model interpretability—regardless of the size of the backbone
network.

2.2 ENERGY BASED MODELS

EBM is a model based on statistical physics principles such as the Boltzmann or Gibbs distributions
(Ackley et al., 1985; Hinton et al., 2006; Salakhutdinov & Hinton, 2009). It is a powerful probabilistic
model that can clearly model complex probability distributions. Unlike in conventional predictive
models, in an EBM, lower energy corresponds to higher probability, and higher energy corresponds
to lower probability. Energy in EBM can be expressed as follows.

pθ(x) =
exp(−Eθ(x))

Z(θ)
(1)

Here, probability pθ is computed using energy function E : X → e (i.e. e ⊆ R) and partition
function Z(θ). However, Z(θ) is an intractable term, and hence approximate sampling results are
obtained using MCMC. For learning, EBM generates samples using Langevin dynamics sampling
(Neal, 2011; Zhu & Mumford, 1998), which is an MCMC technique. Langevin dynamics sampling is
obtained using the following equation.

x̃t = x̃t−1 −
λ

2
∇xEθ(x̃t−1) + ϵt, ϵt ∼ N (0, λ) (2)
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Figure 2: Overall architecture of the proposed EE-CBM. The input image is fed into a ResNet
backbone network f(x). The latent vector z output by f(x) is fed to both the concept extraction and
concept probability branches. The outputs C′ and P are combined into Ĉ by the EEG. Ĉ and z are
processed by the EEG to generate the final concept C. The inferred final label y is deduced via a
single FC layer g(C). The linearly composed energy e is used for further training.

Here, t denotes the number of steps, and ϵt represents the Gaussian noise at that step. Using these
sampling techniques, we estimate the maximum likelihood to train an EBM. Given training images
X = {x1, x2, . . . , xN} ∼ pD(X ) and samples X̃ = {x̃1, x̃2, . . . , x̃N} ∼ pθ(X̃ ) obtained through
Langevin dynamic sampling, an EBM is trained using the following equation.

∇θLe ≈ Ex∼pD [∇θEθ(x)]− Ex̃∼pθ [∇θEθ(x̃)] (3)

We approximate Eq. (3) again so that it can be used for learning.

∇θLe = ∇θ

[ 1
N

(ΣNn=1Eθ(xn)− ΣNn=1Eθ(x̃n))
]

(4)

The detailed derivation of this equation can be found in (LeCun et al., 2006), and a more comprehen-
sive derivation is available in the Appendix A. EBM has demonstrated excellent results as a generative
model (Gao et al., 2018; Guo et al., 2023; Zhao et al., 2017; Du et al., 2021; Pang et al., 2020; Du
& Mordatch, 2019; Han et al., 2020), and it has also been used in classification tasks (Grathwohl
et al., 2020; Kim & Ye, 2022; Yang & Ji, 2021; Guo et al., 2023). Therefore, by employing EBM in
the concept encoder, we aim to achieve accurate concept inference and superior image classification
performance.

3 EE-CBM

The proposed EE-CBM consists of the components depicted in Fig. 2. The key element is the
concept encoder, which generates the final concept C and comprises two branches. The first branch,
called the concept extraction branch, predicts concept value C′ through FC layers as in conventional
CBM models. The second branch, called the concept probability branch, employs an energy-based
mechanism to determine the presence of each concept, producing probability P and enhancing
concept accuracy. The resultant C′ and P are combined into Ĉ. Subsequently, Ĉ together with z,
which is generated by the backbone network, is used to perform EEG to create the final concept C,
which avoids the concept information bottleneck. Finally, the inferred final label y is deduced via a
single FC layer. Additionally, we incorporate the MMD loss to ensure that the latent space of each
concept remains similar and that each concept possesses orthogonal features.
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3.1 CONCEPT ENCODER

Concept encoder h(z) = ϕ(z)⊗ ψ(z). The concept encoder includes two branches, ϕ(z) and ψ(z),
where ϕ : Rd → Ru extracts concept features and ψ : Rd → R learns the probability of the concepts.
Here, d represents the number of output dimensions of the backbone network and u represents the
dimension of the concept. The concept features C′ = {c′1, c′2, . . . , c′K} and concept probabilities
P = {p1, p2, . . . , pK} produced by each branch are then combined into the final concept ĉ using the
EEG at the end.

Concept feature extraction branch ϕ(z). Branch ϕ(z) utilizes the feature vector z ∈ Rd extracted
by backbone network f(x) to generate concept features c′ ∈ Ru. As in CBM models, this branch is
implemented through a single FC layer, and it can be represented by the following equation.

c′k = ϕi(z; θϕk) = FC(f(x); θϕk) s.t. c′k ∈ Ru, k = 1, 2, ...,K (5)

Concept probability branch ψ(z). Branch ψ(z) is responsible for calculating the probability
for each concept. This is achieved using the EBM mechanism in which energy function Eθ(z) is
implemented as a simple multi-layer perceptron. During the learning process of this branch, we utilize
Langevin dynamics, a sampling technique in MCMC, to perform maximum likelihood learning. The
adoption of MCMC in EBM is primarily motivated by the need for accurate and efficient sampling in
complex concept representation spaces. This enables improved model performance and quantifiable
uncertainty, leading to more reliable results. Branch ψ(z) takes as input z, which has been extracted
by backbone network f(x). This branch can be represented by the following equation.

pk = ψk(z; θψk) = Eθψk (z) s.t. pk ∈ R, k = 1, 2, ...,K (6)

To learn the energy, we employ maximum likelihood by replacing image x, which is the input to
approximation Eq. (3), with latent vector z. Similarly, x̃ is also replaced with z̃, where z̃ is the vector
sampled by applying MCMC to latent vector z using Eq. (2). Using the modified approximation
Eq. (3), we can save computational and memory costs required for training by using latent vector z
instead of images. Finally, in the loss function Le (Eq. (4)), xi is replaced by z, and x̃ is replaced
with by z̃ to learn the energy. At this point, the generated energy is linearly composed for use in
energy learning, and the equation is as follows.

∇θLe = ∇θ

[ 1
N

(ΣNn=1Eθψ (zn)− ΣNn=1Eθψ (z̃n))
]

(7)

The generated energy is used to compute the probability p of the concept. Concept probability p
represents the probability that concept c exists given input data z. The structure proposed in this study
employs the concept probability branch, which consists of an EBM mechanism based on MCMC
techniques. This offers a more practical approach to learning the concept probabilities that exist in
images in the wild than existing CBM models.

EEG. In conventional EBM methods, a concept information bottleneck can occur in which only
specific concepts are selectively learned during the model learning process. Hence, it becomes
challenging to discern the deep associations among concepts, leading to constraints on the representa-
tion. To address this issue, we propose the EEG, which enables the overall context z to be flexibly
combined with the concepts. In other words, the EEG effectively combines z with the concept
features Ĉ and concept probabilities P generated in the two branches to produce the final concept C.
In the EEG, hidden connections between concepts are learned and their representation is improved.
The equation for EEG learning is as follows.

ck = (σ(pk) ·Wp)⊗ (c′k ·Wc)︸ ︷︷ ︸
ĉk

+z ·Wz, C = {c1, c2, ..., cK} (8)

Here, Wc ∈ Ru×u, Wp ∈ R and Wz ∈ Rd×u are trainable weight parameters, σ(p) denotes the
sigmoid function, which is computed using 1

1+exp(−p) , and ⊗ represents the multiplication operation.

5
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As Eq. (8) reveals, the EEG flexibly integrates z to address the concept information bottleneck
problem, which leads to a limited representation due to compacted information. The learned final
concept C is passed through a single FC layer to generate the final prediction y. Throughout the
entire model training process, concept C improves prediction accuracy through binary cross-entropy
loss Lc. Additionally, y is used to train the precise multi-class classification using cross-entropy loss
Ly . The overall loss required for training is as follows.

Leeg = λcLc + λyLy + λeLe (9)

where, λc, λy , and λe are the hyperparameters for each loss, which enable us to adjust the importance
of each loss function to optimize model performance. More detail explanation of λc, λy , and λe can
be found in the Appendix B. The pseudocode of the entire algorithm is presented in Algorithm 1.

3.2 CONCEPT MMD LOSS

In this paper, we employ the total loss function Leeg to train the energy probability model, final
concepts, and final predictions. However, relying on this loss function alone may prove insufficient
for effective concept learning.

Lmmd =
1

K

K∑
k=1

∥ µ(c⊥k |c∗k)− µ(c′k|c∗k) ∥22 (10)

Algorithm 1 EE-CBM algorithm
Input : input image x, # of concepts K

z = f(x) // extract feature vector z from backbone f(·)
C = ∅ // init concept set
for k ∈ {1, 2, ...,K} do

c′k = ϕk(z) // concept feature extraction branch
pk = ψk(z) // concept probability branch
c = (σ(pk) ·Wp)⊗ (c′k ·Wc)⊕ z ·Wz

// operate energy ensemble gate

C = C∪c

y = g(C) // predict class label y from g(·)

Output : (C, y)

Here, c⊥k ∈ C⊥ denotes the orthogo-
nal latent vector, i.e., variational con-
cept conditional marginal, and c′k ∈
C′ represents the predicted concept
feature. µ is a kind of mapping func-
tion (e.g. batch-wise average). By in-
troducing the Lmmd loss, we encour-
age the concept learning process to
train feature spaces where each con-
cept is both similar to itself and dis-
tinctly separable from other concepts.
Consequently, the Ltotal of the pro-
posed model is modified as follows.

Ltotal = Leeg + λmmdLmmd (11)

4 EXPERIMENTS

To evaluate the performance of our proposed model, we conducted experiments using four datasets:
CUB-200-2011 (Welinder et al., 2010), TravelingBirds (Koh et al., 2020), AwA2 (Xian et al., 2018),
CheXpert (Irvin et al., 2019), and CelebA (Liu et al., 2015). The CUB-200-2011 dataset consists
of 11,788 images belonging to 200 categories of birds. It is divided into a training set of 5,994
images and a test set of 5,794 images. Each image is annotated with one category label and 312
attributes (concepts). We followed the approaches of CBM and CEM, utilizing 112 attributes as
concepts and using the same data partitioning. The TravelingBirds, a segmented bird image dataset
derived from CUB, offers a diverse range of background conditions. This dataset is categorized into
CUB Random, CUB Fixed, and CUB Black, and it is particularly useful for evaluating a model’s
ability to encode object-centric concepts while minimizing the impact of background variations. The
AwA2 dataset comprises 37,322 images of 50 animal categories, with 85 attributes. The CheXpert
dataset includes 224,316 chest radiographs from 65,240 patients, with two category labels and 13
attributes. The CheXpert dataset provides concept uncertainty labels, which were incorporated during
training to address ambiguous concepts effectively. The CUB-200-2011 and AwA2 datasets are
widely used benchmarks for models using attributes, as they contain a relatively large number of

6
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concepts. The CheXpert dataset, by contrast, includes two attributes and incorporates the uncertainty
of the concepts. The CelebA dataset contains 202,599 face images of 10,177 celebrities, along with
40 attributes. Please see Appendix E for detail information on the five datasets.

Table 1: Comparison of the accuracy results of the comparison models on three dataset. The results
of experiments conducted using five different seeds are reported. Additionally, the experiments
are performed using two different sizes of the backbone network. The best performance is in
bold, and the second-best performance is underlined. The symbols † and ‡ indicate ResNet34 and
ResNet101 backbone, respectively. Comparison methods were trained using the exact strategies
and configurations recommended by the original papers. (The performance results of CelebA are
presented in Appendix C.)

Methods CUB CheXpert AWA2
Concept (%) Task (%) Concept (%) Task (%) Concept (%) Task (%)

Bool-CBM† 96.229 (±0.031) 72.512 (±0.466) 84.428 (±1.121) 83.682 (± 0.000) 99.001 (±0.188) 94.868 (±1.047)
Fuzzy-CBM† 95.882 (±0.105) 74.228 (±0.606) 83.740 (±0.718) 81.916 (±1.448) 98.999 (±0.167) 95.088 (±1.004)

CEM† 96.159 (±0.156) 79.029 (±0.518) 84.315 (±1.247) 82.125 (±2.604) 99.048 (± 0.036) 95.745 (±0.293)
Prob-CBM† 95.596 (±0.061) 76.265 (±0.145) 86.692 (± 0.123) 83.652 (±0.083) 98.283 (±0.065) 92.484 (±0.315)

ECBM† 96.536 (± 0.091) 77.148 (±0.695) 84.792 (±0.842) 83.682 (± 0.000) 98.908 (±0.037) 94.555 (±0.120)
Coop-CBM† 89.892 (±0.649) 79.154 (± 0.734) 84.435 (±0.201) 82.993 (±1.244) 98.875 (±0.107) 95.927 (± 0.153)

Ours (EE-CBM†) 96.554 (± 0.057) 80.417 (± 0.291) 86.703 (± 0.236) 87.145 (± 0.145) 99.063 (± 0.005) 96.218 (± 0.435)
Bool-CBM‡ 96.602 (± 0.310) 75.784 (± 0.204) 84.703 (± 1.222) 83.682 (± 0.000) 99.227 (± 0.100) 95.547 (± 0.697)
Fuzzy-CBM‡ 96.442 (± 0.104) 78.523 (± 1.133) 85.179 (± 0.743) 84.584 (± 0.811) 99.102 (± 0.054) 95.757 (± 0.242)

CEM‡ 96.585 (± 0.102) 80.755 (± 0.287) 84.476 (± 1.416) 84.530 (± 0.597) 99.201 (± 0.030) 96.235 (± 0.204)
Prob-CBM‡ 96.614 (± 0.137) 77.372 (± 0.931) 86.722 (± 0.151) 83.682 (± 0.083) 98.414 (± 0.044) 92.922 (± 0.214)

ECBM‡ 96.661 (± 0.262) 79.426 (± 0.241) 85.256 (± 0.351) 83.682 (± 0.000) 99.078 (± 0.040) 95.431 (± 0.173)
Coop-CBM‡ 91.340 (± 1.419) 81.106 (± 0.695) 84.265 (± 0.367) 84.131 (± 2.044) 99.048 (± 0.107) 95.927 (± 0.153)

Ours (EE-CBM‡) 96.696 (± 0.037) 81.141 (± 0.139) 86.733 (± 1.532) 87.379 (± 1.023) 99.230 (± 0.113) 96.440 (± 0.525)

As mentioned earlier, to demonstrate the consistent performance of CBM regardless of the size of
the backbone network, we opted not only for ResNet101 used in existing CBM methods but also
additionally selected ResNet34, a smaller backbone network. The images in the datasets were resized
to 299×299, and the SGD optimizer was employed. Detailed hyperparameter settings are provided in
the Appendix B.

4.1 QUANTITATIVE EXPERIMENTS

Trade-off between task accuracy and interpretability. To evaluate the effectiveness of the
proposed model, we present the results of our experiments on task (classification) accuracy, concept
interpretability. Our experimental protocol follows the same procedure as CEM to ensure a fair
comparison between different methods. Table 1 presents the results of the trade-off experiment
for downstream tasks on three datasets. The experiments are conducted by varying the size of
the backbone network between ResNet34† and ResNet101‡. Across all datasets, the EE-CBM
consistently achieves significantly higher performance in both metrics than the other models. In
particular, because it uses concept probabilities, the EE-CBM demonstrates significantly higher
performance than the other models on the CheXpert dataset, which includes the uncertainty of the
concepts.

First, we examine the performance of the methods that use ResNet34 as the backbone. In CEM,
both positive and negative concepts are utilized, and these concepts are represented as vectors
rather than scalars. Due to its ability to capture rich information about concepts, CEM achieved
good performance in terms of task accuracy and interpretability on AwA2 dataset. In contrast, EE-
CBM, despite using scalar concepts, resolved the concept information bottleneck problem, thereby
enhancing both accuracy and interpretability and achieving the highest performance on all datasets.
Despite employing additional x → y loss functions, Coop-CBM and ECBM demonstrated lower
performance compared to EE-CBM. These results are consistently observed in experiments conducted
with the backbone changed to ResNet101. This confirms that the proposed EE-CBM outperforms
existing models across both metrics, demonstrating consistent performance regardless of the backbone
size. Ultimately, the ability of EE-CBM to accurately capture and clearly explain concepts allows
it to overcome the trade-off between task accuracy and interpretability that has hindered previous
methods.

7
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Table 2: Quantitative comparison of task accuracy (%) on background-shifting datasets (Traveling-
Birds) using various concept bottleneck design models. The best performance is in bold, and the
second-best performance is underlined.

Methods CUB Black CUB Random
Concept (%) Task (%) Concept (%) Task (%)

Bool-CBM 93.032 (±0.662) 55.346 (±3.282) 92.855 (±0.139) 55.357 (± 0.882)
Fuzzy-CBM 93.028 (±0.383) 59.561 (±2.011) 92.519 (±0.107) 58.460 (±0.356)

CEM 92.903 (±0.548) 60.973 (±2.671) 92.666 (±0.166) 62.388 (±1.257)

Prob-CBM 93.280 (±0.177) 65.364 (±1.058) 91.942 (± 0.201) 59.506 (±0.646)

ECBM 94.124 (± 0.286) 60.472 (±1.346) 93.187 (±0.283) 56.320 (± 1.207)
Coop-CBM 88.301 (±0.665) 63.994 (± 1.270) 87.840 (±0.540) 61.663 (±1.286)

Ours (EE-CBM) 94.568 (± 0.001) 69.825 (± 0.012) 93.744 (± 0.002) 66.960 (± 0.012)

(a) CUB (b) CUB Black (c) CUB Random

Figure 3: Representative samples from the CUB and TravelingBirds datasets with background
manipulations for evaluating model generalization. (a) CUB, (b) CUB Black, (c) CUB Random.
Background shifting. Figure 3 presents sample images from the CUB Black and CUB Random
subsets of the TravelingBirds dataset. These images demonstrate the effects of shifting backgrounds
to a uniform black color or to random real-world scenes. Background shifting was employed to
simulate more challenging scenarios, such as introducing changes in background appearance, altering
the spatial distribution of background elements, and varying the level of background complexity. By
subjecting the model to these controlled shifting, we were able to assess its resilience to a wider range
of background shifts. To comprehensively evaluate the robustness of our proposed model against
background shifts, we conducted quantitative experiments on the TravelingBirds dataset, a variant of
the CUB dataset. Our experimental setup involved training the EE-CBM model based on ResNet34
using the CUB dataset and testing it on various background-shifting subsets of TravelingBirds,
including CUB Black and CUB Random. As shown in Table 2, the proposed EE-CBM consistently
outperformed the baseline models across CUB Black and CUB Random background-shifting datasets.
These results highlight the model’s remarkable robustness and generalization capabilities. Unlike
other methods that may be influenced by background information, our proposed method exhibits a
greater ability to focus on the conceptual content of the image, irrespective of the background. This
enhanced conceptual focus allows the model to deliver more reliable interpretations, consistently
achieving better performance even under varying and dynamic background conditions. (For additional
details, please refer to Appendix H.)
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Figure 4: Task accuracy according to type of concept intervention.

Concept intervention. Figure 4 presents the performance when concept intervention techniques
are used on each dataset. Intervention experiments involve artificially modifying predicted concepts
to assess their causal influence on model output, thereby revealing the underlying relationships
between concepts. These experiments highlight the model’s transparency and aid in understanding
the rationale behind specific decisions. To ensure fairness across all compared methods, we did not
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apply the random concept intervention strategy during training. Instead, we conducted intervention
experiments by randomly selecting a concept intervention ratio between 0.1 and 1.0 within the total
number of concepts in the given dataset (see Appendix I). In the CUB dataset, the proposed EE-CBM
based on ResNet34 demonstrates highest performance when the intervention ratio is low, but slightly
lower performance compared to ECBM after 0.6. However, EE-CBM consistently outperforms
other methods regardless of ratio changes in the CheXpert dataset. The ECBM, which shows high
performance in CUB, consistently exhibits lower performance in CheXpert, indicating sensitivity
to data types in terms of concept intervention. In experiments on the AwA2 dataset, EE-CBM also
exhibits the best performance. Through experiments on the three datasets, we can confirm that
EE-CBM, based on an energy-based probability model, generates concepts robust to uncertainty.
In addition, EE-CBM consistently demonstrates excellent intervention performance even when the
dataset type changes and the number of specified concepts varies across datasets. Based on this, it
can be interpreted that the EE-CBM correctly understands intuitive concepts understood by humans
and uses them as the basis for class inference. As for concept accuracy, the EE-CBM demonstrates
high task accuracy across all datasets. This can also be interpreted as a result of its outstanding
understanding of concepts.

Concept importance. This experiment aimed to verify whether the proposed EE-CBM accurately
discerns the presence of concepts in input images. In particular, we focused on confirming whether
the EE-CBM provides precise concept probabilities through the concept probability branch. The
experiment involved calculating the concept probabilities for various images using the EE-CBM
based on ResNet34 and conducting a comparative analysis with the actual presence of concepts.

Figure 5 shows examples demonstrating these experiments. In Fig. 5, the EE-CBM maintains high
accuracy even on challenging images such as images with complex backgrounds or partially occluded
objects. Therefore, it can be concluded that the EE-CBM provides precise concept probabilities
because of its concept probability branch. This ultimately serves as more evidence that the EE-CBM
comprehends concepts accurately and performs precise label predictions based on this comprehension.

MMD loss. To verify whether MMD loss indeed improves model performance, we conducted an
ablation study. As shown in Table 3, when MMD loss was not utilized (λmmd = 0), there was a
1.025% decrease in concept accuracy. This indicates the importance of MMD loss in concept learning.
In this scenario, the decrease in concept accuracy also led to a 0.774% decrease in task accuracy.
From these results, we can infer that a thorough understanding of concepts is essential for enhancing
task accuracy.

Class label :

Concept : 

Image :

Black_footed_Albatross

has tail pattern::solid (1.00)
has underparts color::grey (1.00)
has bill shape::hooked seabird (0.99)
has wing color::white

(0.02)

Laysan_Albatross

has crown color::white (1.00)
has underparts color::white (1.00)
has breast color::white (1.00)
has wing pattern::striped (0.00)
has forehead color::grey (0.00)

Sooty_Albatross

has back pattern::solid (1.00)
has forehead color::black (1.00)
has size::medium (9_-_16_in) (0.97)
has crown color::white (0.00)
has wing pattern::spotted (0.01)

Indigo_Bunting

has bill color::grey (1.00)
has shape::perching like (1.00)
has bill shape::cone (0.99)
has tail pattern::striped (0.00)
has bill shape::hooked seabird (0.02)

(0.00)
has belly color::grey

Figure 5: Visualization of the concept probabilities for each image sample. The top three concepts
represent the results of accurately inferring concepts that are confidently present in the image, while
the bottom two represent confidently inferring the absence of concepts not present in the image.

4.2 ABLATION STUDIES

Table 3: Ablation study performance comparison results for
the Concept probability branch (ψ(z)), EEG (λe) and MMD
loss (λmmd) in the proposed EE-CBM based on ResNet34.

Variants Concept (%) Task (%)

EE-CBM 96.554 (± 0.057) 80.417 (± 0.291)
w/o ψ(z) 95.253 (±0.106) 77.789 (±0.445)
λmmd = 0 95.124 (±0.309) 78.408 (±0.388)
λe = 0 95.080 (±0.380) 77.365 (±0.523)

This section presents an evaluation
of the effectiveness of each module
in the proposed EE-CBM based on
ResNet34. This ablation studies were
conducted using the CUB-200-2011
dataset.

EEG. We use the EEG module to flexibly integrate the outputs of the concept probability and concept
feature extraction branches, thereby addressing the concept information bottleneck while enhancing
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model performance. To evaluate the extent to which the concept probability branch, a key component
of the EE-CBM, influences the EEG, we conducted experiments comparing the performance with
and without the core energy learning of the EEG module (λe = 0). As evident in Table 3, using
the EEG module resulted in a 1.817% improvement in performance. In particular, a significant
enhancement in concept accuracy was observed. This indicates that the EEG module alleviated the
concept information bottleneck, enabling the model to better comprehend concepts. Furthermore,
as concept accuracy increased, task accuracy also improved. This demonstrates that with a better
understanding of concepts, the model can infer task accuracy more accurately.

As indicated in Table 3, the removal of the proposed concept probability branch led to a general
decline in performance. Also the difference between the performance without the branch and
that with only the energy loss Le removed is relatively small, suggesting that the energy loss has
a more limited impact on performance. Nevertheless, the consistent performance improvements
observed when the branch is included indicate that it contributes significantly to the overall model
performance. This finding suggests that while the concept probability branch may not be the sole
determinant of performance, it plays a supportive role in the learning process by facilitating the flow
of information between the concept probabilities and the concept values. The concept probability
branch, updated through the energy loss Le, plays a crucial role in effectively communicating clear
concept probabilities P to the concept values C. Without this branch, the learning process becomes
less efficient, resulting in suboptimal performance.

(a) EE-CBM w/ MMD loss (b) EE-CBM w/o MMD loss

Figure 6: Visualization of the t-SNE (Van der Maaten &
Hinton, 2008) latent spaces for five random concepts (a)
using the MMD loss and (b) excluding the MMD loss.

Orthogonal concept latent space.
To determine whether MMD loss ef-
fectively learns a latent space in which
similar concepts are close to each
other and different concepts are po-
sitioned farther apart, we visualized
the latent space of five random con-
cepts. Figure 6 (a) depicts the distribu-
tion of the concepts using MMD loss,
while Fig. 6 (b) illustrates the distri-
bution obtained without using MMD
loss. When MMD loss is employed,
the characteristics of each concept are
clearly separated. In contrast, when
MMD loss is not used, the concepts appear to be mixed. This demonstrates that MMD loss aids in
effectively classifying concepts.

5 DISCUSSION AND LIMITATION

This work introduced the EE-CBM, which effectively addresses the trade-off between conceptual
understanding and label prediction in downstream tasks. The core concept of the EE-CBM lies in its
leveraging of energy ensembles and concept probability to tackle the concept information bottleneck
regradless of the backbone size. This approach enables the model to achieve a deeper grasp of
concepts. Furthermore, because it incorporates the MMD loss, the EE-CBM facilitates the formation
of a latent space in which similar concepts are positioned close together, whereas distinct concepts
are separated by a larger distance. The experimental results establish the EE-CBM as a promising
CBM because it achieves high concept accuracy and interpretability results across all datasets.

It is encouraging that EE-CBM demonstrates consistent performance not only in model interpretability
but also in task accuracy compared to existing complex black-box models. However, constructing
datasets that include concepts entails significant costs, and because of the limited concept resources
within datasets, there could be instances where the model fails to learn the concepts actually necessary
for training. To address this, future research must focus not only on improving task accuracy but also
on exploring concept-free models. Furthermore, although the proposed model benefits from using
MCMC for energy learning, which allows it to extract concepts well from images in the wild, it suffers
from the drawback of multiple iterations. Therefore, energy-efficient learning algorithms should be
developed in future to overcome the limitations of the EE-CBM and enhance its performance.
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A APPENDIX: DERIVATION OF ENERGY-BASED METHOD

As mentioned in Section 2.2 of this paper, here we discuss the approximation methods for the EBM
equation.

p(x) =
1

Z(θ)
exp(fθ(x)) (12)

Zθ can be expressed as follows.

Z(θ) =

∫
exp(fθ(x))dx (13)

Under the Maximum Likelihood Estimation (MLE) condition, the loss function of the EBM can be
defined as follows.

Le =
1

n

N∑
i=n

log(pθ(x)) (14)

For training, it is necessary to obtain the derivative L′

e(i.e.,∇θLe) of the loss function. The derivative
L′

e of the loss function can be calculated as follows.

∇θLe =
1

n

N∑
i=n

∇θlog(pθ(x)) (15)

=
1

n

N∑
i=n

∇θlog(
1

Z
exp(f(x))) ∵ pθ(x) =

1

Z
exp(f(x)) (16)

= Ex∇θ(−log(Z) + f(x)) (17)
= Ex∇θf(x)− Ex∇θlog(Z) (18)
= Ex∇θf(x)−∇θlog(Z) (19)

Although we can calculate the derivative as shown in Eq. (19), the log(Z) term cannot be directly
computed. Therefore, we approximate the log(Z) term with a computable expression.

∇θlog(Z) =
1

Z(θ)
∇θZ(θ) (20)

=
1

Z(θ)
∇θ

∫
exp(fθ(x))dx ∵ Z(θ) =

∫
exp(f(x))dx (21)

=
1

Z(θ)

∫
∇θexp(fθ(x))dx ∵ swap ∇θ and

∫
(22)

=
1

Z(θ)

∫
exp(fθ(x))∇θfθ(x)dx (23)

=

∫
1

Z(θ)
exp(fθ(x))∇θfθ(x)dx (24)

=

∫
pθ(x)∇θfθ(x)dx ∵ p(x) =

1

Z(θ)
exp(fθ(x)) (25)

= Epθ(x)[∇θfθ(x)] (26)

Finally, if Eq. (26) is substituted into Eq. (19) and developed, the following final equation can be
obtained. (At this time, f(x) is an energy model, so it is possible to express it as E(X).)
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By substituting equation Eq. (26) into Eq. (19), we can obtain the result of Eq. (27). Here, f(x) can
be expressed as the energy model E(x) (Eq. (28)), and discretizing the expectation yields the final
result as shown in equation (Eq. (29)).

∴ ∇θLe = Ex[∇θf(x)]− Epθ(x)[∇θfθ(x)] (27)

∇θLe ≈ Ex[∇θEθ(x)]− Ex̃[∇θEθ(x̃)] (28)

Ex[∇θEθ(x)]− Ex̃[∇θEθ(x̃)] = ∇θ[
1

N
(ΣNn=1Eθ(xn)− ΣNn=1Eθ(x̃n))] (29)

B APPENDIX: HYPERPARAMETERS

We used slightly different hyperparameters for each dataset as shown in Table 4. The training
hyperparameter values presented in Table 4 were determined by setting multiple candidate values,
training all possible combinations, and selecting the combination that yielded the best performance
as the final hyperparameters.

Table 4: Hyperparameters used for training

Hyperparameter
Dataset

CUB CelebA AwA2 CheXpert

Learning rate 0.001

λc 5.5 7.5 7.5 7.5

λy 3

λe 0.1

λmmd 0.1

dim u 16

Batch size 32

Epoch 300

Optimizer SGD

Weight decay 4.0e-5

Momentum 0.9

Input resolution 299
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C APPENDIX: CELEBA PERFORMANCE EXPERIMENT

Table 5: Comparison of the accuracy results of the comparison models on CelebA dataset.

Methods
CelebA

Concept Acc. (%) Task Acc. (%)

Bool-CBM 90.329 (±0.164) 33.915 (±0.884)

Fuzzy-CBM 90.269 (±0.211) 33.696 (±2.103)

CEM 90.237 (±0.306) 42.617 (±1.412)

Prob-CBM 89.271 (±0.238) 34.472 (±0.839)

ECBM 90.006 (±0.986) 34.975 (±2.111)

Coop-CBM 90.533 (±0.142) 42.392 (±1.354)

Ours (EE-CBM) 90.699 (±0.656) 35.203 (±0.766)

We present the results of experiments on the CelebA dataset. The CelebA dataset is a large-scale
dataset with labeled facial images and 40 attributes. In this experiment, we extracted six key facial
attributes from the CelebA dataset. These limitations can lead to performance degradation. In fact,
we found that models that use concept scalars instead of concept vectors typically achieve a low task
accuracy of 33-34%. In contrast, the proposed model achieves a task accuracy of 35.203%, which is
the highest among concept scalar models and represents an approximately 1% improvement over
previous models. This shows that the proposed model exceeds the performance limitations of concept
scalar models.

D APPENDIX: MODEL COMPLEXITY

In this section, we present a comparative analysis of the computational complexity of the proposed
EE-CBM and the baseline models. While EE-CBM introduces a modest increase in the number of
parameters owing to the Markov Chain Monte Carlo (MCMC) sampling for the energy function,
it demonstrates a lower computational complexity in terms of floating-point operations per second
(FLOPs) compared to Prob-CBM. Furthermore, our experimental results reveal that EE-CBM achieves
the lowest latency when evaluated under identical system conditions. This finding suggests that
EE-CBM offers a compelling balance between model performance and computational efficiency.

Table 6: Comparison of the complexity of the comparison models.

Methods FLOPs (G) Latency (ms)

Fuzzy-CBM 6.85 4.86

CEM 6.85 8.74

Prob-CBM 7.38 49.38

ECBM 6.84 23.17

Coop-CBM 6.84 5.86

Ours (EE-CBM) 7.36 5.86
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E APPENDIX: EXPERIMENTAL SETUP AND ENVIRONMENTAL DETAILS

CODE, MODELS, AND LICENSES

Our implementation was carried out in Python 3.9 using various open-source libraries, including
PyTorch 1.12.1 (BSD license), torchvision 0.13.1 (BSD license), Scikit-learn 1.2.1 (BSD license),
and OpenCV 4.7.0 (BSD license). For visualizations, we used Matplotlib 1.3.0 (BSD license). To
ensure the reproducibility of our experiments, we have made all relevant code publicly available in a
repository under the MIT license.

RESOURCES

All of the experiments were conducted on a private machine equipped with two Intel(R) Xeon(R)
CPUs, that is, a Gold 6230R CPU @ 2.10 GHz; 128 GB RAM, and an NVIDIA RTX 3090 GPU.

DATASET DESCRIPTION

CUB (Welinder et al., 2010) dataset contains images of 200 bird species. The dataset consists of a
total of 11,788 images, with 5,994 training images, and 5,794 testing images. Each image is labeled
with 112 attributes, representing various characteristics of each bird species.
CelebA (Liu et al., 2015) dataset is a facial image dataset consisting of a total of 202,599 images
from 10,177 celebrities. This dataset includes images taken in various situations, so each image has
different facial expressions, lighting, clothing, and so on. Each facial image in the dataset is labeled
with 40 attributes, representing various characteristics such as gender, eyeglasses, and hats. However,
some attributes have uncertain labeling. Therefore, as with CEM, the eight attributes with the highest
normal distributions were selected, and two of these attributes were trained without labels. As a result,
the total number of classes is about 240, and only six attributes were optimized using ground-truth
labels.
AwA2 (Xian et al., 2018) dataset is designed for attribute-based and zero-shot learning tasks. It
contains 37,322 images across 50 animal classes, each annotated with 85 attribute labels.
CheXpert (Irvin et al., 2019) dataset is a large-scale dataset for chest radiograph interpretation,
designed to facilitate research in medical image analysis and automated diagnosis. It contains
224,316 chest radiographs from 65,240 patients, labeled for 14 common chest conditions such as
atelectasis, cardiomegaly, and pleural effusion. The dataset includes uncertainty labels to account
for ambiguous cases, with conditions annotated as positive, negative, or uncertain. CheXpert also
provides a standardized validation set with expert-annotated labels for model evaluation. The dataset
is split into training, validation, and test sets, enabling robust assessment of model performance.
TravelingBirds (Koh et al., 2020) dataset is a synthetic dataset derived from the CUB dataset, created
to assess the robustness of models under real-world conditions. By replacing the original backgrounds
of CUB images with a variety of diverse scenes, the TravelingBirds dataset introduces a level of
uncertainty that mimics the challenges faced by models deployed in real-world applications. This
dataset is particularly useful for evaluating the generalization ability of models and their ability to
handle variations in background complexity.

F APPENDIX: IMPACT OF CONCEPT REDUCTION ON TASK AND CONCEPT
ACCURACY

The results presented in Table 7 demonstrate the impact of reducing the number of concepts on both
task accuracy and concept accuracy for the CUB dataset. The experiments compare Fuzzy-CBM,
CEM, and EE-CBM when trained and evaluated with 100 concepts versus 50 randomly selected
concepts.

As shown in the table, our proposed model (EE-CBM) exhibits the smallest decline in both task
accuracy and concept accuracy when the number of concepts is reduced. This underscores the
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Table 7: Impact of Concept Reduction on Task and Concept Accuracy for the CUB Dataset. Per-
formance comparison of Fuzzy-CBM, CEM, and EE-CBM when trained and evaluated with 100
concepts versus 50 randomly selected concepts. Results include concept accuracy (Concept Acc.)
and task accuracy (Task Acc.) with mean and standard deviation over multiple runs.

Methods 50 concepts 100 concepts
Concept Acc. (%) Task Acc. (%) Concept Acc. (%) Task Acc. (%)

Fuzzy-CBM 96.15 (±0.02) 66.90 (±0.18) 95.72 (±0.02) 73.26 (±0.56)
CEM 96.09 (±0.01) 77.36 (±0.19) 95.85 (±0.17) 78.89 (±0.14)

Ours (EE-CBM) 96.99 (± 0.19) 78.13 (± 0.23) 95.92 (± 0.15) 78.97 (± 0.18)

robustness of EE-CBM in scenarios with fewer concepts, as it effectively mitigates the loss of
information caused by the reduced concept set. The energy-based pathway and MMD loss in EE-
CBM enable efficient utilization of the available concepts, maintaining significant performance
even in constrained settings. These results highlight EE-CBM’s ability to address the information
bottleneck effectively.

G APPENDIX: ADDITIONAL RESULTS ON THE CHEXPERT DATASET

Table 8: AUC-ROC Performance Comparison on the CheXpert Dataset. Comparison of AUC-ROC
scores (mean ± standard deviation) for various methods, demonstrating the performance of EE-CBM
compared to other baseline models.

Methods AUC-ROC

Bool-CBM 76.09 (±1.04)
Fuzzy-CBM 74.14 (±1.14)

CEM 76.68 (±0.70)
Prob-CBM 70.45 (±1.27)

ECBM 78.32 (±0.93)
Coop-CBM 61.82 (±0.60)

Ours (EE-CBM) 78.74 (± 0.82)

To further substantiate our claims, we conducted additional experiments on the CheXpert dataset,
evaluating model performance using the AUC-ROC metric. As shown in Table 8, our proposed model
(EE-CBM) achieves the highest AUC-ROC score (78.74) with a competitive uncertainty measure (±
0.82), outperforming other baseline methods, including ECBM (78.32 ± 0.93) and CEM (76.68 ±
0.70).

These results highlight the robustness of EE-CBM in capturing meaningful concept representations
and improving task performance while maintaining reliable uncertainty quantification. This additional
evidence further supports the effectiveness of the concept probability branch in addressing the chal-
lenges of medical datasets like CheXpert. We include this analysis to provide a more comprehensive
evaluation of our model’s capabilities.

H APPENDIX: EXPLANATION OF EE-CBM’S ROBUSTNESS TO BACKGROUND
SHIFTS

To provide further clarity on EE-CBM’s improved generalization to background shifts, we elaborate
on the mechanisms that enable this robustness. EE-CBM’s ability to focus on concept-specific
features rather than spurious correlations with background elements is a key factor in its performance.
This is achieved through two critical components:
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Energy-Based Pathway: The energy-based pathway estimates concept probabilities by capturing
the intrinsic properties of target concepts, effectively reducing reliance on background information.
This probabilistic approach ensures that the model focuses on meaningful features related to the task.

MMD Loss: The Maximum Mean Discrepancy (MMD) loss enforces structured separation in the
concept space. It clusters similar concepts together while pushing distinct concepts apart, creating
a latent space organization that maintains focus on primary object features, even under varying
background conditions.

These components work together to enhance EE-CBM’s generalization ability, as evidenced by the
experimental results discussed in Section 4.1. This explanation provides a theoretical basis for the
robustness of EE-CBM to background variations.

I APPENDIX: DETAILED EXPLANATION OF INTERVENTION EXPERIMENTS

Intervention experiments in concept bottleneck models involve modifying the model’s predicted
concept values to study their impact on both the final predictions and the individual concepts
themselves. This approach allows us to evaluate how effectively the model handles corrections to its
concept predictions, which can be especially relevant in applications requiring high interpretability,
such as medical diagnostics or environmental monitoring.

In these experiments, interventions are applied during the test phase, where specific predicted
concepts are replaced with their corresponding ground-truth values. This process simulates a scenario
in which users or domain experts identify and correct potentially inaccurate concept predictions. By
introducing these modifications, we assess how adjustments to one or more concept values influence
both downstream classification accuracy and related concepts.

By focusing on test-time interventions, these experiments demonstrate the model’s robustness and
responsiveness to corrections. This highlights the practical utility of concept-based interpretability in
refining predictions without altering the training process, emphasizing the value of this approach in
real-world applications.

In the experiments, random concepts were selected with probabilities ranging between 0.0 and 1.0,
and their values were replaced with the corresponding ground-truth values. This methodology follows
the same approach as used in CEM (Espinosa Zarlenga et al., 2022) and ECBM (Xu et al., 2024),
ensuring consistency across the compared methods.
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