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Figure 1: Our approach avoids full-image generation and does not introduce unintended
changes as the previous diffusion-model-based editing approach [58].

Abstract

Text-guided image editing involves modifying a source image based on a language
instruction and, typically, requires changes to only small local regions. However,
existing approaches generate the entire target image rather than selectively regener-
ate only the intended editing areas. This results in (1) unnecessary computational
costs and (2) a bias toward reconstructing non-editing regions, which compromises
the quality of the intended edits. To resolve these limitations, we propose to formu-
late image editing as Next Editing-token Prediction (NEP) based on autoregressive
image generation, where only regions that need to be edited are regenerated, thus
avoiding unintended modification to the non-editing areas. To enable any-region
editing, we propose to pre-train an any-order autoregressive text-to-image (T2I)
model. Once trained, it is capable of zero-shot image editing and can be easily
adapted to NEP for image editing, which achieves a new state-of-the-art on widely
used image editing benchmarks. Moreover, our model naturally supports test-time
scaling (TTS) through iteratively refining its generation in a zero-shot manner.

1 Introduction
Text-driven image editing aims to modify a source image following a given language instruction.

Typically, modifications are confined to small local regions (editing regions) while most of the image
remains unchanged (non-editing regions). A predominant paradigm for solving the task is through
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the diffusion model [40l 39, [31]], but standard diffusion models struggle with controllable editing,
that is, editing only a target region without altering the surrounding areas. To tackle this challenge,
an inversion technique has been proposed and augmented with diffusion-based image generation
models [39, 21]]. The core idea of this method is to find the mapping of non-editing regions to the
corresponding subspace of Gaussian noise. It requires that the initial Gaussian noise that can be
decoded into the source image should be pre-defined, which is, however, hard to obtain exactly, and
further leads to unintended edits [[11]].

A more controllable paradigm is to pre-define editing regions and edit only the specified areas while
preserving the rest [1}23]]. However, these approaches perform full generation of the target image,
including regions that are not required to be edited, and thus are suboptimal in terms of efficiency.
This inefficiency is pronounced in training-based editing approaches [2} I50], which also demand
significant computational resources to learn to reconstruct. Moreover, the reliance on full-image
generation introduces a learning bias during training; that is, image editing models tend to prioritize
reconstruction for the non-editing regions over regeneration for the intended editing regions [50].

To address these issues, we introduce Next Editing-token Prediction (NEP), a new formulation of
text-guided image editing based on autoregressive (AR) image generation. NEP primarily focuses on
regeneration for the editing region and removes the need for optimizing reconstruction for the non-
editing areas. Consequently, it improves efficiency and circumvents the learning bias simultaneously.
Since the standard AR model employs a fixed raster-scan generation order, it is incompatible with
NEP’s requirement to generate arbitrary editing regions. To address this, we develop NEP using
a two-stage training strategy. First, we pre-train RLlamaGen, a robust random-order AR-based
text-to-image (T2I) model that supports arbitrary-order generation and zero-shot local editing. In
the second stage, we fine-tune RLlamaGen to optimize NEP’s editing performance. Additionally,
NEP enables test-time scaling through iterative refinement, improving generation outcomes. We
summarize our contributions as follows:

* We propose a new formulation of image editing as next editing-token prediction. It simplifies the
learning objectives to regeneration only, leading to higher efficiency and better editing quality. Our
approach sets up new records on region-based editing tasks and achieves competitive results on
free-form editing benchmarks.

* We propose a two-stage training regime for NEP, where the first stage creates RLlamaGen, a new
T2I model capable of arbitrary-order full image generation and zero-shot local editing.

* We analyze the test-time scaling behaviors by embedding NEP in an iterative refinement loop.

2 Methods

In this section, we first introduce the pre-training approach RLIamaGen that can generate image
tokens in any user-specified order (§2.1). Then, we elaborate on NEP for image editing (§2.2). Finally,
we introduce test-time scaling strategies (§2.3)) by integrating NEP in an iterative refinement loop.

2.1 NEP Pre-training

Preliminaries on LlamaGen. The NEP framework is versatile and compatible with various design
choices[42} 149, 148]. In this work, we build upon LlamaGen[42], the first open-source text-conditioned
autoregressive model to outperform diffusion models, leveraging its robust architecture to enable
NEP’s random-order generation and iterative refinement for enhanced image editing and generation.
To maintain potential unification with text modality, the architecture design of LlamaGen largely
follows one of the popular LLMs, Llama [45}46]]. The conditioning text embeddings are extracted
from FLAN TS5 [[7], followed by a projector for dimensionality alignment. The text embeddings are
left-padded to a fixed length L and prefilled to generate image tokens. Images are firstly tokenized
by the encoder and quantizer of VQGAN [8], and generated token ids are mapped to RGB pixels by
the decoder. Image tokens with length L are generated in a next-token prediction fashion. Formally,
given a text sequence 7, the sequentialized image tokens I = {I3, I, ..., I}, are generated by:
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Figure 2: Overview of Next-Editing-token Prediction. The input sequence is comprised of: 1) text
embeddings, extracted from FLAN-TS, 2) source image embeddings, tokenized by VQGAN, and
3) , a sequence of interleaved editing and non-editing embeddings. The output

(in raster scan order) are filled back to the source image based on the editing mask.
PE,; denotes the learned positional embeddings that specify the token generation order.

RLIamaGen: Randomized Autoregressive Text-to-Image Generation. To address LlamaGen'’s
limitation of generating image tokens solely in raster scan order, we extend it to create RllamaGen,
which supports generating image tokens in any user-specified order, enabling flexible, arbitrary-order
generation [26} 55, 25]]. To add order awareness to the model, following [26} I55], we learn an
extra sequence of positional embeddings PF,, PFEs, ..., PEr,, which is shuffled based on a random
order to define the generation sequence. For each input image token, the positional embedding
corresponding to the next token in the assigned order is added. Formally, the generation of an image
sequence Io in the order of O = [0, 02, ...01] is defined as:

L
pIo) = [[p(Lo,\To, + PEo,, ... Io,_, + PE,;T) 2)
i=1

RLlamaGen supports zero-shot editing by regenerating tokens at given positions, allowing seamless
transferability to image editing.

2.2 NEP: Next-Editing-token Prediction

NEP leverages three types of conditioning for region-based editing: 1) text instructions tokens, 2)
source images tokens, and 3) editing region masks tokens. The tokenization of text instructions and
images remains consistent with the pre-training stage. We detail the construction of editing region
conditioning sequences derived from a pixel-level mask M € {0, 1}*W,

Editing Region Conditioning (ERC) We firstly patchify the pixel-level editing mask M by max-
pooling each non-overlapping sliding window with the size of p x p. Subsequently, we flatten
the patched mask into a sequence MY = {my,ma,..mp} € {0,1}*. The masking sequence
M = {IM ..., IM} is tokenized by querying a two-sized codebook comprising an editing embedding
E. 1, and a non-editing embedding Ue,,,;, which is formally defined as:

M Eempy it ME =1
I i . (3)
Uemp  oOtherwise
Our editing model processes L7 + 2 x L input tokens and generates L g editing tokens, corresponding
to the masked target image tokens, denoted as /. The generation order corresponds to the positions
of the editing tokens within the raster scan order, denoted as OF = {o¥ ..., OEE }.

Formally, our NEP strategy is defined as:
Lg
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In scenarios where a region editing mask is unavailable or for global editing tasks (e.g., style transfer),
the editing tokens are predicted according to the raster scan order.

2.3 Test-time Scaling with NEP

NEP can be employed to support test-time scaling by integrating it into a self-improving loop. In
each refinement step, prior to NEP, a revision region is proposed. Existing image reward models
[51] usually produce a single value for the full image. To obtain token-level dense quality scores, we
calculate Grad-CAM [35] value regarding the critic model (i.e., off-the-shelf CLIP-ViT-B/32). These
values reflect each token’s contribution to the overall image quality score, measured by a reward
model (i.e., ImageReward [S1]]). Positions that correspond to the K lowest scores are identified as
the revision regions. During revision, we adopt NEP to regenerate tokens in this region, conditioning
them on the remaining high-quality tokens. After NEP, the reward model evaluates whether the
revised image surpasses the original, determining whether to accept or reject the revision. To further
improve quality, for NEP, we apply a rejection sampling strategy, regenerating tokens at the revision
positions in multiple random orders and selecting the revision with the highest quality score. This
approach demonstrates strong scaling potential, suggesting that effective revision of initial generations
can significantly enhance performance.

3 Experiments

We evaluate our framework on the image editing and text-to-image generation tasks. Firstly, we
introduce the full training setup that trains the RLIamaGen and NEP stage-by-stage (§3.1). Secondly,
we evaluate NEP for image editing and validate its design choices from various aspects (§3.2). Then,
we demonstrate the results of NEP pre-training model RLIamaGen (§3.3). Finally, we showcase the
test-time scaling behaviors (§3.4).

3.1 Datasets and Training settings

T2I pre-training settings. We use LlamaGen-XL with 775M parameters as the base T2I model and
adapt it to RLIamaGen adding 0.3M positional embedding parameters. Our training data consists of
around 16M text-image pairs and is collected from multiple open-source datasets, including ALLaVA-
LAION [5], CC12M [4], Kosmos-G [24], LAION-LVIS-220 [34]], LAION-COCO-AESTHETIC [18]],
LAION-COCO-17M [56], and ShareGPT4V [6]. We train RLIamaGen for 60, 000 steps with a batch
size of 360 and an image resolution of 256 x 256. The optimizer is Fused AdamW with 31, 32 set to
0.9, 0.95, respectively, and a constant learning rate of 1e-4 is used. We perform training on 8 NVIDIA
Tesla A100 GPUs, which takes 39 hours.

Image Editing Training Settings. We fine-tune RLIamaGen for image editing by adding two
learnable embeddings (i.e., Femnp and Ue,p) to specify masking regions. This strategy is computa-
tionally efficient, with only 3.6k parameters introduced. Our editing model is trained on the UltraEdit
dataset [[60]] that comprises 4 million image pairs, where 131k samples are annotated with editing
regions. For those with no editing region annotations, we use them for full-image generation.

We perform training on 4 NVIDIA Tesla A100 GPUs. The model is trained for 3.9 steps with a
batch size of 100 and a learning rate of 1le — 4. Per common practices [38} 60], we evaluate models
at a higher image resolution than that used during training (specifically, 512 x 512 pixels compared
to 256 x 256 pixels), and fine-tune them on the target resolution for an additional 2, 000 steps. For
the Emu Edit benchmark, we train our model with a learning rate of 1e — 5 for 60, 000 steps.

3.2 Results on Image Editing

Benchmarks & Evaluation Metrics. We demonstrate the superiority of our approach on two widely
recognized benchmarks: MagicBrush [38] and Emu Edit [36]]. The MagicBrush test set provides
editing region annotations for each sample, thereby facilitating the evaluation of region-conditioned
editing. This benchmark assesses both multi-turn editing, which evaluates the final image after a
series of edits, and single-turn editing, which assesses the target image following an individual edit.

The MagicBrush benchmark provides target images and evaluates the similarity between each
generated image and the corresponding target image using various metrics, including L1 distance, L2



Table 1: Results on the MagicBrush test set for region-aware editing. We compare NEP with
existing approaches under single-turn and multi-turn settings with our results labeled in gray .

Settings Methods L1 L2 CLIP-It DINO?T
Global Description-guided
SD-SDEdit 0.1014 0.0278 0.8526  0.7726
Null Text Inversion 0.0749 0.0197 0.8827  0.8206
GLIDE 3.4973 115.8347 0.9487  0.9206
Blended Diffusion 3.5631 119.2813 0.9291 0.8644
Single-turn Instruction-guided
HIVE 0.1092 0.0380 0.8519  0.7500

InstructPix2Pix (IP2P)  0.1141 0.0371 0.8512  0.7437
IP2P w/ MagicBrush 0.0625 0.0203 09332  0.8987

UltraEdit 0.0575 0.0172 0.9307  0.8982
FireEdit 0.0701 0.0238 0.9131 0.8619
AnySD 0.1114 0.0439 0.8676  0.7680
EditAR 0.1028 0.0285 0.8679  0.8042
Ours 0.0547 0.0163 0.9350  0.9044
Global Description-guided
SD-SDEdit 0.1616 0.0602 0.7933  0.6212
Null Text Inversion 0.1057 0.0335 0.8468  0.7529
GLIDE 11.7487 1079.5997  0.9094  0.8494
Blended Diffusion 14.5439 15102271  0.8782  0.7690
Multi-turn Instruction-guided
HIVE 0.1521 0.0557 0.8004  0.6463

InstructPix2Pix (IP2P)  0.1345 0.0460 0.8304  0.7018
IP2P w/ MagicBrush 0.0964 0.0353 0.8924  0.8273

UltraEdit 0.0745 0.0236 0.9045  0.8505
FireEdit 0.0911 0.0326 0.8819  0.8010
AnySD 0.0748 0.0273 09152  0.8623
EditAR 0.1341 0.0433 0.8256  0.7200
Ours 0.0707 0.0269 0.9107  0.8493

distance, CLIP feature similarity (CLIP-I), and DINO feature similarity. Additionally, it measures
text-image consistency by comparing the CLIP feature similarity (CLIP-T) between the generated
image and the caption of the target image.

The Emu Edit test set does not provide target images; therefore, the evaluation of editing region
regeneration is conducted separately from the reconstruction of unedited regions. The regeneration
process is assessed using two metrics: CLIP text-image similarity (CLIPout) and CLIP text-image
direction similarity (CLIPdir) measure the consistency between the change in images and the change
in captions. The reconstruction quality is measured by comparing the edited image to the original
source image in terms of L1 distance, CLIP image similarity (CLIPimg), and DINO similarity.

3.2.1 Quantitative Results

We demonstrate the superiority of NEP in terms of region-aware editing on the MagicBrush test
set. The compared prior arts broadly fall into two categories: (1) global description-based, such
as SD-SDEdit [20], Null Text Inversion [21], GLIDE [23]], as well as Blended Diffusion [1]], and
(2) instruction-guided, including HIVE [59]], InstructPix2Pix [2], MagicBrush [58]], UltraEdit [60],
FireEdit [61], AnySD [54] and EditAR [22]. Table demonstrates that our approach achieves the
highest score for single-turn editing and better or comparable performance under the multi-turn
setting. For the first time, autoregressive models can achieve top performance on well-recognized
editing benchmarks.

We demonstrate the effectiveness of free-form editing on the Emu Edit test set [36]]. We compare
NEP with state-of-the-art approaches including InstructPix2Pix [2], MagicBrush [58]], Emu Edit [36]]
UltraEdit [60], MIGE [44], and AnySD [54]. In Table@], we can observe that, without resorting to
editing masks, our approach still achieves comparable or better editing performance.



Table 2: Results on Emu Edit Test for free-form editing. Our approach is highlighted in gray .

Method CLIPdirt CLIPout! L1,  CLIPimgt DINO?
InstructPix2Pix  0.0784 02742 0.1213 08518  0.7656
MagicBrush 00658 02763 00652 09179  0.8924
Emu Edit 01066 02843  0.0895  0.8622  0.8358
UltraEdit 01076 02832 00713 08446  0.7937
MIGE 01070 03067  0.0865 08714  0.8432
AnyEdit 00626 02943 00673 09202  0.8919
Ours 0.1064 03078 00781 08710  0.8440

Table 3: Ablation studies on the MagicBrush test set under the multi-turn setting. We validate
the contribution of each design choice by removing them and observing the performance drop. We
ablate two aspects: 1) ERC by removing the editing & unediting tokens inferred from editing region
masks, and 2) NEP vs. NTP by generating full image tokens. The default setting is highlighted in

gray .

Methods  #Output Tokens L1} L2 CLIP-IT DINO?T
NEP Lg 0.0712  0.0272  0.9097 0.8459
w/o ERC Lg 0.0741 0.0281  0.9040  0.8372
NTP L 0.0968 0.0309  0.8854 0.8235

3.2.2 Ablation Study

We perform ablation studies on the Magicbrush multi-turn test set. For each configuration, we report
the results of the models trained for 30,000 steps. We assess two critical design choices. First,
we exclude mask embeddings, relying solely on text and source images as inputs, which degrades
performance as shown in Table [3] Qualitatively, we observe that removing ERC increases the
likelihood of the model making no changes to the source model, as demonstrated in Figure[3] Second,
we remove the next editing token positions by generating all tokens in a raster scan order, following
an NTP framework. Without any priors on editing regions, this leads to a significant performance
drop, highlighting the need for targeted token generation.

3.2.3 Computational efficiency

Table[z_l]demonstrates comparative results on computational Table 4: Computational cost averaged
cost. NEP requires higher GPU resources due to the con- across MagicBrush test samples.

catenation of mask embeddings along the sequential dimen-
sion (Section [2.2)), which increases sequence length and

> . . A Methods Memory (GB) Inference time (s)
attention computational cost. Despite this, our approach
3 it _ UltraEdit 4.04 2.94
achieves the fastest editing speed as we only need to pre EdiAR 659 10,70

dict editing region tokens rather than the whole image as  \gp 13.25 2.88
diffusion models or AR-based models do.

3.2.4 Qualitative Results

Figure [ presents qualitative comparisons with state-of-the-art methods. Apart from avoiding un-
intended modifications to the input image, as shown in Figure[I] our approach excels in following
the provided instructions to perform faithful and accurate modifications. Additionally, it is capable
of making fine-grained modifications (e.g., changing the outfit), showcasing its high versatility and
precision in handling complex editing instructions.
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Figure 3: Visualized ablation on ERC. This demonstrates that removing Editing Region Condition-
ing increases the editing model’s change to refuse to modify the source image. Best viewed zoomed
in and in color.

Input Mask Ground truth IP2P MagicBrush  UltraEdit AnySD NEP (ours)

X/ v X/ n g

"let the woman wear a designer gown"

Figure 4: Comparative editing results. This demonstrates that our approach can make more faithful
edits to source images, either by updating objects (case #1, #2), or making fine-grained edits (case
#3). Best viewed zoomed in and in color.

3.3 Results on NEP Pre-training

To better understand how NEP works, we also evaluate the intermediate text-to-image model RLlam-
aGen obtained during NEP pretraining. RLlamaGen acquires the zero-shot editing ability without
sacrificing text-to-image generation performance.

3.3.1 Zero-shot Image Editing

We demonstrate that RLImaGen is readily capable of image editing. This is achieved by regenerating
tokens in the editing regions. Figure [5| demonstrates that RLImaGen can make fine-grained and
coherent edits.

Comparison with Localized Edit- Table 5: Comparative Results on Zero-shot Editing on
ing Approaches. We compare our MagicBrush test set.

zero-shot editing performance against -
aMUSEG [27), which is also capable of Settings Methods L1, 12y CLIP-It DINO?
localized zero-shot editing. We use its  Single-turn Ouf/(lzliff (Sihot) %’%97% %’%3222 %.89%‘;22 %‘8815%19
publicly available checkpoint for com- aMUSEd 01034 00361 08639  0.8092

parison, adhering to its default configu- MWW o4 Geroshor)  0.0916 00319 08798 0.7859




"Club sandwich with fries and mustard." "Red surfboard on grass in backyrd‘ "

Figure 5: Examples of RLIamaGen’s zero-shot editing capability. It can make fine-grained edits
such as adding external objects (ice cream in example #1), changing the state of input objects (cabinet
door open — closed in example #2), changing the semantics (chips — fries in example #3), and
changing the color (white — red in example #4). Best viewed zoomed in and in color.

rationsﬂ Results on the MagicBrush dataset show that our approach outperforms aMUSEd. This is
attributed to our method’s ability to enable fine-grained editing by keeping all source image tokens
visible to the generation model, whereas aMUSEd replaces edited regions with mask tokens, limiting
its precision.

Ablations on Generation Order. Alter- . .

native to the default generation order, i.e., 1able 6: Ablations on Generation Order for Zero-shot
an in-mask raster scan order, as we intro- Editing on MagicBrush test set.

duced n Sect(llon f3 3, we erﬁlplgy rand?;n Settings Methods L1,  L2) CLIP-I{ DINOf
‘generatlon oraer .OI' zero-shot mage & 1t- Sinole-t In-mask random order 0.0741  0.0211  0.9027  0.8482
ing. The results in Table [|demonstrate NEIEUM I mask raster scan order  0.0743  0.0211  0.9032  0.8509
that altering the generation order has neg- In-mask random order ~ 0.0911  0.0316  0.8782  0.7833
11g1b1e impact on the effectiveness of our In-mask raster scan order  0.0916  0.0319  0.8798  0.7859
approach, confirming its robustness.

Multi-turn

3.3.2 Text-to-Image Generation Results

Benchmarks & Evaluation Metrics. We evaluate the image generation quality on MS-COCO
30K in terms of Fréchet Inception Distance (FID) and CLIP similarity. FID reflects the fidelity and
diversity of generated images. It measures the distance between the ground truth image distribution
and the generated image distribution, where the distributions are constituted of Inception V3 [43]]
embeddings extracted from corresponding images. The CLIP score is used to evaluate the instruction-
following ability of T2I models. It measures the similarity between the vision embeddings extracted
from the generated image and text encoder embeddings extracted from corresponding captions.

We demonstrate that randomized pre-training preserves raster scan generation capability. Moreover,
employing NEP test-time scaling further improves generation performance. Table [7a] shows that
RLlamaGen outperforms its baseline (line 2 vs. line 1), and performs similarly with LlamaGen tuned
for the same number of steps (line 2 vs. line 3). Scaling NEP for self-refinement can obtain 1.5%
improvement in terms of CLIP and 11.4% reduction in FID (line 4 vs. line 2).

3.4 Results on Test-time Scaling of NEP

We evaluate our self-improvement strategy on top of NEP, which iteratively revises the model’s
previous generation. This self-improvement can be effectively scaled through multi-round iterative
refinement. Empirical evidence suggests that masking out previously generated tokens during the
revision process yields superior results; thus, we adopt this approach as our default method.

We demonstrate the scaling effects of NEP in Table[7b] where we observe consistent improvements as
the number of revision rounds increases. This strategy can be further enhanced by utilizing stronger

"https://huggingface.co/blog/amused



Round 1 Round 2 Round 3

Original Round 1 Round2  Round3

Original

"4 passenger plane that is parked on the runway." "4 kitchen filled with lots of counter top space."

Figure 6: Self-improving RLlamaGen. By gradually revising the original output, we can obtain
images better aligned with instructions and with higher fidelity. Best viewed zoomed in and in color.

Table 7: Results on NEP pre-training and TTC. The pre-trained RLIamaGen enables arbitrary
order generation without sacrificing generation quality. NEP can be employed for test-time scaling
which enhances the generation further.

(a) Pretraining schemes. Comparative results be- (b) Test-time scaling w/o post-training. NEP can
tween LlamaGen baseline, RLIamaGen fine-tuned  be used to iteratively revise generated images. The
for a pre-defined number of steps, and LlamaGen generation quality gradually improves and saturates

fine-tuned for the same number of steps. after 2 iterations.
Methods CLIPT FIDJ # Revision rounds CLIP{ FID]
0 0.325 1149
LlamaGen 0320 15.07 1 0332 904
LlamaGen ft. 0.326 12.00 2 0.332 993
RLlamaGen 0.325 11.49 3 0332 9.85
TTS w/NEP  0.330 10.18 4 0332 9.82

verifier models and training the model for self-improvement. The revision process is visualized in
Figure[6] showcasing better alignment with the conditioning text prompts and higher fidelity.

4 Related Works

4.1 Text-to-Image Generation

Text-to-image generation has become a cornerstone of modern artificial intelligence, enabling to
create visual content based on textual descriptions. Pioneering models such as Generative Adversarial
Networks (GANs) [10] make groundbreaking breakthroughs by generating high-fidelity images.
AttnGAN [52] built on StackGAN [57] achieves better alignment with text instructions. However,
GAN:S still faced challenges like training instability (e.g., mode collapse, where the model generates
limited varieties of images) and difficulty with highly detailed or multi-object scenes, setting the
stage for the next evolutionary step.

More recently, diffusion models [37,[13][38] like Stable Diffusion have emerged, creating realistic
images by iteratively denoising random noise guided by text descriptions, setting a new standard for
quality and versatility. However, the learning paradim and architectures diverge from well-established
large language models (LLMs) [3]],, making it difficult for artificial general intelligence featuring a
shared framework for various modalities.

In this regard, a line of works [28] [33]) resort to autoregressive models for visual generation.
Images are tokenized into a sequence of tokens and generated sequentially based on prefilled text
tokens. Benefiting from large-scale models and datasets, they can create photorealistic images with a
remarkable text-following capability. This field is further advanced by several open-source works,
such as LlamaGen [42]], Emu3 [48]], and Janus [49].



4.2 Image Editing

Image editing builds on text-to-image generative models by conditioning outputs on source images,
but preserving unedited regions poses a challenge for diffusion models. These models require
looking for mapping latent representations for the original RGB values, often using inversion
techniques [39, 21]. However, such methods typically demand inference-time tuning, such as tuning
textual embeddings [9]], model weights [33} 47]], or null-text embeddings [21] to enable classifier-free
guidance [12]. Even when noise trajectories across varying levels are available, maintaining unedited
regions is not assured. For instance, Prompt-to-Prompt [11] introduces a time threshold to prioritize
generating target object geometry through text-to-image steps without source image conditioning,
trading off reconstruction accuracy for generative flexibility.

Efforts to guide edits using user-specified masks have been explored in both training-free [1]] and
training-based approaches [23| 158}, 160]]. Training-free methods apply masks across all diffusion steps
to blend source image latents with text-conditioned outputs, while training-based methods append an
extra channel to the source image for guidance. Despite these advancements, both approaches require
full image regeneration, which hampers efficiency during training and inference.

In contrast, our work enables localized editing by regenerating tokens solely within user-defined
regions, preserving pixels outside these areas without modification. Leveraging user-provided masks
introduces minimal limitations, thanks to recent advances in segmentation techniques [15, (30, [16]].

4.3 Test-time Scaling for Text-to-Image Generation

The success of LLMs’ inference-time scaling motivates the exploration of similar behavior for
text-to-image generation. Existing approaches mainly investigate diffusion model scaling, either by
increasing the denoising step [[14} 41]] or employing best-of-N sampling [[19]]. More recently, new
test-time scaling approaches have emerged that enable revising prior generations by incorporating
corrections and feedback into the context [[17]. However, an additional post-training stage is required
to support their iterative refinement, limiting their flexibility and increasing computational demands.
In this work, we investigate inference-time scaling in autoregressive image generation models that can
conduct self-improvement utilizing NEP, offering a new perspective on enhancing model performance
during testing without dedicated post-training.

5 Conclusion

In this work, we propose a next-editing token-prediction pipeline for text-driven image editing. It
allows for easy localized editing without making unintended modifications to the non-editing region.
To support regeneration at any user-specified position, we pre-train an any-order autoregressive
T2I model that can generate tokens in arbitrary orders. Furthermore, we demonstrate NEP can be
integrated into an iterative refinement loop for test-time scaling.

6 Limitations and Broader Impacts

Limitations. While the proposed approach demonstrates promising results, it relies on user-provided
masks for guidance to prevent unintended modifications to the source image. This requirement adds
extra computation or annotation, making the process less efficient. We plan to address automated and
unified masking region localization in future work. Additionally, the robustness of Neural Editing
Propagation (NEP) to noise in editing region masks remains uncertain. Imperfect user-specified
masks lead to two primary scenarios: 1) the segmentation mask is larger than the ground truth editing
region, and 2) the segmentation mask is smaller. In the first scenario, NEP exhibits robustness,
achieving comparable results, as shown in Table 2] for free-form image editing without a mask. In
the second scenario, our approach lacks specific optimization. We plan to develop a pipeline for
automatically refining user-specified masks in future work.

Social impacts. Our primary motivation for developing image editing algorithms is to foster
innovation and creativity; however, we recognize that they also present significant ethical and societal
challenges. We are committed to minimizing these risks by filtering training images for unsafe
content and restricting the model’s use to research purposes only upon release. In the future, we will
actively engage in discussions and initiatives aimed at mitigating these risks.
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* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.
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welcome to describe the particular way they provide for reproducibility. In the case of
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to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
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* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Following common practices in image editing/generation research, and for a fair
comparison, we did not include statistical significance tests.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

* It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

¢ Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [Yes]

Justification: We provide sufficient information on the computing resources required to reproduce
our experiments in Section [3.1] This section includes details about the types of GPU cards used,
the number of them, and the training time for each experiment.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experi-
mental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We fully adhere to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]
Justification: We discuss the social impacts of this work in Section [6]
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point out
that an improvement in the quality of generative models could be used to generate deepfakes
for disinformation. On the other hand, it is not needed to point out that a generic algorithm
for optimizing neural networks could enable people to train models that generate Deepfakes
faster.

* The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

o If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?

Answer: [Yes]

Justification: We discuss these measurements in Section [6] mainly by filtering training images to
keep only safe content. When we release the code, the model will be licensed for research purposes
only, minimizing the risk of misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

» Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We have made every effort to ensure that all creators and original owners of the assets
used in our paper are properly credited, and we have respected their licenses and terms of use
throughout our work.

Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets|has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
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13.

14.

15.

16.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The main asset contributed by this work is the source code. It will be released after
this paper is accepted with detailed documentation.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details
about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness,
or originality of the research, declaration is not required.
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Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any important,
original, or non-standard components.

Guidelines:
* The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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