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ABSTRACT

Out-of-distribution (OOD) detection, a task that aims to detect OOD data during
deployment, has received lots of research attention recently, due to its importance
for the safe deployment of deep models. In this task, a major problem is how to
handle the overconfidence problem in OOD data. While this problem has been ex-
plored from several perspectives in previous works, such as the measure of OOD
uncertainty and the activation function, the connection between the last fully con-
nected (FC) layer and this overconfidence problem is still less explored. In this
paper, we find that the weight of the last FC layer of the model trained on in-
distribution (ID) data can be an important source of the overconfidence problem,
and we propose a simple yet effective OOD detection method to assign the weight
of the last FC layer with small values instead of using the original weight trained
on ID data. We analyze in Sec. 5 that our proposed method can make the OOD
data and the ID data to be more separable, and thus alleviate the overconfidence
problem. Moreover, our proposed method can be flexibly applied on various off-
the-shelf OOD detection methods. We show the effectiveness of our proposed
method through extensive experiments on the ImageNet dataset, the CIFAR-10
dataset, and the CIFAR-100 dataset.

1 INTRODUCTION

Recently, deep models have achieved good performance in various computer vision tasks, but with a
severe reliance on the assumption that the testing data comes from the same distribution as the train-
ing set (i.e., in-distribution (ID) test data) (Ben-David et al., 2010; Vapnik, 1991). This assumption,
however, can be violated in the open world where out-of-distribution (OOD) data can be often en-
countered, and these OOD data as inputs can lead models to produce unrelated predictions and result
in severe consequences, especially in many safety-critical applications, such as autonomous driving
(Filos et al., 2020) and medical diagnosis (Zadorozhny et al., 2021). Due to the severe implications
of OOD data in these applications, the task of OOD detection, which aims to detect OOD data dur-
ing deployment, is important and has received lots of research attention recently (Liang et al., 2017;
Hendrycks & Gimpel, 2016; Hendrycks et al., 2019; Liu et al., 2020; Sun et al., 2021; Huang & Li,
2021; Huang et al., 2021; Lee et al., 2018).

To detect OOD data, a naive idea is to classify the OOD data and the ID data based on the confidence
of the model in the data input. However, as deep models can be overconfident in the OOD data inputs
(Nguyen et al., 2015), it can be non-trivial to separate the OOD data and the ID data based on such
a naive idea. To better cope with the overconfidence problem and make the OOD data and the
ID data more separable, previous works have proposed methods from several perspectives, such as
redefining the measure of OOD uncertainty (Liu et al., 2020; Wang et al., 2022; Hendrycks et al.,
2019) and rectifying the activation function (Sun et al., 2021). However, the connection between the
last fully connected (FC) layer and the overconfidence problem is still less explored.

In this work, we argue that the weight of the last FC layer of the model trained on ID data can be
an important source of the overconfidence problem. To justify our aforementioned argumentation,
as a preliminary of our method, in Fig. 1, we use a ResNet-50 (He et al., 2016) model trained on
ImageNet and conduct OOD detection experiments on various other datasets including iNaturalist,
SUN, Places365, and Textures. Specifically, we compare the baseline that uses the original weight
of the last FC layer (original weight) with a variant that assigns the weight of the last FC layer sim-
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Figure 1: Comparison between the baseline method that uses the original weight of the last FC layer
and the variant that assigns the weight of the last FC layer simply with ones. Note that in both
the baseline method and the variant, following previous works (Liu et al., 2020; Sun et al., 2021;
Wang et al., 2022), we consistently use the energy score (Liu et al., 2020) as the measure of OOD
uncertainty.

ply with ones (identity weight). As illustrated, compared to the baseline, this variant consistently
reduces the false positive rate (FPR95) over various datasets. This demonstrates that the weight of
the last FC layer of the model trained on ID data is not the optimal weight for OOD detection, and
there can exist a weight that is more suitable.

Inspired by the above argumentation, in this work, to better cope with the overconfidence problem,
we aim to assign the last FC layer of the model with a new weight so that the OOD data and the ID
data can be made more separable. We find that this can be achieved via simply assigning small values
(e.g. 0.01) to the weight of the last FC layer of the model. To theoretically show the effectiveness
of our method, in Sec. 5, we first analyze why assigning constant values (e.g., ones) to the weight of
the last FC layer can separate OOD data and ID data; we then explain why assign the weight of the
last FC layer with small value can even make OOD data and ID data to be more separable. We also
want to point out that, as the original weight of the last FC layer can still be used for the original
task, via using our method, the classification accuracy on the original task is completely preserved.

Also, note that, as we just need to assign the last FC layer of the model with small values, our method
is simple yet effective and needs neither a retraining process of the model nor additional OOD data.
Besides, with only the weight of the last FC layer modified, our method can also be flexibly applied
to various off-the-shelf OOD detection methods. We experiment our method with various OOD
detection methods and achieve consistent improvement in OOD detection performance.

The contributions of our work are summarized as follows.

• From the novel perspective of the last FC layer, we propose a simple and effective OOD
detection method to detect OOD data by simply assigning the weight of the last FC layer
with small values.

• We perform theoretical analysis (in Sec. 5) on why assigning constant values (e.g., ones)
to the weight of the last FC layer can separate OOD data and ID data. Moreover, we also
analyze why a small value can even make the OOD data and ID data to be more separable.
Our method thus can improve the OOD detection performance.

• Our method achieves significant OOD detection performance improvement when applied
to various OOD detection methods on various evaluation benchmarks (Deng et al., 2009;
Krizhevsky et al., 2009).

The rest of the paper is organized as follows. In Sec. 2, we discuss the related works of our paper. In
Sec. 3, we provide the background of OOD detection. After that, we present our method in Sec. 4,
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the analysis of our method in Sec. 5, and experimental results in Sec. 6. Finally, we conclude our
paper in Sec. 7.

2 RELATED WORK

OOD Detection. Being an important task that helps detect OOD data during deployment, OOD
detection has received lots of research attention, and most of the OOD detection methods fall into
three categories: methods need retraining (DeVries & Taylor, 2018; Huang & Li, 2021; Zaeemzadeh
et al., 2021), methods need extra OOD data (Hsu et al., 2020; Hendrycks et al., 2018; Dhamija
et al., 2018; Ming et al., 2022; Lee et al., 2017; Yu & Aizawa, 2019; Wu et al., 2021), and post-
hoc methods. Among methods that need retraining, an extra branch is introduced by (DeVries &
Taylor, 2018), and MOS makes use of a group-based feature space, and (Zaeemzadeh et al., 2021)
incorporates angular distance into their method. In the category of methods that need extra OOD
data, (Hendrycks et al., 2018) is the first to propose this category of method, (Dhamija et al., 2018)
proposed to regularize extra image data from different backgrounds, and (Lee et al., 2017) proposed
to generate OOD data on the boundary of OOD data and ID data. Besides these two categories of
method, the category of post-hoc method have also attracted a lot of attention recently since it need
neither retraining nor extra OOD data.

In the category of post-hoc methods, (Hendrycks & Gimpel, 2016) observe that a neural model tends
to produce higher softmax values for ID data and lower ones for the OOD data. Therefore, they
introduce a score function, the maximum softmax probability (MSP), to achieve OOD detection. To
improve the OOD detection performance, (Liang et al., 2017) puts forward ODIN, which enlarges
the gap between ID and OOD data by using large temperature scaling and adding perturbations on
inputs. Lee uses the features and the class-wise centroids to calculate the Mahalanobis distance (Lee
et al., 2018). The energy-based score function is introduced by (Liu et al., 2020). Such a function
gives high energy to the OOD data and low energy to the ID data. (Sun et al., 2021) exploits the
characteristics of the neural network to the OOD data and leverages the OOD detection performance
by removing abnormal activate values.

Different from the existing post-hoc OOD detection methods, this paper takes a different view of the
OOD detection problem. Specifically, we propose to connect the last FC layer and the overconfi-
dence problem, and we propose to replace the original weight of the last FC layer with small values
instead.

The Last FC Layer. The last FC layer, an important component that appears in many network
structures, has been studied in various areas (Basha et al., 2020a;b; Zhao et al., 2020; Zhou et al.,
2020) over the year, such as transfer learning (Basha et al., 2020a), continual learning (Zhao et al.,
2020), and long tail problem (Zhou et al., 2020). In this paper, from a novel perspective, we build
a connection between the last FC layer and the overconfidecne problem in OOD detection. Specif-
ically, we find that the weight of the last FC layer trained on ID data can be an important source of
the over confidence problem and propose to assign the weight of the last FC layer with small values
instead.

3 BACKGROUND

Following most previous OOD detection works (Liang et al., 2017; Hendrycks & Gimpel, 2016;
Hendrycks et al., 2019; Liu et al., 2020; Sun et al., 2021; Huang & Li, 2021; Huang et al., 2021;
Lee et al., 2018), this paper considers OOD detection in image classification. Denote Din :=
X in × Yin drawn from Pin the in-distribution dataset, where Pin denotes the in-distribution, X in

denotes the in-distribution input space, and Yin ={1, 2, · · · , C} denotes the in-distribution label
space corresponding to X in. Similarly, denote Dout := X out×Yout the out-of-distribution dataset,
where X in denotes the out-of-distribution input space, and Yin denotes the corresponding out-of-
distribution label space. Moreover, denote F : X → Y an image classifier trained on Din. OOD
detection can then be treated as a binary classification problem to distinguish whether the input data
⟨x, y⟩ ∈ Dm belongs to Din or Dout, where x is an image, and y is its corresponding ground true
label. In other words, given a certain neural network F and a random test input x, the goal of OOD
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detection is to define a score function G(x;F) such that:

G(x;F) =

{
1, if x ∈ Din

0, if x ∈ Dout
(1)

where Din ∩Dout = X in ∩X out = Yin ∩Yout = ∅. Note that the Dout is inaccessible during the
training stage of F .

4 METHOD

In this section, we introduce our proposed OOD detection methods. The idea behind our method
is to better cope with the overconfidence problem by replacing the last FC layer of the model with
a new linear layer filled with a small constant value. We consider the input x, the last FC layer f ,
and the well trained neural network without the last FC layer g. We denote a d dimension feature
vector from the penultimate layer of the model as (z1, z2, ..., zd) = z := g(x) ∈ Rd, the output
of the model as f(z) where matrix f ∈ Rd×K and K is the number of classes. Following most
of the recent OOD detection methods (Liu et al., 2020; Sun et al., 2021; Wang et al., 2022; 2021;
Tonin et al., 2021; Du et al., 2022; Elflein et al., 2021; Wang et al., 2020; Joshi et al., 2022; Chen
et al., 2022; Ouyang et al., 2021; Ming et al., 2022), we first define the original measure of OOD
uncertainty Sori before incorporating our proposed method as:

Sori = log

K∑
i=1

efi(z) (2)

where fi indicates the i-th column of the matrix f . Note that a larger Sori indicates more confidence
that x belongs to the in-distribution.

We then describe how the measure of OOD uncertainty S looks like after incorporating our proposed
method. Specifically, let’s denote the matrix f ′

i ∈ Rd×K filled with a value α, and then we replace
the f with f ′

i ∈ Rd to compute S. Since all entries of f ′
i are same, all columns of f ′

i are identical
i.e. f ′

1 = f ′
2 = ... = f ′

K . Therefore, S can be denoted as:

S = log

K∑
i=1

ef
′
i(z)

= log (ef
′
1(z) + ef

′
2(z) + ...+ ef

′
K(z))

= logKef
′
1(z) where f ′

1 = αJd,1

= logKef
′T
1 z where f ′

1(z) = f ′T
1 z

= logKeα
∑d

i=1 zi where f ′T
1 z = αJd,1z = α

d∑
i=1

zi

= logKedαz̄ where z̄ =
1

d

d∑
i=1

zi

= dαz̄ + logK (3)

where z̄ := E(z) and Jd,1 indicates a d× 1 all-ones matrix.

To perform OOD detection using our proposed method, we further define the score function G(x;F)
as:

G(x;F) =

{
1, if S ≥ λ

0, if S < λ
(4)

where λ is a threshold. In our experiments, we set λ to be a value such that 95% ID data can
be detected correctly, which is the same setting following most previous OOD detection methods
(Hendrycks & Gimpel, 2016; Liu et al., 2020; Sun et al., 2021; Wang et al., 2022; Liang et al., 2017;
Hendrycks et al., 2019).
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5 ANALYSIS

Below, we perform theoretical analysis to show the effectiveness of our method. Specifically, we
first explain why replacing the trained weight of the last FC layer with a constant value α separates
the distributions of ID and OOD data. After that, we further explain why a smaller α can make the
ID and OOD data to be more separable.

5.1 EFFECTIVENESS OF ASSIGNING THE LAST FC LAYER WITH A CONSTANT VALUE

In this section, we analyze why assigning the last FC layer with a constant value α can separate ID
and OOD data. Following the settings in Sec. 3, we denote the neural network trained on the ID data
as F . Besides, we further denote the output of its penultimate layer is z = (z1, z2, ..., zn) ∈ Rn.
Then, we can rewrite the score S produced by our method further as:

S = log

K∑
i=1

ef
′
i(z)

= log kedαz̄

= dαz̄ + logK

∝ z̄

= E[z] (5)

We denote the z corresponding to the in-distribution data as zin = (zin1 , zin2 , ..., zinn ). Following the
same assumption from (Ming et al., 2022; Sun et al., 2021; 2022), we assume that each zini obeys
the rectified Gaussian distribution i.e. zini ∼ max(0,N (µ, σ2

in)). Then, we can model zini with a
random variable x as:

zini =
1

σin

√
2π

e
− (x−µ)2

2σ2
in (6)

We denote the corresponding expectation of zin as Ein, and it can be written as:

Ein[z] =

∫ +∞

0

x

σin

√
2π

e
− (x−µ)2

σ2
in dx

=
1

σin

√
2π

∫ +∞

0

xe
− (x−µ)2

σ2
in dx

=
µ√
2π

∫ +∞

− µ
σin

e−
v2

2 dv +
σin√
2π

∫ +∞

− µ
σin

ve−
v2

2 dv where v =
x− µ

σin

=
µ√
2π

(1−
∫ − µ

σin

−∞
e−

v2

2 dv) +
σin√
2π

e
− 1

2 (
−µ
σin

)2

= µ[1− Φ(
−µ

σin
)] + σinφ(

−µ

σin
) (7)

where Φ and φ are Cumulative distribution function(cdf) and Probability density function(pdf) re-
spectively. And then, we are going to model the expectation corresponding to the out-of-distribution
data. Following the same observation from (Sun et al., 2021) that the output of the penultimate layer
of the network corresponding to the OOD data,zout, is positively skewed. Specifically, we cam
denote zout = (zout1 , zout2 , ..., zoutn ), so we can model each zouti ∼ESN(µ, σ2

out, ϵ), where µ, σ2
out,

ϵ indicate the mean, the deviation and the degree of skewness of the ESN distribution. Therefore,
following the theorem in (Mudholkar & Hutson, 2000), the expectation of zout, Eout[z], can be
modeled as:

Eout[z] = µ− (1 + ϵ)Φ(
−µ

(1 + ϵ)σout
)µ+ (1 + ϵ)2φ(

−µ

(1 + ϵ)σout
)− 4ϵ√

2π
σout (8)
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Figure 2: The relationship of ∆, σin, and σout, where ∆ represents the difference of the Ein[z] and
Eout[z]. Observe that ∆ is positive here, which indicates that our method can generate a higher score
for the in-distribution data than the out-distribution ones, in other words, separate the distributions
of ID and OOD data.

Therefore, the difference of the Ein[z] and Eout[z] is:

∆ =E[zin]− E[zout]

=µ[1− Φ(
−µ

σin
)] + σinφ(

−µ

σin
)− µ− (1 + ϵ)Φ(

−µ

(1 + ϵ)σout
)µ

+ (1 + ϵ)2φ(
−µ

(1 + ϵ)σout
)− 4ϵ√

2π
σout

=− [(1 + ϵ)2ϕ(
−µ

(1 + ϵ)σout
) +

4ϵ√
2π

]σout

− [Φ(
−µ

σin
)− (1 + ϵ)Φ(

−µ

(1 + ϵ)σout
)]µ+ ϕ(

−µ

σin
)σin (9)

Given µ = 1.0 and ϵ = −0.5, we can plot ∆ in Fig. 2, and we can find out that it is greater than 0,
i.e Sin > Sout. Therefore, we conclude that our method can produce greater confidence scores to
in-distribution data than for the out-distribution data.

5.2 EFFECTIVENESS OF A SMALL α

In this section, we further explain why a smaller α can make the ID and OOD data to be more
separable. We denote the norm difference of Sin and Sout as:

Sin − Sout

||α||2
=

1

α2
(log

K∑
i=1

ef
′
i(z

in) − log

K∑
i=1

ef
′
i(z

out))

=
d

α
(E[zin]− E[zout]) (10)

As shown in Eq. 10, to make the ID and OOD data to be more separable, we actually hope to make
the norm difference of Sin and Sout to be larger Recall that E[zin] − E[zout] is a positive number
as we discuss above. Therefore, a smaller α can make the norm difference of Sin and Sout larger,
and thus make the ID and OOD data to be more separable.
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6 EXPERIMENTS

In this section, we evaluate the effectiveness of our method on ImageNet and CIFAR OOD detection
benchmarks. All experiments are conducted on NVIDIA Tesla V100 GPUs.

6.1 IMAGENET BENCHMARK

Setup. We use ReAct (Sun et al., 2021) as a baseline of our method and follow it. We use both a
ResNet50 (He et al., 2016) model and a MobileNet-v2 (Sandler et al., 2018) model pre-trained on
ImageNet (Deng et al., 2009) as the image classifier. Note that for fair comparison, we directly use
the models trained by (Sun et al., 2021). Moreover, we set α in Eq. 3 to be a small number 0.01 in
our experiments.

Evaluation Metric. We evaluate our OOD detection method on the following two common met-
rics: (1) FPR95 measures the FPR (False Positive Rate) of the OOD data when the recall (Positive
Rate of the ID data) is at 95%. Note that a lower FPR95 indicates better performance of OOD de-
tection. (2) AUROC measures the area under the TPR (True Positive Rate) and FPR (False Positive
Rate). Note that a higher AUROC indicates better performance of OOD detection.

Dataset. In this benchmark, we consider ImageNet (Deng et al., 2009) as the ID dataset, and
following (Sun et al., 2021; Hsu et al., 2020; Huang & Li, 2021), we evaluate our method on four
commonly-used OOD datasets, including iNaturalist, SUN, Places365, and Textures. Note that all
of these four datasets have non-overlapping classes w.r.t ImageNet. Below, we introduce each of
them in more detail: (1) iNaturalist (Van Horn et al., 2018) contains 5,000 categories of plants
and animals images, and the resolution of each image is 800 × 800. To conduct OOD detection
on this dataset, following the setting of (Sun et al., 2021; Huang & Li, 2021; Huang et al., 2021),
110 classes that is non-overlapping with classes of ImageNet are first picked up, and 10,000 images
from these 110 classes are then randomly selected. (2) SUN (Xiao et al., 2010) contains 397 classes
of natural images, and the resolution of each image is larger than 200 × 200. To conduct OOD
detection on this dataset, following the setting of (Sun et al., 2021; Huang & Li, 2021; Huang et al.,
2021), 50 classes that is non-overlapping with classes of ImageNet are first picked up, and 10,000
images from these 110 classes are then randomly selected. (3) Places (Zhou et al., 2017) contains
205 categories of scene images whose resolutions are 512 × 512. To conduct OOD detection on
this dataset, following the setting of (Sun et al., 2021; Huang & Li, 2021; Huang et al., 2021), 50
classes that is non-overlapping with classes of ImageNet are first picked up, and 10,000 images from
these 110 classes are then randomly selected. (4) Textures (Cimpoi et al., 2014) contains 47 classes
of textural images whose resolutions are either 300 × 300 or 640 × 640. Following (Sun et al.,
2021; Huang & Li, 2021; Huang et al., 2021), the whole dataset with 5,640 images is used for OOD
detection evaluation.

Results. In Tab. 1, we compare our method with the existing post-hoc OOD detection methods
on all the four OOD datasets. As shown, our method demonstrates the best averaged result com-
pared with common post-hoc OOD detection methods on both ResNet50 and MobileNet-V2, which
demonstrates the effectiveness of our method.

6.2 CIFAR BENCHMARK

Setup. We use ReAct (Sun et al., 2021) as a baseline of our method and follow it. We use the
ResNet18 (He et al., 2016) model as the image classifier for both CIFAR-10 and CIFAR-100. Note
that for fair comparison, we directly use the models trained by (Sun et al., 2021). Moreover, we set
α in Eq. 3 to be a small number 0.01 in our experiments.

Evaluation metric & Dataset. Following (Hendrycks & Gimpel, 2016; Liu et al., 2020; Liang
et al., 2017; Sun et al., 2021; Huang et al., 2021; Lee et al., 2018), we use the FPR95 and AUROC
metrics elaborated in Sec. 6.1 to evaluate our OOD detection method. In this benchmark, we use
CIFAR-10 and CIFAR-100 as the ID datasets (Krizhevsky et al., 2009). With respect to the OOD
datasets, following (Liu et al., 2020; Sun et al., 2021; Huang et al., 2021; Cimpoi et al., 2014),
besides using the Places dataset and the Textures dataset that we have introduced above, we also
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iNaturalist SUN Places Textures AverageModels Methods Conferences FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

MSP ICLR 2017 53.40 88.01 73.68 79.83 76.12 78.74 68.88 80.54 68.02 81.78
Mahalanobis NeurIPS 2018 93.90 62.04 96.83 51.88 97.02 52.99 37.50 91.64 81.31 64.64

ODIN ICLR 2018 47.66 89.66 60.15 84.59 67.89 81.78 50.23 85.62 56.48 85.41
Energy NeurIPS 2020 50.60 90.96 65.03 84.52 70.53 81.87 56.16 86.63 60.58 86.00
ReAct NeurIPS 2021 19.41 96.41 27.44 93.94 37.43 91.42 51.36 89.34 33.91 92.78

GradNorm NeurIPS 2021 24.54 94.06 43.71 87.49 56.60 82.17 35.87 89.44 40.18 88.29
ViM CVPR 2022 73.10 87.12 83.08 79.23 83.14 77.10 13.55 97.18 63.22 85.16

MaxLogit ICML 2022 48.30 91.31 66.34 84.40 70.85 81.97 58.43 86.34 60.98 86.00
KL Matching ICML 2022 50.68 88.91 79.62 78.47 79.89 77.23 67.19 83.08 69.34 81.92

ResNet50

Ours / 11.67 97.71 22.05 95.22 32.79 92.58 29.42 93.63 23.98 94.79
MSP ICLR 2017 62.70 85.75 79.22 76.11 81.14 75.60 73.16 78.64 74.05 79.03

Mahalanobis NeurIPS 2018 99.42 26.67 99.33 24.10 99.02 27.49 64.26 77.08 90.51 38.83
ODIN ICLR 2018 55.39 87.62 54.07 85.88 57.36 84.71 49.96 85.03 54.20 85.81
Energy NeurIPS 2020 51.68 90.75 64.89 84.01 70.87 80.98 57.40 86.52 61.21 85.57
ReAct NeurIPS 2021 41.87 92.68 58.77 85.69 65.53 82.74 44.71 90.60 52.72 87.93

GradNorm NeurIPS 2021 33.46 92.59 41.86 89.84 56.24 84.23 31.34 92.70 40.72 89.84
ViM CVPR 2022 93.27 73.57 94.89 66.25 94.35 65.10 23.41 95.31 76.48 75.06

MaxLogit ICML 2022 53.16 90.75 68.53 83.42 72.96 80.75 60.43 85.96 63.77 85.22
KL Matching ICML 2022 56.60 87.11 84.44 73.93 83.13 73.74 69.53 81.58 73.43 79.09

MobileNet-V2

Ours / 26.77 95.07 40.67 90.63 53.77 86.59 22.69 95.11 35.98 91.85

Table 1: ImageNet benchmark comparison results. Comparison with existing post-hoc OOD detec-
tion methods. With respect to each model, the model weight used by all methods are the same. The
best performance is bold and the second best is underlined. ↑ means that larger values are better and
↓ indicates that smaller values are better.

iSUN LSUN (crop) LSUN (resize) SVHN Textures Places AverageID data Methods Conferences FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

MSP ICLR 2017 54.57 92.11 45.27 93.79 51.96 92.72 59.51 91.25 62.35 89.22 62.35 89.22 56.00 91.39
ODIN ICLR 2018 99.42 26.67 99.33 24.10 99.02 27.49 64.26 77.08 64.26 77.08 64.26 77.08 81.76 51.58
Energy NeurIPS 2020 27.52 95.59 10.19 98.05 23.47 96.14 53.96 91.32 46.65 91.15 46.65 91.15 34.74 93.90
ReAct NeurIPS 2021 21.15 96.47 23.03 95.96 18.22 96.98 46.50 92.44 45.10 91.95 45.10 91.95 33.18 94.29

GradNorm NeurIPS 2021 54.14 89.34 22.55 96.21 48.94 90.67 82.44 79.85 71.25 80.69 71.25 80.69 58.43 86.24
ViM CVPR 2022 27.52 95.59 10.19 98.05 23.47 96.14 53.96 91.32 46.65 91.15 46.65 91.15 34.74 93.90

MaxLogit ICML 2022 28.37 95.51 10.88 97.93 24.32 96.06 53.51 91.39 47.00 91.13 47.00 91.13 35.18 93.86
KL Matching ICML 2022 51.93 88.95 44.14 93.01 49.35 90.24 59.39 88.20 61.10 84.43 61.10 84.43 54.50 88.21

CIFAR-10

Ours 20.76 96.54 21.26 96.24 17.69 97.06 45.89 92.50 45.40 91.89 45.40 91.89 32.73 94.35
MSP ICLR 2017 81.90 76.56 81.90 76.56 81.90 76.56 81.70 77.80 81.90 76.56 81.90 76.56 81.87 76.77
ODIN ICLR 2018 76.66 83.51 28.72 94.51 79.61 82.13 40.94 93.29 83.63 72.37 87.71 71.46 66.21 82.88
Energy NeurIPS 2020 80.05 79.19 80.05 79.19 80.05 79.19 81.24 84.59 80.05 79.19 80.05 79.19 80.25 80.09
ReAct NeurIPS 2021 73.00 81.74 73.00 81.74 73.00 81.74 70.64 88.24 73.00 81.74 73.00 81.74 72.61 82.82

GradNorm NeurIPS 2021 80.85 71.25 80.85 71.25 80.85 71.25 57.61 87.77 80.85 71.25 80.85 71.25 76.98 74.00
ViM CVPR 2022 80.05 79.19 80.05 79.19 80.05 79.19 81.24 84.59 80.05 79.19 80.05 79.19 80.25 80.09

MaxLogit ICML 2022 79.60 79.23 79.60 79.23 79.60 79.23 80.31 84.45 79.60 79.23 79.60 79.23 79.72 80.10
KL Matching ICML 2022 80.00 76.74 80.00 76.74 80.00 76.74 75.37 79.63 80.00 76.74 80.00 76.74 79.23 77.22

CIFAR-100

Ours 66.75 83.17 66.75 83.17 66.75 83.17 26.42 95.52 66.75 83.17 66.75 83.17 60.03 85.23

Table 2: CIFAR benchmark comparison results. Comparison with existing post-hoc OOD detection
methods. Note that all methods are based on the same weights of ResNet18 (He et al., 2016). The
best performance is bold and the second best is underlined. ↑ means that larger values are better and
↓ indicates that smaller values are better.

evaluate our method on three other OOD datasets including iSUN (Xu et al., 2015), LSUN (Yu et al.,
2015), and SVHN (Netzer et al., 2011). Below, we introduce each of them in more detail: (1) LSUN
dataset contains 10,000 images of 10 scene categories. Following (Sun et al., 2021; Liu et al., 2020;
Hendrycks & Gimpel, 2016), to conduct OOD detection on this dataset, we randomly crop images
in this dataset to size 32×32. Besides, following (Sun et al., 2021; Liu et al., 2020; Hendrycks
& Gimpel, 2016), we also conduct OOD detection on a variant of this dataset (LSUN Resize) by
resizing images in LSUN dataset to size 32×32. (2) iSUN dataset is sampled from the SUN (Xiao
et al., 2010) dataset, and contains 20,608 images of 397 categories. Following (Sun et al., 2021; Liu
et al., 2020; Hendrycks & Gimpel, 2016), the whole dataset is used for OOD detection evaluation.
(3) SVHN dataset contains 26,032 images of 10 categories for testing. Following (Sun et al., 2021;
Liu et al., 2020; Hendrycks & Gimpel, 2016), we use all the 26,032 images for OOD detection
evaluation.

Results In Tab. 2, we compare our method with the existing post-hoc OOD detection methods
on all the six OOD datasets. As shown, our method demonstrates the best averaged result com-
pared with common post-hoc OOD detection methods, which demonstrates the effectiveness of our
method.

6.3 ABLATION STUDIES

Effect of α. In the previous section, we analyzed the effect of α on the performance of OOD
detection from a mathematical point of view and concluded that a smaller α has a positive effect on
performance. In this subsection, we will experimentally show the impact of α on the performance
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(a) FPR95 change with α
under ResNet structure

(b) FPR95 change with α
under MobileNet structure

(c) AUROC change with α
under ResNet structure

(d) AUROC change with
α under MobileNet struc-
ture

Figure 3: Ablation results. The smaller α brings more benefits. Experiments are conducted on
ResNet50 trained on the ImageNet dataset. We demonstrate various α on different OOD datasets. A
lower FPR95 and a higher AUROC indicate better OOD detection performance.

iNaturalist SUN Places Textures AverageMethods FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

MSP 53.40 88.01 73.68 79.83 76.12 78.74 68.88 80.54 68.02 81.78
MSP + Ours 24.87 94.16 43.22 87.92 56.26 82.90 36.82 89.46 40.29 88.61

Energy 50.60 90.96 65.03 84.52 70.53 81.87 56.16 86.63 60.58 86.00
Energy + Ours 21.96 95.29 40.38 89.84 53.65 85.86 33.53 91.11 37.38 90.52

ReAct 19.41 96.41 27.44 93.94 37.43 91.42 51.36 89.34 33.91 92.78
ReAct + Ours 11.67 97.71 22.05 95.22 32.79 92.58 29.42 93.63 23.98 94.79

ViM 73.10 87.12 83.08 79.23 83.14 77.10 13.55 97.18 63.22 85.16
ViM + Ours 20.78 95.67 39.76 90.09 54.04 84.95 16.30 96.18 32.72 91.72
MaxLogit 48.30 91.31 66.34 84.40 70.85 81.97 58.43 86.34 60.98 86.00

MaxLogit + Ours 27.33 93.48 44.97 87.39% 58.22 81.90 37.64 89.02 42.04 87.95
KL Matching 50.68 88.91 79.62 78.47 79.89 77.23 67.19 83.08 69.34 81.92

KL Matching + Ours 42.32 91.67 73.31 83.06 75.75 80.94 58.84 86.85 62.55 85.63

Table 3: Ablation results. The compatibility with the existing post-hoc OOD detection methods.
Under the ResNet50 model trained on the ImageNet, we evaluate different existing post-hoc OOD
detection methods with and without ABC. ↑ means that larger values are better and ↓ indicates that
smaller values are better.

of OOD detection. We randomly sample α from a continuous uniform distribution between 0 and
1 i.e. α ∈ U[0,1]. And then we evaluate FPR95 and AUROC under various α on the iNaturalist,
SUN, Places and Textures OOD datasets (Van Horn et al., 2018; Xiao et al., 2010; Zhou et al.,
2017; Cimpoi et al., 2014) with ResNet50 (He et al., 2016) and MobileNet-V2 (Sandler et al., 2018)
trained on ImageNet (Deng et al., 2009). The result is shown in the Fig. 3. As shown, as long as α
decreases, a larger AUROC and a smaller FPR95 are consistently achieved throughout various OOD
datasets, demonstrating the effectiveness of our method.

Effect of different baseline methods. To validate the general effectiveness of our proposed
method, we apply our method on various different post-hoc OOD detection methods, including
MSP, energy, react, vim, MaxLogit, and KL-Matching (Liu et al., 2020; Sun et al., 2021; Wang
et al., 2022; Hendrycks et al., 2019). As shown in Tab. 3, our method achieves consistent per-
formance improvement when applied on various different post-hoc OOD detection methods. This
demonstrates that our proposed method can be flexibly applied on various post-hoc OOD detection
methods to improve their performance.

7 CONCLUSION

In this paper, we present a simple yet effective OOD detection method, which replaces the trained
weight of the last FC layer with a small value. We theoretically analyze that the proposed method can
make the ID data and OOD data to be more separable, and thus better cope with the overconfidence
problem. We shows two ablation experiments to show that our method is compatible with existing
OOD detection methods and achieves consistent performance improvement. Our method achieves
superior performance on the ImageNet and CIFAR OOD detection benchmarks.
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for medical applications: Guidelines for practical evaluation. arXiv preprint arXiv:2109.14885,
2021.

Alireza Zaeemzadeh, Niccolo Bisagno, Zeno Sambugaro, Nicola Conci, Nazanin Rahnavard, and
Mubarak Shah. Out-of-distribution detection using union of 1-dimensional subspaces. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9452–
9461, 2021.

Bowen Zhao, Xi Xiao, Guojun Gan, Bin Zhang, and Shu-Tao Xia. Maintaining discrimination and
fairness in class incremental learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 13208–13217, 2020.

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10
million image database for scene recognition. IEEE transactions on pattern analysis and machine
intelligence, 40(6):1452–1464, 2017.

Boyan Zhou, Quan Cui, Xiu-Shen Wei, and Zhao-Min Chen. Bbn: Bilateral-branch network with
cumulative learning for long-tailed visual recognition. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 9719–9728, 2020.

12


	Introduction
	Related Work
	Background
	Method
	Analysis
	Effectiveness of assigning the last FC layer with a constant value
	Effectiveness of a small 

	Experiments
	Imagenet Benchmark
	Cifar Benchmark
	Ablation Studies

	Conclusion

