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Abstract

Understanding the causal drivers of urban air pollution remains a central challenge1

for environmental science and policy. While high-resolution source apportion-2

ment typically relies on dense monitoring networks or receptor-based chemical3

analysis, many cities must operate with sparse sensors and incomplete emission4

inventories. We frame air pollution source attribution as a causal inference prob-5

lem, linking emissions to observed concentrations through mechanistic dispersion6

models. Using Gaussian plume formulations, we combine multiple emission cate-7

gories—vehicular traffic, domestic emissions, brick kilns, industries, and power8

plants—with real-world sensor data from New Delhi. Our methodology estimates9

source-specific contributions under sparse observations via parameterized disper-10

sion modeling, while also capturing the influence of missing or unobserved sources.11

By situating source apportionment within a causal modeling perspective, we em-12

phasize both the opportunities and limitations of mechanistic approaches under13

real-world constraints, and propose a causal learning framework at the intersection14

of environmental science and machine learning.15

1 Introduction16

Urban air pollution is a major global health challenge, responsible for millions of premature deaths17

each year [WHO et al., 2021, Alpert et al., 2012]. Cities such as New Delhi frequently record PM2.518

levels far above international guidelines, with severe consequences for respiratory and cardiovascular19

health [Goyal et al., 2021, Sharma and Dikshit, 2016, Sharma et al., 1998]. Effective interventions20

require not only measuring pollution but also identifying the causal drivers of elevated concentra-21

tions—whether from internal sources such as traffic, kilns, industries, and domestic combustion, or22

external contributors like crop burning and dust transport. Yet, attribution remains difficult under het-23

erogeneous emissions, dynamic meteorology, and sparse monitoring networks [Sharma and Dikshit,24

2016, Bikkina et al., 2019, Apte et al., 2017, Cusworth et al., 2018].25

Existing source apportionment methods face well-known limitations. Receptor models such as26

PMF [Paatero and Tapper, 1994, Reff et al., 2007] and CMB [Watson et al., 1991, 2001] require27

detailed chemical speciation, which is expensive and difficult to scale. Statistical and machine28

learning models capture correlations but lack causal interpretability [Bhardwaj et al., 2024, Iyer et al.,29

2022]. Mechanistic dispersion models, including Gaussian plume formulations, encode the physics30

of transport but depend on detailed inventories and high-resolution meteorology, which are often31

unavailable. No single approach provides a satisfactory solution in data-constrained urban contexts.32

We address this by framing source attribution as a causal inference problem, where emissions propa-33

gate through dispersion physics to produce observed concentrations. We develop a parameterized34

Gaussian Plume Dispersion Model (GPDM) tailored to sparse sensing, integrating multiple emis-35

sion categories and allowing both fixed-source scaling and a flexible formulation that estimates an36
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Figure 1: Conceptual framework and illustrative output for causal source attribution of urban air
pollution. The left panels show emission inventories from multiple categories. The overlaid heatmap
on the right illustrates the resulting concentration field for New Delhi

additional unknown source field. Parameters are learned via maximum likelihood against sensor37

observations from New Delhi, enabling interpretable attribution of source-specific contributions even38

under incomplete data.39

Our contribution is methodological and conceptual: we present a causal framework that combines40

mechanistic dispersion physics with parameterized formulations, supporting reasoning about source41

effects and counterfactual interventions. This work is not a performance-driven empirical study but a42

position paper, highlighting both the opportunities and limitations of mechanistic causal modeling43

under sparse data. We propose air pollution source attribution as a benchmark causal challenge for44

the broader learning community.45

2 Methodology46

Problem Formulation We frame air pollution source attribution as a causal inference problem,47

where emission sources act as treatments that causally influence observed concentrations through at-48

mospheric transport mechanisms. Formally, we represent the emissions inventory as a spatiotemporal49

tensor50

E[i, j, t] = {Qb, Qi, Qp, Qd, Qv}, (1)

where (i, j) denotes the spatial grid cell, t denotes time, and Qb, Qi, Qp, Qd, Qv represent the51

emission intensities from brick kilns, industries, power plants, domestic combustion, and vehicular52

traffic, respectively. The causal mechanism linking emissions to observed concentrations is governed53

by dispersion physics. Given meteorological conditions Mt (e.g., wind speed and direction, stability54

class) and emission fields E, the concentration at a sensor location s and time t is expressed as55

Cs,t = f(E,Mt; θ) + ϵ, (2)

where f(·) denotes a mechanistic dispersion model parameterized by θ, and ϵ captures noise and56

unobserved factors. Estimating θ under sparse sensing conditions allows us to quantify source-57

specific contributions, identify the presence of missing or unmeasured sources, and reason about58

counterfactual interventions (e.g., reducing traffic emissions by 30%).59

Gaussian Plume Dispersion Model To instantiate f(·), we adopt the Gaussian Plume Disper-60

sion Model (GPDM), a classical solution to the convection–diffusion equation under steady-state61
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conditions. The concentration at a downwind location (x, y, z) is given by62
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where Q is the source emission rate, U is the wind speed, H is the effective stack height, and σy, σz are63

lateral and vertical dispersion coefficients determined by Pasquill–Gifford stability parameters. The64

model naturally encodes the causal propagation of pollutants: emissions Q interact with meteorology65

(U,H, σy, σz) to determine downwind concentrations C.66

In practice, we extend this formulation to area and line sources by discretizing the urban region into a67

grid, assigning emissions E[i, j, t] to each cell, and computing sensor concentrations as the additive68

superposition of contributions from all cells. To reduce computational overhead, we express the69

GPDM as a convolution operation between the emission inventory and pre-computed plume filters70

based on wind vectors, enabling efficient implementation on GPUs. This formulation retains the71

interpretability of first-principles physics while making parameter estimation tractable in large-scale,72

sparse-sensing settings.73

Parameterized Formulations To adapt the Gaussian plume model for causal source attribution74

under sparse data conditions, we introduce parameterized formulations that distinguish between75

known and unknown emission sources.76

Fixed-source GPDM. In the fixed-source setting, we assume that the spatial distribution of each77

source type is known from approximate emission inventories (e.g., brick kilns, industries, power78

plants, domestic combustion, vehicular traffic). We introduce non-negative scaling coefficients αs for79

each source type s, which quantify their relative contributions:80

Cpred
s,t =

∑
s∈S

αs · f(Es,Mt), (4)

where f(·) is the Gaussian plume operator applied to source map Es. Estimating αs thus provides81

interpretable source-specific attribution factors.82

Flexible-source GPDM. In many urban settings, inventories are incomplete and important contribu-83

tors (e.g., garbage burning, road dust, construction activities) may be missing. To account for this, we84

extend the fixed-source formulation by introducing an additional latent emission field Eu with its85

own scaling parameter αu. The flexible formulation becomes:86

Cpred
s,t =

∑
s∈S

αs · f(Es,Mt) + αu · f(Eu,Mt), (5)

where Eu is estimated jointly with the scaling coefficients. This allows the model to capture87

unobserved or unmeasured sources while preserving mechanistic interpretability.88

Parameter Estimation We estimate the scaling parameters {αs} and, in the flexible-source case,89

the unknown field Eu using maximum likelihood estimation (MLE). Let Cobs
s,t denote the observed90

concentration at sensor s and time t, and Cpred
s,t the corresponding prediction from the parameterized91

GPDM. Assuming Gaussian measurement noise, the likelihood is92

L(α;Eu) ∝ exp

(
− 1

2σ2

∑
s,t

(
Cobs

s,t − Cpred
s,t

)2)
. (6)

We optimize this objective with respect to the parameters using stochastic gradient descent on GPU,93

leveraging the convolutional implementation of GPDM filters described in Section 2. Non-negativity94

constraints are imposed on all scaling coefficients αs to ensure physical plausibility.95

Causal Interpretation The estimated coefficients αs can be interpreted as causal effect sizes of96

each emission source type on observed concentrations, conditional on meteorological factors. By97

embedding dispersion physics within the estimation process, our framework ensures that attribution98

is grounded in first-principles causal mechanisms rather than correlations alone. The latent emission99

field Eu represents the influence of unobserved or unmeasured sources, analogous to accounting for100

hidden confounders in causal inference. Finally, the parameterized GPDM enables counterfactual101

reasoning: by adjusting αs for a given source (e.g., simulating a reduction in traffic emissions), we102

can generate counterfactual concentration maps that estimate the causal impact of interventions on103

urban air quality.104

3



3 Illustration of Framework105

We apply the parameterized Gaussian Plume Dispersion Model (GPDM) to New Delhi using sparse106

PM2.5 sensor data [cpc], meteorological data [NCEP, NWS, NOAA, U.S. DoC, 2000], and approxi-107

mate emission inventories (see Appendix §A). While absolute prediction errors are high (MAPE ≈108

104% ± 6%), this is consistent with the well-documented uncertainties in dispersion modeling caused109

by coarse wind data, incomplete emission inventories, and simplifying steady-state assumptions [Gut-110

tikunda and Calori, 2013, Namdeo et al., 2012]. Rather than focusing on precise prediction, our111

aim is to illustrate how mechanistic causal models provide insight into the contributions of different112

sources under real-world constraints.113

Source Contributions in High and Low Pollution Areas The GPDM reveals several causal114

patterns when comparing relatively high- and low-pollution regions. Power plants, due to their tall115

stacks (>200 m), contribute primarily to regional background pollution rather than to localized peaks,116

dispersing emissions in the upper atmosphere. By contrast, industries, domestic combustion, and117

vehicular traffic play a stronger role in shaping elevated concentrations in densely populated and118

industrial neighborhoods. At the same time, areas with lower measured concentrations tend to be119

those without major industrial activity or dense traffic corridors, and where local emissions are largely120

absent. The framework thus distinguishes between macro-scale contributors that elevate baseline121

levels across the city and local-scale contributors that dominate specific regions.122

Policy Implications This causal interpretation has direct relevance for policy. High-pollution areas123

in New Delhi are often located near clusters of industries or dense residential activity, suggesting124

that local interventions in these areas—such as emissions standards for industrial stacks or clean-fuel125

transitions in households—could have measurable benefits. Conversely, policies aimed at power126

plants are likely to reduce city-wide baseline concentrations but may not strongly affect spatial127

heterogeneity. Importantly, even under sparse sensing and incomplete inventories, the parameterized128

GPDM highlights how different sources interact with meteorology to shape observed concentrations.129

This provides a pathway for designing policies that target the most influential sources at the appro-130

priate spatial scale, while also underscoring the need for better inventories and higher-resolution131

meteorological data to refine causal attribution.132

4 Discussion and Conclusion133

We have presented a causal framework for urban air pollution source attribution that combines134

mechanistic dispersion physics with parameterized formulations adapted to sparse sensing. By135

embedding the Gaussian Plume Dispersion Model within a causal inference perspective, our approach136

moves beyond correlational analysis and emphasizes how emissions, meteorology, and unobserved137

factors interact to generate observed concentrations. Even with incomplete inventories and limited138

meteorological resolution, the framework yields interpretable insights into the relative roles of139

different sources and clarifies the distinction between city-wide and local contributors.140

While our illustration highlights the potential of mechanistic causal models, it also exposes their141

limitations. Dispersion models are sensitive to uncertainties in wind fields and source inventories, and142

cannot fully explain observed variability without richer data. Nevertheless, their causal interpretability143

makes them valuable for guiding targeted policy interventions, particularly in data-constrained settings144

where purely statistical methods may misattribute sources.145

Looking ahead, we envision this work as a step toward establishing air pollution source attribution146

as a benchmark causal challenge at the intersection of machine learning and environmental science.147

Future efforts could integrate more accurate inventories, higher-resolution meteorological inputs, or148

hybrid statistical–mechanistic models that combine causal interpretability with predictive power. By149

framing source attribution as a causal inference problem, we hope to encourage collaboration between150

the causal learning community and domain scientists, and to seed further research that connects151

methods to pressing societal challenges.152
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A Deriving Approximate Emissions Inventory221

The general bottom-up approach to source apportionment starts with building a detailed emissions222

inventory, which is a detailed spatiotemporal map of all pollution-causing activities in the city, along223

with estimates of their fuel consumption and emission [Guttikonda, 2011]. This emissions inventory224

is then used as input for pollution dispersion models to compute the pollution map of the city.225

The process of collating an accurate and detailed emissions inventory is a significant undertaking,226

requiring on-ground surveys of emission activities. In [Guttikunda and Calori, 2013], Guttikunda et.227

al. build a detailed GIS-based emissions inventory where they divided their study area into grids of228

0.01ox0.01o (approximately 1km x 1km). According to them, the eight major sources of pollution229

emissions in New Delhi are brick kilns, industries, power plants, domestic emissions, vehicular230

emissions, road dust, construction activities, and garbage burning. Every cell in their inventory231

consists of the details of emissions from the eight sources. Unfortunately, the inventory is not publicly232

available, so we had to reconstruct an approximate version. In the process, we were unable to find233

the updated distribution maps for road dust, garbage burning, and construction activities, which234

according to Guttikunda et. al., account for about 20% of New Delhi’s emissions.235

We denote our emissions inventory (E) as a matrix236

E[i, j, t] = {Qb, Qi, Qp, Qd, Qv} (7)

where, i and j are latitude and longitude indexes, ant t is the time. Qb, Qi, Qp, Qd, Qt refer to the237

intensities of pollution sources corresponding to brick kilns, industries, power plants, domestic238

emissions, and vehicular emissions.239

240

Brick Kilns, Industries, Power Plants and Domestic Emissions: Using the distribution map of241

industries and brick kilns from [Guttikunda and Calori, 2013], we reconstructed the positional map242

of these pollution sources by using the number of colored pixels to approximately infer the number243

of sources in different cells. Thus244

E[i, j][Qb] = Pr(i, j) (8)
where Pr(i, j) is the number of red dots in cell i,j of brick kilns map, and245

E[i, j][Qi] = Pb(i, j) (9)

where Pb(i, j) is the number of black dots in cell i,j of industries map from [Guttikunda and Calori,246

2013]. Note that we have made the simplifying assumption that all instances of brick kilns and247

6

https://doi.org/10.5065/D6M043C6
https://cerca.iitd.ac.in/uploads/Reports/1576211826iitk.pdf
https://cerca.iitd.ac.in/uploads/Reports/1576211826iitk.pdf
https://cerca.iitd.ac.in/uploads/Reports/1576211826iitk.pdf


industries emit equal amounts of PM2.5 pollutants per unit of time, making the inventory independent248

of time for Qb and Qi. For the case of power plants, we assumed that the emissions of power plants249

are proportional to their power capacity. Adjusting for the historical data on the decommissioning250

and changes in capacities of power plants, we were able to create a similar inventory for power plants.251

E[i, j][Qp] =
∑

Capacitypp′ , for pp′ ∈ cell i,j. (10)

For domestic sources of pollution, we utilized the Gridded Population of the World (GPWv4)252

population density data [Columbia University, 2018] as representative of domestic pollution emission253

intensity. This data was adjusted to fit the 0.01ox0.01o positional map. The same assumption of254

spatiotemporal uniformity was applied to convert this map into emission intensities.255

E[i, j][Qd] = Populationi,j (11)

where Populationi,j is the population density in cell i,j.256

257

Vehicular Emissions: We could not find open-source detailed traffic measurement data for New258

Delhi. Therefore, we used Google maps to obtain a representation of New Delhi’s traffic at 4 different259

time snapshots, 6 AM, 12 PM, 6 PM, and 10 PM for a section of the study area. The typical traffic260

patterns on different days were only slightly different, hence, we assume that these maps are an261

average representation of the traffic in the city on all days. From Google’s explanation, we know that262

green roads signify no delays in traffic, which is equivalent to allowing vehicles to move at the speed263

limit. Evoking prior work on traffic curves [Bhardwaj et al., 2023], we can reasonably bound the264

maximum possible link density (the density of vehicles on the road) in such a case to less than 0.1.265

Thus, we assume that pollution caused due to traffic on green-marked roads is negligible. At 6 AM,266

we have near-zero traffic-based emissions. Therefore,267

E[i, j, 6am][Qv] = 0. (12)

Using the 6 AM map as the baseline, and using image differencing, we computed the additional268

traffic at other times. In the differenced images, we found roads marked ‘orange’, ‘red’, and ‘maroon’269

corresponding to progressively increasing levels of traffic delay. Based on the structure of the traffic270

curves in [Bhardwaj et al., 2023], we posit that ‘orange’ roads corresponding to mild delay be in the271

free-flow traffic regime, ‘red’ roads corresponding to significant congestion would be in the spiraling272

regime, and ‘maroon’ roads corresponding to traffic jams would be in the jam regime. For traffic273

curves derived for typical segments in other cities in developing countries like Nairobi and Sao Paulo,274

the link densities for the three regions would approximately be in the ratio 1:2:3. Thus, we use this275

ratio for our analysis.276

E[i, j, t][Qv] = Po(It − I6am, i, j) + 2 ∗ Pr(It − I6am, i, j) + 3 ∗ Pm(It − I6am, i, j) (13)

where It refers to traffic snapshot at time t, and Po, Pr, Pm are pixel-counting functions.277

Note that here we have assumed the traffic emissions to be proportional to link density (number of278

vehicles). The resulting emissions inventory was sum-normalized by the total emission statistics in279

[Guttikunda and Calori, 2013]280

E[i, j, t] =

{
QbTb∑
i,j,t Qb

,
QiTi∑
i,j,t Qi

,
QpTp∑
i,j,t Qp

,
QdTd∑
i,j,t Qd

,
QvTv∑
i,j,t Qv

}
(14)

where, Tb, Ti, Tp, Td, Tv are corresponding total emission statistics.281
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