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Abstract

Understanding the causal drivers of urban air pollution remains a central challenge
for environmental science and policy. While high-resolution source apportion-
ment typically relies on dense monitoring networks or receptor-based chemical
analysis, many cities must operate with sparse sensors and incomplete emission
inventories. We frame air pollution source attribution as a causal inference prob-
lem, linking emissions to observed concentrations through mechanistic dispersion
models. Using Gaussian plume formulations, we combine multiple emission cate-
gories—yvehicular traffic, domestic emissions, brick kilns, industries, and power
plants—with real-world sensor data from New Delhi. Our methodology estimates
source-specific contributions under sparse observations via parameterized disper-
sion modeling, while also capturing the influence of missing or unobserved sources.
By situating source apportionment within a causal modeling perspective, we em-
phasize both the opportunities and limitations of mechanistic approaches under
real-world constraints, and propose a causal learning framework at the intersection
of environmental science and machine learning.

1 Introduction

Urban air pollution is a major global health challenge, responsible for millions of premature deaths
each year [WHO et al.| 2021} |Alpert et al., 2012]. Cities such as New Delhi frequently record PMs 5
levels far above international guidelines, with severe consequences for respiratory and cardiovascular
health [|Goyal et al.| 2021} Sharma and Dikshit, 2016} |Sharma et al.||{1998]]. Effective interventions
require not only measuring pollution but also identifying the causal drivers of elevated concentra-
tions—whether from internal sources such as traffic, kilns, industries, and domestic combustion, or
external contributors like crop burning and dust transport. Yet, attribution remains difficult under het-
erogeneous emissions, dynamic meteorology, and sparse monitoring networks [Sharma and Dikshit,
2016} Bikkina et al.l 2019, |Apte et al.| 2017, |Cusworth et al., [ 2018]].

Existing source apportionment methods face well-known limitations. Receptor models such as
PMF [Paatero and Tapper, 1994, Reff et al., 2007] and CMB [Watson et al., [1991} 2001]] require
detailed chemical speciation, which is expensive and difficult to scale. Statistical and machine
learning models capture correlations but lack causal interpretability [Bhardwaj et al., [2024] Tyer et al.
2022]. Mechanistic dispersion models, including Gaussian plume formulations, encode the physics
of transport but depend on detailed inventories and high-resolution meteorology, which are often
unavailable. No single approach provides a satisfactory solution in data-constrained urban contexts.

We address this by framing source attribution as a causal inference problem, where emissions propa-
gate through dispersion physics to produce observed concentrations. We develop a parameterized
Gaussian Plume Dispersion Model (GPDM) tailored to sparse sensing, integrating multiple emis-
sion categories and allowing both fixed-source scaling and a flexible formulation that estimates an
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Figure 1: Conceptual framework and illustrative output for causal source attribution of urban air
pollution. The left panels show emission inventories from multiple categories. The overlaid heatmap
on the right illustrates the resulting concentration field for New Delhi

additional unknown source field. Parameters are learned via maximum likelihood against sensor
observations from New Delhi, enabling interpretable attribution of source-specific contributions even
under incomplete data.

Our contribution is methodological and conceptual: we present a causal framework that combines
mechanistic dispersion physics with parameterized formulations, supporting reasoning about source
effects and counterfactual interventions. This work is not a performance-driven empirical study but a
position paper, highlighting both the opportunities and limitations of mechanistic causal modeling
under sparse data. We propose air pollution source attribution as a benchmark causal challenge for
the broader learning community.

2 Methodology

Problem Formulation We frame air pollution source attribution as a causal inference problem,
where emission sources act as treatments that causally influence observed concentrations through at-
mospheric transport mechanisms. Formally, we represent the emissions inventory as a spatiotemporal
tensor

E[Zv.]?t] = {QbaQian7Qdan}a (1)

where (¢, 7) denotes the spatial grid cell, ¢ denotes time, and Qy, @i, Qp, Qd, @, represent the
emission intensities from brick kilns, industries, power plants, domestic combustion, and vehicular
traffic, respectively. The causal mechanism linking emissions to observed concentrations is governed
by dispersion physics. Given meteorological conditions M; (e.g., wind speed and direction, stability
class) and emission fields F, the concentration at a sensor location s and time ¢ is expressed as

Cs,t = f(Ea Mta 0) + €, (2)

where f(-) denotes a mechanistic dispersion model parameterized by ¢, and € captures noise and
unobserved factors. Estimating 6 under sparse sensing conditions allows us to quantify source-
specific contributions, identify the presence of missing or unmeasured sources, and reason about
counterfactual interventions (e.g., reducing traffic emissions by 30%).

Gaussian Plume Dispersion Model To instantiate f(-), we adopt the Gaussian Plume Disper-
sion Model (GPDM), a classical solution to the convection—diffusion equation under steady-state
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conditions. The concentration at a downwind location (z, y, z) is given by

2 - H 2 H 2
C(m,y,z) = 27TUQO' P €xp (_2?2_2> |:eXp <_ (Z 202 ) ) + exp <_ (Z ;02 ) ):| ) (3)
y=-z z z

Y
where () is the source emission rate, U is the wind speed, H is the effective stack height, and 0, 0, are
lateral and vertical dispersion coefficients determined by Pasquill-Gifford stability parameters. The
model naturally encodes the causal propagation of pollutants: emissions () interact with meteorology
(U,H,0y,0.) to determine downwind concentrations C'.

In practice, we extend this formulation to area and line sources by discretizing the urban region into a
grid, assigning emissions E[i, j, t] to each cell, and computing sensor concentrations as the additive
superposition of contributions from all cells. To reduce computational overhead, we express the
GPDM as a convolution operation between the emission inventory and pre-computed plume filters
based on wind vectors, enabling efficient implementation on GPUs. This formulation retains the
interpretability of first-principles physics while making parameter estimation tractable in large-scale,
sparse-sensing settings.

Parameterized Formulations To adapt the Gaussian plume model for causal source attribution
under sparse data conditions, we introduce parameterized formulations that distinguish between
known and unknown emission sources.

Fixed-source GPDM. In the fixed-source setting, we assume that the spatial distribution of each
source type is known from approximate emission inventories (e.g., brick kilns, industries, power
plants, domestic combustion, vehicular traffic). We introduce non-negative scaling coefficients a5 for
each source type s, which quantify their relative contributions:

CPY = "o, (B, M), @
seS

where f(-) is the Gaussian plume operator applied to source map F. Estimating as thus provides
interpretable source-specific attribution factors.

Flexible-source GPDM. In many urban settings, inventories are incomplete and important contribu-
tors (e.g., garbage burning, road dust, construction activities) may be missing. To account for this, we
extend the fixed-source formulation by introducing an additional latent emission field E,, with its
own scaling parameter a,,. The flexible formulation becomes:

O =" ag - f(By, My) + o - f(Eu, My), )
ses
where E, is estimated jointly with the scaling coefficients. This allows the model to capture
unobserved or unmeasured sources while preserving mechanistic interpretability.

Parameter Estimation We estimate the scaling parameters {«} and, in the flexible-source case,

the unknown field F, using maximum likelihood estimation (MLE). Let C’;’!’; denote the observed

. . d . . . .
concentration at sensor s and time ¢, and C% ;" the corresponding prediction from the parameterized

GPDM. Assuming Gaussian measurement noise, the likelihood is

1 2

L(a; Ey) o< exp gy (C’;’}’f - Cgffd> . (6)
s,t

We optimize this objective with respect to the parameters using stochastic gradient descent on GPU,

leveraging the convolutional implementation of GPDM filters described in Section[2] Non-negativity

constraints are imposed on all scaling coefficients a, to ensure physical plausibility.

Causal Interpretation The estimated coefficients as can be interpreted as causal effect sizes of
each emission source type on observed concentrations, conditional on meteorological factors. By
embedding dispersion physics within the estimation process, our framework ensures that attribution
is grounded in first-principles causal mechanisms rather than correlations alone. The latent emission
field E,, represents the influence of unobserved or unmeasured sources, analogous to accounting for
hidden confounders in causal inference. Finally, the parameterized GPDM enables counterfactual
reasoning: by adjusting cs for a given source (e.g., simulating a reduction in traffic emissions), we
can generate counterfactual concentration maps that estimate the causal impact of interventions on
urban air quality.



105

106
107

109
110
111
112
113

114
115
116
117
118
119
120
121
122

123
124
125
126
127
128
129

131
132

133

134
135
136
137
138

140

141
142
143
144
145

146
147
148
149
150
151
152

3 Illustration of Framework

We apply the parameterized Gaussian Plume Dispersion Model (GPDM) to New Delhi using sparse
PM, 5 sensor data [cpcf, meteorological data [NCEP, NWS, NOAA, U.S. DoC, |2000], and approxi-
mate emission inventories (see Appendix §A)). While absolute prediction errors are high (MAPE ~
104% + 6%), this is consistent with the well-documented uncertainties in dispersion modeling caused
by coarse wind data, incomplete emission inventories, and simplifying steady-state assumptions [Gut-
tikunda and Calori, 2013 Namdeo et al.l [2012]]. Rather than focusing on precise prediction, our
aim is to illustrate how mechanistic causal models provide insight into the contributions of different
sources under real-world constraints.

Source Contributions in High and Low Pollution Areas The GPDM reveals several causal
patterns when comparing relatively high- and low-pollution regions. Power plants, due to their tall
stacks (>200 m), contribute primarily to regional background pollution rather than to localized peaks,
dispersing emissions in the upper atmosphere. By contrast, industries, domestic combustion, and
vehicular traffic play a stronger role in shaping elevated concentrations in densely populated and
industrial neighborhoods. At the same time, areas with lower measured concentrations tend to be
those without major industrial activity or dense traffic corridors, and where local emissions are largely
absent. The framework thus distinguishes between macro-scale contributors that elevate baseline
levels across the city and local-scale contributors that dominate specific regions.

Policy Implications This causal interpretation has direct relevance for policy. High-pollution areas
in New Delhi are often located near clusters of industries or dense residential activity, suggesting
that local interventions in these areas—such as emissions standards for industrial stacks or clean-fuel
transitions in households—could have measurable benefits. Conversely, policies aimed at power
plants are likely to reduce city-wide baseline concentrations but may not strongly affect spatial
heterogeneity. Importantly, even under sparse sensing and incomplete inventories, the parameterized
GPDM highlights how different sources interact with meteorology to shape observed concentrations.
This provides a pathway for designing policies that target the most influential sources at the appro-
priate spatial scale, while also underscoring the need for better inventories and higher-resolution
meteorological data to refine causal attribution.

4 Discussion and Conclusion

We have presented a causal framework for urban air pollution source attribution that combines
mechanistic dispersion physics with parameterized formulations adapted to sparse sensing. By
embedding the Gaussian Plume Dispersion Model within a causal inference perspective, our approach
moves beyond correlational analysis and emphasizes how emissions, meteorology, and unobserved
factors interact to generate observed concentrations. Even with incomplete inventories and limited
meteorological resolution, the framework yields interpretable insights into the relative roles of
different sources and clarifies the distinction between city-wide and local contributors.

While our illustration highlights the potential of mechanistic causal models, it also exposes their
limitations. Dispersion models are sensitive to uncertainties in wind fields and source inventories, and
cannot fully explain observed variability without richer data. Nevertheless, their causal interpretability
makes them valuable for guiding targeted policy interventions, particularly in data-constrained settings
where purely statistical methods may misattribute sources.

Looking ahead, we envision this work as a step toward establishing air pollution source attribution
as a benchmark causal challenge at the intersection of machine learning and environmental science.
Future efforts could integrate more accurate inventories, higher-resolution meteorological inputs, or
hybrid statistical-mechanistic models that combine causal interpretability with predictive power. By
framing source attribution as a causal inference problem, we hope to encourage collaboration between
the causal learning community and domain scientists, and to seed further research that connects
methods to pressing societal challenges.
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A Deriving Approximate Emissions Inventory

The general bottom-up approach to source apportionment starts with building a detailed emissions
inventory, which is a detailed spatiotemporal map of all pollution-causing activities in the city, along
with estimates of their fuel consumption and emission [|Guttikondal 2011]]. This emissions inventory
is then used as input for pollution dispersion models to compute the pollution map of the city.
The process of collating an accurate and detailed emissions inventory is a significant undertaking,
requiring on-ground surveys of emission activities. In [Guttikunda and Calori, 2013, Guttikunda et.
al. build a detailed GIS-based emissions inventory where they divided their study area into grids of
0.01°x0.01° (approximately 1km x 1km). According to them, the eight major sources of pollution
emissions in New Delhi are brick kilns, industries, power plants, domestic emissions, vehicular
emissions, road dust, construction activities, and garbage burning. Every cell in their inventory
consists of the details of emissions from the eight sources. Unfortunately, the inventory is not publicly
available, so we had to reconstruct an approximate version. In the process, we were unable to find
the updated distribution maps for road dust, garbage burning, and construction activities, which
according to Guttikunda et. al., account for about 20% of New Delhi’s emissions.

We denote our emissions inventory (E) as a matrix

E[Z7]3t] = {vaQiandean} (7)

where, 7 and j are latitude and longitude indexes, ant ¢ is the time. Qp, Q;, @p, @4, @+ refer to the
intensities of pollution sources corresponding to brick kilns, industries, power plants, domestic
emissions, and vehicular emissions.

Brick Kilns, Industries, Power Plants and Domestic Emissions: Using the distribution map of
industries and brick kilns from [Guttikunda and Caloril 2013|], we reconstructed the positional map
of these pollution sources by using the number of colored pixels to approximately infer the number
of sources in different cells. Thus

where P,.(i, j) is the number of red dots in cell i,j of brick kilns map, and
Eli, j1[Qi] = P(i, j) )

where P, (i, 7) is the number of black dots in cell i,j of industries map from [Guttikunda and Calori,
2013]]. Note that we have made the simplifying assumption that all instances of brick kilns and
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industries emit equal amounts of PMs 5 pollutants per unit of time, making the inventory independent
of time for (), and @);. For the case of power plants, we assumed that the emissions of power plants
are proportional to their power capacity. Adjusting for the historical data on the decommissioning
and changes in capacities of power plants, we were able to create a similar inventory for power plants.

Eli, j][Qp) = Z Capacity,,,/, for pp" € cell i,j. (10)

For domestic sources of pollution, we utilized the Gridded Population of the World (GPWv4)
population density data [[Columbia University} 2018] as representative of domestic pollution emission
intensity. This data was adjusted to fit the 0.01°x0.01° positional map. The same assumption of
spatiotemporal uniformity was applied to convert this map into emission intensities.

E[i, §]|Qa) = Population, ; (1

where Population, ; is the population density in cell i,j.

Vehicular Emissions: We could not find open-source detailed traffic measurement data for New
Delhi. Therefore, we used Google maps to obtain a representation of New Delhi’s traffic at 4 different
time snapshots, 6 AM, 12 PM, 6 PM, and 10 PM for a section of the study area. The typical traffic
patterns on different days were only slightly different, hence, we assume that these maps are an
average representation of the traffic in the city on all days. From Google’s explanation, we know that
green roads signify no delays in traffic, which is equivalent to allowing vehicles to move at the speed
limit. Evoking prior work on traffic curves [Bhardwaj et al.| [2023]], we can reasonably bound the
maximum possible link density (the density of vehicles on the road) in such a case to less than 0.1.
Thus, we assume that pollution caused due to traffic on green-marked roads is negligible. At 6 AM,
we have near-zero traffic-based emissions. Therefore,

Eli, j,6am][Q,] = 0. (12)

Using the 6 AM map as the baseline, and using image differencing, we computed the additional
traffic at other times. In the differenced images, we found roads marked ‘orange’, ‘red’, and ‘maroon’
corresponding to progressively increasing levels of traffic delay. Based on the structure of the traffic
curves in [Bhardwaj et al.l 2023]], we posit that ‘orange’ roads corresponding to mild delay be in the
free-flow traffic regime, ‘red’ roads corresponding to significant congestion would be in the spiraling
regime, and ‘maroon’ roads corresponding to traffic jams would be in the jam regime. For traffic
curves derived for typical segments in other cities in developing countries like Nairobi and Sao Paulo,
the link densities for the three regions would approximately be in the ratio 1:2:3. Thus, we use this
ratio for our analysis.

E[i,j, t][QU} = Po(It - IGamai7j) + 2% PT(It - IGCLHL7i7.j) + 3 * Pm(It - Iﬁamaiaj) (13)
where I, refers to traffic snapshot at time ¢, and P,, P,, P,, are pixel-counting functions.

Note that here we have assumed the traffic emissions to be proportional to link density (number of
vehicles). The resulting emissions inventory was sum-normalized by the total emission statistics in
[Guttikunda and Calori, [2013]]

Bl = { QT QT QT, _Qaly QUTU}

) ) b b 14
Zz‘,j,th Zz’,j,t Qi Zz‘,j,tQp Zi,j,t Qa Zi,j,t Qu (1

where, Ty, T}, T}, T4, T, are corresponding total emission statistics.
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