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SparseQuery Dense: Enhancing 3D Object Detection with Pseudo
points

Anonymous Authors

ABSTRACT
Current LiDAR-only 3D detection methods are limited by the spar-
sity of point clouds. The previous method used pseudo points gener-
ated by depth completion to supplement the LiDAR point cloud, but
the pseudo points sample process was complex, and the distribution
of pseudo points was uneven. Meanwhile, due to the imprecision
of depth completion, the pseudo points suffer from noise and local
structural ambiguity, which limit the further improvement of de-
tection accuracy. This paper presents SQDNet, a novel framework
designed to address these challenges. SQDNet incorporates two key
components: the SQD, which achieves sparse-to-dense matching
via grid position indices, allowing for rapid sampling of large-scale
pseudo points on the dense depth map directly, thus streamlining
the data preprocessing pipeline. And use the density of LiDAR
points within these grids to alleviate the uneven distribution and
noise problems of pseudo points. Meanwhile, the sparse 3D Back-
bone is designed to capture long-distance dependencies, thereby
improving voxel feature extraction and mitigating local structural
blur in pseudo points. The experimental results validate the effec-
tiveness of SQD and achieve considerable detection performance
for difficult-to-detect instances on the KITTI test.

CCS CONCEPTS
• Computing methodologies→ Object detection.

KEYWORDS
sparse-to-dense matching, sparse query dense, sparse 3D Backbone,
local structural blur, point cloud sparsity
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1 INTRODUCTION
3D object detection aims to locate and classify objects in 3D space
and is a vital perception task that plays a crucial role in autonomous
driving [1, 8, 20, 21, 23–25, 27, 32, 46, 51]. The reliance on LiDAR
data comes at the cost of point density variations across distances.
Other factors such as occlusion play a role, but the primary reason
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Figure 1: The local structure distortion and edge noise prob-
lems of the pseudo point cloud. (a) is an image of a car, while
(c), (d), and (e) show the LiDAR point cloud, pseudo point
cloud, and mixed point cloud of (a), respectively. (b) illus-
trates the edge noise at the top of the object, with irregularly
distributed pseudo dots (red) contrasting with LiDAR dots
(blue). Fig. 1(g) showcases the point cloud extracted from the
white area in Fig. 1(c), indicating that pseudo points roughly
parallel the LiDAR lasers from the front view. From Fig. 1(g)’s
front to Fig. 1(f)’s top view. The top view in Fig. 1(f) reveals lo-
cal structural blurring due to positional differences between
pseudo and LiDAR points, despite frontal alignment.

is the natural divergence of points from the LiDAR with increasing
distance due to the angular offsets between the LiDAR lasers. Thus,
the LiDAR sensor receives fewer measurements of remote objects.

In contrast, an RGB sensor can see hundreds of pixels, which
leads to a simple approach: converting image pixels into pseudo
points to enrich the LiDAR point cloud [37, 46]. The process begins
with depth completion, projecting each image pixel into 3D space
using estimated depth to create a pseudo point cloud for the entire
scene [33]. Subsequently, sampling specific pseudo points from
the pseudo point cloud and fusing them with the LiDAR points
increases the point density for objects.

Many studies have been proposed to augment the LiDAR point
cloud by integrating pseudo points [37, 38, 46]. VirConv [37] seg-
ments preprocessed pseudo points by distance, maintaining all
distant pseudo points while randomly selecting a specific number
of closer pseudo points to create a new pseudo point cloud for
fusion with the LiDAR point cloud. Virconv achieved the SOTA
(state-of-the-art) performance on the KITTI Car 3D object detection
leaderboard. However, the preprocessing of the pseudo points is
time-consuming. The complete process of using pseudo points ob-
tained via depth completion [17, 18, 34] to supplement the LiDAR
point cloud is first to project LiDAR points onto the sparse depth
map, generating a dense depth map through depth completion, and
converting the dense depth map into 3D pseudo points for subse-
quent sampling. Our method aims to simplify the preprocessing
pipeline of pseudo points by directly sampling the needed data

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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from dense depth maps, reducing reliance on the preprocessing of
pseudo points, which helps with the rapid sampling of large-scale
pseudo points.

Inaccurate pseudo points frequently fail to depict the delicate
local structure of object surfaces accurately and introduce signifi-
cant noise, particularly around object edges. This issue is illustrated
by comparing an image of a car with its corresponding LiDAR
(blue dots) and pseudo (red or colored dots) point clouds in Fig.
1(a) and Fig. 1(d), with the mixed point cloud shown in Fig. 1(c). A
detailed examination of the car’s top area in Fig. 1(b) reveals that
the pseudo points at the edges of the object contain a large amount
of noise. Fig. 1(g) showcases the mixed point cloud extracted from
the white area in Fig. 1(c), indicating that pseudo points roughly
parallel the LiDAR lasers from the front view. To further highlight
local structural ambiguities, transitioning Fig. 1(g) to the top view
in Fig. 1(f), where it is observable that pseudo points, despite being
adjacent and aligned with the LiDAR lasers in the front view, dis-
play positional discrepancies compared to the LiDAR points when
viewed from the top. Such inaccuracies ultimately limit the further
improvement of detection performance, especially in voxel-based
detection, where averaging pseudo and LiDAR point coordinates
can blur an object’s local structure.

Two noteworthy phenomena can also be observed from Fig. 1:
(1) LiDAR points are sparse or entirely absent near the noise pseudo
points along the object’s edges; (2) despite the local structural ambi-
guity of pseudo points on an object’s surface, they can still globally
capture the object’s structure, as depicted in Fig. 1(d).

For ease of expression, the LiDAR and pseudo points mentioned
in this paper are non-empty pixels on sparse and dense depth maps,
and they correspond one-to-one with the LiDAR and pseudo points
in the LiDAR coordinate system. In the final stage of SQD, we
convert the coordinates of the pseudo points queried in the 2D
dense depth map into 3D coordinates in the LiDAR coordinate
system.

To address these challenges, we present the SQDNet. SQDNet in-
corporates two key components: the SQD (Sparse Query Dense) and
a novel sparse 3D Backbone. SQD leverages sparse LiDAR points
to query dense pseudo points, filling in structural information on
object surfaces autonomously. By mapping both sparse LiDAR and
dense pseudo points onto 2D-occupied grid maps, SQD achieves
efficient sparse-to-dense matching via grid position indices, reduc-
ing the computational cost of using LiDAR points to query pseudo
points and achieving fast sampling of large-scale pseudo points.
Only pseudo points in "occupied" grids of LiDAR are considered,
alleviating noise around object edges by ignoring pseudo points in
"free" grids of LiDAR. Furthermore, the SQD further queries pseudo
points based on the density of LiDAR points within these grids to
correct the uneven distribution of pseudo points. The combined
point cloud, a mixture of LiDAR and selected pseudo points, under-
goes voxelization, creating numerous pseudo voxels around LiDAR
voxels due to the pseudo points’ relative abundance. Therefore,
we design a sparse 3D Backbone that expands the receptive field
of features, allowing pseudo voxels to integrate accurate LiDAR
voxel features during the convolution process, thereby reducing
the impact of inaccuracies from local pseudo points.

Our key contributions are:

• By mapping sparse and dense points to 2D-occupied grid
maps, we facilitate rapid sparse-to-dense matching leverag-
ing grid position indices and reduce the computational cost
of using LiDAR points to query pseudo points;

• SQD samples pseudo points based on the occupancy status
of grids and density of LiDAR points within these grids to
alleviate edge noise and the problem of uneven distribution;

• A novel sparse 3D Backbone is designed to model long-range
dependencies, alleviating the problem of local structural
ambiguity;

• Experimental results demonstrate that using pseudo points
to supplement surface structure details of difficult-to-detect
objects significantly enhances the model’s ability to detect
these objects.

2 RELATEDWORK
2.1 Point cloud sample
PointNet [6] uniformly samples 1024 points on mesh faces accord-
ing to the face area and normalizes them into a unit sphere for 3D
object detection. FPS (farthest point sampling) randomly selects a
point as a seed point from the original point cloud, and other points
are chosen according to Euclidean distance, aiming to maintain
structural information [26, 28, 29]. However, FPS tends to choose
remote points to cover the entire scene better, which could make
downsample points involve excessive irrelevant background points
like points on the ground [10]. Yang et al. [45] propose the F-FPS,
which effectively preserves the inliers of various instances. Chen et
al. [7] select foreground points by prioritizing those with higher se-
mantic scores from the segmentation module and their coordinates.
Zhang et al. [49] propose two learnable, task-oriented, instance-
aware downsampling strategies for the hierarchical selection of
foreground attractions belonging to objects of interest.

In other tasks of point cloud processing, e.g., semantic segmenta-
tion, sampling of point clouds is usually also required. IDIS (Inverse
Density Importance Sampling) reorders all N points according to
the density of each point and selects the top 𝐾 points [13]. CRS
(Continuous Relaxation based Sampling) [2, 44] uses the reparam-
eterization trick to relax the sampling operation to a continuous
domain for end-to-end training, and each sampled point is learned
based on a weighted sum over the entire point clouds. PGS (Policy
Gradient-based Sampling) formulates the sampling as a Markov
decision process [41] and learns a probability distribution to sample
the points sequentially.

2.2 Sparse 3D Backbone
Voxel-based 3D object detection methods convert point clouds
into voxels and apply sparse 3D Backbones for feature extraction
[12, 19, 28]. Sparse 3D Backbones resemble 2D CNNs in structures,
including several feature extract stages and down-sampling op-
erations, typically consisting of regular and submanifold sparse
convolutions [14].

Liu et al. [23] introduce amplitude-based sampling modules—SPS
Conv (spatial pruned sparse convolution), SPSS Conv (spatial pruned
submanifold sparse convolution), and SPRS Conv (spatial pruned
regular sparse convolution) to dynamically prune spatial redun-
dancy in data and models effectively without affecting performance,
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Figure 2: The pipeline of SQDNet. Firstly, the LiDAR point
cloud is converted into a sparse depth map via an extrinsic
matrix. Subsequently, a depth completion network is used to
complete the sparse depth map and generate a dense depth
map. Both sparse and dense depthmaps are then transformed
into 2D-occupied grid maps, allowing for the efficient query-
ing of pseudo points based on grid occupancy and LiDAR
point density within these grids. These pseudo points are
mixed with LiDAR points to create an enriched point cloud,
which is processed by the proposed sparse 3D Backbone for
voxel feature extraction and long-range dependency mod-
eling. The pipeline also includes a 2D Backbone, a Region
Proposal Network (RPN), and a detection head.

leveraging feature amplitude information. Chen et al. [8] present the
Focals-Conv, a dynamic approach for learning feature spatial spar-
sity by assessing voxel importance through an extra convolutional
layer, thereby focusing the learning on more valuable foreground
data.

3 SQDNET FOR 3D OBJECT DETECION
Fig. 2 illustrates the pipeline of our model, which includes: (1)
an SQD block that leverages sparse LiDAR points to query dense
pseudo points, autonomously enriching structural details on object
surfaces and facilitating efficient sampling of large-scale pseudo
points directly from the dense depth map; (2) a sparse 3D Backbone
designed for voxel feature extraction and modeling of long-range
dependencies, which helps to mitigate the local structural ambi-
guities inherent in pseudo points. We detail our method in the
following sections.

3.1 Sparse Query Dense
In SLAM (Simultaneous Localization and Mapping) [4], 2D grid
occupancy models the environment by dividing it into 2D-occupied
grid maps, with grids marked "occupied" or "free" to denote ob-
stacles. This paper extends the grid occupancy concept for 3D
detection, designating grids containing points as "occupied" while
those without as "free". We project both sparse LiDAR points and
dense pseudo points onto 2D-occupied grid maps and leverage the
position indices of grids to facilitate efficient and indirect sparse-
to-dense matching.

LiDAR
Sparse depth image

Top viewLiDAR point

front_2_top

Figure 3: The LiDAR point cloud is projected onto a 2D sparse
depth image using an extrinsic matrix, converting it from
3D space to a front view and then further transformed to a
top view through coordinate conversion.

To construct 2D-occupied grid maps, LiDAR points are initially
converted into a sparse depth map according to the current sensor
attitude, as depicted in Fig. 3. In the absence of calibration noise,
the projection from the 3D LiDAR coordinate into a 2D image
coordinate involves a transformation from the LiDARmeasurement
to the camera frame and a perspective projection from the camera
frame into image coordinates:

Isparse = P(𝑖 )
rect R

(𝑖 )
rect T

velo
cam X (1)

Where X = {(𝑥,𝑦, 𝑧, 𝑟 )𝑖 } represents a LiDAR point cloud, each
point is defined by its 3D location (𝑥,𝑦, 𝑧) and reflectance 𝑟 . The
transformation from the LiDAR coordinate system to the camera
coordinate system is facilitated by the extrinsic matrix Tvelo

cam , with
the camera’s corrected rotation matrix denoted as R(𝑖 )

rect and its
projection matrix as P(𝑖 )

rect. This transformation yields a sparse depth
map Isparse = (𝑢, 𝑣, 𝑑), where (𝑢, 𝑣) is the 2D coordinates of the
LiDAR point on the sparse depth map, and 𝑑 represents the depth
value.

After converting the sparse depth map from the front view to
the top view through a coordinate transformation (changing 2d
coordinates from (𝑢, 𝑣) to (𝑑, 𝑣)) [5]. Then, the top view is divided
into𝑚 × 𝑛 grids to establish a sparse occupancy map (Sparse Occ
map), as shown in Fig. 4. Similarly, a dense occupancy map (Dense
Occ map) is created from the dense depth map produced through
depth completion. The occupancy status of these 2D grids is de-
termined by marking grids containing LiDAR or pseudo points
as "occupied" and all others as "free". We use the position indices
of grids to achieve efficient sparse-to-dense matching, converting
LiDAR points query pseudo points into grids query grids, reducing
the computational complexity of queries, and thus achieving fast
sampling on large-scale pseudo points.

We construct the index arrays Spoint2Occ and Dpoint2Occ, where
the position indices of "occupied" grids in the 2D-occupied grid
maps serve as keys, and the coordinates of LiDAR and pseudo points
mapped to those grids are stored as values, as shown in Fig. 4. It
should be emphasized that the number of points mapped into each
grid is not constant.

Fig. 1(b) reveals that LiDAR points tend to be sparse or com-
pletely absent near the noise pseudo points along the object’s edges.
Consequently, pseudo points within a grid marked as "occupied" in
the Dense Occ Map but "free" in the Sparse Occ Map at the same
location are deemed noise and consequently discarded. To achieve
this, We utilize the position indices of "occupied" in the Sparse Occ
Map to query grids at the same position in the Dense Occ Map
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Figure 4: The pipeline of SQD. Divide the top view of sparse
and dense depth maps into𝑚 × 𝑛 grids to create the Sparse
Occ Map and Dense Occ Map, and construct index arrays
Spoint2Occ and Dpoint2Occ to store the correspondence be-
tween points and grids. The occupancy status of 2D grids
is determined by marking the grid containing points as "oc-
cupied". These colored-filled grids indicate the "occupied"
grids. SQD leverages grid position indices where the density
of LiDAR points falls between 𝜏 and 𝜇 in the Sparse Occ Map
to query grids at the same position in the Dense Occ Map. It
then uses Dpoint2Occ to query pseudo points mapped to these
grids.

and then preliminarily determine the pseudo points that need to be
retained based on Dpoint2Occ.

Due to the uneven distribution of pseudo points generated by
depth completion, more pseudo points are mapped into the closer
grid, while fewer pseudo points are in the distant grid. To address
this, we further query the pseudo points based on the density of
LiDAR points within the Sparse OccMap’s grids. The process begins
by assigning initial weights to each pseudo point using random
numbers uniformly distributed between 0 and 1. If the density
of LiDAR points within a grid in the Sparse Occ Map is below
the threshold 𝜏 , it signifies that the LiDAR points in that area are
relatively sparse and require supplementation with pseudo points.
Conversely, if the density is below another threshold 𝜇, it indicates
that the LiDAR points in that grid are either noise or irrelevant
to detection and consequently discarded. The SQD employs grid
position indices with densities of LiDAR points between 𝜏 and 𝜇
in the Sparse Occ Map to query grids at the same position in the
Dense Occ Map. It then uses Dpoint2Occ to query pseudo points
mapped to these grids. To ensure these critical pseudo points are
retained through later stages, SQD assigns them exceptionally high
weight values.

Finally, SQD selects pseudo points with weights exceeding the
threshold 𝜎 and converts their coordinates from the 2D dense depth
map to 3D coordinates in the LiDAR coordinate system. These
pseudo points are then fused with LiDAR points and denote the
fused points as P = {𝑝1, 𝑝2 · · · 𝑝𝑛}, with each point 𝑝𝑖 is character-
ized by coordinates (𝑥,𝑦, 𝑧), intensity𝛼 , and an indicator 𝛽 denoting
the point’s origin. The intensity of pseudo points is padded by 0.5.

Figure 5: The figure demonstrates the results of querying
pseudo points (red) to supplement LiDAR clouds (blue), with
objects marked in green ground truth (GT) boxes. Each box
has a red label indicating the object’s category and visibility.
A point cloud of a hard-category car is specifically chosen
and enlarged for closer analysis.

Finally, we use the proposed sparse 3D Backbone to extract voxel
features of fused points.

By mapping LiDAR and pseudo points to 2D-occupied grid maps,
we achieve the fast querying of pseudo points, significantly reduc-
ing the preprocessing time for pseudo points. Subsequently, based
on the density of LiDAR points in the occupied grid, we perform the
secondary sampling on the initial queried pseudo points to alleviate
the problem of uneven distribution of pseudo points.

3.2 Sparse 3D Backbone
Sparse 3D backbone, including submanifold and regular sparse
convolutions, are widely used for extracting features from precise
LiDAR point clouds [48]. However, directly applying these convolu-
tions to extract features from a mixture of pseudo and LiDAR points
poses challenges in further improving 3D object detection perfor-
mance, primarily due to the problem of local structural blurring of
pseudo points.

Fig. 5 demonstrates how the SQD queries pseudo points for en-
riching the LiDAR cloud, with objects labeled within green ground
truth (GT) boxes. Each box is marked with a red label indicating the
object’s category and visibility. A point cloud of a hard-category
car is specifically chosen and enlarged for closer analysis. This
figure reveals that the pseudo points queried through SQD can
supplement the structural information of the object surface.

The blurring of local structure in pseudo points caused by depth
completion is mainly due to inaccurate depth value estimation,
resulting in a significant positional deviation between LiDAR and
pseudo points in the top view, as shown in Fig. 1(f). VirConv [37]
extends the receptive field to 2D image space and uses sparse 2D
Backbone to extract voxel features in 2D space, implicitly distin-
guishing noise patterns. However, VirConv [37] requires frequent
transform voxels from 3D to 2D in sparse 3D Backbone. Upon
rethinking VirConv, we believe that it is equivalent to ignoring
inaccurate depth information, allowing voxels that are not adja-
cent in 3D space but adjacent in 2D image space to achieve feature
interaction, thereby expanding the receptive field of features and
modeling long-distance dependencies.

Pseudo points, queried by SQD, are merged with LiDAR points to
form an enriched point cloud. After voxelization, the enriched point
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Figure 6: The structure of the proposed sparse 3D Backbone.

cloud generates pseudo voxels around the LiDAR voxels. Conse-
quently, we consider expanding the kernel size of the convolutional
kernel to increase the receptive field of features. This expansion
allows pseudo voxels to interact with accurate features from Li-
DAR voxels during the convolution process, thereby alleviating the
impact of local structural ambiguity of pseudo points.

The structure of the sparse 3D Backbone is depicted in Fig. 6.
Similar to Voxel R-CNN [12], the sparse 3D Backbone in SQDNet
comprises Conv input, Conv out, and layer [1 − 4]. Distinguishing
from Voxel R-CNN, SQDNet stacks 2× large-kernel convolution [9]
in layer 1, and adopts kernel sizes of [7, 5, 5, 3] across layer [1 − 4],
respectively.

4 EXPERIMENTS
4.1 Datasets and Evaluation Metrics
KITTI 3D object detection benchmark [11] contains 7,481 LiDAR
and 7,518 frames for training and testing, respectively. The training
data is split into 3,712 and 3,769 frames for training and validation
(val). The detection results on the val and test set are evaluated
with the average precision calculated by 40 recall positions.

nuScenes [3] is a large dataset and contains 1,000 driving se-
quences in total. Among them, there are 700 scenes split for training,
150 scenes for validation, and 150 scenes for testing. It contains Li-
DAR, camera, and radar sources with a complete 360◦ environment.
The main evaluation metrics are mean average precision (mAP)
and nuScenes detection score (NDS).

4.2 Implement Details
SQDNet adopts an architecture similar to Voxel R-CNN [12] and
develops SQDNet using the OpenPCDet open-source 3D object
detection framework [30]. Tab. 1 details the parameters of the sparse
3D Backbone utilized in SQDNet. SQDNet follows the same training
loss and dataset settings as Voxel R-CNN [12] and adopts widely
used data augmentation techniques, including gt-sampling, rotation,
flipping, scaling, and local noising. SQDNet pretrains the depth
completion network on the KITTI dataset and fixes the parameters
when training SQDNet.

The thresholds 𝜏 , 𝜇, and 𝜎 in SQD are set to 10, 3, and 0.9, respec-
tively. Set the size of the 2D-occupied grid to 5, 76. Consequently,
we derive𝑚 and 𝑛 based on the depth value and depth map width,
setting𝑚 = 𝑑

5 and 𝑛 = 𝑤
76 , where 𝑑 represents the maximum depth

value observed in the depth map, and𝑤 signifies the width of the
depth map. SQDNet is trained on 2 RTX 3090 GPUs. Diverging from
SFD [38] and VirConv [37], this paper employs dense depth maps
generated by KBNet [34], chosen over alternatives like TWISE [18]
and PENet [17] due to KBNet’s demonstrated faster inference speed,
as evidenced in Tab. 2.

4.3 Main Results
We report the Car 3DDetection results on the KITTI test set in Tab. 3.
SQDNet outperforms the Voxel R-CNN [12] with improvements of
0.68%, 0.2%, and 2.01% in 3D AP(R40) for easy, moderate (mod.), and
hard categories, respectively. Notably, for hard category detection,
SQDNet achieves a score of 79.07%, surpassing several methods,
including SFD [38], 3ONet [16], and PVT-SSD [43]. In Bird’s Eye
View (BEV) detection, SQDNet continues to excel, especially in
hard categories as shown in Tab. 4, improving upon Voxel R-CNN
[12] by margins of 0.59%, 1.80%, and 1.91%. SQDNet also achieves
superior performance in hard category detection with a score of
88.04%, outdoing other methods such as LoGoNet [21] and TED
[36]. The significant performance enhancement primarily stems
from using pseudo points to fill in structural details on the object’s
surface.

4.4 Ablation Study
Here, we provide extensive experiments to analyze the effectiveness
of SQDNet. Because SQD is based on 2D-occupied grids from a
top-view perspective to sample pseudo points, we evaluate the
performance of each module in Car BEV detection.

Performance with different sparse 3D Backbone We re-
place the sparse 3D Backbone of voxel R-CNN [12] with Backbones
proposed in other papers while maintaining consistency in training-
related settings to compare the performance on the KITTI val fairly.
Using the Voxel R-CNN implementation of OpenPCDet [30] as
our baseline, we retrain the model. Our modified version, Voxel
R-CNN†, incorporates pseudo points to enhance the LiDAR point
cloud and adjusts the number of channels in the sparse 3D Backbone
from [16, 32, 64, 64] to [16, 32, 64, 128].

The results indicate that SQDNet significantly enhances per-
formance over Voxel R-CNN [12], with improvements of 1.19%,
0.42%, and 2.3% in the easy, mod., and hard categories of Car BEV
detection, respectively (see Tab. 5). This underscores the efficacy of
supplementing LiDAR data with pseudo points to fill in structural
information on object surfaces, thereby enhancing detection perfor-
mance. By expanding the kernel size of the convolutional kernel,
SQDNet broadens the receptive field of features and models long-
range dependencies, avoiding frequent projection of 3D voxels into
2D space. SQDNet allows pseudo voxels to interact with accurate
features from LiDAR voxels during the convolution process, thereby
mitigating the impact of local structural ambiguity of pseudo points.
The results demonstrate the effectiveness of SQDNet.

Sampling time for different sampling methods Tab. 6
presents a comparison of sampling times between SQD and other
point cloud sampling methods when applied to pseudo points.
Notably, uniforml_down_sample, voxel_down_sample, and cur-
vature_down_sample are methods derived from Open3D. Open3D
is an open-source library that supports the rapid development of
software that deals with 3D data [52].

During the training process, we calculated the average number
of pseudo points queried by SQD for each LiDAR point cloud frame,
which amounted to approximately 20,000 points. Consequently, we
employ various sampling methods to sample 20,000 points from
the original pseudo point cloud and compare their sampling times.
By mapping both LiDAR and pseudo points onto 2D-occupied grid
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Table 1: The parameters of sparse 3D Backbone utilized in SQDNet.

Conv_input Layer1 Layer2 Layer3 Layer4 Conv_out
Conv type SubM Conv3D LargeKernel3D Sparse Conv3D Sparse Conv3D Sparse Conv3D Sparse Conv3D

in/out: 5/16
kernel_size: 3
padding: 1

in/out: 16/16
kernel_size: 7
padding: 2

in/out: 16/32
kernel_size: 5
stride: 2
padding: 2

in/out: 32/64
kernel_size: 5
stride: 2
padding: 2

in/out: 64/128
kernel_size: 5
stride: 2
padding: (0,1,1)

in/out: 128/128
kernel_size: (3,1,1)
stride: (2,1,1)
padding: 0

Conv type LargeKernel3D SubM Conv3D SubM Conv3D SubM Conv3D
in/out: 16/16
kernel_size: 7
padding: 2

in/out: 32/32
kernel_size: 5
padding: 1

in/out: 64/64
kernel_size: 5
padding: 1

in/out: 128/128
kernel_size: 3
padding: 1

Conv type SubM Conv3D SubM Conv3D SubM Conv3D
in/out: 32/32
kernel_size: 5
padding: 1

in/out: 64/64
kernel_size: 5
padding: 1

in/out: 128/128
kernel_size: 3
padding: 1

Table 2: Comparison of inference time for different depth
completion models.

Method Reference Infer. time (s)
TWISE [18] CVPR 2021 0.022
PENet [17] ICRA 2021 0.032
KBNet [34] ICCV 2021 0.016

Table 3: Quantitative detection performance for Car 3D de-
tection on the KITTI test.

Method Reference 3D Car AP(R40)

Easy Mod. Hard
Voxel R-CNN [12] AAAI 2021 90.90 81.62 77.06

PDV [19] CVPR 2022 90.43 81.86 77.36
SIENet [22] PR 2022 88.22 81.71 77.22
GLENet [50] IJCV 2023 91.67 83.23 78.43

Focals Conv [8] CVPR 2022 90.55 82.28 77.59
3Onet [16] IEEE SENS J 2023 92.03 85.47 78.64

3D HANet [39] TGRS 2023 90.79 84.18 77.57
SFD [38] CVPR 2022 91.73 84.76 77.92

PVT-SSD [43] CVPR 2023 90.65 82.29 76.85
FARP-Net [40] TMM 2023 88.36 81.53 78.98
Ada3D [51] ICCV 2023 87.46 79.41 75.63
SQD(Ours) 91.58 81.82 79.07

maps and querying pseudo points based on the occupancy status of
2D grids and the density of LiDAR points within "occupied" grids,
the fast sampling speed of SQD has been achieved.

Ablation study on SQDNet Tab. 6 presents an analysis of
sampling times for various methods, demonstrating that SQD and
random_sample fulfill the real-time requirements of SQDNet. To
ascertain the efficacy of SQDNet’s components, we conduct experi-
ments as depicted in Tab. 7. Experiment (a) uses Voxel R-CNN [12]
implemented by OpenPCDet [30] as the baseline. Experiment (b)
utilizes the SQD to query pseudo points and the sparse 3D Back-
bone, Voxel R-CNN†. Experiment (c) applies random_sample to

Table 4: Quantitative detection performance for Car BEV
detection on the KITTI test.

Method Reference BEV Car AP(R40)

Easy Mod Hard
Voxel R-CNN [12] AAAI 2021 94.85 88.83 86.13

GraR-Po [42] ECCV 2022 95.79 92.12 87.11
PA3DNet [31] TII 2023 93.11 89.46 84.60
GLENet [50] IJCV 2023 93.48 89.76 84.89
3Onet [16] IEEE SENS J 2023 95.87 90.07 85.09

3D HANet [39] TGRS 2023 94.33 91.13 86.33
LoGoNet [21] CVPR 2023 95.48 91.52 87.09
PVT-SSD [43] CVPR 2023 95.23 91.63 86.43

SFD [38] CVPR 2022 95.64 91.85 86.83
TED [36] AAAI 2023 95.44 92.05 87.30
SQD(Ours) 95.44 90.63 88.04

Table 5: Quantitative detection performance with different
sparse 3D Backbone on the KITTI val.

Conv Parm BEV Car AP(R40)

Easy Mod. Hard
Voxel R-CNN [12] - 95.68 91.25 88.95
LargeKernel3D [9] 13.7M 95.54 88.71 88.36
Focal Conv [8] 9.5M 95.46 88.37 87.79

SPSS [23] 9.2M 95.89 88.41 86.04
Voxel R-CNN † 9.2M 96.46 91.45 91.04
VirConv [37] 13M 96.64 91.38 90.94
SQD(Ours) 11M 96.87 91.67 91.25

sample 20,000 points, integrating them with LiDAR points to gen-
erate a new point cloud. We then employ our proposed sparse 3D
Backbone to extract voxel features from this enriched point cloud.
Experiment (d) is SQDNet. Results reveal that using SQD to query
pseudo points effectively fills in structural information on object
surfaces, significantly improving detection accuracy, especially for
hard-to-detect objects.
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Table 6: Sampling time for different sampling methods.

Method Time (s)
SQD 0.01

random_sample 0.007
uniform_down_sample 0.24
voxel_down_sample 0.28
farthest_point_sample 1.95
curvature_down_sample 11.99

Table 7: Ablation study on SQDNet. The results are calculated
by 40 recall positions for Car BEV detection.

Experiment SQD 3D Backbone BEV Car
Easy Mod. Hard

(a) 95.68 91.25 88.95
(b) ✓ 96.46 91.45 91.04
(c) ✓ 96.31 91.43 91.17
(d) ✓ ✓ 96.87 91.67 91.25

Table 8: Performance on different distances.

DistanceWith SQD 0-20m 20-40m 40m-inf
No 92.91 81.00 28.83
Yes 93.32 82.38 29.93

Improvement +0.41 +1.38 +1.10

Table 9: Inference speed of different methods.

SQD SFD [38] 3ONet [16] TSSTDet [15]
13.5 FPS 10.2 FPS 6.5 FPS 7.7 FPS
TED [36] CasA [35] Voxel R-CNN [12] GLENet [50]
11.1 FPS 11.6 FPS 21.08 FPS 20.82 FPS

Conditional Analysis To determine the scenarios where our
method significantly improves the baseline, we evaluate SQDNet
across varying distances. As illustrated in Tab. 8, the most signifi-
cant improvements are observed with distant objects. This finding
corroborates our hypothesis that integrating pseudo points with
LiDAR point clouds significantly increases the detection accuracy
for objects with sparse LiDAR points.

Inference Speed We test the inference speed of SQDNet on
the NVIDIA RTX 3090 GPU. With the depth completion network,
the speed of SFD is 13.5 FPS, as shown in Tab. 9.

Evaluation on the nuScenes val set To demonstrate our
method’s universality, we conduct experiments on the nuScenes
[3], comparing our approach with CenterPoint [47], LargeKernel3D
[9], and MVP [46]. Adopting MVP’s data augmentation strategy,
we train the network for 20 epochs on 4 RTX 3090 GPUs. The
results are presented in Tab. 10. Given the absence of the depth
completion task in the nuScenes, we utilize virtual points generated
by MVP to enrich the LiDAR point cloud. Our proposed sparse 3D
Backbone is then employed to extract voxel features, integrating
with the modules in CenterPoint to fulfill the 3D object detection

task. Merging VP+SQDNet+CentrPoint increases the mAP by 0.2,
but decreases the NDS by 0.2. This result may be due to the use of the
LiDAR with 32 lasers in the nuScenes, which results in fewer LiDAR
points and exacerbates the problem of local structural blurring in
virtual points.

Table 10: 3D detection results on the nuScenes val set.

Method mAP NDS
CenterPoint [47] 56.4 64.8
LargeKernel3D [9] 63.3 69.1

MVP [46] 66.0 69.9
VP + SQDNet + CenterPoint 66.2 69.7

4.5 Qualitative and quantitative analysis of SQD
Fig. 7 illustrates the average numbers of LiDAR and pseudo points
within GTboxes across different distances, highlighting a notable
difference between the numbers of pseudo and LiDAR points. By
using SQD to query pseudo points to supplement the LiDAR point
cloud, there’s a significant increase in point density inside GTboxes.

Figure 7: The average numbers of LiDAR points, pseudo
points, and mixed points obtained by using SQD within GT-
boxes at different distances. It can be seen that using SQD
to query pseudo points can supplement the LiDAR points
within GTboxes.

In Fig. 8, we show the LiDAR points and their mixed points of
six Cars, where the mixed points are a mixture of pseudo points
queried through SQD and LiDAR points. The IDs assigned to these
Cars correspond to the IDs in the accompanying top RGB image.
Cars are arranged in order of detection difficulty from left to right:
hard, mod. and easy.

This figure vividly demonstrates that pseudo points, queried by
SQD, effectively enrich sparse areas within the LiDAR point clouds
for objects categorized as hard. However, for objects like Car2 that
are obscured in the middle, SQD cannot adequately fill the gaps in
the LiDAR point cloud. The top view of Car2’s LiDAR and mixed
point clouds reveals two visible blank spaces. This is due to the
fact that objects occluded in the RGB image remain occluded in the
corresponding dense depth map. This partially explains SQDNet’s
limited improvement in detecting objects of mod. category.



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Im
ag

e
L

iD
A

R
 

L
iD

A
R

 
M

ix
M

ix
L

iD
A

R
 

L
iD

A
R

 
M

ix
M

ix

Hard Mod. Easy

Car 1 Car 2 Car 3

Car 6Car 5Car 4

Car 4
Car 1

Car 6 Car 3Car 2 Car 5

Obstructed 

area

Figure 8: Qualitative analysis of LiDAR and mixed points for six cars. This figure illustrates the comparison between original
LiDAR points (blue dots) and mixed points (red dots), the latter being a blend of LiDAR points and pseudo points. Cars’ IDs
match those in the corresponding RGB image, with cars arranged from left to right by detection difficulty: hard, mod., easy.

5 CONCLUSION
In this paper, we present SQDNet, a novel 3D object detection frame-
work that utilizes the SQD for rapid sampling of large-scale pseudo
points on the dense depth map directly, significantly enhancing
the structural detail on object surfaces. Additionally, we develop
a sparse 3D Backbone designed to broaden the receptive field of
features. This design enables the effective integration of accurate
features from LiDAR voxels into pseudo voxels during the 3D con-
volution process. Our experiments demonstrate the effectiveness of
the SQDNet, particularly in detecting difficult-to-detect instances.

Despite its successes, SQDNet faces several limitations, such as
the need for manual tuning of 2D-occupied grid sizes and density
thresholds, which proves to be labor-intensive. Second, although
SQDNet shows considerable performance enhancements in the easy

and hard categories of the KITTI 3D object detection benchmark,
improvements in the mod. category are less pronounced.

Future efforts will focus on simplifying SQD to adaptively query
pseudo points with minimal to no manual parameter tuning. We’ve
already demonstrated the effectiveness of using pseudo points to
enrich sparse LiDAR point clouds in car detection and aim to apply
this approach to other categories, like bicycles and pedestrians, to
enhance LiDAR data in diverse scenarios. Our qualitative analysis in
Fig. 8 reveals that SQDNet shows a slight improvement in detecting
objects of mod. category, which may be due to its ineffectiveness
in supplementing pseudo points for occluded objects, which is a
challenge we need to address in future research.
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