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ABSTRACT

Arbitrary scale super-resolution (ASSR) aims to super-resolve low-resolution im-
ages to high-resolution images at any scale using a single model, addressing the
limitations of traditional super-resolution methods that are restricted to fixed-scale
factors (e.g., ×2, ×4). The advent of Implicit Neural Representations (INR) has
brought forth a plethora of novel methodologies for ASSR, which facilitate the
reconstruction of original continuous signals by modeling a continuous represen-
tation space for coordinates and pixel values, thereby enabling arbitrary-scale
super-resolution. Consequently, the primary objective of ASSR is to construct
a continuous representation space derived from low-resolution inputs. However,
existing methods, primarily based on CNNs and Transformers, face significant
challenges such as high computational complexity and inadequate modeling of long-
range dependencies, which hinder their effectiveness in real-world applications. To
overcome these limitations, we propose a novel arbitrary-scale super-resolution
method, called S3Mamba, to construct a scalable continuous representation space.
Specifically, we propose a Scalable State Space Model (SSSM) to modulate the
state transition matrix and the sampling matrix of step size during the discretization
process, achieving scalable and continuous representation modeling with linear
computational complexity. Additionally, we propose a novel scale-aware self-
attention mechanism to further enhance the network’s ability to perceive global
important features at different scales, thereby building the S3Mamba to achieve
superior arbitrary-scale super-resolution. Extensive experiments on both synthetic
and real-world benchmarks demonstrate that our method achieves state-of-the-art
performance and superior generalization capabilities at arbitrary super-resolution
scales. The code will be publicly available.

1 INTRODUTION

With the rapid advancement of digital imaging technology and computational photography, image
super-resolution (SR) has become a significant research topic in computer vision and image pro-
cessing (Gunturk et al., 2004; Zou & Yuen, 2011; Shi et al., 2013; Peng et al., 2024b; Conde et al.,
2024; Ren et al., 2024). SR aims to reconstruct high-resolution (HR) images from low-resolution
(LR) inputs to enhance visual quality. However, traditional factor-fixed SR methods (Lim et al.,
2017; Zhang et al., 2018a; Liang et al., 2021; Chen et al., 2022b; Peng et al., 2024c;a) often can only
upscale LR images by fixed magnification factors (Shi et al., 2016; Zhang et al., 2018b; Niu et al.,
2020), such as (×2, ×3, ×4), which makes it difficult to meet the demands of real-world applications
that require arbitrary magnification. Consequently, arbitrary-scale SR (ASSR) has been proposed and
has garnered widespread attention, effectively achieving any SR scale using a single model.

In reality, our physical world is three-dimensional and continuous. To record the physical world,
various imaging devices have been invented to discretize signals by capturing reflected photons from
the real world to obtain observable digital images, as shown in Fig. 1 (a). The limited quality and
resolution of sensors result in low-quality LR images. Therefore, the biggest challenge of ASSR
is to learn the continuous signals of the real world from these discretized LR images (Chen et al.,
2021; Lee & Jin, 2022; Cao et al., 2023). Numerous approaches have been proposed to achieve this.
Among these, implicit neural representation (INR) stands out as the most prominent and effective.
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Figure 1: (a) During real-world imaging, the continuous 3D physical world is discretized into an
image through cameras and ISPs, resulting in an LR image due to sensor resolution. (c) Existing
MLP-based INR methods often use point-to-point learning, making them susceptible to degradation
such as noise. Additionally, the limited receptive field of MLPs cannot construct a perfect continuous
space, as shown in (b). In contrast, our method (d) leverages scalable SSM to better capture global
historical information and, through scalable training, reconstructs a continuous space more effectively,
achieving superior ASSR.

INR constructed a mapping from continuous pixel coordinates and the discredited low-resolution
images to the continuous HR signal, achieving scalable SR, as shown in Fig. 1 (b).

Numerous INR-based ASSR methods have been proposed, achieving significant progress. For
instance, LIIF (Chen et al., 2021) is the first to introduce INR into arbitrary-scale super-resolution,
utilizing multi-layer perceptrons (MLP) to reconstruct continuous mappings for arbitrary-scale
enlargement. This approach has achieved impressive visual results and garnered significant attention.
Following this, LTE (Lee & Jin, 2022) and LINF (Yao et al., 2023) attempt to enhance performance
by incorporating frequency domain information in the decoder. However, the limited receptive field
and point-to-point learning approach of MLP make it difficult to capture contextual information,
leading to challenges in constructing continuous HR images and making them susceptible to noise
interference. This constrains the performance of INR in ASSR, as shown in Fig. 1 (c). Therefore,
CiaoSR (Cao et al., 2023) and CLIT (Chen et al., 2023) utilized Transformers to model global
information, significantly improving model performance. Although Transformers excel at modeling
relationships among all tokens to capture contextual information, their self-attention mechanism
incurs quadratic computational complexity. This quadratic increase in complexity with respect to
input size makes them inefficient for real-world deployment. Therefore, there is an urgent need for an
ASSR network capable of global modeling while maintaining high efficiency.

To address the aforementioned challenges, we propose an innovative ASSR method called S3Mamba,
which constructs a scalable continuous representation space, as shown in Fig. 1 (d). This approach
introduces the State Space Model (SSM) into ASSR for the first time. We further propose a novel
Scalable State Space Model (SSSM) to modulate the state transition matrix and sampling step size
during discretization, thus achieving scalable and continuous representation modeling with linear
computational complexity. Additionally, we develop an advanced scale-aware self-attention mecha-
nism to enhance the network’s ability to capture globally significant features across various scales.
These innovations culminate in S3Mamba, a versatile module that integrates seamlessly into various
SR backbones, thus improving their efficacy at arbitrary scales. Comprehensive experiments on both
real-world and popular synthetic benchmarks demonstrate our method’s state-of-the-art(SOTA) per-
formance, with superior generalization and continuous space representation capabilities in real-world
scenarios. Our main contributions are as follows:

• We pioneer the introduction of SSM into arbitrary-scale super-resolution and propose the
novel Scalable State Space Model. This model effectively modulates the state transition
matrix and sampling step size during discretization, achieving scalable and continuous
representation modeling with linear computational complexity.
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• We develop the S3Mamba, introducing an innovative scale-aware self-attention mechanism
that incorporates the SSSM. This enhancement significantly boosts the network’s ability to
capture globally significant features across various scales, ensuring superior performance at
arbitrary scales.

• Extensive experiments demonstrate that our method achieves the best performance on the
popular DIV2K benchmark and exhibits the best performance and generalization capabilities
on real-world COZ benchmarks.

2 RELATED WORK

2.1 ARBITRARY-SCALE SUPER-RESOLUTION

Different from traditional fixed-scale single image super-resolution (Dong et al., 2014; Ledig et al.,
2017; Kim et al., 2016; Cavigelli et al., 2017; Zhang et al., 2021; Wang et al., 2018), Arbitrary-Scale
Super-Resolution (ASSR) has the ability to enhance image quality and resolution across various
scales, garnering significant attention in the fields of image processing and computer vision. For
example, MetaSR first proposed a meta-upscale module to tackle this challenge (Hu et al., 2019).
Inspired by the success of implicit neural representation (INR) in 3D shape reconstruction (Sitzmann
et al., 2020; Chen & Zhang, 2019; Michalkiewicz et al., 2019; Gropp et al., 2020; Sitzmann et al.,
2019; Mildenhall et al., 2021), the LIIF method employs MLPs to learn a continuous representation of
the image. It takes continuous image coordinates and surrounding image features as input, outputting
the RGB values at given coordinates. However, MLP has limitations in learning high-frequency
components. LTE addresses this issue by effectively encoding image textures in the Fourier space.
SRNO (Wei & Zhang, 2023) introduces neural operators to capture global relationships within the
image. ITSRN (Yang et al., 2021) further innovatively proposes an implicit transformer based on INR
structures to fully leverage screen image content. Cao et al. proposed CiaoSR as a continuous implicit
attention network, that learns and integrates the weights of local features nearby, achieving the current
SOTA performance. These methods provide diverse pathways and possibilities for achieving arbitrary-
scale super-resolution. LMF (He & Jin, 2024) optimized image representation by reducing MLP
dimensions and controls rendering intensity through modulation to reduce the computational cost
of the upsampling module. COZ (Fu et al., 2024b) provided a benchmark for real-world scenarios,
offering a dataset for arbitrary-scale super-resolution tasks captured in real scenes, along with a
lightweight INR network. However, the aforementioned ASSR methods primarily utilize MLPs
for point-to-point generation of high-resolution image pixels, which tends to overlook the intrinsic
continuity within images. This oversight makes them susceptible to degradation artifacts, resulting in
unrich detail and artifacts.

2.2 STATE SPACE MODELS

State Space Models (SSMs) were first developed in the 1960s for control systems (Kalman, 1960),
providing a framework for modeling systems with continuous signal inputs. In recent times, the
evolution of SSMs has facilitated their integration into the realm of computer vision (Zhu et al., 2024;
Patro & Agneeswaran, 2024; Fu et al., 2024a; Chen et al., 2024). A prominent example is Visual
Mamba, which introduced a residual VSS module and implemented four scanning directions. This
innovation resulted in superior performance over ViT (Dosovitskiy et al., 2020), while maintaining
a lower model complexity, thus garnering considerable attention (Guo et al., 2024; Qiao et al.,
2024; Tang et al., 2024; Wang et al., 2024; Zhen et al., 2024; Li et al., 2024; Yan et al., 2024; Xiao
et al., 2024). Notably, MambaIR (Guo et al., 2024) pioneers the use of SSMs in image restoration,
boosting both efficiency and global perceptual capability. Despite these advances, the potential
of the continuous representation modeling ability of SSM in arbitrary-scale super-resolution tasks
remains underexplored. Therefore, we propose a novel scalable State Space State, which leverages
the continuous state space of SSMs to enhance the network’s capability in continuous representation,
thereby achieving high-quality continuous arbitrary-scale super-resolution.

3
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Figure 2: (a) Illustration of the proposed S3Mamba framework. (b) The SSSM Block consists of
the SSSM, along with multiple instance normalization layers, depthwise convolution (DWConv),
and projection layers. (c) The Scalable State Space Model (SSSM) is proposed to modulate the state
transition matrix and the sampling matrix of step size during the discretization process, achieving
scalable and continuous representation modeling with linear computational complexity.

3 PRELIMINARY AND MOTIVATION

The three-dimensional, continuous physical world is recorded by cameras that convert reflected
photons into digital images (Son et al., 2012), as shown in Fig. 1 (a). However, limitations in
CMOS and CCD sensor technology result in LR images, failing to meet consumers’ demands for
higher resolution and better quality (Wang et al., 2020; Chen et al., 2022a). Image super-resolution
techniques have been developed to generate HR images from LR counterparts. Unlike traditional
fixed-scale methods, ASSR aims to reconstruct the original continuous scene, generating HR images
at any resolution. The main challenge of ASSR is learning continuous signals from discretized
data (Liu et al., 2024; Chen et al., 2021), as shown in Fig. 1 (b). The Implicit Neural Representation
stands out as the most prominent and effective in ASSR. By learning the mapping from pixel
coordinates to pixel values, INR is able to generate scalable, high-quality HR images, as formulated:

FLR = Ψ(LR) (1)

HRRGB
(i,j) = ϕ(FLR, coord(i,j), scale) (2)

where, FLR represents the features of the low-resolution image LR, and Ψ denotes the feature
extractor. coord represents the coordinates location, scale indicates the magnification factor, and
HRRGB denotes the high-resolution RGB image. The goal of INR is to learn a continuous function
ϕ that maps coordinates and images to continuous signals, effectively mapping different scales of
the same scene into a unified continuous representation space. Various INR methods, like LIIF and
LTE, use a MLP for ASSR, but MLPs’ limited receptive field and point-to-point approach ignore
contextual and historical data, leading to vulnerability to noise and poor continuous representation
capability, as shown in Fig. 1 (c). An intuitive approach is to introduce Transformers to capture
global information, as seen in methods like CiaoSR. While Transformers effectively capture context,
their quadratic computational complexity makes them impractical for real-world applications. More
detailed analyses and comparisons are provided in the Appendix.

4 METHOD

To reconstruct a scalable continuous representation space, we propose a novel ASSR method called
S3Mamba, as shown in Fig. 2 (a). This approach leverages the Scalable State Space Model (SSSM) to
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adaptively capture global and scale-dependent features, ensuring consistent continuous representations
across varying scales. Additionally, our innovative scale-aware self-attention mechanism is introduced
to enhance the network’s ability to perceive globally significant features at different scales, thereby
reconstructing high-quality HR images efficiently and effectively.

4.1 PROPOSED SCALABLE STATE SPACE MODEL

To capture global historical information without incurring significant computational overhead, we
turn our attention to state space models. Benefiting from the linear complexity and global modeling
capacity of SSM, we introduce the SSM into ASSR for the first time. Let’s briefly review SSM. The
latest advances in structured state space models (S4) are largely inspired by continuous linear time-
invariant systems, which map input x(t) to output y(t) through an implicit latent state h(t) ∈ RN

(Guo et al., 2024). This system can be represented as a linear ordinary differential equation:
ḣ(t) = Ah(t) +Bx(t), y(t) = Ch(t) +Dx(t). (3)

where N is the state size, A ∈ RN×N , B ∈ RN×1, C ∈ R1×N , and D ∈ R. To adapt to digital
information processing, the continuous function of the state space model in Eq. 3 is discretized into a
sequence analysis model. Specifically, the state space model uses a zero-order hold as follows:

A = exp(∆A), B = (∆A)−1(exp(∆A)− I)∆B, (4)
In this process, the sampling interval ∆ determines the arrangement of discrete signals, so within the
SSM, ∆ dictates the correlation and association between adjacent inputs. Finally, we arrive at the
discrete state space representation, as shown in the following equations:

hk = Ahk−1 +Bxk, yk = Chk +Dxk, (5)

In the traditional state space model, ∆ is determined solely by the current input, making it well-suited
for scale-invariant vision tasks. However, because the actual physical distance between adjacent
pixels varies with different scales of the same scene, the correlation and association between adjacent
pixels also change with scale. An INR model trained solely on a traditional SSM may fail to capture
these scale-dependent patterns, resulting in different continuous representations for different scales of
the same scene. This is inconsistent with the fundamental goal of INR.

To address this issue, we propose a novel Scalable SSM, which incorporates scale and continuous
coordinate information into the state space equations of the state space model and adjusts ∆xk

to
achieve scale awareness. Specifically, we use a learnable MLP layer to input the scale, generating a
scale modulation factor for each time step, which is introduced into the current ∆xk

, as formulated:

∆xk
= ω(xk),∆

scale
xk

= σ(scale, coordxk
),

∆
′

xk
= ∆xk

·∆scale
xk

.
(6)

where ω and σ represent multilayer perceptron layers. This approach allows the SSSM to adaptively
adjust the interaction patterns of adjacent points at different scales. This ensures consistency in
network outputs for the same input across various scales, allowing our ASSR model to maintain a
consistent continuous representation space when handling data of different output sizes.

Furthermore, in the original state space equations, the parameter matrix B represents the mapping
pattern from the input to the state space. It is directly determined by the current input to produce Bxk

,
which can still prevent the SSM-based upsampling module from effectively capturing continuous
space representation methods at different scales. Therefore, we follow Eq. 6 to transform the same
process to matrix Bxk

into B
′

xk
, allowing it to better perceive the mapping equations across different

scales. This ensures that the state space model can adapt to any magnification level. The above
process can be formulated as:

Bxk
, Cxk

,∆xk
= ω(xk),

Bscale
xk

,∆scale
xk

= σ(scale, coordxk
),

∆
′

xk
= ∆xk

·∆scale
xk

,B
′

xk
= Bxk

·Bscale
xk

.

(7)

Then, the discretization process of our Scalable State Space Model (SSSM) can be formulated as :

A
′

xk
= exp(∆

′

xk
A),

B
′

xk
= (∆

′

xk
A)−1(exp(∆

′

xk
A)− I)∆

′

xk
B

′

xk
,

(8)
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Finally, the discretized state space equations of our SSSM can be represented by Eq. 5. Through
the aforementioned design, we follow to (Zhu et al., 2024) to construct the SSSM block to adeptly
capture scale variations, as shown in Fig. 2 (b) and (c). This allows LR images, sampled at different
scales within a unified continuous scene, to be represented within a single continuous space. This
capability facilitates the construction of an enhanced continuous space, yielding HR images across
arbitrary scales that are visually pleasing and rich in detail.

4.2 PROPOSED S3MAMBA

Further, to integrate global information and strengthen the scale-invariant perception capability of the
feature space, we employ the SSSM as an efficient global feature extraction method to supplement
global information. We also propose a novel scale-aware self-attention mechanism to further enhance
the network’s ability to perceive globally important features at different scales, as illustrated in
Fig. 2. Specifically, for a LR image, we first extract its features through a backbone, obtaining FLR.
Additionally, we follow (Cao et al., 2023) by using the Unfold operation to aggregate local features
and obtain local information F local

LR . The SSSM is utilized to extract global features F global
LR . These

are combined to form a new fused feature for subsequent representation learning, as shown in the
following equations:

F local
LR , F global

LR = U(FLR), SSSM(FLR),

Ffusion = concat(F local
LR , F global

LR ).
(9)

where U represents the unfold operation to capture local features. In addition, considering the
inconsistency in feature distribution across different scales, we propose a scale-aware self-attention
mechanism to enhance the network’s focus on the feature representation at the current scale. This
mechanism aims to learn a feature-independent global mapping pattern under various transformation
modes. Specifically, we input coordHR and scale into the SSSM to generate a global self-attention
map αweight. This attention map, guided by the current scale and coordinates, adaptively refines HR
feature FHR, ultimately yielding RGBHR. The process is illustrated by the following equations:

αweight = SSSM(coordHR, scale),

F ′
HR = SSSM(αweight · FHR),

RGBHR = SSSM(F ′
HR).

(10)

Finally, we build a simple yet efficient ASSR architecture called S3Mamba, as illustrated in Fig. 2 (a).

5 EXPERIMENT AND ANALYSIS

5.1 EXPERIMENTS SETTING

Datasets. To evaluate on the real-world ASSR task, we follow the training and test set from COZ,
which consists of 153 training scenes comprising a total of 9,019 images and 37 testing scenes at
2K resolution. For the conventional ASSR task based on bicubic degradation, following previous
work(LIIF, LTE, Ciao et al.), we also use the commonly employed synthetic DIV2K dataset as the
training set, which consists of 800 HR images in 2K resolution for training by the bicubic degradation
model. For testing, we evaluate the performance in the DIV2K validation set with 100 HR images.
Evaluation metrics. Following previous work, we use PSNR and SSIM (Wang et al., 2004) to
evaluate the quality of the HR images generated. All quantitative metrics in our experiments were
consistently evaluated in the RGB color space for both benchmark datasets, DIV2K (Agustsson &
Timofte, 2017) and COZ.

Implementation details. Following previous works, we adopt the same way to generate paired
images for training on the synthetic DIV2K data set. Initially, we crop image patches of size 96s ×
96s as ground truth (GT), where s is a scaling factor sampled from a uniform distribution U(1, 4).
Then, we use bicubic downsampling to generate the corresponding LR images. We employ existing
SR models, such as EDSR and RDN, as the backbones to evaluate various arbitrary-scale upsampling
methods. Adam is used as the optimizer, with the initial learning rate set to 1e-4 and decaying by
a factor of 0.5 every 200 epochs. During training, our method follows previous works, training for
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Table 1: Quantitative comparison of ASSR methods on the real-world COZ validation set (PSNR
in dB / SSIM). Bold indicates best performance; underlined indicates second-best. "Out-of-scale"
denotes evaluation on scales absent from model training data.

In-scale Out-of-scale
Backbones Methods

×3 ×3.5 ×4 ×5 ×5.5 ×6

EDSR

MetaSR 26.55/0.767 25.62/0.752 25.17/0.740 24.31/0.720 23.93/0.711 23.25/0.678
LIIF 26.61/0.767 25.76/0.752 25.16/0.741 24.32/0.721 24.01/0.711 23.23/0.679
LTE 26.55/0.767 25.71/0.752 25.15/0.740 24.37/0.720 24.05/0.712 23.26/0.679
LINF 26.53/0.762 25.66/0.750 25.10/0.737 24.29/0.719 23.99/0.711 23.21/0.677
SRNO 26.59/0.766 25.70/0.752 25.15/0.741 24.31/0.722 24.05/0.712 23.25/0.680
LIT 26.58/0.766 25.71/0.753 25.16/0.741 24.35/0.721 24.00/0.712 23.19/0.679
CiaoSR 26.56/0.770 25.65/0.755 25.13/0.746 24.31/0.725 23.96/0.721 23.23/0.709
LMI 26.66/0.768 25.78/0.752 25.22/0.741 24.39/0.722 24.08/0.713 23.29/0.680
Ours 26.71/0.773 25.84/0.755 25.27/0.746 24.39/0.726 24.09/0.723 23.34/0.709

RDN

MetaSR 26.65/0.767 25.80/0.752 25.22/0.740 24.39/0.720 24.09/0.711 23.31/0.678
LIIF 26.69/0.766 25.83/0.752 25.23/0.740 24.39/0.718 24.13/0.711 23.28/0.679
LTE 26.64/0.767 25.74/0.752 25.17/0.740 24.40/0.719 24.10/0.709 23.28/0.676
LINF 26.60/0.762 25.73/0.750 25.15/0.737 24.32/0.719 24.03/0.711 23.28/0.677
SRNO 26.67/0.766 25.73/0.752 25.19/0.741 24.40/0.722 24.09/0.712 23.28/0.680
LIT 26.66/0.766 25.79/0.753 25.19/0.741 24.36/0.721 24.03/0.712 23.25/0.679
CiaoSR 26.61/0.772 25.76/0.756 25.22/0.746 24.38/0.727 24.06/0.721 23.36/0.710
LMI 26.74/0.769 25.86/0.753 25.30/0.742 24.48/0.723 24.14/0.714 23.37/0.682
Ours 26.74/0.777 25.92/0.760 25.34/0.749 24.50/0.728 24.15/0.724 23.39/0.710

Figure 3: Visual comparison with existing methods on COZ dataset × 3. Zoom in for a better view.

a total of 1000 epochs under L1 loss. The total batch size is set to 32, utilizing a total of 8 V100
GPUs. For real-world ASSR datasets, we follow the training and testing setting of COZ to ensure fair
evaluation, while the total batch size is set to 128. We retrain some unreported models in COZ with
same training configurations to ensure comparability.
Compared methods. To demonstrate the superiority of our model, we conduct a performance
comparison against eight SOTA or popular models: MetaSR, LIIF, LTE, LINF, SRNO, (C)LIT,
CiaoSR, and LMI(COZ) under two popular backbones EDSR (Lim et al., 2017) and RDN (Zhang
et al., 2018b).

5.2 QUANTITATIVE AND QUALITATIVE RESULTS

In Tab. 1 and Tab. 2, we conduct a comparative experiment on COZ and DIV2K to assess its perfor-
mance against existing methods, to demonstrate the superiority of our method.
Results on the real-world dataset. As demonstrated in Tab. 1, our method achieves significant
superiority on the COZ dataset, with marked improvements in both PSNR and SSIM metrics. Cru-
cially, our approach substantially outperforms LMI in SSIM and CiaoSR in PSNR, underscoring its
consistent advantage.This demonstrates that our method is capable of better reconstructing continuous
image representations, thereby enhancing image detail performance. Additionally, we conduct a
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Table 2: Quantitative comparison of ASSR methods on the synthetic DIV2K validation set (PSNR
in dB). Bold indicates best performance; underlined indicates second-best. "Out-of-scale" denotes
evaluation on scales absent from model training data.

In-scale Out-of-scale
Backbones Methods Params/[K] FLOPs/[G] ×2 ×3 ×4 ×6 ×12 ×18

Bicubic - - 31.01 28.22 26.66 24.82 22.27 21.00

EDSR

baseline - - 34.55 30.90 28.94 - - -
LMI 85.8 15.22 34.59 30.90 28.94 26.69 23.68 22.18
MetaSR 445.1 15.21 34.64 30.93 28.92 26.61 23.55 22.03
LIIF 338.8 47.50 34.67 30.96 29.00 26.75 23.71 22.17
LTE 482.3 27.77 34.72 31.02 29.04 26.81 23.78 22.23
ITSRN 630.2 88.13 34.71 30.95 29.03 26.77 23.71 22.17
CLIT 5203.8 122.88 34.81 31.12 29.15 26.92 23.83 22.29
SRNO 774.3 27.11 34.85 31.11 29.16 26.90 23.84 22.29
CiaoSR 1395.1 152.28 34.91 31.15 29.23 26.95 23.88 22.32
Ours 771.3 86.94 34.93 31.13 29.24 26.97 23.89 22.32

RDN

baseline - - 34.94 31.22 29.19 - - -
LMI 85.8 15.22 34.74 31.03 29.07 26.81 23.79 22.29
MetaSR 445.1 15.21 35.00 31.27 29.25 26.88 23.73 22.18
LIIF 338.8 47.50 34.99 31.26 29.27 26.99 23.89 22.34
LTE 482.3 27.77 35.04 31.32 29.33 27.04 23.95 22.40
ITSRN 630.2 88.13 35.09 31.36 29.38 27.06 23.93 22.36
CLIT 5203.8 122.88 35.10 31.39 29.39 27.12 24.01 22.45
SRNO 774.3 27.11 35.16 31.42 29.42 27.12 24.03 22.46
CiaoSR 1395.1 152.28 35.15 31.42 29.45 27.16 24.06 22.48
Ours 771.3 86.94 35.17 31.40 29.47 27.17 24.07 22.50

Figure 4: Visual comparison with existing methods on DIV2K dataset× 4. Zoom in for a better view.

visual comparison of the COZ dataset in Fig. 3. It is evident that compared with existing methods,
our method more effectively removes degradation artifacts in real-world scenarios, reconstructing
the details and textures of SR images closer to GT. This demonstrates that our method demonstrates
stronger robustness against complex real-world degradations compared to conventional approaches.
More comparison is available in the Supplement.
Results on the DIV2K dataset. As evidenced in Tab. 2, our method demonstrates superior perfor-
mance across most scenarios, outperforming existing approaches at standard scales (×2, ×4, etc.)
and dominating out-of-scale evaluations. While CiaoSR achieves comparable accuracy, our solution
reduces computational complexity by nearly 50%. Visual comparisons on DIV2K shown in Fig. 4
further corroborate these advantages.It can be observed that the texture details reconstructed by
our method are closer to the ground truth (GT), whereas other methods, such as the existing SOTA
method CiaoSR, tend to produce artifacts. This demonstrates the superior visual performance of our
approach. More visual comparison is available in the Supplement.
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PSNR SSSM SSM linear attn Convs MLP

×2 34.93 34.85 34.84 34.77 34.78
×4 29.24 29.17 29.15 29.06 29.09

Table 3: Performance comparison of different based models.

5.3 ABLATION STUDY

In this section, we conduct ablation studies to evaluate the effectiveness of core ideas of our method.
We focus on two components: (a) Scalable State Space Model (SSSM) and (b) key elements in
S3mamba, global feature extraction (GFE) and scale-aware self-attention (SFAtt). We use the EDSR
baseline to validate their effectiveness on the DIV2K dataset.
Effectiveness of SSSM. To validate the effectiveness of the proposed SSSM module, we perform
ablation experiments by replacing it with alternative components of equivalent linear complexity.
Compared to global-receptive modeling approaches (SSM and Linear Attention) and local-receptive
operations (Conv and MLP), our SSSM demonstrates superior performance, in Tab. 3. The significant
performance gap between local-receptive and global-receptive variants highlights the necessity of
integrating long-range dependencies during upsampling. Notably, SSSM consistently outperforms
both SSM and Linear Attention among global-receptive approaches. This advantage comes from the
unique explicit scale-conditioned state modulation of SSSM combined with spatially aware context
aggregation, which jointly addresses the critical requirements of ASSR, preserving global consistency
while recovering high-frequency textures across diverse magnification factors.

GFE SFAtt ×2 ×3 ×4

✗ ✗ 34.71 30.98 29.06
✗ ✓ 34.78 31.03 29.12
✓ ✗ 34.85 31.09 29.19
✓ ✓ 34.93 31.13 29.24

(a) PSNR comparison of GFE and SFAtt on DIV2K.

model GFE SFAtt

SSSM 29.24 29.24
Convs 29.12 29.20
MLP 29.13 29.20
None 29.12 29.19

(b) PSNR with different core models on DIV2K ×4.

Table 4: Ablation of GFE and SFAtt

Effectiveness of GFE and SFAtt. Our experiments systematically validate the design of S3mamba
dual branches as shown in Tab. 4. The module removal study confirms the necessity of both
GFE and SFAtt: excluding GFE degrades feature representation due to insufficient global context,
while removing SFAtt reduces scale adaptability by disabling position-aware analysis. Further
component replacement tests (substituting global operations with local Conv / MLP counterparts)
reveal that GFE’s effectiveness stems specifically from its global information integration, which
enriches local upsampling by resolving ambiguities across distant regions. Similarly, localized SFAtt
implementations fail to decode scale-aware positional patterns due to constrained receptive fields.This
dual validation reveals: GFE uniquely enhances local upsampling through global feature synthesis,
while SFAtt enables scale-robust reconstruction via holistic position encoding analysis.

Additional experimental results can be found in the Appendix.

6 CONCLUSION

In this paper, we propose a novel SSSM that modulates the state transition and sampling matri-
ces during the discretization process, achieving scalable and continuous representation modeling
with linear computational complexity. Additionally, we develop a novel scale-aware self-attention
mechanism to further enhance the network’s ability to perceive globally significant features across
various scales. The S3Mamba is designed for constructing scalable continuous representation spaces,
enabling the reconstruction of arbitrary-scale high-resolution images with rich detail. Extensive
experiments on both synthetic and real-world benchmarks demonstrate that our method not only
achieves state-of-the-art results but also exhibits remarkable generalization capabilities, paving the
new way for arbitrary-scale super-resolution.
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Algorithm 1 SSSM

1: Input: x : (B, C, H, W) Output: y : (B, C, H, W)
2: x : (B, H*W, 4, C)← scan(x)
3: A,D ← Params
4: C ← sC(x)
5: B ← sB(x)·sBscale(scale, coord)
6: ∆← τ∆(Params + s∆(x)·s∆scale(scale, coord))
7: Ā, B̄ ← discretize(∆, A,B)
8: y : (B, H*W, 4, C)← SSM(Ā, B̄, C,D)(x)
9: y : (B, 4, C, H, W)← reshape(y)

10: y : (B, C, H, W)← mean(y)
11: return y

A APPENDIX

(a) Comparison of different computational architectures

MLP Transformer RNN SSM
Receptive

Field Local Global Near-global Near-global

Computation
Complexity O(n) O(n2) O(n) O(n)

Parallel True True False True

(b) LPIPS tested on scale ×4

COZ Ours CiaoSR LMI LIIF
LPIPS↓ 0.5211 0.5271 0.5899 0.5394

DIV2K Ours CiaoSR LTE LIIF
LPIPS↓ 0.2590 0.2593 0.2655 0.0.2670

Table 5: Ablation of GFE and SFAtt

Organization. In this part, we organize the Appendix as follows. In Section 1, we provide a
comparison of the calculated effects of the RNN, Transformer, and SSM method. In Section 2, we
provide the implementation details of the SSSM Block and the pseudocode of the proposed SSSM
structure. In Section 3, we compare the computational efficiency of our method with other methods
and provide additional results to demonstrate the effectiveness of our approach. In Section 4, we
provide more visual effect contrasts as well as the user study results.

A.1 ANALYSIS OF THE STATE SPACE MODEL

According to prior studies (Dao & Gu, 2024; Gu & Dao, 2023; Guo et al., 2024; Liu et al., 2021; Liang
et al., 2021; Zhu et al., 2024), the State Space Model (SSM) architecture bridges key characteristics
of both Transformer and Recurrent Neural Network (RNN) models while addressing their inherent
limitations. Unlike the Transformer, which employs a global attention mechanism allowing every
input point to interact with all others, SSM organizes inputs into a directed sequence and restricts
the search scope to historical inputs stored selectively in the state space. This design reduces
computational complexity and simultaneously maintains the ability to capture sequential dependencies.
Furthermore, the dynamic evolution of the state space introduces a forgetting mechanism, ensuring
efficient use of memory and computational resources.

Compared to RNN, SSM similarly processes historical information sequentially. However, RNN
suffer from limited parallelization capability due to their inherently sequential computation, making
them less practical for large-scale tasks. SSM overcomes this limitation by leveraging a State Space
Model (SSM), which enables simultaneous computation of all outputs. This design allows SSM
to maintain the sequential modeling strengths of RNN while achieving high parallel efficiency
comparable to the Transformer.

SSM’s key advantages lie in its balance between computational efficiency and modeling capacity, as
shown in Tab. 5a. Narrowing the search scope to past inputs significantly reduces computational costs
compared to the Transformer. Meanwhile, the SSM architecture ensures scalability and parallelism,
effectively overcoming the limitations of RNN. This positions SSM as a powerful and efficient
alternative for tasks that require both sequential dependency modeling and computational scalability.
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Figure 5: Visual comparison with existing methods on the COZ dataset × 3.5.

Figure 6: Visual comparison with existing methods on the COZ dataset × 4.

A.2 DETAILS OF THE PROPOSED SSSM BLOCK

The core architecture of the proposed SSSM block is grounded in the principles of the State Space
Model (SSM) (Wang et al., 2023) to construct the SSSM framework. As elaborated in the main text,
the SSM structure is characterized by five coefficient matrices, namely A, B, C, D, and ∆. Following
the methodology of SSM(S6) (Gu & Dao, 2023), we directly parameterize A and D to explicitly
facilitate the implementation of forgetting mechanisms and skip connections, respectively. Similarly,
the matrices B, C, and ∆ are adaptively generated based on the input features, enabling effective
dynamic state filtering. A key distinction lies in leveraging scale information to further inform and
refine this generation process, with details shown in Algorithm 1. As discussed in the preceding
section, we integrate results derived from multiple scanning strategies to enhance the structure’s
global contextual awareness and perception capabilities.

A.3 MORE RESULTS

A.3.1 LPIPS

To provide comprehensive empirical validation of our method’s perceptual superiority, we conducted
extensive comparative analyses using the Learned Perceptual Image Patch Similarity (LPIPS) metric
across two benchmark datasets: COZ and DIV2K. As quantitatively demonstrated in Table 5b, our
approach achieves consistently lower LPIPS scores (indicating better perceptual alignment with
human vision) compared with seven state-of-the-art methods, including CiaoSR, LTE, and LIIF.
This result substantiates that our method’s architectural innovations fundamentally enhance texture
preservation and structural coherence under diverse degradation conditions.

A.3.2 VISUAL RESULTS

The visual results on the COZ dataset with real-world degradations are presented in Figures 5 and 6.
As shown in Figure 5, in challenging scenarios characterized by significant noise and complex
degradations, our method produces outputs with sharper edges and smoother regions. This highlights
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Figure 7: Visual comparison with existing methods on the DIV2K dataset × 4.

Figure 8: Visual comparison with existing methods on the DIV2K dataset × 8.

the efficacy of the proposed SSSM structure in effectively mitigating severe noise and addressing
the complexities of real-world degradation. Additionally, Figure 6 demonstrates that, for regular
textures with simpler structures, our method introduces fewer artifacts and achieves more uniform and
consistent smooth regions. This indicates that the SSSM structure effectively leverages contextual
information across the image, ensuring coherence and consistency in global pixel distribution.

Furthermore, the visual results on the DIV2K dataset under bicubic degradation are depicted in
Figures 7 and 8. For textures with blurred structural details, our method delivers results that
align more closely with the ground truth (GT) structure, demonstrating superior detail preservation
and structural fidelity. This reflects the superior structural stability and reconstruction fidelity of
our approach. These observations collectively underline the robustness of the SSSM structure in

Figure 9: User study on the DIV2K dataset.
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addressing diverse degradation scenarios, ensuring both local detail refinement and global structural
consistency.

A.4 USER STUDY

We selected 50 images from the test set of the DIV2K and COZ dataset and invited 20 participants
to score each scene individually. The average score for each model was calculated, and the final
statistical results are shown in figure 9. Clearly, the results generated by our method are visually
superior, thanks to the global consistency constraint and structural stability of our model.

A.5 USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used only for grammar checking and text polishing. All
research ideas, methods, and analyses are solely by the authors.
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