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ABSTRACT

Diffusion models have achieved remarkable success across diverse domains, but
they remain vulnerable to memorization—reproducing training data rather than
generating novel outputs. This not only limits their creative potential but also
raises concerns about privacy and safety. While empirical studies have explored
mitigation strategies, theoretical understanding of memorization remains limited.
We address this gap through developing a dual-separation result via two comple-
mentary perspectives: statistical estimation and network approximation. From the
estimation side, we show that the ground-truth score function does not minimize
the empirical denoising loss, creating a separation that drives memorization. From
the approximation side, we prove that implementing the empirical score function
requires network size to scale with sample size, spelling a separation compared
to the more compact network representation of the ground-truth score function.
Guided by these insights, we develop a pruning-based method that reduces mem-
orization while maintaining generation quality in diffusion transformers.

1 INTRODUCTION

Diffusion models have emerged as one of the most powerful families of generative models, achieving
state-of-the-art performance across a wide range of tasks (Song & Ermon, 2019; Ho et al., 2020;
Song et al., 2020a;b; Kong et al., 2020; Mittal et al., 2021; Jeong et al., 2021; Huang et al., 2022;
Avrahami et al., 2022; Ulhaq & Akhtar, 2022). Applications span image synthesis (Nichol et al.,
2021; Yang et al., 2024), molecular design (Weiss et al., 2023; Guo et al., 2024), and time-series
modeling (Tashiro et al., 2021; Alcaraz & Strodthoff, 2022), where diffusion models consistently
generate samples of high fidelity. Their remarkable empirical success has established them as a
leading paradigm in modern generative modeling.

Despite these advances, diffusion models have raised critical concerns. A central one is memo-
rization, where trained models reproduce training data instead of generating genuinely novel sam-
ples (Gu et al., 2023; Stein et al., 2023; Webster, 2023; Kadkhodaie et al., 2023; Rahman et al.,
2025; Chen et al., 2024). Such behavior undermines the creative potential of generative modeling
and threatens the promise of generalization (Somepalli et al., 2023; Carlini et al., 2023). Memoriza-
tion also leads to serious risks for data privacy and intellectual property, as training datasets may
include copyrighted works or sensitive information (Ghalebikesabi et al., 2023; Cui et al., 2023;
Vyas et al., 2023).

A growing body of research has attempted to characterize and mitigate memorization in diffusion
models. Empirical studies have explored its correlation with data duplication, training procedure,
and model architecture and capacity (Somepalli et al., 2023; Gu et al., 2023; Stein et al., 2023),
and proposed defenses such as dataset de-duplication, modified training objectives, or improved
sampling strategies (Wen et al., 2024; Ross et al., 2024; Wang et al., 2024). These methods pro-
vide valuable heuristics yet leaving principles underneath their success underexplored. In parallel,
theoretical investigations have begun to analyze memorization from a statistical perspective. For in-
stance, asymptotic analyses, where both sample size and data dimension grow proportionally, have
provided insights into the interplay between data availability, model complexity, and generalization
(Raya & Ambrogioni, 2023; Biroli et al., 2024; George et al., 2025). However, these analyses do not
fully explain memorization in practical, finite-sample regimes, leaving open a fundamental question:
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Can we disentangle memorization from generalization in practical regimes and mitigate it?

In this work, we take a step toward addressing this question. We develop non-asymptotic analysis
that theoretically explains the emergence of memorization through the dual lenses of statistical esti-
mation and neural function approximation. Our analysis reveals that memorization is fundamentally
tied to the statistical properties of the training objective—denoising score matching loss, and the
approximation capacity of score neural networks. More specifically, from the statistical estimation
side, we show that the ground-truth score function does not minimize the empirical denoising score
matching loss, leading to an inherent gap that drives memorization. From the approximation side,
we establish results demonstrating that the empirical score function demands network size scaling
with the sample size, whereas the ground-truth score admits a compact representation. Guided by
these insights, we explore empirical consequences and mitigation strategies. Our experiments not
only validate the theories but also introduce a pruning-based method that reduces memorization
while maintaining generation quality for diffusion transformers.

Our contributions are summarized as follows.

o Statistical separation theory: We show that the denoising score matching loss admits an inherent
gap between the ground-truth score function and the empirical score function (Proposition 4.1).
Further, for mixture models, we provide a lower bound on the gap in Theorem 4.3, which provides
a formal characterization of how memorization arises from a statistical perspective.

o Neural architectural separation theory: We establish bounds on neural networks approximating
both ground-truth and empirical score functions in Theorem 5.1. Our results reveal that the ground-
truth score function admits a compact neural representation, whereas approximating the empirical
score function requires the network size to grow with the sample size.

Guided by our theory, we conduct experiments in Section 6 that (a) validate our insights regarding
memorization and generalization in diffusion models, and (b) propose mitigation strategies that
reduce memorization while preserving generation quality.

Notations: For a vector x, we use ||z||2 to denote its Euclidean norm. For a matrix A, ||Al|2
and || Al|r denote its spectral norm and Frobenius norm, respectively, and || A||oc = max; ; |A;;].

We use O(-) to suppress multiplicative constants in upper bounds, while (5() further suppresses
logarithmic factors. Similarly, £2(-) suppresses multiplicative constants in lower bounds, and ©(-)
suppresses constants in upper and lower bounds.

2 RELATED WORK

Memorization and generalization in diffusion models have drawn increasing attention in recent
years. In this section we provide an overview of progress on both empirical and theoretical side.

From an empirical perspective, memorization is a significant issue observed across various settings,
raising practical concerns about privacy, copyright, and model generalization (Ghalebikesabi et al.,
2023; Cui et al., 2023; Vyas et al., 2023). This phenomnon are widely identified in different do-
mains, and researchers have revealed several contributing factors, such as training dataset size and
score network size, and propose correspnding direct general mitigation methods like data augmen-
tation and data de-duplication (Somepalli et al., 2023; Gu et al., 2023; Stein et al., 2023; Webster,
2023; Kadkhodaie et al., 2023; Rahman et al., 2025; Chen et al., 2024). More targeted mitigation
methods have also been developed recently, including tracing memorized samples to network ar-
chitectural activations for pruning-based remedies (Chavhan et al., 2024; Hintersdorf et al., 2024),
excluding trigger tokens (Wen et al., 2024), and penalizing manifold memorization (Ross et al.,
2024). Interested readers may refer to a recent survey (Wang et al., 2024) for a more comprehensive
exposure of contributing factors and mitigation methods for memorization.

From an theoretical perspective, memorization in diffusion models has been analyzed from a statis-
tical physics perspective, with a focus on phase transition phenomena (Biroli et al., 2024; Li et al.,
2023; Ambrogioni, 2023; Ventura et al., 2024; Raya & Ambrogioni, 2023; Sakamoto et al., 2024;
Pavasovic et al., 2025). For example, Biroli et al. (2024) relates the sample generation process to
memorization and generalization of diffusion models by identifying critical transitions in generation
trajectories. George et al. (2025) use asymptotic analysis of random-feature denoisers, which are
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functionally equivalent to score networks, to characterize learning curves and reveal the inherent
trade-offs between generalization and memorization. Other lines of work emphasize the role of im-
plicit bias in underparameterized denoisers (Kamb & Ganguli, 2024; Niedoba et al., 2024; Vastola,
2025) and how dataset statistics shape a model’s generalization behavior (Lukoianov et al., 2025).

During the preparation of this manuscript, we are aware of a closely related work (Buchanan et al.,
2025), where memorization and generalization properties in well-separated Gaussian mixture distri-
butions are studied. By considering a specific type of denoiser parameterized by Gaussian mixture,
they demonstrate a sharp transition from generalization to memorization as the capacity of the net-
work increases. Different from their study, our analysis holds for generic sub-Gaussian distributions
and establishes a statistical separation theory. In addition, we analyze the representation power of
general score neural networks and show another separation for approximating empirical and ground-
truth score functions. Based on our theoretical insights, we further develop mitigation methods to
improve generalization.

3 DIFFUSION MODEL AND DATA DISTRIBUTION REGULARITY

In this section, we briefly review the continuous-time formulation of diffusion models and introduce
the structural assumptions on the data distribution that will be used throughout our analysis.

Score-based diffusion model A score-based diffusion model aims to learn and sample from an
unknown data distribution Pyt by estimating the score function (Song & Ermon, 2019; Ho et al.,
2020; Song et al., 2020a;b). It consists of coupled forward and backward processes. We adopt a
continuous-time description, where the forward process is

1
dX; = —iXtdt +dB; for Xy~ Pj.ia and B, a standard Brownian motion.

The forward process gradually corrupts the data distribution by Gaussian noise injection. Here
Pjata represent the ground-truth data distribution. We denote P; as the marginal distribution of X,
at time ¢ and p; the corresponding density function. In practice, the forward process terminates at a
sufficiently large time 7.

The backward process reverses the noise corruption in the forward process—often referred to as
denoising for new sample generation. Mathematically, the backward process is

- 1 ~ - ~ ~
dX; = §Xt + Vlongt(Xt)} dt +dB; for Xg~ Pr,

where Et is another Brownian motion and V log p; is the score function. To simulate the backward
process, one needs to estimate the score function using samples from the data distribution.

e Score estimation. We collect i.i.d samples D = {1, za, ..., ,, } from the data distribution Pya¢a,
we estimate the score function by minimizing the following denoising score matching loss:

~ 2

L(s) = tf % Z?:l 0z, 8)dt with l(z;,s) = Ex, | xo=e: {thﬁtxz — S(Xt;t)” ] , 3.1
t 2

where oy = e"%/? and 07 = 1 — e~*. Note that ¢, is an early-stopping time for preventing score

blow-up and securing numerical stability (Song et al., 2020b; Ho et al., 2020). The estimator s

is parameterized by a large-scale neural network such as a UNet (Ronneberger et al., 2015) or a
transformer (Peebles & Xie, 2023).

e Empirical and ground-truth score function. Although the primary focus of optimizing (3.1) is to
estimate ground-truth score function V log p;, the use of finite collected samples introduces a bias
towards so-called “empirical score function”. More specifically, we denote ﬁdam = %Z;;l 1,
as the empirical data distribution. Let P, be the marginal distribution of the forward process if the

initial state X follows Pjaia. In fact, % Z?:l N(a 2, J?I ) is a Gaussian mixture with mean and

variance dependent on time ¢. Consequently, P; induces the empirical score function defined as

Vlog pi () = —[,%z E:L:l wi(ze) (@ — ),
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where w;(x;) is a weight function; see detailed derivations in Appendix

An important property of the empirical score function is that it is the global minimizer of (3.1).
Moreover, using the empirical score function, diffusion models only reproduce training data points
instead of generating novel samples—known as memorization. Our theory in the sequel focuses on
distinguishing the statistical behavior and representation requirement of empirical and ground-truth
score functions, providing insights on the emergence of memorization.

Data distribution regularity To study different properties of empirical and ground-truth score
functions, we consider sub-Gaussian data distributions with Holder smoothness. These are com-
monly adopted regularity conditions in statistical literature and recent advances in the theory of
diffusion models (Wasserman, 2006; Fu et al., 2024). We introduce Hdolder regularity first.

Definition 3.1 (Holder norm). Let 8 = s+ > 0 be a smoothness parameter, with s = || an
integer and y € [0, 1). For a function f : R? — R, its Holder norm is defined as

. |0°f(x) — 0°f(y)|
srdy = max sup|d®f(x)|+ max sup
||fH’H (R4) sillsli<B o | f( )‘ 51H5H1:Bx;éy ||£U — y||’2y

)

where s is a multi-index. We say f is 3-Holder if || || (ray < 0.

The Holder ball of radius B > 0 is defined as
HIRY, B) = {f : R = R| || fllns(ray < B} .

We now specify a class of Holder density functions that exhibit sub-Gaussian tail behavior.

Definition 3.2 (Sub-Gaussian Holder density). Let C' > 0 and ¢y > 0 be two positive constants.
For any Holder index 3 > 0, let f € H# (R, B) for a constant radius B > 0 with inf,, f(z) > c;.
A density function p is sub-Gaussian Holder if

p(@) = exp(=Clzl|3/2) - f(=).

Since f is uniformly upper bounded, it holds that p(x) < Bexp(—C||z|3/2), which encapsu-
lates sub-Gaussian densities widely studied in classical statistical literature (Wasserman, 2006). The
lower bound on f ensures the regularity of the ground-truth score function, as it is well-known that
the regularity of the score function can be arbitrarily bad near low-density regions (Vahdat et al.,
2021; Song & Ermon, 2020). Definition is adopted in (Fu et al., 2024) for establishing min-
imax optimal rate of conditional diffusion models. Yet our analysis tackles a more fine-grained
understanding of the generalization capability of diffusion models.

4  STATISTICAL SEPARATION: GROUND-TRUTH SCORE DOES NOT
MINIMIZE DENOISING SCORE MATCHING

In this section, we systematically show that the ground-truth score function does not minimize the
denoising score matching loss (3.1). In particular, there exists a gap in the loss evaluated at the
empirical score function and at the ground-truth score function. The gap, perhaps surprisingly, may
not vanish with polynomially many training samples. To begin with, we define

1 < .

Loss—Gap;, = — Y _ (£ (2, Vlogpy) — £ (z;,V1og pr))

i

as the gap between the score matching loss at time ¢.

4.1 Loss—Gapy IS FISHER DIVERGENCE

We relate Loss—Gap, to the well-known Fisher divergence (Johnson & Barron, 2004; Holmes &
Walker, 2017; Yang et al., 2019; Yamano, 2021). Fisher divergence has a fundamental connection to
classical central limit theorems (Johnson & Barron, 2004) and has been widely adopted in machine
learning and Bayesian inference (Hyvérinen & Dayan, 2005; Hyvirinen, 2007; Yang et al., 2019),
change detection (Moushegian et al., 2025), and hypothesis testing (Wu et al., 2022). We state the
formal result in the following proposition.
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Proposition 4.1. For any time ¢ < T, it holds that
Loss—Gap; = Fisher(ﬁt, P),

where the divergence Fisher(P,, P,) = Ey_5 [[|[Vlog 5 (X) — Vlog py(X)|3].

The proof is provided in Appendix A.l. Loss—-Gapy is analogous to the generalization bound of the
empirical score function V log p;, but fundamentally different. A generalization bound evaluates the
deviation of V log p; from V log p; under the ground-truth data distribution P;. Here, Loss—Gap;
is evaluated under the empirical distribution P;. Interestingly, Fisher divergence is not symmetric
and Fisher (P, I?’f) coincides with the generalization bound of V log p;. Existing literature presents
fruitful studies on the generalization properties of diffusion models (Oko et al., 2023; Chen et al.,
2023; Wibisono et al., 2024). Yet, the established analyses cannot be directly applied to our setting.
Indeed, bounding Loss-Gap; can be much more involved due to its intricate dependence in the
empirical score function and the loss evaluation over the same empirical data points. In the following
section, we show a lower bound on Loss—Gap, under mixture models.

4.2 QUANTIFYING THE LOSS GAP IN MIXTURE OF DISTRIBUTIONS

We instantiate Pyat, to a mixture of X components with an equal prior, namely
Piata = &+ Z/fle P, (Mixture Model)

where each component P(*) admits a density p(*), and we denote by X (¥) ~ P(*) a random variable
drawn from the k-th component with mean E[X ()] = (*) and covariance Cov[X (¥)] = ¥. Mix-
ture Distributions align well with real-world datasets, which often exhibit multi-modality. For exam-
ple, image datasets may contain distinct categories, such as cats and dogs in CIFAR-10 (Krizhevsky
et al., 2009), that correspond to different components. For each of the component in the mixture
model, we impose the following assumption.

Assumption 4.2 . We represent X(*) as X(*) = (k) 4 $1/2¢ and assume ¢ is an entrywise
independent sub-Gaussian vector with [|¢][4, = O(1) and ||X||r = O(Vd), where || - ||y, de-
notes the sub-Gaussian norm (see Definition 3.4.1 in Vershynin (2018)). Additionally, we assume

1™z = O(Vd).

Assumption ensures samples generated from the mixture are well separated with high proba-
bility when log(n) = O(d). We define the minimum component separation distance as Ap;, =

min;z |19 — ¥ ||5. Equipped with these, we are ready to state a lower bound on Loss—-Gapy.

Theorem 4.3 (Lower bound on Loss—-Gap,). Suppose Pyat, takes the form ( ) with
each component satisfying Assumption 4.2. Further assume the separation distance A ,;;, = @(\/3)
For to and t; verifying log(os,) = Q(—d) and log(o:,) = O(—logd) and sample size logn =
O(d), it holds that

Ep [Loss-Gap,] = Q(dat_2 + tr(E)) forall ¢ € [to, 1],

where Ep denotes expectation with respect to the dataset D. The proof of Theorem 4.3 is provided
in Appendix A.2. We present several discussions.

Small ¢ and large variance amplify the gap Theorem says that for polgnomially many train-
ing samples, Loss—Gap; is not negligible in the small-¢ regime. The do, ~ term arises from the
Gaussian noise injected during data corruption, while the tr(X) term originates from the within-
component variance. The effect of larger variance on increasing the loss gap can be understood
through the Fisher divergence between P, and P;. For the same number of samples, larger within-
component variance makes the samples sparser in the space, leading to a larger Fisher divergence
between the Gaussian mixture P; formed by the samples and the true distribution P;. Although the

divergence vanishes as n — oo, the convergence rate n~ /% is subject to the curse of dimensionality
as shown in Weed & Bach (2019).
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Gap leads to memorization Using Theorem 4.3 and revisiting (3.1), we can derive

T

Ep[L(Vlogp:) — L(V]ogpy)] = / Ep[Loss-Gap,|dt Z log(1/to) - d + (t1 — to) tr(X).
to

This highlights an important mechanism of memorization: the training loss gap between the ground-

truth score and the empirical score is non-negligible. Therefore, a strong optimizer, e.g., Adam and

AdamW, tends to drive a sufficiently expressive score network to learn the empirical score rather

than the ground-truth score during training. This effect is more pronounced in higher dimensions.

Extension to bounded support Our analysis also applies to mixtures of well-separated compo-
nents with bounded support. The key step in establishing Theorem is to prove a reduced-form
approximation to the empirical and ground-truth score functions, respectively. More specifically,
for a given noisy state X ~ P; generated by injecting Gaussian noise to the empirical data points
x;, we argue that Vlog p;(X) ~ —o; (X — aux;). Similarly, the ground-truth score function is
dominated by Vlogp,(X) ~ Vlog pgk)(X ), where z; is sampled from the k-th component and
pgk) is the density of the marginal distribution via applying diffusion process to the P(*). These ap-
proximations are valid thanks to the separation among the components. Bounded support naturally

ensures this separation and hence the result follows.

5 ARCHITECTURAL SEPARATION: GROUND-TRUTH SCORE ALLOWS
COMPACT REPRESENTATION

Section 4 establishes that Loss-Gap; does not vanish in the small-¢ regime, implying that training
a sufficiently expressive neural network with a strong optimizer can bias the training towards the
empirical score function. Yet, it remains unknown whether a network is expressive enough. In this
section, we investigate the representation requirement for the ground-truth and empirical score func-
tions using ReLU networks and identify another gap in the complexity of the network architecture.

For simplicity, we focus on feedforward ReLU networks, while extending to other network ar-
chitectures does not impose substantial challenges. We define a ReLU network architecture as
F(W,L,N), where W, L and N are the width, depth, and non-zero parameters of the network.
More specifically, we have

.F(VV, L, N) = {f : f(JU) =A- ReLU(AL_l . ReLU( .. ReLU(Alx + bl) - ) + bL—l) + byr,
where A; € R4=1%4 with d; < W forl =0,...,Land Y1, [|Ai]lo + |billo < N}

Here d represents the data dimension and dj, represents the output dimension. The following
theorem establishes approximation gaurantees of the ground-truth and empirical score functions.

Theorem 5.1. Suppose that the density function of Py,¢, satisfies the sub-Gaussian Holder density
condition in Definition 3.2 with Holder index /3. For any sufficiently small ¢ > 0, choose the early-
stopping time tg satisfying logtg = O(log¢) and the terminal time 7 = O(loge~!). Then there
exist network architectures 71 (W7, L1, N1) and Fo(Ws, Lo, No) giving rise to

S1 € fl(Wl,Ll,Nl) and so € fQ(WQ,L27NQ),
such that for any ¢ € [to, T, it holds that

Ep {]EXM% {||51(Xt,t) —Vlogﬁt(Xt)H;H < aigl and (5.1)
Ep [EXWE U|52(Xt,t) —Vlogpt(Xt)H;H < ai? (5.2)
The configurations of F; and F3 are
Wi=0(nlog’e™),  Li=0(log’¢!), Ny =0O(nlog*e?) and (5.3)
Wy = O (e*% 1og7e*1) . Ly=0(log*cY),  Ny=0 (e*% 1og96*1) LG4

The proof is provided in Appendix B. The key idea of the proof is to rewrite the score function as
Vlogp:(z) = Vpi(z)/pi(x) and then construct ReLU networks for approximating the numerator
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and denominator separately. Note that (5.1) is equivalent to the denoising score matching loss (3.1).
Thus, minimizing (3.1) over a sufficiently large network identified in (5.3) using a strong optimizer
will bias training toward the empirical score function. Probing the network size upper bounds and
the corresponding approximation error, we make the following interpretations.

Network size depends on sample size The configuration of the network architecture

F1(W71, L1, N1) depends on the sample size n and the desired approximation error €, whereas the
. 4 . .
configuration of the ground-truth network s depends on € 25. More specifically, as n increases,

the required width W and the total number of parameters N for F; will increase. This distinction
highlights the potential greater complexity involved in approximating the empirical score function,
as it corresponds to a Gaussian mixture distribution with n components.

Different sensitivity to time ¢ We also observe that the approximation errors in (5.1) and (5.2)

exhibit a distinction in the dependence on variance o?. The empirical score function reproduces

the empirical training data distribution ﬁdata, which does not have a smooth density function. Con-
sequently, the empirical score function becomes highly irregular when ¢ approaches 0, making it
substantially more difficult to represent. On the contrary, the ground-truth score function possess
better regularity as the data distribution satisfies the sub-Gaussian Holder condition. We dive deeper
into this regularity contrast in the sequel.

Lipschitz continuity of score functions We investigate the Lipschitz continuity of score functions
by computing the Hessian matrix of log density. As shown in Lemma in Appendix C, we have

2
V2 log py(r) = — 1+ %L Cov[Xo|X, = 2.
O Oy

The same result applies to the empirical density p; by replacing Cov[Xy|X; = x| with the em-
pirical counterpart induced by training samples. For a small time ¢, we show that the Lipschitz
coefficient—the supremum operator norm of the Hessian of the empirical score is bounded as
Q(o;* - mingy; ||lz; — x]|2), which depends on the separation of the training samples and vari-
ance o2. In contrast, the Lipschitz continuity of the ground-truth score of a sub-Gaussian Holder
distribution in Definition behaves much better. As a concrete example, for Gaussian distribution
Piata = N(i,X), denote A\yin (X) as the smallest eigenvalue of ¥, we have

1

————=0(1) f t.
0,? + O‘% )\min(E) ( ) o any

V2 logpel|, =

Weight decay effectively control the Lipschitz continuity Weight decay controls the Lipschitz
continuity of neural networks by penalizing the Frobenius norms of the weight matrices (Krogh &
Hertz, 1991; Loshchilov & Hutter, 2017; Zhang et al., 2018). It has been implemented widely for
training large-scale complex neural network. Motivated by the separation in Lipschitz coefficient,
we demonstrate the effectiveness of weight decay for mitigating memorization in Section 6, as the
score network can hardly represent the empirical score function with well controlled smoothness.

6 NUMERICAL RESULTS

We conduct experiments on both a simulated Gaussian mixture dataset and CIFAR-10 (Krizhevsky
etal., 2009) to validate our theoretical insights and evaluate the effectiveness of our proposed theory-
driven memorization mitigation strategies.

6.1 EXPERIMENTS ON GAUSSIAN MIXTURE DATASET

We explore how network size, training sample size and data dimension affect generalization and
memorization. Additionally, we demonstrate that weight decay and network pruning are effective
remedies for memorization, which validates our theoretical insight. For the purpose of evaluating
memorization in numerical experiments, following Buchanan et al. (2025); Yoon et al. (2023), we
identify memorization as follows. Given a training dataset {x;}}_; and a trained diffusion model
M, we say that a sample Z e generated by M is memorized if ||Znew —2(1)|13 < §|Tnew —(2)lI3,
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where x (1) is the k-th nearest neighbor in l3 norm to Zpey in (z;), . Further, we call the proportion
of memorized samples within a batch of new samples drawn from M the memorization ratio.

We specify Piata = = Zszl N (p®, 1;), where p(®) are well-separated. As a teaser, we set
d = 2, K = 4 to visualize how network size affects memorization, which is shown in Figure

8

In the following experiments, we set i = 8§,
and draw ;%) independently from N (0, 41,).
We first examine the relationship between
memorization ratio, training sample size n, and
data dimension d. The results are shown in
Figure

B

-8 ® Training Data

We initially fix the data dimen- =0 5 17 Genersted Data
sion at d = 32 while varying the training sam-

Data (Memorized)

8
. . . . 6 oo Py ....".. - ¥ <

ple size and network size. The results indicate . :}ﬁ;,. ﬁ ’ CHESE

. . o R ES O
that larger .networks exhibit stronger memoriza- | R R % e
tion capacity, while more training samples re- -1 2 e, | 4o
duce memorization ratio. We then fix the net- ﬁ @’ . )
work size (12M parameters) to analyze the ef- =7 %= = =% % 37 7 &

fects of training sample size and data dimen-
sion. The result shows that higher dimension
leads to lower memorization as data are harder
to replicate.

We then leverage our theoretical insights to
explore potential remedies for memorization.
Motivated by the theoretical insights in Theo-

Figure 1: Learning 2D Gaussian mixture with
varying network sizes. Increasing the network
size leads to a clear progression: from failing
to capture the underlying distribution, to partial
generalization, and eventually to memorization.
Memorized samples generated by the largest net-
work are highlighted in red.

rem 5.1, we conduct further experiments to investigate the effect of network width and weight decay.
The results are presented in Figure 2b. With sufficient sample size (n =10K), memorization is less
likely and increasing network width promotes generalization (measured by mean log-likelihood,
where higher is better), while strong weight decay is harmful. However, with reduced sample
size (n =3.2K), wide networks and light weight decay both lead to a high memorization ratio and
severely impair generalization, while proper network width and weight decay prevents memoriza-
tion and improves generalization. These findings validate that choosing appropriate network widths
and applying weight decay during training are effective strategies to mitigate memorization.
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(a) (Left): fixed data dimension with varying sample
sizes and network sizes. (Right): fixed network size
with varying sample sizes and data dimensions.

(b) (Left): fixed network depth with varying widths
and sample sizes. (Right): fixed network width with
varying weight decay rates and sample sizes.

Figure 2: Comparison of experimental results on Gaussian mixture data. In (b), solid lines show
memorization ratio, dashed lines show mean log-likelihood.

6.2 EXPERIMENTS ON CIFAR-10

Motivated by our theoretical insights and results on the effect of network width from synthetic
experiments above, we propose a pruning method as a plug-and-play approach for trained diffusion
models to reduce memorization.

Pruning to mitigate memorization Pruning has been widely adopted for trained diffusion mod-
els, either to reduce network size for faster inference while maintaining performance (Fang et al.,
2025), or to remove specific memorized samples by identifying the responsible neurons (Hintersdorf
etal., 2024). We propose a one-shot pruning method for trained Diffusion Transformers (DiTs) (Pee-
bles & Xie, 2023). In particular, motivated by Theorems 4.3 and 5.1, we identify and prune attention
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heads that contribute least in the small-¢ regime, followed by fine-tuning. This forces remaining
heads to represent the data with reduced capacity, which in turn encourages the model to learn
ground-truth score rather than overfit to empirical score. The full procedure is summarized in Algo-
rithm |. We adapt importance score computation from Liang et al. (2021), with details provided in
Appendix

Algorithm 1 One-Shot Pruning for Diffusion Transformers

1: Input:

2:  Dataset D, trained DiT model M with heads H = {h1,...,hu}.

3 Time sampling distribution 7, which shall put more density on small ¢.

4:  Pruning percentage ) € [0, 1], fine-tuning steps M.

5: Compute importance scores {I(")};,c3 < IMPORTANCESCORE(M, D, T).
6: Identify the set Hprne of |77 - H | heads with the lowest importance scores.
7: Prune all heads h € Hpryne from the model M.

8: form=1,...,M do

9: Fine-tune the pruned model M on a batch from D.
10: Output: The pruned model M.

Performance of our pruning method We evaluate our pruning method on the CIFAR-
10 (Krizhevsky et al., 2009) dataset. First, we randomly select a subset of 5,000 samples and train
a DiT on this dataset. We then apply our pruning method with diffusion time step sampling dis-
tribution 7 = Beta(0.8,2) and set the pruning ratio n = 20%. For comparison, we also evaluate
the original model and a random pruning baseline with the same pruning ratio. For evaluation met-
rics, in addition to memorization ratio and FID, we adopt precision and recall from Kynkidnniemi
et al. (2019), where recall measures diversity and generation coverage. The results in Table | show
both our method and random pruning reduce memorization, but our method achieves higher recall
and maintains a competitive FID, indicating improved diversity without sacrificing much fidelity.
We also compare images generated by the original model and our pruned model in Appendix
Although pruning slightly reduces precision, this is expected, as a high memorization ratio can arti-
ficially inflate precision by replicating training samples. For completeness, we also vary the pruning
ratio, report additional results in Appendix

Model \ Precision (1) Recall () Memorization Ratio (%) ({) FID (})
Original 0.39.0.01 0.0840.01 73.8241.12 15.4740.28
Our Pruning 0.33:‘:(),()2 0.12:|:(),01 68.58:‘:0_77 15'07:|:0.33
Random Pruning 0-3Oj:0.02 0-09i0.01 66.87i0,94 17-14i0425

Table 1: Comparison of the original model, our pruning method, and random pruning. Each value
is mean.gtq over 5 runs. Best results are in bold.

7 CONCLUSIONS AND LIMITATIONS

In this work, we present a theoretical framework to explain memorization in diffusion models, ex-
amining it from the perspectives of both statistical separation and architectural separation. From
the statistical separation side, we show that the ground-truth score function does not minimize the
denoising score matching loss, and we quantify this discrepancy for generic sub-Gaussian mixture
models. From the architectural separation side, we establish theoretical bounds on the approxima-
tion capabilities of neural networks for both the true and empirical score functions, demonstrating
the separation of network size. Finally, we validate these theoretical insights through a series of
experiments and propose a novel pruning method to mitigate memorization based on our findings.

While our work provides valuable insights, it has a few limitations. First, although we quantify the
discrepancy for sub-Gaussian mixture models—a very common case—our theoretical framework
does not yet extend to heavy-tailed distributions. Second, while our pruning methods are effective
in our experiments, we lack the computational resources to fully validate their performance on larger
datasets and models. We hope that future work can address these challenges.
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A PROOF OF PROPOSITION AND THEOREM

A.1 PROOF OF PROPOSITION

Proof. The proof relies on a rewrite of the score functions. For the ground-truth score function and
any empirical sample x;, we have

¥ log py (1) @ 1 ( s J (@i — @0) eXP(—%th — a0|15)d Paata(20)
ogpt(rr) = ——= (Tt —x;) — — )
o o7t o} feXP(—ﬁHl‘t — ;w0|3)d Paata (o)
@) 1 a
= == (@ — avwi) — —5 (i — poje()) (A1)
O O

where in equality (¢), we insert ci;z; and in equality (i%), we denote

J @0 exp(—gpzlloe — cwwo|3)d Paata (o)

toe (T
| J exp(= g5z 2 — awzol3)d Pasta(wo)

and we obtain

n

%Zf(xz,VIngf ZEXA% [ =t

i=1
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By analogously denoting

J wo exp(—55 |l — awol|3)d Paata (o)

ﬁo\t(xt) = =
feXp(—%th — a0|13)d Paata(20)
we obtain
2
*Zﬁ (zi, Vlogpy) = ZEX,\L [H — Hoj¢(Xt)) ] :
=1 2
Combining them, we have
1 n 2
L -G =— Ex. |z (X A2
oss—Gap;, n; Xi|ai U‘ — pioj¢(Xt)) j (A.2)
1 n 2
— = Ex,pa, H — fioe(X0))| |- (A3)
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To compare the terms in A.2, it suffices to fix an arbitrary time ¢ € [to, T]. Starting with the ground-
truth denoising loss, we have
1 n 2
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We claim that (&) = 0. In fact, we have

(W) = 2% t TE o Po B X0 {(Xo - ﬁ0|t(Xt))T(/70\t(Xt) - MO\t(Xt))}

©y EXtEXg|Xt [(Xo - ﬁo|t(Xt))T(/70\t(Xt) - MO\t(XtD}

2

= 205, [ (o (X0) = Fou(X0) " (on(X0) = pon(X0) |

=0,

where equality (¢) follows from the tower property of conditional expectation. As a result, compar-
ing (A.2) and (A.4) gives rise to

2 1 n
Loss~Gap, = 0+ 3 Exiie [[[e(X0) — o (X)) (A6)
i=1

To further simply the expression, we apply Tweedie’s Formula(Robbins, 1992) and have

o2V log pi(zy) + 24
a

]E[XolXt = .Tt] =

It immediately gives us

2 1 & N 2
Ut - ZExtm [Huon (X¢) ,UOIt(Xt)HQ} = E;Extm [HVIOgPt(It) - Vlogpt(l’t)Hz} :
Then we can conclude
1 — N
Loss-Gap; = - Z]Ext‘ri {HVIogpt(Xt) - Vlogpt(Xt)Hg}
i=1

= Exp, [IVloghi(X) = Viegn(X)13]

and we complete the proof. O

A.2 PROOF OF THEOREM
A.2.1 SIMPLIFICATION OF (A.6)

For each k € [K], let pgk) denote the marginal density of the forward diffusion process at time ¢.
Equipped with this notation, we can have a simpler discrete version of (A.6).

For fig|¢ () we have:

Zlnzl i eXP(—ﬁ ¢ — a|3)

ﬁo|t($t) = Zn

j=1 exp(—%”xt - atxj”

E wt (z¢)z1,

exp(— 7y o —ami]3)

~(1) —
where W, ’ (z;) = ST e g T T forl=1,2,--- ,n.

As for pg;(¢), noticing that

d 1
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we have
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K (k)
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After simplification, Loss—Gap; can be rewritten as
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For the sake of simplicity, we further denote
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A.2.2 BOUNDING THE DOMINANT WEIGHTS WITHIN CERTAIN EVENT

We know that each z; is mdependently drawn from E ey P, where X ®) ~ p(¥). We can then
write the decomposition of X %) a

X® = u® 4 e e~ pe, B[] =0, Cov(X™M) = Cov(e) = 5.

And thus, under Assumption 4.2, there exist constant C7, C; > 0 and entrywise independent sub-
Gaussian vector & such that
e=X'2¢ E[¢] =0, Cov[¢] = Iu, [|€]ly, < C, |Z]|F < CaVd. (A7)

We define a mapping ¢ : [n] — [K], where ¢(i) maps ¢ to the index of the component from which it is
generated. Equipped with this, we can write x; — fi.(;) = €;. We now define a high probability event
&1 for sample norm and their well-separation properties. Invoking Corollary ,ford € (0,1),
with high probability at least 1 — § the following event holds

A
51 Z{xl,...7
N {xl,...,mn

We also define another high probability event for Z, the Gaussian noise introduced by diffusion.
Invoking Lemma A.1, for §; € (0,1), with high probability at least 1 — ¢ the following event
holds

(s = preiy) — (x5 — pregi) I3

de RN W ETEIREN w,jem}

yi(6/n)
C

d < inf ||z — pe |2
< nf 12 = oo |1

Yu(0/n
< sup [|@ — pep 3 < 7(0/ )d}
i€ [n]

Ey 2 {\/d 24/ dlog(2/6z) < ||Z]|2 < \/d+2\/dlog(2/5z) +210g(2/6z)}.

Within £ N&,, we can easily conduct our analysis of dominant weights. Conditioned on & NE&,, we
discuss the following two cases for investigating the weight behaviors. We can take §; = CXP(Q;d/g)
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and analyze ¢ in a certain range such that Z—’Z < %. With certain constraints, we can easily find
that
w(0 )
Y O/m) ;s o, [90/m) ) at\/d+ 2\/dlog(2/d7) + 21og(2/67). (A.8)
2 C 2 C
* Case 1: The distance term regarding x; and ji.;). ~ We evaluate the distance ||X; —

o u("“‘) ||2- According to the forward process, we rewrite X; as X; = ay X; + 0, Z, where
Z ~ N(0, I) independent of X;. Thus, we derive

[ Xt — arpeillz < 1 X — e Xill2 + aul| Xs — preg |2

Yu(d/n)
o d

<ol Zl|2 + o

Consequently, we deduce

(6
| X — aspienll2 < O’t\/d+ 2y/dlog(2/67) 4+ 21log(2/67) + Y (O/n)d

< Vi (\/yu(a/n) N 1\/yz(5/n)> 7 (A.9)

C 2 C

where the last inequality leverages
On the other hand, by the triangle inequality, we have

1Xe = atpieqnll2 > max {oe| Z]l2 — ae| Xi — 1|2, ae| Xi — |2 — 02| Z]]2, 0}

For the first term in the maximum above, we have

w(0/n
0| Z|2 — || X5 — || > at\/d —2y/dlog(2/62) — at\/%d. (A.10)

Similarly, we have

|| Xt — aspiegyll2 — ol 2|2 (A.11)

> a2 g 0+ 2/ TToa@To) + 21o8(2/02)

S yi(0/n)

hail2 A.12
25 C d, (A.12)
where the last inequality leverages . Taking maximum over ( ) and ( ) leads to
w(0/n)  «a o/n
[ X; — cptegiyll2 > max {at\/d —2\/dlog(2/5,) — at\/y (C/ )d7 2t\/yz(c/ )d}
oy [y(d/n)
> -t . A.l
25 C d (A.13)

* Case 2: The distance terms regarding z; and u(*), k # c(i). We only need a lower bound

on the distance || X; — a;p9)||o:
1 — e ®)o = | Xy — Qpfhe(i) + Qible(i) — a5
> atHMc(i) - M(k)H? - ||Xt - at,uc(i)H2

> @ Amin — ayVd <\/y“(g/n) + ;\/y’(‘gn)> : (A.14)

* Case 3: The distance terms regarding x; and x;. We have

lwe — ;|13 =l — vl |3 (A.15)

= llae(wi — 25) + 01 Z|I3 — l|o: 23
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1

> Soillws — ;3 — 20711213

2y (6
> o720 o3 L Jilon(B2n2/36) — 2072

2(6/n) , 24 y(d/n) ,
Za?Td 6 dlog(B?n?/c}6) — af e

2d
> O‘é (yl 5/n)d — 4,/dlog(B2n2/c25)) (A.16)

where the third inequality leverages Corollary and the fourth inequality leverages

Thus, within & N &, according to Corollary A.3, if we take n = O(J exp(cd)), we have
1
L+ 30 exp(— 5oz (X — ol — [1X: — uil[3))
1

(yl(é/n)d 4, /dlog(32n2/026))>

/\(’L) (Xt)

v

1+(n71)exp(
1

> (A.17)
1+ nexp ( o d)
Leveraging Lemma and the bounds in (A.9), ( ), also taking
Amin > (2 <\/yu<g/”> + ;\/Wg/“)) + 1) vV,
we have
[ (X w17
(e(3)) qe (X — agp
w (X)) =11+ _
! I k;m) @ (Xt — Qufie(s) ]
C (11X — ™3 = 1X; — crpen13) \ |
> |1 —
2|12 eXp( 2(a? + Co?)
L k#c(7)
[ B c
> |1+ —(K-1 —_—
o R )eXp< (2+Cot )
: |:(O‘tAmm - at\f \/ yu + % (AIS)
Yu 6/n 6/n -
et W s%
BK CaZd -
> 1422 exp(—o‘t)] . (A.19)
cr

2(a? + Co?)

A.2.3 LOWER BOUND OF THE LOSS GAP

Next, we further simplify the loss gap Loss—Gap; by extracting the weights of dominating sample
and component. Within £ we can write

A = B [0 (X0 — i () i) (X0)

+ (e xm - 3w ) ) () ) 48]

[ k(i)
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1 c(i c
> 5 B 08 (X0 — wf™ P (X0) i (X0 12
A
N Extm{ S el (X - 32w (X0 6 (x| 1{52}]
[ k(i)

B

Noticing that in Corollary A.3, when we take n = O (6 exp(cd)), we have y,(6/n),yi(6/n) =
O(1). Combining with the fact that Ry, = O(V/d), we have x; = ©(v/d). Then, consider ¢ such
that a; /o, = Q(BV/d/cy), within &1, we can firstly simplify E, |z [AL{&2}] by Lemma as

Ex, |z; [AL{E2}]
R (0D (X102
= Ex,jo, | (HEH (@ (X)) - 25525 )2,
wE“ ))(Xf,)afC ) ( ))(Xt)athZ (i))(Xt)EH2):|
2

oz2+a't20 ﬂc(i) 2+a'20

(e(4))
2 B [((E 6000 - et

(D) x Vo20 (e(D) ( x 2
e e — it 201) | 21 Bl

K3 11)<C(i)) [e3
> Ex, [(1{52}H(A< (X1) = Mg

() (x)g20 w (x,)
- GOy — O 7] 9002 fad)

R W (X,)a2 w0 (X,)o?
_Extm[(l{&}n( (X)) - 2+(a)§c) )i — agifg)c%/‘c(wuz)]

WD (X, )aro,
+Ext|1i|:’ - afia,) ZH21{52 }
(C<Z)) Xi)agoy ~(1 w,ﬁc(“) Xy af wic(i)) X afC
~ Exife {( 24(r02)c 2)" (@ (xy) - a?+(a?c) Jwi = a%io?%} = (i) 1{52}}
—20(c}/ad). (A.20)
In the analysis below, we leverages the condition oy < BC—\f/g from Lemma . We denote 0; =

%, and Rinax = maxge(g) [|[0*) |2 = O(Vd). The first term in (A.20) can be simplified as

(e(4)) 2 (e(4)) 2 2
~(7 w Xi)a w X))o C
‘ (U}t( )(‘ft) . ( t) t> Tj - : 2 ( t) - Mc(l)

Ex, |z, 1{&
xifes | | 123 oF + 020 oF + 020 2

= Ex, (1{62} (@57(X0) = 0 (X0) ) s = i (X0) (1 - 00)

1)

= Ex,ja, (1{52} (@t(“ (X,) — wgc(i))(Xt)) i — wi™ D (X) (1~ 0,)(zi — ucu))Hz)]

> Ex,io :(1{52} wf (X)L~ 0,) uc@)Hz)]

2 (1= 0% ||z = o)l — Ex o [H( (X0) §C“”<Xt>)Hj Jeill3

BK ( cotd) 2 5
> (1—0,)2||(ws — ptegs - = (anax ul /n)d>7
( t) H( M())Hz <1_|_Bc;( exp(_cgtd)> C

where the second last inequality leverages the fact that in our ¢ range wt( )(Xt) >

l\)\»—t
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The second term in ( ) can be simplified as
’wgc(i))(Xt)OltO't ?
E N =7 1{&
Xz, O‘?"’O’?C , { 2}
2
> 1 ( QrO¢ ) 1 gl
=9 04%4-0,526' 1+—exp< 2(0462:1»26['10 ) 3
t
2
_ 192 o? 1 d
T2t a2 BK Ca2d T3
(o' 1+ o, €XP (—72(a +Caf)>

where the first inequality leverages the fact that || Z]|2 > +/d/3 within &;.

% o T ~ (% c(i
Ex,jz. [(wf‘ x0:-22) (@ (%) - w*P (X6,

wf™ (X1 = 0)necs ) 1{52}]

=00 2 B, [0 (X)) 27 (@ (%) = 00" (X)) ) 1{E:)]
=0 2 Ex, |, {wt(c(i))(Xt)(l —0:) Z7 pegiy 1{52}}
=00 2 B, |27 (1= 00) (s — o) ) 1{E2}
+ 01 - ZLEx { T((9t = D)(xi — pe(s))
+ o (X (@) (X2) = ™™ (X))
= wf (X210 ) LE)]
= Expo, |27 (00 = V(@i — 1)
+w ( (@ ))(Xt)(@( )(X ) — gtw(C(Z))(Xt))xZ_
w§ DX = 00eqsy ) 1{E}

where the last equality leverages the fact that Z has mean 0 within &, and z; is a constant vector
which is independent of Z. Then

. T . .
Ex,po. [ (i V(X002 2) (@ (X0) = i (X)),

— 0l (X)) (1= ey ) HE) | ‘

_ Oios
at

EXth |:ZT <(ﬂ)\t(i)(Xt)wt(C(i))(Xt) - wgc(i))(Xt)Qet +0, — 1)xi

= (1= 0 X)) (1 = e ) 1E: ‘

< 2o\ B 1213) B, [(1 - 0 (X0)21{€:3] (1~ 00) (11 + o 1)
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BK co.d
. 2 (- 3) 5/
S8 (1 +Lexp( CM)) (R + 03021 ).
2

where the second inequality leverages Cauchy-Schwarz.

Collecting all the terms we have
o? 1

— - 2
o BK B Caid
t 1+ o OXP ( (e +CoT)

Ex, e [AL{E}] 2 0;

BK CO.d 2
exp (—=5) Yu(8/n)
+1_92 Ti — MHe(i 2_ '<R3nax+ “ d>
( t) H( N,())Hz 1_|_307Kexp(_cgtd) C
£
BK Co.d
bov g gy [ — S <R2 1 uld/m) d> . (A21)
o I+ e (55 ) et 0 |
Additionally, by the estimation of ugft) derived in Lemma , within £ N &;, we have
—a?d 2
n exp (ﬁ)
B<2(n—1) 7 sup [l
1+ nexp (ﬁ) J€ln]

BK
+2(K —1) i

e _ Cafd 2
*P\ T 2(a?rCo?)

'EXt\wi|: sup M(()Tt)(Xt)}
ke

BK Cald
L+ B exp (~artin ) .
nesp (52 ) 2 <44 va(6/n)
S +K i (R?m u d).
1+nexp( ) 1+—exp( “59) ¢
(A.22)
Further noticing that in Corollary , when we take n = O (Jexp(cd)), we have

yu(6/n),y1(6/n) = ©(1). We can thus collect all the terms, by taking
Buin, B = © (V) , n= O (§exp(ed) , K = poly(d),

for any ¢t € [to,t1] where tg is chosen to satisfy oy, = g exp (—%), t1 is chosen to satisfy

o, S — B f With such conditions, we know that

—ajd 2 BK co.d 2
NeXP\ 257 o &X (— <) 4
n o?d K BE Co,d = O(oy),
1+nexp(20(§?> cr (_T)
which makes B and the third and fourth terms in ( ) negligible. Thus we finally have within &,
we have

a1 n
Loss—-Gap; = —Z—Z
oy n
a2 1 n
2 20 (B L)) B 1)
o? o} 1<
2 — cbd+ = 1= 002 — pesyll3
?( o LS50 00
Z + Z H$1 Nf(?)”Qv
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where we shall recall that 6; = azfﬁ
t t

Finally, by taking § = exp(—d/2c) we have

1 n
Ep[Loss-Gap,] > Ep ll{gl} g Z A;
¢

2Bp (1) 5|+ 2 Y Ep [(1-1(E5D) - los o ]

=1

d
>
R 52 + tr(Cov(e)),

where the last inequality leverages the fact that RZ . = O(d), and E[||x;|13] < E[||&;||3] + B2, =
O(d) leveraging the sub-Gaussian property of e.

Further absorbing constants like B, C, ¢y, we have the final conditions as
10g(7’?,) = O(d)7 log(ato) = Q(_d)a log(otl) = O(_ IOg(d)),
and we complete the proof.
A.3 SUPPORTING LEMMAS
We first present the classical lemma of x? concentration bound.

Lemma A.1 (Laurent-Massart bound for x? concentration (Laurent & Massart, 2000)). Suppose a
random variable X ~ x2 with degrees of freedom d. Then for any ¢ > 0, it holds that

PX —-d> 2Vdt + 2t] < exp(—t),
Pld — X < 2Vdt] < exp(—t).

We can next derive the following lemma for the Subgaussian random vectors.

Lemma A.2 (Norm Concentration). Suppose e satisfies the conditions in , the squared norm
|ll|3 is concentrated around its mean d. Specifically, for any > 0 that satisfies the relevant
condition below, the following bounds hold:

1. Upper Tail: Forany n > 1/C — 1,

P (Il > (1-41)d) < 2 oxp (=5 001 +1) ~ 1 log(C(1 4 1))

2. Lower Tail: Forany n € (1 —1/C, 1),
) B d
B(lell3 < (1 =md) < Zexp | ~5 (O —n) — 1 ~log(CAL-m)] ).

Additionally, let

3
—
(o9
~—
Il
—
[a—
o
0
/N
[\
Sy
N—

yu(d) = (1+7(9)) + V7(8)(2+7(9)),

Then, for any ¢ € (0,1),

P04 < |l < ©2a) = 1-6

A corollary induced by Lemma is that
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Corollary A.3 (Any-two sample separation for n draws). Suppose € satisfies the conditions in
Letey, ..., €, beiid. copies of e. Fix € (0,1) and define

- on(22),

n(6/n) = (1+7(8/n)) = /7(8/n)(2+7(6/n)),
Yu(0/n) = (1 +7(8/n)) + /7(8/n)(2 + 7(8/n)).

Then, with probability at least 1 — 4, the following holds for all pairs i # j:

2y1(d/n d
ool 2 220 g oy [ rogmzs),

where b > 0 is some constant depending on B, c¢¢, C, C;. Additionally, we have the samples norm

(0
d< el < %/n)d’ fori=1,2,---,n.

yi(0/n)
C

Specifically, for some constant ¢ > 0 depending on B, ¢y, C, C1, we have if n = O(6 exp(cd)),
llei = 5113, llei 3 = ©(d), for all 4, j.

We defer the proofs of Lemma and Corollary to Appendix

We denote ¢; as the density of ae + 0 Z. We then provide some useful results that help us to derive
useful properties of ¢;.

Lemma A.4 (Lemma B.1 and B.8, (Fu et al., 2024)). Let
~ Ot & Qi
Ot =~ 1/3° t= "o [ 2
(a2 + Co2)'? af + Co?
under sub-Gaussian Holder density assumption, we have
1 Cllz|i3 >
qt(l’) = exp( h(l’,t),
(0F + C’Uf)d/z 2(af + Co?)
where
h(z,t) = /f(z) ¥exp —M dz, and ¢y < h(z,t) < B.
(27)d/2G¢ 207 - -
Equipped with this, it is also straightforward to obtain the following:

Lemma A.5 (One-sided upper ratio bound for the channel). For any z,, x5 € R, we have

wlr) B (- Cllla g - ||x2||%>> |

qi(x2) ~ cf 2(a? + Co?)

We finally present the following lemma to provide an estimation of M(()’rt) (z4).

Lemma A.6. For any ¢ > ¢ satisfying 2t = Q(Bc—\f/g), and z; = ©(\/d), we have

ot

2
(k) _ (k) @ IO 1)
/1’0|t (xt) H + O[% + CO’tz (xt 1% ) + Lk,

where E, the error term, satisfies || E|2 = O <ﬂ>

at

The proof is deferred to Appendix
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A.4 PROOF OF SUPPORTING LEMMAS
A.4.1 PROOF OF LEMMA AND COROLLARY

Proof of Lemma A.2. We define the function h(z) = x—1—log(z), which is positive for z # 1. The
proof proceeds by first bounding the moment-generating function (MGF) of ||¢||3 and then applying
a Chernoff bound.

The normalization constant Z is defined as Z = [, exp(—C'|x||3/2) f(x)dx. Leveraging ¢y <
f < B, we can bound Z as

o d/2
22 [ e es(-Clal/i—c, (%)
Rd

2

/2
Z < / B -exp(—C||z||3/2)dz = B () .
Rd c

Let M(\) = E[el€ll2] be the MGF of ||¢|2. For A > 0:

_ / My (2)da
Rd

1 2
=7 / Ml exp(~Ca|3/2) f(w)da

1

== X Lo x| x)dx
=5 [ e (=5 = 2lelB) s(a)a

For the integral to converge, we require C' — 2\ > 0, i.e., A < C/2. Using the upper bound
f(z) < B and the lower bound on Z:

B 1
M= [ ew (—2<c - 2A>||x||§) da

< B < 2m )d/2
= N d/2 —
er ()7 \C—2A

B c d/2 dj2
:(;Jc(c*z/\) - (12)\/6)

Part 1: Proof of the Upper Tail Bound. We seek to bound P(||¢||2 > (1 + 71)d). The Chernoff
bound for an upper tail is P(X > a) < infy~g e ME[eM].

M(A

N

IN

First, we bound the MGF M (\) = ]E[e’\Hé”g] for A > 0. As shown above, this yields:

B 22\ ~?

M()\)<(1—> , for0< X< (/2.

Cf C
Applying the Chernoff bound with a = (1 + n)d:

B d

1 d) < — inf —-A(1 d— —log(l—2X/C) ).
Bl > (1)) < 2 int exp (~31+md - Froa(1 - 2/0))

Minimizing the term in the exponent with respect to A yields the optimal value \* = % — ﬁ

This choice is valid (i.e., A\* > 0)ifn > 1/C — 1.

Substituting A\* back into the exponent gives:

10+ )~ 1 los(C(1+ )] = —SH(C(1 4+ 1))

This completes the proof of the upper tail bound.

Part 2: Proof of the Lower Tail Bound. We seek to bound P(||¢||3 < (1 — 5)d). The Chernoff
bound for a lower tail is P(X < a) < infysg e E[e=X].
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First, we bound the MGF for a negative argument, M (—)) = E[e=>I<I3] for A > 0:
—d/2
B 2
M- < —(1+— .
= cf ( T )
Applying the Chernoff bound with a = (1 — 7)d:

P(||€||§S(1—n)d)§ig%exp(/\( )d_d10g< CA))

Minimizing the term in the exponent yields the optimal value A\* =
valid (i.e., \* > 0)ifn > 1—1/C.

Substituting this A* back into the exponent gives:

d d
—5 [ =n) =1 =log(C(1 = )] = = Zh(C(L —n)).
This completes the proof of the lower tail bound.

% (L C’) This choice is

Part 3: High Probability Argument. We finally derive a high probability argument for ||¢|3. Set

2B
T(8) = Elog( f5> hz):=x—1-logz, x>0.

From the one—sided bounds,

Bl > (1+n)d) < = exp( — $(CA+m)),
P(Il3 < (1 —md) < 2 exp( ~ £h(C0—m)).

Imposing each tail to be at most §/2 is ensured if
h(z) > 7(6) with z = C(1+mn) (upper tail), x=C(1—-mn) (lower tail).

Using h(zx) > (“" 1) for all z > 0, it suffices to require

(z—1)°
2z
The quadratic has roots
yu(0) = (1+7(3)) + V7T(0)2+7(d), m(d) = 1+7(3) — V7(6)(2+7(d)),
with 0 < 1;(6) < 1 < y,(8) (since 7(8) > 0). Hence 22 — 2(1 + 7(8))x + 1 > 0 is equivalent to
x € (7ooayl(5)] U [yu((s)aoo)

> 7(0) = (z—1)% > 27(0)z <= 2> 21 +7(6)z+1 > 0.

Applying this to each tail:
Upper tail: with x = C(1 + n), it suffices that C(1 4+ n) > y,,(9), i.e

ex u (9
n>neP = yé)—l.

Lower tail: with x = C(1 — n), it suffices that C(1 — n) < y;(9), i.e

n>n"P = 1- y’((f).

Using a union bound with ¢ /2 on each side yields the two-sided statement

P<yl(6)d < HGH% < yu(é)d) > 134,

C C
equivalently,
1=nZP)d < Jlel3 < QA +nPP)d,
with () ) 2 9B
=B = Bt ) = ().
This finishes the proof. O
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Proof of Corollary A.3. The proof separately bounds the norms from below and the inner products
from above.
From the proof of Lemma , for a single vector ¢;, we have P(lle;||2 < (1 — n)d) <

L exp(f 2h(C(1—1n))). We Want this tail probability to be at most - for each . This is achieved
1f h(C(1—n)) > 2 10g(2"B) =:7(6/n).

Using the inequality h(z) > % (for z > 0), this condition is satisfied if C'(1 —n) < y;(6/n),
where y,(6/n) = (1 + 7(6/n)) — /7(6/n)(2 + 7(5/n)). This implies we can set the threshold
(1—-n)d= %d. Thus, foreachi € {1,...,n},
0 )
Pl < 24 a) < o

2n

Let A be the event that ||¢; ||3 > yl(‘s/”) d foralli =1,...,n. By a union bound over all n samples,

the probability of failure is at most n- 2 =1 Therefore P(A) >1-4¢/2.

Here we introduce another lemma:

Lemma A.7. Suppose € satisfies the conditions in . Let ¢;, €; be independent copies of €. Then
for some universal constant ¢ > 0 which depends on B, ¢y, C, C1, C5, we have

Te. et
P(le; €5| > t) <2exp [

The proof is deferred to Appendix

Let t,, := 1/ %log(n?/§). Setting t = t,, makes the tail probability for a single pair (i, j) at most

<. Let B be the event that €] ¢; < t, forall i # j. By a union bound over all (}) pairs, the

probability of failure is at most (%) - n% < g. Thus, P(B) > 1 —§/2.

We now consider the event .4 N 3, which holds with probability P(ANB) > 1 —P(A¢) — P(B°) >
1 — 4. On this event, for all ¢ # j:

llei — €113 = llell3 + lles 113 — 2] ¢
w(0/n) ,  wd/n)
> d d—2t,
=~ ‘"¢
2y d
> %/n)d -2 Elog(n2/5).
Since this holds with probability at least 1 — ¢, the claim follows. [
A.4.2 PROOF OF LEMMA
Proof of Lemma A.6. By separating the mean and the random part of the original data x(, we have

J o GXP(*%H% — ayzo||3)p™ (wo)dao
[ exp(=g5zllz — aro|3)p*) (o) dao
J e+ 1™ exp(— gtz ]|z — ae(e + pM)|3)pe(e)de
T Jen(= gz — aule + 1O [B)pe(e)de

Plugging in the expression of p., we have

exp (= gozla - aute + W) o)

k
Né\f)(xt)

—exp (= gallen — ante+ W)~ Sl + 108 1(0)
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1 C
= exp (= 5m (I~ aen® I = 2au(or = an®) e+ a2lel) - Slelf + 10w 1(0))
1 /a2 1
~ e - 2(; C) el + S5~ aun®) e = gl a1 + 1og 100
t t
V: Vi~ 1
= exp (=T e = 3+ LS — g — 3+ Lok £(0)
2 207

= exp(C(t 1)) -exp (—”gne -7l 1o

2
(0%
2. =
’yt = -+ C,
0}
~ (%7

— _ (k)
He = (zt — ™),
U?v?

’y 1
C(t, ) = -+ H,Ue||2 252 It — a3
0%

(k)

By substituting the simplified kernel back into the expression for Hoje

(z¢), the constant term
exp(C(t, x1)) cancels from the numerator and denominator, yielding:

J(et 1) exp (=% e = icl3) fle)de

J exp (= lle = iicl3) f(e)de

| Jeemn (=Flle— i) £
Jexp (=% lle = iell3) fe)de

This expression is the expectation of € with respect to a new posterior distribution, whose unnor-

k
M(g\g(wt

(k)

=p

2
malized density is given by g(e|z;, k) o< exp (—%’He — /1”%) f(€).We provide a more rigorous
justification for the approximation, starting from the exact expression for the posterior mean:

k ~ ~
Né|t) (z¢) = N(k) + ]Ee~q[€] = N(k) + pfe + IEeNq[E — [he]-

Our goal is to analyze the term E. 4 [¢ — [i.]. Writing it as a ratio of integrals:
~ 2 ~
J(e = ficyexp (=% lle = fill3) f(e)de
> — .
Jexp (=% lle = ficl3) fe)de

Let ¢ —2(e) = exp (—l; le — /LH%) denote the unnormalized Gaussian density. We apply mul-

EeNQ[e — fe] =

tlvarlate 1ntegrati0n by parts to the numerator, which yields the exact identity:

m = i 2(€ €)de
[~ Teg, (0 = - [ 4@V 0

Substituting this into our expression, and letting Z be a random variable with density proportional
to the Gaussian part, i.e., Y ~ N (fic, (v?) ~*1;), we obtain the exact relation:

_ 1 Ey[Vf(Y)]
Eew € — Ue) = T TN
eI = 2 )
and we further have
B\f
Eew - Me =
[Eegle = Al < 5=

By the condition a; /oy = Q(B+V/d/cy), we finally have

By = B Y o
Hoje (Te) = 4 +OZ§+C@‘2(I7‘ ™) +0 (a1/au).

Gaussian Posterior Mean
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If we furthermore invoke 2; = ©(1/d), we have

o 1
ué’rg (zy) = M(k) + W(ﬂft - atﬂ(k)) + %xt + O (0¢/ar)
2
k k
= u® + 2+C’ 5 (2 — u*)) + O (ov/an)

and we complete the proof.

A.4.3 PROOF OF LEMMA

Proof. First, we rewrite the inner product as a bilinear form in terms of the independent vectors z;
and z;:

el €5 = (8%2) T (2122) = 2]
The expression z, Yz; is a bilinear form with a deterministic matrix > and independent sub-gaussian
vectors z;, z;. We can now directly apply the Hanson-Wright inequality (see Vershynin (2018)
Theorem 6.2.2), which states that for any fixed matrix A:

t? t
P ziTAz- >t <2exp{—C min< , )}7
(=i Azl 21) o min | G BT,

for some constant C > 0. By setting A = ¥ in the inequality and invoking our condition ||X||p <
Cy Vd, we immediately arrive at the final bound:

Te. _e#
P(le; €j| > t) < 2exp [

where ¢ > 0 is a constant depending on B, c¢, C, b. O

B REPRESENTING EMPIRICAL AND GROUND-TRUTH SCORE FUNCTION
USING DEEP NEURAL NETWORKS

B.1 PROOF OF THEOREM

We follow the idea of network approximation in Fu et al. (2024) to build our proof. We rewrite the

score function as V log py () = 22 ES) , then we truncate the domain of z and the value of p,(z), in

the truncated domain, we conduct ReLU network approximation.

We begin by stating a few lemmas and a proposition needed for the proof.
We denote Bp = maxi<i<n ||| co-
Lemma B.1. The empirical score function satisfies

N |zlloc + Bp
IV1og pi(z)]loe < ——F—-

Ot
The proof is provided in Appendix
Lemma B.2. Suppose B > max(2Bp, /2(d — 2)). For a fixed time ¢ € [0, T}, it holds that

~ ~ 1 B2
/ ||Vlogpt(x)||%pt(x)da: < —43‘1 exp (—) ,
2]l >B o 8

t

1 B?
/ pr(z)de S — B Zexp <> .
lzl|oe>B o 8

The proof is provided in Appendix . Lemma follows from the light-tailedness of the
empirical distribution.
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Lemma B.3. For any B > 0 and €}y, > 0, we have

/ 1{[pe(2)] < €1ow } Pe(x) dz < B €10, (B.1)
lzllec<B
~ €low
/ 1{[P:(2)| < €1ow } ||V 1og Pe(2)[30 (z) dz < —4Bd+2. (B.2)
lzle<B T
The proof is provided in Appendix . Combing Lemmas and , we finished our trunction.

The following

Proposition B.4. Suppose that the density function of Py, satisfies the sub-Gaussian Holder
density condition in Definition . For any sufficiently small ¢ > 0. Define the early-
stopping time t, satisfying logtq = O(loge) and the terminal time 7 = O(loge~!). We con-
strain € [—24/2loge~1,2,/2loge1]%. Then there exist ReLU neural network architectures
F1(Wy, Ly, Ny), such that 35 € Fy (W1, Ly, Ny) satisfying for all ¢ € [to, T

5 > - 1
(2)[IV1og pe(x) = 3(2, 1) [0 S .

t

The configuration of Fj is

L=0(og?c ), W=0(log’c!), N=0(nlog"e™?)

The proof is provided in Appendix

Now we start to prove the approximation bound for empirical distribution. We claim $(x,¢t) is a

Lg(ﬁt) approximator of the score fucntion. In order to prove it, we choose B = 24/2loge~1, and
€low = 4e. We decompose the score approxiamtion error into three parts

/Rd [32,t) = 7 log i ()|, P ()

- /| IR~ Vo) 5 r) de
Tl oo >

(D1)

+/|| 1{|p()] < erow }I5(z, £) = Vog pi ()13 P () dev
Z|| oo <B

(D2)

+/|| 1{1p1(2)] > etow HIS(z, 1) — Vlog (@) |2 Pi(x) d
T|lco <B

(Ds)

We bound three parts separately.

Bounding D; By Proposition B.4, we know ||5(z,t)||oc <

2¢/2loge~1+Bp
vee, b
T

/ |$(z, ) — v1og@(x)\;§pt(x) da
2]l >B
[l oo >
Sl e (B.3)

t

We invoke Lemma in the second inequality.
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Bounding D, Similar to what we did in bounding D;, we have

[, @] < a5t 0 Vlomp@) () do

/ (21562 )13 + 21V Tog e (@) ) 1{Ipn(@)] < tow bu(2)
:r\loo>B

(10 71)d/2+1 (B4)

N

t
We invoke Lemma in the second inequality.

Bounding D3 By Proposition B.4, we have

/| 1{[p2(2)] > €tow } I8, £) — V log py(2) | () da
Z|| oo <B

g/ 1{pe(@)] > tow I3z, £) — Vlog pe ()12, pe () dr
z||lco <B

d
§/ 1{|p:(z)] > €1ow —~  Edx
el <B { } x)af

62 / low
= 1ilp > €low | ——— dx
€low J||z[| o <B {pe(@) OW} (z)o}

62

<

L (loge )42, (B.5)

6lowo't
Combining (B.3), (B.4) and (B.5) together gives us

| 5te.t) = Y10z i(a) [ ) da

1 _ € _ € _
N—4(loge 1d/2e 4 g(loge Lyd/2+1 ;(loge 1yd/2
t

t

P < (log e )2+, (B.6)
t

here we plug in €)oy, = 4e.

Set € = Cce(loge 1)¥2+1, where C. represents the constant hidden in < in (3.6). Also, when e
goes to zero, € will go to zero. Then we immediately derive

[ 1560 - Viogm@ ) i 5,

it implies
Ep [E,5, [[5(.0) - Vioghu(@)[;]] 5
The network configuration of the entire network architecture satisfies
W =0(nlog’()™"),  L=0(log’(€)™"), N =0(nlog"(¢)").

For the approximation of ground-truth score function, we apply the Theorem 3.4 in Fu et al. (2024)
withd, =0

Theorem B.S. (Theorem 3.4 in Fu et al. (2024)) Suppose Pgata has a sub-Gaussian Holder density
with Holder index (3. For sufficiently large Ny and constants C,, C,, > 0, by taking the early-

stopping time tg = Ny o and the terminal time 7' = C,, log Ny, there exists

s € F(W,L,N)
such that for any ¢ € [to, T, it holds that
1 _28
/st(x,t) — Viogpi(x ||2pt da:—(’)<a2 -Ny 4 (logNl)ﬂ“) . B.7)
R &
The hyperparameters in the ReLU neural network class JF satisfy
W=0(Nilog'Ni), L=0(og'N;), N=0(Nlog"Ny). (B.8)
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_28
We set €yqe = C7 - Ny ¢ - (log Ny)#T1, where C! denote the constant hidden by O, when N is

sufficiently large, eqme will be sufficiently small. Then we immediately have

/]Rst(xvt) - V1ngt('r)||§pt(x) dz S 6“1219_

0%

Namely

Ep [Ey, ., [Is(X01) ~ Viegp(X)[3]] < 6;?

The network configuration is

Wo =0 ((ewme) Flog" k), La=O(log" eihe)s Vo = O ((eurue) 7 108” el ).
We complete our proof.

B.2 PROOF OF PROPOSITION

We denote the first coordinate of a vector z € R< as [z];. Without loss of generality, we focus on
the j-th coordinate of the empirical score function. The explicit form of it is

Ds
"1 (« T;— T 1
nyexp (—22||x —am—|§>
R 1 P n Ot O't p
[Vlogpi(x)]; = p T I :
1 I TP
> o (gl o)
Dy

We approximate the denominator D, and numerator Dy with ReLU networks, and subsequently
combine these approximations to construct a score estimator.

Lemma B.6. (ReLU approximation of D) For any sufficiently small €7, > 0, there exists a ReLU
network architecture (W, L, N), such that 3fReLV(z, ¢) € F satisfying

n

1 1
> —~ €Xp (—%?Hﬂ? - atfﬂiH%) — i (a,t)

i=1

< €p, (B.9)

d
for any xz € {—2\/2 loge;II,Q\/2loge;11J ,and t € [to,T], where logty = O(logey, ), and
T = O(log 6;11), and the network configuration is

L = O(log? eJIll), W = O(nlog® 6;11), N = O(nlog* 6;11)

The proof is provided in Appendix . We also have the following result to approximate Ds.

Lemma B.7. (ReLU approximation of Ds) For any sufficiently small e;, > 0, and j € [d], there
exists a ReLU network architecture 7; (W, L, N), such that 3f5°LV(z, ¢, j) € F; satisfying

n

1 lonas — 2l 1

waexp <—22||37—01t33i||§> = £ (w1, 5)
Oi

< B.10
2y . < €4y, ( )

d
for any x € {—2\/2 10ge)72172\/210ge;21} ,and t € [to,T], where logty = O(logey,), and

T = O(log 6;21), and the network configuration is

L = O(log? 61721), W = O(nlog® 6;21), N = O(nlog* ej?zl)
The proof is provided in Appendix . Now we are ready to finish the proof.
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Proof. Let €0y = 4e, and set €f, = €, = e Then when p;(z) > e€ow, We have
fRLY(z,t) > ipi(x). Using Lemmas and , we denote the clipped version of f; by
f1.atip = max(fRMY €0y, and for j € [d], define the score approximator as

RcLU 2./21 1 B
ﬁ@¢4>:mm<f (z:4,7) 2y2loge™ + D)

Utfl chp(x t) Ut

By the definition of f3(x,t,7j), we know |fs(x,t,7) =~ =, 2 210g5 B0 this

the upper bound of ||V logp: ()|l When ||z]lc < B. Next, we bound the difference between
[Vlog pi(z)]1 and f3(z, 1, j)

actually matches

| ~

ReLU :
[Vlogpi(x)]; — fa(w,t,5)] < ’[V log pi(«)]; — W‘
Ot 1,c11p(xat)
< '[V@(z)]j _ V() V(@) _ f3Y(,t5)
N ﬁf(z) fl,Clip(I7 t) fl,clip (I, t) O'tfl,clip (I, t)
~ 1 1
R e R ey
n |04 [VDe(2)]; — 0[5V (a8, 7)|
Ut.fl,clip ('1"7 t)

- 2y/2loge~1+B
From ||V log p¢(2)|ec < @

[V iIogpi(x)]; — fa(xt, )]

< B+BD

, we derive [V (2)]1 Dy, for py > €1ow, We have

2\/2loge—1+BDﬁ 1 1 VD (2)]; = 3", 8, )
O pt( ) fl ,clip fl,clip
1 (2¢/2loge 1+BD Pi(r) — f1,c1 N . .
IS V2loget ) 1P Lot | [VDe(@)]; = f3FY (2, ¢, 5)
fl,clip t
<2\/2loge—1e
™ ~ 3
bio;

Then we can obtain a mapping f3(x,t) to approximate V log p;(z)

2¢/2loge1e
ﬁtgf

IV log pe(x) — f3(z, t)[|oc <
Here f3(z, t) is defined as
fs(x,t) = [fs(x,t,1), fa(x,t,2), .. fa(x, t,d)] |
We now construct a ReLU network fi*tU (. ) to approximate f3(z, ¢), namely
Hfg(x,t) — f?CLU(x,t)HOO <e

Given ReL.U realizations f; and f5, we build upon them by implementing the following basic oper-
ations via ReLU networks: the inverse function, the product function, a ReLU-based approximation
of o, and entrywise min / max operators. Details on determining the network size and analyzing
error propagation are deferred to the Appendix 5.4. Once we construct f3°"'Y (. ¢), we have

. . o 1
pe(2) |V log pi(z) — £5°7Y (2, 1) |00 S —¢
t

where MV (z t) € F,, the network configuration of F, satisfies
L=0(og?c ), W=0(log’c!), N=0(nlog"e?)

We complete our proof. ]
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B.3 PROOF OF LEMMAS
B.3.1 PROOF OF LEMMA
Proof.

1V log i) = L 2=t = tlloo P (=2 lle — aumilB)
oo 2

o e (gl — a3)
_ 1 S (e + il exp (=537 e — cil3) )
= 52 n
7 Sy exp (— g le - auil)
_ el + Bo
O
B.3.2 PROOF OF LEMMA
Proof.
/| IV sR @)l e
Z|| oo >
"1 1 / . 2 2 — ci|3
= R YT IV log pi(x)||5 exp (— dxz
We only need to bound this term
1 / 2 [ — auqf3
_ ||V log pi ()5 exp <— dx
o (2m)42? Jig B 2 202
By applying Lemma B. 1, we have
1 / PN [ — auasf3
S S 17 1o (o) e - s
ol (2m)Y2 Jiu|>B 2 202
1 / |z — w3
T (el + Bo)?ex dr
ol 2em 2 Jigjasn 207
1 / 2 Hx - atmi”%
S [ (el B e (- dr
ot (2m) 2 Jjaln> 5 207
:%11/2 / (loezi + wills + Bp)* exp (—”27”%> dz;
O¢ (271') |lotzi+arxzi||2>B 2
Sﬁ/ (lovzill2 + 2Bp)? exp <—22|%> dz;
op(2m) llill2>(B—Bp)/o: 2
:ﬁ/ /(UtT +2Bp)%exp (_ﬂ) 4V drdw (B.11)
O¢ (271—) r>(B—Bp)/ot Jw 2

The third inequality follows from the change of variable z; = *=2t*.. The last equality follows
from changing variables to spherical coordinates. Next, we consider give a upper bound for ( ),

we derive it by firstly substituting » with m = 2, then ( ) becomes
1 / / 2 Y\ a1
_— (owr +2Bp)“ exp (— r drdw (B.12)
U?(Qﬂ)d/Q r>(B—Bp)/o Jw 2

d—2

1 9 9 m\ m
S o B+ 183 s (-7)
ol (2m)d/2 /m>(B_BD)2/Ut2/w(Utm+ o¢Bpvm +4Bp) exp 5

We bound this integral using Theorem 1.1 and Proposition 2.6 in (Pinelis, 2020).

22 drdw (B.13)
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Lemma B.8. Let G, (x) be defined as

277, ifa=—1,
ba a __ a .
Go(z) == Wﬂ, ifa e (—1,00)\ {0},
e " log £, ifa=0.

where

- {I‘(a+1)1/(“1), ifa e (—1,00)\ {1},

el=, ifa=1,
and vy is the Euler constant.

Then, for —1 < a < 1, it holds that
o0
/ t"teTtdt < Gu(x).

Moreover, for any real a > 1, we have

[ee] L . xa—le—z
/ t et dt < ——rr,s forallreal x > a — 1.
@ 1=
By applying Lemma B.8, we obtain the following estimates. When a = 0, one has
/ t* et < Gy(x) <27 %7, x>0, (B.14)
since log (££) < 1. Fora € (—1,1] \ {0}, it holds that
/ t* lemtdt < Gu(x) < a2 tem®. (B.15)
Furthermore, fora > 1 and x > a — 1, we have
oS} ma—le—x
/ t*lemtdt < 1T S e ", (B.16)
x Tz
Combining ( ) ), ( ) and ( ) together, we can conclude, when B >

.(
max(2Bp, \/m)

L A o — a3
L IV 10271 o) e -
o (2m)42 Jig)>B 2 207
d—2
1 m\ m-z
<~ 2m + 4oy Bpy/m + 4B2 _7) drd
= i(2m)ir /m>(B_BD)2/U?/w(Jtm+ otBpyvm + 4B7) exp 5 5 drdw
d—2
1 d—2
S— /(Ufm+4atBD\/m+4B2D) exp (,T) M2 rdw
0t Jm>(B—Bp)?/o? Jw 2 2

[a—y

B2
< pd =
Vo exP( 3 )

Then we can conclude
[ 19 osR @) pu(o)s
lz|lcc>B

1 B2
< pd =
~of exP( 8 )

/ Di(x)dx
|z]loo>B

11 — o2
ISY) B e / €xXp <_||3; angﬂg) dx
— oy Jiele>B 20}

1 B?
< pd-2 _Z2
S en ()

Similarly we have
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B.3.3 PROOF OF LEMMA

Proof. For the first inequality, we have

/ ]l{‘pt ‘ < 6low} pt d
|wHooSB

S/ €low dx
lz]lee <B

,SB dqow.
For the second inequality, by Lemma B.1, we have
[, HRE] < an 91025 @) do
|| oo <B

1

Sj 6low(HmHoo'i'BD)2 dz
Izl <B
<€low Bd+2
~gk
O
B.3.4 PROOF OF LEMMA
Proof. For any € > 0, let U,, be the set satisfies
v {Z eIV ‘ @ - || Wgel}
Ot 2
It immediately gives us
"1 1 1 1
Z gexp <_22”x - at%‘“%) - Z ﬁexp <—2atg|f - Oétivi”%)
i=1 €Uy,
=3 Lewp (~gplle - sl
1¢U,
<Y e
- n
igU,
<e. (B.17)

Then, we approximate exp (—#Hx - ata:i||§) for i € U,. We already have 51z ||z — ;|3 <
t t

log e~1. By Taylor expansions, we have

-1

1 ) 1 1 N _ log’e
exp —@Hw—amllz _ZH —T‘tgllx—atwillz 7T,

k<p

where we use the fact [e™" — >, Hok| < %T when x > 0. Let p = [3uloge~!], where u

satisfies 3ulog u = 1, and invoking the equality p! > (£)P, it yields

ex —i||x—ax-||2 _Zl —i||x—ax-||2 ’ <£<u%’mloge‘1 —
P 202 2 o k! 202 iz - pl ~ -
p

(B.18)
By ( ) and ( ), we have

n

k
1 1
ZEQXP (—20_?|1'—04t$i%) Z Zk'( 50 2||:lc atgcl||2>

i=1 €Uy k<p
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n
1 1 1 1
< Z o exp (—%tﬂx - atmi%) - Z n exp <—2Utg||$ - at%‘”%)‘
=1 1€U,
k
1 1 9 1 1 1 9
—+ Z T, &Xp <—%tg||x - Oltxi”z) - Z o Z 7 (—%tgx - Oétﬂfi|2>
1€U, €Uy k<p
<2¢ (B.19)

k
We set B = 2y/2loge~! for convenience. We denote 3, = (fﬁﬂx - atxi\@) as fpi(z,t),
° t
and hy, ;(x,t) = fpi(x,t) Lgeu,y, for any i € U,, we can approximate the Taylor expansion using
ReLU network.

Lemma B.9 (Concatenation, Remark 13 of (Nakada & Imaizumi, 2020)). For a series of ReLU

networks f; : RT — R f, : R% — R ... fi : R% — R%+ with f; € F(W;, Li, N;)

(i=1,2,...,k), there exists a neural network f € F(W, L, N) satisfying
f(x):fkofk—lo"'ofl(x)7 vxeRdla

with

Lemma B.10 (Identity function, Lemma F.2 of (Fu et al., 2024)). Given d € N and L > 2, there
exists iﬁ € F(2d, L,2dL) that realizes an L-layer d-dimensional identity map

L(x) =2, zeRL

Lemma B.11 (Parallelization and Summation, Lemma F.3 of (Oko et al., 2023)). For any neural
networks f1, fo, ..., fr with f; : R% — R% and f; € F(Wi, Liy N;) (i =1,2,...,k), there exists
a neural network f € F(W, L, N) satisfying

f(x) = [fl(xl)Tf2($2)T e fk(xk)T]T P ROt Ridytetd

forallz = ({2 ---a] )" € Ra+det+di (here x; can be shared), with

k k
= ) < . < ) Y.
L= max Li, W< QZ;W“ N < 22(]\@ + Ld)
Moreover, for z1 = 29 = -+ = 7, = 2 € Rland d} = dy), = --- = d}, = d/, there exists

foum(z) € F(W, L, N) that expresses fsum(z) = Zle fi(z), with

k k
L= max L; +1, W< 4ZWi, N < 42(1\@» + Ld}) + 2W. (E3)

1<i<k
- i=1 =1

Lemma B.12 (Entry-wise Minimum and Maximum, Lemma F.4 of Fu et al. (2024)). For any two
neural networks f1, fo with f; : R — R?, fi € F(W;,L;; N;) (: = 1,2) and Ly > Lo, there
exists a neural network f € F(W, L, N) satisfying
f(z) = min(fy (), fo(x)) (or max(fy(z), fo(x))) forall z € RY,
with
L=Li+1, W<2Wi+Wa), N<2N +No)+2(Ly — Lo)d.

Lemma B.13 (Approximating the product, Lemma F.6 of (Oko et al., 2023)). Letd > 2, C > 1.
For any €product > 0, there exists fiug (21, 22, ..., zq) € F(W, L, N) with

L =0(logd(log €, ques +dl0gC)), W =484, N =0(dloge, . .. +dlogC),
such that

d
fmult(x/la x127 cee 71'/d) - H Zq S €product + dcdilcl' (B20)
i=1
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forall z € [-C, C]? and 2’ € R? with ||z — 2| s < €1. Moreover, | fuu ()| < C4 for all z € RY,
and fuuie (2], 25, . .., ) = 0 if at least one of z} = 0.

We note that if d = 2 and z; = 22 = x, it approximates the square of x. We denote the network

by fsquare(2) and the corresponding €product bY €square. Moreover, for any « € R% and n € N¢, we

d ng

denote the approximation of 2™ = [[._; &} by fpoiy,n(2) and the corresponding error by €pqiy.

Lemma B.14 (Lemma F.7 of (Oko et al., 2023)). For any 0 < €,y < 1, there exists f_; €
F(W, L, N) with

L=0(®og*¢. ), W=0®0og’¢t), N=0(og"e.})

mv mv mv
such that

1 -
‘f_l(a:’) - x‘ < €iny + |2 5 a:|’ for all © € [einy, ;0] and 2’ € R. (B.21)

inv

Lemma B.15 (Lemma F.8 in (Fu et al., 2024)). Fore, € (0, 1), there exists f, € F(W, L, N) with
L=0(og’c;'), W=0(oge,'), N=0O(og’e;"),
such that
[fa(t) — ay| < €q, forall ¢ > 0. (B.22)

We can readily extend the approximation of «; to a? = et by doubling the coefficients in the first
linear layer.

Lemma B.16 (Lemma F.10 in (Fu et al., 2024)). For ¢, € (0, 1), there exists f, € F(W, L, N)
with
L=0(og’c;l), W=0(og’c;'), N=0(og*e; ")
such that
| fo(t) = 0¢] < e, forallt > e,. (B.23)
Lemma B.17. For any ¢, € (0, 1), there exists f,» € F(W, L, N') such that
’fgz(t)—a%‘ < €y, forall t > ey,

with network parameters satisfying

L=0(og’c;}), W=0(®og’c}'), N=0O(og"e,}).

Proof. We define the network by composition

for () = f-1(fo(1)),
where f_; approximates the reciprocal function (Lemma ) and f, approximates o, =
v1 —e~t (Lemma ).
By Lemma , the approximation error of f_; satisfies

€o

fo’(t) - L| < €inv +
| >

€inv

Now we set

. €s/ 1
€ipy — ININ

_ __ Einv€y
. JT> =0(e), e =5

With this choice, the total error is bounded by €, for all £ > €,/. Finally, according to Lemma , we
can verify the network parameters F (W, L, N) satisfy

L=0(og’c;}), W=0(og’¢;}), N=0O(og"e ).
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Lemma B.18 (ReLU approximation of the interval indicator). Fix B > 0 and a margin parameter
7(6) € (0,1]. Let o(u) = max{0, u} and define the “unit-ramp”

e (8)(u) = o (TZ;)> —0 (TE‘(S) - 1) € [0,1].

fBr) (@) =77(0)(z + B) —r-(8)(x — B), ze€R
Then fp ;(5) : R — [0, 1] is realized by a two—layer ReLU network with width 4, and it satisfies

Consider

0, 2| = B +7(6),
fBr)(x) =41, lz| < B,
linearinz, =€ [—B —7(d),—B|U[B,B + 7(d)].
Moreover, fp -5y € F(W, L, N) with
L=2 W=4, N=1

Proof. Since r,(6)(u) requires two ReLUs, the entire construction uses four ReLU units in parallel
in a single hidden layer, followed by a linear output combination. This corresponds to a two—layer
ReLU network (one hidden nonlinear layer plus the output layer) with width W = 4. Because all
nonlinearities appear in one hidden layer, we have K = 1. We can also easily verify the weight
magnitudes are bounded by x = O((B + 1)/7(4)), so logk = O(log((B + 1)/7(6))). Thus the
stated bounds hold. O

With these lemmas established, we are ready to approximate the Taylor series using a ReL.U network.
By Lemmas . , s , and , we define the network as

~ _ k
hp,i($>t) = fmult (fsum,k<p ((:lkjmfpoly,k(gi(xat))> 7findicator(x7t)> )

where
d
gi(x,t) = Y fute(fors fors fia([2y) = fa (Dl fa([2)y) = fa(Dzil;)  (k=1)
j=1
fpoly,O =1, findicator(xat) = f\/@ﬂ'(ﬁ) (gl(l',t))
We further define

. _1/9\k
Fostst)i= fumsen (S ran(aan)).

We first compute the approximation error between fpyi(x, t) and f,;(x,t), which is

€poly,k
) poly,k __
€pi < § , okl €€poly .k

k<p

where

3
€poly,k = €product,k,1 + Ck,lek,lv €k,1 = d(eproduct,k,Q + 4Ck,2€k,2)

Vi(B+ B 2k—1) .
Crvi=k <(+D)> Ck,2 = max (’ Vd(B + BD)) , €k,2 = max(Bpeq, €57).

Oty Oty

We set € = “2, and take

€* €* €* €*

€product,k,1 = > €product,k,2 = —5— €a = Tma o1 €o! = a5
produ g’ fprodu 4dCyy’ " 4C,BpCrad’ 7 4C},Crid

Then, by the definition of €product,1, We can verify €, ; < ecxp. We decompose the total error into
three parts

pi(,t) — hy ()]
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S |hp,i (5177 t) - fp,i (LC, t) X findicator (-Ta t)|

Dg,1
[ Fpi(@,) X findicator (€,) = fpi(@,8) X findicator (%, 1)]
Dg 2
+ 1 fp,i(%, 1) X findicator (T, 1) — fp.i(z,t) X Liicv,y |
Deg,3

The first part arises from multiplying two networks. The second part comes from the approxima-
tion error of the Taylor expansion f, ;(x,t). The third part is due to the approximation error of
the indicator function 1 ;3. We now bound these three contributions separately. For Dg 1, by
Lemma , it implies

’Ep,i(x; t) - fp,i (1’, t) X findicator(xa t)’ S 6product,3 (B24)

For D672
fp,i(x7t) X findicator(x>t) - fp,i(xat) X findicator(x7t)‘ < |fp,i(x7t) - fp,i(xut” = €p,i < €exp-
(B.25)
For Dg 3, when ||% € [0, \/2 loge~ 1 U [\/2 loge=t + 7(0), 00], findicator (7,1) = Liicu, 1

then
| fp,i(@,t) X findicator (€, 1) — fp.i(x,t) X Loicu,y | =0.
(v/2loge1,\/2loge1 + 7(6))
| fp.i(@,1) X findicator (2, 1) — fpi(@,t) X Lizev,y |
<Ufp i, 0)
< (loge™! + 27(8)\/loge~1 + 7(5)?)?
< ol

1 7(6)? T(6
=exp <3u log e~ <1og <1 + (1Og( E) 1) ( ) ) B logu)>
=exp <3u loge™! (2 log ( + lo(ge 1) logu))

<exp (3u (27’(5)\/10g? — logulog 6_1)) (B.26)

When || #=2t%
t

_ 1
Set 7(0) = e Jioac T then from ( ), we can conclude
‘fp,i(x,t) X findicator(x;t) - fp,i(mvt) X ]1{16U,} | < ee (B27)
Combining ( ), ( ), and ( ) together gives us
|hil’7i (Iv t) - hpyi (1‘, t)| < €product,3 T €exp + €€ (B.28)

We Choose 6eXp = eproduct"j = €, and deﬁne fFeLU as

flRCLU = fmult(l/na fsum,lgign(/ﬁp,i(xv t)))
Consequently, from ( ) and ( ), we have

1 1 .
> e (~goale —amil}) - et

< (6 + 4)6 + €product,f;

i=1
We choose €product,f, = €, by Lemmas s s , s , we have
"1 1
2 e (%xa) — F (@, t)| < (e + 5)e

The network size parameters of f°*U(z,¢) satisfy
L=0(og?e!), W=0(mlog®c "), K=0(nlog*ec?),

o e
Substituting € with

immediately give us (B.9), and proof is complete. O
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B.3.5 PROOF OF LEMMA

Proof. This lemma serves as the counterpart of Lemma . The proof follows a similar struc-
ture, and is same for every entry j € [d], with the only difference lying in the construction of U,.
Therefore, I will focus on elaborating this part. Let U, be the set satisfies

‘ < \/4logel}

[arx; — x]; 1 5 larx; — x]; 1 5
Z Texp —@Hw —agailly ) — Z TGXP _ﬁ”aﬂi — |3

i=1 €U,

(r — auz;)

U, = {z‘e [N]

Ot 2

It immediately gives us

1 [owx; — ] 1 5
= ZgTeXP _T‘gux—atl‘iﬂz

i¢U]
2 1.2
< Z E\/loge Le
igU]
<e.

The last inequality holds because ¢ is sufficiently small, ensuring that 2e+/loge~1 < 1 (in fact, this
condition is satisfied whenever € < %).

Then, we construct the network approximation in a similar manner. First, for each 1 < i < n, we

[t—aiz;]
ag

approximate the exponential function exp(—# la — atxi”%) and the term 1 separately
t

using ReLU networks. Next, we combine these components using Lemma . We then sum the
resulting functions and multiply by %, applying Lemmas and as needed. Finally, we
obtain the network configuration, completing the proof. [

B.4 CONSTRUCTION OF f3(z,t)

We denote the entry-wise maximum function in Lemma as fmax, and entry-wise minimum
function in Lemma as fmin. By Lemmas s s s , , and
We define

51V (x,1,9)

e . e 2\/210 671 +BC
:fmin (fmult(fa’v QRLU(mvtvj)affl(fmax( FLU(w»t)vﬁlow))v g D)a

f2
We have
2ReLU
BBeLU(Z, ta J) - S max (Emult,S + 30?’160/ » €product, f3 + 301%,2 (Ginv + Eg/))
Utfl,clip
where
1 1 1 2/2loge '+ B
Oy = (2y/2log T4 Bp, ) Cpa=ma L, L 22w T B
O'to €low Otq Uto
‘We choose
€ € €

€mult,3 = €product,fs — 55 €o/ = 5y €inv = €0/ = €g/ = D)
2 6C2, 1207,

Then we can conclude
fReLU
2

5wt ) — <e

Utf1,c1ip
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Using Lemma , We can construct
B, )R = [FRY (2, ,1), SR (2,1,2), o, SRV (2,8, )
such that
HfReLU (z,t) — f5(x, 1) H
The hyperparameters (L, W, N) of the entire network satisfy
L=0(og?cl), W=0(nlog’c!), N=0(nlog*e™?)

C STATEMENT AND PROOF OF LEMMA

Lemma C.1. The Hessian of log p;(x;) admits the following explicit form:
I 2
\vg log pt(z¢) = 2 + = p COV[Xo‘Xt = 2y, (C.1)
t

where the covariance is taken with respect to the posterior distribution of X given X;.
Define the Lipschitz constant of the empirical score function V log p;(z:) as

C, = Sup ||V log Dy (¢ ||2
Assume that n > 2, and the minimum pairwise distance between data points satisfies

. 20 n—2
_min_lz; — z;[]2 > — log ,
i#£4,1,5€[n] Qg 2

Under this assumption, the Lipschitz constant C; satisfies the bounds

1 a? . 1 a?

2
T; — T <y < + ma; z; — xi|a- (C.2)
o~ 2yl < Cr € il max -yl

min
16(% i#j,i,5€[n]
When ¢ is small, we can conclude C; = Q(o; * - min;; [|z; — 2;|2)

Lemma provides a characterization of the Lipschitz constant of the score function. In particular,
via (C.1), the posterior covariance Cov[X( | X; = x| controls the smoothness of the score function.

For the empirical score V log p;(z;), the covariance term is replaced by an empirical covariance
computed from the sample. This empirical covariance varies significantly across z; and depends
on the sample configuration, especially the pairwise distances between data points. As shown in
Lemma C.1, under a separation condition on the data, the Lipschitz constant of the empirical score
satisfies (C.2). This bound shows that C; can grow sharply when there are widely s farated clusters
(min; jepn llzs — 242 large), especially at small noise levels o, where the o, " term strongly
amplifies these effects.

Proof. We first write the explicit form of the Hessian of log p;(x:):

v? log pi (1)
_ 2
1 or (@ —oumo)(z — cuo) T eXp(—%) Pdata(Z0) dzo
=—= S
Tt f eXp<_ = 2(:;0“2 ) pdata(xo) dxg
Jrei(ze) (i) "
t

_ 2 2°
(f eXP(—%) Pdata(T0) dxo)

where we define

[l —OftlfO\\%

ester) = [ o1 = o) exp - ) bl d

2
207
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Notice that density function of the posterior distribution of X given X, is

|z —asaoll3
€xp <_ 207 2 pdata(xo)

— 2 :
f exXp (—%) Pdata(Z0) dzo

plxo | 2t) =

Using this posterior, the Hessian simplifies to
1 1
V2 log pi(z1) = 52 + prs Cov [Xt — o Xo|X; = ﬂft]7
t t

where the covariance is taken with respect to p(xq | ;). Since X is constant given z;, this further

(C.3)

reduces to
2 I af
VZogpi(x1) = —— + —1 Cov[Xo|X; = z4],
t t

which is the form in (C.1).
To derive the upper bound for the Lipschitz constant of the empirical score function, we first obtain
).

the expression for V2 log p; () in a similar manner, using equation (
N I o?
V2 log pi(x1) = —— t 0%1 Cov[X;| Xy = 4],
i ¢
where X;|X; denotes the posterior distribution of X; given X;.

For any u € R? satisfying ||ul|o = 1,

2
=N «
\uTVQ log py(z¢)u| < — + —Z Var(uTXi|Xt =1y)
t t

To bound the variance term on the right-hand side, we introduce the following lemma.
Lemma C.2 (Variance bound on a bounded interval). Let X be a real random variable supported

on [a,b] (i.e., a < X < balmost surely), and set L = b — a. Then
L2
Var(X) < e

Proof. Fix m = E[X]. Since X € [a,b] a.s. and m € [a, b], we have the pointwise bound

(X —m)? < max{(a—m)? (b—m)?}.
’ITH’ and its minimum

The function m +— max{(a —m)?, (b — m)?} on [a, b] is minimized at m =

b‘“)z. Hence, for the actual m = E[X] € [a, b],

value is (%5
(X —E[X])? < (b;“> as.

Taking expectations yields
b— 2
Var(X) = E[(X — E[X])?] < %

, we conclude that
2

T, — min; u' ;)
1
4oy

By Lemma
1 o?(max;u

[u" V2 log P (x4 )ul < —
0%
1 a?maxgy ||Te — 73

2 4
o; 4oy

AN
S

IN

To establish the lower bound, we begin by expressing V2 log p; () in a more explicit form.
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2 ~
V= log py(¢)
1 n T llze—oumi |3
I . 57 2im1 (T — aumi)(wy — i) | exp (— 507
o} s _ Nlze—aqzi |3
i=1€XP 207

1 n th*atwiﬂg n T H/Itfatﬂﬂng
r (Sl —awrexp (gl )) (S50 e — o) T (Lt
- 2
n llze—aezill3
<Zi:1 exXp (_ 207

oy —apxs |2 op—apxs |2
S (ze—arw;) exp ~lze—orrally ;t;luz exP<—7”Lt 2‘2211 “2)
_ i . _ t
Denote u(xy) = v , wi(xy) = oY We can
> exp| —————5—2 i—pexp| — 2
i=1 207 Yiz 207

rewrite V2 log py () as

V2 log py (1) = _alf + % <Z($t — o) (e — ;) Twiay) — u(%)y(%f)

t o \i=1

- f n Ui (_Z(zt — i — ) (s — ns — u(zt»th))

For any u € R? satisfying ||u||o = 1 we have

N 11 (& 2
u V¥log pr(w)u = —— + — (Z wi(wr) (w0 — owai — p(ae)) ") )
t t \=1

o~

We choose (4, j) such that ||z; — ;|| = Amin. At the midpoint z; = (x; + x;)/2, we have

1
Wi (Tt) = Wi (Tt) =
(@) = wj(e) 5 a2 (llze—anll3—ll(@i—x;)/2]13)
+ D hingy €XP | — 507
We introduce two lemmas to bound the difference ||z, — zp[|3 — ||(z; — 2;)/2||3 in terms of the

minimum pairwise distance min, pe[n],ab [|Za — b |2-
Lemma C.3. Leta,b,t € RY, set the midpoint m = 22 and r = 1||a — b||>. Then

1
lt=mllz = (It = al3+ It = b]5) - r*.

Proof. Observe thatt —m = 3 ((t — a) + (t — b)), hence
Allt =m)3 = It —a) + (¢ = b3 = It — all3 + It = blI3 + 2{t —a, t = b).

Also, ) ) ) )
[(t—a) = (t—=0)[5=la—0l5=t—al3+][t—0bl5—2(t—a,t-b),

so
2(t —a, t —b) = |t —all3 + [It — b3 — lla — b]l3.
Substitute into the first display:
At =mlf3 = 2(|It — all3 + [t = bl13) — lla — blI3.
Divide by 4 and note 72 = %||a — b||3 to obtain
1t —mll3 = 3(It — all3 + llt = b]13) —r*. ]
Lemma C4. Let R
Amin = mi - .
ggg\lxa P
Then we have
2 2 AZ,
lze = znllz = (@i —25)/2ll2 2 =55, h#ih# ]

where z; = HTIC (i, 7) satisfies ||z; — x| = Avins
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Proof. By Lemma

AQ

e — alld — i = 5)/203 = 5 (llow — il + llow — 203) — S
A2
2 A1211in - Amin
2
Az,
T2
O
By Lemma C 4, we obtain ||z, — 5|13 — [|(z; — 2;)/2[13 > 4 ming pefn), b |lza — x)|3. Since
ming pe(n],azb H:ca xpl|2 > 207: log( ) then we have w; (z;) = w;(z;) > 4. Letu = ﬁ
u' V2 log by (¢ )u
11
=— =+ w;(z4) (2 — cwwy — p(xy))
o of pt
1 1 T \2
>t (((oule a2+ () )+ (( s = 25)/2 = ) )
g% Oy
1 1 T \2
= ot o (e ™) + (= 2)/2) )
Ot Ot
1 o?
>~ 5+ qgerlle w3
_ 1 al ~,
t2 160’? min
Therefore we can conclude
1 a?
v21 oy N t A2 ,
ngt(xt) — < t + 160't min
which immediately implies
9 N 1 a? 9
||v logpt(xt)HQ Zl—-——= + 16 4Am1n
Moreover, when ¢ is small, we can conclude C; = Q(Jt_4 ‘min; [|lz; — x3) O

D EXPERIMENTAL DETAILS ON CIFAR-10

D.1 COMPUTING THE IMPORTANCE SCORE

To formalize the computation of importance scores, we follow the masking-based framework
of (Liang et al., 2021). In each Transformer layer of the diffusion model, we associate a binary
mask variable &, € {0, 1} with every attention head h. Setting &, = 1 keeps the head active, while
&y, = 0 prunes it away. Let £(x,t; M) denote the training loss of the model M on input « at diffu-
sion step t. The sensitivity of £ with respect to &;, quantifies how important head A is to the model’s
predictions. We thus define the importance score of / as the expected gradient magnitude of £ with
respect to &y, averaged over data and timesteps, and layerwise /5 normalized:

- et [| 225200 |

T . 2
Zh/elayer(h) (EmNDs t~T H W ] )

€ [0,1].
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Original Model: Generated Images Original Model: Nearest CIFAR-10 Images

1 Y

g;""‘-“i— mgb« s
“ '51‘-‘5!“!; &*

Figure 3: Left: Generated images from the same random noise, with the original model (top) and
our pruned model (bottom). Right: Nearest neighbors of the generated images in the CIFAR-10
training set. At a comparable level of quality, the pruned model shows greater diversity, while the
original model tends to replicate training samples.

Algorithm 2 IMPORTANCESCORE(M, D, T)

1: Input:

2:  Model M with mask variables {£,} for all heads h € H.
3:  Dataset D, Time Sampling Distribution 7.

4: Initialize: Accumulated scores S™ < 0 for all h € H.

5: for each batch of data z ~ D do

6: Sample timestep t ~ 7.

7 Compute loss L(z, t; M).

8

Backpropagate to obtain all gradients { I }h "
€

9: Accumulate scores: S « () 4 ‘%) forall h € H.

10: for each layer [ in the model do

11: Compute layer-wise norm: N; < 1/Zh,el(5(h’))2.

12: for each head h in layer [ do
13: Normalize score: 1(") « S /N;.
14: Output: Importance scores {1}, c.

D.2 IMAGES GENERATED BY THE ORIGINAL MODEL AND OUR PRUNED MODEL

See figure 3 for a comparison between the images generated by the original model and our pruned
mode

D.3 MODEL CONFIGURATION AND TRAINING

We adapt the implementation of DiT (Peebles & Xie, 2023) from https://github.com/
ArchiMickey/Just—-a-DiT. Our training set is a randomly chosen subset of CIFAR-10 con-
taining 5,000 images. The model has hidden dimension 384, 12 layers, and 6 heads per layer. We
use a learning rate of 2 x 10~ with a cosine scheduler and train for 100,000 steps without weight
decay to obtain the original model. After pruning, the model is further trained for 5,000 steps to
obtain the results. When sampling, we use a deterministic sampler with 50 steps, classifier free
guidance scale 2.0, and randomly generated labels for each sample.

Additional results including the case with pruning ratio s = 40% are summarized in Table 2.
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Model \ Precision (1) Recall () Memorization Ratio (%) ({) FID ({)
Original 0.3940.01 0.08+0.01 73.8241.12 15.47+0.28
Our Pruning (20%) 0-33i002 0.12i0401 68.58i()‘77 15.07ig,33
Random Pruning (20%) 0.3040.02 0.0940.01 66.87+0.94 17144095
Our Pruning (4—0%) 0.25:&0,02 0.0810‘00 58.63:&1,18 16.53:&0'36
Random Pruning (40%) 0-24i0.02 0.06:‘:0‘01 5572i099 20.16i0'41

Table 2: Additional results including pruning ratio s = 40%. We report precision, recall, memoriza-
tion ratio, and FID. Each value is shown as mean. 44 over 5 random seeds.
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs as assistants for writing and coding tasks such as formatting results into tables,
refining phrasing, polishing standard sections, and assisting with code logging and debugging, but
not for generating research ideas, designing experiments, or analyzing raw results; all substantive
contributions were carried out by the authors, who take full responsibility for the final content.
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