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ABSTRACT

Despite the widespread application of recurrent neural networks (RNNs), a unified
understanding of how RNNs solve particular tasks remains elusive. In particular,
it is unclear what dynamical patterns arise in trained RNNs, and how those pat-
terns depend on the training dataset or task. This work addresses these questions
in the context of text classification, building on earlier work studying the dynamics
of binary sentiment-classification networks (Maheswaranathan et al., 2019). We
study text-classification tasks beyond the binary case, exploring the dynamics of
RNNs trained on both natural and synthetic datasets. These dynamics, which we
find to be both interpretable and low-dimensional, share a common mechanism
across architectures and datasets: specifically, these text-classification networks
use low-dimensional attractor manifolds to accumulate evidence for each class as
they process the text. The dimensionality and geometry of the attractor manifold
are determined by the structure of the training dataset, with the dimensionality re-
flecting the number of scalar quantities the network remembers in order to classify.
In categorical classification, for example, we show that this dimensionality is one
less than the number of classes. Correlations in the dataset, such as those induced
by ordering, can further reduce the dimensionality of the attractor manifold; we
show how to predict this reduction using simple word-count statistics computed on
the training dataset. To the degree that integration of evidence towards a decision
is a common computational primitive, this work continues to lay the foundation
for using dynamical systems techniques to study the inner workings of RNNs.

1 INTRODUCTION

Modern recurrent neural networks (RNNs) can achieve strong performance in natural language pro-
cessing (NLP) tasks such as sentiment analysis, document classification, language modeling, and
machine translation. However, the inner workings of these networks remain largely mysterious.

As RNNs are parameterized dynamical systems tuned to perform specific tasks, a natural way to
understand them is to leverage tools from dynamical systems analysis. A challenge inherent to this
approach is that the state space of modern RNN architectures—the number of units comprising the
hidden state—is often high-dimensional, with layers routinely comprising hundreds of neurons. This
dimensionality renders the application of standard representation techniques, such as phase portraits,
difficult. Another difficulty arises from the fact that RNNs are monolithic systems trained end-to-
end. Instead of modular components with clearly delineated responsibilities that can be understood
and tested independently, neural networks could learn an intertwined blend of different mechanisms
needed to solve a task, making understanding them that much harder.

∗Work started while an intern at Google.
†Equal contribution.
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Recent work has shown that modern RNN architectures trained on binary sentiment classification
learn low-dimensional, interpretable dynamical systems (Maheswaranathan et al., 2019). These
RNNs were found to implement an integration-like mechanism, moving their hidden states along a
line of stable fixed points to keep track of accumulated positive and negative tokens. Later, Mah-
eswaranathan & Sussillo (2020) showed that contextual processing mechanisms in these networks—
e.g. for handling phrases like not good—build on top of the line-integration mechanism, employing
an additional subspace which the network enters upon encountering a modifier word. The under-
standing achieved in those works suggests the potential of the dynamical systems perspective, but
it remained to be seen whether this perspective could shed light on RNNs in more complicated
settings.

In this work, we take steps towards understanding RNN dynamics in more complicated language
tasks, illustrating recurrent network dynamics in multiple text-classification tasks with more than
two categories. The tasks we study—document classification, review score prediction (from one to
five stars), and emotion tagging—exemplify three distinct types of classification tasks. As in the
binary sentiment case, we find integration of evidence to underlie the operations of these networks;
however, in multi-class classification, the geometry and dimensionality of the integration manifold
depend on the type of task and the structure of the training data. Understanding and precisely
characterizing this dependence is the focus of the present work.

Our contributions

� We study three distinct types of text-classification tasks—categorical, ordered, and multi-
labeled—and find empirically that the resulting hidden state trajectories lie largely in a low-
dimensional subspace of the full state space.

� Within this low-dimensional subspace, we find a manifold of approximately stable fixed points1

near the network trajectories, and by linearizing the network dynamics, we show that this man-
ifold enables the networks to integrate evidence for each classification as they processes the
sequence.

� We find (N � 1)-dimensional simplex attractors2 for N -class categorical classification, planar
attractors for ordered classification, and attractors resembling hypercubes for multi-label classi-
fication, explaining these geometries in terms of the dataset statistics.

� We show that the dimensionality and geometry of the manifold reflects characteristics of the
training dataset, and demonstrate that simple word-count statistics of the dataset can explain the
observed geometries.

� We develop clean, simple synthetic datasets for each type of classification task. Networks trained
on these synthetic datasets exhibit similar dynamics and manifold geometries to networks trained
on corresponding natural datasets, furthering an understanding of the underlying mechanism.

Related work Our work builds directly on previous analyses of binary sentiment classification
by Maheswaranathan et al. (2019) and Maheswaranathan & Sussillo (2020). Apart from these works,
the dynamical properties of continuous-time RNNs have been extensively studied (Vyas et al., 2020),
largely for connections to neural computation in biological systems. Such analyses have recently
begun to yield insights on discrete-time RNNs: for example, Schuessler et al. (2020) showed that
training continuous-time RNNs on low-dimensional tasks led to low-dimensional updates to the
networks’ weight matrices; this observation held empirically in binary sentiment LSTMs as well.
Similarly, by viewing the discrete-time GRU as a discretization of a continuous-time dynamical
system, Jordan et al. (2019) demonstrated that the continuous-time analogue could express a wide
variety of dynamical features, including essentially nonlinear features like limit cycles.

Understanding and interpreting learned neural networks is a rapidly-growing field. Specifically in
the context of natural language processing, the body of work on interpretability of neural models is
reviewed thoroughly in Belinkov & Glass (2018). Common methods of analysis include, for exam-
ple, training auxiliary classifiers (e.g., part-of-speech) on RNN trajectories to probe the network’s

1As will be discussed in more detail below, by fixed points we mean hidden state locations that are approx-
imately fixed on time-scales of order of the average phrase length for the task at hand. Throughout this work
we will use the term fixed point manifold to be synonymous with manifolds of slow points.

2A 1-simplex is a line segment, a 2-simplex a triangle, a 3-simplex a tetrahedron, etc. A simplex is regular
if it has the highest degree of symmetry (e.g. an equilateral triangle is a regular 2-simplex).
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representations; use of challenge sets to capture wider language phenomena than seen in natural
corpora; and visualization of hidden unit activations as in Karpathy et al. (2015) and Radford et al.
(2017).

2 SETUP

Models We study three common RNN architectures: LSTMs (Hochreiter & Schmidhuber, 1997),
GRUs (Cho et al., 2014), and UGRNNs (Collins et al., 2016). We denote theirn-dimensional hidden
state andd-dimensional input at timet ash t andx t , respectively. The function that applies hidden
state update for these networks will be denoted byF , so thath t = F (h t � 1; x t ). The network's
hidden state after the entire example is processed,hT, is fed through a linear layer to getN output
logits for each label:y = Wh T + b. We call the rows ofW `readout vectors' and denote the
readout corresponding to thei th neuron byr i , for i = 1 ; : : : ; N . Throughout the main text, we will
present results for the GRU architecture. Qualitative features of results were found to be constant
across all architectures; additional results for LSTMs and UGRNNs are given in Appendix E.

Tasks The classi�cation tasks we study fall into three categories. In thecategoricalcase, samples
are classi�ed into non-overlapping classes, for example “sports” or “politics”. By contrast, in the
orderedcase, there is a natural ordering among labels: for example, predicting a numerical rating
(say, out of �ve stars) accompanying a user's review. Like the categorical labels, ordered labels
are exclusive. Some tasks, however, involve labels which may not be exclusive; an example of this
multi-labeledcase is tagging a document for the presence of one or more emotions. A detailed de-
scription of the natural and synthetic datasets used is provided in Appendices C and D, respectively.

Linearization and eigenmodes Part of our analysis relies on linearization to render the complex
RNN dynamics tractable. This linearization is possible because, as we will see, the RNN states
visited during training and inference lie near approximate �xed pointsh � of the dynamics—points
that the update equation leave (approximately) unchanged, i.e. for whichh � � F (h � ; x).3 Near
these points, the dynamics of the displacement� h t := h t � h � from the �xed pointh � is well
approximated by the linearization

� h t � J recj(h � ;x � ) � h t � 1 + J inp
�
�
(h � ;x � ) (x t � x � ) ; (1)

where we have de�ned the recurrent and input JacobiansJ rec
ij (h; x) := @F(h ;x ) i

@hj
andJ inp

ij (h; x) :=
@F(h ;x ) i

@xj
, respectively (see Appendix A for details).

In the linear approximation, the spectrum ofJ rec plays a key role in the resulting dynamics. Each
eigenmode ofJ rec represents a displacement whose magnitude either grows or shrinks exponentially
in time, with a timescale� a determined by the magnitude of the corresponding (complex) eigenvalue
� a via the relation� a := jlog j� a jj � 1. Thus, eigenvalues within the unit circle thus represent stable
(decaying) modes, while those outside represent unstable (growing) modes. The Jacobians we �nd
in practice almost exclusively have stable modes, most of which decay on very short timescales
(a few tokens). Eigenmodes near the unit circle have long timescales, and therefore facilitate the
network's storage of information.

Latent semantic analysis For a given text classi�cation task, one can summarize the data by
building a matrix of word or token counts for each class (analogous to a document-term matrix
(Manning & Schutze, 1999), where the documents are classes). Here, thei; j entry corresponds to
the number of times thei th word in the vocabulary appears in examples belonging to thej th class. In
effect, the column corresponding to a given word forms an “evidence vector”, i.e. a large entry in an
particular row suggests strong evidence for the corresponding class. Latent semantic analysis (LSA)
(Deerwester et al., 1990) looks for structure in this matrix via a singular value decomposition (SVD);
if the evidence vectors lie predominantly in a low-dimensional subspace, LSA will pick up on this
structure. The top singular modes de�ne a “semantic space”: the left singular vectors correspond to
the projections of each class label into this space, and the right singular vectors correspond to how
individual tokens are represented in this space.

3Although the �xed point expression depends on the inputx , throughout this text we will only study �xed
points with the zero input. That is, we focus on the autonomous dynamical system given byh t +1 = F (h t ; 0)
(see Appendix A for details).
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Figure 1: Results from training GRUs on 3-class categorical data. (a, d)Final hidden states,hT , of
many test samples, colored by their label, with a few example hidden states trajectories shown explicitly. The
initial stateh0 is shown as a black square, and the three thick solid lines are the three readouts, colored by
their respective class.(b, e) The hidden de�ections,h t � h t � 1 for t = 1 ; : : : ; T , from various words in
the vocabulary, with the average de�ection of each shown as a solid line.(c, f) Approximate �xed points,
h � � F (h � ; x = 0), colored by their predicted label (see Appendix A.1 for details). The inset shows the
variance explained as a function of number of PC dimensions. As in (a, d), the solid lines are readout vectors
for each class.(g) The LSA score vectors projected into the top two variance dimensions.(h) Percentage of
variance explained versus number of dimensions for LSA.

Below, we will show that RNNs trained on classi�cation tasks pick up on the same structure in
the dataset as LSA; the dimensionality and geometry of the semantic space predicts corresponding
features of the RNNs.

Regularization While the main text focuses on the interaction between dataset statistics and result-
ing network dimensionality, regularization also plays a role in determining the dynamical structures.
In particular, strongly regularizing the network can reduce the dimensionality of the resulting mani-
folds, while weakly regularizing can increase the dimensionality. Focusing on`2-regularization, we
document this effect for the synthetic and natural datasets in Appendicies D.1 and F, respectively.

3 RESULTS

3.1 CATEGORICAL CLASSIFICATION YIELDS SIMPLEX ATTRACTORS

We begin by analyzing networks trained on categorical classi�cation datasets, with natural examples
including news articles (AG News dataset) and encyclopedia entries (DBPedia Ontology dataset).
We �nd dynamics in these networks which are largely low-dimensional and governed by integra-
tion. Contrary to our initial expectations, however, the dimensionality of the network's integration
manifolds arenot simply equal to the number of classes in the dataset. For example, rather than
exploring a three-dimensional cube, RNNs trained on 3-class categorical tasks exhibit a largelytwo-
dimensional state space which resembles an equilateral triangle (Fig. 1a, d). As we will see, this is
an example of a pattern that generalizes to larger numbers of classes.

Synthetic categorical data To study how networks performN -class categorical classi�cation, we
introduce a toy language whose vocabulary includesN + 1 words: a single evidence word “evidi ”
for each labeli , and a neutral word “neutral”. Synthetic phrases, generated randomly, are labeled
with the class for which they contain the most evidence words (see Appendix D for more details).
This is analogous to a simple mechanism which classi�es documents as, e.g., “sports” or “�nance”
based on whether they contain more instances of the word “football” or “dollar”.
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Figure 2: Evidence integration is accomplished via eigenmodes with long timescales, aligned with the
�xed-point manifold . Each step along the x-axis represents a particular eigenmode of the dynamics, with
corresponding eigenvalue� a ; the black (left y-axis) points show the time constant (in units of tokens) associated
with each mode, given by� a := jlog j� a jj � 1 ; the blue (right y-axis) points show the fraction of the mode's
(right) eigenvector which lies in the �xed-point plane. From these plots, it is apparent that only a few modes
(highlighted in gray) both: (i) do not decay appreciably on the time scale of the average document length,
and (ii) aligned with, and create motion within, the �xed-point manifold. These are the integration modes
responsible for accumulating evidence. We see(a) two integration modes in three-class categorical tasks,(b)
three integration modes in four-class categorical tasks, and two integration modes in both(c) �ve-class ordered
and (d) three-class ordered tasks. These plots characterize LSTMs, with other architectures shown in the
Appendices.

The main features of the categorical networks' integration manifolds are clearly seen in the 3-class
synthetic case. First, the dynamics are low-dimensional: performing PCA on the set of hidden states
explored from hundreds of test phrases reveals that more than97% of its variance is contained in
the top two dimensions. Projected onto these dimensions, the set of network trajectories takes the
shape of an equilateral triangle (Fig. 1a). Diving deeper into the dynamics of the trained network,
we examine the de�ections, or change in hidden state,� h t , induced by each word. The de�ections
due to evidence words “evidi ” align with the corresponding readout vectorr i at all times (Fig. 1b).
Meanwhile, the de�ection caused by the “neutral” word is much smaller, and on average, nearly
zero. This suggests that the RNN dynamics approximate that of a two-dimensional integrator: as
the network processes each example, evidence words move its hidden state within the triangle in a
manner that is approximately constant across the phrase. The location of the hidden state within the
triangle encodes the integrated, relative counts of evidence for each of the three classes. Since the
readouts are of approximately equal magnitude and align with the triangle's vertices, the phrase is
ultimately classi�ed by whichever vertex is closest to the �nal hidden state. This corresponds to the
evidence word contained the most in the given phrase.

Natural categorical data Despite the simplicity of the synthetic categorical dataset, its working
mechanism generalizes to networks trained on natural datasets. We focus here on the 3-class AG
News dataset, with matching results for 4-class AG news and 3- and 4-class DBPedia Ontology
in Appendix E. Hidden states of these networks, as in the synthetic case, �ll out an approximate
equilateral triangle whose vertices once again lie parallel to the readout vectors (Fig. 1d). While
these results bear a strong resemblance to their synthetic counterparts, the manifolds for natural
datasets are, unsurprisingly, less symmetric.

Though the vocabulary in natural corpora is much larger than the synthetic vocabulary, the network
still learns the same underlying mechanism: by suitably arranging its input Jacobian and embedding
vectors, it aligns an input word's de�ection in the direction that changes relative class scores appro-
priately (Fig. 1e). Most words behave like the synthetic word “neutral”, causing little movement
within the plane; certain words, however, (like “football”) cause a large shift toward a particular ver-
tex (in this case, “Sports”). Again, the perturbation is relatively uniform across the plane, indicating
that the order of words does not strongly in�uence the network's prediction.

In both synthetic and natural cases, the two-dimensional integration mechanism is enabled by a man-
ifold of approximate �xed points, orslow points, near the network's hidden state trajectories, which
allow the network to maintain its position in the absence of new evidence for allt = 1 ; : : : ; T . As
the position within the plane encodes the network's integrated evidence, this maintenance is essen-
tial. In all 3-class categorical networks, we �nd a planar, approximately triangle-shaped manifold of
�xed points which lie near the network trajectories (Fig. 1c, f); vertices of this manifold align with
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