StackEval: Benchmarking LLMs in Coding Assistance

Nidhish Shah * Zulkuf Genc * Dogu Araci *
Prosus Al Prosus Al Prosus Al
nidhish.shah@prosus.com zulkuf.genc@prosus.com dogu.araci@prosus.com

Abstract

We present two comprehensive benchmarks to evaluate the performance of language
models in coding assistance tasks, covering code writing, debugging, code review,
and conceptual understanding. Our main contribution includes two curated datasets:
StackEval, a large-scale benchmark derived from Stack Overflow questions, and
StackUnseen, a dynamic benchmark featuring the most recent Stack Overflow con-
tent. These benchmarks offer novel insights into the capabilities and limitations of
LLM:s, particularly in handling new and emerging content. Additionally, we assess
LLMSs’ proficiency as judges for coding tasks using a curated, human-annotated
dataset, exploring their evaluation capabilities and potential biases, including
whether they favor their own generated solutions. Our findings underscore the
potential of these benchmarks to advance LLM development and application in
coding assistance. To ensure reproducibility, we publicly share our datasets and
evaluation code at https://github.com/ProsusAIl/stack-eval.

1 Introduction

Language Models have become indispensable tools for software developers, significantly helping with
tasks such as solution implementation, troubleshooting and code reviewing. Over 40% of developers
leverage Al to boost efficiency, reduce errors, optimize code, and facilitate learning [24]. Despite
their widespread adoption, there remains a critical need for systematic evaluation to fully understand
and optimize LLM performance across these diverse coding assistance tasks.

Creating high-quality datasets that cover a wide range of programming languages and coding assis-
tance tasks demands significant resources. Evaluating these tasks is particularly challenging due to
their open-ended nature, requiring intensive effort from highly skilled domain experts. Moreover, the
risk of benchmark leakage or exposure bias, where test data might unintentionally be included in the
training sets of models, adds another layer of complexity to the evaluation process [16].

To address these challenges, we introduce a comprehensive suite of benchmarks and evaluation
methodologies designed to thoroughly assess LLMs in coding assistance. Our key contributions are:

1. StackEval: A Comprehensive Multi-Language, Multi-Task Coding Benchmark. This
comprehensive benchmark comprises meticulously curated Stack Overflow questions cov-
ering 25 programming languages and four task types — debugging, implementation, opti-
mization, and conceptual understanding. By leveraging human-verified solutions, StackEval
enables a thorough assessment of LLM capabilities across a wide range of coding tasks.

2. StackUnseen: A Dynamic Benchmark for Emergent Coding Challenges. This dataset is
a companion to our main coding assistance benchmark, specifically created from the latest
Stack Overflow data dump. While the main dataset covers historical content, StackUnseen
focuses on recent and emergent programming questions. Continuously updated, it evaluates
LLM performance on new technologies and evolving coding practices, addressing the

*Equal contribution.

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.

https://github.com/ProsusAI/stack-eval

challenges posed by rapidly changing programming landscapes and the absence of up-to-
date information in LLM training sets. This benchmark mitigates the issue of data leakage,
enabling a more accurate assessment of LLM capabilities on unseen coding queries.

3. A Comprehensive Study on LL.Ms-as-Judges for Coding Tasks: We present the first
extensive study evaluating LLMs as judges for coding assistance tasks. Leveraging our
StackEval benchmark, we curate a dataset of LLM-generated answers evaluated by human
domain experts. We investigate how techniques such as inclusion of reference answers
and chain-of-thought prompting affect evaluation accuracy, and employ statistical analyses
to examine potential biases, particularly whether LLM judges show favoritism towards
their own generated solutions. This comprehensive approach led to a robust evaluation
methodology for coding assistance tasks, achieving an 84.4% success rate in judging the
acceptability of generated responses.

To further the advancement of Al coding assistance, we are making our StackEval and StackUnseen
datasets publicly available. The StackUnseen dataset will be updated periodically to maintain its rele-
vance, allowing for the assessment of LLMs’ adaptability to emerging challenges. Furthermore, we
also share an interactive leaderboard interface, enabling users to explore specific LLM performances
on various tasks, such as “C++ advanced debugging” questions.

StackEval StackUnseen

javascript python
python c++

W

typescript r

bash/shell typescript -

java java §

other 1

javascript

P

c#

swift <

php 1

sql

bash 4

kotlin

raku

ruby

rust +

perl 4

haskell

dart

awk 1

Type assembly

== conceptual lua

= debugging

== implementation

= optimization

c
c#
php
sql
c+H+
kotlin
g0
rust

r

swift
dart
ruby
haskell
perl
elixir
vba

Language
....-|||||||||||"|“|“

Language

Type
= conceptual
W debugging
= implementation
= optimization
= version

scala
assembly
clojure
delphi
objective-c

go
delphi
prolog

ada

|

N
>

40 60 80 100 20 25 30 35 40
Number of questions Number of questions

o
«
-
°
-
&

Figure 1: StackEval & StackUnseen Programming Language Distribution. The questions are
subdivided based on the programming languages and type. The distribution of languages is sampled
based on popularity of said languages as indicated in the Stack Overflow Developer Survey, 2023

2 Related Works

Coding Benchmarks. HumanEval [9], the most widely recognized coding benchmark, consists of
164 Python coding problems designed to evaluate the problem-solving abilities of language models.
While useful, its small size and focus on a single programming language limit its applicability for
comprehensive coding assistance evaluation. It has also been public since 2021, which likely led to
its inclusion in the training sets of recent LLMs. SWE-BENCH [15]] provides a thorough benchmark
for evaluating language models on real-world software engineering tasks, utilizing 2,294 GitHub
issues and pull requests to test models’ ability to edit extensive codebases. This benchmark reveals
significant limitations in current state-of-the-art models, which struggle with the complexity and
scope of real-world code editing tasks. However, its reliance on Python repositories and GitHub
issues may limit its generalizability across different programming languages and coding assistant
tasks. MultiPL-E [8] extends existing benchmarks by translating HumanEval and MBPP Python
coding problems into 18 additional programming languages, evaluating language models’ code
generation capabilities across diverse languages. It uses adapted unit tests to assess both syntactical
correctness and functional accuracy. However, it does not evaluate models’ performance in broader
coding assistant tasks beyond code generation, such as debugging and code review. HumanEval-X

and MBXP [55]] are multilingual extensions of the existing HumanEval benchmark, translating

Python problems into multiple languages. Although these benchmarks cover more languages than the
original HumanEval, they remain limited to function completion tasks.

Evaluation Methodologies for LLMs. Evaluating the performance of LLMs, especially in open-
ended tasks, presents significant challenges. Traditional metrics such as BLEU [26] and ROUGE
[19] are often inadequate for assessing code correctness and quality [9, |6, 28], emphasizing the
need for more sophisticated evaluation methods. This has led to the development and adoption of
benchmark suites that include unit tests, which provide a more direct and meaningful assessment of
code functionality and correctness. However, these traditional metrics and unit tests often fall short
when evaluating open-ended coding assistance tasks that blend code and natural language. These
tasks demand an understanding of context, intent, and the nuances of human language, alongside
technical code accuracy. This complexity requires more sophisticated and context-aware evaluation
methodologies to effectively assess the performance of LLMs in these hybrid scenarios.

Recent approaches [41} 17,18 127] have explored using language models for automated evaluation,
leveraging their capabilities to assess the quality and relevance of generated outputs. Frameworks like
MT-Bench and ChatBot Arena utilize LLMs to judge responses, simulating a peer-review process
that aligns well with human preferences, achieving over 80% agreement. These auto-evaluation
frameworks often rely on pairwise comparisons and win rates. While this approach can enhance the
robustness of evaluations, particularly when a strong reference is lacking, it primarily indicates which
model performs better relative to others without providing an absolute measure of task performance.
Additionally, pairwise comparisons are susceptible to position and verbosity biases 13| [17, 36l

To address these limitations, we developed a specific evaluation metric and rubric to quantify
responses based on the task’s objectives. This approach offers a clearer understanding of a model’s
effectiveness for the task at hand. Furthermore, we incorporated validated ground truth answers into
the auto-evaluation process, which helps the evaluator focus on the relevant information, thereby
minimizing confusion from long text and mitigating position bias.

LLMs in Code Optimization. The application of language models to code optimization tasks has
emerged as a promising area of research. [10] introduced LLM Compiler, a model trained on 546
billion tokens of LLVM-IR and assembly code. This approach achieved 77% of the optimizing
potential of an autotuning search for code size reduction. Similarly, [30]] developed an open-source
solution using CodeGen, a billion-parameter LLM, reporting a 2.5x speedup for over 25% of
processed code. These studies demonstrate the potential of LLMs in code optimization tasks, opening
up new avenues for research into their effectiveness across different optimization problems and their
integration with traditional compiler techniques.

3 Dataset Curation

3.1 Collection and Filtration

Composition. In curating our datasets for benchmarking LLMs in coding assistance, we started with
a comprehensive corpus derived from the public dumps of multiple Stack Exchange platforms, such
as Stack Overflow, Ask Ubuntu, Super User, Unix & Linux, Software Engineering and Server Fault.
These sources, while rich in content, often contain a heterogeneous mix of high and low quality
material. To ensure the inclusion of only the most relevant and high-quality questions, we adopted a
thorough filtration process.

Filteration. The selection criteria required each question to have at least one upvote, and an accepted
answer that also received at least one upvote, ensuring community validation of both the question’s
relevance and the answer’s correctness. We excluded question-answer pairs containing images or
links, which can complicate text-based processing, and those exceeding 16,000 characters to maintain
content conciseness. Following the initial filtration, we leveraged Stack Exchange tags to identify the
programming language in each question. We then sampled the questions for each language based on
its popularity as indicated by the Stack Overflow Developer Survey, 2023 [24]], reflecting real-world
usage patterns.

Annotation. Each question was further annotated using GPT-4 Turbo [22] to classify both the question
type and complexity level. The complexity levels were categorized as Beginner, Intermediate, and
Advanced, providing a structured framework to assess the LLMs’ performance across varying degrees
of difficulty. Additionally, questions were tagged according to five distinct types pertinent to coding

tasks, which are essential for the StackEval and StackUnseen benchmarks. It’s important to note
that these tags are suggestive and were not used for sampling the questions; they serve primarily for
analysis purposes. The question types include: (i) Conceptual: Questions aimed at gaining a deeper
understanding of programming concepts, such as “How does the yield keyword work in Python?”’;
(ii) Debugging: Questions that require resolving specific programming errors, for example, “Why
am I getting a syntax error in this code?”; (iii) Implementation: Questions about executing specific
programming tasks, often necessitating code snippets in responses, such as “How can I reverse a
string in JavaScript?”’; (iv) Optimization: Questions focused on improving the efficiency of existing
code or soliciting code reviews, like “How can I optimize this algorithm for better performance?”;
and (v) Version (only relevant to StackUnseen): Questions that require knowledge about specific
(latest) versions of software, for instance, “How does the new except* statement work in Python
3.1177.

The final step in our dataset preparation involved a meticulous manual review. This review served to
confirm the dataset’s effectiveness as a valid evaluation tool, focusing on three key aspects: clarity of
questions, relevance to real-world coding scenarios, and technical accuracy. These criteria are crucial
for accurately assessing the capabilities of LLMs in coding-related tasks.

3.2 Benchmark Suite

We propose two comprehensive benchmarks, StackEval, and StackUnseen, designed to evaluate
LLMs’ performance in coding-related tasks. Figure[I]illustrates the final distribution of questions
across various programming languages and tasks. Additionally, we describe the LLM-as-a-Judge
benchmark, which plays a crucial role in evaluating LLMs’ judgment capabilities.

StackEval Benchmark is designed to evaluate the combined natural language understanding and
coding capabilities of LLMs, reflecting the complex nature of real-world coding assistance tasks. It
includes a diverse set of 925 questions, sampled from January 2018 to September 2023, ensuring
a comprehensive coverage across various programming languages, question types, and complexity
levels. This dataset’s granular nature allows for detailed insights into the specific capabilities and
limitations of different LLMs, facilitating a deeper understanding of their performance across a
spectrum of coding tasks.

StackUnseen Benchmark addresses the dynamic nature of coding practices and the continuous
evolution of programming languages. The first release of StackUnseen covered questions from
September 2023 to March 2024, and now has been expanded to include an additional set from March
to May 2024. This benchmark is updated semi-annually with new questions, ensuring that the dataset
remains relevant and challenging, reflecting the latest trends in software development. The inclusion
of recent questions helps prevent potential test-train leakage and allows for a more current evaluation
of LLM capabilities. Regular updates allow for longitudinal studies of LLM performance, providing
insights into how these models adapt to new data and whether they exhibit any learning or adaptation
over time.

LLM-as-a-Judge Benchmark consists of a carefully curated set of 136 questions from the StackEval
benchmark, chosen to ensure a representative mix of complexities and topics. For each question,
an answer is generated using an LLM (referred to as LLM-z in Figure[2] which is one of GPT-4
Turbo [22], GPT-3.5 Turbo [[7], CodeLlama-34B [29] or Mistral Medium [[14]). This LLM-generated
answer is then evaluated by human domain experts, who compare it to the original accepted Stack
Overflow answer based on the evaluation criteria outlined in Table[I] A third domain expert then
verified these annotations to ensure consistency and accuracy. This multi-layered annotation process
is designed to provide a robust dataset for evaluating LLMs as judges in coding-related tasks.

4 Evaluation Methodology

The evaluation of coding assistance tasks presents unique challenges due to their open-ended nature.
Unlike traditional benchmarks with predefined correct answers, coding problems often have multiple
valid solutions, making objective assessment complex. To address this challenge, we adopted the
LLM-as-a-Judge [41] framework for evaluation, which allows for an assessment that takes into
account the complexity and variability inherent in programming queries. Our evaluation framework
incorporates four key components, (i) Question: The original question from Stack Overflow; (ii)

Reference Answer: The accepted answer with the highest votes on Stack Overflow, serving as a
benchmark for quality and relevance; (iii) LLM-generated Answer: The solution produced by the
language model being evaluated; and (iv) Chain-of-Thought Reasoning: A step-by-step analysis
process encouraged in the model’s evaluation [37].

Lt LLM-t
LLM-x — -
Answer LLM-t — Answer
T > LLM-t T
Stacknve_r-f'Low l StackOverflow
Question ~ .
Score =1 i3 Question
‘5 LLM
Score = 0 E Judge —» Score = 1
StackOverflow v
Answer T StackOverflow
> Human Answer
(@) (b)

Figure 2: Evaluation methodology for assessing LLMs on coding tasks. a) LLM-as-a-Judge
benchmark (CoT + Ref. Answer) comparing LLM-¢ (model under test) against human experts when
evaluating answers from LLM-z models . b) Coding assistance evaluation where LLM-t generates
StackOverflow answers, scored by an LLM judge.

To standardize the evaluation process, we propose the acceptance score metric, inspired by the
concept of accepted answers on Stack Overflow. This metric assesses generated responses across
three critical dimensions: accuracy, completeness, and relevance. For a response to be deemed
acceptable, it must excel in all three dimensions; any deficiency leading the user to continue searching
for a solution renders the response unacceptable. We conducted our evaluation in two phases, each
focusing on different aspects of the model’s performance. A summary of both phases is found in

Figure[2]

Category Score Description

Optimal 3 The answer is highly accurate and detailed, providing compre-
hensive and useful guidance, enhancing the user’s understand-
ing and application.

Acceptable 2 The answer is accurate and relevant, covering the main points
sufficiently, enabling the user to proceed without additional
help.

Partially Unacceptable 1 The answer has some correct information but significant in-
accuracies or lacks important details, necessitating additional
research.

Fully Unacceptable 0 The answer is incorrect, irrelevant, or contains significant errors
and misinformation, requiring further search by the user.

Table 1: Evaluation Rubric for LLM-Generated Answers in Coding Assistance Tasks.

LLM-as-a-Judge. In this phase, we assess the model’s ability to evaluate coding solutions accurately.
We compared several evaluation methodologies, instructing the model to output a score based on the
evaluation rubric in Table |1} with different components provided as follows:

1. Question and Answer Only: The model received only the question and the answer to be
evaluated, without any additional context or guidance.

2. Question, Answer, and Reference: The model received the question, the answer to be
evaluated, and a reference answer (the highest-voted accepted answer from Stack Overflow).
This configuration allowed the model to compare the given answer against a high-quality
benchmark.

3. Question and Answer with Chain-of-Thought: The model received the question and
answer, with instructions to analyze the question’s requirements and examine the answer’s
accuracy, completeness, and relevance before scoring, potentially leading to more considered
evaluations.

4. Question, Answer, Reference, and Chain-of-Thought: The model received all elements
and was instructed to use chain-of-thought reasoning, combining reference comparison with
structured analysis.

We report the accuracy against human labelers’ acceptance scores (binarized based on acceptability).
The accuracy metric reflects how well the LLMs’ evaluations align with those of human experts. This
metric was chosen to quantify how well the model can discern between acceptable and unacceptable
coding solutions.

Coding Assistance. For this phase, we evaluate the model’s ability to generate high-quality coding
solutions. We report the acceptance rate, i.e, the proportion of model-generated solutions deemed
acceptable, derived from acceptance scores of 2 or 3 based on the evaluation rubric. This approach
ensures that generated responses are not only technically accurate but also practically applicable and
contextually appropriate.

S Experiments

In this section, we first present the experimental analysis of various LLMs as judges for coding
assistance tasks, exploring the impact of different prompt configurations, such as the inclusion of
reference answers and chain-of-thought reasoning. Following this, we evaluate the performance of
these LLMs using the StackEval and StackUnseen benchmarks. Finally, we conduct a statistical
analysis to study the phenomenon of favoritism in LLMs [25], where LLMs tend to favor their own
generations.

5.1 LLM-as-a-Judge Benchmark

Like any automated evaluation system, using LLMs as judges raises important questions about
reliability and consistency. These models might struggle with nuanced technical assessments or
exhibit biases from their training on specific programming paradigms, potentially affecting the
fairness of their evaluations. To mitigate these concerns, we verify the LLM judges’ evaluations using
human annotations.

The LLM-as-Judge benchmark consists of tuples comprising a Stack Overflow question, an LLM-
generated solution, and where applicable, the accepted Stack Overflow answer. These elements were
used to format the judging prompt as outlined in Section[d] Response generation was configured
with a near-deterministic temperature setting (7" = 0.01) and fixed seed (s = 42). We then evaluated
the models’ alignment with human judgment by comparing their acceptance scores against human-
annotated ratings using an accuracy metric. We report the mean evaluation accuracy across 10 runs in
Table 2

Model Baseline CoT Ref. Answer CoT + Ref. Answer

GPT-4 Turbo

Claude-3.5 Sonnet
WizardLM-2 8x22B

Llama3.1-70B
Mistral Large 2
Gemini-1.5 Pro

78.3% + 1.9%
81.3% £ 0.3%
80.7% £ 0.2%
78.7% + 0.4%
79.9% + 1.2%
71.3% £ 1.1%

73.9% + 1.2%
81.7% £ 0.6%
77.6% + 0.2%
76.1% + 0.4%
80.1% £ 1.7%
66.6% = 1.9%

83.6% £ 0.4%
82.1% £ 1.3%
81.9% + 1.6%
80.3% £ 0.3%
81.1% + 0.5%
72.9% £ 0.3%

84.4% + 1.8%
82.8% + 0.2%
81.5% £ 0.3%
81.2% + 0.9%
80.5% £ 0.2%
74.9% + 1.5%

Table 2: LLM-as-a-Judge Benchmark. Mean accuracy + 95% confidence interval for selected
LLMs [22, (31138} 112} [1} [33] evaluated across different prompt configurations with and without Chain-
of-Thought (CoT) reasoning and access to the reference answer.

Our experiments reveal several key patterns in LLM judging capabilities. The inclusion of refer-
ence answers consistently improves evaluation accuracy across all models tested, suggesting that

comparison-based assessment is more reliable than standalone evaluation. Interestingly, Chain-of-
Thought (CoT) reasoning alone does not enhance performance and in some cases slightly degrades it,
indicating that structured reasoning without proper context might lead to overthinking or misanalysis.
The combination of CoT reasoning with reference answers yields the best overall performance,
though this improvement is marginal compared to using reference answers alone. This suggests that
while structured reasoning can be beneficial, access to high-quality reference solutions is the more
crucial component for accurate evaluation.

5.2 StackEval and StackUnseen Benchmarks

In evaluating LLMs on the StackEval and StackUnseen benchmarks, we presented each LLM with
the coding questions directly, without supplementary prompting or instructions. Response generation
was configured with a near-deterministic temperature setting (7" = 0.01) and fixed seed (s = 42),
with outputs limited to 2048 tokens. We then assessed these responses using the LL.M-as-a-Judge
framework, employing the evaluation prompt detailed in Figure [§] The acceptance rates across
various LLMs from different providers are presented in Table 3]

Model Provider StackEval StackUnseen
Ol1 Preview OpenAl 95.5% 83.0%
Claude-3.5 Sonnet Anthropic 89.5% 76.3%
Gemini-1.5 Pro Google 90.7% 71.6%
Llama3.1-70B Nemotron Nvidia 86.9% 66.5%
Mistral Large 2 Mistral 81.9% 52.6%
WizardLM-2 8x22B Microsoft 80.2% 50.5%
Llama3.1-405B Meta 76.5% 47.9%

Table 3: The StackEval and StackUnseen Benchmarks. The acceptance rate of performance of
various LLMs [21} 13 33/ 120, |1, [12] on the coding assistance benchmarks. (See TableE]in Appendix
for full results.)

The O1 Preview model, which incorporates reasoning-chains [21]], achieves the highest performance
across benchmarks. This aligns with findings from recent studies [31} 140, 39]. Notably, open-source
models like Llama3.1-70B Nemotron and WizardLM-2 8x22B are competitive with proprietary
offerings, indicating a narrowing gap between open-source and commercial LLMs.

N
z@ - 1.00 0.98 1.00 1.00 0.95

@C& 1.00 0.92 0.90 o 075
o
N
R 0.50
N & - 098 100 0% 097 091
& S
& 092 1.00 0.86 © 0.25
P &
K
& - 100 096 100 099 095 0.00
&
> Q\
2 &
& 1.00 0.84 N 025
S 5
N & - 100 0.97 0.99 1.00 0.95
0?4 -0.50
o
oS
& 1 o0 0.86 0.84 1.00 < L 07
& : : : : & - 095 0.91 0.95 0.95 1.00 o7
oy &
i U 0 i --1.00
> o > < AN > & SY &
& & <& & & & & & &
& X & & o & <& N 4
S & & S S N &® &
& N & < 3¢ < N
o &

Figure 3: Left: Correlation between model performance across different coding benchmarks shows
strong positive correlations (0.72-0.92). Right: Model performance across different question types
within the benchmark are very highly correlated (0.91-1.00), suggesting consistent performance
across task categories.

Analysis of the StackEval and StackUnseen benchmarks reveals consistent model rankings (Table [3)),
suggesting stable performance characteristics across both historical and emerging content. However,
we observe a significant decrease in acceptance rates on unseen content. Figure [4| shows that

higher-capacity models and those using reasoning-chains (the same models that excel in StackEval)
demonstrate better generalization to novel problems. This suggests that the capabilities that drive
strong performance on established problems also contribute to better handling of unseen challenges.

0.31

Percent Drop in Acceptance Rate

Figure 4: Model Performance Degradation on Recent Problems. LLMs with higher StackEval
scores show smaller acceptance rate drops on StackUnseen, suggesting better generalization to
contemporary problems.

5.3 Self-Preference in LLM Judges

Previous work has identified potential biases in LLM-based evaluation systems, particularly the
phenomenon of self-preference where models may preferentially score their own generations. While
such biases have been demonstrated in subjective tasks like summarization [32}, 23], no systematic
study has examined self-preference in code evaluation contexts.

We analyze how LLM judges evaluate their own code generations compared to solutions from other
models, in the presence and absence of reference answers. Our study focuses on coding tasks, which
typically have at least one correct solution, providing an opportunity to examine whether objectively
correct solutions influence self-preference behavior.

Model Baseline CoT + Ref. Answer
GPT-4 Turbo 0.218 0.326
Claude-3.5 Sonnet 0.139 0.187
WizardLM-2 8x22B 0.224 0.156
Llama3.1-70B 0.048 0.279
Mistral Large 2 0.039 0.163
Gemini-1.5 Pro 0.198 0.251

Table 4: Self-Preference Analysis Results. P-values from Wilcoxon Signed Rank Test comparing
self-scores vs other-scores. Bold indicates p < 0.05 where we reject Hj in favor of H;, suggesting
presence of self-preference bias.

Using the models detailed in Table [2| we generated and evaluated responses across all models.
Consistent with previous experiments, we maintained temperature 7' = 0.01 and a fixed seed
(s = 42). Each model evaluated both its own solutions and those generated by other models. To
analyze the presence of self-preference, we conducted the Wilcoxon Signed Rank Test to study
the following hypotheses, where self-scores (.5;) represent the score a model m assigns to its own
solutions, and other-scores (.S,) represent the average scores assigned to model m by all other models
for the same questions.

Hj : The median difference between self-scores (S;) and other-scores (S,) is zero.
H, : The median difference between self-scores (S;) and other-scores (.S,) is greater than zero.

Contrary to expectations from previous studies, in the presence of reference answers, we consistently
fail to reject Hy across all models (all p > 0.05). Without reference answers, we fail to reject
Hj in four out of six cases, with marginal rejections (p = 0.048 and p = 0.039) in the remaining
two. These findings suggest that reference answers may serve as an objective anchor that eliminates
self-preference bias, while even without such anchors, the bias appears minimal in coding tasks.
These results indicate that in domains where objective correctness criteria exist, such as programming
tasks, LLM-based evaluation systems may be less susceptible to self-preference biases than in more
subjective domains. The results of the statistical tests are summarized in Table]

6 Discussion

6.1 Dataset Curation

Stack Overflow, while an invaluable resource for programmers, harbors inherent biases stemming from
its community guidelines and voting system. The platform’s emphasis on practical, specific questions
tends to favor immediately applicable solutions, potentially skewing the data towards implementation-
focused content. Strict moderation policies often lead to the exclusion of subjective, exploratory,
or unconventional questions, thereby narrowing the scope of topics represented. Moreover, the
community’s preference for concise, code-centric answers further biases responses towards pragmatic
solutions. Popular technologies and programming languages typically receive more attention and
higher-quality answers, resulting in an uneven representation across different areas of programming
knowledge. The voting system amplifies this effect by promoting content that aligns with mainstream
interests, potentially overshadowing niche but valuable contributions.

Our benchmark, derived from Stack Overflow data, inherits these characteristics, reflecting a diverse
range of real-world programming questions and solutions. While it excels in representing practical,
community-vetted programming knowledge, it may not fully capture an LLM’s capabilities across all
programming paradigms or theoretical aspects. Researchers should consider these limitations when
interpreting benchmark results and complement this evaluation with additional methods to gain a
comprehensive understanding of LLM performance in coding tasks.

6.2 [Evaluation Methodology

Our approach of employing LLMs as judges for evaluating coding assistance capabilities offers
significant advantages in efficiency and scalability. Despite our comprehensive study into the
accuracy and self-preference of LLM judges, it is essential to acknowledge inherent limitations.
These judges may be subject to the same constraints as the models they evaluate, potentially leading
to assessment blind spots, particularly in highly specialized or complex coding tasks. Moreover, LLM
judges might exhibit biases towards certain response styles prevalent in their training data (which are
harder to detect and quantify), potentially skewing evaluations regardless of solution quality.

Our methodology focuses on one-shot model predictions, which provides a standardized approach
for assessment; it does not account for LLM-based agents capable of running and verifying code.
Additionally, our evaluation criteria primarily assess the correctness and relevance of code solutions
and may not fully capture crucial aspects of real-world software development such as code efficiency,
maintainability, or adherence to best practices. These factors, though critical, present significant
challenges for consistent evaluation using current LLM capabilities.

Furthermore, our LLM-as-Judge benchmark, although comprehensive, is based on a static snapshot
of Stack Overflow questions. This temporal limitation could potentially impact the long-term
effectiveness of the judges, as their performance may vary with newer or different types of questions.
Consequently, continuous updating and re-evaluation of LLM judges are necessary to ensure their
ongoing effectiveness and relevance in the rapidly evolving field of software development.

7 Conclusion

In this study, we introduce two comprehensive benchmarks, StackEval and StackUnseen, to evaluate
the effectiveness of LLMs in coding assistance tasks across a variety of programming languages.
These benchmarks comprehensively assess capabilities in code writing, debugging, code review, and

answering conceptual questions, utilizing a diverse set of coding questions from Stack Overflow.
Furthermore, we conduct an extensive investigation into the use of LLMs as judges for coding tasks,
developing a robust evaluation methodology that achieves an 84.4% success rate in determining the
acceptability of generated responses.

Our findings highlight both the strengths and limitations of current LLMs in coding assistance tasks.
The StackEval benchmark reveals that LLMs perform exceptionally well on historical content and
common programming tasks. However, as questions become more complex and niche, their accuracy
notably decreases. The StackUnseen benchmark further demonstrates the challenges LLMs face
in generalization. When presented with emerging technologies and recent coding practices, LLMs
exhibit a significant drop in performance compared to their results on more established programming
paradigms. This performance gap illustrates the adaptability limitations of current LLMs to rapidly
evolving coding landscapes.

Ethical Considerations. The widespread adoption of LLM-based coding presents significant ethical
considerations for software engineering. Our benchmarks demonstrate that top-performing models
achieve high acceptance rates for various coding tasks, potentially altering the job market for software
developers. This raises concerns about diminished opportunities for junior developers to gain hands-
on experience and develop crucial problem-solving skills, which could contribute to a decline in
overall code quality over time.

LLMs, trained on publicly available code repositories with varying quality, may perpetuate or
exacerbate existing code quality issues due to the limited availability of exemplary code in these
datasets. Our LLM-as-a-Judge benchmark reveals that even the best models fall short of perfect
accuracy in evaluating code solutions, highlighting the continued necessity for human oversight,
especially in critical systems.

There is also a risk of perpetuating biases present in the training data, potentially leading to unfair
or discriminatory outcomes. As the field progresses, it is crucial to develop new standards for
code review, testing, and accountability that balance Al assistance with human expertise, while
continuously monitoring and addressing these issues to ensure positive technological advancement.

8 Acknowledgments

We thank the Prosus Al team for their help in labeling the LLM-as-a-Judge dataset and our colleagues
at Stack Overflow for providing the data.

References

[1] Mistral Al Large Enough — mistral.ai. https://mistral.ai/news/
mistral-large-2407/. [Accessed 29-10-2024].

[2] Mistral AI. Mistral NeMo — mistral.ai. https://mistral.ai/news/mistral-nemo/,
2024. [Accessed 30-10-2024].

[3] Anthropic. Introducing Claude 3.5 Sonnet — anthropic.com. https://www.anthropic.com/
news/claude-3-5-sonnet. [Accessed 29-10-2024].

[4] Anthropic. Introducing the next generation of Claude — anthropic.com. https://www!
anthropic.com/news/claude-3-family, 2024. [Accessed 30-10-2024].

[5] Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, Xiaopeng Li, Yuchen Tian, Ming
Tan, Wasi Uddin Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, Sujan Kumar Gonugondla,
Hantian Ding, Varun Kumar, Nathan Fulton, Arash Farahani, Siddhartha Jain, Robert Giaquinto,
Haifeng Qian, Murali Krishna Ramanathan, Ramesh Nallapati, Baishakhi Ray, Parminder
Bhatia, Sudipta Sengupta, Dan Roth, and Bing Xiang. Multi-lingual evaluation of code
generation models, 2023.

[6] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis
with large language models, 2021.

10

https://mistral.ai/news/mistral-large-2407/
https://mistral.ai/news/mistral-large-2407/
https://mistral.ai/news/mistral-nemo/
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, Arjun Guha,
Michael Greenberg, and Abhinav Jangda. Multipl-e: A scalable and extensible approach to
benchmarking neural code generation, 2022.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Ilya Sutskever, and Wojciech Zaremba
et al. Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374,
2021.

Chris Cummins, Volker Seeker, Dejan Grubisic, Baptiste Roziere, Jonas Gehring, Gabriel
Synnaeve, and Hugh Leather. Meta large language model compiler: Foundation models of
compiler optimization, 2024.

DeepSeek-Al, Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao,
Chengqgi Dengr, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji,
Erhang Li, Fangyun Lin, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang,
Hanwei Xu, Hao Yang, Haowei Zhang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui
Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jin Chen, Jingyang Yuan, Junjie
Qiu, Junxiao Song, Kai Dong, Kaige Gao, Kang Guan, Lean Wang, Lecong Zhang, Lei Xu,
Leyi Xia, Liang Zhao, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan Zhang, Minghua
Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang, Peng Zhang,
Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, and Ziwei Xie et al. Deepseek-v2: A strong,
economical, and efficient mixture-of-experts language model, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, and Zhiwei Zhao et. al. The llama 3 herd of models, 2024.

Yann Dubois, Baldzs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
alpacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475,
2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut
Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Douwe Kiela, Shubham Bhooshan, Hamed Firooz, and Alun Preece. Challenges in evaluating
large language models. arXiv preprint arXiv:2209.01186, 2022.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/alpaca_evall 2023.

11

https://github.com/tatsu-lab/alpaca_eval

[18] Bill Yuchen Lin, Khyathi Chandu, Faeze Brahman, Yuntian Deng, Abhilasha Ravichander,
Valentina Pyatkin, Ronan Le Bras, and Yejin Choi. Wildbench: Benchmarking language models
with challenging tasks from real users in the wild, 2024.

[19] Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pages 74-81, 2004.

[20] Nvidia. llama-3_1-nemotron-70b-instruct | NVIDIA NIM — build.nvidia.com. https:
//build.nvidia.com/nvidia/llama-3_1-nemotron-70b-instruct/modelcard. [Ac-

cessed 29-10-2024].

[21] OpenAl Introducing OpenAl ol-preview. https://openai.com/index/
introducing-openai-ol-preview/. [Accessed 23-10-2024].

[22] OpenAl. New Models and Developer Products Announced at DevDay. https://openai. com/
index/new-models-and-developer-products-announced-at-devday. [Accessed 29-

10-2024].

[23] OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Iige Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, and Shyamal Anadkat.
Gpt-4 technical report, 2024.

[24] Stack Overflow. Stack overflow developer survey 2023, 2023.

[25] Arjun Panickssery, Samuel R. Bowman, and Shi Feng. LIm evaluators recognize and favor their
own generations, 2024.

[26] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics, ACL 02, page 311-318, USA, 2002. Association for Computational
Linguistics.

[27] Nazneen Rajani, Nathan Lambert, Sheon Han, Jean Wang, Osvald Nitski, Edward Beeching,
and Lewis Tunstall. Can foundation models label data like humans? Hugging Face Blog, 2023.
https://huggingface.co/blog/llm-v-human-data.

[28] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan, Ming
Zhou, Ambrosio Blanco, and Shuai Ma. Codebleu: a method for automatic evaluation of code
synthesis, 2020.

[29] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov,
Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan
Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas
Usunier, Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for
code, 2024.

[30] Alexander Shypula, Aman Madaan, Yimeng Zeng, Uri Alon, Jacob Gardner, Milad Hashemi,
Graham Neubig, Parthasarathy Ranganathan, Osbert Bastani, and Amir Yazdanbakhsh. Learning
performance-improving code edits, 2024.

[31] Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute
optimally can be more effective than scaling model parameters, 2024.

[32] Rickard Stureborg, Dimitris Alikaniotis, and Yoshi Suhara. Large language models are incon-
sistent and biased evaluators, 2024.

[33] Gemini Team, Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry, Lepikhin, Timothy
Lillicrap, Jean baptiste Alayrac, Radu Soricut, Angeliki Lazaridou Demis Hassabis, Koray
Kavukcuoglu, Jeffrey Dean, and Oriol Vinyals et al. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context, 2024.

12

https://build.nvidia.com/nvidia/llama-3_1-nemotron-70b-instruct/modelcard
https://build.nvidia.com/nvidia/llama-3_1-nemotron-70b-instruct/modelcard
https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/new-models-and-developer-products-announced-at-devday
https://openai.com/index/new-models-and-developer-products-announced-at-devday

[34] Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan
Ferret, Peter Liu, Pouya Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar,
Charline Le Lan, Sammy Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin,
Nikola Momchev, Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam Neyshabur,
Olivier Bachem, Alanna Walton, Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchi-
son, Alvin Abdagic, Amanda Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge,
Antonia Paterson, Ben Bastian, Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu
Kumar, Chris Perry, Chris Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov, David
Weinberger, and Alek Andreev et. al. Gemma 2: Improving open language models at a practical
size, 2024.

[35] Qwen Team. Qwen2.5: A party of foundation models, September 2024.

[36] Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu, Binghuai Lin, Yunbo Cao, Qi Liu,
Tianyu Liu, and Zhifang Sui. Large language models are not fair evaluators, 2023.

[37] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi,
Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models, 2023.

[38] Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qing-
wei Lin, and Daxin Jiang. WizardLM: Empowering large pre-trained language models to follow
complex instructions. In The Twelfth International Conference on Learning Representations,

2024.

[39] Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D. Goodman.
Quiet-star: Language models can teach themselves to think before speaking, 2024.

[40] Baohua Zhang, Yongyi Huang, Wenyao Cui, and Huaping Zhang. Thinking before speaking: A
role-playing model with mindset, 2024.

[41] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023.

[42] Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen,
Andi Wang, Yang Li, Teng Su, Zhilin Yang, and Jie Tang. Codegeex: A pre-trained model for
code generation with multilingual evaluations on humaneval-x, 2023.

13

A Appendix

Model Provider StackEval StackUnseen LLM-as-a-Judge
O1 Preview OpenAl 95.5% 83.0% 80.9%
O1 Mini OpenAl 93.8% 80.9% 78.7%
Gemini-1.5 Pro Google 90.7% 71.6% 76.4%
Claude-3.5 Sonnet Anthropic 89.5% 76.3% 83.0%
GPT-4 Turbo OpenAl 88.0% 61.3% 86.2%
Llama3.1-Nemotron-70B Nvidia 86.9% 66.5% 76.5%
Gemini-1.5 Flash Google 83.4% 63.4% 75.7%
GPT-40 OpenAl 83.0% 55.7% 82.3%
Mistral Large 2 Mistral 81.9% 52.6% 80.7%
Qwen2.5-72B-Instruct Alibaba 80.4% 50.5% 80.1%
WizardLM-2 8x22B Microsoft 80.2% 50.5% 81.8%
GPT-40 Mini OpenAl 80.0% 42.3% 81.6%
Deepseek Coder-v2.5 DeepSeek Al 78.7% 43.3% 80.9%
Llama3.1-405B Instruct Meta 76.5% 47.9% 78.7%
Claude-v3 Opus Anthropic 75.0% 47.4% 76.5%
GPT4 OpenAl 74.2% 42.3% 82.4%
Llama3.1-70B Instruct Meta 73.5% 41.2% 82.1%
Mistral Small Mistral 67.0% 34.5% 77.2%
Gemma-2-27B Instruct Google 63.6% 38.7% 77.2%
Gemma-2-9B Instruct Google 62.9% 36.1% 68.4%
Claude-v3 Haiku Anthropic 60.8% 32.5% 66.2%
GPT-3.5 Turbo OpenAl 54.4% 22.2% 66.9%
Llama3.1-8B Instruct Meta 54.1% 17.0% 66.2%
Mistral Nemo Mistral 43.4% 14.9% 63.2%

Table 5: StackEval, StackUnseen and LL.M-as-a-Judge Benchmark. Performance comparison

between various LLMs [21] 3, 22, 1, [11] 12} 4] 34} 2]] on coding assistance
benchmarks (StackEval & StackUnseen), alongside the LLM-as-a-Judge benchmark (CoT + Ref.

Answer).

Debugging Implementation
1.0
0.8
o
3
&
5 0.6
[
g
]
goa
1
<
0.2
0.0
DA RO FRPL DNV D S o S &P O DX IO PRV OSSR o & N & & OO o
S S F S S S S S AT S S B R A A P O
B S S S R S s B S S S R SO <8
C A2 S S HTC SOE (SN0 & O (F 00 O (S X O S R N N NN PO N
O N N S A N N R N L R N S AN SN I N RN
S IR E® ARNF 07 P ARG, R o P O IR E LR N FE (& P07 i
Snd C 88 N AT WSV WAL E NS W A OO NIV TN NAT A SR
CES &Y 7 & Y I FE NG Iy Y & &
S ¢ S & @7 & S o & CENELT S s
o S N > o
& o A & o s S &
S &
Conceptual Optimization
1.0
0.8
o
&
S 0.6
g
¢
k]
§oa
g
<
0.2
0.0
A PR ERER R LENSDR IS DEOEE PO CANLCEERIRIR IS ELEP L & DO
AT A S P DR 0 W S @ S S F W EE e A0 DV I & S e SR
CSm S & F 882 008 g0K 10 & O S SO 2@ M ST E B0 KT O FE 0 (& O FE RS &
N N N S SRR O N S RN o SR O LSRR I
ee xS V<>°&7z°é¢;\w\'°¢é"‘° RO B & e "i@@@\o @'& S8 h& O NS L
ST TSN &L LE P R P EE T F I S
Fpre S & O S S & N R & S &
O o RS & &Y K o S
e 2
S S

Figure 5: The performance of various LLMs across different question types on the StackEval
benchmark, averaged across programming languages.

14

Implementation

StackEval-C++

g

s v
s 3 %

PR &, T & 3 &
@duedaddy

Debugging

StackEval-Java

&
LLMs across different question types on the StackUnseen

00
<

10US

2aueydandy 2oueydandy

Version

StackEval-Python

The performance of var

< @ @ < o <
- S S S

S S
S1ey 9dueIdedy

9 IS
% 2,
%
I P
o«é\m&. o@éﬁﬁ
o&@c\e\@) 5%
AN % 3
S & e, 2
& Lo G % e
&%, ©, 2,8, %, e,
oo o\@ée @& Yo, %
2, 3
%, e,
%%, m.oxo\
PG .
OGN
24,2879,
Y 2%, S
257009, %
0 % 50 %,
2, neow«o‘,u K]
s k
2,5, &,
NALS
& X
2,5 %, ‘
° @ @ s o o
& S s S

2 S @ © < ~
s s

S S S S
)
2jey 2duedaddy bém. ajey asueydandy

o 2,
&z\v @é
%, % %02
2025, 2.5,
S0 %y S Vi
y L&,
%y %o 2% %
e, 7050 RIONIAN
, %,
2, &.« 2, 2, &o‘ K2
NS 25, ",
2,25, %, %, .55, %,
Y, %o %, % S
% 7 > EAE N
0./0,%.. 0 oSt & 0O
%, %, 2 %, e
556 %, mw\o\o @b« »@&
o % G, e %,
L3 % & %O
(N && ",
% %, & 8,%,
sy éo@ AN
ENIR NN
% Yoo Ve, %o
25,76.20 4 2,75 %
e G, O
%%, % 5,0 %o
S % “% 0 %,
4,52, .9 o % O %,
Y %, %, S 4
7,50 %, % B
7, S, %y e,

ER A T 5oz %

saueydady saueydandy

benchmark, averaged across programming languages.

Figure 6

LLMs across popular programming languages on the StackEval
15

0ous

The performance of var

and StackUnseen benchmark.

Figure 7

LLM Evaluation Prompt

Task Description You are a very experienced and knowledgeable answer checker. You will be given a
question, a reference answer and an LLM generated answer. Your task is to evaluate how good the answer is
in answering the question of the user. More specifically, you will evaluate the acceptability of the answer for
the user following the definition and rubric below.

Acceptability Definition

Acceptability measures how effectively an answer satisfies the user’s specific requirements and addresses
their issue. It evaluates whether the response provides a viable solution, focusing on the answer’s accuracy,
relevance, and completeness. An acceptable answer:

* Is one that the user would regard as a fitting resolution to their query

» Enables the user to proceed without requiring additional help or verification

* May not be perfect and may contain small inaccuracies that will not affect usability

* Must work without user editing (for code) or cover crucial points (for advice)

Acceptability Evaluation Rubric

Score 0 — Completely Unacceptable ¢ Incorrect or entirely irrelevant, with substantial errors
* Contains severe hallucinations or misinformation, significantly misleading the user
» Leaves significant gaps, necessitating further search for information
* User would immediately disregard this answer
Score 1 — Useful but Unacceptable ¢ Contains some correct information but significant inaccuracies
or lacks important details, prompting additional research
» Somewhat relevant but misses critical nuances, leading to an incomplete understanding
» Not comprehensive, omitting important aspects and critical details needed to solve the user’s problem
* Provides some value but requires further searching for a complete and satisfactory solution
Score 2 — Acceptable ¢ Accurate, free of critical errors that would prevent problem resolution
» Relevant and demonstrates a clear understanding of the issue, addressing the main points and consider-
ations, and directly applicable to the problem.
» Offering a satisfactory solution, even if it is not the most optimal solution. Minor details may be
omitted, but nothing vital is missing.
* Provides enough information for the user to proceed without additional help
Score 3 — Optimal ¢ The answer is 100% accurate and provides a detailed response, where the details
improve answers quality and usability
* It is thorough and addresses additional relevant aspects that could enhance the user’s understanding of
the solution.
* The response may include extra information, such as best practices or helpful tips, that adds value and
could assist the user in avoiding common mistakes or in understanding the broader context.
* The user is likely to feel well-informed and be able to apply the solution effectively

Threshold Definition The critical threshold between Score 1 and Score 2:

* Score 1 (Useful but Unacceptable): Provides correct information but requires additional research.

» Score 2 (Acceptable): Offers complete, accurate information allowing issue resolution without further
resources.

Assessment Process

1. Analyze question and reference answer for core requirements.

2. Evaluate generated answer against requirements and reference.

3. Reason on the acceptability of the generated answer based on the definition.
4. Assign final score based on rubric.

Output Format The evaluation should be formatted as a JSON object:

{
"questionAnalysis": "Review core elements required for answer",
"generatedAnswerAnalysis": "Evaluate coverage, strengths, and weaknesses",
"acceptabilityEvaluation": "Assess accuracy, relevance, and completeness",
"acceptabilityScore": "Assign the most appropriate score, <int: 0-3>"

}

Figure 8: The LLLM evaluation prompt (CoT + Ref. Answer) used to assess answer quality.

16

I need to know the exact number of arguments that a lambda has. | do not care for their types, |
just need a count.

auto lambda0l = [&]1(O) { ... };
auto lambdal = [&](int32_t a) { ... };
auto lambda2 = [&] (int32_t a, auto b) { ... };

lambda_details<decltype(lambda0)>::argument_count; // Equals 0
lambda_details<decltype(lambdal)>::argument_count; // Equals 1
lambda_details<decltype(lambda2)>::argument_count; // Equals 2

Detecting variadic lambdas would also be nice so that | can deal with that edge case as well.
auto lambda_variadic = [&](auto... args){ ... };
lambda_details<decltype(lambda_variadic)>::is_variadic; // Equals true

How can | get this information?

Figure 9: StackEval Implementation. A C++ implementation sample question from the StackE-
val dataset.

Call to undefined method llluminate/Routing/RouteFileRegistrar::get() - Error after upgrading from
Laravel 5.7 to 5.8. | have a running app written on Laravel 5.7. | tried to change the record in
composer.json to match "5.8.*" and ran composer update. On my local (win10/WAMP) machine it
went fine, but on the staging server (Debian 9/nginx) the update command changed the vendor
contents and failed at the end.

Since then anything | do with the app on the server | get this error and | can’t find any information
anywhere.

Call to undefined method Illuminate\Routing\RouteFileRegistrar::get()

And this is the line that fails:

$this->get (’login’, ’Auth\LoginController@showLoginForm’)->name(’login’);

Figure 10: StackEval Debugging. A PHP debugging sample question from the StackEval dataset.

Accessing something inside the object when you don’t know the key. | am getting a following object:

{
TuWlzvaSABwH4q: {
label: ’Random Image of TypeScript not relavent to coworking’,
thumbId: ’d501-f-b601-c8b1-4bd995e’,
schemaType: ’xman-assets-image-set’
3
}

Now, | want to access the value of thumblD inside it i.e. d501-f-b601-c8b1-4bd995e, but my root
key seems to be dynamic/random (IuWizvaSABwH4q). How can | access the value inside it?

Figure 11: StackEval Conceptual. A conceptual style sample question from the StackEval
dataset.

17

I have a vector of prices (f64). | would like to compute the highest price. What is the current easiest
and most idiomatic way to compute the max of a collection of f64 in rust?

There has been some discussion about Ord and f64 but | am not sure what is the most up-to-date
and less hacky way to do so.

I rely on the following but | imagined there was some built in operation:

let max = prices.iter().fold(None, |r, &n| match r {
Some (p) => Some(f64::max(p, n)),
None => Some(e),

B

(which is just a fold for some free monoid)

Figure 12: StackEval Optimization. A Rust optimization question from the StackEval dataset.

Why ngModel doesn’t works on the last version of Angular 17? | am trying to make a form in my
angular app, but when i want to implement ngModel on my form:

<form (ngSubmit)="onSignUp()" #signupForm="ngForm">
<h1>Connexion</h1>
<input
type="email"
name="mail"
[(ngModel)]="userLogin.email"
placeholder="Email"
/>
<input
type="password"
name="mdp"
[(ngModel)]="userLogin.password"
placeholder="Password"
/>
Mot de passe oublie 7
<button type="submit">Se Connecter</button>
</form>

| have this error: NG8002: Can’t bind to ’ngModel’ since it isn’t a known property of
’input’. [plugin angular-compiler]. | can’t import FormsModule in the app.module.ts be-
cause this file doesn’t exists on Angular 17, i only have an app.config.ts file. Can someone please
explain me how to do?

Figure 13: StackUnseen Versioning. A version-dependent question from the StackUnseen
dataset.

18

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] see section [6]
(c) Did you discuss any potential negative societal impacts of your work? [Yes] see section

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [IN/A]
3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [IN/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

(d) Did you discuss whether and how consent was obtained from people whose data you're
using/curating? [Yes] see supplementary material datasheet.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] see supplementary material datasheet.
5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [Yes] see Figure[§]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A |

19

	Introduction
	Related Works
	Dataset Curation
	Collection and Filtration
	Benchmark Suite

	Evaluation Methodology
	Experiments
	LLM-as-a-Judge Benchmark
	StackEval and StackUnseen Benchmarks
	Self-Preference in LLM Judges

	Discussion
	Dataset Curation
	Evaluation Methodology

	Conclusion
	Acknowledgments
	Appendix

