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Abstract
Obtaining high quality data for training classifi-
cation models is challenging when sufficient data
covering the real manifold is difficult to find in
the wild. In this paper, we present Diffusion Inver-
sion, a dataset-agnostic augmentation strategy for
training classification models. Diffusion Inversion
is a simple yet effective method that leverages the
powerful pretrained Stable Diffusion model to
generate synthetic datasets that ensure coverage
of the original data manifold while also gener-
ating novel samples that extrapolate the training
domain to allow for better generalization. We
ensure data coverage by inverting each image in
the original set to its condition vector in the la-
tent space of Stable Diffusion. We ensure sample
diversity by adding noise to the learned embed-
dings or performing interpolation in the latent
space, and using the new vector as the condition-
ing signal. The method produces high-quality
and diverse samples, consistently outperforming
generic prompt-based steering methods and KNN
retrieval baselines across a wide range of com-
mon and specialized datasets. Furthermore, we
demonstrate the compatibility of our approach
with widely-used data augmentation techniques,
and assess the reliability of the generated data in
both supporting various neural architectures and
enhancing few-shot learning performance.

1. Introduction
Collecting data from the real world can be complex, costly,
and time-consuming. Traditional machine learning datasets
are often not curated, noisy, or hand-curated but lacking
size. Consequently, obtaining high-quality data remains a
critical yet challenging aspect of developing effective pre-
dictive systems. Recently, large-scale models such as GPT-
3 (Brown et al., 2020), DALL-E (Ramesh et al., 2022),
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Figure 1. (Left) Top row: 4 real images from STL10 dataset. Bot-
tom rows: For each real image, 3 images generated from Stable
Diffusion using learned inverted embedding and 3 random initial
noises. (Right) The test accuracy of ResNet18 trained on syn-
thetic images improves as more data is generated and eventually
surpasses the model trained on the real STL-10 dataset.

Imagen (Saharia et al., 2022), and Stable Diffusion (Rom-
bach et al., 2022), which are trained on vast amounts of
noisy internet data, have emerged as successful ”foundation
models” (Bommasani et al., 2021) demonstrating strong
generative capabilities. Given their extensive world knowl-
edge, a natural question arises: can large-scale pre-trained
generative models help generate high-quality training data
for discriminative models? Due to the limited diversity in
samples generated by previous approaches (Antoniou et al.,
2017; He et al., 2022; Gowal et al., 2021; Bansal & Grover,
2023), it has been widely believed and empirically observed
that these samples cannot be utilized to train classifiers with
higher absolute accuracy compared to those trained on the
original datasets (Ravuri & Vinyals, 2019a;b; Gowal et al.,
2021; Zhao & Bilen, 2022). Nevertheless, the issue of gen-
erator quality may no longer be a hindrance. State-of-the-art
diffusion-based text-to-image models like Stable Diffusion
demonstrate remarkable capabilities in synthesizing images
with high visual fidelity, while maintaining good diversity
as they prove to not suffer from mode collapse.

A natural method for using these models to augment the orig-
inal dataset involves prompt-based generation, which allows
a combination of domain expert knowledge and language
enhancement techniques (He et al., 2022; Yuan et al., 2022)
to produce a diverse array of high-fidelity images from di-
versified text prompts. Despite their diversity, prompt-based
generation often yields off-topic and irrelevant images for
the target domain, resulting in low-quality datasets (Bansal
& Grover, 2023), even if CLIP filtering (He et al., 2022) is
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used. Specifically, these methods disregard the distribution
of the train set, leading to the creation of distributionally
dissimilar images from the original data and a significant
gap between real and synthetic datasets (Borji, 2022).

To address the challenges in deploying generative models
for real-world classification, we present Diffusion Inversion,
a simple yet effective method that leverages the general-
purpose pre-trained image generator, Stable Diffusion (Rom-
bach et al., 2022). To capture the original data distribution
and ensure data coverage, we first obtain a set of embedding
vectors by inverting each training image to the output space
of the text encoder. Next, we condition Stable Diffusion
on a noisy version of these vectors, enabling sampling of a
diverse array of novel training images extending beyond the
initial dataset. As a result, the final generated images retain
semantic meaning while incorporating variability stemming
from the rich knowledge embedded within the pre-trained
image generator (see examples in Figure 1 and 5). Further-
more, we enhance sampling efficiency by learning condition
vectors to generate low-resolution images directly rather
than producing them at high resolution and subsequently
downsampling. This strategy increases the generation speed
of the diffusion model by 6.5 times, rendering it more suit-
able as a data augmentation tool. To assess our method, we
compare it against generic prompt-based steering methods,
widely-used data augmentation techniques, and original data
across various datasets. Our primary contributions include:

• We propose Diffusion Inversion, a simple yet effective
method that utilizes pre-trained generative models to
assist with discriminative learning, bridging the gap
between real and synthetic data. Our method offers
sample diversity and 6.5x reduction in sampling time

• We pinpoint three vital components that allow models
trained on generated data to surpass those trained on
real data: 1) a high-quality generative model, 2) a
sufficiently large dataset size, and 3) a steering method
that considers distribution shift and data coverage

• Our method outperforms generic prompt-based steer-
ing methods and widely-used data augmentation tech-
niques, especially in the realm of specialized datasets
such as medical imaging, exhibiting data distribution
shifts from Stable Diffusion training data. Addition-
ally, our generated data can enhance various neural
architectures and boost few-shot learning performance

2. Method
Stable Diffusion (Rombach et al., 2022), a model trained
on billions of image-text pairs, boasts a wealth of general-
izable knowledge. To harness this knowledge for specific
classification tasks, we propose a two-stage method that
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Figure 2. Our method optimizes the standard denoising objective
to learn a set of embedding vectors while keeping the model pa-
rameters fixed.

guides a pre-trained generator, G, towards the target domain
dataset. In the first stage, we map each image to the model’s
latent space, generating a dataset of latent embedding vec-
tors. Then, we produce novel variants by running the inverse
diffusion process conditioned on perturbed versions of these
vectors. We illustrate our approach in Figure 2.

2.1. Stage 1 - Embedding Learning

Stable Diffusion Stable Diffusion is a type of Latent
Diffusion Model (LDM), which is a class of Denoising
Diffusion Probabilistic Models. LDMs operate in an au-
toencoder’s latent space and have two main components.
First, an autoencoder is pre-trained on a large image dataset
to minimize reconstruction loss, using regularization from
either KL-divergence loss or vector quantization (Van
Den Oord et al., 2017; Agustsson et al., 2017). This al-
lows the encoder E to map images x ∈ Dx to a spatial latent
code z = E(x), while the decoder D converts these latents
back into images, such that D(E(x)) ≈ x. Next, a diffusion
model is trained to minimize the denoising objective in the
derived latent space, incorporating conditioning optionally
on class labels, segmentation masks, or text tokens.

LLDM := Ez∼E(x),y,ϵ∼N (0,1),t

[
∥ϵ− ϵθ (zt, t, cθ(y))∥22

]
,

where t represents the time step, zt denotes the latent noise
at time t, ϵ is the unscaled noise sampled from the standard
gaussian, ϵθ denotes the denoising network, and cθ(y) is
a model mapping conditioning input y to a conditioning
vector. During inference, a new image latent z0 is generated
by iteratively denoising a random noise vector with a con-
ditioning vector, and the latent code is transformed into an
image using the pre-trained decoder x′ = D (z0).

Diffusion Inversion Prior research has attempted to invert
images back to the input tokens of a text encoder cθ (Gal
et al., 2022). However, this approach is restricted by the
expressiveness of the textual modality and constrained to
the original output domain of the model. To overcome this
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limitation, we treat cθ as an identity mapping and directly
optimize the conditioning vector c for each image latent z
in the real dataset by minimizing the LDM loss.

c∗ = argmin
c

Eϵ∼N (0,1),t

[
∥ϵ− ϵθ (zt, t, c)∥22

]
,

Throughout the optimization process, we maintain the orig-
inal LDM model’s training scheme and keep the denois-
ing model ϵθ unchanged to optimally maintain pre-training
knowledge. Furthermore, we improve sampling efficiency
by learning condition vectors tailored to generate target-
resolution images, instead of creating high-resolution im-
ages and subsequently downsampling, thereby considerably
reducing the overall generation time (see Figure 8).

2.2. Stage 2 - Sampling

Classifier-free Guidance Classifier-free guidance em-
ploys a weight parameter w ∈ R to balance sample quality
and diversity in class-conditioned diffusion models, com-
monly used in large-scale models such as Stable Diffu-
sion (Rombach et al., 2022), GLIDE (Nichol et al., 2021),
and Imagen (Saharia et al., 2022). During sample genera-
tion, both the conditional diffusion model ϵθ (zt, t, c) and
the unconditional model ϵθ (zt, t) are evaluated. In Stable
Diffusion, the conditioning vector for unconditional image
generation is determined by the text encoder’s output for an
empty string, with the model output at each denoising step
given by ϵ̂ = (1 + w)ϵθ (zt, t, c) − wϵθ (zt, t). However,
we find that using an empty string as conditioning input
is ineffective for the target domain when the data distri-
bution deviates significantly from the training distribution,
particularly when image resolution varies. To address this
distribution shift, we instead utilize the average embedding
of all learned vectors as the class-conditioning input for
unconditional models, with the effectiveness of this design
demonstrated in Section D.8.2.

Sample Diversity Sample diversity is crucial for training
downstream classifiers on synthetic data (Ravuri & Vinyals,
2019a). To achieve this, we employ various classifier-free
guidance strengths and initiate the denoising process with
different random noises, generating distinct image variants.
We also explore two conditioning vector perturbation meth-
ods, namely Gaussian noise perturbation and latent interpo-
lation. In the Gaussian approach, we add isotropic Gaus-
sian noise to the conditioning vector, yielding a new vec-
tor ĉ = c + λϵ, where ϵ ∼ N (0, 1) and λ indicates the
perturbation strength. For latent interpolation, we linearly
interpolate between two conditioning vectors c1 and c2 to
create a new vector: ĉ = αc1 + (1 − α)c2, where higher
values of α push ĉ towards c1, lower values push towards
c2, and 0 ≤ α ≤ 1 typically. We assess each component’s
impact in Section D.8.3.
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Figure 3. Our method, Diffusion Inversion, dramatically surpasses
both GAN and GAN Inversion methods when trained on datasets
of equivalent size to the original real dataset, underscoring the
importance of a high-quality pre-trained generator.

3. Experimental Results
We employ the Stable Diffusion model with a default res-
olution of 512x512 1. To optimize learning and sampling
efficiency, we directly learn the embedding to generate im-
ages at target resolutions of 128x128 for low-resolution
datasets (e.g., CIFAR10/100, MedM- NISTv2) and 256x256
for other datasets. This modification significantly reduces
image generation time by 27x and 6.5x for 128x128 and
256x256 settings, respectively, making our method more
suit- able for data augmentation We provide a detailed run-
time analysis in Appendix D.1. For evaluation, we resize
all generated images to match the resolution of the original
real images, ensuring a fair comparison between models
trained on real and synthetic data. Experimental details
are provided in Appendix C. Training and Sampling design
choices are described in Appendix D.8.

3.1. Generator Quality and Data Size Matter

Generator Quality To investigate the influence of genera-
tor quality on producing high-quality datasets for down-
stream classifier training, we initially compare our ap-
proach to the GAN Inversion method (Abdal et al., 2019)
on CIFAR10/100. Using a pre-trained BigGAN model
from (Zhao & Bilen, 2022), we generate three synthetic
datasets, each containing 50K examples, equivalent to the
original dataset size. The datasets are created using random
latent vectors, GAN Inversion, and our method. To evaluate
the datasets’ quality, we train a ResNet18 on each and report
the mean and standard deviation of the test accuracy using
five random seeds.

As depicted in Figure 3, our method exhibits superior perfor-
mance in comparison to GAN approaches, indicating that
the quality of the pre-trained generator is crucial for gener-
ating high-quality datasets for discriminative models. How-

1We use the checkpoint ”CompVis/stable-diffusion-v1-4” from
Hugging Face. https://huggingface.co/CompVis/
stable-diffusion-v1-4
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Figure 4. Performance in Relation to Number of Real Data Points.
Our approach demonstrates substantially improved performance
in low-data scenarios across all datasets. In high-data scenarios, it
exhibits comparable performance for low-resolution datasets and
superior performance for high-resolution datasets.

Figure 5. Synthetic images generated by our method. Left to Right
(top): CIFAR10, CIFAR100, ImageNette, STL-10. Left to Right
(bottom): EuroSAT, DermaMNIST, PathMNIST, BloodMNIST.

ever, the information is more condensed in the real dataset
as it achieves higher accuracy with equal-size datasets.

Scaling in Number of Real Data Next, we assess the scal-
ability of our approach by evaluating its benefits for down-
stream classifier training using four datasets. We generate a
sufficient number of synthetic images and learn embeddings
from real datasets with varying numbers of real training ex-
amples. For each embedding, we create 45 unique variants
and train a ResNet18 on derived datasets.

Figure 4 demonstrates that our method outperforms real
data in low data regimes (2K for CIFAR10 and 4K for CI-
FAR100) for low-resolution datasets like CIFAR10/100 but
is slightly worse when more real training data is available.
Conversely, for high-resolution datasets such as STL10 and
ImageNette, our method consistently surpasses real data by
a significant margin. For example, it improves test accuracy
on STL10 from 83.3 to 89.0 and on Imagenette from 93.8
to 95.4, using 2-3x less real data.
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Figure 6. (Left) Our method improves few-shot learning perfor-
mance, yielding results similar to LECF. (Right) Our method
demonstrates significantly better scalability than LECF on STL10.

Scaling in Number of Synthetic Data We also explore
the case where we learn embeddings for every data point in
the dataset and continue generating more data. As demon-
strated in Figure 1 (Right), increased data consistently im-
proves downstream classifier performance, surpassing the
real dataset when roughly 3x more data is generated. This
scaling trend indicates that extended training time and online
data generation could further enhance model performance.

3.2. Data Distribution and Data Coverage Matter

Comparison with Generic Prompt-Based Steering Meth-
ods The recent study, Language Enhancement with Clip
Filtering (LECF) by He et al. (2022), employs Stable Dif-
fusion to generate data for discriminative models, demon-
strating cutting-edge performance in few-shot learning. We
compared our approach to LECF in two distinct settings:
few-shot learning on EuroSAT (Helber et al., 2019) and
standard training on STL10.

We evaluated our method against CoOP (Zhou et al., 2022),
Tip Adapter (Zhang et al., 2022), and Classifier Tuning (CT)
with Real Data (He et al., 2022) on the EuroSAT dataset.
As depicted in Figure 6 (Left), our approach enhances few-
shot learning performance, achieving results comparable
to LECF. For the STL10 dataset, we analyzed test accu-
racy progression concerning the number of generated data
points. Training a ResNet18 exclusively on generated data
and adjusting the Clip Filtering strength of LECF within
[0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.97], we determined that
0.95 yielded optimal performance. Figure 6 (Right) high-
lights our method’s superior scaling capabilities compared
to LECF, owing to its consideration of domain shifts and
improved coverage. This is further evidenced in Table 8,
comparing FID, precision, recall, and coverage between our
method and LECF at the different Clip Filtering strengths.

Comparison with KNN Retrieval on LAION Dataset
Stable Diffusion, trained on the LAION dataset (Schuhmann
et al., 2022), prompted the question of synthetic dataset ne-
cessity versus similar image retrieval for data augmentation.
We assessed this using KNN retrieval from LAION with
clip retrieval on the STL10 dataset. Test accuracies achieved
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Table 1. Comparison to Standard Data Augmentation Techniques on STL10: Our approach, in conjunction with default data augmentation,
consistently surpasses alternative methods. Moreover, merging the generated data with other techniques can enhance performance further.

Default AutoAug RandAug CutOut MixUp CutMix AugMix ME-ADA

Original Dataset 83.2 87.0 86.3 84.3 89.4 88.1 83.8 83.4
Synthetic (Ours) 89.5 91.5 91.0 89.5 91.5 92.6 89.2 89.1

Table 2. Comparison against KNN retrieval on LAION-5B. Our
method consistently outperforms KNN retrieval across three spe-
cialized medical imaging datasets, highlighting its effectiveness in
handling distribution shifts and data coverage.

K=10 K=25 K=50 DI (Ours)

PathMNIST 22.5 29.9 23.4 81.0
DermaMNIST 23.0 27.8 22.1 66.4
BloodMNIST 21.7 27.7 25.8 93.0

were 85.4%, 88.4%, and 90.9% for k=10, 25, and 50, re-
spectively. Our method generated 88.7% test accuracy with
45 data points per embedding, slightly surpassing 25-image
retrieval but not 50-image retrieval. This suggests KNN
retrieval as a strong baseline for target classes like airplanes,
cars, and dogs in Stable Diffusion training distribution.

However, we argue that this method falls short when sig-
nificant distribution shifts occur between target and source
domains, especially in specialized fields like medical imag-
ing. To demonstrate this, we analyzed three distinct MedM-
NISTv2 (Yang et al., 2023) datasets: PathMNIST, DermaM-
NIST, and BloodMNIST. As depicted in Table 2, our ap-
proach consistently surpasses the KNN retrieval baseline.
It is crucial to acknowledge that LECF would falter in this
scenario due to significant distribution shifts and challenges
in creating effective prompts. Additionally, KNN retrieval
does not improve few-shot learning performance on Eu-
roSAT, as demonstrated in Figure 6 (Left). The high-quality
generated images for these specialized domain datasets, de-
picted in Figure 5, closely resemble the original dataset,
underscoring the importance of a steering method that ad-
dresses distribution shift and data coverage.

3.3. Comparison against Data Augmentation Methods

We evaluate our approach against widely-used data augmen-
tation techniques for image classification on STL10. These
encompass standard methods such as AutoAugment (Cubuk
et al., 2018), RandAugment (Cubuk et al., 2020), and
CutOut (DeVries & Taylor, 2017); interpolation-based tech-
niques like MixUp (Zhang et al., 2017), CutMix (Yun et al.,
2019), and AugMix (Hendrycks et al., 2019); as well as
the adversarial domain augmentation (ADA) method ME-
ADA (Zhao et al., 2020a). A description of each technique
is provided in Appendix C.2.3. As shown in Table 1, our
method (89.5%) combined with default data augmentation
(i.e., random crop and flip) outperforms all the aforemen-
tioned techniques (indicated by the first row). Moreover,

combining our approach with other augmentation tech-
niques can further improve performance.
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Figure 7. Our method’s synthetic dataset significantly enhances the
performance of various neural architectures on the STL10 dataset.

3.4. Evaluation on various Neural Architectures

To evaluate the efficacy of our generated data, we examine
its performance across several neural network architectures,
namely ResNet18 (He et al., 2016), VGG16 (Simonyan
& Zisserman, 2014), MobileNetV2 (Sandler et al., 2018),
ShuffleNetV2 (Ma et al., 2018), and EfficientNetB0 (Tan &
Le, 2019), using the STL10 dataset. As illustrated in Fig-
ure 7, synthetic images significantly improve performance
across all tested architectures, indicating that our method
successfully extracts generalizable pre-trained knowledge.

4. Conclusion
Our method, Diffusion Inversion, generates high-quality
synthetic data that boosts image classification performance
on several real datasets by leveraging the Stable Diffusion
model. Our method effectively addresses the challenges of
data distribution shift and data coverage, surpassing conven-
tional prompt-based steering approaches and prevalent data
augmentation techniques. Impressively, our synthesized
images can supplant original datasets, resulting in sample
complexity and sampling time improvements. Our study
highlights the potential of utilizing pre-trained generative
models for data augmentation, especially in domains where
data acquisition and curation are costly and labor-intensive.

Limitations Although our method significantly reduces
total generation time (Figure 8), scaling it to large-scale
datasets like ImageNet (Russakovsky et al., 2015) presents
challenges due to storage requirements and inefficient sam-
pling of Stable Diffusion. Incorporating fast sampling tech-
niques (Meng et al., 2022) represents a promising direction
for maximizing the impact of diffusion-based data genera-
tion for discriminative models. We discuss the societal im-
pact of using such models in the real-world in Appendix A.
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A. Societal Impact
As generative models advance, harnessing them for high-quality training data can substantially cut time and resources spent
on data collection and annotation. Our method offers a streamlined, efficient means of utilizing these powerful models,
potentially allowing smaller organizations and researchers with limited resources to develop effective machine learning
models more feasibly.

However, implementing this approach in real-life applications requires caution due to concerns about bias and fair-
ness (Scheuerman et al., 2021). Generative models, such as Stable Diffusion (Rombach et al., 2022), are trained on
extensive, diverse, and uncurated internet data that may contain harmful biases and stereotypes (Bender et al., 2021; Birhane
et al., 2021). These biases can worsen during generation (Cho et al., 2022), leading to discriminatory AI decision-making.
However, our method can be utilized to generate diverse, high-quality data for underrepresented groups, fostering fairer and
less biased AI systems.

Another potential drawback is the misuse of generated data. High-quality generated data could be exploited for malicious
purposes, such as deepfakes (Lyu, 2020), leading to the proliferation of misinformation and manipulation in various domains,
including politics, social media, and entertainment.

To counter these negative societal impacts, it is vital to ensure responsible development and deployment of the Diffusion
Inversion method and related technologies. This entails incorporating mechanisms to detect and mitigate biases, exploring
ethical policies and regulations for synthetic data use, and conducting further research to curate generated data and create
fairer multimodal representations of the real world. Establishing responsible practices and guidelines for such methods is
crucial for promoting their positive societal impact.
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B. Related Work
Utilizing Generative Models for Image Data Augmentation Generative models, such as VAEs (Kingma & Welling,
2013), GANs (Goodfellow et al., 2020), and Diffusion Models (Dhariwal & Nichol, 2021), have exhibited exceptional capa-
bilities in synthesizing realistic images. Due to their potential to generate an infinite amount of high-quality data, numerous
researchers have investigated their application as data augmentation techniques. For example, several works (Shrivastava
et al., 2017; Viazovetskyi et al., 2020; Zhu et al., 2017) formulate data augmentation as an image translation task, training an
autoencoder-style network to produce multiple variations of input images for downstream prediction models. Some studies
have concentrated on data augmentation using GANs, either training them from scratch for few-shot learning (Antoniou
et al., 2017) or utilizing pre-trained GANs for self-supervised learning (Chai et al., 2021). Despite their effectiveness in
various domains, research has shown that training off-the-shelf convolutional networks, such as ResNet50 (He et al., 2016),
on BigGAN (Brock et al., 2018) synthesized images yields inferior results compared to training them on original real
training images due to the lack of diversity and the potential domain gap between generated samples and real images (Bansal
& Grover, 2023; Gowal et al., 2021; Ravuri & Vinyals, 2019a; Zhao & Bilen, 2022).

Augmenting Image Data using Text-to-Image Models Recently, there has been a growing interest in leveraging the
power of internet-scale pre-trained diffusion-based models (Rombach et al., 2022; Nichol et al., 2021) for data generation.
He et al. (2022) demonstrates that synthetic data from GLIDE (Nichol et al., 2021) can enhance classification models in
data-scarce settings or pre-training. Meanwhile, several works (Bansal & Grover, 2023; Yuan et al., 2022; Sariyildiz et al.,
2023) illustrate that Stable Diffusion (Rombach et al., 2022) can serve as a data augmentation tool to learn generalizable
features and improve the robustness of image classifiers under natural distribution shifts. However, the effectiveness of
these approaches largely relies on the quality and diversity of language prompts, necessitating extensive manual prompt
engineering. Furthermore, the domain gap between synthetic and real data in downstream tasks may continue to hinder the
improvement of synthetic data’s effectiveness in classifier learning (He et al., 2022; Bansal & Grover, 2023). To enhance
the alignment of the text-to-image model with the downstream dataset, Azizi et al. (2023) suggests fine-tuning the model
weights and sampling parameters while retaining the text prompts as concise one or two-word class names from (Radford
et al., 2021). Nonetheless, generative diversity and data coverage may still present obstacles, resulting in the generation
of data that is inferior to real data. In contrast, our approach addresses these issues by directly learning the conditioning
vector for each target image and producing new variants by conditioning on noisy versions of these vectors. This method
eliminates the need for human prompt engineering, guarantees data coverage, and promotes diversity.

Inversion Techniques in Generative Models Inverting generative models plays a crucial role in image editing and
manipulation tasks (Zhu et al., 2016; Xia et al., 2022; Creswell & Bharath, 2018). For diffusion models, inversion can
be accomplished by adding noise to an image and subsequently denoising it through the network. However, this may
result in significant content alterations due to the asymmetry between backward and forward diffusion steps. Choi et al.
(2021) address inversion by conditioning the denoising process on noisy, low-pass filtered data from the target image. More
recently, inverting text-to-image diffusion models in the context of personalized image generation has gained traction. Gal
et al. (2022) propose a textual inversion method that learns to represent visual concepts through new pseudo-words in the
embedding space of a frozen text-to-image model. In contrast, Ruiz et al. (2022) fine-tune the entire network on 3-5 images,
which may be susceptible to overfitting. Custom Diffusion (Kumari et al., 2022) mitigates overfitting by fine-tuning only
a small subset of model parameters, resulting in improved performance with reduced training time. These works employ
inversion as a tool for image editing and have only assessed qualitative human preferences. In contrast, our work seeks to
explore how generated images can enhance downstream image classification tasks and proposes using diffusion inversion to
address the distribution shift and data coverage problem in synthetic dataset generation.
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C. Experimental Details
C.1. Implementation Details

Datasets We evaluate our methods on the following datasets: i) CIFAR (Krizhevsky et al., 2009): A standard image
dataset with two tasks, CIFAR10 (10 classes) and CIFAR100 (100 classes), each containing 50,000 training examples and
10,000 test examples at a 32x32 resolution. ii) STL10 (Coates et al., 2011): An image dataset of 113,000 color images
at a 96x96 resolution, designed for semi-supervised learning. It has 5,000 labeled training images and 8,000 labeled test
images across ten classes. We use only the labeled portion to test our method’s performance on higher-resolution, low-data
settings. iii) ImageNette (Howard, 2019): A 10-class subset of ILSVRC2012 (Russakovsky et al., 2015) containing 9,469
training and 3,925 testing examples, resized to a 256x256 resolution. iv) EuroSAT (Helber et al., 2019): A dataset based on
Sentinel-2 satellite images, covering 13 spectral bands and consisting of 27,000 labeled and geo-referenced samples across
ten classes. v) MedMNISTv2 (Yang et al., 2023): A large-scale collection of standardized biomedical images, including 12
datasets pre-processed into 28x28 resolution. We use three datasets focused on multi-class image classification: PathMNIST,
DermaMNIST, and BloodMNIST.

Training We utilize the publicly accessible 1.4 billion-parameter text-to-image model by Rombach et al. (2022), pretrained
on the LAION-400M dataset2. The model’s default image resolution is 512x512, with a minimum functional requirement of
64x64. However, some datasets have a 32x32 resolution. To accommodate this and our training budget, we resize CIFAR10
and CIFAR100 images to 128x128 and STL-10 and ImageNette images to 256x256. We optimize Eq. 2.1 using AdamW
(Loshchilov & Hutter, 2017) with a constant learning rate of 0.03 for up to 3K steps to learn the conditioning vector for each
real dataset image, without data augmentation.

Sampling Although on-the-fly data generation is ideal, it is computationally costly. We pre-generate a fixed-size dataset
and train models on it. Unless specified, we generate each new image in 100 denoising steps using 3K-step checkpoints with
classifier-free guidance strength of 2, Gaussian noise strength of 0.1, and embedding interpolation strength of 0.1.

Evaluation We train a ResNet18 (He et al., 2016) on real and generated data at the default resolution. The ResNet is
trained using SGD with momentum, a batch size of 128, a cosine learning rate schedule with an initial learning rate of 0.1,
and a standard data augmentation scheme, including random horizontal flips and random crops after zero-padding.

C.2. Experimental Setups

C.2.1. GENERATOR QUALITY

To emphasize the significance of generator quality in producing high-quality datasets for discriminative model training,
we first compare our approach with the GAN Inversion method (using a pre-trained BigGAN by Abdal et al. (2019)) on
CIFAR10 and CIFAR100. We learn a latent vector z ∈ Rdz for each image x ∈ Rdi in the real dataset by minimizing the
weighted sum of feature and pixel distances between synthetic and real images, with a pre-trained feature extractor ψϑ,
feature dimension df , and default λpixel = 1.

argmin
z

1

df
∥ψϑ(G(z))− ψϑ(x)∥2 +

λpixel

dI
∥G(z)− x∥2

Using the pre-trained BigGAN provided by Zhao & Bilen (2022) and trained with a state-of-the-art strategy (Zhao et al.,
2020b), we create three synthetic datasets equivalent in size to the original dataset. These datasets are generated using
random latent vectors, GAN Inversion, and our method with classifier-free guidance of 2 and checkpoints at 3K steps. To
evaluate dataset quality, we train a ResNet18 on each dataset and report the mean and standard deviation of five random
seeds.

C.2.2. SCALING IN RELATION TO REAL DATA SIZE

In Figure 4, we obtain an embedding for each data point and generate 45 samples per embedding over 100 denoising steps.
We use checkpoints at 1K, 2K, and 3K steps, a classifier-free guidance strength sampled from [2, 3, 4], and Gaussian noise
and embedding interpolation strengths of 0.1.

2We use the checkpoint “CompVis/stable-diffusion-v1-4” from Hugging Face. https://huggingface.co/CompVis/
stable-diffusion-v1-4
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C.2.3. COMPARISON AGAINST IMAGE DATA AUGMENTATION METHODS

i) AutoAugment (Cubuk et al., 2018): We utilize torchvision.transforms.AutoAugment, PyTorch’s built-in implementation
of AutoAugment, with the ImageNet policy comprising 25 transforms. During training, one transform is randomly chosen
and applied with a specified probability and magnitude.

ii) RandAugment (Cubuk et al., 2020): Similar to AutoAugment, we randomly select two operations from a list of 14 and
apply them with certainty.

iii) CutOut (DeVries & Taylor, 2017): Our CutOut implementation masks out a random square region, sized at 1/8 of the
input image.

iv) MixUp (Zhang et al., 2017): We use interpolated images as new inputs for network training by combining a permuted
batch of inputs with the original batch, sampling interpolation strength from the beta distribution (beta = 1). The loss
function is adapted accordingly.

v) CutMix (Yun et al., 2019): We replace a region of each input with a corresponding region from another input by
permuting each batch and sampling a region size from the beta distribution. The modified loss function from MixUp is used,
with lam representing the area ratio of the selected region to the image.

vi) AugMix (Hendrycks et al., 2019): Images are augmented and mixed with the original image by sampling and
composing operations. One chain is randomly applied to obtain the augmented image, which is then combined with the
original image using an interpolation weight sampled from the beta distribution (alpha=1). Our implementation uses
PyTorch’s torchvision.transforms.AugMix method with default parameters.

vii) ME-ADA (Zhao et al., 2020a): In ME-ADA, an adversarial data augmentation method, a minimax procedure runs K
times. Each cycle consists of a minimization stage (T min steps of network training) and a maximization stage (converting
input-label pairs to adversarial examples by nudging inputs towards the loss function gradient).
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D. Additional Results
D.1. Run Time Analysis
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Figure 8. Despite the overhead incurred
by embedding learning, our method sub-
stantially decreases the overall time re-
quired to generate numerous images due
to improved sampling.

The computation for our method comprises two main components: embedding
learning and sampling. For ImageNette and STL-10, we learn an embedding for
each image and prompt the Stable Diffusion model to generate an image with a
resolution of 256x256. On an A40, training the embedding for 3,000 steps takes an
average of 84.1 seconds per embedding. In contrast, for CIFAR10/100, we learn
an embedding that enables Stable Diffusion to generate 128x128 images directly,
with the embedding learning taking an average of 18.8 seconds per embedding.

Another computational cost arises from sampling using the learned embeddings.
Standard Stable Diffusion sampling requires approximately 5.28 seconds to gen-
erate a 512x512 image with 100 diffusion steps. However, generating a 256x256
or 128x128 image based on the learned embedding takes only 0.82 seconds (6.44
times faster) or 0.20 seconds (26.4 times faster), respectively. This speedup is due
to the absence of a CLIPText encoder for text prompt embedding and the diffusion
process running in a lower-dimensional space. The original diffusion’s latent space
has a dimension of (64, 64, 4), while ImageNette/STL10 and CIFAR10/CIFAR100
in our experiments have dimensions of (32, 32, 4) and (16, 16, 4), respectively. The following are the average times required
to generate one image using 100 inference steps. It is important to note that the dimension size plays a more significant role
in time reduction than the text encoder.

- (64, 64, 4) with Text Encoder: 5.28s
- (64, 64, 4) without Text Encoder: 5.19s
- (32, 32, 4) without Text Encoder: 0.82s
- (16, 16, 4) without Text Encoder: 0.20s

To generate 45 samples per learned embedding (our default setting), the total time for both embedding learning and sampling
in ImageNette and STL10 is approximately 121 seconds, while for CIFAR10/100, it takes only 27.8 seconds. In comparison
to the standard Stable Diffusion sampling for 45 images, which takes 237.6 seconds, our method is almost twice as fast
for ImageNette/STL10 and 8.5 times faster for CIFAR10/100. Moreover, the amortized cost of learning the embedding
decreases when generating more data, making our approach more suitable as a data augmentation tool. This is shown in
Figure 8. Ideally, we want to generate data on-the-fly during training, which further supports the efficiency of our method.

D.2. Combine real and generated data

In our study, we analyze a model trained on a combination of generated data and synthetic data. We employ a straightforward
approach to merge the real and synthetic data. Specifically, at each gradient step, we construct a batch using a mixture of
synthetic and real data and train the model following the same protocol as when training on either generated data only or real
data only (e.g., optimizer, training steps, and batch size). We experiment with varying the real-to-synthetic mixture ratio from
[1:7, 1:3, 1:1, 3:1, 7:1] and report the best performance in Table 3. Our observations indicate that although generated data
underperforms real data on low-resolution datasets such as CIFAR10, CIFAR100, and PathMNIST, combining both types
enhances performance, as also observed by Azizi et al. (2023). However, in some instances, like Imagenette, DermaMNIST,
and BloodMNIST, the combination leads to a slight performance decrease compared to using real or generated data alone. A
similar observation was made by Ravuri & Vinyals (2019a) (Fig. 5), where they found that mixing generated samples with
real data degrades Top-5 classifier accuracy for almost all models tested. Concurrently, Azizi et al. (2023) (Table 4) notes
that model performance with higher resolution images does not continue to improve with larger amounts of generative data
augmentation after a certain point. This may be attributable to the bias in the generated data inherited from the generative
models, suggesting that a more sophisticated method for merging real and generated data is necessary. We leave the
comprehensive study on how to combine the real and generated data for future work.

13



Using Synthetic Data for Data Augmentation to Improve Classification Accuracy

Table 3. Test accuracy of ResNet18 trained on real data only, generated only, and a combination of real and generated data.
CIFAR-

10
CIFAR-

100 STL10 Image-
nette

Path-
MNIST

Derma-
MNIST

Blood-
MNIST

Real Only 95.1 77.9 83.3 93.8 89.6 67.5 96.4
Generated Only 94.6 74.4 89.0 95.4 82.1 67.5 93.7

Real + Generated 95.2 78.0 90.0 95.0 92.1 66.3 95.7

D.3. Loss of Information Caused by Autoencoding

To comprehend the extent of information loss during the autoencoding process, we create four CIFAR10 variants with
images autoencoded at different resolutions. We commence by resizing the images to a resolution of 64x64, which is the
minimum requirement for the Stable Diffusion model. Table 4 reveals that although performance continually improves
as images are resized to higher resolutions and autoencoded, the best-performing setting, with a resolution of 512, still
underperforms compared to training on the original images. This indicates that a significant amount of information is lost
during the autoencoding process, or there exists a distribution shift between the reconstructed images and real images. In
comparison to the 128-resolution setting where our method is trained, our method substantially enhances test accuracy on
CIFAR10 and CIFAR100 from 92.5 and 66.2 to 94.6 and 74.4, respectively.

Table 4. Test accuracy of ResNet18 trained on the VAE-Processed data. Autoencoding results in a substantial loss of information, making
it difficult to surpass the performance of the real dataset.

CIFAR10 CIFAR100

Real (Original) 95.1± 0.0 77.9± 0.4
Real (32 −→ 64) 91.4± 0.3 65.5± 0.6

Real (32 −→ 128) 92.5± 0.2 66.2± 0.4
Real (32 −→ 256) 93.4± 0.1 69.8± 0.3
Real (32 −→ 512) 93.5± 0.2 71.1± 0.3

Diffusion Inversion 94.6± 0.1 74.4± 0.3

D.4. Model achieves better accuracy on VAE processed test data

We observe that reconstructing test data with the Stable Diffusion model’s autoencoder often enhances test accuracy for
models trained on synthetic data, as also noted in Razavi et al. (2019). This is shown in Table 5.

Table 5. Test accuracy using the entire dataset. Transforming the test data using VAE can often improve the model performance.
Synthetic Data

Real Data Original VAE-Processed

CIFAR10 95.1 ± 0.0 94.6± 0.1 94.7± 0.1
CIFAR100 77.9 ± 0.4 74.4± 0.3 75.2± 0.2

STL-10 83.3± 0.7 89.0 ± 0.2 88.8± 0.2
ImageNette 93.8± 0.2 95.4± 0.1 95.6 ± 0.1
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D.5. FID, Precision, Recall, Density, and Coverage

We assess the FID, precision, recall, density, and coverage of our generated data on STL10 using the implementation from
https://github.com/POSTECH-CVLab/PyTorch-StudioGAN.

Interpolation Strength Table 6 demonstrates the variations in FID, precision, recall, density, and coverage with respect to
the interpolation strength α. As indicated, increasing the interpolation strength adversely affects FID, precision, and density,
while improving recall. Coverage peaks at an interpolation of 0.1, suggesting a trade-off between generation quality and
diversity.

Table 6. Image Generation Evaluation Metrics vs Interpolation Strength.

alpha FID Precision Recall Density Coverage

0.00 17.930 0.894 0.644 0.734 0.753
0.10 17.678 0.831 0.661 0.732 0.787
0.20 26.177 0.635 0.751 0.584 0.739
0.30 43.160 0.448 0.787 0.363 0.605
0.40 62.773 0.328 0.805 0.245 0.500

Gaussian Noise Strength Table 7 demonstrates the variations in FID, precision, recall, density, and coverage as the
additive noise value increases. The results indicate that higher noise levels adversely impact all metrics, signifying a decline
in individual image quality. However, Figure 11 reveals that incorporating some noise can enhance model accuracy, as the
overall information in the dataset may still increase despite the diminished quality of each image.

Table 7. Image Generation Evaluation Metrics vs Noise Value.

Noise Value FID Precision Recall Density Coverage

0.00 12.002 0.898 0.984 0.740 0.968
0.10 13.210 0.865 0.979 0.698 0.947
0.20 19.981 0.727 0.949 0.545 0.860
0.30 38.839 0.476 0.893 0.294 0.614
0.40 76.255 0.208 0.851 0.094 0.251

Comparison against LECF Table 8 compares FID, precision, recall, density, and coverage between our method and
LECF across various clip filter thresholds. Our approach outperforms LECF in all metrics, indicating that while choosing an
optimal threshold improves the baseline LECF results, our method excels at generating high-quality, diverse images.

Table 8. Our method outperforms LECF in all metrics, suggesting that while selecting the optimal threshold enhances baseline LECF
outcomes, our approach excels in generating higher quality and more diverse images.

Name FID Precision Recall Density Coverage

LECF (threshold=0.0) 40.852 0.552 0.415 0.585 0.431
LECF (threshold=0.1) 40.858 0.552 0.431 0.591 0.432
LECF (threshold=0.3) 38.107 0.576 0.416 0.626 0.445
LECF (threshold=0.5) 37.061 0.589 0.413 0.641 0.449
LECF (threshold=0.7) 35.950 0.602 0.412 0.663 0.464
LECF (threshold=0.9) 34.522 0.631 0.416 0.708 0.477
LECF (threshold=0.95) 33.606 0.648 0.392 0.731 0.486
LECF (threshold=0.97) 33.224 0.664 0.381 0.756 0.490

Diffusion Inversion (Ours) 17.678 0.831 0.661 0.732 0.787
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D.6. Scaling Capabilities of Diffusion Inversion

As illustrated in Table 9, our approach exhibits superior scaling capabilities compared to LECF. This advantage can be
attributed to our method’s consideration of domain shifts and its improved coverage relative to LECF.

Table 9. Scaling Capabilities of Diffusion Inversion vs LECF

Number of Generated Data 1750 3500 7K 14K 28K 56K 112K 224K

LECF (threshold=0.95) 52.4 55.7 63.9 70.3 73.3 77.2 78.4 80.7
Diffusion Inversion (Ours) 63.2 72.2 79.8 84.4 86.7 87.9 88.1 88.7

D.7. Gaussian Noise

We investigate the influence of Gaussian noise on model performance by adjusting the noise strength and setting the latent
interpolation strength α to 0. Figure 11 demonstrates the relationship between Gaussian noise strength and model test
accuracy. Our findings indicate that the optimal performance is achieved when generating a dataset of equal size to the
original without noise perturbation. However, when sampling additional data, it is advantageous to increase the noise
strength accordingly, with a noise strength of λ = 0.2 as a suitable starting point.

Figure 9 presents the generated images at varying noise levels, showing minimal differences between perturbed and original
images when the noise level is below λ = 0.2. Nonetheless, significant variations are observed at higher noise levels, such
as the ship image remaining discernible at λ = 0.4, while the horse becomes indistinguishable. Ideally, we may want to
employ distinct Gaussian noise strengths for each image rather than using a single fixed value for all.

Figure 9. Generate image variants by perturbing the embedding vector using random Gaussian noise. Noise strength λ from left to right:
0.0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40. The generated images of some embeddings are still meaningful under high strength.

D.8. Hyperparameter Settings

We conduct numerous quantitative evaluations on STL10 to comprehend the impact of certain design choices and the
influence of each hyperparameter.

D.8.1. TRAINING STEPS AND CLASSIFIER-FREE GUIDANCE STRENGTH

Figure 10 (Left) illustrates the performance variation with increasing training steps for embedding vectors and classifier-free
guidance strength. It suggests that extending the embedding vector training beyond 1K steps yields minimal performance
improvement. However, as training becomes more extensive, the optimal classifier-free guidance strength decreases. A high
guidance strength leads to a significant performance drop. In practice, initiating with a classifier-free guidance strength
between 2 and 4 proves effective.
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D.8.2. INFERENCE STEPS AND UNCONDITIONAL EMBEDDING

Figure 10 (Right) illustrates that using the mean embedding of all learned vectors as the class-conditioning input for
unconditional models consistently outperforms the text encoder’s output with an empty string. However, the learned
embedding does not effectively generate images at varying resolutions. For instance, a learned vector from a 512-resolution
image struggles to create a 128-resolution image. This highlights the suboptimal performance of the empty string embedding,
as the initial text encoder is co-trained with the denoising model on higher-resolution images (512x512). Regarding inference
steps, we determine that 100 steps provide a suitable balance between performance and computational cost, leading us to
adopt 100 inference steps as the default setting.

D.8.3. GAUSSIAN NOISE AND LATENT INTERPOLATION

Gaussian Noise We investigate the influence of Gaussian noise on model performance by adjusting the noise strength
and setting the latent interpolation strength α to 0. Figure 11 (Left) demonstrates the relationship between Gaussian noise
strength and model test accuracy. Our findings indicate that the optimal performance is achieved when generating a dataset
of equal size to the original without noise perturbation. However, when sampling additional data, it is advantageous to
increase the noise strength accordingly, with a noise strength of λ = 0.2 as a suitable starting point.

Latent Interpolation In this study, we examine the impact of latent interpolation on model performance by adjusting
the interpolation strength and setting the Gaussian noise strength (λ) to 0. Figure 11 (Right) demonstrates the relationship
between interpolation strength and performance, revealing that a high strength significantly reduces performance. Notably,
unlike the Gaussian noise strength, increasing the sample size does not benefit high strength. The optimal value resides
between 0.1 and 0.15. Figure 14 displays the samples, suggesting that novel and realistic images can be generated with
any interpolation strength, provided the two embedding vectors are highly compatible. However, if the embeddings are not
carefully chosen, the interpolated image at α = 0.3 appears quite perplexing. In our experiment, we randomly select two
embedding vectors for generating new images, resulting in a small optimal interpolation strength.
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Figure 10. The effect of the number training steps & Classifier-
free guidance strength (Left) and inference steps & Unconditional
embedding (Right) on model performance.
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Figure 11. The effect of Gaussian Noise (Left) without any latent
interpolation and Latent Interpolation (Right) without any Gaussian
noise on the performance as we generate more data.
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D.9. Additional Visualization

Figure 12. Synthetic images produced by our method: exhibiting diversity, realism, and comprehensive representation of the original
dataset, effectively serving as a suitable substitute. From top left, going clockwise: CIFAR10, CIFAR100, Imagenette, STL10

18



Using Synthetic Data for Data Augmentation to Improve Classification Accuracy

Figure 13. Synthetic images produced by our method: exhibiting diversity, realism, and comprehensive representation of the original
dataset, effectively serving as a suitable substitute. From top left, going clockwise: PathMNIST, BloodMNIST, EuroSAT, DermaMNIST
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Figure 14. Generate image variants by interpolating two embedding vectors. From left to right, interpolation strength α: 0.0, 0.1, 0.2, 0.3,
0.5, 0.7, 0.8, 0.9, 1.0. Some pairs of the embedding vectors can generate novel and natural images regardless of the chosen interpolation
strength, while others only work when the interpolation strength is small.
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