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Abstract

Language models applied to NLP tasks take natural language as the direct model-1

ing object. But we believe that natural language is essentially a way of encoding2

information, therefore, the object of study for natural language should be the infor-3

mation encoded in language, and the organizational and compositional structure of4

the information described in language. Based on this understanding, we propose5

a database-based natural language processing method that changes the modeling6

object from natural language to the information encoded in natural language. On7

this basis, the sentence generation task is transformed into read operations imple-8

mented on the database and some sentence encoding rules to be followed; The9

sentence understanding task is transformed into sentence decoding rules and a se-10

ries of Boolean operations implemented on the database. Our method is closer11

to the information processing mechanism of the human brain and has excellent12

interpretability and scalability.13

1 Introduction14

Enabling machines to understand and use natural language as humans do is the ultimate goal of15

NLP. Many language models have been developed for related NLP tasks. For example: Word2Vec16

[2] and GloVe [3] models the correlations between words by constructing numerical representation17

of words (i.e., word vector) and expect to obtain a word-level understanding by computing the simi-18

larities between the word vectors. Seq2seq [6] and Transformer [7] are used for machine translation19

tasks, they model the mapping relations between words and the mapping relations between sentence20

structures in different languages. ELMo [4], GPT [5] and Bert [1] that pre-train language models on21

a large-scale corpus, are aimed at modeling the sequence features in corpus.22

All these approaches of language models are modeling the surface features of language, while ig-23

noring the fact that natural language is only a way of encoding information. We believe that the24

information described in natural language and the structural relations between these information25

do not change depending on the choice of different encoding methods. Therefore, we propose a26

database-based NLP method, which models the information represented by language and its organi-27

zational and compositional structure described in language, and provides methods for various NLP28

tasks, such as sentence generation and sentence understanding based on this model.29

To summarize the contribution of this work:30

• Our method changes the modeling object from language to the information represented by lan-31

guage, which makes the model we construct has excellent interpretability and scalability.32

• We propose a brand new NLP approach that is different from rule-based and statistical model-33

based (i.e., language model) approaches, and it is more closer to the way the human brain processes34

information.35
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Figure 1: Differences in modeling objects. Language model-based methods take natural language
as the object to construct the model. Database-based methods take both the information in the real
world and the organizational and compositional structure of the information described in natural
language as the objects to construct the model.

The United States is south of Canada. Duke University is in North Carolina.
The cat is in Tom‘s room. The table is in front of the fridge.
The cat is on top of the fridge. The sofa is next to the fridge.

Table 1: Examples of sentences that describe the spatial position of target entities in the real world

• Our method directly confronts the challenge of “What is understanding ?” and “How to under-36

stand ?” and provides a convincing solution to the challenge.37

2 Background38

There are many kinds of information encoded in natural language, which need to be modeled and39

processed according to their different nature and characteristics. In this paper, we only take the40

spatial position information of entities as the object, and construct a model accordingly by learning41

how it is described and encoded in the language. People encode the spatial position information of42

entities in the real world into sentences, as shown in Table 1, and communicate them to each other.43

Looking at the sentences in Table 1, we see that these sentences have the same structure: (Entity 1)44

+ (...) + (Spatial relation) + (Entity 2), where “Entity 1” is the target entity whose spatial position45

we want to describe by the sentence, “Entity 2” is a helper entity that helps to locate the target46

entity, and “Spatial relation” describes the spatial relation between the target entity and the helper47

entity. As shown in Table 2 , there are three types of spatial relations commonly used in languages:1)48

spatial range relations, 2) spatial directional relations, and 3) spatial distance relations. the spatial49

directional relations can be further divided into 2.1) absolute directional relations and 2.2) relative50

directional relations according to the different reference systems.51

The above findings in language reveal how people organize and store the spatial position information52

of entities in the real world. We can also see that people are used to using entities with a relatively53

stable spatial position as helper entities. We refer to entities with a relatively stable spatial position54

as immovable entities and entities whose spatial position is constantly changing as movable entities.55

The immovable entities and the spatial relations between them form a stable system that we will use56

to construct our model.57

3 Model Architecture58

We construct a tree-graph hybrid model to describe and store entities and the relative spatial relations59

between them. In a tree-graph hybrid model, the immovable entities are abstracted as square nodes60

and the movable entities are abstracted as round nodes. The spatial relations between the entities are61

abstracted as directed edges E. There are three steps to build our model:62
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Spatial relations Lexical representations Reference system

1.Range relations Inside: in, at...
Outside: outside of...

2.
Directional
relations

2.1
Absolute
directional
relations

East: east of...
West: west of...
North: the north side of ...
South: the south side of...

2.2
Relative
directional
relations

Top: on, above, over, on top of...
Bottom: below, under, beneath...
Left: left of...
Right: the right side of...
Front: before, in front of...
Back: behind, back of...

3.Distance relations by, near, next to, beside...

Table 2: Classification of the relative spatial relations between entities, and lexical representations
of the relative spatial relations.

3.1 Tree Model63

First, we use a tree model to describe the spatial range relations between entities. The spatial range64

relations Es is consist of two opposite directions, i.e.,Es =
{
inside←− ,

outside−→
}

. For example, we65

use the tree in Figure 2 to describe the spatial range relations between entities “North Carolina”,66

“Duke University”, “Tom‘s room”, “Classroom 15”, “Table”, “Sofa”, “Fridge”, “Cat”, “Tom” and67

“Blackboard”. The tree in Figure 2 can also be written in tabular form as shown in Table 3. In a68

tree, the child nodes with the same parent node should be spatially independent of each other, which69

means, there is no spatial range inclusion relation between them, if not, the child node must be70

moved up or down until all the child nodes are spatially independent of each other.71

Figure 2: A tree that describe the spatial range re-
lations between entities “North Carolina”, “Duke
University”, “Tom‘s room”, “Cat”, etc.

Figure 3: A graph that describe the absolute spa-
tial directional relations between some entities in
M1 in Figure 1.

3.2 Graph Model72

Then, We use graph models to describe the spatial directional relations between entities. The spatial73

directional relations can be future divided into 1) absolute directional relations Ea, which consists74

of four fixed directions, i.e., Ea =
{

east−→,
west−→,

North−→ ,
South−→

}
, and 2) relative directional relations75

Er, which consists of six fixed directions, i.e., Er =
{

left−→,
right−→ ,

front−→ ,
back−→,

top−→,
bottom−→

}
. Now, we76

can use the graph in Figure 3 to describe the absolute directional relations between some entities in77

M1 in Figure 1, and use the graph in Figure 4 to describe the relative directional relations between78
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Es

V North Carolina Duke
University Tom‘s room Classroom 15 Fridge

inside−→

Duke
University Tom‘s room, Table, Blackboard, Coke

Classroom 15 Sofa, Tom
Cat,

Fridge

outside←− ∅ North Carolina Duke
University

Duke
University Tom‘s room

Table 3: The tabular form of the tree in Figure 2

Ea

V Kentucky Virginia Tennessee North Carolina Alabama

east−→ Virginia ∅ North Carolina ∅ ∅
west−→ ∅ Kentucky ∅ Tennessee ∅
north−→ ∅ ∅ Kentucky Virginia Tennessee
south−→ Tennessee North Carolina Alabama ∅ ∅

Table 5: The tabular form of the graph in Figure 3.

the entities in M3 in Figure 1. These two graphs can also be written in tabular forms as shown in79

Table 4 and Table 5.80

Figure 4: A graph to describe the relative spa-
tial directional relations between entities in M3
in Figure 1

Er

V Table Fridge Sofa

left−→ ∅ ∅ Fridge
right−→ ∅ Sofa ∅
front−→ Fridge ∅ ∅
back−→ ∅ Table ∅
top−→ ∅ Cat

bottom−→ ∅ ∅ ∅

Table 4: The tabular form of the graph in Figure
4

3.3 Tree-graph Hybrid Model81

At last, Take the nodes common to the tree and the graphs in Figures 2, 3 and 4 as connection points,82

then we can integrate the tree and graphs into a tree-graph hybrid model as shown in Figure 5. The83

tree-graph hybrid model describes spatial range relations between entities on the vertical structure84

(i.e., the inter-layer structure) and describes the spatial directional relations between entities on the85

horizontal structure (i.e., the intralayer structure). In a tree-graph hybrid model, the immovable86

entities and the stable spatial relations between them form a coordinate system, which can be used87

to locate the entities in the model (or database). A tree-graph hybrid model can be continuously88

extended upwards and downwards in the vertical structures to add new nodes, and continuously89

subdivided in the horizontal structure to add new nodes. Therefore, the tree-graph hybrid model90

could satisfy people’s need to describe and store the spatial position of numerous entities in the real91

world. If the spatial position of one entity changes, just modified the related data accordingly in the92

model. In addition, we can also build datasets to store the spatial position information of movable93
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Figure 5: An example of a tree-graph hybrid model, which describes the spatial range relations
between entities in the vertical structure (inter-layer structure), and describes the spatial directional
relations between entities in the horizontal structure (intralayer structure)

entities to record their footprint. In deed, the tree-graph hybrid model build a information exchange94

bridge between language and the widely used numerical positioning systems, as shown in Figure 6.95

Each layer of a tree-graph hybrid model can accommodate multiple subgraphs. Usually, the Ea96

(absolute directional relations) is used as the reference system of the whole layer, and the Er (relative97

directional relations) is used as the reference system in each subgraph. As shown in Figure 5, the98

subgraph G2
0 and G1

0 take Er as their reference system, and the layer L0 is using Ea as its reference99

system. In practice, when describing the spatial relation between two entities, lots of factors will100

affect our choice, such as the distance situation between the entities, the scale situation of these101

entities, etc. All of these factors can be summarized from practice and establish related rules, this102

part will be discussed in the following application section.103

4 Application104

Based on the tree-graph hybrid model, we can now generate a database to describe and store the105

spatial position of entities in the real world. This database can be used for many purposes. In this106

paper, we only present its use in NLG and NLU tasks.107

4.1 Natural Language Generation108

The purpose of the sentence generation task is to encode the information that needs to be conveyed109

into sentences. It consists of two subtasks: a) determining the information that needs to be conveyed110

and b) encoding that information into sentences.111

4.1.1 Read Data From the Database112

In this paper, the information to be conveyed is the spatial position of the target entity. Following the113

language expression, we will use a helper entity and the spatial relations between the helper and the114

target entity to describe the spatial position of the target entity. For example, if we want to describe115

the spatial position of the entity “Cat”, we first need to find the corresponding node (target node) of116

the entity “Cat” in the database in Figure 5, then find the helper nodes that have a spatial relation with117
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Figure 6: Three ways to describing (or encoding) the spatial position information of entities in
the real world. And the routes of information exchange between different systems: 1⃝ sentences
generation. 2⃝ sentences understanding. 3⃝ search for neighboring entities. 4⃝ get the numerical
position information of target entities.

Figure 7: If we take the entity “Cat” as the target, then we can find the above 5 data chains in the
database to help locate the entity “Cat”. The nodes marked with "✓" are the target nodes.

the target node, such as the nodes “Tom‘s room”, “Fridge”, “Table”, “Duke University”, “Tennessee”118

and so on, then we can get 5 corresponding data chains as shown in Figure 7, which are composed of119

the target node, the helper node, and the spatial relations between them. Each of these 5 data chains120

can describe the spatial position of the entity “Cat”, but their precision is different. If we sort these 5121

data chains by precision, we can get the following result: L2 > L3 > L1 > L4 > L5. However, the122

precision is not the only goal we are pursuing. If we want to describe the spatial position of the entity123

“Cat” to a particular person, we also need to know how much this person knows about the spatial124

position of the 5 candidate helper nodes mentioned above, and what is the person‘s requirement for125

descriptive precision, so that we can filter out the appropriate one accordingly. Here, we will skip126

this part and go straight to the sentence encoding part.127

4.1.2 Encoding Rules for Data Chain128

Although the rules for encoding a data chain into a sentence vary slightly from language to language,129

but the following parts are mandatory: 1) the target and the helper nodes in a data chain, 2) the130

spatial relations between the target node and helper nodes in the data chain, and 3) the particular131

spatial correlation between the target node and helper nodes.132

6



Main parts
Data Chain L1 L1* L2 L2*

1 Target node The cat The cat The cat The cat
2 Helper node Tom‘s room Tom‘s room the fridge the fridge
3 Spatial relations in on top of on top of in

4
Particular spatial correlation

• True is is
• False is not is not

Table 6: Examples of the mandatory parts for encoding a data chain.

Data chain Target node Particular spatial
correlation Spatial relation Helper node

L1 The cat is in Tom‘s room
L2 The cat is on top of the fridge
L3 The cat is in front of ( next to) the table
L4 The cat is in Duke University
L5 The cat is on the ease side of Tennessee

L1* The cat is not on top of Tom‘s room
L2* The cat is not in the fridge

Table 7: Examples of sentence encoding for the data chains in Figure 7. All the above sentences are
100% correct, but some of them might be regarded as the right nonsense, and won’t be adopted in
practice due to their low precision in locating the target entity.

Particular spatial correlation: A data chain can describe both “true information” and “false infor-133

mation”. Therefore, when encoding a data chain, speakers also need to give their opinion on whether134

the information described in the data chain is true or false. The speaker‘s opinion is described by a135

particular spatial correlation. For example, the particular spatial correlations that are listed in row 4136

of Table 6 are the speaker‘s opinions on the information described in the data chains in Table 6.137

Operation rules for spatial relations: If there is only one directed edge in a data chain, we can138

encode it directly, such as the data chains L1 and L2. If there is more than one directed edge in a139

data chain, e.g., the data chains L3, L4 and L5, we should first operate the directed edges in the data140

chain, then encode the result of the operation. Here, we summarize some operation rules as follows:141

• Elimination operation: e.g., inside−→ +
outside←− = ∅, left−→ +

right−→ = ∅, north−→ +
south−→ = ∅...142

• Union operation: e.g., inside−→ +
inside−→ = inside−→ , east−→ +

east−→ +
north−→ = northeast−→ ...143

• Hybrid operation: when a data chain contains both spatial range relations and spatial directional144

relations, the relations in the upstream of the data chain is dominant, e.g., inside−→ +
top−→ = inside−→ ,145

east−→ +
inside−→ = east−→...146

Applying the operation rules to the spatial relations on data chains L3, L4, and L5 yields the results147

below. Based on these operation results, we can encode the data chains L3, L4, and L5 into the148

sentences listed in Table 7.149

• L3:
front−→ +

top−→ =
upfront−→ ; L4: inside−→ +

inside−→ = inside−→ ; L5: east−→ +
inside−→ ∗3 = east−→.150

Distance relations: In some cases, e.g.: 1) the spatial distance between the target entity and the151

helper entity is very close, or 2) it is not necessary to provide the exact position of the target entity,152

then we can use the spatial distance relations as an alternative, just like the sentence L3 in Table 7153

You may argue that the sentences we generated are too simple. However, at the initial stage of154

language appearance, it is just some simple words and short sentences. With the development of155

human beings, more and more information is encoded in language, then sophisticated words and156

long sentences emerged. Therefore, it is a good start to launch our research with some simple words157

and sentences.158
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Figure 8: The data chain L6 and its three different cases.

Data chain Target node Helper node
L6 Duke University is in North Carolina .

L6-1 Is Duke University in North Carolina ?
L6-2 Which state is Duke University in ?
L6-3 Which University is in North Carolina ?

Table 8: Comparison of sentence structures that encode different information processing requests.

4.1.3 Encoding Rules for Processing Requests159

Sentences encode not only the specific information to be conveyed, but also the processing requests160

for that information. According to the implicit processing requests in the sentences, we divided161

sentences into following three categories: 1) data description sentence (i.e., declarative sentence),162

2) data verification sentence (i.e., the yes-no question sentence), 3) data searching sentence (i.e.,163

WH-question sentence).164

Data description sentence: The processing requirement implicit in a data description sentence is165

that listeners are expected to store the information in their databases. For example, teachers expect166

the students to remember what was taught in the class, and authors expect the readers to understand167

and remember the ideas shared in the book, and so on.168

Data verification sentence: For a data verification sentence, listeners are expected to help verify169

whether the particular spatial correlations described in the sentence exist in their database, and then170

return the verification result as the response. For example, if speakers are not sure whether the spatial171

relation “inside” between the node (Duke University) and the node (North Carolina) exists, as shown172

in data chain L6-1 in Figure 8, they could express the processing request that ask listeners to help173

verity whether the “inside” edge exists by moving the word “Is” to the beginning of the sentence and174

adding a question mark at the end of the sentence, as shown in Table 8.175

Data searching sentence: For a data searching sentence, listeners are expected to search for the176

missing information replaced by WH words in their databases and return the search result as the177

response. Take data chains L6-2 and L6-3 in Figure 8 as examples, speakers can use the word178

“which” to replace the missing parts and adjust the structure of the sentences, as shown in rows L6-2179

and L6-3 in Table8, to express their expectation that the listener can help to search for the missing180

parts and return the search results.181

4.2 Natural Language Understanding182

In this paper, we only need to understand the spatial position information of the entities described183

in the sentences, the understanding of the other parts of the entities requires other databases, these184

databases will be published in other papers. The sentence understanding task consists of two parts:185

a) understanding of the processing requests of the specific information implicit in a sentence, and b)186

understanding of the specific information conveyed in the sentence.187

4.2.1 Understanding of the Processing Requests188

The specific processing requests are expressed by the specific sentence structures, specific feature189

words and specific punctuation. These can be used to classify the sentences and extract the process-190

ing requests accordingly.191
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Figure 9: (1) General tree structure of sentences. (2) The sentence tree of sentence L1 in Table 7.

4.2.2 Understanding of the Specific Information192

First, listeners need to chunk the sentence and extract components of the specific information. Con-193

sidering the difference in the number of words and phrases used to represent each class of the com-194

ponents, the most efficient way is to chunk the sentences according to the order in Figure 9 (1). For195

example, listeners can chunk the sentence L1 in Table 7 into the sentence tree shown in Figure 9196

(2). Then, listeners need to verify each parts of the sentence tree in their databases according to197

the flowchart shown in Figure 10. In the case of the sentence tree in Figure 9, listeners should first198

verity whether the helper entity “Tom‘s room” exists in their database, if the helper entity exists,199

go ahead; if not, it means that the listeners cannot get the position information of the target entity200

“The cat” through the helper entity “Tom‘s room”, so the understanding mission fails. If the helper201

entity “Tom‘s room” exists, the listeners needs to verify whether the target entity “The cat” exists at202

the other end of the directed edge (i.e., “Inside” edge), if the target entity “The cat” exists, it means203

that the listeners understand the information conveyed in the sentence tree, although the information204

conveyed in the sentence tree is known to the listeners; If not, the listeners can create a target node205

at the other end of the “Inside” edge, to store the spatial position information of “The cat” in their206

database.207

4.2.3 Responding to the Processing Requests208

Strictly speaking, responding to the processing requests implicit in a sentence is not the sentence209

understanding task, but the sentence generation task. Here, we briefly introduce the responses to the210

different processing requests. In a data description sentence, the response is to store the specific211

information conveyed in the sentence, just as the step marked with a star in Figure 10. For a data212

verification sentence, the response is to return the verification results to the speakers. Take the213

sentence L6-1 in Table 8 as an example, in the listeners database, if the directed edge represented214

by the word “in” can be found between the node “Duke University” and node “North Carolina”, the215

listener can reply “Yes, it is” as feedback to the speaker. If not, the listener can reply “No, it is not”216

as feedback to the speaker. For a data searching sentence, the response is to return the searching217

results to the speakers. Take the sentence L6-2 in Table 8 as an example, in the listener‘s database, if218

there is a node on the other end of the directed edge (which represented by the word “in”), the search219

mission succeeded, and the listener can give the lexical representation of that node to the speaker. If220

not, the listener can reply “I don‘t know” or “I don‘t have a clue” to the speaker, to let him or her221

know that the search mission failed.222

5 Conclusion223

We demonstrate the feasibility of the database-based method for NLG and NLU tasks, which takes224

information encoded in natural language as the object of study. So, what exactly are we study225

about natural language? As we have learned in neuroscience, humans receive information through226

neural pathways such as eyes, ears, mouth, nose, etc., and then send this received information to227

the brain for hierarchical processing and storage. Although we cannot explore how this information228

is processed and stored in human brains, but a small proportion of this information is encoded as229

natural language for external output. Thus, by studying natural language, we can investigate the230

mechanisms by which information is stored and processed in the human brain.231
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Figure 10: Understnading flowchart of data description sentences.
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