
Published as a conference paper at ICLR 2023

OFFLINE REINFORCEMENT LEARNING VIA HIGH-
FIDELITY GENERATIVE BEHAVIOR MODELING

Huayu Chen1, Cheng Lu1, Chengyang Ying1, Hang Su1,2∗, Jun Zhu1,2∗
1Department of Computer Science & Technology, Institute for AI, BNRist Center,
Tsinghua-Bosch Joint ML Center, THBI Lab, Tsinghua University
2Pazhou Lab, Guangzhou, 510330, China
chenhuay21@mails.tsinghua.edu.cn
{lucheng.lc15,yingcy17}@gmail.com
{suhangss,dcszj}@tsinghua.edu.cn

ABSTRACT

In offline reinforcement learning, weighted regression is a common method to
ensure the learned policy stays close to the behavior policy and to prevent selecting
out-of-sample actions. In this work, we show that due to the limited distributional
expressivity of policy models, previous methods might still select unseen actions
during training, which deviates from their initial motivation. To address this
problem, we adopt a generative approach by decoupling the learned policy into
two parts: an expressive generative behavior model and an action evaluation model.
The key insight is that such decoupling avoids learning an explicitly parameterized
policy model with a closed-form expression. Directly learning the behavior policy
allows us to leverage existing advances in generative modeling, such as diffusion-
based methods, to model diverse behaviors. As for action evaluation, we combine
our method with an in-sample planning technique to further avoid selecting out-
of-sample actions and increase computational efficiency. Experimental results on
D4RL datasets show that our proposed method achieves competitive or superior
performance compared with state-of-the-art offline RL methods, especially in
complex tasks such as AntMaze. We also empirically demonstrate that our method
can successfully learn from a heterogeneous dataset containing multiple distinctive
but similarly successful strategies, whereas previous unimodal policies fail. The
source code is provided at https://github.com/ChenDRAG/SfBC.

1 INTRODUCTION

Offline reinforcement learning seeks to solve decision-making problems without interacting with
the environment. This is compelling because online data collection can be dangerous or expensive
in many realistic tasks. However, relying entirely on a static dataset imposes new challenges. One
is that policy evaluation is hard because the mismatch between the behavior and the learned policy
usually introduces extrapolation error (Fujimoto et al., 2019). In most offline tasks, it is difficult or
even impossible for the collected transitions to cover the whole state-action space. When evaluating
the current policy via dynamic programming, leveraging actions that are not presented in the dataset
(out-of-sample) may lead to highly unreliable results, and thus performance degrade. Consequently,
in offline RL it is critical to stay close to the behavior policy during training.

Recent advances in model-free offline methods mainly include two lines of work. The first is the
adaptation of existing off-policy algorithms. These methods usually include value pessimism about
unseen actions or regulations of feasible action space (Fujimoto et al., 2019; Kumar et al., 2019;
2020). The other line of work (Peng et al., 2019; Wang et al., 2020; Nair et al., 2020) is derived
from constrained policy search and mainly trains a parameterized policy via weighted regression.
Evaluations of every state-action pair in the dataset are used as regression weights.

The main motivation behind weighted policy regression is that it helps prevent querying out-of-sample
actions (Nair et al., 2020; Kostrikov et al., 2022). However, we find that this argument is untenable in

*H. Su and J. Zhu are corresponding authors.

1

https://github.com/ChenDRAG/SfBC


Published as a conference paper at ICLR 2023

certain settings. Our key observation is that policy models in existing weighted policy regression
methods are usually unimodal Gaussian models and thus lack distributional expressivity, while in the
real world collected behaviors can be highly diverse. This distributional discrepancy might eventually
lead to selecting unseen actions. For instance, given a bimodal target distribution, fitting it with a
unimodal distribution unavoidably results in covering the low-density area between two peaks. In
Section 3.1, we empirically show that lack of policy expressivity may lead to performance degrade.

Ideally, this problem could be solved by switching to a more expressive distribution class. However,
it is nontrivial in practice since weighted regression requires exact and derivable density calculation,
which places restrictions on distribution classes that we can choose from. Especially, we may not
know what the behavior or optimal policy looks like in advance.

To overcome the limited expressivity problem, we propose to decouple the learned policy into two
parts: an expressive generative behavior model and an action evaluation model. Such decoupling
avoids explicitly learning a policy model whose target distribution is difficult to sample from, whereas
learning a behavior model is much easier because sampling from the behavior policy is straightforward
given the offline dataset collected by itself. Access to data samples from the target distribution is
critical because it allows us to leverage existing advances in generative methods to model diverse
behaviors. To sample from the learned policy, we use importance sampling to select actions from
candidates proposed by the behavior model with the importance weights computed by the action
evaluation model, which we refer to as Selecting from Behavior Candidates (SfBC).

However, the selecting-from-behavior-candidates approach introduces new challenges because it
requires modeling behaviors with high fidelity, which directly determines the feasible action space.
A prior work (Ghasemipour et al., 2021) finds that typically-used VAEs do not align well with
the behavior dataset, and that introducing building-in good inductive biases in the behavior model
improves the algorithm performance. Instead, we propose to learn from diverse behaviors using
a much more expressive generative modeling method, namely diffusion probabilistic models (Ho
et al., 2020), which have recently achieved great success in modeling diverse image distributions,
outperforming other existing generative models (Dhariwal & Nichol, 2021). We also propose a
planning-based operator for Q-learning, which performs implicit planning strictly within dataset
trajectories based on the current policy, and is provably convergent. The planning scheme greatly
reduces bootstrapping steps required for dynamic programming and thus can help to further reduce
extrapolation error and increase computational efficiency.

The main contributions of this paper are threefold: 1. We address the problem of limited policy
expressivity in conventional methods by decoupling policy learning into behavior learning and action
evaluation, which allows the policy to inherit distributional expressivity from a diffusion-based
behavior model. 2. The learned policy is further combined with an implicit in-sample planning
technique to suppress extrapolation error and assist dynamic programming over long horizons. 3.
Extensive experiments demonstrate that our method achieves competitive or superior performance
compared with state-of-the-art offline RL methods, especially in sparse-reward tasks such as AntMaze.

2 BACKGROUND

2.1 CONSTRAINED POLICY SEARCH IN OFFLINE RL

Consider a Markov Decision Process (MDP), described by a tuple ⟨S,A, P, r, γ⟩. S denotes the state
space and A is the action space. P (s′|s,a) and r(s,a) respectively represent the transition and re-
ward functions, and γ ∈ (0, 1] is the discount factor. Our goal is to maximize the expected discounted
return J(π) = Es∼ρπ(s)Ea∼π(·|s) [r(s,a)] of policy π, where ρπ(s) =

∑∞
n=0 γ

npπ(sn = s) is the
discounted state visitation frequencies induced by the policy π (Sutton & Barto, 1998).

According to the policy gradient theorem (Sutton et al., 1999), given a parameterized policy πθ, and
the policy’s state-action function Qπ , the gradient of J(πθ) can be derived as:

∇θJ(πθ) =

∫
S
ρπ(s)

∫
A
∇θπθ(a|s)Qπ(s,a)da ds. (1)

When online data collection from policy π is not possible, it is difficult to estimate ρπ(s) in Equation 1,
and thus the expected value of the Q-function η(πθ) :=

∫
S ρπ(s)

∫
A πθ(a|s)Qπ(s,a). Given a static
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dataset Dµ consisting of multiple trajectories {(sn,an, rn)} collected by a behavior policy µ(a|s),
previous off-policy methods (Silver et al., 2014; Lillicrap et al., 2016) estimate η(πθ) with a surrogate
objective η̂(πθ) by replacing ρπ(s) with ρµ(s). In offline settings, due to the importance of sticking
with the behavior policy, prior works (Peng et al., 2019; Nair et al., 2020) explicitly constrain the
learned policy π to be similar to µ, while maximizing the expected value of the Q-functions:

arg max
π

∫
S
ρµ(s)

∫
A
π(a|s)Qϕ(s,a) da ds− 1

α

∫
S
ρµ(s)DKL (π(·|s)||µ(·|s)) ds. (2)

The first term in Equation 2 corresponds to the surrogate objective η̂(πθ), where Qϕ(s,a) is a learned
Q-function of the current policy π. The second term is a regularization term to constrain the learned
policy within support of the dataset Dµ with α being the coefficient.

2.2 POLICY IMPROVEMENT VIA WEIGHTED REGRESSION

The optimal policy π∗ for Equation 2 can be derived (Peters et al., 2010; Peng et al., 2019; Nair et al.,
2020) by use of Lagrange multiplier:

π∗(a|s) = 1

Z(s)
µ(a|s) exp (αQϕ(s,a)) , (3)

where Z(s) is the partition function. Equation 3 forms a policy improvement step.

Directly sampling from π∗ requires explicitly modeling behavior µ, which itself is challenging in
continuous action-space domains since µ can be very diverse. Prior methods (Peng et al., 2019; Wang
et al., 2020; Chen et al., 2020) bypass this issue by projecting π∗ onto a parameterized policy πθ:

arg min
θ

Es∼Dµ [DKL (π
∗(·|s)||πθ(·|s))]

= arg max
θ

E(s,a)∼Dµ

[
1

Z(s)
log πθ(a|s) exp (αQϕ(s,a))

]
. (4)

Such a method is usually referred to as weighted regression, with exp (αQϕ(s,a)) being the regres-
sion weights.

Although weighted regression avoids the need to model the behavior policy explicitly, it requires
calculating the exact density function πθ(a|s) as in Equation 4. This constrains the policy πθ to
distribution classes that have a tractable expression for the density function. We find this in practice
limits the model expressivity and could be suboptimal in some cases (Section 3.1).

2.3 DIFFUSION PROBABILISTIC MODEL

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b) are generative
models by first defining a forward process to gradually add noise to an unknown data distribution
p0(x0) and then learning to reverse it. The forward process {x(t)}t∈[0,T ] is defined by a stochastic
differential equation (SDE) dxt = f(xt, t)dt+ g(t)dwt, where wt is a standard Brownian motion
and f(t), g(t) are hand-crafted functions (Song et al., 2021b) such that the transition distribution
pt0(xt|x0) = N (xt|αtx0, σ

2
t I) for some αt, σt > 0 and pT (xT ) ≈ N (xT |0, I). To reverse the

forward process, diffusion models define a scored-based model sθ and optimize the parameter θ by:

arg min
θ

Et,x0,ϵ[∥σtsθ(xt, t) + ϵ∥22], (5)

where t ∼ U(0, T ), x0 ∼ p0(x0), ϵ ∼ N (0, I), xt = αtx0 + σtϵ.

Sampling by diffusion models can be alternatively viewed as discretizing the diffusion ODEs (Song
et al., 2021b), which are generally faster than discretizing the diffusion SDEs (Song et al., 2021a;
Lu et al., 2022). Specifically, the sampling procedure needs to first sample a pure Gaussian xT ∼
N (0, I), and then solve the following ODE from time T to time 0 by numerical ODE solvers:

dxt =

[
f(xt, t)−

1

2
g2(t)sθ(xt, t)

]
dt. (6)

Then the final solution x0 at time 0 is the sample from the diffusion models.
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3 METHOD

We propose a Selecting-from-Behavior-Candidates (SfBC) approach to address the limited expressiv-
ity problem in offline RL. Below we first motivate our method by highlighting the importance of a
distributionally expressive policy in learning from diverse behaviors. Then we derive a high-level
solution to this problem from a generative modeling perspective.

3.1 LEARNING FROM DIVERSE BEHAVIORS

In this section, we show that the weighted regression broadly used in previous works might limit the
distributional expressivity of the policy and lead to performance degrade. As described in Section
2.2, conventional policy regression methods project the optimal policy π∗ in Equation 3 onto a
parameterized policy set. In continuous action-space domains, the projected policy is usually limited
to a narrow range of unimodal distributions (e.g., squashed Gaussian), whereas the behavior policy
could be highly diverse (e.g., multimodal). Lack of expressivity directly prevents the RL agent from
exactly mimicking a diverse behavior policy. This could eventually lead to sampling undesirable
out-of-sample actions during policy evaluation and thus large extrapolation error. Even if Q-values
can be accurately estimated, an inappropriate unimodal assumption about the optimal policy might
still prevent extracting a policy that has multiple similarly rewarding but distinctive strategies.
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Figure 1: Illustration of the Bidirectional-Car task and
comparison between SfBC and unimodal policies. See
Section 6.2 for experimental details.

We design a simple task named Bidirec-
tional Car to better explain this point. Con-
sider an environment where a car placed
in the middle of two endpoints can go ei-
ther side to gain the final reward. If an
RL agent finds turning left and right simi-
larly rewarding, by incorrectly assuming a
unimodal distribution of the behavior pol-
icy, it ends up staying put instead of taking
either one of the optimal actions (Figure
1). As a result, unimodal policies fail to
completely solve this task or loss diversity
whereas a more distributionally expressive
policy easily succeeds.

We therefore deduce that distributional expressivity is a necessity to enable diverse behavior learning.
To better model the complex behavior policy, we need more powerful generative modeling for the
policy distribution, instead of the simple and unimodal Gaussians.

3.2 SELECTING FROM BEHAVIOR CANDIDATES

In this section, we provide a generative view of how to model a potentially diverse policy. Specifically,
in order to model π∗ with powerful generative models, essentially we need to perform maximum
likelihood estimation for the model policy πθ, which is equivalent to minimizing KL divergence
between the optimal and model policy:
arg max

θ
Es∼DµEa∼π∗(·|s) [log πθ(a|s)] ⇔ arg min

θ
Es∼Dµ [DKL (π

∗(·|s)||πθ(·|s))] . (7)

However, drawing samples directly from π∗ is difficult, so previous methods (Peng et al., 2019; Nair
et al., 2020; Wang et al., 2020) rely on the weighted regression as described in Equation 4.

The main reason that limits the expressivity of πθ is the need of calculating exact and derivable
density function πθ(a|s) in policy regression, which places restrictions on distribution classes that we
can choose from. Also, we might not know what the behavior or optimal policy looks like previously.

Our solution is based on a key observation that directly parameterizing the policy π is not necessary.
To better model a diverse policy, we propose to decouple the learning of π into two parts. Specifically,
we leverage Equation 3 to form a policy improvement step:

π(a|s) ∝ µθ(a|s) exp (αQϕ(s,a)) . (8)
One insight of the equation above is that minimizing KL divergence between µ and µθ is much easier
compared with directly learning πθ because sampling from µ is straightforward given Dµ. This
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allows to us to leverage most existing advances in generative modeling (Section 4.1). Qϕ(s, a) could
be learned using the existing Q-learning framework (Section 4.2).

The inverse temperature parameter α in Equation 8 serves as a trade-off between conservative and
greedy improvement. We can see that when α → 0, the learned policy falls back to the behavior
policy, and when α → +∞ the learned policy becomes a greedy policy.

To sample actions from π, we use an importance sampling technique. Specifically, for any state s, first
we draw M action samples from a learned behavior policy µθ(·|s) as candidates. Then we evaluate
these action candidates with a learned critic Qϕ. Finally, an action is resampled from M candidates
with exp (αQϕ(s,a)) being the sampling weights. We summarize this procedure as selecting from
behavior candidates (SfBC), which could be understood as an analogue to rejection sampling.

Although generative modeling of the behavior policy has been explored by several works (Fujimoto
et al., 2019; Kumar et al., 2019), it was mostly used to form an explicit distributional constraint for
the policy model πθ. In contrast, we show directly leveraging the learned behavior model to generate
actions is not only feasible but beneficial on the premise that high-fidelity behavior modeling can be
achieved. We give a practical implementation in the next section.

4 PRACTICAL IMPLEMENTATION

In this section, we derive a practical implementation of SfBC, which includes diffusion-based behavior
modeling and planning-based Q-learning. An algorithm overview is given in Appendix A.

4.1 DIFFUSION-BASED BEHAVIOR MODELING

It is critical that the learned behavior model is of high fidelity because generating any out-of-sample
actions would result in unwanted extrapolation error, while failing to cover all in-sample actions
would restrict feasible action space for the policy. This requirement brings severe challenges to
existing behavior modeling methods, which mainly include using Gaussians or VAEs. Gaussian
models suffer from limited expressivity as we have discussed in Section 3.1. VAEs, on the other hand,
need to introduce a variational posterior distribution to optimize the model distribution, which has a
trade-off between the expressivity and the tractability (Kingma et al., 2016; Lucas et al., 2019). This
still limits the expressivity of the model distribution. An empirical study is given in Section 6.3.

To address this problem, we propose to learn from diverse behaviors using diffusion models (Ho et al.,
2020), which have recently achieved great success in modeling diverse image distributions (Ramesh
et al., 2022; Saharia et al., 2022), outperforming other generative models (Dhariwal & Nichol, 2021).
Specifically, we follow Song et al. (2021b) and learn a state-conditioned diffusion model sθ to predict
the time-dependent noise added to the action a sampled from the behavior policy µ(·|s):

θ = arg min
θ

E(s,a)∼Dµ,ϵ,t[∥σtsθ(αta+ σtϵ, s, t) + ϵ∥22], (9)

where ϵ ∼ N (0, I), t ∼ U(0, T ). αt and σt are determined by the forward diffusion process.
Intuitively sθ is trained to denoise at := αta+ σtϵ into the unperturbed action a such that aT ∼
N (0, I) can be transformed into a ∼ µθ(·|s) by solving an inverse ODE defined by sθ (Equation 6).

4.2 Q-LEARNING VIA IN-SAMPLE PLANNING

Generally, Q-learning can be achieved via the Bellman expectation operator:

T πQ(s,a) = r(s,a) + γEs′∼P (·|s,a),a′∼π(·|s′)Q(s′,a′). (10)

However, T π is based on one-step bootstrapping, which has two drawbacks: First, this can be
computationally inefficient due to its dependence on many steps of extrapolation. This drawback
is exacerbated in diffusion settings since drawing actions from policy π in Equation 10 is also
time-consuming because of many iterations of Langevin-type sampling. Second, estimation errors
may accumulate over long horizons. To address these problems, we take inspiration from episodic
learning methods (Blundell et al., 2016; Ma et al., 2022) and propose a planning-based operator T π

µ :

T π
µ Q(s,a) := max

n≥0
{(T µ)nT πQ(s,a)}, (11)
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Figure 2: Visualizations of the implicitly planned Q-targets R
(k)
n sampled from the dataset of an

AntMaze task in four consecutive value iterations. The red pentagram stands for the reward signal.
Implicit planning helps to iteratively stitch together successful subtrajectories.

where µ is the behavior policy. T π
µ combines the strengths of both the n-step operator (T µ)n, which

enjoys a fast contraction property, and the operator T π, which has a more desirable fixed point. We
prove in Appendix C that T π

µ is also convergent, and its fixed point is bounded between Qπ and Q∗.

Practically, given a dataset Dµ = {(sn, an, rn)} collected by behavior µ, with n being the timestep
in a trajectory. We can rewrite Equation 11 in a recursive manner to calculate the Q-learning targets:

R(k)
n = rn + γmax(R

(k)
n+1, V

(k−1)
n+1 ), (12)

where V (k−1)
n := Ea∼π(·|sn)Qϕ(sn,a), (13)

and ϕ = arg min
ϕ

E(sn,an)∼Dµ∥Qϕ(sn,an)−R(k−1)
n ∥22. (14)

Above k ∈ {1, 2, . . . } is the iteration number. We define R
(0)
n as the vanilla return of trajectories.

Equation 12 offers an implicit planning scheme within dataset trajectories that mainly helps to avoid
bootstrapping over unseen actions and to accelerate convergence. Equation 13 enables the generaliza-
tion of actions in similar states across different trajectories (stitching together subtrajectories). Note
that we have omitted writing the iteration superscript of π and µ for simplicity. During training, we
alternate between calculating new Q-targets Rn and fitting the action evaluation model Qϕ.

Although the operator T π
µ is inspired by the multi-step estimation operator Tvem proposed by Ma

et al. (2022). They have notable differences in theoretical properties. First, Tvem can only apply to
deterministic environments, while our method also applies to stochastic settings. Second, unlike Tvem,
T π
µ does not share the same fixed point with T π . We compare two methods in detail in Appendix G.

5 RELATED WORK

Reducing extrapolation error in offline RL. Offline RL typically requires careful trade-offs between
maximizing expected returns and staying close to the behavior policy. Once the learned policy deviates
from the behavior policy, extrapolation error will be introduced in dynamic programming, leading
to performance degrade (Fujimoto et al., 2019). Several works propose to address this issue by
introducing either policy regularization on the distributional discrepancy with the behavior policy
(Fujimoto et al., 2019; Kumar et al., 2019; Wu et al., 2019; Fujimoto & Gu, 2021), or value pessimism
about unseen actions (Kumar et al., 2020; Kostrikov et al., 2021). Another line of research directly
extracts policy from the dataset through weighted regression, hoping to avoid selecting unseen actions
(Peng et al., 2019; Nair et al., 2020; Wang et al., 2020). However, some recent works observe that
the trade-off techniques described above are not sufficient to reduce extrapolation error, and propose
to learn Q-functions through expectile regression without ever querying policy-generated actions
(Kostrikov et al., 2022; Ma et al., 2022). Unlike them, We find that limited policy expressivity is the
main reason that introduces extrapolation error in previous weighted regression methods, and use an
expressive policy model to help reduce extrapolation error.

Dynamic programming over long horizons. Simply extracting policies from behavior Q-functions
can yield good performance in many D4RL tasks because it avoids dynamic programming and
therefore the accompanied extrapolation error (Peng et al., 2019; Chen et al., 2020; Brandfonbrener

6



Published as a conference paper at ICLR 2023

Dataset Environment SfBC (Ours) IQL VEM AWR BAIL BCQ CQL DT Diffuser

Medium-Expert HalfCheetah 92.6± 0.5 86.7 - 52.7 72.2 64.7 62.4 86.8 79.8
Medium-Expert Hopper 108.6± 2.1 91.5 - 27.1 106.2 100.9 98.7 107.6 107.2
Medium-Expert Walker 109.8± 0.2 109.6 - 53.8 107.2 57.5 111.0 108.1 108.4

Medium HalfCheetah 45.9± 2.2 47.4 47.4 37.4 30.0 40.7 44.4 42.6 44.2
Medium Hopper 57.1± 4.1 66.3 56.6 35.9 62.2 54.5 58.0 67.6 58.5
Medium Walker 77.9± 2.5 78.3 74.0 17.4 73.4 53.1 79.2 74.0 79.7

Medium-Replay HalfCheetah 37.1± 1.7 44.2 - 40.3 40.3 38.2 46.2 36.6 42.2
Medium-Replay Hopper 86.2± 9.1 94.7 - 28.4 94.7 33.1 48.6 82.7 96.8
Medium-Replay Walker 65.1± 5.6 73.9 - 15.5 58.8 15.0 26.7 66.6 61.2

Average (Locomotion) 75.6 76.9 - 34.3 71.6 51.9 63.9 74.7 75.3

Default AntMaze-umaze 92.0± 2.1 87.5 87.5 56.0 85.0 78.9 74.0 59.2 -
Diverse AntMaze-umaze 85.3± 3.6 62.2 78.0 70.3 76.7 55.0 84.0 53.0 -

Play AntMaze-medium 81.3± 2.6 71.2 78.0 0.0 15.0 0.0 61.2 0.0 -
Diverse AntMaze-medium 82.0± 3.1 70.0 77.0 0.0 23.3 0.0 53.7 0.0 -

Play AntMaze-large 59.3± 14.3 39.6 57.0 0.0 0.0 6.7 15.8 0.0 -
Diverse AntMaze-large 45.5± 6.6 47.5 58.0 0.0 8.3 2.2 14.9 0.0 -

Average (AntMaze) 74.2 63.0 72.6 21.0 46.7 23.8 50.6 18.7 -

Average (Maze2d) 74.0 50.0 - 10.8 - 9.1 7.7 - 119.5

Average (FrankaKitchen) 57.1 53.3 - 8.7 - 11.7 48.2 - -

Both-side Bidirectional-Car 100.0± 0.0 15.7 0.0 0.0 52.0 88.0 42.3 33.3 -
Single-side Bidirectional-Car 100.0± 0.0 100.0 100.0 96.3 100.0 100.0 100.0 100.0 -

Table 1: Evaluation numbers of SfBC. Scores are normalized according to Fu et al. (2020). Numbers
within 5 percent of the maximum in every individual task are highlighted in boldface. Experiment
and evaluation details are provided in Appendix B. We report scores with 15 diffusion steps.

et al., 2021). However, Kostrikov et al. (2022) shows this method performs poorly in tasks that
require stitching together successful subtrajectories (e.g., Maze-like environments). Such tasks are
also challenging for methods based on one-step bootstrapping because they might require hundreds of
steps to reach the reward signal, with the reward discounted and estimation error accumulated along
the way. Episodic memory-based methods address this problem by storing labeled experience in the
dataset, and plans strictly within the trajectory to update evaluations of every decision (Blundell et al.,
2016; Hu et al., 2021; Ma et al., 2022). The in-sample planning scheme allows dynamic programming
over long horizons to suppress the accumulation of extrapolation error, which inspires our method.

Generative models for behavior modeling. Cloning diverse behaviors in a continuous action space
requires powerful generative models. In offline RL, several works (Fujimoto et al., 2019; Kumar et al.,
2019; Wu et al., 2019; Zhou et al., 2021; Chen et al., 2022) have tried using generative models such
as Gaussians or VAEs to model the behavior policy. However, the learned behavior model only serves
as an explicit distributional constraint for another policy during training. In broader RL research,
generative adversarial networks (Goodfellow et al., 2020), masked autoencoders (Germain et al.,
2015), normalizing flows (Dinh et al., 2016), and energy-based models (Du & Mordatch, 2019) have
also been used for behavior modeling (Ho & Ermon, 2016; Ghasemipour et al., 2021; Singh et al.,
2020; Liu et al., 2020). Recently, diffusion models (Ho et al., 2020) have achieved great success in
generating diverse and high-fidelity image samples (Dhariwal & Nichol, 2021). However, exploration
of its application in behavior modeling is still limited. Janner et al. (2022) proposes to solve offline
tasks by iteratively denoising trajectories, while our method uses diffusion models for single-step
decision-making. Concurrently with our work, Wang et al. (2022) also studies applying diffusion
models to offline RL to improve policy expressivity. However, they use diffusion modeling as an
implicit regularization during training of the desired policy instead of an explicit policy prior.

6 EXPERIMENTS

6.1 EVALUATIONS ON D4RL BENCHMARKS

In Table 1, we compare the performance of SfBC to multiple offline RL methods in several D4RL (Fu
et al., 2020) tasks. MuJoCo locomotion is a classic benchmark where policy-generated datasets
only cover a narrow part of the state-action space, so avoiding querying out-of-sample actions is
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Figure 3: Visualizations of actions taken by different RL agents in the Bidirectional-Car task. The
ground truth corresponds to an agent which always takes the best actions, which is either 1.0 or -1.0.
White space indicates suboptimal decisions. Green bounding boxes indicate possible initial states.

critical (Fujimoto et al., 2019; Kumar et al., 2020). The Medium dataset of this benchmark is
generated by a single agent, while the Medium-Expert and the Medium-Replay dataset are generated
by a mixture of policies. AntMaze is about an ant robot navigating itself in a maze, which requires
both low-level robot control and high-level navigation. Since the datasets consist of undirected
trajectories, solving AntMaze typically requires the algorithm to have strong “stitching” ability (Fu
et al., 2020). Different environments contain mazes of different sizes, reflecting different complexity.
Maze2d is very similar to AntMaze except that it’s about a ball navigating in a maze instead of an
ant robot. FrankaKitchen are robot-arm manipulation tasks. We only focus on the analysis of
MuJoCo locomotion and AntMaze tasks due to the page limit. Our choices of referenced baselines
are detailed in Appendix E.

Overall, SfBC outperforms most existing methods by large margins in complex tasks with sparse
rewards such as AntMaze. We notice that VEM also achieves good results in AntMaze tasks and both
methods share an implicit in-sample planning scheme, indicating that episodic planning is effective
in improving algorithms’ stitching ability and thus beneficial in Maze-like environments. In easier
locomotion tasks, SfBC provides highly competitive results compared with state-of-the-art algorithms.
It can be clearly shown that performance gain is large in datasets generated by a mixture of distinctive
policies (Medium-Expert) and is relatively small in datasets that are highly uniform (Medium). This
is reasonable because SfBC is motivated to better model diverse behaviors.

6.2 LEARNING FROM DIVERSE BEHAVIORS

In this section, we analyze the benefit of modeling behavior policy using highly expressive generative
models. Although SfBC outperforms baselines in many D4RL tasks. The improvement is mainly
incremental, but not decisive. We attribute this to the lack of multiple optimal solutions in existing
benchmarks. To better demonstrate the necessity of introducing an expressive generative model, we
design a simple task where a heterogeneous dataset is collected in an environment that allows two
distinctive optimal policies.

Bidirectional-Car task. As depicted in Figure 1, we consider an environment where a car is placed
in the middle of two endpoints. The car chooses an action in the range [-1,1] at each step, representing
throttle, to influence the direction and speed of the car. The speed of the car will monotonically
increase based on the absolute value of throttle. The direction of the car is determined by the sign of
the current throttle. Equal reward will be given on the arrival of either endpoint within the rated time.
It can be inferred with ease that, in any state, the optimal decision should be either 1 or -1, which is
not a unimodal distribution. The collected dataset also contains highly diverse behaviors, with an
approximately equal number of trajectories ending at both endpoints. For the comparative study, we
collect another dataset called “Single-Side” where the only difference from the original one is that
we remove all trajectories ending at the left endpoint from the dataset.
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Figure 4: Ablation studies of the value iteration number K in MuJoCo Locomotion and Antmaze
domains. K = 1 represents algorithms that use vanilla returns R(0)

n as Q-learning targets without the
implicit planning technique. All results are averaged over 4 independent random seeds.

We test our method against several baselines, with the results given in Table 1. Among all referenced
methods, SfBC is the only one that can always arrive at either endpoint within rated time in the
Bidirectional-Car environment, whereas most methods successfully solve the “Single-Side” task. To
gain some insight into why this happens, we illustrate the decisions made by an SfBC agent and other
RL agents in the 2-dimensional state space. As is shown in Figure 3, the SfBC agent selects actions
of high absolute values at nearly all states, while other unimodal actors fail to pick either one of the
optimal actions when presented with two distinctive high-rewarding options. Therefore, we conclude
that an expressive policy is necessary for performing diverse behavior learning.

6.3 ABLATION STUDIES

Diffusion vs. other generative models. Our first ablation study aims to evaluate 3 variants of SfBC
which are respectively based on diffusion models (Ho et al., 2020), Gaussian probabilistic models,
and latent-based models (VAEs, Kingma & Welling (2014)). The three variants use exactly the same
training framework with the only difference being the behavior modeling method. As is shown in
Table 4 in Appendix D, the diffusion-based policy outperforms the other two variants by a clear
margin in most experiments, especially in tasks with heterogeneous datasets (e.g., Medium-Expert),
indicating that diffusion models are fit for “high-fidelity” behavior modeling.

Implicit in-sample planning. To study the importance of implicit in-sample planning on the
performance of SfBC, we first visualize the estimated state values learned at different iterations
of Q-learning in an AntMaze environment (Figure 2). We can see that implicit planning helps
to iteratively stitch together successful subtrajectories and provides optimistic action evaluations.
Then we aim to study how the value iteration number K affects the performance of the algorithm
in various environments. As shown in Figure 4, we compare the performance of K in the range
{1, 2, 3, 4, 5} and find that implicit planning is beneficial in complex tasks like AntMaze-Medium
and AntMaze-Large. However, it is less important in MuJoCo-locomotion tasks. This finding is
consistent with a prior work (Brandfonbrener et al., 2021).

7 CONCLUSION

In this work, we address the problem of limited policy expressivity in previous weighted regression
methods by decoupling the policy model into a behavior model and an action evaluation model.
Such decoupling allows us to use a highly expressive diffusion model for high-fidelity behavior
modeling, which is further combined with a planning-based operator to reduce extrapolation error.
Our method enables learning from a heterogeneous dataset in a continuous action space while
avoiding selecting out-of-sample actions. Experimental results on the D4RL benchmark show that
our approach outperforms state-of-the-art algorithms in most tasks. With this work, we hope to draw
attention to the application of high-capacity generative models in offline RL.
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REPRODUCIBILITY

To ensure that our work is reproducible, we submit the source code as supplementary material. We
also provide the pseudo-code of our algorithm in Appendix A and implementation details of our
algorithm in Appendix B.
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A ALGORITHM OVERVIEW

Algorithm 1 Selecting from Behavior Candidates (Training)

Initialize the score-based model sθ, the action evaluation model Qϕ

Calculate vanilla discounted returns R(0)
n for every state-action pair in dataset Dµ

// Training the behavior model
for each gradient step do

Sample B data points (s,a) from Dµ, B Gaussian noises ϵ fromN (0, I) and B time t from U(0, T )
Perturb a according to at := αta+ σtϵ
Update θ ← λs∇θ

∑
[∥σtsθ(at, s, t) + ϵ∥22]

end for
// Training the action evaluation model iteratively
for iteration k = 1 to K do

Initialize training parameters ϕ of the action evaluation model Qϕ

for each gradient step do
Sample B data points

(
s,a, R(k−1)

)
from Dµ

Update ϕ← ϕ− λQ∇ϕ

∑
[∥Qϕ(s,a)−R(k−1)∥22]

end for
// Update the Q-training targets as in Algorithm 2
R(k) = Planning(Dµ, µθ, Qϕ)

end for

Algorithm 2 Implicit In-sample Planning

Input a behavior dataset Dµ (sequentially ordered), a learned behavior policy µθ, a critic model Qϕ
// Evaluate every state in dataset according to Equation 13 with M Monte Carlo samples (parallelized)
for each minibatch {sn} splitted from Dµ do

Sample M actions â1:M
n from µθ(·|sn), and calculate Q-values R̂1:M

n = Qϕ(sn, â
1:M
n )

Calculate state value Vn =
∑

m

[
exp

(
αR̂m

n

)
R̂m

n

]
/
∑

m exp
(
αR̂m

n

)
end for
// Performing implicit in-sample planning recursively
for timestep n = ∥Dµ∥ to 0 do

Rn = rn + γmax(Rn+1, Vn+1) if n is not the last episode step, else rn
end for
Output the new Q-training targets {Rn}

rewardaction

denoising
noises actions

diffusion Q-value

- +

condition similar states

(a) Dataset trajectories (b) Generation of action candidates  (c)  Action selection  (d)  Implicit in-sample planning 

Figure 5: An algorithm overview of SfBC.
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B EXPERIMENTAL DETAILS

B.1 IMPLEMENTATION DETAILS OF SFBC

Network Architecture. SfBC includes a conditional scored-based model which estimates the score
function of the behavior action distribution, and an action evaluation model which outputs the Q-
values of given state-action pairs. The architecture of the behavior model resembles U-Nets, but with
spatial convolutions changed to simple dense connections, inspired by Janner et al. (2022). For the
action evaluation model, we use a 2-layer MLP with 256 hidden units and SiLU activation functions.
The same network architecture is applied across all tasks except for AntMaze-Large, where we add
an extra layer of 512 hidden units for the action evaluation model.
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Figure 6: The network architecture of the behavior model.

Behavior training. In all experiments, we use the Adam optimizer and a batch size of 4096. The
conditional scored-based model is trained for 500 data epochs with a learning rate of 1e-4. For
the data perturbation method, we use Variance Preserving (VP) SDE as introduced in Song et al.
(2021b), where we have dx = − 1

2β(t)xdt+
√
β(t)dw, such that we have f(x, t) = − 1

2β(t)x and
g(t) =

√
β(t) in Equation 6, and also:

pt0(xt|x0) = N (xt|αtx0, σ
2
t I) = N (xt|e−

1
2

∫ t
0
β(s)dsx0, [1− e−

∫ t
0
β(s)ds]I). (15)

Following the default settings in Song et al. (2021b), we set β(t) = (βmax − βmin) t+ βmin, with
βmin being 0.1 and βmax being 20.

Action evaluation via in-sample planning. The action evaluation model is trained for 100 data
epochs with a learning rate of 1e-3 for each value iteration. We use K = 2 value iterations for all
MuJoCo tasks, K = 4 for Antmaze-umaze tasks, and K = 5 for other Antmaze tasks. In each
iteration, new Q-targets will be recalculated according to Equation 12 and Equation 13 based on
the latest policy. We use Monte Carlo methods and importance sampling to estimate V

(k−1)
n in

Equation 13:

V (k−1)
n =Ea∼π(·|sn)Qϕ(sn,a)

=Ea∼µθ(·|sn)
exp (αQϕ(sn,a))

Z(sn)
Qϕ(sn,a)

≈
∑
M

[
exp (αQϕ(sn,a))∑
M exp (αQϕ(sn,a))

Qϕ(sn,a)

]
, (16)

with the inverse temperature α set to 20 and the Monte Carlo sample number set to 16 in all tasks.
Note that at the beginning of each value iteration, we normalize Q-targets stored in the dataset and
reinitialize the training parameters of the action evaluation model. Different from most prior works
(Fujimoto et al., 2019; Kumar et al., 2020; Ma et al., 2022; Kostrikov et al., 2022), we do not use
either ensembled networks or target networks to stabilize Q-learning.

Diffusion sampling. To draw action samples from the behavior model, we use a 3rd-order specialized
diffusion ODE solver proposed by Lu et al. (2022) to solve the inverse ODE problem in Equation 6.
We use a diffusion step of D = 15 for all reported results in Table 1, which is significantly less than
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the typical 35-50 diffusion steps required if using ordinary RK45 ODE solver (Dormand & Prince,
1980). We also compare the performance and runtime of diffusion steps in the range {5, 10, 15, 25}
with the results reported in Table 2. Generally, we find that 10-25 diffusion steps perform similarly
well in MuJoco Locomotion tasks and 15-25 diffusion steps perform similarly well in Antmaze tasks.

Evaluation. Following the evaluation metric proposed by Fu et al. (2020), we run all Antmaze and
MuJoCo experiments over 4 trials (different random seeds) and other experiments over 3 trials. For
each trial, performance is averaged on another 100 test seeds for Antmaze tasks and 20 test seeds for
other tasks at regular intervals (5 data epochs). During algorithm evaluation, we select actions in a
deterministic way. Specifically, the action with the highest Q-value within M behavior candidates
will be selected for environment inference during evaluation. In MuJoCo Locomotion tasks, we
average four actions with the highest Q-values among all candidates and find this technique helps to
stabilize performance. We set the candidate number M to 32 in all experiments.

Runtime. We test the runtime of our algorithm on a RTX 2080Ti GPU. For algorithm training, the
runtime cost of training the behavior model is 10.5 hours for 600 epochs, and the runtime cost of
training the action evaluation model is about 31 minutes for each value iteration, (usually 2-5 iterations,
1M data points considered). For a concrete example, it roughly takes 155 minutes to train the action
evaluation model (K=5) and 10.5 hours to train the behavior model for the “halfcheetah-medium”
task.

As for the evaluation runtime, theoretically, SfBC requires at least D times of network inference time
compared with non-diffusion methods (D = 1), D being the diffusion steps. To accelerate algorithm
evaluation, we implement a parallel evaluation scheme similar to Clemente et al. (2017); Weng et al.
(2022) that could allow evaluating the algorithm under multiple test seeds at the same time, allowing
us to significantly reduce the evaluation runtime by utilizing the parallel computing power of GPUs
(Figure 7).

Diffusion Steps D 5 steps 10 steps 15 steps 25 steps

Performance (Locomotion) 2.3 72.9 75.6 74.4
Performance (Antmaze) 5.5 65.7 74.2 73.0

Runtime (1 episode, # envs=1) 22.3 s 38.0 s 50.0 s 93.0 s
Runtime (1 episode, # envs=20) 1.5 s 2.5 s 3.2 s 5.0 s

Table 2: Ablation studies of the diffusion steps. The runtime is reported for the ”halfcheetah-medium”
task on a RTX 2080Ti GPU. 1 episode stands for 1000 environment steps.
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Figure 7: Evaluation runtime of SfBC.
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B.2 IMPLEMENTATION DETAILS FOR ABLATION STUDIES

SfBC + VAEs/Gaussians. For the VAE-based behavior model, we use exactly the same network
architecture and training loss as Fujimoto et al. (2019) and train the behavior model for 300k iterations
at a learning rate of 3e-4. For the Gaussian-based policy model, we follow Nair et al. (2020) and
use a 4-layer MLP with 256 hidden units and ReLU activation functions. The sampled action from
the parameterized Gaussian distribution is squashed to range [−1, 1] by a Tanh activation function.
The Gaussian behavior model is trained by directly maximizing the log-likelihood of the dataset
distribution for 300k iterations at a learning rate of 3e-4. Other experiment settings are consistent
with the diffusion-based method.

SfBC - Planning. Removing the planning-based procedure from SfBC is equivalent to performing
SfBC for only one iteration, which only learns a behavior Q-function purely from vanilla returns.
Other than this, we use the same network architecture and training paradigm as SfBC.

B.3 SOURCES OF REFERENCED BASELINE NUMBERS

For IQL (Kostrikov et al., 2022), D4RL performance numbers are reported in its original pa-
per, except for Maze2d tasks, which we reference Janner et al. (2022). The performance in
the Bidirectional-Car task is based on a PyTorch reimplementation of the algorithm (https:
//github.com/gwthomas/IQL-PyTorch). We use the same hyperparameters as in the origi-
nal paper for MuJoCo Locomotion tasks.

For VEM (Ma et al., 2022) and Diffuser (Janner et al., 2022), all D4RL performance numbers
come from their respective papers. Performance numbers of VEM in the Bidirectional-Car task
are based on a slightly modified version of the algorithm’s official codebase (https://github.
com/YiqinYang/VEM). Since the performance of VEM is very sensitive to a hyperparameter τ in
their algorithm. We evaluate τ ∈ {0.1, 0.2, ..., 0.9} and report the best-performing choice.

For AWR (Peng et al., 2019), BCQ (Fujimoto et al., 2019) and CQL (Kumar et al., 2020), all
their D4RL performance numbers come from Fu et al. (2020). Their performance numbers
in the Bidirectional-Car task are based on three independent codebases: https://github.
com/Farama-Foundation/D4RL-Evaluations for AWR, https://github.com/
sfujim/BCQ for BCQ and https://github.com/young-geng/CQL for CQL. We mostly
use the default hyperparameters in their respective codebases.

For BAIL (Chen et al., 2020), all reported performance numbers come from our experiments based on
a slightly modified version of its official codebase (https://github.com/lanyavik/BAIL).
Note that BAIL proposes a technique to replace oracle returns with augmented returns in MuJoCo
Locomotion tasks, whereas we omit using this technique because it cannot be easily applied to other
offline tasks. Other than this, we use default settings in the original codebase.

For DT (Chen et al., 2021), D4RL performance numbers are reported in DT’s paper, except for
AntMaze tasks, which we reference Kostrikov et al. (2022). The performance numbers in the
Bidirectional-Car task are based on the algorithm’s official codebase (https://github.com/
kzl/decision-transformer). We use the same hyperparameters as they did for MuJoCo
Locomotion tasks.
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C THEORETICAL ANALYSIS

In this section, we provide some theoretical analysis of our planning-based operator:
T π
µ Q(s,a) := max

n≥0
{(T µ)nT πQ(s,a)}. (17)

First, we provide the following proposition to discuss the contraction property of T π
µ and the bound

of its fixed point.
Proposition 1. We have the following properties of T π

µ .

1) T π
µ owns monotonicity, i.e., for ∀Q1 ≤ Q2, we have T π

µ Q1 ≤ T π
µ Q2.

2) T π
µ is at least a γ-contraction.

3) Assume the fixed point of T π
µ is Q̃, then we have Qπ(s,a) ≤ Q̃(s,a) ≤ Q∗(s,a) holds for ∀s,a,

here Qπ, Q∗ are the fixed points of T ∗ and T π respectively.

Proof.
1) For ∀Q1 ≤ Q2,∀s,a,∀n ∈ N, we have

(T µ)nT πQ1(s,a) ≤ (T µ)nT πQ2(s,a). (by monotonicity of T π and (T µ)n) (18)

Thus we have
T π
µ Q1(s,a) = max

n≥0
{(T µ)nT πQ1(s,a)} ≤ max

n≥0
{(T µ)nT πQ2(s,a)} = T π

µ Q2(s,a). (19)

2) For ∀Q1, Q2,∀s,a, we have∣∣T π
µ Q1(s,a)− T π

µ Q2(s,a)
∣∣ = ∣∣∣∣max

n≥0
{(T µ)nT πQ1(s,a)} −max

n≥0
{(T µ)nT πQ2(s,a)}

∣∣∣∣
≤ max

n≥0
{|(T µ)nT πQ1(s,a)− (T µ)nT πQ2(s,a)|}

≤ max
n≥0

{γn+1 ∥Q1 −Q2∥∞}

= γ ∥Q1 −Q2∥∞ .

(20)

Consequently, T π
µ is at least a γ-contraction.

3) For ∀s,a, we first prove Qπ(s,a) ≤ Q̃(s,a). For ∀m ∈ N, we have
Qπ(s,a) = T πQπ(s,a) ≤ T π

µ Qπ(s,a) = T π
µ T πQπ(s,a)

≤ T π
µ T π

µ Qπ(s,a) (by monotonicity of T π
µ )

≤ ... ≤ (T π
µ )mQπ(s,a),

Thus Qπ(s,a) ≤ lim
m→∞

(T π
µ )mQπ(s,a) = Q̃(s,a).

(21)

Now we prove that Q̃(s,a) ≤ Q∗(s,a). We have
T πQ∗(s,a) = R(s,a) + γEs′Ea′∼π̂(·|s′)Q

∗(s′,a′)

≤ R(s,a) + γEs′ max
a′

Q∗(s′,a′) = Q∗(s,a).
(22)

Similarly, we have T µQ∗(s,a) ≤ Q∗(s,a).

Then for ∀n,m ∈ N,
Q∗(s,a) ≥ T µQ∗(s,a) ≥ (T µ)2Q∗(s,a) (by monotonicity of T µ)

≥ ... ≥ (T µ)nQ∗(s,a)

≥ (T µ)nT πQ∗(s,a), (by monotonicity of (T µ)n)

Thus Q∗(s,a) ≥ T π
µ Q∗(s,a)

≥ T π
µ T π

µ Q∗(s,a) (by monotonicity of T π
µ )

≥ ... ≥ (T π
µ )mQ∗(s,a),

Thus Q∗(s,a) ≥ lim
m→∞

(T π
µ )mQ∗(s,a) = Q̃(s,a).

(23)
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Moreover, similar to the analysis in Ma et al. (2022), we provide the following proposition to show
that at the beginning of the training when the current Q function estimates Q(s,a) is significantly
pessimistic, our T π

µ provides a relatively optimistic update and can contract the estimation error more
quickly.
Proposition 2. In practice, we consider T π

µ Q(s,a) := max0≤n≤N{(T µ)nT πQ(s,a)}. Then we
have:

|T π
µ Q(s,a)−Q∗(s,a)| ≤ γn∗(s,a)∥Q− Q̃n∗∥∞ + ∥Q̃n∗ −Q∗∥∞, ∀s,a, (24)

here n∗(s,a) = argmax0≤n≤N{(T µ)nT πQ(s,a)} and Q̃n∗ is the fixed point of (T µ)n
∗(s,a)T π .

Proof. We can use the triangle inequality to prove this result

|T π
µ Q(s,a)−Q∗(s,a)|

=|(T µ)n
∗(s,a)T πQ(s,a)−Q∗(s,a)|

≤|(T µ)n
∗(s,a)T πQ(s,a)− (T µ)n

∗(s,a)T πQ̃n∗(s,a)|+ |(T µ)n
∗(s,a)T πQ̃n∗(s,a)−Q∗(s,a)|

=|(T µ)n
∗(s,a)T πQ(s,a)− (T µ)n

∗(s,a)T πQ̃n∗(s,a)|+ |Q̃n∗(s,a)−Q∗(s,a)|
≤γn∗(s,a)∥Q− Q̃n∗∥∞ + ∥Q̃n∗ −Q∗∥∞.

(25)

When Q is significantly lower than Q̃n∗ , Q∗, ∥Q̃n∗ − Q∗∥∞ is often conspicuously lower than
∥Q − Q̃n∗∥∞ and n∗(s,a) is relatively large (this often happens at the beginning of the training
since the initial Q estimates are often near zero and thus pessimistic). At this time, based on this
proposition, our operator T π

µ , could contract the estimation error with a rate of around γn∗(s,a),
which could significantly reduce extrapolation iterations required.

18
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D MISSING PERFORMANCE NUMBERS

Dataset Environment SfBC (Ours) IQL VEM AWR BAIL BCQ CQL DT Diffuser

Sparse Maze2d-umaze 73.9± 6.6 47.4 - 1.0 - 12.8 5.7 - 113.9
Sparse Maze2d-medium 73.8± 2.9 34.9 - 7.6 - 8.3 5.0 - 121.5
Sparse Maze2d-large 74.4± 1.7 58.6 - 23.7 - 6.2 12.5 - 123.0

Average (Maze2d) 74.0 50.0 - 10.8 - 9.1 7.7 - 119.5

Complete FrankaKitchen 77.9± 0.6 62.5 - 0.0 - 8.11 43.8 - -
Partial FrankaKitchen 47.9± 4.1 46.3 - 15.4 - 18.9 49.8 - -
Mixed FrankaKitchen 45.4± 1.6 51.0 - 10.6 - 8.1 51.0 - -

Average (FrankaKitchen) 57.1 53.3 - 8.7 - 11.7 48.2 - -

Table 3: Additional performance numbers of SfBC in Maze2d and FrankaKitchen tasks. We report
the mean and standard deviation over three seeds for SfBC. Scores are normalized according to Fu
et al. (2020).

Dataset Environment SfBC SfBC + Gaussian SfBC + VAE SfBC - Planning

Medium-Expert HalfCheetah 92.6± 0.5 79.4± 1.4 85.2± 2.9 91.4± 0.6
Medium-Expert Hopper 108.6± 2.1 107.8± 7.8 92.0± 7.3 109.0± 1.0
Medium-Expert Walker 109.8± 0.2 71.5± 1.5 109.3± 2.5 109.4± 0.9

Medium HalfCheetah 45.9± 2.2 42.0± 0.2 43.4± 0.1 42.4± 0.2
Medium Hopper 57.1± 4.1 58.1± 1.5 65.6± 3.3 60.1± 4.2
Medium Walker 77.9± 2.5 82.4± 1.1 79.1± 2.5 80.3± 0.9

Medium-Replay HalfCheetah 37.1± 1.7 36.2± 1.2 42.4± 0.5 37.5± 0.6
Medium-Replay Hopper 86.2± 9.1 67.8± 6.5 58.6± 4.8 58.6± 1.3
Medium-Replay Walker 65.1± 5.6 65.8± 4.4 62.2± 4.3 62.6± 2.2

Average 75.6 67.9 70.9 72.3

Default AntMaze-umaze 92.0± 2.1 93.3± 2.4 91.6± 2.4 96.7± 4.7
Diverse AntMaze-umaze 85.3± 3.6 88.3± 2.4 78.3± 4.7 80.0± 10.8

Play AntMaze-medium 81.3± 2.6 80.0± 4.1 68.3± 2.4 35.0± 4.1
Diverse AntMaze-medium 82.0± 3.1 85.0± 7.1 65.0± 7.1 33.3± 6.2

Play AntMaze-large 59.3± 14.3 43.3± 7.1 35.0± 8.2 8.3± 8.5
Diverse AntMaze-large 45.5± 6.6 26.7± 8.5 20.0± 0.0 6.7± 4.7

Average 74.2 69.4 59.7 43.3

Table 4: Ablations of generative modeling methods and the implicit planning method. We report
the mean and standard deviation over four seeds for the main experiment and three seeds for other
experiments. Scores are normalized according to Fu et al. (2020).

E CHOICES OF REFERENCED BASELINES

Referenced baselines methods of SfBC can be roughly divided into four categories: 1. Policy
regression methods that require dynamic programming such as IQL (Kostrikov et al., 2022) and
VEM (Ma et al., 2022). 2. Policy regression methods that use vanilla returns as regression weights
such as AWR (Peng et al., 2019) and BAIL (Chen et al., 2020). 3. Adaptations of existing off-policy
algorithms with policy regularization such as BCQ (Fujimoto et al., 2019) and CQL (Kumar et al.,
2020). 4. Sequence modeling methods such as DT (Chen et al., 2021) and Diffuser (Janner et al.,
2022). Here we further highlight several methods which bear some resemblance to our approach:
Both IQL and SfBC aim to entirely avoid selecting out-of-sample actions, except that IQL uses
weighted regression while SfBC does not; VEM also uses an implicit in-sample planning scheme
similar to ours; BCQ also uses a generative model (VAE) for behavior modeling, but only to assist
the learning of another policy model; Diffuser, like SfBC, is also a diffusion-based algorithm, but
uses approximated guided sampling at trajectory level instead of importance sampling at step level.
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F TRAINING CURVES
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Figure 8: Training curves of SfBC for MuJoCo and Antmaze tasks with different diffusion steps. We
report the mean and standard deviation over four seeds for all experiments. Note that the parameters
of the critic model are initialized at the beginning of each value iteration (every 100 data epochs).
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G CONNECTIONS TO PRIOR WORKS

In this section, we discuss in more detail the connections between SfBC and two prior works, namely
VEM (Ma et al., 2022) and EMAQ (Ghasemipour et al., 2021).

G.1 VEM

Our in-sample planning-based Q-operator T π
µ bears some similarity to the multi-step estimation

operator Tvem proposed by Ma et al. (2022). A simplified version of Tvem is defined as:
TvemV (s) := max

n≥0
{(T µ)nT τ

µ V (s)}, (26)

which is is built on T τ
µ , an expectile-based V-learning operator proposed by VEM:

T τ
µ V (s) := Ea∼µ(·|s)

{
τ [r(s,a) + γV (s′)] + (1− τ)V (s) if r(s,a) + γV (s′) ≥ V (s)
(1− τ)[r(s,a) + γV (s′)] + τV (s) if r(s,a) + γV (s′) < V (s)

}
(27)

here τ ∈ [0, 1) is a hyperparameter that helps interpolate the Bellman expectation operator T µ

(τ = 0.5) and the Bellman optimality operator T ∗ (τ → 1.0). V (·) is an arbitrary scalar function.
T τ
µ has some nice properties such as monotonicity (T τ2

µ V (s) > T τ1
µ V (s) always holds for any V

given τ2 > τ1). With these properties, Ma et al. (2022) derives that Tvem and T τ
µ share the same fixed

point.

However, VEM cannot be applied to stochastic environments because Equation 27 requires comparing
V (s) and r(s,a) + γV (s′). While V (s) is a scalar given s, r(s,a) + γV (s′) is a random variable
since s′ ∼ P (·|s,a). To fix this problem, VEM simply assumes that the environment is deterministic,
namely r(s,a) and P (·|s,a) are all Dirac.

Compared with VEM, our in-sample planning-based Q-operator T π
µ is not dependent on the expectile-

based V-operator T τ
µ , but uses an hypothetically improved policy π > µ for optimistic planning:

T π
µ Q(s,a) := max

n≥0
{(T µ)nT πQ(s,a)}, (28)

which does not require the environment to be deterministic. A disadvantage of using T π to replace
T τ
µ is that we no longer have the monotonicity property (e.g., T πQ(s,a) > T µQ(s,a) always holds

for any Q). However, we can still derive that the fixed point of T π
µ is bounded between Qπ and Q∗

(See Appendix C for detailed results and proofs).

G.2 EMAQ

The high-level idea of the selecting-from-behavior-candidates approach bears some resemblance to
the Expected-Max Q-Learning (EMaQ) algorithm proposed by (Ghasemipour et al., 2021). EMaQ is
built upon BCQ (Fujimoto et al., 2019), which computes the training target in Q-Learning by:

T ∗
BCQQ(s,a) := r(s,a) + γ max

a′∼µθ(·|s′)
{Q(s′,a′ + ξϕ(s

′,a′))}, (29)

where ξϕ(s,a) is an explicitly constrained perturbation network that helps relax the constraint of
behavior policy µ. The core motivation for EMaQ is to remove the perturbation model ξϕ(s,a), by
taking max over N Q-function evaluations:

TEMaQQ(s,a) := r(s,a) + γE{a′
i}N∼µθ(·|s′)[ max

a′
i∈{a′

i}N
Q(s′,a′

i)]. (30)

For EMaQ, N serves as a hyperparameter to interpolate T µ and T ∗. When N = 1, TEMaQ becomes
T µ. When N → ∞, TEMaQ approaches T ∗ because {a′

i}N nearly covers the whole action space.

In contrast, for SfBC, the hyperparameter N is the number of Monte Carlo samples used to estimate
the training Q-targets:

T πQ(s,a) =r(s, a) + γEa′∼π(·|s′)Q(s′,a′)

=r(s, a) + γEa′∼µ(·|s′)
exp (αQ(s′,a′))

Z(s′)
Q(s′,a′)

≈r(s, a) + γ
∑
N

[
exp (αQ(s′,a′))∑
N exp (αQ(s′,a′))

Q(s′,a′)

]
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