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Efficient Computation for Diagonal of Forest Matrix via
Variance-Reduced Forest Sampling
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ABSTRACT

The forestmatrix, particularly its diagonal elements, has far-reaching
implications in network science and machine learning. The state-
of-the-art algorithms for the diagonal of forest matrix computation
are based on the fast Laplacian solver. However, these algorithms
encounter limitations when applied to digraphs due to the incapac-
ity of the Laplacian solver. To overcome the issue, in this paper, we
propose three novel sampling-based algorithms: SCF, SCFV, and
SCFV+. Our first algorithm SCF leverages a probability interpreta-
tion of the diagonal of the forest matrix and utilizes an expansion
of Wilson’s algorithm to sample spanning converging forests. To
reduce the variance in the forest sampling, we develop two novel
variance-reduced techniques. The first technique, leading to the
proposal of the SCFV algorithm, is inspired by opinion dynamics in
graphs and applies matrix-vector iteration to the spanning forest
sampling. While SCFV achieves reduced variance compared to SCF,
the cross-product term in its variance expression can be complex
and potentially large in certain graphs. Therefore, we develop an-
other technique, leading to a new iteration equation and the SCFV+
algorithm. SCFV+ achieves further reduced variance without the
cross-product term in the variance of SCFV. We prove that SCFV+
can achieve a relative error guarantee with high probability and
maintain a linear time complexity relative to the nodes of graphs,
presenting a superior theoretical result compared to state-of-the-art
algorithms. Finally, we conduct extensive experiments on various
real-world networks, showing that our algorithms achieve better
estimation accuracy and are more time-efficient than the state-of-
the-art algorithms. Moreover, our algorithms are scalable to massive
graphs with more than twenty million nodes in both undirected
and directed graphs.

KEYWORDS

Forest matrix, Wilson’s algorithm, spanning converging forest, vari-
ance reduction

1 INTRODUCTION

As a typical representation of a graph, the Laplacian matrix L en-
capsulates much useful structural and dynamical information of
the graph [34]. In addition to L itself, the forest matrix, denoted
as Ω = (I + L)−1, is also a powerful tool in network science, with
close ties to spanning rooted forests in graphs [11, 12]. Recent stud-
ies have spotlighted various applications of the forest matrix and
its variants, such as in Markov processes [3, 4], opinion dynam-
ics [19, 44, 48], and graph signal processing [36, 37]. Particularly,
the diagonal entries of Ω appear frequently in diverse applications.
First, it can serve as the forest closeness centrality [22, 45] of a
network. Besides, the diagonal of the forest matrix has been closely
associated with determinantal point processes in machine learn-
ing [25], and has found relevance through electrical interpretations
in multi-agent and network-based problems [40].

In order to achieve better effects of the applications for the diago-
nal entries ofΩ for a graph with 𝑛 nodes, the first step is to compute
or evaluate the diagonal of Ω. A straightforward computation of Ω
involves inverting matrix I + L, which costs 𝑂 (𝑛3) operations and
𝑂 (𝑛2) memories and thus is prohibitive for relatively large graphs.
In previous work, two Laplacian solver [15] based algorithms, JLT
and UST, were proposed to compute the diagonal of Ω [22, 45]. Al-
though these methods outperform the standard approach, they are
constrained by the Laplacian solver’s inability to handle directed
graphs. Moreover, while UST exhibits superior performance com-
pared to JLT in experiments [45], it provides only an absolute error
guarantee theoretical analysis, whereas JLT offers a relative error
guarantee [22]. Consequently, a theoretically guaranteed estima-
tion algorithm for approximating diagonal of Ω for both undirected
and directed graphs is imperative.

In this paper, we delve deep into the problem of efficiently com-
puting the diagonal of the forest matrix in a digraph G(𝑉 , 𝐸) with
𝑛 nodes, in order to overcome the challenges and limitations of
existing algorithms. The main contributions of this work are sum-
marized as follows:

• We introduce two forest interpretations of the diagonal of the
forest matrix, from the perspectives of average tree size and
rooted probability, respectively. From the probability interpreta-
tion, we develop SCF, an algorithm that leverages an expansion
of Wilson’s algorithm to approximate the diagonal of the forest
matrix, offering a time complexity of 𝑂 (𝑙𝑛), where 𝑙 represents
the sampling number.

• To reduce the variance in forest sampling, we develop two novel
variance-reduced techniques and propose SCFV and SCFV+. We
prove that the variance of the estimators in the three algorithms
diminishes progressively. Notably, SCFV+ not only achieves a
relative error guarantee with high probability but also maintains
a linear time complexity relative to the nodes of graphs, thereby
presenting a superior theoretical result compared to existing
algorithms.

• Through extensive experiments on various real-world networks,
both undirected and directed, our algorithms achieve better esti-
mation accuracy and enhance time efficiency compared to the
state-of-the-art algorithms. Moreover, our algorithms are scalable
to massive graphs with over thirty million nodes.

2 RELATEDWORK

Identifying crucial nodes in a graph is a fundamental issue with a
rich history in machine learning and graph analysis [20, 35, 42, 43].
Various metrics and indices have been developed to quantify the
relative importance or centrality of nodes within a network [24],
including but not limited to, betweenness centrality [17], close-
ness centrality [5, 6], eccentricity [9]. In addition to the classic
centrality measures, forest closeness centrality has been proposed
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and explored for its unique advantages [22]. One of the notable
advantages of forest closeness centrality is its applicability to dis-
connected networks, which is particularly relevant for various
real-world networks such as Mobile Ad hoc Networks [16] and
protein-protein interaction networks [21]. Furthermore, the forest
centrality has a better-discriminating power than alternate metrics
such as betweenness, harmonic centrality, eigenvector centrality,
and PageRank[22].

The calculation of forest closeness centrality is inherently tied
to the diagonal elements of the forest matrix Ω. To speed up the
computation, a nearly linear time algorithm JLT was proposed
in [22], which combines the Johnson-Lindenstrauss lemma [1, 23]
with the fast Laplacian solver [15], necessitating a time complexity
of 𝑂 (𝑚𝜖−2 log2.5 𝑛 log 1

𝜖 polyloglog(𝑛)) to achieve a relative error
bound. Subsequently, the UST algorithm was proposed in [45],
combining a single instance of the Laplacian solver and uniform
spanning tree sampling. Compared to JLT, UST achieves computa-
tional acceleration in experiments and needs a total time complexity
of 𝑂 (𝑚𝜖−2 log3/2 𝑛) to guarantee an absolute error of 𝜖 with high
probability. However, both algorithms utilize the fast Laplacian
solver, which is not applicable to digraphs.

Wilson’s algorithm plays a pivotal role in our three algorithms
SCF, SCFV, and SCFV+. Initially proposed to sample a spanning
tree in graphs [46, 47], Wilson’s algorithm and its variants have
found applications across various domains, such as computing the
PageRank vector [30, 32], solving linear systems in graph signal
processing [36, 37], addressing optimization problems in opinion
dynamics [44], and estimating effective resistance [31, 45]. While
several variance reduction techniques have been proposed and
utilized in various sampling-based problems [30, 38, 39], these tech-
niques are either unsuitable for our diagonal estimation problem
or induce a prohibitively high complexity. Thus, developing novel
estimators with reduced variance for the diagonal of the forest ma-
trix, applicable to both undirected graphs and digraphs, becomes
the primary research subject of this paper.

3 PRELIMINARIES

3.1 Graph and Laplacian Matrix

Consider an unweighted simple directed graph (digraph)G = (𝑉 , 𝐸)
with 𝑛 = |𝑉 | nodes (vertices) and 𝑚 = |𝐸 | directed edges (arcs),
where 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} represents the node set, and 𝐸 signifies
the set of directed edges such that 𝐸 = {(𝑣𝑖 , 𝑣 𝑗 ) | 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 }. An
arc (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸 indicates a directed edge pointing from node 𝑣𝑖
to node 𝑣 𝑗 . In what follows, 𝑣𝑖 and 𝑖 are used interchangeably to
represent node 𝑣𝑖 if incurring no confusion. Let 𝑁 (𝑖) be the node
set accessible from node 𝑖 . In other words, 𝑁 (𝑖) = { 𝑗 : (𝑖, 𝑗) ∈ 𝐸}.
A digraph is called weakly connected if it is connected when one
replaces any directed edge (𝑖, 𝑗) with two directed edges (𝑖, 𝑗) and
( 𝑗, 𝑖) in opposite directions.

The structure information of digraph G = (𝑉 , 𝐸) is characterized
by its adjacency matrix A = (𝑎𝑖 𝑗 )𝑛×𝑛 , where 𝑎𝑖 𝑗 = 1 if (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸
and 𝑎𝑖 𝑗 = 0 otherwise. For any node 𝑖 in G, its in-degree 𝑑+

𝑖
and

out-degree 𝑑−
𝑖

are given by 𝑑+
𝑖

=
∑𝑛

𝑗=1 𝑎 𝑗𝑖 and 𝑑−
𝑖

=
∑𝑛

𝑗=1 𝑎𝑖 𝑗 ,
respectively. In the sequel, we use 𝑑𝑖 to represent the out-degree
𝑑−
𝑖
. The diagonal out-degree matrix of digraph G is defined as

D = diag(𝑑1, 𝑑2, . . . , 𝑑𝑛), and the Laplacian matrix of digraph G is

defined to be L = D−A. Let I be the 𝑛-dimensional identity matrix,
and e𝑖 be the 𝑖-th standard basis column vector, with 𝑖-th element
being 1 and other elements being 0.

3.2 Spanning Converging Forests and Forest

Matrix

For a digraphG = (𝑉 , 𝐸), a spanning subgraph ofG retains all nodes
from 𝑉 but may only include a subset of edges from 𝐸. A rooted
converging tree is a weakly connected digraph, where one node,
called the root node, has an out-degree of 0, and all other nodes have
an out-degree of 1. An isolated node is considered as a converging
tree with the root being itself. A spanning converging forest of
digraph G that includes all nodes and whose weakly connected
components are rooted converging trees. Such a forest aligns with
the concept of an in-forest as described in [2, 10].

The forest matrix [12, 13] is defined asΩ = (I + L)−1 = (𝜔𝑖 𝑗 )𝑛×𝑛 .
In the context of digraphs, the forest matrix Ω is row stochastic,
with all its components in the interval [0, 1]. Moreover, for each row,
the diagonal elements surpass the other elements, that is 0 ≤ 𝜔 𝑗𝑖 <

𝜔𝑖𝑖 ≤ 1 for any pair of nodes 𝑖 and 𝑗 , and the diagonal element 𝜔𝑖𝑖

of matrix Ω satisfies 1
1+𝑑𝑖 ≤ 𝜔𝑖𝑖 ≤ 2

2+𝑑𝑖 [44]. Subsequently, we use
𝝎 to denote the column vector of all diagonal elements of the forest
matrix, that is 𝝎 = (𝜔11, · · · , 𝜔𝑛𝑛)⊤.

4 FAST FOREST SAMPLING ALGORITHM

In this section, we introduce two interpretations of the forest ma-
trix diagonal. Utilizing the probability interpretation, along with
an extension of Wilson’s algorithm, we propose a fast sampling
algorithm to calculate the diagonal elements vector 𝝎 of the forest
matrix.

4.1 Novel Forest Interpretation for Diagonal of

Forest Matrix

In this subsection, we introduce a novel interpretation for the di-
agonal of forest matrix Ω. Before proceeding, we introduce some
essential notations.

For an unweighted digraph G = (𝑉 , 𝐸), let F denote the set of
all spanning converging forests. For a given spanning converging
forest 𝜙 ∈ F , define the root set R(𝜙) of 𝜙 as the collection of
roots from all converging trees that constitute 𝜙 , that is, R(𝜙) =
{𝑖 : (𝑖, 𝑗) ∉ 𝜙,∀𝑗 ∈ 𝑉𝜙 }. Since each node 𝑖 in 𝜙 is part of a specific
converging tree, we define a function 𝑟𝜙 (𝑖) : 𝑉 → R(𝜙) mapping
node 𝑖 to the root of its associated converging tree. Thus, if 𝑟𝜙 (𝑖) = 𝑗 ,
it implies that 𝑗 is in R(𝜙), and both nodes 𝑖 and 𝑗 are part of
the same converging tree in 𝜙 . Define F𝑖 𝑗 as the set of spanning
converging forests in which nodes 𝑖 and 𝑗 are within the same
converging tree, rooted at node 𝑗 . Formally, F𝑖 𝑗 = {𝜙 : 𝑟𝜙 (𝑖) =
𝑗, 𝜙 ∈ F }. It follows that F𝑖𝑖 = {𝜙 : 𝑖 ∈ R(𝜙), 𝜙 ∈ F }. For example,
the left side of Figure 1 is a toy digraph consisting of 5 nodes
and 8 edges, while the right side illustrates one of its spanning
converging forests with roots marked in red. Let 𝜙 represent the
spanning converging forest shown in Figure 1. With the above
notations, we have R(𝜙) = {3, 5}, and 𝑟𝜙 (1) = 3.

For a node 𝑖 ∈ 𝑉 and a spanning converging forest 𝜙 ∈ F𝑖𝑖 , let
𝑁 (𝜙, 𝑖) be a set defined by 𝑁 (𝜙, 𝑖) = { 𝑗 : 𝑟𝜙 ( 𝑗) = 𝑖}. By definition,
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Figure 1: A toy digraph and one of its spanning converging

forest 𝜙 .

for any 𝜙 ∈ F𝑖𝑖 , |𝑁 (𝜙, 𝑖) | is equal to the number of nodes in the con-
verging tree in 𝜙 , whose root is node 𝑖 . For two nodes 𝑖 and 𝑗 and a
spanning converging forest𝜙 , define I{𝑟𝜙 (𝑖 )=𝑗 } as an indicator func-
tion, which is 1 if the input statement is true and 0 otherwise. For
example, if 𝑟𝜙 (𝑖) = 𝑗 , I{𝑟𝜙 (𝑖 )=𝑗 } = 1, and I{𝑟𝜙 (𝑖 )=𝑗 } = 0 otherwise.

With the previously defined notations, we present an interpre-
tation of the diagonal of the forest matrix Ω in undirected graphs.
The following theorem establishes the relationship between the
reciprocal of 𝜔𝑖𝑖 and the average number of nodes rooted at node 𝑖 .

Theorem 4.1. For an undirected graph 𝐺 = (𝑉 , 𝐸), the reciprocal
of the 𝑖−𝑡ℎ diagonal elements of forest matrixΩ is equal to the average
size of the tree containing node 𝑖 across all converging spanning forest
where 𝑖 serves as one of the root nodes. Formally, this can be expressed
as

1
𝜔𝑖𝑖

=

∑
𝜙∈F𝑖𝑖 𝑁 (𝜙, 𝑖)
|F𝑖𝑖 |

.

In [22], the 𝑖-th diagonal element 𝜔𝑖𝑖 of the forest matrix Ω
is interpreted as the forest distance from node 𝑖 to other nodes,
with a smaller sum of distances indicating a more pivotal node. In
Theorem 4.1, we introduce a novel interpretation for𝜔𝑖𝑖 , suggesting
that if the average tree size rooted at 𝑖 is larger, then 1

𝜔𝑖𝑖
will be

larger, 𝜔𝑖𝑖 will be smaller, and consequently, node 𝑖 will be more
significant. This aligns with the analysis in [22]. However, both
the distance interpretation and the average tree size interpretation
are valid only for undirected graphs, as their derivations utilize the
symmetry of the forest matrix, a property exclusive to undirected
graphs. Subsequently, we propose another interpretation from a
probabilistic perspective, which is applicable to both undirected
graphs and digraphs and inspires us for the design of our sampling
algorithms.

4.2 Probability Interpretation and Expansion of

Wilson’s Algorithm

The entries of the forest matrix are closely related to the spanning
converging forest in graphs. Using the approach in [8, 11, 12], the
entry𝜔𝑖 𝑗 of the forest matrixΩ can be expressed as𝜔𝑖 𝑗 = |F𝑖 𝑗 |/|F |.
By setting 𝑖 = 𝑗 , for a node 𝑖 ∈ 𝑉 , the equation 𝜔𝑖𝑖 = |F𝑖𝑖 |/|F |
holds true. This suggests that a probabilistic interpretation of the
diagonal of the forest matrix can be provided, representing the
probability of node 𝑖 being included in the root set R(𝜙) when a
spanning converging forest 𝜙 ∈ F is sampled uniformly. Then for
a spanning converging forest 𝜙 ∈ F , we can define an estimator

𝜔𝑖𝑖 (𝜙) of 𝜔𝑖𝑖 as 𝜔𝑖𝑖 (𝜙) = I{𝑖∈R(𝜙 ) } . The estimator 𝜔𝑖𝑖 is unbiased
since

E{𝜔𝑖𝑖 (𝜙)} = P{𝑖 ∈ R(𝜙)} =
|F𝑖𝑖 |
|F | = 𝜔𝑖𝑖 .

Therefore, if we can uniformly generate a spanning converging
forest in G, and record the probability of 𝑖 serving as a root node,
we can estimate𝜔𝑖𝑖 . In the following, we give a brief introduction of
an expansion of Wilson’s Algorithm in order to uniformly sample
spanning converging forest 𝜙 ∈ F .

Wilson proposed an algorithm based on a loop-erased random
walk to get a spanning tree rooted at a given node [46]. The loop-
erasure technique, pivotal to this algorithm, is a process derived
from the random walk by performing an erasure operation on its
loops in chronological order [27, 28]. For a digraph G = (𝑉 , 𝐸),
we can also apply an expansion of Wilson’s Algorithm to get a
spanning converging forest 𝜙 ∈ F , by using the method similar
to that in [4, 37, 44], which includes the following steps. Firstly,
construct an augmented digraph G′ by adding one new node 𝑥 .
Then for each node 𝑖 in the original graph, add new edge (𝑖, 𝑥) to
the augmented graph G′. Subsequently, use Wilson’s algorithm
to generate a rooted spanning tree in the augmented graph G′,
designating 𝑥 as the root node. Finally, delete node 𝑥 and all edges
connected to it in the rooted spanning tree, and define the root setR
as the nodes with an out-degree of 0, thereby obtaining a spanning
converging forest in G. For example, in Figure 2, the left side is the
augmented toy graph, with one new node 𝑥 and some new edges
added. The middle of Figure 2 illustrates a rooted spanning tree
in the augmented graph, rooted at 𝑥 . The right side is a spanning
converging forest in the original toy graph, obtained by deleting
node 𝑥 and its connected edges.

v1

v2

v3

v4

v5

x v1

v2

v3

v4

v5

x v1

v2

v3

v4

v5

1

Figure 2: A spanning converging forest generated using the

expansion of Wilson’s algorithm for the toy graph.

Since Wilson’s algorithm returns a uniform rooted spanning
tree [46], the spanning converging forest obtained using the above
steps is also uniformly selected from F .

4.3 Fast Sampling Algorithm

In this subsection, we propose a fast sampling algorithm to esti-
mate the diagonal of the forest matrix based on the expansion of
Wilson’s algorithm mentioned earlier. Additionally, we provide a
theoretical analysis concerning its time complexity and relative
error guarantee.

As shown above, we have defined an unbiased estimator 𝜔𝑖𝑖 (𝜙),
and introduced how to employ the expansion of Wilson’s algorithm
to uniformly generate a spanning converging forest𝜙 ∈ G. Thenwe
can generate 𝑙 spanning forest 𝜙1, · · · , 𝜙𝑙 , and use the average value
1
𝑙

∑𝑙
𝑗=1 𝜔𝑖𝑖 (𝜙 𝑗 ) to approximate 𝜔𝑖𝑖 . We detailed this in Algorithm 1.
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Algorithm 1: SCF(G, 𝑙)
Input :G:a digraph

𝑙 :number of generated spanning converging forest
Output :𝝎 : a vector approximating the diagonal elements

of the forest matrix
1 Initialize : 𝝎[𝑖]← 0, 𝑖 = 1, 2, . . . , 𝑛
2 for 𝑡 = 1 to 𝑙 do
3 𝜙𝑡 ← a spanning converging forest generated from G
4 for 𝑖 = 1 to 𝑛 do

5 𝑗 ← 𝑟𝜙𝑡
(𝑖)

6 if 𝑖 = 𝑗 then

7 𝝎[𝑖]← 𝝎[𝑖] + 1
𝑙

8 return 𝝎

We now analyze the time complexity of Algorithm 1 in the
following lemma.

Lemma 4.2. For any unweighted digraph G = (𝑉 , 𝐸), the expected
time complexity of Algorithm 1 is 𝑂 (𝑙𝑛).

Lemma 4.2 shows that the time complexity of algorithm 1 is
closely related to the sampling number 𝑙 . The estimation of 𝑙 needs
the Chernoff bound [14] and is given in Theorem 4.3.

Theorem 4.3. For any node 𝑖 with 𝜔𝑖𝑖 > 𝜎 , and any parameters

𝜖, 𝜎, 𝛿 ∈ (0, 1), if 𝑙 is chosen obeying 𝑙 =
⌈
6+2𝜖
3𝜎𝜖2 ln

2
𝛿

⌉
, then the approx-

imation 𝝎 [𝑖] of 𝜔𝑖𝑖 returned by Algorithm 1 satisfies the following
relation with the probability of at least 1 − 𝛿 :

(1 − 𝜖)𝜔𝑖𝑖 ≤ 𝝎 [𝑖] ≤ (1 + 𝜖)𝜔𝑖𝑖 . (1)

From Theorem 4.3, it is evident that for a directed graph 𝐺 =

(𝑉 , 𝐸), if one desires an 𝜖 relative error guarantee using Algorithm 1
with a probability of at least 1 − 1/𝑛, then the complexity of the
algorithm is 𝑂 ( 𝑛log𝑛

𝜎𝜖2
). According to Theorem 4.3, this guarantee

is applicable only to those nodes where 𝜔𝑖𝑖 > 𝜎 . However, the
situation becomes more complex for graphs containing nodes with
high degrees. As shown in [44], 𝜔𝑖𝑖 is upper-bounded by 2

2+𝑑𝑖 . Con-
sequently, for nodes with significantly large degrees, the number
of samples required by Algorithm 1 to achieve the desired relative
error guarantee can become prohibitively large.

5 A NEW ESTIMATORWITH REDUCED

VARIANCE

In this section, we introduce a novel estimator for 𝜔𝑖𝑖 , designed
to overcome the challenge encountered in Algorithm 1, where the
number of samplings may become excessively large.

5.1 Inspiration from FJ Model on Digraphs

The inspiration for the new estimator is drawn from the widely
recognized Friedkin-Johnsen (FJ) model [18], a prevalent model for
opinion evolution and formation. For the FJ opinion model on a
digraph G = (𝑉 , 𝐸), each node/agent 𝑖 ∈ 𝑉 is associated with two
opinions: one is the internal opinion 𝑠𝑖 , the other is the expressed
opinion 𝑧𝑖 (𝑡) at time 𝑡 . The internal opinion 𝑠𝑖 , which lies within
the closed interval [0, 1], represents node 𝑖’s inherent stance on a

specific topic. During the process of opinion evolution, the internal
opinion 𝑠𝑖 remains constant, while the expressed opinion 𝑧𝑖 (𝑡)
evolves at time 𝑡 + 1 as follows:

𝑧𝑖 (𝑡 + 1) =
𝑠𝑖 +

∑
𝑗∈𝑁 (𝑖 ) 𝑧 𝑗 (𝑡)
1 + 𝑑𝑖

. (2)

Let s = (𝑠1, 𝑠2, · · · , 𝑠𝑛)⊤ denote the vector of internal opinions,
and let z(𝑡) = (𝑧1 (𝑡), 𝑧2 (𝑡), · · · , 𝑧𝑛 (𝑡))⊤ denote the vector of ex-
pressed opinions at time 𝑡 . The following lemma reveals the con-
vergence result of the iteration.

Lemma 5.1. [7] Regardless of the initial value of z(0), if z(𝑡 + 1)
evolves according to the equation in (2), where 𝑡 = 1, 2, · · · , then as
𝑡 approaches infinity, z(𝑡) converges to an equilibrium vector z =

(𝑧1, 𝑧2, · · · , 𝑧𝑛)⊤ satisfying z = Ωs.

Lemma 5.1 elucidates the correlation between the equilibrium
expressed opinion z = (𝑧1, 𝑧2, · · · , 𝑧𝑛)⊤ and the initial opinion s,
with the forest matrix Ω playing a pivotal role in this relationship.
Consequently, Lemma 5.1 offers a novel approach to determine the
diagonal elements of the forest matrix. Let 𝝆𝑖 = Ωe𝑖 represent the
𝑖-th column of Ω. Then the 𝑖-th diagonal element of Ω is exactly
the 𝑖-th element 𝜌𝑖

𝑖
of vector 𝝆𝑖 . To obtain the diagonal element

𝜔𝑖𝑖 , we can initially set the opinion vector s = e𝑖 and select an
appropriate vector 𝝆𝑖 (0). Then repeat the iteration equation in (2)
𝑡 times to yield 𝝆𝑖 (𝑡). According to Lemma 5.1, the 𝑖-th component
𝜌𝑖
𝑖
(𝑡) of 𝝆𝑖 (𝑡) serves as an estimator for 𝜔𝑖𝑖 , and as 𝑡 increases, the

discrepancy between 𝜌𝑖
𝑖
(𝑡) and 𝜔𝑖𝑖 diminishes.

However, employing the iteration procedure to compute all di-
agonal elements of the forest matrix presents several challenges.
For a fixed node 𝑖 , executing the iteration equation 𝑡 times needs
a time complexity of 𝑂 (𝑚𝑡). Given that all 𝑛 diagonal elements
require computation, the naive iteration approach demands a time
complexity of 𝑂 (𝑚𝑛𝑡), which is computationally exhaustive.

5.2 A Novel Unbiased Estimator

To address this challenge, it is pertinent to note that for a specific
node 𝑖 , the required number of iterations 𝑡 to achieve an error
bound between 𝝆𝑖 and 𝝆𝑖 (𝑡) varies significantly with the initial
vector 𝝆𝑖 (0). Specifically, if 𝝆𝑖 (0) precisely matches the equilibrium
vector 𝝆𝑖 = Ωe𝑖 , the iterative equation will maintain the value of
𝝆𝑖 unchanged for any 𝑡 = 1, · · · , as 𝝆𝑖 is the system’s equilibrium
vector. In this scenario, the required iteration number 𝑡 is zero.
However, the exact value of 𝝆𝑖 is typically unknown. Adopting a
similar idea, we can initialize 𝝆𝑖 (0) as an easily obtainable estimator
of 𝝆𝑖 , which brings 𝝆𝑖 and 𝝆𝑖 (0) closer initially, thereby reducing
the number of iterations 𝑡 needed.

Wilson’s algorithm plays an important role again. For a span-
ning converging forest 𝜙 ∈ F , define a random variable 𝜔 𝑗𝑖 as
𝜔 𝑗𝑖 (𝜙) ≜ I{𝑟𝜙 ( 𝑗 )=𝑖 } . The estimator 𝜔 𝑗𝑖 is an unbiased estima-
tor of 𝜔 𝑗𝑖 if we randomly select 𝜙 since E{𝜔 𝑗𝑖 (𝜙)} = P{𝑟𝜙 ( 𝑗) =
𝑖} = |F𝑗𝑖 |/|F | = 𝜔𝑖 𝑗 . Then we can generate 𝑙 spanning converg-
ing forests 𝜙1, · · · , 𝜙𝑙 , and set the initial iteration vector 𝝆𝑖 (0) =
(𝜌𝑖1 (0), · · · , 𝜌

𝑖
𝑛 (0)), where 𝜌𝑖

𝑗
(0) = 1

𝑙

∑𝑙
𝑘=1 𝜔 𝑗𝑖 (𝜙𝑘 ). Then, we re-

peat the iteration 𝑡 times and get 𝝆𝑖 (𝑡), which serves as an estimator
for 𝝆𝑖 .

Recall that our objective is to reduce the iteration times, focusing
on the 𝑖-th component of 𝝆𝑖 . A bold and natural idea emerges:

4
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What if we only perform one iteration? This case offers a unique
perspective that might be the key to our challenge. In this scenario,
the estimator 𝝆𝑖 (𝑡) can be elegantly expressed as: 𝝆𝑖 (1) = (I +
D)−1e𝑖 + (I + D)−1A𝝆𝑖 (0). Moreover, since no further iterations
are needed, we only need to focus on the 𝑖-th component of 𝝆𝑖 (1),
and do not need to calculate the other elements. That is, we only
need to do calculate that

𝜌𝑖𝑖 (1) =
1

1 + 𝑑𝑖
(1+

∑︁
𝑗∈𝑁 (𝑖 )

𝜌𝑖𝑗 (0)) =
1

1 + 𝑑𝑖
(
1+1

𝑙

∑︁
𝑗∈𝑁 (𝑖 )

𝑙∑︁
𝑘=1

𝜔 𝑗𝑖 (𝜙𝑘 )
)
.

From the expression of 𝜌𝑖
𝑖
(1), we can define a new estimator as

𝜔𝑖𝑖 (𝜙) ≜
1

1 + 𝑑𝑖
(
1 +

∑︁
𝑗∈𝑁 (𝑖 )

𝜔 𝑗𝑖 (𝜙)
)
.

Then we derive that 𝜌𝑖
𝑖
(1) = 1

𝑙

∑𝑙
𝑘=1 𝜔𝑖𝑖 (𝜙𝑘 ). That is, we can di-

rectly use Wilson’s algorithm to sample 𝑙 spanning converging
forests, and then obtain the value of 𝜔𝑖𝑖 (𝜙𝑘 ). The average of 𝑙
values is equal to the 𝑖-th component of 𝝆𝑖 (1). We detail this in Al-
gorithm 2, demonstrating the method to derive this novel variable.
The algorithm takes a parameter 𝑙 , which signifies the number of
spanning converging forests to be sampled. It then returns a vector
𝝎 as an estimator for the diagonal elements of the forest matrix.

Algorithm 2: SCFV(G, 𝑙)
Input :G:a digraph

𝑙 :number of generated spanning converging forest
Output :𝝎 : a vector approximating the diagonal elements

of the forest matrix
1 Initialize : 𝝎[𝑖]← 1

1+𝑑𝑖 , 𝑖 = 1, 2, . . . , 𝑛
2 for 𝑡 = 1 to 𝑙 do
3 𝜙𝑡 ← a spanning converging forest generated from G
4 for 𝑖 = 1 to 𝑛 do

5 𝑗 ← 𝑟𝜙𝑡
(𝑖)

6 if 𝑖 ∈ 𝑁 ( 𝑗) then
7 𝝎[ 𝑗]← 𝝎[ 𝑗] + 1

𝑙 (1+𝑑 𝑗 )

8 return 𝝎

The algorithm starts by initializing 𝜔𝑖𝑖 (𝜙) to 0. It then aims to
generate 𝑙 spanning converging forests using Wilson’s Algorithm.
After generating each forest 𝜙𝑡 , a loop is executed to update the
vector 𝝎. Similar to the analysis of Lemma 4.2, the total compu-
tational complexity of Algorithm 2 is 𝑂 (𝑙𝑛). Then, we propose a
lemma, which shows that 𝜔𝑖𝑖 (𝜙𝑘 ) is still an unbiased estimator
while having less variance.

Lemma 5.2. For node 𝑖 ∈ 𝑉 , 𝜔𝑖𝑖 (𝜙) is an unbiased estimator of
𝜔𝑖𝑖 . Let 𝑞

(𝑖 )
𝑗𝑘

represent the ratio of spanning converging forests where
both roots of 𝑗 and 𝑘 are node 𝑖 to the total number of such forests.
The variance of this estimator is given by

Var{𝜔𝑖𝑖 (𝜙)} =
3𝜔𝑖𝑖

1 + 𝑑𝑖
− 2
(1 + 𝑑𝑖 )2

+
2
∑

𝑗,𝑘∈𝑁 (𝑖 ) 𝑞
(𝑖 )
𝑗𝑘

(1 + 𝑑𝑖 )2
− 𝜔2

𝑖𝑖 .

Importantly, this variance is always less than or equal to the variance
of the estimator 𝜔𝑖𝑖 .

Lemma 5.2 highlights the reduced variance of the random vari-
able 𝜔𝑖𝑖 (𝜙). However, a challenge arises when we invoke the Cher-
noff bound to determine the requisite sampling number. The third

term of the variance, namely
2
∑

𝑗,𝑘∈𝑁 (𝑖 ) 𝑞
(𝑖 )
𝑗𝑘

(1+𝑑𝑖 )2 , is inherently complex.
Deriving a proper upper bound for this term is not straightforward,
which complicates the task of determining an appropriate sampling
number 𝑙 . Consequently, although the new estimator 𝜔𝑖𝑖 (𝜙) facili-
tates a reduction in variance, we are unable to obtain a satisfying
theoretical result for the sampling number 𝑙 due to the complexities
introduced by this term.

6 NEW ITERATION EQUATION FOR

FURTHER VARIANCE REDUCTION

In this section, we introduce a new iteration equation and propose
a superior estimator. This novel estimator notably omits the com-
plex cross-product term found in the variance of 𝜔𝑖𝑖 (𝜙), in order
to further reduce the variance in samplings, and derive a better
theoretical result.

6.1 A New Iteration Equation

To further refine our estimator, it is insightful to revisit the estimator
𝜔𝑖𝑖 (𝜙), which draws inspiration from Equation (2). In (2), the update
of each node is influenced by its neighbors, specifically, 𝑧𝑖 (𝑡 + 1)
updates according to the value of 𝑧 𝑗 (𝑡) where 𝑗 ∈ 𝑁 (𝑖). A novel
idea emerges when we consider inverting the direction of opinion
dissemination, implying that 𝑧𝑖 (𝑡 + 1) updates according to the
value of 𝑧 𝑗 (𝑡) where 𝑖 ∈ 𝑁 ( 𝑗). In this scenario, our focus shifts to
the 𝑖-th row of the forest matrix Ω, denoted by 𝜸𝑖⊤ ≜ e⊤

𝑖
Ω. The

𝑖-th component of 𝜸𝑖 precisely corresponds to the 𝑖-th diagonal
element of the forest matrix. To compute𝜸𝑖 , we propose an iterative
equation similar to (2), as follows:

𝜸𝑖
⊤ (𝑡 + 1) = e⊤𝑖 (I + D)

−1 +𝜸𝑖⊤ (𝑡)A(I + D)−1 . (3)

Given that the matrix (I + L) is reversible, the matrix (I + L⊤) is
also reversible. Consequently, the iteration in (3) converges to 𝜸𝑖⊤.
Consistent with the previous analysis, we aim to restrict the process
to a single iteration, as multiple iterations are time unaffordable.

To realize this, we continue to leverage Wilson’s algorithm to
obtain 𝜸𝑖 (0), which serves as a preliminary estimation of the 𝑖-
th row of the forest matrix. Specifically, we can employ Wilson’s
algorithm to generate 𝑙 spanning converging forests 𝜙1, · · · , 𝜙𝑙 , and
set the initial iteration vector 𝜸𝑖 (0) = (𝛾𝑖1 (0), · · · , 𝛾

𝑖
𝑛 (0)), where

𝛾𝑖
𝑗
(0) = 1

𝑙

∑𝑙
𝑘=1 𝜔𝑖 𝑗 (𝜙𝑘 ). Upon performing one time of iteration

according to (3), we derive that

𝛾𝑖𝑖 (1) =
1

1 + 𝑑𝑖
(
1+

∑︁
𝑗 :𝑖∈𝑁 ( 𝑗 )

𝛾𝑖𝑗 (0)
)
=

1
1 + 𝑑𝑖

(
1+1

𝑙

∑︁
𝑗 :𝑖∈𝑁 ( 𝑗 )

𝑙∑︁
𝑘=1

𝜔𝑖 𝑗 (𝜙𝑘 )
)
.

With this new formulation, we can define a novel random vari-
able, 𝜔𝑖𝑖 (𝜙), for any spanning converging forest 𝜙 ∈ F and 𝑖 ∈ 𝑉
as

𝜔𝑖𝑖 (𝜙) ≜
1

1 + 𝑑𝑖
+ 1
1 + 𝑑𝑖

∑︁
𝑗 :𝑖∈𝑁 ( 𝑗 )

𝜔𝑖 𝑗 (𝜙).

Subsequently, it follows that 𝛾𝑖
𝑖
(1) = 1

𝑙

∑𝑙
𝑘=1 𝜔𝑖𝑖 (𝜙𝑘 ). This im-

plies that we can directly employ Wilson’s algorithm to sample 𝑙
5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’24, May 13-17, 2024, SINGAPORE Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

spanning converging forests, and then obtain the value of 𝜔𝑖𝑖 (𝜙𝑘 ).
The average of 𝑙 values is equal to the 𝑖-th component of 𝜸𝑖 (1).
We detail this in Algorithm 3, which demonstrates the method to
derive this novel variable. The time complexity of Algorithm 3
is 𝑂 (𝑙𝑛), where 𝑙 represents the number of spanning converging
forests sampled.

Algorithm 3: SCFV+(G, 𝑙)
Input :G : a digraph

𝑙 :number of generated spanning converging forest
Output :𝝎 : a vector approximating the diagonal elements

of the forest matrix
1 Initialize : 𝝎[𝑖]← 1

1+𝑑𝑖 , 𝑖 = 1, 2, . . . , 𝑛
2 for 𝑡 = 1 to 𝑙 do
3 𝜙𝑡 ← a spanning converging forest generated from G
4 for 𝑖 = 1 to 𝑛 do

5 𝑗 ← 𝑟𝜙𝑡
(𝑖)

6 if 𝑖 ∈ 𝑁 ( 𝑗) then
7 𝝎[𝑖]← 𝝎[𝑖] + 1

𝑙 (1+𝑑𝑖 )

8 return 𝝎

6.2 Advanced Estimator Analysis and

Implementation

We have proposed a novel estimator 𝜔𝑖𝑖 for 𝜔𝑖𝑖 . Now we introduce
a lemma, which shows that this new estimator 𝜔𝑖𝑖 (𝜙) is superior
to 𝜔𝑖𝑖 (𝜙).

Lemma 6.1. For any node 𝑖 ∈ 𝑉 , 𝜔𝑖𝑖 (𝜙) serves as an unbi-
ased estimator of 𝜔𝑖𝑖 . The variance of this estimator is given by:
Var{𝜔𝑖𝑖 (𝜙)} = 3𝜔𝑖𝑖

1+𝑑𝑖 −
2

(1+𝑑𝑖 )2 − 𝜔
2
𝑖𝑖
. Crucially, this variance is con-

sistently less than or equal to the variance of the estimator 𝜔𝑖𝑖 (𝜙),
and by extension, less than or equal to the variance of the estimator
𝜔𝑖𝑖 (𝜙).

In contrast to 𝜔𝑖𝑖 , the variance of 𝜔𝑖𝑖 does not include the com-
plex cross-product term, which previously posed significant chal-
lenges when deriving its upper bound. The absence of this complex
term in the new estimator simplifies our analysis, as highlighted
in the subsequent lemma. This lemma illuminates a significant
attribute of the estimator 𝜔𝑖𝑖 . Specifically, it delineates an upper
bound for the ratio of the variance of 𝜔𝑖𝑖 to the square of 𝜔𝑖𝑖 , a
crucial factor when determining the sampling number.

Lemma 6.2. Given a directed graph G = (𝑉 , 𝐸), for any node 𝑖 ∈ 𝑉 ,
the ratio Var{𝜔𝑖𝑖 }

𝜔2
𝑖𝑖

is constrained by 1
8 . Formally, Var{𝜔𝑖𝑖 }

𝜔2
𝑖𝑖

≤ 1
8 .

Armed with the insights from Lemma 6.2, we proceed to present
a theorem that establishes a connection between the relative error
bound and the number of samples in Algorithm 3.

Theorem 6.3. For any 𝜖 ∈ (0, 1) and 𝛿 ∈ (0, 1), if 𝑙 is chosen
obeying 𝑙 =

⌈
( 23𝜖 +

1
4𝜖2 ) log(

2
𝛿
)
⌉
, then the approximation 𝝎 [𝑖] of

𝜔𝑖𝑖 returned by Algorithm 3 satisfies the following relation with prob-
ability of at least 1 − 𝛿 :

(1 − 𝜖)𝜔𝑖𝑖 ≤ 𝝎 [𝑖] ≤ (1 + 𝜖)𝜔𝑖𝑖 . (4)

Based on Theorem 3, when we fix the fail probability 𝛿 , and the
relative error parameter 𝜖 , the required number of samples remains
invariant regardless of the size and structure of the graph. This
theoretical insight highlights the superiority of the estimator 𝜔
over both 𝜔 and 𝜔 .

7 EXPERIMENTS

In this section, we conduct extensive experiments on various real-
life networks in order to evaluate the performance of our three
algorithms SCF, SCFV, and SCFV+ in terms of effectiveness and effi-
ciency. The source code is publicly available on https://anonymous.
4open.science/r/Diagonal-of-Forest-Matrix.

7.1 Setup

Datasets and Equipment. The datasets of selected real networks
are publicly available in the KONECT [26] and SNAP [29]. Our
study encompasses a diverse range of networks, both undirected
and directed, including but not limited to social networks and road
networks.Within these datasets, the number𝑛 of nodes ranges from
about 16 thousand to 33 million, and the number𝑚 of directed edges
ranges from about 25 thousand to 301million. The details of datasets
are presented in Table 1. All experiments are conducted using the
Julia programming language on a single-threaded setup.We conduct
all experiments in a computational environment featuring a 4.2 GHz
Intel i7-7700 CPU with 64GB of primary memory.
Algorithms. In evaluating the computation of the diagonal ele-
ments of the forest matrix, we consider our three proposed algo-
rithms SCF, SCFV, and SCFV+ with two state-of-the-art algorithms,
namely JLT [22] and UST [45]. While the two state-of-the-art al-
gorithms, JLT and UST, are confined to undirected graphs due to
the limitations of the Laplacian solver they employ, our proposed
algorithms SCF, SCFV, and SCFV+ are applicable to both undirected
graphs and digraphs.

Table 1: Datasets used in experiments

Type Dataset 𝑛 𝑚

undirected
graphs

web-webbase-2001 16,062 25,593
soc-gemsec-RO 41,773 125,826
tech-p2p-gnutella 62,561 147,878
tech-RL-caida 190,914 607,610

soc-twitter-follows 404,719 713,319
soc-delicious 536,108 1,375,961

dblp 5,624,219 12,282,055
livejournal 7,489,073 112,307,315
delicious 33,777,767 301,183,342

directed
graphs

wikipedialinks 17,649 296,918
p2p-gnutella31 62,586 147,892
email-euall 265,009 418,956
web-Stanford 281,903 2,312,500
web-Google 875,713 5,105,039

northwestUSA 1,207,945 2,820,774
wikitalk 2,394,385 5,021,410
greatlakes 2,758,119 6,794,808
fullUSA 23,947,347 57,708,624

6
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7.2 Experiments on Undirected Graphs

In this subsection, a comparative analysis is conducted between our
proposed algorithms SCF, SCFV, and SCFV+ and two state-of-the-
art algorithms, namely JLT and UST, focusing on undirected graphs.
Initially, experiments are performed on six small to medium-sized
networks. For ease of discussion, we employ lowercase letters a
through f to denote the six networks: web-webbase-2001(a), soc-
gemsec-RO(b), tech-p2p-gnutella(c), tech-RL-caida(d), soc-twitter-
follows(e), and soc-delicious(f). For graphs (a), (b), and (c), the
ground truth of the diagonal elements of Ω is computed by directly
inverting the matrix I + L. Conversely, for graphs (d), (e), and (f),
the Conjugate Gradient (CG) solver with a tolerance of 10−9 is
utilized, as direct matrix inversion is computationally infeasible.
This approach aligns with the settings in [45].

In evaluating the results, two metrics are considered: average
relative errors and maximum relative errors, both assessed over
𝑛 nodes. Regarding parameter settings, there are primarily two
parameters to consider: the sampling number 𝑙 utilized in UST, SCF,
SCFV, and SCFV+, and the dimension 𝑘 applied in the Johnson-
Lindenstrauss (JL) lemma within JLT. Initially, 𝑙 is set to 500 for
the four sampling-based algorithms, and 𝑘 is set to 50 for JLT. The
results of these settings are depicted in Figure 3.
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Figure 3: Comparison of maximum (lower) and average (up-

per) relative errors across five algorithms on six undirected

graphs

The upper portion of Figure 3 depicts the average relative errors,
while the lower portion illustrates the maximum relative errors
across the five algorithms. Observing the average relative errors, it is
evident that JLT, UST, and SCF yield similar error results. In contrast,
SCFV and SCFV+ achieve nearly 10 times better accuracy with the
same number of samples compared to UST and SCF, with SCFV+
securing the best result due to its minimized variance. Considering
the maximum relative errors, it is noteworthy that, under these
parameter settings, only SCFV+ consistently delivers stable and

satisfactory results across the six graphs. The other algorithms, to
varying degrees, yield results that may be deemed inaccurate.

Subsequently, to delve deeper into the effectiveness and effi-
ciency of the five algorithms, we vary the parameters and construct
scatter plots. We set 𝑙 = 500, 1000, 2000 and 𝑘 = 50, 100, 150 to
observe the resultant effects, which are displayed in Figure 4.
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Figure 4: Scatter plot ofmaximum (lower) and average(upper)

relative errors over time for five algorithms on six undirected

graphs, considering three parameters each

From Figure 4, it is observable that as the parameters 𝑙 and
𝑘 increase, all algorithms demand more time yet yield improved
results. Among the five algorithms, JLT exhibits the least optimal
performance, as its time requirement escalates rapidly, and its error
is not satisfactory, whether considering average relative errors or
maximum relative errors.

The remaining four algorithms all rely on sampling using Wil-
son’s algorithm. Observing that if we fix the number of samples,
SCF operates slightly faster than UST since UST requires perform-
ing one instance of a fast Laplacian solver while SCF does not.
Moreover, SCF achieves results comparable to UST. With the same
samples, SCFV and SCFV+ require slightly more time than UST and
SCF, while the results returned by them are superior.

Among the five algorithms, SCFV+ emerges as the best, as evi-
dent from the figures; setting 𝑙 = 500 in SCFV+ can achieve lower
errors and faster speeds than the other three sampling algorithms

7
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with 𝑙 = 2000 and JLT with 𝑘 = 200. In conclusion, SCFV+ outper-
forms the others, whether considering average relative errors or
maximum relative errors, and demonstrates stability and satisfac-
tory results.

In the subsequent analysis, we focus on three larger undirected
graphs: dblp, livejournal, and delicious. As outlined in Table 1, these
graphs are notably substantial, each featuring over 5 million nodes
and surpassing 12 million edges. Given time and storage constraints,
obtaining the ground truth answer was unfeasible. Similarly, the
algorithms JLT and UST fail to run on our equipment due to the
time and storage limitations associated with the Laplacian solver,
which is utilized in both JLT and UST. Consequently, we perform
our three sampling algorithms SCF, SCFV and SCFV+, recording
the running time, with the results tabulated in Table 2.

Table 2: Running time of SCF, SCFV and SCFV+ on three

large undirected networks.

Graphs

Time(s)

𝑙 = 500 𝑙 = 1000
SCF SCFV SCFV+ SCF SCFV SCFV+

dblp 377 512 518 765 1034 1060
livejournal 321 508 541 669 1030 1051
delicious 1649 2437 2513 3262 4872 4898

An examination of Table 2 indicates that our three algorithms
exhibits admirable scalability, performing adeptly on the three ex-
pansive networks.

7.3 Experiments on Digraphs

In this subsection, experiments are conducted on several directed
networks, focusing on the evaluation of the proposed algorithms:
SCF, SCFV, and SCFV+. The algorithms JLT and UST are excluded
from comparison due to their inapplicability to digraphs. For the
determination of the ground truth of the diagonal elements of Ω,
the GMRES algorithm [41] is employed with a tolerance set to 10−9.
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Figure 5: Scatter plot of maximum (lower) and average (up-

per) relative errors over time for three algorithms on four

digraphs, considering three sampling numbers

Initially, experiments are executed on four small to medium-
sized graphs: wikipedialinks(a), p2p-gnutella31(b), email-euall(c),

and web-Stanford(d). The results of these experiments are depicted
in Figure 5.

Figure 5 demonstrates a reduction in error as 𝑙 increases. Besides,
the algorithms SCF, SCFV, and SCFV+ exhibit progressive results,
with SCFV+ outperforming the other two in both average and
maximum relative errors. While SCFV and SCFV+ yield satisfactory
results in terms of average relative errors, only SCFV+ demonstrates
credible performance when considering maximum relative errors.
This is consistent with the theoretical analysis that the variance of
SCFV+ excludes the cross-product term present in the variance of
SCFV, as outlined in Lemma 5.2 and Lemma 6.1. Notably, SCFV+
with 𝑙 = 500 surpasses the performance of SCF and SCFV with 𝑙 =
2000, aligning with experimental results obtained from undirected
graphs.

Subsequent experiments are conducted on five large digraphs:
web-Google, northwestUSA, wikitalk, greatlakes, and fullUSA. Due
to limitations in time and storage, the calculation of ground truth
is not feasible. Nevertheless, the three proposed algorithms demon-
strate commendable scalability and efficacy. Particularly, fullUSA,
which comprises more than 23million nodes and 57million edges, is
processed by our three algorithms within approximately 12 minutes
when 𝑙 = 500.

Table 3: Running time of SCF, SCFV and SCFV+ on five large

directed networks.

Graphs

Time(s)

𝑙 = 500 𝑙 = 1000
SCF SCFV SCFV+ SCF SCFV SCFV+

web-Google 24 33 32 48 67 66
northwestUSA 27 36 34 54 72 70

wikitalk 18 20 20 35 39 38
greatlakes 63 84 82 126 168 163
fullUSA 545 731 710 1085 1461 1417

8 CONCLUSIONS

In this paper, we addressed the problem of efficiently computing
the diagonal of the forest matrix in digraphs. We proposed there
novel sampling-based algorithms: SCF, SCFV, and SCFV+. The SCF
algorithm utilizes an expansion of Wilson’s algorithm, capitalizing
on a probabilistic interpretation of the diagonal of the forest matrix.
Drawing inspiration from the FJ model, SCFV refines our approach
by reducing the variance in forest sampling through the matrix-
vector iteration. Our third algorithm SCFV+ further reduces the
variance using a novel iteration equation. Notably, SCFV+ achieves
a relative error guarantee with high probability and maintains a
linear time complexity relative to the nodes of graphs, presenting a
superior theoretical result compared to existing algorithms.

We conducted extensive experiments on various real-world net-
works. Our algorithms demonstrated superior effectiveness and
efficiency compared to the state-of-the-art algorithms in undirected
graphs. While state-of-the-art algorithms falter in the context of
digraphs, our algorithms consistently perform well. Moreover, our
algorithms are scalable to massive graphs with over thirty mil-
lion nodes. In our future work, we plan to extend or improve our
algorithm to sign graphs or temporal graphs.
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A APPENDIX

In this section we provide proofs of lemmas and theorems in the
article.

A.1 Chernoff Bound

Lemma A.1. (Chernoff bound) Let 𝑥𝑖 (1 ≤ 𝑖 ≤ 𝑙) be independent
random variables satisfying |𝑥𝑖 − E{𝑥𝑖 }| ≤ 𝑀 for all 1 ≤ 𝑖 ≤ 𝑙 . Let
𝑥 = 1

𝑙

∑𝑙
𝑖=1 𝑥𝑖 . Then we have

P{|𝑥 − E{𝑥}| ≤ 𝜖} ≥ 1 − 2 exp
(
− 𝑙𝜖2

2(Var{𝑥}𝑙 +𝑀𝜖/3)

)
. (5)

A.2 Proof of Theorem 4.1

Proof. Given that
∑𝑛

𝑗=1 𝜔 𝑗𝑖 = 1 and 𝜔𝑖 𝑗 = |F𝑖 𝑗 |/|F |, the follow-
ing can be deduced:

1
𝜔𝑖𝑖

=

∑𝑛
𝑗=1 𝜔 𝑗𝑖

𝜔𝑖𝑖
=

1
|F𝑖𝑖 |

𝑛∑︁
𝑗=1
|F𝑗𝑖 | =

1
|F𝑖𝑖 |

𝑛∑︁
𝑗=1

∑︁
𝜙∈F𝑖𝑖

I{𝑟𝜙 ( 𝑗 )=𝑖 }

=
1
|F𝑖𝑖 |

∑︁
𝜙∈F𝑖𝑖

𝑛∑︁
𝑗=1
I{𝑟𝜙 ( 𝑗 )=𝑖 } =

1
|F𝑖𝑖 |

∑︁
𝜙∈F𝑖𝑖

|𝑁 (𝜙, 𝑖) |, (6)

This implies that 1
𝜔𝑖𝑖

represents the average number of nodes
within the converging trees that are rooted at node 𝑖 across all
𝜙 ∈ F𝑖𝑖 . □

A.3 Proof of Lemma 4.2

Proof. Wilson showed that the expected running time of gener-
ating a uniform spanning tree of a connected digraph G rooted at
node 𝑢 is equal to a weighted average of commute times between
the root and the other nodes [46]. Marchal rewrote this average of
commute times in terms of graph matrices in Proposition 1 in [33].
In [44], the author further analyzed the expected time complexity
for the expansion of Wilson’s algorithm in G′ is 𝑂 (𝑛). Thus, the
expected time complexity of Algorithm 1 is 𝑂 (𝑙𝑛). □

A.4 Proof of Theorem 4.3

Proof. Recall that for a given spanning converging forest, denoted
as 𝜙 ∈ F , and a node 𝑖 ∈ 𝑉 , the random variable 𝜔𝑖𝑖 (𝜙) is defined
as I{𝑖∈R(𝜙 ) } . Given that the possible values of 𝜔𝑖𝑖 (𝜙) are either 0
or 1, it follows that |𝜔𝑖𝑖 − 𝜔𝑖𝑖 | ≤ 1.

In the context of Algorithm 1, we generate a set of 𝑙 spanning
forests, represented as 𝜙1, · · · , 𝜙𝑙 . The output 𝝎 [𝑖] of Algorithm 1
is then defined as: 𝝎 [𝑖] = 1

𝑙

∑𝑙
𝑗=1 𝜔𝑖𝑖 (𝜙 𝑗 ).

From this, we can compute the variance of 𝝎 [𝑖] as:

Var{ 1
𝑙

𝑙∑︁
𝑗=1

𝜔𝑖𝑖 (𝜙 𝑗 )} =
1
𝑙
Var{𝜔𝑖𝑖 (𝜙)} =

1
𝑙
(𝜔𝑖𝑖 − 𝜔2

𝑖𝑖 )

.
To obtain a relative error bound, it is necessary to satisfy the

inequality:
P{|𝝎 [𝑖] − 𝜔𝑖 | ≥ 𝜖𝜔𝑖 } ≤ 𝛿.

By invoking the Chernoff bound as presented in Lemma A.1, and
designating 𝑥 𝑗 = 𝜔𝑖𝑖 (𝜙 𝑗 ) for 1 ≤ 𝑗 ≤ 𝑙 and 𝑥 = 𝝎 [𝑖], we only need
to meet the inequality that:

2 exp

(
−

𝑙𝜖2𝜔2
𝑖𝑖

2(Var{𝜔𝑖𝑖 } +𝑀𝜖𝜔𝑖𝑖/3)

)
≤ 𝛿,

which leads to:

𝑙 ≥ log( 2
𝛿
)
(
2Var{𝜔𝑖𝑖 }
𝜖2𝜔2

𝑖𝑖

+ 2𝑀
3𝜖𝜔𝑖𝑖

)
. (7)

Since |𝜔𝑖𝑖−𝜔𝑖𝑖 | ≤ 1, we can set𝑀 = 1. Considering that Var{𝜔𝑖𝑖 (𝜙 𝑗 )} =
𝜔𝑖𝑖 − 𝜔2

𝑖𝑖
, the inequality to be satisfied simplifies to:

𝑙 ≥ log( 2
𝛿
)
(

2
𝜖2𝜔𝑖𝑖

+ 2
3𝜖𝜔𝑖𝑖

− 2
𝜖2

)
.

Thus, selecting 𝑙 =

⌈
6+2𝜖
3𝜎𝜖2 ln

2
𝛿

⌉
ensures the inequality always

holds. This completes the proof. □

A.5 Proof of Lemma 5.2

Proof. According to Lemma 4.2, 𝝆𝑖 satisfying 𝝆𝑖 = (I +D)−1e𝑖 +
(I + D)−1A𝝆𝑖 . Thus, e⊤𝑖 𝝆

𝑖 = e⊤
𝑖
(I + D)−1e𝑖 + e⊤𝑖 (I + D)

−1A𝝆𝑖 ,
that is 𝜔𝑖𝑖 = 1

1+𝑑𝑖 (1 +
∑

𝑗∈𝑁 (𝑖 ) 𝜔 𝑗𝑖 ). Since 𝜔𝑖𝑖 (𝜙) = 1
1+𝑑𝑖 (1 +∑

𝑗∈𝑁 (𝑖 ) 𝜔 𝑗𝑖 (𝜙)), and 𝜔 𝑗𝑖 (𝜙) is an unbiased estimator of 𝜔 𝑗𝑖 , 𝜔𝑖𝑖

is an unbiased estimator of 𝜔𝑖𝑖 .
Next we aim to derive the variance of the estimator 𝜔𝑖𝑖 . For a

spanning converging forest 𝜙 ∈ F and node 𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗 , we have
𝜔𝑖 𝑗 (𝜙) = I{𝑟𝜙 (𝑖 )=𝑗 } = 1 or 0, leading to E{𝜔2

𝑖 𝑗
} = E{𝜔𝑖 𝑗 } = 𝜔𝑖 𝑗 .

Moreover, for distinct nodes 𝑖, 𝑗, 𝑘 ∈ 𝑉 , we haveE{𝜔 𝑗𝑖 (𝜙)𝜔𝑘𝑖 (𝜙)} =
𝑞
(𝑖 )
𝑗𝑘

. Thus, we can derive that

Var{𝜔𝑖𝑖 (𝜙)} = E{(𝜔𝑖𝑖 )2} − (E{𝜔𝑖𝑖 })2

=
1

(1 + 𝑑𝑖 )2
E{(1 +

∑︁
𝑗∈𝑁 (𝑖 )

𝜔 𝑗𝑖 )2} − 𝜔2
𝑖𝑖

=
1

(1 + 𝑑𝑖 )2
E{1 + 2

∑︁
𝑖∈𝑁 ( 𝑗 )

𝜔 𝑗𝑖 + (
∑︁

𝑖∈𝑁 ( 𝑗 )
𝜔 𝑗𝑖 )2} − 𝜔2

𝑖𝑖

=
1 + 3∑

𝑖∈𝑁 ( 𝑗 ) 𝜔 𝑗𝑖

(1 + 𝑑𝑖 )2
+
2
∑

𝑗,𝑘∈𝑁 (𝑖 ) 𝑞
(𝑖 )
𝑗𝑘

(1 + 𝑑𝑖 )2
− 𝜔2

𝑖𝑖

=
1 + 3((1 + 𝑑𝑖 )𝜔𝑖𝑖 − 1)

(1 + 𝑑𝑖 )2
+
2
∑

𝑗,𝑘∈𝑁 (𝑖 ) 𝑞
(𝑖 )
𝑗𝑘

(1 + 𝑑𝑖 )2
− 𝜔2

𝑖𝑖

=
3𝜔𝑖𝑖

1 + 𝑑𝑖
− 2
(1 + 𝑑𝑖 )2

+
2
∑

𝑗,𝑘∈𝑁 (𝑖 ) 𝑞
(𝑖 )
𝑗𝑘

(1 + 𝑑𝑖 )2
− 𝜔2

𝑖𝑖 .

(8)

For a spanning converging forest 𝜙 ∈ F , and node 𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗 ,
we consider the scenario where both 𝜔 𝑗𝑖 (𝜙) and 𝜔𝑘𝑖 (𝜙) are equal
to 1. This implies that node 𝑖 acts as a root node in 𝜙 , leading
to the conclusion 𝜔𝑖𝑖 = 1 . From this observation, we can infer
that the expected value of the product 𝜔 𝑗𝑖 (𝜙)𝜔𝑘𝑖 (𝜙) is bounded
by the expected value of 𝜔𝑖𝑖 (𝜙). Formally, this can be expressed as
𝑞
(𝑖 )
𝑗𝑘
≤ 𝜔𝑖𝑖 . Building upon this foundation, we can further expand

our analysis to compare the variances of the two estimators𝜔𝑖𝑖 and
𝜔
(0)
𝑖𝑖

. The mathematical derivation is as follows:
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Var{𝜔𝑖𝑖 } − Var{𝜔𝑖𝑖 } = 𝜔𝑖𝑖 −
3𝜔𝑖𝑖

1 + 𝑑𝑖
+ 2
(1 + 𝑑𝑖 )2

−
2
∑

𝑗,𝑘∈𝑁 (𝑖 ) 𝑞
(𝑖 )
𝑗𝑘

(1 + 𝑑𝑖 )2

≥ 𝜔𝑖𝑖 −
3𝜔𝑖𝑖

1 + 𝑑𝑖
+ 2
(1 + 𝑑𝑖 )2

− 𝑑𝑖 (𝑑𝑖 − 1)𝜔𝑖𝑖

(1 + 𝑑𝑖 )2

=
2(1 − 𝜔𝑖𝑖 )
(1 + 𝑑𝑖 )2

≥ 0.

(9)
This derivation solidifies our understanding and confirms the re-
duced variance of the estimator 𝜔𝑖𝑖 compared to 𝜔𝑖𝑖 , thus complet-
ing our proof. □

A.6 Proof of Lemma 6.1

Proof. Since 𝜸𝑖 is the equilibrium vector of the iteration equa-
tion (3), 𝜸𝑖 satisfying 𝜸𝑖⊤ = e⊤

𝑖
(I + D)−1 + 𝜸𝑖⊤A(I + D)−1. Thus,

𝜸𝑖
⊤e𝑖 = e⊤

𝑖
(I + D)−1e𝑖 +𝜸𝑖⊤A(I + D)−1e𝑖 , that is 𝜔𝑖𝑖 =

1
1+𝑑𝑖 (1 +∑

𝑗 :𝑖∈𝑁 ( 𝑗 ) 𝜔𝑖 𝑗 ). Since 𝜔𝑖𝑖 (𝜙) = 1
1+𝑑𝑖 +

1
1+𝑑𝑖

∑
𝑗 :𝑖∈𝑁 ( 𝑗 ) 𝜔𝑖 𝑗 (𝜙) ., and

𝜔𝑖 𝑗 (𝜙) is an unbiased estimator of 𝜔𝑖 𝑗 , 𝜔𝑖𝑖 is an unbiased estimator
of 𝜔𝑖𝑖 .

To determine the variance of the random variable 𝜔𝑖𝑖 (𝜙), we
can follow a similar approach as used for 𝜔𝑖𝑖 (𝜙) in Lemma 5.2. It’s
crucial to note that for distinct nodes 𝑖, 𝑗, 𝑘 ∈ 𝑉 , the relationship
𝜔𝑖 𝑗 (𝜙)𝜔𝑖𝑘 (𝜙) = 0 consistently holds for all 𝜙 ∈ F . This ensures
that the cross-product term is eliminated from our calculations.
Given that the cross-product term is non-negative, it’s evident that
𝜔 (𝜙) exhibits a reduced variance in comparison to the previous two
random variables. □

A.7 Proof of Lemma 6.2

Proof. According to Lemma 6.1, we derive that

|Var{𝜔𝑖𝑖 }
𝜔2
𝑖𝑖

| = 3
(1 + 𝑑𝑖 )𝜔𝑖𝑖

− 2
(1 + 𝑑𝑖 )2𝜔2

𝑖𝑖

− 1

= − 2
(1 + 𝑑𝑖 )2

( 1
𝜔𝑖𝑖
− 3(1 + 𝑑𝑖 )

4
)2 + 1

8
≤ 1

8

(10)

The equation holds when 1
𝜔𝑖𝑖

=
3(1+𝑑𝑖 )

4 , implying 𝜔𝑖𝑖 = 4
3(1+𝑑𝑖 ) ,

which finishes the proof. □

A.8 Proof of Theorem 6.3

Proof. For a given spanning converging forest 𝜙 ∈ F , and a
node 𝑖 ∈ 𝑉 , the random variable 𝜔𝑖𝑖 (𝜙) is defined as 𝜔𝑖𝑖 (𝜙) =
1

1+𝑑𝑖 +
1

1+𝑑𝑖
∑

𝑗 :𝑖∈𝑁 ( 𝑗 ) 𝜔𝑖 𝑗 (𝜙). Given that node 𝑖 has only one root
node in 𝜙 , the possible values of 𝜔𝑖𝑖 (𝜙) are either 1

1+𝑑𝑖 or 2
1+𝑑𝑖 .

Since 1
1+𝑑𝑖 ≤ 𝜔𝑖𝑖 ≤ 2

2+𝑑𝑖 , it follows that |𝜔𝑖𝑖 − 𝜔𝑖𝑖 | ≤ 1
1+𝑑𝑖 .

In the context of Algorithm 3, we generate a set of 𝑙 spanning
forests, denoted as 𝜙1, · · · , 𝜙𝑙 . The output 𝝎 [𝑖] of Algorithm 3 is
then expressed as: 𝝎 [𝑖] = 1

𝑙

∑𝑙
𝑗=1 𝜔𝑖𝑖 (𝜙 𝑗 ).

Now we can apply the Chernoff bound, as detailed in Lemma A.1.
By setting 𝑥 𝑗 = 𝜔𝑖𝑖 (𝜙 𝑗 ) for 1 ≤ 𝑗 ≤ 𝑙 , 𝑀 = 1

1+𝑑𝑖 , and 𝑥 = 𝝎 [𝑖].
Using the similar analysis as in the proof of Theorem 4.3, the number
of 𝑙 needs to satisfy the following inequality:

𝑙 ≥ log( 2
𝛿
)
(
2Var{𝜔𝑖𝑖 }
𝜖2𝜔2

𝑖𝑖

+ 2
3(1 + 𝑑𝑖 )𝜖𝜔𝑖𝑖

)
.

Using Lemma 6.2 we have that Var{𝜔𝑖𝑖 }
𝜔2
𝑖𝑖

≤ 1
8 and (1 + 𝑑𝑖 )𝜔𝑖𝑖 ≤

1. Thus, selecting 𝑙 =

⌈
( 23𝜖 +

1
4𝜖2 ) log(

2
𝛿
)
⌉
ensures the inequality

always holds. This completes the proof. □
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