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Abstract001

The proliferation of multimodal misinforma-002
tion, particularly Out-of-Context (OOC) image-003
text mismatches, poses significant challenges004
for reliable information verification. Existing005
detection approaches often rely on unimodal006
signals, limiting their capacity to capture nu-007
anced cross-modal inconsistencies. Although008
recent multimodal methods have improved per-009
formance, many depend on large-scale architec-010
tures or external web evidence, which hinders011
scalability and practical deployment. In this012
work, we introduce a lightweight and evidence-013
free framework for OOC misinformation de-014
tection that achieves competitive performance015
with high efficiency. Our approach enhances016
visual understanding by integrating semantic017
entity extraction and generated visual captions,018
which are fused with the accompanying tex-019
tual caption and input to a prompt-tuned Flan-020
T5 model. Simultaneously, a fine-tuned CLIP021
model evaluates image-text alignment. The022
outputs of both models are combined via a023
validation-optimized weighted ensemble. Ex-024
tensive experiments on the NewsCLIPpings025
dataset demonstrate that our method achieves026
state-of-the-art accuracy among evidence-free027
techniques, while offering low computational028
overhead and strong interpretability, making it029
well-suited for real-world applications.030

1 Introduction031

Fake news refers to intentionally disseminated false032

or misleading information, typically in the form of033

news reports, designed to influence public opin-034

ion, shape emotions, or achieve specific political,035

economic, or social objectives (Shu et al., 2017;036

Kouzy et al., 2020). Among various manifesta-037

tions of fake news, Out-of-Context (OOC) misin-038

formation—where images and textual content are039

deliberately misaligned to deceive audiences—has040

emerged as a particularly challenging and perva-041

sive problem. Unlike conventional fake news that042

fabricates textual content, OOC misinformation 043

exploits authentic media elements in misleading 044

contexts, complicating detection efforts relying on 045

traditional fact-checking techniques. Figure 1 illus- 046

trates two real-world examples of OOC image-text 047

pairs that have been falsely propagated on social 048

media. 049

Existing research on misinformation detection 050

can be broadly categorized into three approaches: 051

text-based, image-based, and multimodal. Text- 052

based methods (Ma et al., 2016; Yu et al., 2019; 053

Shu et al., 2019; Dun et al., 2021) typically lever- 054

age natural language processing techniques to an- 055

alyze linguistic patterns, writing style, sentiment, 056

and contextual cues for fake news identification. 057

While effective for purely textual misinformation, 058

these approaches often struggle to detect deception 059

embedded in accompanying visual content. 060

Image-based techniques (Qi et al., 2019) utilize 061

computer vision methods—such as tampering de- 062

tection, deepfake analysis, and visual anomaly de- 063

tection—to identify manipulated or misleading im- 064

ages. However, these methods typically overlook 065

the semantic relationship between images and their 066

textual context, rendering them ineffective at de- 067

tecting cross-modal inconsistencies. 068

Neither unimodal strategy suffices for detecting 069

OOC misinformation, where the core deception 070

arises from incongruities between the textual and 071

visual modalities—a tactic frequently employed in 072

social media disinformation campaigns. Authentic 073

images may be paired with fabricated captions or 074

vice versa, making it crucial to jointly evaluate both 075

modalities. 076

In response, multimodal deep learning ap- 077

proaches have gained traction (Singhal et al., 2019; 078

Giachanou et al., 2020), often leveraging trans- 079

former architectures (Dosovitskiy et al., 2020) 080

and convolutional neural networks to model cross- 081

modal relationships. These methods aim to capture 082

semantic inconsistencies between image-caption 083
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Figure 1: Examples of OOC fake news. Top: A 2014 Ohio fire misrepresented as Diddy’s 2025 LA mansion.
Bottom: A 2011 Obama visit crowd falsely claimed to be from a Trump rally.

pairs, achieving promising results. Nonetheless,084

challenges remain with respect to classification ac-085

curacy, reliance on external evidence for verifica-086

tion, and computational inefficiency, particularly087

for deployment at scale.088

In this work, we address these limitations by in-089

corporating enriched image-derived semantic cues,090

including visual captions and entity recognition, to091

strengthen multimodal feature representations. Our092

framework fine-tunes and optimally fuses outputs093

from pretrained text and image encoders, improv-094

ing detection accuracy without sacrificing compu-095

tational efficiency. This positions our approach as096

a practical solution for real-world OOC misinfor-097

mation detection. Our contributions are as follows:098

• We propose an evidence-free multimodal099

framework that achieves strong performance100

with high computational efficiency for OOC101

misinformation detection, combining seman-102

tic entity recognition and generated visual cap-103

tions to enrich visual feature representation.104

• We introduce a weighted ensemble strategy105

optimized on a validation set to effectively106

fuse predictions from the two modalities.107

• Extensive experiments on the NewsCLIP-108

pings dataset demonstrate that our approach109

achieves state-of-the-art accuracy among110

evidence-free methods, with reduced compu-111

tational overhead and increased interpretabil-112

ity.113

2 Related Work 114

2.1 Out-of-Context Misinformation Detection 115

Out-of-Context (OOC) misinformation involves au- 116

thentic images or videos repurposed with mislead- 117

ing textual descriptions, posing a subtle yet im- 118

pactful challenge in fake news detection. Early 119

unimodal methods (Ma et al., 2016; Yu et al., 2019; 120

Shu et al., 2019; Dun et al., 2021; Qi et al., 2019) 121

and initial multimodal approaches (Khattar et al., 122

2019; Kumari and Ekbal, 2021; Singhal et al., 2019; 123

Giachanou et al., 2020; Hua et al., 2023) have con- 124

tributed to fake news detection, but often struggle 125

to capture the semantic inconsistencies between 126

visual and textual content that characterize OOC 127

misinformation. Luo et al. (Luo et al., 2021) intro- 128

duced the NewsCLIPpings dataset to systematically 129

benchmark image-text mismatches, demonstrating 130

the difficulty both humans and machines face in 131

this task. 132

To improve detection, some approaches utilize 133

external evidence sources. For example, Abdelnabi 134

et al. (Abdelnabi et al., 2022) retrieved web con- 135

tent to verify consistency among images, captions, 136

and related articles, proposing a Cross-Modal Con- 137

sistency Network (CCN) to jointly evaluate multi- 138

modal and metadata alignment. However, reliance 139

on external evidence can limit applicability due to 140

evidence availability, retrieval latency, and poten- 141

tial reliability issues. 142

Alternative evidence-free methods have also 143

been proposed. SSDL (Mu et al., 2023) leverages 144
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self-supervised multimodal pretraining and knowl-145

edge distillation to improve cross-modal represen-146

tation alignment. DPOD (Bhattacharya et al., 2023)147

adapts CLIP models with domain-aware prompts148

and out-of-domain examples to enhance generaliza-149

tion across varied misinformation topics. Despite150

robustness gains, such latent feature-based models151

often lack interpretability. To enhance explainabil-152

ity, Zhang et al. (Zhang et al., 2023) employed153

Abstract Meaning Representation to convert text154

into fact-based queries for visual verification, im-155

proving transparency.156

More recently, Multimodal Large Language157

Models (MLLMs) like InstructBLIP have been ex-158

plored for OOC detection. SNIFFER (Qi et al.,159

2024) fine-tuned MLLMs on GPT-4-generated in-160

structions to improve reasoning in news verifica-161

tion. LLM-Consensus (Lakara et al., 2024) pro-162

poses lightweight, explainable frameworks through163

dialectic debates among LLM agents, avoiding164

task-specific fine-tuning. Nevertheless, these ap-165

proaches are computationally expensive and re-166

quire continual model updates. Moreover, as high-167

lighted by Yan et al. (Yan et al., 2025), dependence168

on external evidence—particularly web content in-169

creasingly polluted by AI-generated misinforma-170

tion—introduces critical vulnerabilities that can171

drastically degrade model reliability.172

In summary, while current methods advance173

OOC detection, challenges persist related to de-174

pendence on external evidence, limited generaliza-175

tion, computational inefficiency, and lack of inter-176

pretability. These limitations motivate the need177

for compact, evidence-free approaches that achieve178

strong accuracy, scalability, and transparency.179

2.2 Prompt-based Learning180

Prompt-based learning reformulates downstream181

tasks as natural language inference problems182

through designed input templates, rather than ap-183

pending task-specific output heads (Brown et al.,184

2020; Liu et al., 2022). This paradigm aligns bet-185

ter with large pretrained language models’ (PLMs)186

original training and enhances generalization.187

Instruction-tuned models such as Flan-188

T5 (Chung et al., 2022) have demonstrated strong189

performance with minimal labeled data, excelling190

in zero- and few-shot scenarios (Gao et al., 2020).191

Their responsiveness to natural language prompts192

enables flexible and interpretable task definitions.193

In this work, we leverage the OpenPrompt frame-194

work (Ding et al., 2021) to design effective prompt195

templates for multimodal misinformation detec- 196

tion. By framing the task as masked prediction 197

guided by natural prompts, we exploit Flan-T5’s 198

instruction-following capability, improving align- 199

ment with human reasoning and enhancing model 200

interpretability. 201

3 Methodology 202

3.1 Visual Information Augmentation 203

To enrich the model’s understanding of visual con- 204

tent beyond raw pixel data, we incorporate high- 205

level semantic cues extracted via two complemen- 206

tary strategies. 207

First, we obtain visual entities (e.g., “person”, 208

“car”, “building”) for each image using the Google 209

Vision API (Google, 2019). Unlike implicit seman- 210

tics learned end-to-end, these explicit annotations 211

offer interpretability and modularity by summariz- 212

ing the most salient image elements. This helps 213

the model focus on crucial visual cues when cross- 214

referencing with textual captions. Additionally, the 215

API has demonstrated robustness across diverse 216

domains, ensuring consistency on real-world news 217

images. These annotations are sourced from the 218

preprocessed dataset in (Abdelnabi et al., 2022), 219

facilitating reproducibility and straightforward in- 220

tegration. 221

Second, we generate visual captions using 222

the GPT-4o mini model from OpenAI (OpenAI, 223

2024a). Unlike traditional captioning models 224

trained on fixed datasets, GPT-4o mini benefits 225

from multimodal instruction tuning, enabling it to 226

produce context-aware, human-like descriptions. It 227

strikes an effective balance between accuracy, infer- 228

ence speed, and resource efficiency.These captions 229

provide an additional textual abstraction comple- 230

menting raw images and entity annotations. 231

While our current implementation focuses solely 232

on GPT-4o mini, we selected it for its ease of in- 233

tegration, competitive performance in preliminary 234

tests, and suitability for scalable deployment. Fu- 235

ture work can explore a broader comparison with 236

dedicated visual captioning models. 237

For a small subset of images (approximately 238

1.6%) where caption generation fails (e.g., close- 239

up portraits lacking context, low-quality images), 240

we employ fallback strategies such as assigning an 241

empty string or a placeholder. These rare cases 242

minimally affect overall training and evaluation, 243

while preserving pipeline continuity and reducing 244

noise from unreliable visual inputs. 245
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Figure 2: Overview of the proposed framework architecture.

The enriched visual entities and captions are sub-246

sequently used to augment input features during247

multimodal model fine-tuning, enhancing the de-248

tection of semantic inconsistencies between image-249

text pairs.250

3.2 Prompt-tuning Strategy251

To effectively capture semantic alignment between252

visual and textual information, we adopt a prompt-253

tuning approach based on the Flan-T5 language254

model (Chung et al., 2022).255

Flan-T5 is an instruction-finetuned variant of256

the T5 model (Raffel et al., 2020), trained on a di-257

verse collection of tasks formulated as text-to-text258

transformations. It offers an excellent balance of259

efficiency, versatility, and performance, making it260

well-suited for resource-constrained scenarios. Its261

instruction-following capabilities facilitate gener-262

alization on downstream tasks with minimal task-263

specific fine-tuning, aligning well with our goals264

of lightweight and interpretable misinformation de-265

tection.266

3.2.1 Prompt Construction267

We cast the OOC misinformation detection task as268

a natural language inference problem. Each input269

is framed as a question that queries whether the270

image-related information supports the given news271

caption. The prompt template is manually designed272

as:273

Determine whether the news caption aligns
with the given image information.
News Caption: [CAPTION].
Image Information: [IMAGE-INFO].
Note: If no valid image description is avail-
able, consider only the news caption and
entities.
Conclusion: [MASK]

274

Here, [CAPTION] is the original news caption, 275

and [IMAGE-INFO] combines the detected visual 276

entities and generated image caption. [MASK] is 277

the token the model predicts to indicate alignment 278

or mismatch. 279

The Note line acts as a contingency instruction 280

for cases where image captioning fails or visual 281

content is unavailable, directing the model to rely 282

solely on textual inputs. This improves robustness 283

and leverages Flan-T5’s instruction tuning to dy- 284

namically adapt its reasoning based on input com- 285

pleteness. 286

This prompt formulation guides the model to 287

perform semantic comparison framed in natural 288

language, fully exploiting Flan-T5’s instruction- 289

following strengths. 290

3.2.2 Verbalizer Design 291

To map model outputs to the target classes, we 292

define a verbalizer associating specific output to- 293

kens with each label. The match class is linked 294

to words such as “match”, “correct”, “aligned”, 295

“consistent”, and “true”. The mismatch class cor- 296

responds to terms like “mismatch”, “incorrect”, 297

“not aligned”, “inconsistent”, and “false”. These 298
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associations facilitate interpretable token-to-label299

mapping, enhancing transparency in classification300

decisions.301

3.3 Model Architecture302

Our system ingests four input components per sam-303

ple: the news caption, the raw image, the list304

of visual entities, and the visual caption. These305

inputs feed two complementary models whose out-306

puts are fused for final classification, as illustrated307

in Figure 2.308

Flan-T5 Module We fine-tune Flan-T5 using the309

prompt template described above, leveraging the310

concatenated news caption, visual entities, and vi-311

sual caption. This lightweight language model312

learns to classify semantic consistency by produc-313

ing a probability distribution over the classes Pris-314

tine and Falsified. Flan-T5 excels at structured tex-315

tual reasoning with relatively low computational316

cost.317

CLIP Module In parallel, we fine-tune318

CLIP (Radford et al., 2021), a vision-language319

model trained to embed images and text into320

a shared latent space. Using the paired news321

caption and raw image, CLIP is trained to predict322

their alignment, also outputting class probabil-323

ities. CLIP is adept at capturing cross-modal324

correspondences between visual and textual data.325

Fusion We combine Flan-T5 and CLIP predic-326

tions through a weighted ensemble, where the fu-327

sion weight is optimized on a validation set. This328

ensemble leverages Flan-T5’s strengths in linguis-329

tic reasoning and CLIP’s visual-semantic alignment330

capabilities, leading to improved overall detection331

accuracy while maintaining efficiency and inter-332

pretability.333

4 Experiments334

4.1 Dataset335

The NewsCLIPpings dataset (Luo et al., 2021) is336

a large-scale benchmark specifically designed for337

multimodal fake news detection. Each sample in338

the dataset consists of a textual description and an339

accompanying image, and the dataset is divided340

into two categories: pristine samples, where the im-341

age and text are contextually aligned, and falsified342

samples, where the image has been replaced with a343

semantically similar one from a different event to344

create an OOC scenario.345

NewsCLIPpings is constructed from the Visu- 346

alNews (Liu et al., 2020) corpus, which sources 347

articles from major outlets such as the BBC, The 348

Guardian, USA Today, and The Washington Post. 349

It has become one of the most comprehensive 350

benchmarks for evaluating models on OOC misin- 351

formation detection. 352

Following previous studies, this project uses the 353

Merge/Balanced subset of the dataset, which con- 354

tains an equal number of real and fake samples. 355

It is split into 71,072 samples for training, 7,024 356

for validation, and 7,264 for testing, maintaining a 357

10:1:1 ratio. 358

4.2 Experimental Setup 359

All model training and inference were conducted 360

on a single NVIDIA A6000 GPU with 48 GB of 361

memory. We fine-tuned our prompt-based language 362

model using the OpenPrompt (Ding et al., 2021) 363

framework, along with PyTorch and scikit-learn for 364

model training and evaluation. 365

During fine-tuning, we adopted a grouped param- 366

eter optimization strategy. Parameters such as bias 367

and LayerNorm.weight were excluded from weight 368

decay and assigned a weight decay factor of zero. 369

All remaining parameters were regularized using a 370

weight decay factor of 0.01. Optimization was car- 371

ried out using the AdamW (Loshchilov and Hutter, 372

2019) optimizer, with the learning rate set to 1e-4. 373

The loss function used was cross-entropy (Mannor 374

et al., 2005) loss. We used a batch size of 16 and 375

trained the model for a total of 10 epochs. 376

To explore the balance between efficiency and 377

performance, we conducted experiments with both 378

Flan-T5-Small and Flan-T5-Large (Chung et al., 379

2022). CLIP (Radford et al., 2021) was fine-tuned 380

using the ViT-B/32 (Dosovitskiy et al., 2020) vari- 381

ant with paired image and caption data. 382

5 Results 383

5.1 Performance Comparison 384

We present a comparative analysis of our model’s 385

performance against a series of state-of-the-art 386

(SOTA) baselines on the NewsCLIPpings dataset. 387

To ensure fairness, we restrict our comparison to 388

models that do not utilize external evidence such 389

as web search information, and maintain relatively 390

small parameter sizes to ensure efficiency and fea- 391

sibility in real-world scenarios. 392

The baselines include two models trained 393

from scratch — SAFE (Zhou et al., 2020) and 394
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Model Accuracy (%)
SAFE 52.8
EANN 58.1
VisualBERT 58.6
VINVL 65.4
SSDL 65.6
CLIP 66.0
SDG 68.0
Neu-Sym detector 68.2
GPT-4o 70.7
DPOD 74.4
DT-Transformer 77.1
Ours 84.4

Table 1: Performance comparison between our model
and baselines.

EANN (Wang et al., 2018) — as well as a variety of395

models leveraging pre-trained architectures, such396

as VisualBERT (Li et al., 2019), VINVL (Huang397

et al., 2022), SSDL (Mu et al., 2023), CLIP (Rad-398

ford et al., 2021), SDG (Shalabi et al., 2023), Neu-399

Sym detector (Zhang et al., 2023), GPT-4o (Ope-400

nAI, 2024b), DPOD (Bhattacharya et al., 2023),401

and DT-Transformer (Papadopoulos et al., 2023).402

The performance metrics for these models are col-403

lected from existing literature and published bench-404

mark results.405

As shown in the Table 1, our proposed406

method achieves 84.4% accuracy, outperform-407

ing all listed baselines by a significant margin.408

This demonstrates the effectiveness of combining409

lightweight prompt-tuned language models and410

image-language models through a weighted fusion411

strategy.412

Compared to models like CLIP or even more413

recent ones like DPOD and DT-Transformer, our414

model maintains a competitive advantage without415

relying on large-scale parameters or external evi-416

dence. The performance gain can be attributed to417

the enriched visual understanding from both entity-418

level and caption-level information, and the syn-419

ergy between the prompt-based text model and the420

vision-language alignment model.421

These results confirm that our method sets a new422

standard for efficient and accurate OOC misinfor-423

mation detection in the absence of external verifi-424

cation resources.425

5.2 Ablation Study426

To investigate the contribution of different compo-427

nents in our model, we conduct an ablation study on428

Model VisCap Fusion All Fake Real F1 Score
Flan-T5-Small % % 75.3 75.2 75.3 0.75
Flan-T5-Small % ! 79.0 78.7 79.2 0.79
Flan-T5-Small ! % 80.7 78.5 82.9 0.80
Flan-T5-Small ! ! 81.8 80.3 83.3 0.81
Flan-T5-Large % % 76.8 85.3 68.3 0.79
Flan-T5-Large % ! 80.9 83.3 78.4 0.81
Flan-T5-Large ! % 83.9 87.5 80.3 0.84
Flan-T5-Large ! ! 84.4 87.8 80.9 0.85

Table 2: Ablation study of visual caption and fusion
strategies. The table reports both Accuracy and F1 Score
for each configuration.

both the Flan-T5-Small and Flan-T5-Large back- 429

bones. Specifically, we examine the impact of two 430

key factors: (1) the inclusion of visual captions 431

in image representation, and (2) the integration of 432

the prompt-tuned language model with CLIP. The 433

results are summarized in Table 2. 434

From the results, we observe the following: 435

• Adding visual captions significantly improves 436

both models. For instance, Flan-T5-Small’s 437

accuracy rises from 75.3% to 80.7% without 438

CLIP, thanks to the rich semantic context cap- 439

tions provide—coherent sentences that go be- 440

yond sparse entity labels. When combined 441

with CLIP, the gain remains at 1.1%, suggest- 442

ing partial redundancy but still a complemen- 443

tary effect. 444

• Integrating CLIP consistently boosts perfor- 445

mance by enhancing cross-modal alignment. 446

Flan-T5-Small improves from 75.3% to 79.0% 447

with CLIP alone. For Flan-T5-Large, CLIP 448

adds 4.1%, while visual captions offer a larger 449

gain of 7.1%, indicating the larger model cap- 450

tures some of CLIP’s functionality, reducing 451

its marginal impact. 452

• The highest performance is achieved when 453

combining both cues. Flan-T5-Large with vi- 454

sual captions and CLIP reaches 84.4% accu- 455

racy and an F1 score of 0.85, demonstrating 456

the benefit of fusing semantic richness with 457

cross-modal reasoning, even without relying 458

on external evidence. 459

• Flan-T5-Large consistently outperforms its 460

smaller counterpart across all settings. How- 461

ever, with nearly 10 times more parameters, 462

it comes at a significant computational cost. 463

This highlights the practical value of Flan-T5- 464

Small, which achieves strong results when 465
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Figure 3: Three representative error cases selected from the test set.

paired with visual captions and CLIP, offering466

a more efficient option for deployment.467

These results validate our design choices and468

confirm that each component contributes positively469

to the final performance. In particular, the combi-470

nation of visual captioning and cross-modal fusion471

via CLIP is essential for achieving SOTA results472

within the class of models that operate without ac-473

cessing external evidence sources.474

5.3 Error Analysis475

To better understand our model’s limitations, we476

conducted a qualitative analysis of misclassified477

test samples. Figure 3 presents three representative478

cases highlighting common failure modes: tempo-479

ral ambiguity, contextual mismatch, and modality480

imbalance.481

In the first case, the caption correctly describes482

Virginia Tech’s humanoid robot and its unavail-483

ability until 2014. Despite relevant visual content,484

the model misclassified it as fake due to a lack of485

temporal cues in the image, revealing difficulty in486

reasoning about abstract, time-sensitive concepts.487

The second case involves a fake caption refer-488

encing the Venetian Macau’s gambling tables. The489

image, however, depicts a generic shopping-like490

scene with entities such as “Display window” and491

“Shopping”. The model incorrectly predicted it as492

real, showing its struggle with fine-grained location493

grounding and named-entity resolution.494

In the third case, the caption discusses iOS 8495

issues, paired with an image of someone holding496

an iPhone 6. Flan-T5 flagged it as fake due to a per-497

ceived mismatch between software and hardware,498

while CLIP focused on topical relevance. The final499

ensemble prediction was correct, showcasing the 500

models’ complementary strengths. 501

These errors suggest future improvements could 502

come from enhanced temporal reasoning, better 503

visual grounding, and retrieval-based verification. 504

5.4 Discussion 505

In previous sections, we demonstrated that our 506

model achieves the highest accuracy among all 507

methods that do not rely on external evidence. 508

However, we acknowledge that real, trustworthy, 509

and high-quality evidence can significantly im- 510

prove performance. Compared to evidence-based 511

models (Abdelnabi et al., 2022; Yuan et al., 2023; 512

Qi et al., 2024; Lakara et al., 2024), our model 513

exhibits approximately a 5% drop in accuracy. In 514

this section, we investigate how our model com- 515

plements evidence-based reasoning and analyze 516

the benefits and limitations of incorporating such 517

external information. 518

We conducted a supplementary experiment us- 519

ing 200 test samples (balanced real/fake). For each 520

image, we used Google Vision API (Google, 2019) 521

to retrieve webpages, following the protocol in (Ab- 522

delnabi et al., 2022). This yielded 136 valid search 523

results, from which 112 samples produced usable 524

textual evidence (e.g., titles, image captions). 525

We evaluated three settings: Flan-T5-Large 526

alone, GPT-4o mini with evidence, and a weighted 527

fusion of both. As shown in Table 3, on the full 200- 528

sample set, the fusion model reached 88.0% accu- 529

racy—just 2% higher than Flan-T5-Large—due to 530

GPT-4o mini’s poor performance without evidence. 531

However, on the 112 samples with valid evidence, 532

fusion achieved 94.6%, outperforming Flan-T5- 533

Large by 7.1% and GPT-4o mini by 1.7%. These 534
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Model Setting Accuracy (%)
Flan-T5-Large All 200 samples 86.0
GPT-4o mini All 200 samples 85.0
Fusion All 200 samples 88.0
Flan-T5-Large 112 samples with evidence 87.5
GPT-4o mini 112 samples with evidence 92.9
Fusion 112 samples with evidence 94.6

Table 3: Accuracy comparison of different models under
varying evidence availability.

results underscore the value of combining mul-535

timodal reasoning with retrieved evidence when536

available.537

Despite the promising results, several limitations538

emerged during this process. First, only 56% of the539

samples yielded valid evidence. In many cases, no540

relevant webpages were returned, or the retrieved541

pages lacked accessible or meaningful metadata.542

This significantly limits the scalability and consis-543

tency of evidence-based approaches, particularly in544

time-sensitive or obscure scenarios where relevant545

web content may be scarce or non-indexed.546

Second, for a subset of webpages, the evidence547

retrieval process was noticeably slow. Some pages548

contained excessive multimedia content, such as549

high-resolution images, videos, or dynamic load-550

ing structures, which increased parsing time and551

sometimes led to failure in extracting relevant text.552

These issues not only make it difficult to generate553

the entire evidence dataset, but also pose challenges554

for real-time deployment.555

Third, there exists a potential risk in the quality556

and reliability of retrieved evidence itself. Some557

top-ranked sources may come from user-generated558

content or posts from platforms like X, Facebook,559

or non-reputable news websites. When the evi-560

dence comes from such sources, it may itself be561

misleading or entirely false, compounding the mis-562

information problem rather than mitigating it. This563

introduces a new form of vulnerability where the564

model may incorrectly validate fake content based565

on unreliable evidence.566

While we do not position our model as univer-567

sally lightweight, it is substantially more efficient568

than recent high-performing models such as SNIF-569

FER (Qi et al., 2024), which rely on multimodal570

large language models and web evidence retrieval.571

Compared to SNIFFER, which uses models exceed-572

ing 13B parameters, our system (under 1B parame-573

ters) is over 90% smaller. Despite this, it achieves574

84.4% accuracy (vs. 88.4%), with only a 4% drop,575

and requires no evidence pipeline—making it sig-576

nificantly faster and more deployable in practice.577

This trade-off reflects a deliberate balance be- 578

tween performance and efficiency, making our 579

model more suitable for scalable or latency- 580

sensitive applications. Rather than claiming ab- 581

solute lightweight design, we emphasize its practi- 582

cality relative to heavier architectures. 583

6 Conclusion 584

In this paper, we proposed a multimodal framework 585

for detecting out-of-context misinformation by in- 586

tegrating visual captioning, CLIP-based alignment, 587

and a prompt-tuned Flan-T5 model. Experiments 588

demonstrate strong performance without external 589

evidence, outperforming prior methods in this set- 590

ting. Further improvements were observed by com- 591

bining our model with GPT-based evidence rea- 592

soning, highlighting its adaptability to real-world 593

scenarios where evidence is partially available. 594

Future work will focus on enhancing the use of 595

external evidence to further improve detection accu- 596

racy. Although incorporating web-based evidence 597

has shown promising gains, better strategies are 598

needed for handling such evidence efficiently and 599

reliably. This includes expanding image-based web 600

retrieval coverage, improving the speed and preci- 601

sion of content extraction through focused scraping, 602

and developing automated methods to assess the 603

credibility of retrieved sources. Additionally, ex- 604

ploring fine-grained image grounding and temporal 605

reasoning may help capture more nuanced or time- 606

sensitive mismatches between images and text. 607
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Limitations608

While our approach demonstrates strong perfor-609

mance without relying on external evidence, it still610

encounters notable challenges. Compared to mod-611

els that leverage high-quality external evidence,612

our model exhibits lower accuracy. It also strug-613

gles with understanding abstract temporal refer-614

ences, accurately grounding fine-grained location615

claims, and detecting subtle inconsistencies across616

modalities. These limitations are particularly evi-617

dent in complex real-world scenarios where visual618

and textual elements diverge in nuanced or context-619

dependent ways.620

In our further experiments with external web621

evidence, we found that retrieving relevant support-622

ing content is not always feasible. Many samples623

could not be matched to appropriate webpages, and624

even when matches were found, the extraction pro-625

cess was often hindered by webpage structure and626

noise. Moreover, relying on external sources intro-627

duces the risk of incorporating misleading or low-628

credibility content, especially from social media629

or unverified platforms. These issues collectively630

affect the consistency, reliability, and scalability631

of evidence-based enhancements, highlighting the632

need for more robust and trustworthy retrieval and633

filtering mechanisms.634
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