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Abstract

The proliferation of multimodal misinforma-
tion, particularly Out-of-Context (OOC) image-
text mismatches, poses significant challenges
for reliable information verification. Existing
detection approaches often rely on unimodal
signals, limiting their capacity to capture nu-
anced cross-modal inconsistencies. Although
recent multimodal methods have improved per-
formance, many depend on large-scale architec-
tures or external web evidence, which hinders
scalability and practical deployment. In this
work, we introduce a lightweight and evidence-
free framework for OOC misinformation de-
tection that achieves competitive performance
with high efficiency. Our approach enhances
visual understanding by integrating semantic
entity extraction and generated visual captions,
which are fused with the accompanying tex-
tual caption and input to a prompt-tuned Flan-
TS5 model. Simultaneously, a fine-tuned CLIP
model evaluates image-text alignment. The
outputs of both models are combined via a
validation-optimized weighted ensemble. Ex-
tensive experiments on the NewsCLIPpings
dataset demonstrate that our method achieves
state-of-the-art accuracy among evidence-free
techniques, while offering low computational
overhead and strong interpretability, making it
well-suited for real-world applications.

1 Introduction

Fake news refers to intentionally disseminated false
or misleading information, typically in the form of
news reports, designed to influence public opin-
ion, shape emotions, or achieve specific political,
economic, or social objectives (Shu et al., 2017;
Kouzy et al., 2020). Among various manifesta-
tions of fake news, Out-of-Context (OOC) misin-
formation—where images and textual content are
deliberately misaligned to deceive audiences—has
emerged as a particularly challenging and perva-
sive problem. Unlike conventional fake news that

fabricates textual content, OOC misinformation
exploits authentic media elements in misleading
contexts, complicating detection efforts relying on
traditional fact-checking techniques. Figure 1 illus-
trates two real-world examples of OOC image-text
pairs that have been falsely propagated on social
media.

Existing research on misinformation detection
can be broadly categorized into three approaches:
text-based, image-based, and multimodal. Text-
based methods (Ma et al., 2016; Yu et al., 2019;
Shu et al., 2019; Dun et al., 2021) typically lever-
age natural language processing techniques to an-
alyze linguistic patterns, writing style, sentiment,
and contextual cues for fake news identification.
While effective for purely textual misinformation,
these approaches often struggle to detect deception
embedded in accompanying visual content.

Image-based techniques (Qi et al., 2019) utilize
computer vision methods—such as tampering de-
tection, deepfake analysis, and visual anomaly de-
tection—to identify manipulated or misleading im-
ages. However, these methods typically overlook
the semantic relationship between images and their
textual context, rendering them ineffective at de-
tecting cross-modal inconsistencies.

Neither unimodal strategy suffices for detecting
OOC misinformation, where the core deception
arises from incongruities between the textual and
visual modalities—a tactic frequently employed in
social media disinformation campaigns. Authentic
images may be paired with fabricated captions or
vice versa, making it crucial to jointly evaluate both
modalities.

In response, multimodal deep learning ap-
proaches have gained traction (Singhal et al., 2019;
Giachanou et al., 2020), often leveraging trans-
former architectures (Dosovitskiy et al., 2020)
and convolutional neural networks to model cross-
modal relationships. These methods aim to capture
semantic inconsistencies between image-caption
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Figure 1: Examples of OOC fake news. Top: A 2014 Ohio fire misrepresented as Diddy’s 2025 LA mansion.
Bottom: A 2011 Obama visit crowd falsely claimed to be from a Trump rally.

pairs, achieving promising results. Nonetheless,
challenges remain with respect to classification ac-
curacy, reliance on external evidence for verifica-
tion, and computational inefficiency, particularly
for deployment at scale.

In this work, we address these limitations by in-
corporating enriched image-derived semantic cues,
including visual captions and entity recognition, to
strengthen multimodal feature representations. Our
framework fine-tunes and optimally fuses outputs
from pretrained text and image encoders, improv-
ing detection accuracy without sacrificing compu-
tational efficiency. This positions our approach as
a practical solution for real-world OOC misinfor-
mation detection. Our contributions are as follows:

* We propose an evidence-free multimodal
framework that achieves strong performance
with high computational efficiency for OOC
misinformation detection, combining seman-
tic entity recognition and generated visual cap-
tions to enrich visual feature representation.

* We introduce a weighted ensemble strategy
optimized on a validation set to effectively
fuse predictions from the two modalities.

» Extensive experiments on the NewsCLIP-
pings dataset demonstrate that our approach
achieves state-of-the-art accuracy among
evidence-free methods, with reduced compu-
tational overhead and increased interpretabil-

ity.

2 Related Work

2.1 Out-of-Context Misinformation Detection

Out-of-Context (OOC) misinformation involves au-
thentic images or videos repurposed with mislead-
ing textual descriptions, posing a subtle yet im-
pactful challenge in fake news detection. Early
unimodal methods (Ma et al., 2016; Yu et al., 2019;
Shu et al., 2019; Dun et al., 2021; Qi et al., 2019)
and initial multimodal approaches (Khattar et al.,
2019; Kumari and Ekbal, 2021; Singhal et al., 2019;
Giachanou et al., 2020; Hua et al., 2023) have con-
tributed to fake news detection, but often struggle
to capture the semantic inconsistencies between
visual and textual content that characterize OOC
misinformation. Luo et al. (Luo et al., 2021) intro-
duced the NewsCLIPpings dataset to systematically
benchmark image-text mismatches, demonstrating
the difficulty both humans and machines face in
this task.

To improve detection, some approaches utilize
external evidence sources. For example, Abdelnabi
et al. (Abdelnabi et al., 2022) retrieved web con-
tent to verify consistency among images, captions,
and related articles, proposing a Cross-Modal Con-
sistency Network (CCN) to jointly evaluate multi-
modal and metadata alignment. However, reliance
on external evidence can limit applicability due to
evidence availability, retrieval latency, and poten-
tial reliability issues.

Alternative evidence-free methods have also
been proposed. SSDL (Mu et al., 2023) leverages



self-supervised multimodal pretraining and knowl-
edge distillation to improve cross-modal represen-
tation alignment. DPOD (Bhattacharya et al., 2023)
adapts CLIP models with domain-aware prompts
and out-of-domain examples to enhance generaliza-
tion across varied misinformation topics. Despite
robustness gains, such latent feature-based models
often lack interpretability. To enhance explainabil-
ity, Zhang et al. (Zhang et al., 2023) employed
Abstract Meaning Representation to convert text
into fact-based queries for visual verification, im-
proving transparency.

More recently, Multimodal Large Language
Models (MLLMSs) like InstructBLIP have been ex-
plored for OOC detection. SNIFFER (Qi et al.,
2024) fine-tuned MLLMs on GPT-4-generated in-
structions to improve reasoning in news verifica-
tion. LLM-Consensus (Lakara et al., 2024) pro-
poses lightweight, explainable frameworks through
dialectic debates among LL.M agents, avoiding
task-specific fine-tuning. Nevertheless, these ap-
proaches are computationally expensive and re-
quire continual model updates. Moreover, as high-
lighted by Yan et al. (Yan et al., 2025), dependence
on external evidence—particularly web content in-
creasingly polluted by Al-generated misinforma-
tion—introduces critical vulnerabilities that can
drastically degrade model reliability.

In summary, while current methods advance
OOC detection, challenges persist related to de-
pendence on external evidence, limited generaliza-
tion, computational inefficiency, and lack of inter-
pretability. These limitations motivate the need
for compact, evidence-free approaches that achieve
strong accuracy, scalability, and transparency.

2.2 Prompt-based Learning

Prompt-based learning reformulates downstream
tasks as natural language inference problems
through designed input templates, rather than ap-
pending task-specific output heads (Brown et al.,
2020; Liu et al., 2022). This paradigm aligns bet-
ter with large pretrained language models’ (PLMs)
original training and enhances generalization.
Instruction-tuned models such as Flan-
T5 (Chung et al., 2022) have demonstrated strong
performance with minimal labeled data, excelling
in zero- and few-shot scenarios (Gao et al., 2020).
Their responsiveness to natural language prompts
enables flexible and interpretable task definitions.
In this work, we leverage the OpenPrompt frame-
work (Ding et al., 2021) to design effective prompt

templates for multimodal misinformation detec-
tion. By framing the task as masked prediction
guided by natural prompts, we exploit Flan-T5’s
instruction-following capability, improving align-
ment with human reasoning and enhancing model
interpretability.

3 Methodology

3.1 Visual Information Augmentation

To enrich the model’s understanding of visual con-
tent beyond raw pixel data, we incorporate high-
level semantic cues extracted via two complemen-
tary strategies.

First, we obtain visual entities (e.g., “person”,

“car”, “building”) for each image using the Google

Vision API (Google, 2019). Unlike implicit seman-
tics learned end-to-end, these explicit annotations
offer interpretability and modularity by summariz-
ing the most salient image elements. This helps
the model focus on crucial visual cues when cross-
referencing with textual captions. Additionally, the
API has demonstrated robustness across diverse
domains, ensuring consistency on real-world news
images. These annotations are sourced from the
preprocessed dataset in (Abdelnabi et al., 2022),
facilitating reproducibility and straightforward in-
tegration.

Second, we generate visual captions using
the GPT-40 mini model from OpenAl (OpenAl,
2024a). Unlike traditional captioning models
trained on fixed datasets, GPT-40 mini benefits
from multimodal instruction tuning, enabling it to
produce context-aware, human-like descriptions. It
strikes an effective balance between accuracy, infer-
ence speed, and resource efficiency.These captions
provide an additional textual abstraction comple-
menting raw images and entity annotations.

While our current implementation focuses solely
on GPT-40 mini, we selected it for its ease of in-
tegration, competitive performance in preliminary
tests, and suitability for scalable deployment. Fu-
ture work can explore a broader comparison with
dedicated visual captioning models.

For a small subset of images (approximately
1.6%) where caption generation fails (e.g., close-
up portraits lacking context, low-quality images),
we employ fallback strategies such as assigning an
empty string or a placeholder. These rare cases
minimally affect overall training and evaluation,
while preserving pipeline continuity and reducing
noise from unreliable visual inputs.
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Figure 2: Overview of the proposed framework architecture.

The enriched visual entities and captions are sub-
sequently used to augment input features during
multimodal model fine-tuning, enhancing the de-
tection of semantic inconsistencies between image-
text pairs.

3.2 Prompt-tuning Strategy

To effectively capture semantic alignment between
visual and textual information, we adopt a prompt-
tuning approach based on the Flan-T5 language
model (Chung et al., 2022).

Flan-T5 is an instruction-finetuned variant of
the TS5 model (Raffel et al., 2020), trained on a di-
verse collection of tasks formulated as text-to-text
transformations. It offers an excellent balance of
efficiency, versatility, and performance, making it
well-suited for resource-constrained scenarios. Its
instruction-following capabilities facilitate gener-
alization on downstream tasks with minimal task-
specific fine-tuning, aligning well with our goals
of lightweight and interpretable misinformation de-
tection.

3.2.1 Prompt Construction

We cast the OOC misinformation detection task as
a natural language inference problem. Each input
is framed as a question that queries whether the
image-related information supports the given news
caption. The prompt template is manually designed
as:

Determine whether the news caption aligns
with the given image information.

News Caption: [CAPTION].

Image Information: [IMAGE-INFO].

Note: If no valid image description is avail-
able, consider only the news caption and
entities.

Conclusion: [MASK]

Here, [CAPTION] is the original news caption,
and [IMAGE-INFO] combines the detected visual
entities and generated image caption. [MASK] is
the token the model predicts to indicate alignment
or mismatch.

The Note line acts as a contingency instruction
for cases where image captioning fails or visual
content is unavailable, directing the model to rely
solely on textual inputs. This improves robustness
and leverages Flan-T5’s instruction tuning to dy-
namically adapt its reasoning based on input com-
pleteness.

This prompt formulation guides the model to
perform semantic comparison framed in natural
language, fully exploiting Flan-T5’s instruction-
following strengths.

3.2.2 Verbalizer Design

To map model outputs to the target classes, we
define a verbalizer associating specific output to-
kens with each label. The match class is linked
to words such as “match”, “correct”, “aligned”,
“consistent”, and “true”. The mismatch class cor-
responds to terms like “mismatch”, “incorrect”,

“not aligned”, “inconsistent”, and “false”. These



associations facilitate interpretable token-to-label
mapping, enhancing transparency in classification
decisions.

3.3 Model Architecture

Our system ingests four input components per sam-
ple: the news caption, the raw image, the list
of visual entities, and the visual caption. These
inputs feed two complementary models whose out-
puts are fused for final classification, as illustrated
in Figure 2.

Flan-T5 Module We fine-tune Flan-T5 using the
prompt template described above, leveraging the
concatenated news caption, visual entities, and vi-
sual caption. This lightweight language model
learns to classify semantic consistency by produc-
ing a probability distribution over the classes Pris-
tine and Falsified. Flan-T5 excels at structured tex-
tual reasoning with relatively low computational
cost.

CLIP Module In parallel, we fine-tune
CLIP (Radford et al., 2021), a vision-language
model trained to embed images and text into
a shared latent space. Using the paired news
caption and raw image, CLIP is trained to predict
their alignment, also outputting class probabil-
ities. CLIP is adept at capturing cross-modal
correspondences between visual and textual data.

Fusion We combine Flan-T5 and CLIP predic-
tions through a weighted ensemble, where the fu-
sion weight is optimized on a validation set. This
ensemble leverages Flan-T5’s strengths in linguis-
tic reasoning and CLIP’s visual-semantic alignment
capabilities, leading to improved overall detection
accuracy while maintaining efficiency and inter-
pretability.

4 Experiments

4.1 Dataset

The NewsCLIPpings dataset (Luo et al., 2021) is
a large-scale benchmark specifically designed for
multimodal fake news detection. Each sample in
the dataset consists of a textual description and an
accompanying image, and the dataset is divided
into two categories: pristine samples, where the im-
age and text are contextually aligned, and falsified
samples, where the image has been replaced with a
semantically similar one from a different event to
create an OOC scenario.

NewsCLIPpings is constructed from the Visu-
alNews (Liu et al., 2020) corpus, which sources
articles from major outlets such as the BBC, The
Guardian, USA Today, and The Washington Post.
It has become one of the most comprehensive
benchmarks for evaluating models on OOC misin-
formation detection.

Following previous studies, this project uses the
Merge/Balanced subset of the dataset, which con-
tains an equal number of real and fake samples.
It is split into 71,072 samples for training, 7,024
for validation, and 7,264 for testing, maintaining a
10:1:1 ratio.

4.2 Experimental Setup

All model training and inference were conducted
on a single NVIDIA A6000 GPU with 48 GB of
memory. We fine-tuned our prompt-based language
model using the OpenPrompt (Ding et al., 2021)
framework, along with PyTorch and scikit-learn for
model training and evaluation.

During fine-tuning, we adopted a grouped param-
eter optimization strategy. Parameters such as bias
and LayerNorm.weight were excluded from weight
decay and assigned a weight decay factor of zero.
All remaining parameters were regularized using a
weight decay factor of 0.01. Optimization was car-
ried out using the AdamW (Loshchilov and Hutter,
2019) optimizer, with the learning rate set to 1e-4.
The loss function used was cross-entropy (Mannor
et al., 2005) loss. We used a batch size of 16 and
trained the model for a total of 10 epochs.

To explore the balance between efficiency and
performance, we conducted experiments with both
Flan-T5-Small and Flan-T5-Large (Chung et al.,
2022). CLIP (Radford et al., 2021) was fine-tuned
using the ViT-B/32 (Dosovitskiy et al., 2020) vari-
ant with paired image and caption data.

5 Results

5.1 Performance Comparison

We present a comparative analysis of our model’s
performance against a series of state-of-the-art
(SOTA) baselines on the NewsCLIPpings dataset.
To ensure fairness, we restrict our comparison to
models that do not utilize external evidence such
as web search information, and maintain relatively
small parameter sizes to ensure efficiency and fea-
sibility in real-world scenarios.

The baselines include two models trained
from scratch — SAFE (Zhou et al., 2020) and



Model Accuracy (%)
SAFE 52.8
EANN 58.1
Visual BERT 58.6
VINVL 65.4
SSDL 65.6
CLIP 66.0
SDG 68.0
Neu-Sym detector 68.2
GPT-40 70.7
DPOD 74.4
DT-Transformer 77.1
Ours 84.4

Table 1: Performance comparison between our model
and baselines.

EANN (Wang et al., 2018) — as well as a variety of
models leveraging pre-trained architectures, such
as VisualBERT (Li et al., 2019), VINVL (Huang
et al., 2022), SSDL (Mu et al., 2023), CLIP (Rad-
ford et al., 2021), SDG (Shalabi et al., 2023), Neu-
Sym detector (Zhang et al., 2023), GPT-40 (Ope-
nAl, 2024b), DPOD (Bhattacharya et al., 2023),
and DT-Transformer (Papadopoulos et al., 2023).
The performance metrics for these models are col-
lected from existing literature and published bench-
mark results.

As shown in the Table 1, our proposed
method achieves 84.4% accuracy, outperform-
ing all listed baselines by a significant margin.
This demonstrates the effectiveness of combining
lightweight prompt-tuned language models and
image-language models through a weighted fusion
strategy.

Compared to models like CLIP or even more
recent ones like DPOD and DT-Transformer, our
model maintains a competitive advantage without
relying on large-scale parameters or external evi-
dence. The performance gain can be attributed to
the enriched visual understanding from both entity-
level and caption-level information, and the syn-
ergy between the prompt-based text model and the
vision-language alignment model.

These results confirm that our method sets a new
standard for efficient and accurate OOC misinfor-
mation detection in the absence of external verifi-
cation resources.

5.2 Ablation Study

To investigate the contribution of different compo-
nents in our model, we conduct an ablation study on

Model VisCap Fusion All Fake Real F1 Score
Flan-T5-Small X X 753 752 753 075
Flan-T5-Small X v 790 787 792 079
Flan-T5-Small v/ X 807 785 829 080
Flan-T5-Small v/ v/ 818 803 833 03I
Flan-T5-Large X X 768 853 683 079
Flan-T5-Large X v/ 809 833 784 08l
Flan-T5-Large v/ X 839 875 803 084
Flan-T5-Large v/ v/ 844 878 809 085

Table 2: Ablation study of visual caption and fusion
strategies. The table reports both Accuracy and F1 Score
for each configuration.

both the Flan-T5-Small and Flan-T5-Large back-
bones. Specifically, we examine the impact of two
key factors: (1) the inclusion of visual captions
in image representation, and (2) the integration of
the prompt-tuned language model with CLIP. The
results are summarized in Table 2.

From the results, we observe the following:

* Adding visual captions significantly improves
both models. For instance, Flan-T5-Small’s
accuracy rises from 75.3% to 80.7% without
CLIP, thanks to the rich semantic context cap-
tions provide—coherent sentences that go be-
yond sparse entity labels. When combined
with CLIP, the gain remains at 1.1%, suggest-
ing partial redundancy but still a complemen-
tary effect.

Integrating CLIP consistently boosts perfor-
mance by enhancing cross-modal alignment.
Flan-T5-Small improves from 75.3% to 79.0%
with CLIP alone. For Flan-T5-Large, CLIP
adds 4.1%, while visual captions offer a larger
gain of 7.1%, indicating the larger model cap-
tures some of CLIP’s functionality, reducing
its marginal impact.

* The highest performance is achieved when
combining both cues. Flan-T5-Large with vi-
sual captions and CLIP reaches 84.4% accu-
racy and an F1 score of 0.85, demonstrating
the benefit of fusing semantic richness with
cross-modal reasoning, even without relying
on external evidence.

* Flan-T5-Large consistently outperforms its
smaller counterpart across all settings. How-
ever, with nearly 10 times more parameters,
it comes at a significant computational cost.
This highlights the practical value of Flan-T5-
Small, which achieves strong results when



Caption: Virginia Tech s Thor includes
artificial elastic muscles. It will not be
ready until 2014 so will be replaced by a
less advanced substitute at this stage.
Ground Truth: Real

Prediction: Fake

Caption: Gambling tables at Venetian
Macau Queensland wants some Asian
highrollers too.
Ground Truth: Fake
Prediction: Real

Caption: Apple experienced problems of
its own following the release of i0S 8.
Ground Truth: Real

Prediction (FlanT5): Fake

Figure 3: Three representative error cases selected from the test set.

paired with visual captions and CLIP, offering
a more efficient option for deployment.

These results validate our design choices and
confirm that each component contributes positively
to the final performance. In particular, the combi-
nation of visual captioning and cross-modal fusion
via CLIP is essential for achieving SOTA results
within the class of models that operate without ac-
cessing external evidence sources.

5.3 Error Analysis

To better understand our model’s limitations, we
conducted a qualitative analysis of misclassified
test samples. Figure 3 presents three representative
cases highlighting common failure modes: tempo-
ral ambiguity, contextual mismatch, and modality
imbalance.

In the first case, the caption correctly describes
Virginia Tech’s humanoid robot and its unavail-
ability until 2014. Despite relevant visual content,
the model misclassified it as fake due to a lack of
temporal cues in the image, revealing difficulty in
reasoning about abstract, time-sensitive concepts.

The second case involves a fake caption refer-
encing the Venetian Macau’s gambling tables. The
image, however, depicts a generic shopping-like
scene with entities such as “Display window” and
“Shopping”. The model incorrectly predicted it as
real, showing its struggle with fine-grained location
grounding and named-entity resolution.

In the third case, the caption discusses iOS 8
issues, paired with an image of someone holding
an iPhone 6. Flan-T5 flagged it as fake due to a per-
ceived mismatch between software and hardware,
while CLIP focused on topical relevance. The final

ensemble prediction was correct, showcasing the
models’ complementary strengths.

These errors suggest future improvements could
come from enhanced temporal reasoning, better
visual grounding, and retrieval-based verification.

5.4 Discussion

In previous sections, we demonstrated that our
model achieves the highest accuracy among all
methods that do not rely on external evidence.
However, we acknowledge that real, trustworthy,
and high-quality evidence can significantly im-
prove performance. Compared to evidence-based
models (Abdelnabi et al., 2022; Yuan et al., 2023;
Qi et al., 2024; Lakara et al., 2024), our model
exhibits approximately a 5% drop in accuracy. In
this section, we investigate how our model com-
plements evidence-based reasoning and analyze
the benefits and limitations of incorporating such
external information.

We conducted a supplementary experiment us-
ing 200 test samples (balanced real/fake). For each
image, we used Google Vision API (Google, 2019)
to retrieve webpages, following the protocol in (Ab-
delnabi et al., 2022). This yielded 136 valid search
results, from which 112 samples produced usable
textual evidence (e.g., titles, image captions).

We evaluated three settings: Flan-T5-Large
alone, GPT-40 mini with evidence, and a weighted
fusion of both. As shown in Table 3, on the full 200-
sample set, the fusion model reached 88.0% accu-
racy—just 2% higher than Flan-T5-Large—due to
GPT-40 mini’s poor performance without evidence.
However, on the 112 samples with valid evidence,
fusion achieved 94.6%, outperforming Flan-T5-
Large by 7.1% and GPT-40 mini by 1.7%. These



Model Setting Accuracy (%)
Flan-T5-Large All 200 samples 86.0
GPT-40 mini All 200 samples 85.0
Fusion All 200 samples 88.0
Flan-T5-Large 112 samples with evidence 87.5
GPT-40 mini 112 samples with evidence 92.9
Fusion 112 samples with evidence 94.6

Table 3: Accuracy comparison of different models under
varying evidence availability.

results underscore the value of combining mul-
timodal reasoning with retrieved evidence when
available.

Despite the promising results, several limitations
emerged during this process. First, only 56% of the
samples yielded valid evidence. In many cases, no
relevant webpages were returned, or the retrieved
pages lacked accessible or meaningful metadata.
This significantly limits the scalability and consis-
tency of evidence-based approaches, particularly in
time-sensitive or obscure scenarios where relevant
web content may be scarce or non-indexed.

Second, for a subset of webpages, the evidence
retrieval process was noticeably slow. Some pages
contained excessive multimedia content, such as
high-resolution images, videos, or dynamic load-
ing structures, which increased parsing time and
sometimes led to failure in extracting relevant text.
These issues not only make it difficult to generate
the entire evidence dataset, but also pose challenges
for real-time deployment.

Third, there exists a potential risk in the quality
and reliability of retrieved evidence itself. Some
top-ranked sources may come from user-generated
content or posts from platforms like X, Facebook,
or non-reputable news websites. When the evi-
dence comes from such sources, it may itself be
misleading or entirely false, compounding the mis-
information problem rather than mitigating it. This
introduces a new form of vulnerability where the
model may incorrectly validate fake content based
on unreliable evidence.

While we do not position our model as univer-
sally lightweight, it is substantially more efficient
than recent high-performing models such as SNIF-
FER (Qi et al., 2024), which rely on multimodal
large language models and web evidence retrieval.
Compared to SNIFFER, which uses models exceed-
ing 13B parameters, our system (under 1B parame-
ters) is over 90% smaller. Despite this, it achieves
84.4% accuracy (vs. 88.4%), with only a 4% drop,
and requires no evidence pipeline—making it sig-
nificantly faster and more deployable in practice.

This trade-off reflects a deliberate balance be-
tween performance and efficiency, making our
model more suitable for scalable or latency-
sensitive applications. Rather than claiming ab-
solute lightweight design, we emphasize its practi-
cality relative to heavier architectures.

6 Conclusion

In this paper, we proposed a multimodal framework
for detecting out-of-context misinformation by in-
tegrating visual captioning, CLIP-based alignment,
and a prompt-tuned Flan-T5 model. Experiments
demonstrate strong performance without external
evidence, outperforming prior methods in this set-
ting. Further improvements were observed by com-
bining our model with GPT-based evidence rea-
soning, highlighting its adaptability to real-world
scenarios where evidence is partially available.
Future work will focus on enhancing the use of
external evidence to further improve detection accu-
racy. Although incorporating web-based evidence
has shown promising gains, better strategies are
needed for handling such evidence efficiently and
reliably. This includes expanding image-based web
retrieval coverage, improving the speed and preci-
sion of content extraction through focused scraping,
and developing automated methods to assess the
credibility of retrieved sources. Additionally, ex-
ploring fine-grained image grounding and temporal
reasoning may help capture more nuanced or time-
sensitive mismatches between images and text.



Limitations

While our approach demonstrates strong perfor-
mance without relying on external evidence, it still
encounters notable challenges. Compared to mod-
els that leverage high-quality external evidence,
our model exhibits lower accuracy. It also strug-
gles with understanding abstract temporal refer-
ences, accurately grounding fine-grained location
claims, and detecting subtle inconsistencies across
modalities. These limitations are particularly evi-
dent in complex real-world scenarios where visual
and textual elements diverge in nuanced or context-
dependent ways.

In our further experiments with external web
evidence, we found that retrieving relevant support-
ing content is not always feasible. Many samples
could not be matched to appropriate webpages, and
even when matches were found, the extraction pro-
cess was often hindered by webpage structure and
noise. Moreover, relying on external sources intro-
duces the risk of incorporating misleading or low-
credibility content, especially from social media
or unverified platforms. These issues collectively
affect the consistency, reliability, and scalability
of evidence-based enhancements, highlighting the
need for more robust and trustworthy retrieval and
filtering mechanisms.
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