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ABSTRACT

Machine learning (ML) has the potential to revolutionize various domains and
industries, but its adoption is often hindered by the disconnect between the needs of
domain experts and translating these needs into robust and valid ML tools. Despite
recent advances in LLM-based co-pilots to democratize ML for non-technical
domain experts, these systems remain predominantly focused on model-centric
aspects while overlooking critical data-centric challenges. This limitation is prob-
lematic in complex real-world settings where raw data often contains complex
issues, such as missing values, label noise, and domain-specific nuances requiring
tailored handling. To address this we introduce CliMB-DC, a human-guided, data-
centric framework for LLM co-pilots that combines advanced data-centric tools
with LLM-driven reasoning to enable robust, context-aware data processing. At its
core, CliMB-DC introduces a novel, multi-agent reasoning system that combines a
strategic coordinator for dynamic planning and adaptation with a specialized worker
agent for precise execution. Domain expertise is then systematically incorporated
to guide the reasoning process using a human-in-the-loop approach. To guide de-
velopment, we formalize a taxonomy of key data-centric challenges that co-pilots
must address. Thereafter, to address the dimensions of the taxonomy, we integrate
state-of-the-art data-centric tools into an extensible, open-source architecture, facil-
itating the addition of new tools from the research community. Empirically, using
real-world healthcare datasets we demonstrate CliMB-DC’s ability to transform
uncurated datasets into ML-ready formats, significantly outperforming existing
co-pilot baselines for handling data-centric challenges. CliMB-DC promises to em-
power domain experts from diverse domains — healthcare, finance, social sciences
and more — to actively participate in driving real-world impact using ML.

1 INTRODUCTION

Over the past decade, machine learning (ML) has evolved at a breathtaking pace, raising hopes that
advanced ML methods can transform a wide range of domains and industries. However, for many
domain experts — including medical researchers, social scientists, business analysts, environmental
scientists, education researchers and more — conceiving a problem through which ML can provide
a solution remains challenging. Despite having a deep understanding of their data and domain-
specific challenges, these individuals often lack the programming or technical background needed to
implement sophisticated ML pipelines (Pfisterer et al., 2019), and thus are considered non-technical
domain experts. This gap in expertise creates a significant barrier to realizing the potential of ML
across these domains.

Recent advancements in large language models (LLMs) have paved the way for AI co-pilots that
promise to automate various aspects of ML development through natural language interaction (Hassan
et al., 2023; Tu et al., 2024). However, current co-pilots remain predominantly focused on model-
centric aspects—such as architecture selection and hyperparameter tuning—while overlooking the
fundamental role of the data-centric side to ML. Since data-centric aspects largely determine the
performance, fairness, robustness and safety of ML systems, ignoring the processes of constructing
and handling data can negatively affect performance or worse lead to incorrect conclusions. Un-
fortunately, real-world data often contains missing values, inconsistencies, mislabeled records, and
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domain-specific nuances (see Table 7) and thus the data is usually not ML-ready (Sambasivan et al.,
2021; Balagopalan et al., 2024a). Furthermore, applying a “one-size-fits-all” data cleaning script
from an LLM co-pilot that cannot be tailored to the varying structures of data risks erasing critical
signals or introducing biases, and leaves the domain experts powerless to intervene.

There is indeed a growing interest in data-centric AI within the ML community — emphasizing the
importance of ML to improve data quality, curation, and characterization (Seedat et al., 2022d; Zha
et al., 2023; Liang et al., 2022). In particular, numerous data-centric ML tools and methods have
been developed for handling common data issues, such as missing values, noisy labels, and data drift
(Northcutt et al., 2021; Jarrett et al., 2022b; Seedat et al., 2022b; 2023b; Liu et al., 2023). However,
for non-technical domain experts, these tools are often abstract to implement and remain out of reach
to use. Integrating these tools into LLM-based co-pilots would not only allow tailored handling of
data and thus empower domain experts, but also would broaden the use of data-centric AI research
across various disciplines and application settings, including healthcare, finance, education etc.

Despite their value, data-centric tools are not a panacea in and of themselves and cannot be applied
by co-pilots in isolation. Actions like imputing data or rectifying noisy labels require contextual
understanding to avoid distorting critical domain-specific information. This underscores the need for
expert oversight—guidance from individuals deeply familiar with the nuances of the data—to ensure
that actions align with domain-specific goals and constraints. Such guidance is crucial in high-stakes
fields like healthcare and finance, where improper data handling can lead to misleading conclusions
or harmful decisions. This interplay between human expertise and data-centric automation presents
a unique challenge for LLM-based co-pilots. Designing systems capable of nuanced reasoning
and iterative planning, while effectively incorporating expert feedback, remains a significant hurdle.
A co-pilot must not only execute tasks but also intelligently sequence and adapt data processing
pipelines with a human-in-the-loop approach.

To address these challenges, we introduce Clinical predictive Model Builder with Data-Centric AI
(CliMB-DC), a human-guided data-centric framework for LLM co-pilots. We advance upon and
address limitations of other co-pilots by integrating advanced data-centric tools, along with a novel
LLM-driven reasoning process to enable robust, context-aware data processing for real-world ML
challenges. This enables robust, context-aware data processing for challenges faced when using
ML approaches in real-world settings. Specifically, CliMB-DC introduces a novel, multi-agent
reasoning system that combines a strategic coordinator for dynamic planning and adaptation with a
specialized worker agent for precise execution. Domain expertise is then systematically incorporated
to guide reasoning using a human-in-the-loop approach. Where CliMB established the foundation,
CliMB-DC advances this vision by enabling sophisticated reasoning about data quality, integrity, and
domain-specific constraints—essential capabilities for developing trustworthy ML systems when
analyzing complex, real-world data.

Contributions: 1⃝ Taxonomy of Challenges: We formalize a taxonomy of data-centric challenges
that co-pilots need to address. 2⃝ Data-Centric Tools: We integrate state-of-the-art, data-centric tools
into an extensible and open-source framework. The broader accessibility for non-technical domain
experts to these data-centric tools allows them more options when tailoring their data management
accordingly. It additionally provides an opportunity for the data-centric ML research community to
incorporate new tools or validate their tools more easily. 3⃝ Human-in-the-Loop Alignment: We
implement a human-in-the-loop system to ensure contextual alignment of data processing actions
with domain-specific requirements. Moreover, we are able to incorporate domain expertise through
natural language interaction, allowing experts to guide and assess data transformations without
requiring coding experience. 4⃝ Multi-Agent Planning and Reasoning : We introduce a novel
multi-agent reasoning approach that combines a strategic coordinator agent with a specialized worker
agent, enabling sophisticated planning and adaptation of data-centric workflows. 5⃝ Empirical
Case Studies: We conduct empricial case studies on real-world healthcare data, demonstrating
where existing co-pilots fall short in handling the complexities of real-world data and illustrate the
advantages of our approach.

CliMB-DC represents a significant step toward democratizing ML for non-technical domain experts,
while ensuring the responsible and effective use of data-centric AI tools. By combining automation
with expert oversight, it enables robust ML development that respects domain-specific knowledge.
The target audience of CliMB-DC encompasses a wide range of users, including:
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Table 1: Comparison of different co-pilots along different dimensions.

Perspective Capability DS-Agent AutoGen Data-
Interpreter OpenHands CliMB-DC (Ours)

Components Data-centric tools × × × × ✓
Clinical models × × × × ✓

Expert Input Static integration ✓ × ✓ ✓ ✓
Dynamic integration × × × ✓ ✓

Data-centric
Reasoning

Setup refinement × × × × ✓
Performance refinement × × × × ✓

Pipeline

End-to-end automation × ✓ ✓ ✓ ✓
Replanning × × × × ✓

Backtracking × × × × ✓
Code refinement ✓ ✓ ✓ ✓ ✓

• Non-Technical Domain Experts: While we contextualize and instantiate CliMB-DC as a tool for
healthcare, we envision that such a system could be relevant to non-technical domain experts in other
data-driven domains such as finance, environmental management, education etc.

• Data-Centric ML Researchers: CliMB-DC provides a platform for data-centric researchers to
effortlessly compare tools, integrate and validate new ones, accelerating the advancement of data-
centric AI.

2 RELATED WORK

This work engages not only with LLM Co-pilots tools, but also with the broader area of data-centric
AI research. We provide a summary of existing LLM co-pilots in contrast to our proposal CliMB-DC
in Table 1. An extended related work is provided in Appendix A.

Remark: We also formalize a taxonomy of data-centric challenges that future co-pilots need to
address in Appendix C.1, which is then summarized in Table 7.

3 CLIMB-DC: AN LLM CO-PILOT FROM A DATA-CENTRIC PERSPECTIVE

Problem Setting. Denote D “ tpxi, yiquni“1, where x “ px1, . . . , xpq with xd P Xd and y P Y ,
be a well-curated, “ML-ready” dataset suitable for training a given ML model (including an AutoML
model) and achieving optimal target performance. Here, we consider a general scenario including
both the supervised setting depending on the label types – such as classification Y “ t1, . . . , Cu,
regression Y “ R, and time-to-event analysis Y “ pt0, 1u,Rě0q.

Data corruption faced in Practice. In real-world healthcare scenarios datasets have nu-
merous challenges as discussed. Additionally, since non-technical domain experts have limited
expertise in data science, it often results in uncurated datasets, denoted as D̃ “ px̃i, ỹiq

ñ

i“1, where
x̃ “ px̃1, ¨ ¨ ¨ , x̃p̃q with x̃d P X̃d. These datasets are subject to various data-centric issues, as
highlighted in Table 7. If left unprocessed, such issues can lead to undesired failures or suboptimal
performance in downstream ML models. To clarify this concept, we formalize how a well-curated
dataset, D, can be (unknowingly and unintentionally) transformed into an uncurated dataset, D̃,
through a series of L data corruption processes during real-world data collection.

D̃ “ gpDq “ gL ˝ ¨ ¨ ¨ ˝ g1pDq, (1)

where gℓ represents the corruption applied at the ℓ-th step. A well-curated dataset, D, can be
corrupted in numerous ways, impeding the optimal performance and clinical impact of ML models.
Based on our taxonomy in Appendix C.1, Table 7, we categorize the prominent data-centric issues
commonly encountered in healthcare datasets, each representing a specific type of corruption function.

Ideal data-centric curation. Suppose it is feasible to revert the data corruption process ap-
plied to the well-curated dataset, D, from the given uncurated dataset, D̃. Ideally, the goal is
to construct a series of L data curation functions, f1, . . . , fL, where each curation function is
specifically designed to revert the corresponding data corruption function applied to D, i.e., fℓ “ g´1

ℓ .

Domain-specific model learning. Once the dataset is curated, the objective is to select an
appropriate, context-dependent model class and train an ML model that achieves strong
generalization performance for the user-defined task descriptions.

Then we move on to introduce in detail our proposed LLM co-pilot designed through a data-centric
lens, named CliMB-DC (see Figure 1 for the overall architecture).
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Figure 1: The overall architecture of CliMB-DC, which primarily consists of three components that
interact with the state bank: (i) a coordinator agent responsible for reasoning and planning, (ii) a
worker agent for code writing and execution, and (iii) the user or human experts.

3.1 OVERALL ARCHITECTURE

Recall that given an initial dataset D0, our goal is to find an optimal sequence of transformations f “

pf1, . . . , fLq that yields a curated dataset D˚ suitable for downstream ML tasks. Each transformation
fi P F is selected from a space of possible operations, guided by both LLM reasoning and expert
feedback. The curated dataset is then used to select and train domain-specific ML models for
prediction.

Our framework, CliMB-DC (see Figure 1), addresses challenges faced by existing co-pilots through
a dual-agent architecture that combines the strengths of LLM-based reasoning with human domain
expertise.

The system consists of a high-level coordinator agent, responsible for managing the overall data
processing strategy, and a specialized worker agent, tasked with executing specific data transforma-
tions. This separation of responsibilities enables CliMB-DC to maintain strategic oversight while
ensuring operational efficiency. Additionally, the framework supports continuous integration of
expert feedback, facilitating iterative refinement of the strategy. As shown in Figure 1, the CliMB-DC
primarily consists of three components that interact with the state bank:

State bank. The state bank stores the system states at each time step t. Formally, the system state
S at time t is defined by Sptq “ tDptq,Hptq,Pptq,Mptq, T ptqu, where Dptq represents the current
dataset state, Hptq captures the interaction history including expert feedback, Pptq maintains the
dynamic episode plan, Mptq tracks episode completion metadata, and T ptq contains the available
data-centric and modeling tools that can be used by the worker agent.

Tool registry. Recent advances in data-centric AI have led to the development of a variety of
methods and tools from across the community. CliMB-DC integrates a large variety of diverse
data-centric (and model-centric tools) from across the literature (see Table 2) which are available
to the worker agent to utilize. Although not exhaustive, the current set of tools covers a diverse set
of scenarios linked to the data-centic challenges taxonomy in Section C.1. Moreover, as outlined in
Section C.2, we illustrate the extendable nature of the framework to easily integrate new tools from
the ML community.

Table 2: Overview of tools available in CliMB-DC. This ensures data/model-centric tools are accessible to
non-technical domain experts, while also providing data-centric ML researchers a platform for tool impact.

Tool class Available tools

Data understanding
Descriptive statistics,
Exploratory data analysis (EDA),
Feature selection (Remeseiro & Bolon-Canedo, 2019)

Feature extraction (from text) spaCy Matcher
Data characterization Data-IQ (Seedat et al., 2022a),TRIAGE (Seedat et al., 2023a)
Missing data HyperImpute (Jarrett et al., 2022a)
Data valuation KNN-Shapley (Jia et al., 2019)
Data auditing (outliers) Confident Learning (Cleanlab) (Northcutt et al.; 2021)
Data imbalance SMOTE (Chawla et al., 2002)

Model building AutoPrognosis 2.0 (Imrie et al., 2023)
(supports regression, classification, survival analysis)

Post-hoc interpretability
Permutation explainer (Breiman, 2001),
SHAP explainer (Lundberg & Lee, 2017),
AutoPrognosis 2.0 subgroup analysis (Imrie et al., 2023)

Test time risk or failure analysis Data-SUITE (Seedat et al., 2022c),
SMART Testing (Rauba et al., 2024)
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Coordinator agent. The Coordinator agent is the strategic planner of the system, responsible
for maintaining a high-level view of the data processing pipeline and making decisions about task
sequencing (i.e. the plan). It implements a three-stage reasoning process that continuously evaluates
progress, identifies potential issues, and adapts the processing strategy based on both automated
metrics and expert feedback. Operating through reasoning process πC , the Coordinator maps the
current system state to the next-step strategic decisions/processing decision (i.e. plan Ppt`1q):

πC : Sptq Ñ Ppt`1q. (2)
The detailed reasoning approach is demonstrated in Section 3.2.

User/Expert integration. Domain expertise is systematically integrated throughout the process
through feedback that ensures all transformations align with domain-specific requirements and
constraints. This integration occurs through a natural language feedback mechanism that evaluates
proposed transformations and enriches the system’s understanding of the domain. Additionally, it
captures domain knowledge that enhances the future reasoning and decision making by the coordinator
agent, creating a continuous learning loop that improves the system’s performance over time. The
detailed interaction mechanism is introduced in Section 3.2 (see Equation 5 in State Observation).

Worker agent. The Worker agent acts as the system’s execution engine, translating high-level plans
from the coordinator agent into concrete data transformations instantiated in code. It combines LLM
capabilities with specialized data-centric tools to implement precise, context-aware transformations
while maintaining interactions to integrate information from domain experts. The Worker’s execution
process is formalized as:

πW : pSptq,Pptq, T ptqq Ñ pHpt`1q,Dpt`1q,Mpt`1qq (3)

where Sptq represents the current state, T ptq indicates the current selected/available tool, and Dpt`1q

denotes the resultant (new) dataset state, Hpt`1q and Mpt`1q denote the updated history records. The
Worker operates at a granular level, focusing on individual data processing episodes and ensuring
each transformation aligns with both technical requirements and domain expertise.

3.2 DETAILS OF CLIMB-DC’S REASONING PROCESS

Before introducing CliMB-DC’s reasoning approach, we first highlight the challenges in our specific
scenarios faced by an alternative approach — Monte Carlo Tree Search (MCTS).

Figure 2: Challenges of Monte Carlo Tree Search (MCTS). We highlight two key drawbacks of MCTS. First,
prediction performance cannot serve as a reliable reward, as it may favor data issues such as label leakage or
meaningless problem setups (middle). Second, MCTS suffers from low efficiency, requiring experts to endure
long waiting times and evaluate a large number of trials (right). In contrast, CliMB-DC’s proposed reasoning
approach enables immediate backtracking and replanning, significantly enhancing efficiency.

Challenges of MCTS. Monte Carlo Tree Search (MCTS) is a commonly used reasoning and
planning mechanism that generates random paths to explore and evaluate potential plans based on a
reward function. However, the complex nature of real-world data issues introduces several critical
challenges, significantly limiting the practicality of MCTS in these contexts. We highlight the key
challenges as follows:

• Lack of intermediate reward model: MCTS depends on a well-defined reward model. However,
in our setting, there is no clear reward model, particularly for all the intermediate states that may
arise. Even human experts are unable to provide such detailed rewards. For instance, given a dataset,
it is challenging for experts to evaluate all the data issues listed in Table 7. As a result, MCTS
would require complete model training and evaluation to obtain reward signals, making iterative data
curation computationally prohibitive.
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Figure 3: The framework of the coordinator agent in CliMB-DC, encompassing three parts named State
Observation (SO), Backtracking Assessment (BA), and Lookahead Planning (LP).

• Prediction performance is unsuitable as the final reward: Another significant challenge for MCTS
in our scenarios is that prediction performance cannot be directly used as the final reward. It is
critical to first ensure that the entire data processing pipeline is valid and free from issues such as
label leakage, which could render performance metrics unreliable. For example, as shown in Figure 2
(middle), if the state Sp2q introduces label leakage, relying solely on performance to determine the
reward would assign an artificially high reward to this node. However, such a state should be avoided
in the final path.

• Low efficiency: A further challenge is the low efficiency of the process. Since prediction performance
is inadequate as a final reward, expert evaluation may be necessary. However, MCTS involves random
exploration and requires numerous steps to transform a raw dataset into a well-trained prediction
model. As shown in Figure 2 (right), this results in lengthy trials, and the large number of trials
exacerbates the inefficiency. Additionally, in many scenarios, users may be unable to examine the
details of all trials due to time constraints or limited expertise in data science and clinical domain
knowledge. These limitations significantly restrict the applicability of MCTS in our scenarios.

The challenges associated with MCTS largely arise from its approach of treating all data processing
steps as unknown and unexplored, attempting to navigate the entire sequence of actions, as is
common in gaming scenarios. In contrast, data processing typically follows a well-established
order of operations, making such exhaustive “searching” unnecessary. For example, addressing data
missingness generally precedes other transformations or feature engineering steps, and exploring
these well-known rules through extensive random trials is both inefficient and redundant.

A more practical alternative to MCTS is to focus on refining “local processing” within the general
sequence of operations. Our framework incorporates automated planning combined with expert
validation to ensure both technical quality and domain-specific appropriateness. The key innovation
lies in enabling the method to backtrack after errors and consult experts when necessary, such as for
decisions involving the meanings of features, handling label leakage, or determining whether to drop
specific features, etc. As shown in Figure 2 (left), when combined with immediate expert feedback,
the coordinator enables prompt backtracking, significantly improving efficiency.

CliMB-DC’s proposed multi-stage reasoning. The reasoning mechanism of CliMB-DC is demon-
strated in Figure 3. At time t, the coordinator agent takes the current state bank tSp0q, . . . , Spt´1qu

as input, and outputs the plan via:

P pPptq|tSp0q, . . . ,Spt´1quq
loooooooooooooooomoooooooooooooooon

coordinator reasoning

“
ÿ

Optq

P pOptq|Spt´1qq
loooooooomoooooooon

state observation

¨

ˆ

ÿ

βptq

P pβptq|Optqq
loooooomoooooon

backtracking

P pPptq|βptq,Optqq
looooooooomooooooooon

lookahead planning

˙

, (4)

1. State Observation (SO): P pOptq|Spt´1qq denotes the state observation stage, where the coordinator
analyzes the project state, focusing primarily on the last state Spt´1q. And it will gather expert human
feedback Γptq from history interactions. Therefore, P pOptq|Sptqq can be formulated as:

P pOptq|Spt´1qq “
ÿ

Γptq

P pΓptq|Spt´1qqP pOptq|Γptq,Spt´1qq, (5)

where Γptq denotes the expert human feedback for current state. To inform its decision, the coordinator
extracts information about the project state such as evaluating experiment outcomes, data quality
metrics and expert feedback received, together denoted as Optq.

2. Backtracking Assessment (BA): Based on the analysis, the coordinator determines if previous
decisions need revision or updating. If the project is not progressing satisfactorily (e.g., due to data
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Figure 4: Example of backtracking and replanning in handling missing data, showcasing how the
Backtracking Assessment (BA) and Lookahead Planning (LP) modules in the proposed reasoning
approach collaborate to efficiently resolve data issues.

quality issues or expert feedback indicating problems), the coordinator identifies a backtracking point
k ă t ´ 1 and restores the project state to Spkq (i.e. backtrack step), denoted by P pβptq|Optqq.

3. M -Step Lookahead Planning (LP): The coordinator evaluates the current plan, focusing specifically
on the next M episodes et, . . . , et`M´1 within the plan Pptq. For each episode ei, the coordinator
assesses two key aspects: (i) Necessity and (ii) Appropriateness. Leveraging the history and user
interactions (expert feedback) stored in Optq, the coordinator refines the plan by excluding episodes
considered unnecessary or inappropriate and incorporating new ones as needed. This process ensures
the updated plan Pptq remains aligned with the user’s objectives. Specifically, this can involve the
following types of updates: (i) Reordering episodes to better handle dependencies; (ii) Removing
unnecessary episodes; (iii) Adding new episodes to address identified gaps; (iv) Modifying episode
parameters based on expert input.

The coordinator then issues this updated plan to the worker agent to execute at the next iteration.
When the Worker agent completes an episode, control returns to the Coordinator for the next iteration
of plan analysis and refinement. Pseudo-code detailiing the interaction between components and the
progression of transformations is provided in Algorithm 1.

Demonstration of the reasoning process. Let us consider the case of a dataset with missingness
and how the reasoning process works. As shown in Figure 4, after loading the dataset, the co-pilot
detects the missingness issue and initially plans to address it using the DropNA function, which
removes all rows with missing values, resulting in the state Sp2q. However, the State Observation
(SO) module identifies a new problem: the reduced dataset size falls below 50, which is insufficient
for subsequent processing and difficult to remedy. In response, the Backtracking Assessment (BA)
module is triggered, rolling the state back to Sp1q.

In the next step, the SO module detects the missingness issue, and the BA module is not trig-
gered. Drawing on the history record, which indicates that using “DropNA” previously led to
backtracking, the Lookahead Planning (LP) module revises the plan and selects an alternative
approach—imputation—to address the missingness issue.

3.3 WORKER AGENT

The worker agent takes the updated plan and integrates it with the available tool set (see Table 2). It
then generates and executes the necessary code to complete the plan. If execution fails, the agent
autonomously updates the code to ensure successful execution. The worker agent also verifies the
availability of required Python packages, installing them if needed before proceeding with execution.
For the case studies (Sec 4), we perform an ablation, removing the coordinator & our tool set from
CliMB-DC to emphasize the reliability of our worker agent in code generation and execution.

4 CASE STUDIES

We empirically investigate CliMB-DC’s capability to handle real-world healthcare data challenges.
1⃝ Does it work?: We highlight for multiple data-centric challenges from our taxonomy, where

vanilla co-pilots fail and the data-centric lens with human feedback helps.
2⃝ Why does it work?: We provide an in-depth analysis via various case studies to better understand

why CliMB-DC succeeds and other co-pilots fail.
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Datasets. We employ real-world tabular healthcare datasets with varying characteristics. i.e.
different sample sizes, dimensionality, task types (classification, survival analysis) and task difficulty.
These datasets reflect the following data challenges (as defined in our taxonomy): (i) Lung cancer:
Data leakage (ii) PBC Dataset: Unaggregated data (based on identifiers) and (iii) Prostate cancer
prediction: Ambiguous and Hard examples (mislabeled and outliers).

Baselines. We compare CliMB-DC as discussed in the related work to Data Interpreter and Open-
Hands as representative co-pilots. Additionally, we perform an ablation of CliMB-DC. We remove
the coordinator, highlighting its value, while assessing the worker agent’s reliability in code gen-
eration and execution. This ablation is instantiated both with and without tools. We refer to these
configurations as CliMB-DC (No coordinator, With tools) and CliMB-DC (No coordinator, No tools),
respectively. Unless otherwise stated all results are averaged over 5 runs. In addition to the results
in the main paper, Appendix E and F provides a detailed analysis of the logs of interactions for
CliMB-DC and the baselines.

4.1 DOES IT WORK?

To demonstrate the effectiveness of CliMB-DC, we conduct the following case studies on healthcare
datasets using different data challenges. Below, we summarize the results and the context and
importance of these datasets:

• Case study 1: In the dataset on predictors of lung cancer, the primary challenge involves addressing
data leakage. This scenario is particularly complex as it combines survival analysis with the need
to identify and handle potentially leaked information from outcome-related variables. Table 4
demonstrates based on C-index that both Data-Interpreter and OpenHands were unable to provide
valid results in almost all scenarios and produced several different reasons for failures, most of which
related to data leakage. CliMB-DC was able to produce valid results without run failures.

• Case study 2: In the dataset on predictors of PBC, unaggregated data and potential data leakage
are presented as simultaneous challenges. Table 3 demonstrates based on C-index that both Data-
Interpreter and OpenHands were unable to provide vaild results, mainly due to failure to aggregate
data per patient and identify data leakage. This scenario is especially relevant to healthcare settings
where multiple measurements per patient are common. CliMB-DC was able to handle these issues
and produce valid results, while maintaining temporal consistency and avoiding information leakage.

• Case study 3: In the datasets comparing predictors of prostate cancer mortality from the SEER
(USA) and CUTRACT (UK) datasets, the challenge lies in handling data quality issues and data
drifts, across different healthcare systems. Table 5 demonstrates based on AU-ROC that all three
tools were able to produce valid results, while the accuracy and AU-ROC was slightly higher when
using CliMB-DC. The results demonstrate our framework’s robustness in managing dataset shifts
while maintaining consistent performance across different healthcare contexts.

Table 3: Results on the PBC dataset, where the primary data challenges are addressing unaggregated data
and data leakage. The prediction task in this case is survival analysis, a specialized and less common task
compared to those typically encountered in general machine learning fields. The whole processing procedure of
the proposed CliMB-DC is shown in Figure 5.

Method Human Assistance Results Valid C-Index Failure Modes % runs tested

Failed to aggregate data per patient 100%
Failed to identify data leakage 100%
Failed to produce results 40%

Data-
Interpreter - × 0.789

Failed to set up survival problem 20%

Failed to aggregate data per patient 100%
Failed to identify data leakage 100%
Failed to set up survival problem 60%OpenHands - × 0.468

Convergence issues causing task failure 20%

Failed to aggregate data per patient 100%
Failed to identify data leakage 80%
Failed to produce results 60%

CliMB-DC
(No Coordinator
& No Tools)

- × 0.663

Fail to solve convergence error 20%

CliMB-DC (No
Coordinator & With Tools) - × 0.914 Failed to aggregate data per patient 100%

Failed to identify data leakage 100%

CliMB-DC - ✓ 0.953 (Successful) 100%
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Table 4: Results on the Lung Cancer dataset, where the primary data challenge is addressing data leakage. The
prediction task in this case is survival analysis, a specialized and less common task compared to those typically
encountered in general machine learning fields. The whole processing procedure of the proposed CliMB-DC is
shown in Appendix D, Figure 9.

Method Human Assistance Results Valid C-Index Failure Modes % runs tested

Failed to identify data leakage 100%
Incorrect metric used 20%
Failed to set up survival problem 20%- × 0.625

PCA use degraded performance 60%

✓ 0.738 (Successful) 80%

Data-
Interpreter

Leakage features excluded × 0.995 Label leakage reintroduced 20%

OpenHands

Failed to identify data leakage 100%- × N/A Incorrect metric reported 100%

Specify cox model × 0.496 Failed to identify data leakage 100%

Leakage features excluded ✓ 0.500 (Successful) 80%
× N/A Stuck in a loop 20%

CliMB-DC
(No Coordinator
& No Tools)

- × 0.765 Failed to identify data leakage 100%
Failed to solve convergence error 40%

Leakage features excluded ✓ 0.809 (Successful) 80%
× N/A Failed to test on the test file 20%

CliMB-DC (No
Coordinator & With Tools) - × 0.871 Failed to identify data leakage 100%

CliMB-DC - ✓ 0.848 (Successful) 100%

Table 5: Results on cross cancer mortality prediction (SEER from the USA to CUTRACT from the UK), where
the primary data challenges are addressing data quality/hardness and data drifts. The prediction task in this
case is classification, a common task in general machine learning fields. The whole processing procedure of the
proposed CliMB-DC is shown in Appendix D, Figure 10.

Method Human Assistance Results Valid Accuracy AUC-ROC Failure Modes % runs tested

Data-Interpreter - ✓ 66.5 0.727 (Successful) 80%
× N/A N/A Failed in preprocessing 20%

OpenHands - ✓ 67.5 0.729 (Successful) 100%

CliMB-DC (No
Coordinator& Tool Set) - ✓ 67.8 0.749 (Successful) 80%

× 68.3 0.683 Failed to compute AUC-ROC 20%

CliMB-DC (No
Coordinator & With Tools) - ✓ 69.4 0.765 (Successful) 100%

CliMB-DC - ✓ 69.9 0.771 (Successful) 100%

4.2 WHY DOES IT WORK?

To provide a deeper understanding of how CliMB-DC can excel in specific, data-centric challenges,
we describe various facets of using CliMB-DC in comparison to other co-pilots. These case studies
illustrate how our multi-agent architecture, reasoning processes and human-in-the-loop feedback can
provide specific advantages, and where problems when using other co-pilots arise. Figure 5 illustrates
the specific reasoning and planning mechanisms through which CliMB-DC reasons, adapts the plan,
engages with the domain expert and then resolves these challenges. Further deepdives can be found
in Appendix D (Figures 9-10)

Case study 1: In many datasets from healthcare settings, multiple measurements are recorded
for each patient over time, leading to unaggregated data. Baseline co-pilots treat each row as an
independent patient observation, creating two issues: (1) data leakage between training and test
sets when measurements from the same patient appear in both, and (2) an ill-posed modeling setup
that violates the independence assumptions of survival analysis. In contrast, as shown in Figure 5,
CliMB-DC identifies the structure of the dataset, leveraging its state observation and human-guided
feedback mechanisms to aggregate measurements correctly. This ensures that the modeling process
aligns with the true data generation process, avoiding leakage.

Case study 2: Survival analysis tasks are particularly vulnerable to label leakage from other
features or covariates that can compromise model validity. Specifically, time-dependent variables like
“time_to_lung_cancer” inherently leak information about the outcome. Other co-pilots fail to account
for such features, resulting in inflated performance metrics and compromising the model’s real-world
applicability and generalization. In contrast, as shown in Appendix D, Figure 9, CliMB-DC’s dynamic
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Q1: It appears that the column name for patient identification is not "patient_id".

Could you please provide the correct column name for patient identification?

Plan: (next-3 steps) 

0: load the file

1: check hardware info

2: ask user for information

Worker:

0: Done

1: Done

Plan: (next-3 steps) 

2: ask user for dataset information

3: ask user for problem setting & research question

4: assess data suitability and tool support

T=2~3

Q1: How is the dataset structured? Can you give some background 

information?

Q2: Can you please describe the experiment setup and the research 

question you wish to investigate?

Plan: (next-3 steps) 

5: drop duplicate rows for each patient

6: perform exploratory data analysis (EDA)

7: generate descriptive statistics

T=5

Worker:

5: Failed!  key error: ‘patient_id’

Plan: (next-3 steps) 

6-a: ask user for the right column name

6-b: drop duplicate rows for each patient

7: perform exploratory data analysis (EDA)

8: generate descriptive statistics

Worker:

6-b: Done

T=6a

A1: Yes, that would be id.

T=6b

Plan: (next-3 steps) 

7: perform exploratory data analysis (EDA)

8: generate descriptive statistics

9: show Kaplan-Meier plot

T=7~9

Worker:

7: Done

8: Done

9: Done

Tools:    Descriptive 
Statistics, EDA, 
KaplanMeierFitter 

T=10

Plan: (next-3 steps) 

10: ask user for column names

11: check column NaNs

12: drop column with NaNs

Q1: Can you please confirm if above descriptions 

are correct? If not, please provide the correct 

information.

Additionally, I will need your input on the 

remaining columns: …

A1: OCA: obeticholic acid, UDCA: 

ursodeoxycholic acid. I do not have the data 

sheet for the rest of the features at this time.

Plan: (next-3 steps) 

11: check column NaNs

12: drop column with NaNs

13: check row NaNs

Worker:

11: Done by listing the 

missingness ratio of each 

feature

T=11

Plan: (next-3 steps) 

12-a: ask user for the threshold

12-b: drop columns according to threshold

13: check row NaNs

Q1: What is your acceptable threshold for including a 

column in the analysis? The default threshold is 80%. Are 

you happy to drop the columns that exceed this threshold? 

If not, which columns would you like to keep?

A1: OK, remove those

T=12-aT=12-b

Worker:

12-b: Done

Plan: (next-3 steps) 

13: check row NaNs

14: drop row with NaNs

15: feature selection

Worker:

13: Done

T=13

Plan: (next-3 steps) 

14: impute row with NaNs

15: feature selection

16: confirm ML problem type

Worker:

14: Done

15: Done

replanning due to key error

replanning due 

to high row 

missing rate 

(69.08%)

T=14~15

Tools: HyperImpute, 
feature selection

Plan: (next-3 steps) 

16: confirm ML problem type

17: check data leakage

18: ML-classification

Q1: Based on the previous interactions, your target  is 

"Event_status" and the time variable is "Years_to_event". 

This indicates that your task is a survival analysis. Can you 

please confirm if this is correct?

A1: Yes, correct.

Plan: (next-3 steps) 

17: check & deal with data leakage

18: check irrelevant columns

19: ML-survival analysis

replanning due 

to problem 

type change Q1: I suspect the following features will lead 

to label leakage: Alive_status, 

Event_categoty, Time_bio. Reasons are … 

Please double-check.

A1: Based on my knowledge of the dataset, we 

should definitely remove "Event_Category". 

We can keep the others.

Worker:

17: Done

…

T=16 T=17

Plan: (next-3 steps) 

19: ML-survival analysis

20: feature importance

Worker:

19: Done
Tools: AutoPrognosis 2.0

T=19

Plan: (next-3 steps) 

20: feature importance

Worker:

20: Done

Tools: permutation 
explainer

Output: 
• C-Index 0.988±0.004

• Top features are Time_bio, 

CCI_score, Ratio.ALP

• Prediction Model

• Report

T=1

…

A1: Each row is patient's information at different follow up points. The columns are 

variables. The dataset is on Primary Biliary Cholangitis.

A2: I want to predict the Event_status variable (0/1). The time variable is 

Years_to_event.

Start 

End 

Coordinator Agent

Worker Agent

User

Tool Used Tools

Replanning

Addressed data issues

solve multi-

measurements

solve NaNs

solve label 

leakage

use domain-

specific model

T=20

Figure 5: The processing workflow of CliMB-DC on the PBC dataset, illustrating how the coordinator agent,
worker agent, and user interact at each processing stage T . The data issues include multiple measurements,
missingness, and label leakage. The prediction task is survival analysis, requiring domain-specific model classes.

reasoning and iterative planning allows detection and mitigation of label leakage. Through domain
expert feedback, the system removes problematic features like “time_to_lung_cancer”. This ensures
that the resulting models are valid and generalizable.

Case study 3: Data from healthcare settings can often have data quality challenges such as hard
examples (mislabeled, heterogenous outcomes etc). These observations can affect model training
(Seedat et al., 2022b) and can be sculpting or filtered from the dataset to improve generalization. In
addition, when models are used across countries, as is the case in the two prostate cancer datasets
from SEER and CUTRACT, distribution shift could occur. In contrast, as shown in Appendix D,
Figure 10, CliMB-DC’s dynamic reasoning and data-centric tool usage allow it to understand that
data quality is a challenge, run a method for data characterization (e.g. Data-IQ (Seedat et al., 2022b))
and based on the output, engage with the human expert to remove ambiguous observations that may
cause downstream problems during modeling. We show that this improves model generalization
cross-domain (i.e. in different countries).

5 CONCLUSION

We introduced CliMB-DC, a human-guided, data-centric framework for LLM-based co-pilots. Impor-
tantly, this framework addresses a critical gap in current LLM co-pilots: their inability to effectively
handle real-world data challenges while incorporating domain expertise. Our contributions span
multiple dimensions, from a taxonomy of data-centric challenges to developing a novel multi-agent
architecture enabling sophisticated reasoning about data quality and processing workflows.

Our empirical evaluations highlight several key advantages of CliMB-DC when handling key data
challenges, allowing it to achieve robust ML outcomes where existing co-pilots may come across
problems. Beyond these technical contributions, the open-source nature of CliMB-DC encourages
the broader research community to extend its capabilities, ensuring its relevance across diverse data
structures and modeling applications. By highlighting the importance of data-centric aspects to AI
co-pilots, CliMB-DC represents a critical step towards democratizing ML for non-technical domain
experts (in a variety of fields), ensuring that data quality and contextual understanding are central to
ML workflows. We envision this framework as a foundational tool for democratizing the adoption of
ML across a variety of problem settings and domains.
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A EXTENDED RELATED WORK

Below we provide a further assessment of LLM-based code interpreters.

A.1 RELATED WORK OVERVIEW

LLM-Based Co-pilots. The rapid advancements in LLMs have paved the way for various stages of
ML and data science workflows to be automated by co-pilots and code interpreters that leverage the
reasoning and code generation capabilities of LLMs (Tu et al., 2024; Hollmann et al., 2024; Low &
Kalender, 2023). These tools allow users to specify their requirements for data science pipelines via
natural language and thus offer greater flexibility compared to traditional AutoML systems.

Prominent examples include systems that chain task execution (e.g., AutoGPT, DS-Agent (Guo et al.,
2024)), modular frameworks for multi-step reasoning (e.g., OpenHands (Wang et al., 2024)), and
graph-based workflow decomposition (e.g., Data Interpreter (Hong et al., 2024)).

Despite recent progress, significant challenges remain in addressing the complex, data-centric aspects
of real-world ML workflows. Many co-pilots operate within predefined pipelines or task hierarchies,
making them ill-suited for dynamic, data-centric workflows. Furthermore, while these systems
excel in automating code generation, they often lack mechanisms for robust data reasoning, such as
diagnosing data issues, incorporating domain-specific knowledge, or addressing contextual nuances
(e.g., data leakage or feature importance validation). These gaps are especially pertinent to real-world
datasets that commonly exhibit variability and noise-common to data from healthcare settings (as
summarized in Table 7).

Additionally, the effectiveness of these co-pilots to empower non-technical domain experts, par-
ticularly in healthcare, remains a significant challenge. Healthcare data is often characterized by
heterogeneity, complexity, and susceptibility to biases and data quality issues. Hence, a co-pilot
blindly applying generic data processing techniques to raw clinical data can lead to the introduction
of errors and the loss of important clinical information. For example, detecting and removing outliers
based on the percentile of a variable distribution might remove extreme lab values that are clinically
meaningful, as they could represent a critical underlying condition rather than noise. In another exam-
ple, correcting suspected label errors without domain-specific knowledge risks obscuring meaningful
patterns or rare cases that are needed in downstream decision-making. These challenges underscore
that when using co-pilots with non-technical domain experts, there is a need for co-pilots to reason
and update via expert human guidance along with incorporating data-centric tools.

Among existing frameworks, OpenHands (Wang et al., 2024) and Data Interpreter (Hong et al.,
2024) are the closest to incorporating data-centric aspects and are particularly relevant due to their
emphasis on multi-step reasoning and dynamic task execution.

Challenges with Existing Co-pilots. Despite the progress demonstrated by OpenHands, Data
Interpreter, and similar systems, several key challenges remain (C1-C4):

• (C1) Overlooking Data-Centric Challenges: Existing co-pilots often overlook data quality
issues such as multi-measurements, noise, outliers, and missingness. In particular, they don’t
integrate state-of-the-art data-centric tools. They also fail to incorporate domain-specific
reasoning for tasks requiring contextual interpretation, such as deciding how to deal with
multiple measurements or whether a statistical anomaly is meaningful or erroneous. The
integration of human expertise is vital for this contextual reasoning.

• (C2) Static Workflow Architectures: Many systems operate with predefined task structures,
making them ill-suited for workflows where the data science flow is dependent on the unique
challenges in the data or can be influenced via human expertise in a dynamic manner.

• (C3) Healthcare-Specific Challenges: The inability of these systems to contextualize
healthcare data poses risks to using currently available frameworks. Some examples already
mentioned include erroneous exclusion of clinically meaningful extreme lab values or data
redundancy when retrieving data from electronic medical records or bioinformatic pipelines.
Again, the integration of human expertise along with data-centric tools is vital in this regard.
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• (C4) Shallow Reasoning: While these systems excel at automating task execution, they
lack mechanisms for higher-level reasoning about data, such as validating correlations,
diagnosing feature leakage, or ensuring robustness after data transformations.

Data-centric AI. Data-centric AI represents a paradigm shift in ML in which assessing and
improving the quality of the data are prioritized over model-specific tasks (Liu et al., 2022; Liang
et al., 2022; Zha et al., 2023; Whang et al., 2023; Seedat et al., 2023c). This paradigm has gained
increasing importance within the ML community and has led to advances in methods and tools to
systematically address issues, such as mislabeled samples (Seedat et al., 2023b; Northcutt et al.,
2021; Pleiss et al., 2020), missing data (Jarrett et al., 2022b; Stekhoven & Bühlmann, 2012), outliers
(Zhao et al., 2019; Yang et al., 2022), data leakage (Mitchell et al., 2019; Seedat et al., 2022d), and
data drifts (Cai et al., 2023; Liu et al., 2023). These approaches have demonstrated improvements in
model generalization in the context of real-world scenarios characterized by noisy and heterogeneous
data.

Despite as the benefits of data-centric AI being demonstrated, existing LLM-based co-pilots adopt a
model-centric perspective-focusing on automation of the model building pipeline, while neglecting
the underlying data challenges. These limitations make existing co-pilots less effective for real-world
applications where data quality directly impacts further modelling. We posit that the inclusion of
data-centric AI tools in LLM-based co-pilots could significantly enhance their utility by automating
the process of identifying data issues, improving dataset quality, and ensuring robust ML workflows.
However, the autonomous application of these tools without contextual oversight can have unintended
consequences.

Consequently, we advocate that data-centric AI tools are integrated into LLM-based co-pilots, while
emphasizing the importance of the human-in-the-loop to contextualize and guide their usage.

A.2 LLM-BASED CODE INTERPRETERS

• GPT-Code Interpreter: Aimed at simplifying tasks such as data visualization, basic
modeling, and statistical analysis, this tool allows users to query and interact with datasets
dynamically. However, its design is limited to single-step tasks and lacks support for multi-
stage workflows, iterative refinement, or complex reasoning across interdependent tasks. Its
applicability to real-world datasets with evolving requirements is minimal due to its static
nature.

• AutoGPT: AutoGPT generalizes task execution by chaining multiple steps through au-
tonomous prompts. It explores iterative workflows but relies heavily on predefined task
templates. This rigidity makes it ill-suited for dynamic, data-centric environments where
task dependencies evolve unpredictably. Moreover, AutoGPT lacks mechanisms to diagnose
or correct data quality issues during execution.

• BLADE: Designed primarily as a benchmarking framework, BLADE evaluates LLM
agents on open-ended scientific analyses and decision-making tasks. It provides insights
into flexibility and task accuracy but does not address robustness or the ability to adapt
workflows based on intermediate results. Furthermore, its scope is confined to task execution,
neglecting data-centric challenges such as feature leakage or outlier handling.

• DS-Agent: Integrating case-based reasoning (CBR) with LLMs, DS-Agent automates ML
workflows by leveraging prior knowledge from human-curated cases (e.g., Kaggle). It
iteratively refines workflows by incorporating execution feedback. However, its dependency
on retrieved cases limits its adaptability to novel or unstructured problems. DS-Agent’s
reliance on historical cases also makes it less effective for workflows requiring real-time
adaptability or dynamic reasoning about data.

• OpenHands: OpenHands introduces a modular architecture for multi-agent collaboration
and secure task execution in sandboxed environments. Its strengths lie in its flexibility and
support for multi-step workflows, including software engineering tasks and web interaction.
However, it lacks built-in tools for diagnosing and resolving data-centric issues, such as
missing data or noise, and offers limited support for domain-specific reasoning, which is
critical for high-stakes domains like healthcare.
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• Data Interpreter: Data Interpreter employs hierarchical graph-based reasoning to model
workflows as interdependent tasks, allowing for iterative refinement and robust task decom-
position. This makes it highly effective for structured ML pipelines. However, its reliance
on predefined task graphs limits its generalization to exploratory workflows or tasks with
undefined dependencies. Additionally, it lacks direct integration of domain-specific insights,
such as clinical knowledge for healthcare datasets.

A.3 LIMITATIONS ACROSS APPROACHES

Despite their individual strengths, these systems share several overarching limitations that hinder
their applicability to real-world, data-centric workflows:

• Static Pipeline Architectures: Most interpreters rely on predefined templates or fixed task
hierarchies, which restrict their ability to adapt to evolving requirements. For example,
AutoGPT and DS-Agent struggle with workflows where task dependencies are contingent
on intermediate results.

• Insufficient Data Reasoning: While these tools excel at executing predefined workflows,
they lack higher-level data-centric reasoning capabilities, such as identifying feature cor-
relations, addressing data drift, or diagnosing feature leakage. For instance, GPT-Code
Interpreter and OpenHands fail to contextualize data preprocessing steps to account for
domain-specific nuances.

• Healthcare-Specific Challenges: Healthcare datasets present unique challenges, including
heterogeneity, noise, and biases. Generic preprocessing approaches risk introducing errors
or obscuring critical clinical information. For example, extreme lab values might appear
as statistical outliers but could signify a critical medical condition. Current systems fail to
incorporate the domain expertise required to navigate such complexities.

• Limited Adaptability to Data Evolution: Real-world datasets often exhibit evolving
distributions, feature sets, or objectives. Most interpreters, including BLADE and Data
Interpreter, are designed for static workflows and do not account for the dynamic nature of
these datasets.

• Lack of Control in Open-Ended Scenarios: Systems with open-ended prompting, such
as AutoGPT and DS-Agent, can generate uncontrolled outputs when used by non-experts.
This is particularly problematic in sensitive domains like healthcare, where errors can lead
to significant consequences.
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A.4 TERMINOLOGY DIFFERENCES BETWEEN MACHINE LEARNING (ML) AND
BIOSTATISTICS/EPIDEMIOLOGY

Table 6 demonstrates the different terminologies between communities that it is useful for a co-pilot
to handle.

Table 6: Comparison of terminology in Machine Learning (ML) and Biostatistics/Epidemiology,
which is considered in the design of CliMB-DC.

Machine Learning (ML) Biostatistics/Epidemiology
Model/Algorithm Statistical/Predictive Model
Features Covariates/Covariables
Targets Outcomes/Endpoints
Training Model Fitting/Estimation
Test Set Validation Data
Overfitting Overparameterization
Hyperparameters Tuning Parameters
Performance Metrics Goodness-of-Fit Measures
Cross-Validation Internal Validation
Bias-Variance Tradeoff Model Complexity
Generalization External Validity
Feature Selection Variable Selection
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B DATASET DESCRIPTIONS

B.1 LUNG CANCER DATASET

The dataset consists of 216714 records, capturing baseline and follow-up data related to lung cancer
risk factors, smoking history, and demographic attributes. It includes 31 features, broadly categorized
as follows:

• Demographic and Administrative: This category includes age at recruitment, sex, ethnicity,
and highest qualifications attained.

• Smoking History: Features include the number of cigarettes smoked per day, age at which
smoking started and stopped, smoking duration, years since quitting, and pack-years (a
cumulative measure of smoking exposure).

• Respiratory and Comorbid Conditions: This includes self-reported history of respiratory
diseases such as asbestosis, pneumonia, chronic obstructive pulmonary disease (COPD),
emphysema, chronic bronchitis, asthma, and allergic conditions (eczema, allergic rhinitis,
hay fever).

• Cancer History: The dataset captures both personal and family history of lung cancer,
including lung cancer diagnoses in parents (mother and father) and siblings, as well as the
number of self-reported cancers and prior personal history of cancer.

• Occupational and Environmental Exposure: Presence of asbestos exposure is recorded
as a binary indicator.

• Lung Cancer Outcomes and Time-to-Event Data: The dataset includes indicators for
lung cancer diagnosis and related outcomes, along with survival-related features such as time
to lung cancer diagnosis, time to death from lung cancer, and time to event development.

Task. Lung cancer risk prediction and survival analysis

B.2 PRIMARY BILIARY CHOLANGITIS (PBC) DATASET

The dataset consists of 43,834 records across 2181 patients, capturing baseline and follow-up data for
individuals diagnosed with Primary Biliary Cholangitis (PBC). It includes 33 features, broadly
categorized as follows:

• Demographic and Administrative: This category includes patient ID, sex, age, visit type,
and time-related variables, which provide essential context for each recorded observation.

• Clinical Outcomes: Features in this category capture event status, survival status, and liver
transplantation (LT) status, allowing for disease progression analysis.

• Clinical Complications: These features focus on manifestations of liver dysfunction,
including decompensation (Decomp), variceal hemorrhage (VH), ascites, and hepatic en-
cephalopathy (HE).

• Treatment Variables: This category records the use of Ursodeoxycholic Acid (UDCA),
Obeticholic Acid (OCA), and Bezafibrate (BZF), which are commonly used interventions in
PBC management.

• Laboratory Measurements: Example biomarkers include Albumin, Bilirubin, ALP, ALT,
Platelets, Hemoglobin, White Cell Count, Urea, Creatinine, Sodium, Potassium, IgM, IgG,
IgA

• Comorbidity Assessment: The Charlson Comorbidity Index (CCI) score is included as a
prognostic measure for patient risk stratification.

Note the PBC dataset has repeat measurements for each patient that need to be aggregated before
modelling.

Task. Time-to-event modeling and survival analysis.
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B.3 PROSTATE CANCER PREDICTION: SEER AND CUTRACT DATASETS

This task focuses on 10-year prostate cancer mortality prediction using two datasets: SEER
(Surveillance, Epidemiology, and End Results) from the United States and CUTRACT from the
United Kingdom. The goal is to assess how models trained in one country generalize when deployed
in another, particularly in handling distribution shifts across different healthcare systems.

Both datasets are balanced to 2000 patient records each, with 10 features related to patient demo-
graphics, cancer severity, treatment, and outcomes. The features are categorized as follows:

• Demographic and Clinical Characteristics: Age at diagnosis (age), baseline Prostate-
Specific Antigen (psa), and presence of comorbidities (comorbidities).

• Treatment Variables: Indicators of different treatment modalities, including conserva-
tive management (treatment_CM), primary hormone therapy (treatment_Primary
hormone therapy), radical radiotherapy (treatment_Radical Therapy-RDx),
and radical surgery (treatment_Radical therapy-Sx).

• Tumor Characteristics: Cancer grade (grade) and stage (stage), which define disease
severity.

• Outcome Variable: The binary label mortCancer represents 10-year mortality due to
prostate cancer, serving as the prediction target.

Task. 10-year prostate cancer prediction (binary classification). Given the multi-country for train and
test it serves as an example of cross-national deployment of prediction models and their robustness to
distribution shift.
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C CLIMB-DC ADDITIONAL DETAILS

C.1 TAXONOMY OF DATA-CENTRIC ISSUES FACING CO-PILOTS

Age Sex Cr … Event Status

68 Female 0.62 … 0

59 - 0.81 … 0

- Female - … 1

67 Male - … 0

- Male 0.86 … 0

70 Male 87.0 … 1

59 Female - … 1

Missingness  &   Outliers

Age Sex Cr … Event 
Category

Alive 
Status

Event 

Status

68 Female 0.62 … Alive Alive 0

59 - 0.81 … Dead NLR Alive 0

- Female - … Dead LR Dead 1

67 Male - … Alive Alive 0

- Male 0.86 … Alive Alive 0

70 Male 87.0 … LT Dead 1

59 Female - … LT Dead 1

LLM Co-pilot

Failure Reason 1: 

    Does NOT deal with missingness!

Failure Reason 2: 

     

      Does NOT deal with label leakage! Keep 

the “Event Category” and “Alive Status” for 

prediction.

Label Leakage

ID Age Sex Cr … Event 
Category

Alive 
Status

Event 
Status

1 59 Female 0.62 … Alive Alive 0

1 59 - 0.81 … Alive Alive 0

2 - Male - … Dead LR Dead 1

2 67 Male - … Dead LR Dead 1

3 - Female 0.69 … Alive Alive 0

3 70 Female 0.89 … Alive Alive 0

3 70 Female 0.91 … LT Dead 1

Multiple Measurement

Failure Reason 3: 

    

      Does NOT deal with multiple 

measurement! It does not know the ID means 

“Patient ID”. It keeps the “ID” for prediction.

LLM Co-pilot

LLM Co-pilot

…

Data Quality

More Realistic Data

More Data Issues …

Figure 6: Illustrative examples of potential data issues in real-world healthcare scenarios, highlighting
challenges at various levels and demonstrating how the current LLM co-pilot struggles to address
these issues.

Recent advancements in LLM-based agents used in co-pilots have largely concentrated on code gen-
eration for model-centric issues, such as algorithm selection, hyperparameter tuning and performance
evaluation. These processes take on datasets that have been assumedly clean (e.g., outliers removed,
missingness assessed and handled, data errors removed, etc.) and problem setups that are well-defined
for an ML task. However, transforming raw, sometimes disorganized, real-world datasets into clean,
structured ones, while at the same time defining a clear problem setup is not necessarily trivial and
can be complex, particularly for non-technical domain experts with limited experience in data science.
Such data-centric challenges are precisely the area where co-pilots are expected to provide significant
support, yet have been overlooked.

Motivated examples from healthcare. In healthcare scenarios, it is common for some variables
collected during data acquisition to be highly correlated with the outcome or to have been measured
only after the outcome occurred. Including such variables in predictive models can lead to label
leakage, compromising the model’s validity. Consequently, these variables must be carefully excluded
during model construction. As illustrated in Figure 6 (middle), current LLM co-pilot fail to exclude
variables such as “Event Category” and “Alive Status”, which are highly correlated with the outcome
“Event Status”. Including these variables results in exceptionally high predictive performance, which
is a misleading conclusion for users. Similarly, healthcare datasets often contain multiple records for
a single patient, as one patient could come to the hospital multiple times for follow-ups or during a
chronic condition. . However, current LLM co-pilots do not automatically perform aggregation to
handle such cases. Being unable to appropriately account for these data structures can result in severe
label leakage and render the problem setup meaningless, as demonstrated in Figure 6 (right).

Beyond label leakage, data-centric challenges in ML —including issues with data quality, prepro-
cessing, and curation—are particularly pronounced in healthcare. These datasets are often collected
by clinicians with limited data science expertise, rather than by experienced data scientists. Some
datasets are retrieved from bioinformatic pipelines, which could have problems with certain reads or
even produce invalid measurements. As a result, data are frequently incomplete and noisy, but usually
in a context-dependent manner. The complexity when processing these data necessitates domain-
specific expertise, assessment and handling. However, such challenges remain under-explored in the
field of co-pilots.

Key perspectives for ensuring reliable LLM co-pilots. In this work, we present a formalized
taxonomy of key issues that LLM co-pilots must address to enable reliable deployment in healthcare
scenarios. Our taxonomy follows a bottom-up approach, drawing on a broad survey of literature
where these challenges have been extensively documented and analyzed (Zadorozhny et al., 2022;
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Table 7: Taxonomy of key data-centric challenges frequently encountered in healthcare machine
learning pipelines. While not exhaustive, these categories represent a significant fraction of issues
that co-pilots must address to ensure strong predictive performance, robustness, fairness, and clinical
feasibility.

Category Issues Description References highlight-
ing issue

Resultant Issues

Data-Centric
(Formatting)

Multiple mea-
surements

Challenges from datasets including multiple observa-
tions for a single individual, requiring aggregation and
standardization.

(Tschalzev et al., 2024;
Liu et al., 2024; Oufat-
tole et al., 2024; Sett
et al., 2024)

Ill-posed problem setup, Temporal mis-
alignment, Potential data inflation

Multiple files Datasets from different sources/periods of time need to
be correctly aggregated or harmonized across files.

(Balagopalan et al.,
2024b; Lehne et al.,
2019; Nan et al., 2022;
Schmidt et al., 2020)

Ill-posed problem setup, Inconsistent
representation, Duplication risk

Inconsistent
data

Data might be inconsistent based on units or how data
might be represented.

(Rychert, 2023; Monjas
et al., 2025; Szarfman
et al., 2022)

Ill-posed problem setup, Label leakage,
Reduced reproducibility

Data extraction Data might be stored in heterogenous text fields and
needs to be extracted as features.

(Bao et al., 2018; Zhao,
2019; Hahn & Oleynik,
2020)

Ill-posed problem setup, Inconsistent
representation

Feature redun-
dancy

Multiple features conveying similar information in a
dataset.

(Chicco et al., 2022;
Apicella et al., 2024;
Meng et al., 2022; Sasse
et al., 2023)

Poor generalization, Poor interpretabil-
ity, Label leakage

Data-Centric
(Statistical -

Train)

Outliers Extraordinary values (leading to soft outliers) or mis-
takes in the data creation process (possibly leading to
hard outliers).

(Zadorozhny et al.,
2022; Avati et al., 2021;
Estiri & Murphy, 2019)

Overfitting, Misleading performance
metrics, Potential data misinterpretation

Label leakage Features can include future information or tests depen-
dent on the outcome, or datasets can have multiple cor-
related outcome variables.

(Tomašev et al., 2019;
Ghassemi et al., 2020)

Ill-posed problem setup, Over-
optimistic performance, Failed clinical
deployment

Missingness Missing values caused by not being recorded (MCAR),
later feature aggregation (MAR), or differing clinical
practices (MNAR).

(Beaulieu-Jones et al.,
2017; Ferri et al., 2023;
Singh et al., 2021; Ha-
neuse et al., 2021)

Imputation risk, Model bias, Reduced
external validity

Noisy labels Incorrect labels caused by erroneous annotation, record-
ing mistakes, or difficulty in labeling.

(Yang et al., 2023; Wei
et al., 2024; Boughorbel
et al., 2018)

Poor generalization, Compromised inter-
pretability, Unstable model calibration

Data valuation General data quality issues impacting model perfor-
mance.

(Bloch et al., 2021; En-
shaei et al., 2022; Tang
et al., 2021; Pandl et al.,
2021)

Poor generalization, Suboptimal perfor-
mance, High curation overhead

Data-Centric
(Statistical -

Test)

Subgroup chal-
lenges

Poor performance or generalization on certain subgroups
(in-distribution heterogeneity).

(Oakden-Rayner et al.,
2020; Suresh et al.,
2018; Goel et al., 2020;
Cabrera et al., 2019; van
Breugel et al., 2024)

Poor generalization, Fairness concerns

Data shift Changes due to novel equipment, different measurement
units, or clinical practice evolution over time.

(Pianykh et al., 2020;
Koh et al., 2021; Patel
et al., 2008; Goetz et al.,
2024)

Poor generalization, Model bias, Need
for continuous monitoring

Avati et al., 2021; Estiri & Murphy, 2019; Tomašev et al., 2019; Ghassemi et al., 2020; Beaulieu-
Jones et al., 2017; Ferri et al., 2023; Singh et al., 2021; Haneuse et al., 2021). After synthesizing
insights from these diverse studies and their practical applications, we present a structured taxonomy,
highlighting the most pressing data-centric challenges affecting ML workflows. As shown in Table 7,
these perspectives address both data-centric and model-centric aspects.

On the data-centric side, we highlight elements related to data formatting, as well as statistical (both
training and test). When an LLM co-pilot fails to address these data issues effectively, it can lead to a
range of problems. These include issues with the final ML model (e.g., overfitting, model bias, poor
generalization, and limited interpretability) along with flaws in experimental setups (e.g., improper
formulation of the problem and label leakage (see case study 1 and 2 in Section 4.2)).

While not included in the table, we also note there do remain model-centric challenges. While
algorithm selection, hyperparameter tuning, and performance evaluation, have been frequently
discussed and relatively well-covered in recent LLM co-pilots, there should also be a focus on
domain-specific model classes and model interpretability. Different from typical data science tasks
that mainly focus on classification and regression: domain-specific model classes account for temporal
dependencies, hierarchical structures, and clinical context, ensuring that models are both accurate and
practically applicable. These issues arise frequently in data from healthcare settings. For instance,
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Figure 7: Addressing real data challenges is complex and requires multi-step reasoning.

specialized models are designed for survival analysis, a critical and widely applied task in healthcare.
Moreover, the role of interpretability is to ensure that predictive models can provide transparent and
actionable insights, which is crucial for enabling clinicians to trust and validate their decision-making.

Our taxonomy consequently offers a systematic foundation for challenges that co-pilots should
address and hence should impact the design and evaluation of LLM co-pilots. Specifically, we posit
that the structured taxonomy will enable the development of co-pilots that are better equipped to
handle real-world data issues, ultimately fostering more reliable, interpretable, and impactful ML
systems in high-stakes domains like healthcare.

Challenges vary by problem and context. While the taxonomy of challenges describes each issue
in an isolated manner, real-world scenarios often require a more integrated approach. When a co-pilot
addresses a user’s task, the challenges are inherently problem- and context-dependent, requiring
end-to-end consideration. As illustrated in Figure 7, there can be multiple data issues, which must
be handled in a nuanced manner, thereby making real-world applications complex. Consequently,
systems must be capable of reasoning about these challenges autonomously, while gathering and
considering expert human feedback.

C.2 CLIMB-DC: OPEN-SOURCE SOFTWARE TOOLKIT

Beyond usage by diverse users and improved performance, a an important aspect for CliMB-DC for
impact in healthcare is its role as a software toolkit to empower domain experts. Consequently, a key
aspect is the open-source nature of the framework, which enables the community to contribute and
integrate new tools to extend its capabilities.
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To achieve this goal of empowerment for diverse users, three software challenges are vital to address:
extensibility to new tools, human integration, and support for diverse predictive tasks in medicine,
specifically classification, survival analysis, and regression. This enables a more robust and user-
friendly system for clinical predictive modeling.

C.2.1 EXTENSIBILITY TO NEW TOOLS

The diversity and rapid development of data-centric tools means the framework must be capable of
integrating new tooling from the community with minimal effort.

Data-Centric Tool Support: CliMB-DC emphasizes a data-centric AI approach by integrating
specialized tools (see Table 2) that enhance dataset quality including:

• Imputation Tools: Frameworks like HyperImpute handle missing data with advanced iterative
imputation techniques.

• Exploratory Analysis and data quality evaluation: Tools such as Data-IQ enable detailed
subgroup analysis, data heterogeneity and noisy labels.

• Interpretability: Built-in post-hoc interpretability methods like SHAP and permutation
explainers ensure models remain transparent and actionable.

Extensibility: (i) We have a tool registry which catalogs the available tools, their supported
predictive tasks, and their data requirements, enabling users to easily incorporate new methods
without modifying core system logic. (ii) Modular APIs allow developers to register new tools,
ensuring that CliMB-DC evolves alongside data-centric advances. (iii) The Open-source architecture
encourages community contributions to expand the ecosystem of available data-centric tools to the
co-pilot. This enables broader accessibility to data-centric tools for non-technical domain experts
thereby empowering them. Additionally, it provides an opportunity for the data-centric ML research
community to easily incorporate new tools and/or validate their tools, facilitating research impact via
usage on diverse applications.

C.2.2 HUMAN INTEGRATION THROUGH UI AND FEEDBACK

More complex ML frameworks generally require a wider range of skill sets that are often lacking
by non-technical domain experts, whereas the setup of more complex biological research questions
risk being misunderstood by technical domain experts. One way of minimizing the impact of these
limitations is creating a user interface (UI) that allows both mutual understanding of the tasks between
users and integrates specific feedback from the type of user.

User Interface The UI for CliMB-DC combines output from natural, conversational language,
along with updates on the progress of the task pipeline accompanied with visualizations (see Figure 8).
This type of interface provides non-technical domain experts the opportunity to perform tasks that
they might not be able to do directly with an ML tool and technical domain experts the opportunity to
examine more closely which ML procedures were effectuated.

Oftentimes, users with technical and non-technical domain expertise employ different terminology
for the same task or problem at hand, obfuscating the processes needed to complete the task or solve
the given problem. For example, users from the ML community might adapt a feature selection
process prior to or during predictive modeling, while those from the epidemiology community would
refer to this process as model building (see Table 6 for more examples). The fact that users can
communicate desired processes in their natural language makes it possible to carry out the intended
task, supporting its nuances and bringing about a more fluid user experience.

Dynamic Plan Refinement via expert guidance CliMB-DC importantly incorporates human
feedback into its reasoning. The user can refine the data science pipeline in an iterative manner by
weighing in their expertise on a variety of processes (e.g., on data transformations, feature selection,
or model evaluation). The iterative feedback dynamically adjusts the plan, ensuring alignment with
domain-specific goals and that outputs are clinically relevant.
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Figure 8: The user interface of CliMB-DC, which supports natural language input, multi-modal
conversation record and dashboard, session controls (including user-initiated retry and backtracking),
and session management across multiple conversations.

C.2.3 SUPPORT FOR DIVERSE PREDICTIVE TASKS

Clinical datasets require predictive modeling across varied tasks, including classification, survival
analysis, and regression, each with distinct data processing and modeling needs. Recall that in
carrying out these analytics, non-technical domain experts like clinical researchers, biostatisticians,
epidemiologists etc, do not need to do ML analytics. Rather CliMB-DC facilitates this with domain
expertise used to guide and validate the process.

C.3 CLIMB ALGORITHM

Algorithm 1 CliMB-DC Optimization with Expert Integration

Require: Initial dataset Dp0q, tools T
Ensure: Curated dataset D˚

1: Initialize Sp0q “ tDp0q,H,Pp0q,H, T u

2: D˚ Ð Dp0q

3: while not converged do Ź Coordinator reasoning phase
4: Optq Ð STATEOBSERVEpSptqq Ź see Section 3.2
5: βptq Ð ASSESSBACKTRACKpOptqq

6: if βptq “ 1 then
7: pD˚,Sptqq Ð RESTORECHECKPOINTpHptqq

8: continue
9: end if

10: Pptq Ð PLANNINGpOptqq

11: while not episode_complete do Ź Worker execution phase
12: ft Ð W.PROPOSETRANSFORMpSptq,Pptq, T ptqq

13: D˚ Ð ftpD˚q

14: end while
15: Spt`1q Ð UPDATESTATEpSptq,D˚,Hptqq Ź Update system state
16: end while
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Figure 9: The processing workflow of CliMB-DC on the Lung Cancer dataset, illustrating how the
coordinator agent, worker agent, and user interact at each processing stage T . The data issues include
missingness, feature redundancy, and label leakage. The prediction task is survival analysis, requiring
domain-specific model classes.
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Figure 10: The processing workflow of CliMB-DC on the Prostate Cancer dataset, illustrating how
the coordinator agent, worker agent, and user interact at each processing stage T . The data issues
include missingness and data quality/drifts. The prediction task is classification.
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E INTERACTION EXAMPLES

In this section, we present execution logs from both the baselines and CliMB-DC to illustrate two
key points: (1) why the baselines fail to address data issues effectively, and (2) how CliMB-DC
successfully tackles these challenges in healthcare. We first show examples of baselines, i.e. Data-
Interpreter and OpenHands, and then provide the corresponding successful examples of CliMB-DC.

E.1 DATA-INTERPRETER

E.1.1 EXAMPLE: INCORRECT METRIC USED

In the following example (lung cancer dataset), we observe a failure case with Data-Interpreter, where
it used the ROC-AUC score as a proxy for the C-index score. This issue arises due to the absence of
Python packages for survival analysis. Since Data-Interpreter lacks user interaction capabilities, the
system failed to detect and address this error.

Summary of work up to this point: The datasets have been successfully loaded and initially
preprocessed. However, despite multiple attempts to utilize Python packages for survival analysis,
such as lifelines and sksurv, the installation process has not been triggered.

...

Generated code:

1 import xgboost as xgb
2 from sklearn.model_selection import train_test_split
3 from sklearn.metrics import roc_auc_score
4 import numpy as np
5 # Prepare the data for survival analysis
6 X_train = train_df_copy.drop(columns=[’time_to_event_develop’, ’

lung_cancer’])
7 y_train = train_df_copy[[’time_to_event_develop’, ’lung_cancer’]]
8 X_eval = eval_df_copy.drop(columns=[’time_to_event_develop’, ’

lung_cancer’])
9 y_eval = eval_df_copy[[’time_to_event_develop’, ’lung_cancer’]]

10 # Convert the target to a structured array for xgboost
11 y_train_structured = np.array([(time, event) for time, event in zip

(y_train[’time_to_event_develop’], y_train[’lung_cancer’])],
12 dtype=[(’time’, ’float’), (’event’, ’

bool’)])
13 y_eval_structured = np.array([(time, event) for time, event in zip(

y_eval[’time_to_event_develop’], y_eval[’lung_cancer’])],
14 dtype=[(’time’, ’float’), (’event’, ’

bool’)])
15 # Create DMatrix for xgboost
16 dtrain = xgb.DMatrix(X_train, label=y_train[’lung_cancer’])
17 deval = xgb.DMatrix(X_eval, label=y_eval[’lung_cancer’])
18 # Set up parameters for xgboost
19 params = {
20 ’objective’: ’binary:logistic’,
21 ’eval_metric’: ’auc’,
22 ’max_depth’: 3,
23 ’eta’: 0.1,
24 ’subsample’: 0.8,
25 ’colsample_bytree’: 0.8,
26 ’seed’: 42
27 }
28 # Train the xgboost model
29 bst = xgb.train(params, dtrain, num_boost_round=100)
30 # Predict the risk scores for the evaluation set
31 risk_scores = bst.predict(deval)
32 # Calculate the concordance index
33 c_index = roc_auc_score(y_eval[’lung_cancer’], risk_scores)
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34 print(f"C-index: {c_index:.4f}")

Code execution output:
Code execution finished successfully ✓

1 C-index: 0.5337

Reason behind this. Data-Interpreter lacks the ability to interact with users, making it difficult to
trigger the installation of required Python packages when they are missing. Additionally, since survival
analysis is not as common as standard machine learning tasks like classification and regression, the
system fails to recognize how to compute the C-index score. As a result, it incorrectly applies an
inappropriate metric without detecting the issue.

E.1.2 EXAMPLE: FAIL TO SETUP SURVIVAL ANALYSIS

In the following example (lung cancer dataset), we observe a failure case with Data-Interpreter, where
it failed to setup the survival analysis. The system “auto-degraded” to XGBoost and failed to address
this error.

Summary of work up to this point: The datasets have been successfully loaded and initially pre-
processed. Python packages for survival analysis, such as lifelines and sksurv, are manually
installed. However, it encountered “Convergence error” when fitting CoxPHFitter due to the high
collinearity.

...

Generated code:

1 from xgboost import XGBRegressor
2 from lifelines.utils import concordance_index
3 import pandas as pd
4 # Prepare the data
5 X_train = train_data_var.drop(columns=[’time_to_event_develop’, ’

lung_cancer’])
6 y_train = train_data_var[[’time_to_event_develop’, ’lung_cancer’]]
7 X_eval = eval_data_var.drop(columns=[’time_to_event_develop’, ’

lung_cancer’])
8 y_eval = eval_data_var[[’time_to_event_develop’, ’lung_cancer’]]
9 # Train the XGBoost model

10 xgb_model = XGBRegressor(objective=’survival:cox’, n_estimators
=100, learning_rate=0.1, max_depth=3, subsample=0.8,
colsample_bytree=0.8)

11 xgb_model.fit(X_train, y_train[’time_to_event_develop’])
12 # Predict risk scores
13 eval_data_combined[’risk_score’] = xgb_model.predict(X_eval)
14

15 # Calculate the C-index
16 c_index = concordance_index(y_eval[’time_to_event_develop’], -

eval_data_combined[’risk_score’], y_eval[’lung_cancer’])
17 print(f"C-index: {c_index}")

Code execution output:
Code execution finished successfully ✓

1 C-index: 0.5000

Reason behind this. Data-Interpreter lacks both data-centric tools and sufficient knowledge of data
preprocessing to address collinearity effectively. As a result, even when provided with the appropriate
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survival analysis package (lifelines), it repeatedly encounters “Convergence errors.” Eventually,
it abandons the use of lifelines and reverts to using XGBoost.

E.1.3 EXAMPLE: FAIL TO ADDRESS LABEL LEAKAGE

In the following example (PBC dataset), we observe a failure case with Data-Interpreter, where it
failed to address the data aggregation as well as the label leakage. The system did not recognize
such issues.

Summary of work up to this point: The datasets have been successfully loaded and initially pre-
processed. Python packages for survival analysis, such as lifelines and sksurv, are manually
installed.

Generated code:

1 # Evaluate the model using 5-fold cross-validation and report the C
-index

2 import pandas as pd
3 from metagpt.tools.libs.data_preprocess import FillMissingValue
4 from sklearn.model_selection import KFold
5 from sklearn.preprocessing import LabelEncoder, StandardScaler
6 from lifelines import CoxPHFitter
7 from lifelines.utils import concordance_index
8 import numpy as np
9 # Load and preprocess the data

10 data_path = ’/shared/share_mala/jiashuo/MetaGPT/data/di_dataset/
copilot/PBCData.csv’

11 df = pd.read_csv(data_path, encoding=’ISO-8859-1’)
12

13 # Fill missing values
14 df_copy = df.copy()
15 numeric_features = df_copy.select_dtypes(include=[’float64’, ’int64

’]).columns.tolist()
16 fill_missing_numeric = FillMissingValue(features=numeric_features,

strategy=’mean’)
17 df_copy = fill_missing_numeric.fit_transform(df_copy)
18 categorical_features = df_copy.select_dtypes(include=[’object’]).

columns.tolist()
19 fill_missing_categorical = FillMissingValue(features=

categorical_features, strategy=’most_frequent’)
20 df_copy = fill_missing_categorical.fit_transform(df_copy)
21 # Encode categorical features
22 label_encoders = {}
23 for col in [’Visit_Type’, ’Sex’, ’Event_Category’, ’Alive_status’,

’LT’, ’Decomp’, ’VH’, ’Ascites’, ’HE’]:
24 le = LabelEncoder()
25 df_copy[col] = le.fit_transform(df_copy[col].astype(str))
26 label_encoders[col] = le
27 # Fill remaining missing values
28 df_copy.fillna(df_copy.mean(numeric_only=True), inplace=True)
29 for col in [’Visit_Type’, ’Sex’, ’Event_Category’, ’Alive_status’,

’LT’, ’Decomp’, ’VH’, ’Ascites’, ’HE’]:
30 df_copy[col].fillna(df_copy[col].mode()[0], inplace=True)
31

32 # Drop low variance columns
33 low_variance_cols = [col for col in df_copy.columns if df_copy[col

].var() < 1e-5]
34 df_copy.drop(columns=low_variance_cols, inplace=True)
35

36 # Prepare features and target
37 X = df_copy.drop(columns=[’Event_status’, ’Years_to_event’])
38 y = df_copy[[’Event_status’, ’Years_to_event’]]
39 # Standardize features
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40 scaler = StandardScaler()
41 X_scaled = scaler.fit_transform(X)
42 X_scaled = pd.DataFrame(X_scaled, columns=X.columns)
43

44 # Perform 5-fold cross-validation
45 kf = KFold(n_splits=5, shuffle=True, random_state=42)
46 c_indices = []
47

48 for train_index, test_index in kf.split(X_scaled):
49 X_train, X_test = X_scaled.iloc[train_index], X_scaled.iloc[

test_index]
50 y_train, y_test = y.iloc[train_index], y.iloc[test_index]
51

52 train_data = X_train.copy()
53 train_data[’Event_status’] = y_train[’Event_status’]
54 train_data[’Years_to_event’] = y_train[’Years_to_event’]
55 test_data = X_test.copy()
56 test_data[’Event_status’] = y_test[’Event_status’]
57 test_data[’Years_to_event’] = y_test[’Years_to_event’]
58

59 cph = CoxPHFitter(penalizer=0.1)
60 cph.fit(train_data, duration_col=’Years_to_event’, event_col=’

Event_status’)
61

62 test_predictions = cph.predict_partial_hazard(test_data)
63 c_index = concordance_index(test_data[’Years_to_event’], -

test_predictions, test_data[’Event_status’])
64 c_indices.append(c_index)
65 mean_c_index = np.mean(c_indices)
66 print(f’Mean C-index from 5-fold cross-validation: {mean_c_index}’)

Code execution output:
Code execution finished successfully ✓

1 Mean C-index from 5-fold cross-validation: 0.7750170186750802

Reason behind this. Although Data-Interpreter successfully fitted a Cox regression model for
survival analysis, it failed to address key data issues in the PBC dataset. Specifically, the PBC data
contains multiple observations per patient ID, requiring aggregation prior to analysis. Addition-
ally, besides the “Event_status” and “Years_to_event” features, there are “Event_Category” and
“Alive_status” features that are highly correlated with the target variable, leading to label leakage.
However, Data-Interpreter did not account for these issues, resulting in flawed analysis.

E.2 OPENHANDS

In the following example (lung cancer dataset), we observe a failure case with OpenHands, where it
(1) failed to appropriately preprocess the data and (2) failed to deal with label leakage. The system
did not recognize or deal with such issues.

Summary of work up to this point: The datasets have been successfully loaded and initially
preprocessed.

1 import pandas as pd
2 from lifelines import CoxPHFitter
3 from lifelines.utils import concordance_index
4

5 # Load the training and testing datasets
6 train_data = pd.read_csv(’/workspace/copilot/lung_train.csv’)
7 test_data = pd.read_csv(’/workspace/copilot/lung_test.csv’)
8

32



Published as a paper at 2nd DATA-FM workshop @ ICLR 2025, Singapore.

9 # Prepare the data for survival analysis
10 X_train = train_data.drop(columns=[’time_to_event_develop’, ’

lung_cancer’])
11 y_train = train_data[[’time_to_event_develop’, ’lung_cancer’]]
12

13 # Fit the Cox Proportional Hazards model
14 cph = CoxPHFitter()
15 cph.fit(y_train, duration_col=’time_to_event_develop’, event_col=’

lung_cancer’)
16

17 # Prepare the test data
18 X_test = test_data.drop(columns=[’time_to_event_develop’, ’lung_cancer

’])
19 y_test = test_data[[’time_to_event_develop’, ’lung_cancer’]]
20

21 # Predict the risk scores for the test data
22 risk_scores = cph.predict_partial_hazard(X_test)
23

24 # Calculate the C-index
25 c_index = concordance_index(y_test[’time_to_event_develop’], -

risk_scores, y_test[’lung_cancer’])
26

27 c_index

Code execution output:
Code execution finished successfully ✓

1 np.float64(0.5)

Assistant: The survival prediction model for lung cancer has been built using the Cox Propor-
tional Hazards model. The C-index reported on the test dataset is 0.5. However, the model
summary is empty, which may indicate that the model did not find any significant predictors in
the training data. If you need further analysis or adjustments, please let me know!

Reason behind this. The prediction model developed by OpenHands demonstrates subpar per-
formance. This is primarily due to the lack of any data preprocessing, resulting in an ineffective
and meaningless survival model. Besides, OpenHands did not recognize the label leakage problem
caused by feature “time_to_death_lung_cancer” and “time_to_lung_cancer”. Moreover, OpenHands
failed to identify the label leakage issue caused by the features “time_to_death_lung_cancer” and
”time_to_lung_cancer”. The failure scenarios closely resemble those observed with Data-Interpreter.

E.3 SUCCESSFUL CASES WITH CLIMB-DC

Here, we demonstrate how CliMB-DC effectively addresses the previously discussed failure cases,
using the lung cancer dataset as an example.

E.3.1 EXAMPLE: ADDRESS LABEL LEAKAGE

This example demonstrates how CliMB-DC effectively addresses label leakage issues via advanced
reasoning and human interaction.

Summary of Progress to Date: The datasets have been successfully loaded and appropriately
preprocessed, including steps such as imputation, normalization, and other necessary adjustments.
Before initiating experiments, CliMB-DC ensures alignment with the user by confirming the problem
setup, while also checking for potential label leakage.

...
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Assistant: I will now consult the message history to check the meaning and details of each of
these columns and identify any potential data leakage.

Suspected Data Leakage Columns:
• “time_to_death_lung_cancer”: This column is likely to reveal the target variable

“lung_cancer”.
• “time_to_lung_cancer”: This column is likely to reveal the target variable

“lung_cancer”.
Data leakage is a problem because it can lead to overly optimistic results and a model that
cannot be used in practice. By including information that would not be available at the time of
prediction, the model can learn patterns that are not generalizable to new data.

Assistant: Do you agree with the identified columns for potential data leakage? If there are any
other columns you suspect might cause data leakage, please let me know.

User: Yes, those two are data leakage. Remove them please

Assistant: I will now generate the code to remove the identified columns
(“time_to_death_lung_cancer” and “time_to_lung_cancer”) from both the training and
test datasets.

Generated code:

1 import pandas as pd
2

3 # Load the training dataset
4 train_df = pd.read_csv("lung_train.csv")
5

6 # Drop the identified columns
7 train_df = train_df.drop(columns=["time_to_death_lung_cancer", "

time_to_lung_cancer"])
8

9 # Save the modified training dataset
10 train_df.to_csv("lung_train_no_leakage.csv", index=False)
11

12 # Load the test dataset
13 test_df = pd.read_csv("lung_test.csv")
14

15 # Drop the identified columns
16 test_df = test_df.drop(columns=["time_to_death_lung_cancer", "

time_to_lung_cancer"])
17

18 # Save the modified test dataset
19 test_df.to_csv("lung_test_no_leakage.csv", index=False)
20

21 print("Columns ’time_to_death_lung_cancer’ and ’time_to_lung_cancer
’ have been removed from both datasets.")

Code execution output:
Code execution finished successfully ✓

1 Columns ‘‘time_to_death_lung_cancer’’ and ‘‘time_to_lung_cancer
’’ have been removed from both datasets.

...
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Summary of Subsequent Work: CliMB-DC then went on to identifying irrelevant features to
remove. An illustrative example is provided below.

E.3.2 EXAMPLE: IDENTIFY IRRELEVANT FEATURES

This example demonstrates how CliMB-DC identified irrelevant features and interacted with the user
to remove them.

Summary of Progress to Date: The datasets have been appropriately preprocessed and the label
leakage issue has been addressed based on expert human feedback. Moving forward, CliMB-DC
focuses on identifying and addressing irrelevant features.

...

Assistant: I will now check if there are any meaningless/irrelevant columns still left in the
dataset.

Suspected Irrelevant Columns:
• “index”: This column is likely an identifier and does not contain any useful information

for the analysis.
Including irrelevant columns can lead to overfitting and misleading feature importance. It is
important to remove them before continuing with the machine learning study.

Assistant: Do you agree with removing the “index” column? Are there any other columns you
suspect might be irrelevant?

User: Yes, remove "index" column only.

Assistant: I will now generate the code to remove the “index” column from both the training
and test datasets.
Generated code:

1 import pandas as pd
2

3 # Load the training dataset
4 train_df = pd.read_csv("lung_train_no_leakage.csv")
5

6 # Drop the identified irrelevant column
7 train_df = train_df.drop(columns=["index"])
8

9 # Save the modified training dataset
10 train_df.to_csv("lung_train_no_leakage_no_index.csv", index=False)
11

12 # Load the test dataset
13 test_df = pd.read_csv("lung_test_no_leakage.csv")
14

15 # Drop the identified irrelevant column
16 test_df = test_df.drop(columns=["index"])
17

18 # Save the modified test dataset
19 test_df.to_csv("lung_test_no_leakage_no_index.csv", index=False)
20

21 print("Column ’index’ has been removed from both datasets.")
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Code execution output:
Code execution finished successfully ✓

1 Column ‘‘index’’ has been removed from both datasets.

Assistant: The index column has been removed from both the training and test datasets.
The modified datasets have been saved as lung_train_no_leakage_no_index.csv and
lung_test_no_leakage_no_index.csv.

Feature Columns Left: Here are the feature columns that are left in the dataset:
• age_at_recruitment
• sex
• body_mass_index
• n_cig_per_day
• ...

Are you happy to use all of these features in the machine learning study?

User: Yes

...

Summary of Subsequent Work: CliMB-DC then went on to utilizing domain-specific models
tailored for survival analysis. An illustrative example is provided below.

E.3.3 EXAMPLE: SETUP DOMAIN-SPECIFIC MODEL & METRIC

Following the above examples, this example shows how CliMB-DC leveraged domain-specific tools
to build survival models effectively.

Summary of Progress to Date: The datasets have been appropriately preprocessed and the label
leakage issue has been addressed based on expert human feedback. Irrelevant features are removed.

...

Assistant: Tool autoprognosis_survival_train_test completed successfully ✓
Tool logs:
1 Trying models:
2 [
3 "cox_ph",
4 "deephit"
5 ]
6 Running the survival analysis study, this may take several minutes

...
7 AutoPrognosis 2.0: Duration of this iteration: 15.6s
8 AutoPrognosis 2.0: Investigating model: data_cleanup->cox_ph
9 AutoPrognosis 2.0: C-index achieved: 0.917

10 AutoPrognosis 2.0: Brier score achieved: 0.003
11 AutoPrognosis 2.0: Duration of this iteration: 4.1s
12 AutoPrognosis 2.0: Investigating model: nop->feature_normalizer->

data_cleanup->cox_ph
13 AutoPrognosis 2.0: C-index achieved: 0.896
14 AutoPrognosis 2.0: Brier score achieved: 0.003
15 AutoPrognosis 2.0: Duration of this iteration: 3.7s
16 AutoPrognosis 2.0: Investigating model: nop->normal_transform->

data_cleanup->cox_ph
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17 AutoPrognosis 2.0: C-index achieved: 0.892
18 AutoPrognosis 2.0: Brier score achieved: 0.003
19 AutoPrognosis 2.0: Duration of this iteration: 3.4s
20 AutoPrognosis 2.0: Investigating model: data_cleanup->cox_ph
21 AutoPrognosis 2.0: C-index achieved: 0.898
22 AutoPrognosis 2.0: Brier score achieved: 0.007
23 AutoPrognosis 2.0: Duration of this iteration: 3.7s
24 AutoPrognosis 2.0: Investigating model: nop->feature_normalizer->

data_cleanup->cox_ph
25 AutoPrognosis 2.0: C-index achieved: 0.862
26 AutoPrognosis 2.0: Brier score achieved: 0.007
27 AutoPrognosis 2.0: Duration of this iteration: 3.4s
28 AutoPrognosis 2.0: Investigating model: nop->normal_transform->

data_cleanup->cox_ph
29 AutoPrognosis 2.0: C-index achieved: 0.876
30 AutoPrognosis 2.0: Brier score achieved: 0.007
31 AutoPrognosis 2.0: Duration of this iteration: 2.9s
32 AutoPrognosis 2.0: Investigating model: data_cleanup->cox_ph
33 AutoPrognosis 2.0: C-index achieved: 0.843
34 AutoPrognosis 2.0: Brier score achieved: 0.012
35 AutoPrognosis 2.0: Duration of this iteration: 3.2s
36 AutoPrognosis 2.0: Investigating model: nop->feature_normalizer->

data_cleanup->cox_ph
37 AutoPrognosis 2.0: C-index achieved: 0.803
38 AutoPrognosis 2.0: Brier score achieved: 0.012
39 AutoPrognosis 2.0: Duration of this iteration: 3.0s
40 AutoPrognosis 2.0: Investigating model: nop->normal_transform->

data_cleanup->cox_ph
41 AutoPrognosis 2.0: C-index achieved: 0.830
42 AutoPrognosis 2.0: Brier score achieved: 0.012
43 AutoPrognosis 2.0: Duration of this iteration: 7.6s
44 AutoPrognosis 2.0: Duration of this iteration: 7.6s
45 AutoPrognosis 2.0: Investigating model: [’1.0 * data_cleanup->

cox_ph’]
46 AutoPrognosis 2.0: C-index achieved: 0.952 +/- 0.0
47 AutoPrognosis 2.0: Brier score achieved: 0.003 +/- 0.0
48 AutoPrognosis 2.0: Investigating model:
49 [’1.0 * data_cleanup->cox_ph’]
50 AutoPrognosis 2.0: C-index achieved: 0.952 +/- 0.0
51 AutoPrognosis 2.0: Brier score achieved: 0.003 +/- 0.0
52 AutoPrognosis 2.0: Duration of this iteration: 7.6s
53 AutoPrognosis 2.0: Duration of this iteration: 7.6s
54 AutoPrognosis 2.0: Investigating model: [’1.0 * data_cleanup->

cox_ph’]
55 AutoPrognosis 2.0: C-index achieved: 0.936 +/- 0.0
56 AutoPrognosis 2.0: Brier score achieved: 0.007 +/- 0.0
57 AutoPrognosis 2.0: Investigating model:
58 [’1.0 * data_cleanup->cox_ph’]
59 AutoPrognosis 2.0: C-index achieved: 0.936 +/- 0.0
60 AutoPrognosis 2.0: Brier score achieved: 0.007 +/- 0.0
61 AutoPrognosis 2.0: Duration of this iteration: 7.1s
62 AutoPrognosis 2.0: Duration of this iteration: 7.1s
63 AutoPrognosis 2.0: Investigating model: [’1.0 * data_cleanup->

cox_ph’]
64 AutoPrognosis 2.0: C-index achieved: 0.87 +/- 0.0
65 AutoPrognosis 2.0: Brier score achieved: 0.012 +/- 0.0
66 AutoPrognosis 2.0: Investigating model:
67 [’1.0 * data_cleanup->cox_ph’]
68 AutoPrognosis 2.0: C-index achieved: 0.87 +/- 0.0
69 AutoPrognosis 2.0: Brier score achieved: 0.012 +/- 0.0
70 AutoPrognosis 2.0: Duration of this iteration: 609.3s
71 AutoPrognosis 2.0: Duration of this iteration: 609.3s
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72 AutoPrognosis 2.0: Investigating model: ["1.0 * data_cleanup->
cox_ph({’cox_ph’: {}})", "1.0 * data_cleanup->cox_ph({’cox_ph’:
{}})", "1.0 * data_cleanup->cox_ph({’cox_ph’: {}})"]

73 AutoPrognosis 2.0: C-index achieved: 0.903
74 AutoPrognosis 2.0: Brier score achieved: 0.007
75 AutoPrognosis 2.0: Investigating model:
76 AutoPrognosis 2.0: Study finished.
77 ["1.0 * data_cleanup->cox_ph({’cox_ph’: {}})", "1.0 * data_cleanup

->cox_ph({’cox_ph’: {}})", "1.0 * data_cleanup->cox_ph({’cox_ph
’: {}})"]

78 AutoPrognosis 2.0: C-index achieved: 0.903
79 AutoPrognosis 2.0: Brier score achieved: 0.007
80 AutoPrognosis 2.0: Study finished.
81 Survival analysis study completed!
82 Final model summary:
83 Metrics (train data): "c_index": "0.925 +/- 0.029",
84 Metrics (test data): "c_index": "0.848 +/- 0.005"

E.4 EXAMPLE: MODEL EVALUATION & FEATURE IMPORTANCE

Based on the results, CliMB-DC will provide feature importance explanations for the users to better
understand the prediction model, ensuring the interpretability in healthcare.

Summary of Progress to Date: CliMB-DC has fitted a survival model for the given dataset and the
task.

...

Assistant: Would you like to see feature importance plots for your survival analysis task?

User: Yes, please

Assistant: Tool permutation_explainer completed successfully ✓
Tool logs:
1 Loading the data...
2 Data loaded with shape: 4800 rows and 28 columns.
3 Loading model from file: path/model_all.p
4 Running the permutation explainer, this can take a while...
5

6 This tool takes approximately 1 minute per column. If this
is too slow, consider reducing the number of columns.

7 Reducing the number of column can be done with the feature
selection tool. You can cancel this tool with the

8 ‘Restart from last reasoning step‘ button. Then use the
feature selection tool to reduce the number of columns.

9 Permutation explainer completed!
10 importances_mean importances_std
11 age_at_recruitment 0.088055 0.019220
12 copd_emphysema_bronchitis 0.018188 0.004543
13 packyears 0.018143 0.007201
14 pneumonia_self_reported 0.017176 0.000252
15 age_started_smoking 0.015429 0.002090
16 personal_hx_cancer 0.010980 0.003070
17 ...
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Assistant: The feature importance plot is herea:

aWe omit the feature names in the figure.

F MORE CLIMB-DC INTERACTION EXAMPLES

In this section, we present more examples highlighting the advantages of CliMB-DC in executing
effective data preprocessing.

F.1 EXAMPLE: DATA EXPLORATION

For the input data, CliMB-DC provides users with a detailed data analysis as well as visualization
using tools EDA, descriptive statistics, and lifelines.KaplanMeierFitter.

Summary of Progress to Date: The data file has been uploaded.

...

Assistant: Tool EDA completed successfully ✓

Tool logs:
1 Getting dataset basic info...
2 Getting descriptive statistics for numerical features...
3 Getting detailed information on categorical variables...
4 Performing missing values analysis...
5 Identified numeric columns that should be considered categorical:
6 [’asbestosis_self_reported’, ’pneumonia_self_reported’, ’

chronic_obstructive_airways_disease_copd_self_reported’, ’
emphysema_chronic_bronchitis’, ’copd_emphysema_bronchitis’, ’
emphysema’, ’asthma’, ’eczema_allergicrhinitis_hayfever’, ’
number_of_self_reported_cancers’, ’personal_hx_cancer’, ’
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family_hx_lung_cancer_mother’, ’family_hx_lung_cancer_father’,
’family_hx_lung_cancer_siblings’, ’asbestos’, ’lung_cancer’]

7 Performing correlation analysis...
8 Performing potential outliers identification...
9 Performing duplicate records analysis...

Tool output:
1 Dataset Shape: 4800 rows and 31 columns
2 Column Names and Types:
3 index int64
4 age_at_recruitment float64
5 sex object
6 body_mass_index float64
7 n_cig_per_day float64
8 age_started_smoking float64
9 age_stopped_smoking float64

10 ...
11

12 Descriptive Statistics for Numerical Features:
13 index age_at_recruitment body_mass_index ...
14 count 4800.000000 4800.000000 4800.000000 ...
15 mean 87406.250417 57.417163 27.676107 ...
16 std 49908.726761 8.084722 4.621542 ...
17 min 129.000000 40.000000 16.024943 ...
18 25% 44130.250000 51.167603 24.473217 ...
19 50% 88896.000000 59.135000 27.116986 ...
20 75% 130874.500000 63.719537 30.425950 ...
21 max 173314.000000 72.000000 53.565422 ...
22 skew -0.033166 -0.447521 0.579946 ...
23 kurt -1.179482 -0.848562 0.532072 ...
24

25 Identified numeric value columns that should most likely be
considered categoricals:

26 [’asbestosis_self_reported’, ’pneumonia_self_reported’, ’asbestos’,
’lung_cancer’, ...].

27 This is done by checking whether the column contains only integers
and has a low number of unique values (<20 or <5% of total
examples).

28

29 Detailed Information on Categorical Variables:
30 smoking_status - Unique Values: 2
31 Top 5 Values:
32 smoking_status
33 Previous 3603
34 Current 1197
35 ...
36

37 Missing Values Analysis:
38 No missing values found.
39

40 Correlation Analysis: ...
41

42 Outlier Identification for Numerical Features:
43 index - Outliers Count: 0
44 [Lower Bound: -1.08e+05, Upper Bound: 2.83e+05]
45 ...
46

47 Duplicate Records: 0

Assistant: Here is a correlation gram showing the correlation between featuresa:
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aWe omit the feature names in the figure.

Assistant: Would you like to generate descriptive statistics for the training dataset
(lung_train.csv)?

User: Yes

Assistant: Tool descriptive_statistics completed successfully ✓

Tool logs:
1 Creating the descriptive statistics table...
2 Saving the summary table to:
3 /mnt/data-fourtb/Dropbox/Programming/wsl_repos/climb_versions/

climb_cot/climb/wd/session_2025-01-08_14-33-29/lung_train.
csv__descriptive_stats.csv

4 Identified numeric columns that should be considered categorical:
5 [’asbestos’, ’lung_cancer’, ...]
6 Creating plots for the data...
7 Normally distributed features:
8 []
9 Not normally distributed features:

10 [’age_at_recruitment’, ’age_started_smoking’, ’age_stopped_smoking’
, ’body_mass_index’, ’index’, ...]

11 Plotted a bar plot for: ’sex’
12 Plotted a bar plot for: ’smoking_status’
13 Plotted a histogram and box plot for: ’age_at_recruitment’
14 ...
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15 Plotting of ’years_since_stopped_smoking’ took too long and was
skipped.

Tool output:
1 Variable Summary
2 index 88896 (44130

- 130874)
3 age_at_recruitment 59.1

(51.2 - 63.7)
4 sex
5 Male

2483/4800 (51.7)
6 Female

2317/4800 (48.3)
7 ...

Assistant: The descriptive statistics have been generated successfully. Here is a summary of the
key findings:

Summary of Descriptive Statistics:
Numerical Variables:

• age_at_recruitment: Median = 59.1 (Q1-Q3: 51.2 - 63.7)
• body_mass_index: Median = 27.1 (Q1-Q3: 24.5 - 30.4)
• ...

Categorical Variables:
• sex: Male = 51.7%, Female = 48.3%
• smoking_status: Previous = 75.1%, Current = 24.9%
• ...

Key Figures: Here are some important figures generated during the analysis:
• Distribution of age_at_recruitment:

• Distribution of age_started_smoking:
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• Distribution of age_stopped_smoking:

• Distribution of body_mass_index:

• Distribution of number_of_cigarettes_per_day::

• Distribution of packyears:

• ...
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Assistant: Would you like to see a Kaplan-Meier plot for the survival analysis?

User: Yes

Assistant: I will generate the Kaplan-Meier plot for the training dataset using the lifelines
library.

Generated code:

1 import pandas as pd
2 import matplotlib.pyplot as plt
3 from lifelines import KaplanMeierFitter
4

5 # Load the training dataset
6 df = pd.read_csv("lung_train.csv")
7

8 # Define the event and time columns
9 event_col = "lung_cancer"

10 time_col = "time_to_event_develop"
11

12 # Initialize the Kaplan-Meier fitter
13 kmf = KaplanMeierFitter()
14

15 # Fit the data
16 kmf.fit(durations=df[time_col], event_observed=df[event_col])
17

18 # Plot the Kaplan-Meier curve
19 plt.figure(figsize=(10, 6))
20 kmf.plot_survival_function()
21 plt.title("Kaplan-Meier Survival Curve")
22 plt.xlabel("Time to Event (days)")
23 plt.ylabel("Survival Probability")
24 plt.grid(True)
25

26 # Save the plot
27 plt.savefig("km_plot_training.png")
28 plt.close()
29 print("Kaplan-Meier plot for the training dataset has been saved as

’km_plot_training.png’.")

Code execution output:
Code execution finished successfully ✓

1 Kaplan-Meier plot for the training dataset has been saved as ’
km_plot_training.png’.

Assistant: Here is the Kaplan-Meier plot for the training dataset:
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F.2 EXAMPLE: DATA AGGREGATION

When input data contains multiple measurements, CliMB-DC will auto-check such issue and interact
with users to address it.

Summary of Progress to Date The data file has been uploaded, and relevant background information
has been provided to CliMB-DC.

...

Let’s assess the suitability of your data for the task and whether the AutoPrognosis tools
support it.
Q1: Is the data suitable for the task?

• The data is structured with each row representing a patient’s information at different
follow-up points.

• We need to predict the “Event_status” variable using the “Years_to_event” as the time
variable, which indicates a survival analysis problem.

Potential issue: The data has multiple rows per patient, which might not be directly suitable for
the AutoPrognosis tools that expect one row per patient.
Q2: Does the AutoPrognosis set of tools support the task?

• AutoPrognosis supports survival analysis through the
autoprognosis_survival_train_test tool.

• This tool requires the target (event) variable and the time variable, which we have
(“Event_status” and “Years_to_event”).

Conclusion:
• The task can be performed using AutoPrognosis, but the data needs to be trans-

formed to have one row per patient.
To transform the data, we can aggregate the follow-up points for each patient. This could involve
taking the last follow-up point for each patient or aggregating information in a meaningful way.
Would you like to proceed with transforming the data to fit the task requirements?
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User: I would like to take the last follow up point.

Assistant: Let’s proceed with transforming the data to have one row per patient, taking the last
follow-up point for each patient.

Generated code:

1 import pandas as pd
2

3 # Load the data
4 file_path = "PBC_Data_corrected_v2.csv"
5 data = pd.read_csv(file_path)
6

7 # Sort the data by patient ID and follow-up time (assuming columns
are ’patient_id’ and ’Years_to_event’)

8 # Replace ’patient_id’ with the actual column name for patient
identification if different

9 data_sorted = data.sort_values(by=[’patient_id’, ’Years_to_event’])
10

11 # Take the last follow-up point for each patient
12 data_last_followup = data_sorted.drop_duplicates(subset=[’

patient_id’], keep=’last’)
13

14 # Save the transformed data
15 output_file_path = "PBC_Data_last_followup.csv"
16 data_last_followup.to_csv(output_file_path, index=False)
17

18 print(f"Transformed data saved to {output_file_path}")

Code execution output:
Code execution failed ×

1 KeyError: ’patient_id’

Assistant: It appears that the column name for patient identification is not “patient_id”.
Could you please provide the correct column name for patient identification?

User: Yes, that would be “id”

Assistant: Let’s proceed with transforming the data using the correct column name “id” for
patient identification.
Generated code:

1 import pandas as pd
2

3 # Load the data
4 file_path = "PBC_Data_corrected_v2.csv"
5 data = pd.read_csv(file_path)
6

7 # Sort the data by patient ID and follow-up time
8 data_sorted = data.sort_values(by=[’id’, ’Years_to_event’])
9

10 # Take the last follow-up point for each patient
11 data_last_followup = data_sorted.drop_duplicates(subset=[’id’],

keep=’last’)
12

13 # Save the transformed data
14 output_file_path = "PBC_Data_last_followup.csv"
15 data_last_followup.to_csv(output_file_path, index=False)
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16

17 print(f"Transformed data saved to {output_file_path}")

Code execution output:
Code execution finished successfully ✓

1 Transformed data saved to PBC_Data_last_followup.csv

Assistant: The data has been successfully transformed to have one row per patient, tak-
ing the last follow-up point for each patient. The transformed data has been saved as
PBC_Data_last_followup.csv.
Based on the assessment:

• The data is now suitable for the task.
• The AutoPrognosis tools support survival analysis, which is the type of study you

want to perform.
You can proceed with the survival analysis using the
autoprognosis_survival_train_test tool.
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